import gdb-1999-10-04 snapshot
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40
41 #include <assert.h>
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) PARAMS ((char *, unsigned long));
67 void (*pre_add_symbol_hook) PARAMS ((char *));
68 void (*post_add_symbol_hook) PARAMS ((void));
69
70 /* Global variables owned by this file */
71 int readnow_symbol_files; /* Read full symbols immediately */
72
73 struct complaint oldsyms_complaint =
74 {
75 "Replacing old symbols for `%s'", 0, 0
76 };
77
78 struct complaint empty_symtab_complaint =
79 {
80 "Empty symbol table found for `%s'", 0, 0
81 };
82
83 struct complaint unknown_option_complaint =
84 {
85 "Unknown option `%s' ignored", 0, 0
86 };
87
88 /* External variables and functions referenced. */
89
90 extern int info_verbose;
91
92 extern void report_transfer_performance PARAMS ((unsigned long,
93 time_t, time_t));
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table PARAMS ((void));
99 static void simple_free_overlay_region_table PARAMS ((void));
100 #endif
101
102 static void set_initial_language PARAMS ((void));
103
104 static void load_command PARAMS ((char *, int));
105
106 static void add_symbol_file_command PARAMS ((char *, int));
107
108 static void add_shared_symbol_files_command PARAMS ((char *, int));
109
110 static void cashier_psymtab PARAMS ((struct partial_symtab *));
111
112 static int compare_psymbols PARAMS ((const void *, const void *));
113
114 static int compare_symbols PARAMS ((const void *, const void *));
115
116 bfd *symfile_bfd_open PARAMS ((char *));
117
118 static void find_sym_fns PARAMS ((struct objfile *));
119
120 static void decrement_reading_symtab PARAMS ((void *));
121
122 static void overlay_invalidate_all PARAMS ((void));
123
124 static int overlay_is_mapped PARAMS ((struct obj_section *));
125
126 void list_overlays_command PARAMS ((char *, int));
127
128 void map_overlay_command PARAMS ((char *, int));
129
130 void unmap_overlay_command PARAMS ((char *, int));
131
132 static void overlay_auto_command PARAMS ((char *, int));
133
134 static void overlay_manual_command PARAMS ((char *, int));
135
136 static void overlay_off_command PARAMS ((char *, int));
137
138 static void overlay_load_command PARAMS ((char *, int));
139
140 static void overlay_command PARAMS ((char *, int));
141
142 static void simple_free_overlay_table PARAMS ((void));
143
144 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
145
146 static int simple_read_overlay_table PARAMS ((void));
147
148 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
149
150 static void add_filename_language PARAMS ((char *ext, enum language lang));
151
152 static void set_ext_lang_command PARAMS ((char *args, int from_tty));
153
154 static void info_ext_lang_command PARAMS ((char *args, int from_tty));
155
156 static void init_filename_language_table PARAMS ((void));
157
158 void _initialize_symfile PARAMS ((void));
159
160 /* List of all available sym_fns. On gdb startup, each object file reader
161 calls add_symtab_fns() to register information on each format it is
162 prepared to read. */
163
164 static struct sym_fns *symtab_fns = NULL;
165
166 /* Flag for whether user will be reloading symbols multiple times.
167 Defaults to ON for VxWorks, otherwise OFF. */
168
169 #ifdef SYMBOL_RELOADING_DEFAULT
170 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
171 #else
172 int symbol_reloading = 0;
173 #endif
174
175 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
176 this variable is interpreted as a threshhold. If adding a new
177 library's symbol table to those already known to the debugger would
178 exceed this threshhold, then the shlib's symbols are not added.
179
180 If non-zero on other platforms, shared library symbols will be added
181 automatically when the inferior is created, new libraries are loaded,
182 or when attaching to the inferior. This is almost always what users
183 will want to have happen; but for very large programs, the startup
184 time will be excessive, and so if this is a problem, the user can
185 clear this flag and then add the shared library symbols as needed.
186 Note that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present.
189
190 Note that HP-UX interprets this variable to mean, "threshhold size
191 in megabytes, where zero means never add". Other platforms interpret
192 this variable to mean, "always add if non-zero, never add if zero."
193 */
194
195 int auto_solib_add = 1;
196 \f
197
198 /* Since this function is called from within qsort, in an ANSI environment
199 it must conform to the prototype for qsort, which specifies that the
200 comparison function takes two "void *" pointers. */
201
202 static int
203 compare_symbols (s1p, s2p)
204 const PTR s1p;
205 const PTR s2p;
206 {
207 register struct symbol **s1, **s2;
208
209 s1 = (struct symbol **) s1p;
210 s2 = (struct symbol **) s2p;
211
212 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
213 }
214
215 /*
216
217 LOCAL FUNCTION
218
219 compare_psymbols -- compare two partial symbols by name
220
221 DESCRIPTION
222
223 Given pointers to pointers to two partial symbol table entries,
224 compare them by name and return -N, 0, or +N (ala strcmp).
225 Typically used by sorting routines like qsort().
226
227 NOTES
228
229 Does direct compare of first two characters before punting
230 and passing to strcmp for longer compares. Note that the
231 original version had a bug whereby two null strings or two
232 identically named one character strings would return the
233 comparison of memory following the null byte.
234
235 */
236
237 static int
238 compare_psymbols (s1p, s2p)
239 const PTR s1p;
240 const PTR s2p;
241 {
242 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
243 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
244
245 if ((st1[0] - st2[0]) || !st1[0])
246 {
247 return (st1[0] - st2[0]);
248 }
249 else if ((st1[1] - st2[1]) || !st1[1])
250 {
251 return (st1[1] - st2[1]);
252 }
253 else
254 {
255 /* Note: I replaced the STRCMP line (commented out below)
256 * with a simpler "strcmp()" which compares the 2 strings
257 * from the beginning. (STRCMP is a macro which first compares
258 * the initial characters, then falls back on strcmp).
259 * The reason is that the STRCMP line was tickling a C compiler
260 * bug on HP-UX 10.30, which is avoided with the simpler
261 * code. The performance gain from the more complicated code
262 * is negligible, given that we have already checked the
263 * initial 2 characters above. I reported the compiler bug,
264 * and once it is fixed the original line can be put back. RT
265 */
266 /* return ( STRCMP (st1 + 2, st2 + 2)); */
267 return (strcmp (st1, st2));
268 }
269 }
270
271 void
272 sort_pst_symbols (pst)
273 struct partial_symtab *pst;
274 {
275 /* Sort the global list; don't sort the static list */
276
277 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
278 pst->n_global_syms, sizeof (struct partial_symbol *),
279 compare_psymbols);
280 }
281
282 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
283
284 void
285 sort_block_syms (b)
286 register struct block *b;
287 {
288 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
289 sizeof (struct symbol *), compare_symbols);
290 }
291
292 /* Call sort_symtab_syms to sort alphabetically
293 the symbols of each block of one symtab. */
294
295 void
296 sort_symtab_syms (s)
297 register struct symtab *s;
298 {
299 register struct blockvector *bv;
300 int nbl;
301 int i;
302 register struct block *b;
303
304 if (s == 0)
305 return;
306 bv = BLOCKVECTOR (s);
307 nbl = BLOCKVECTOR_NBLOCKS (bv);
308 for (i = 0; i < nbl; i++)
309 {
310 b = BLOCKVECTOR_BLOCK (bv, i);
311 if (BLOCK_SHOULD_SORT (b))
312 sort_block_syms (b);
313 }
314 }
315
316 /* Make a null terminated copy of the string at PTR with SIZE characters in
317 the obstack pointed to by OBSTACKP . Returns the address of the copy.
318 Note that the string at PTR does not have to be null terminated, I.E. it
319 may be part of a larger string and we are only saving a substring. */
320
321 char *
322 obsavestring (ptr, size, obstackp)
323 char *ptr;
324 int size;
325 struct obstack *obstackp;
326 {
327 register char *p = (char *) obstack_alloc (obstackp, size + 1);
328 /* Open-coded memcpy--saves function call time. These strings are usually
329 short. FIXME: Is this really still true with a compiler that can
330 inline memcpy? */
331 {
332 register char *p1 = ptr;
333 register char *p2 = p;
334 char *end = ptr + size;
335 while (p1 != end)
336 *p2++ = *p1++;
337 }
338 p[size] = 0;
339 return p;
340 }
341
342 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
343 in the obstack pointed to by OBSTACKP. */
344
345 char *
346 obconcat (obstackp, s1, s2, s3)
347 struct obstack *obstackp;
348 const char *s1, *s2, *s3;
349 {
350 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
351 register char *val = (char *) obstack_alloc (obstackp, len);
352 strcpy (val, s1);
353 strcat (val, s2);
354 strcat (val, s3);
355 return val;
356 }
357
358 /* True if we are nested inside psymtab_to_symtab. */
359
360 int currently_reading_symtab = 0;
361
362 static void
363 decrement_reading_symtab (dummy)
364 void *dummy;
365 {
366 currently_reading_symtab--;
367 }
368
369 /* Get the symbol table that corresponds to a partial_symtab.
370 This is fast after the first time you do it. In fact, there
371 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
372 case inline. */
373
374 struct symtab *
375 psymtab_to_symtab (pst)
376 register struct partial_symtab *pst;
377 {
378 /* If it's been looked up before, return it. */
379 if (pst->symtab)
380 return pst->symtab;
381
382 /* If it has not yet been read in, read it. */
383 if (!pst->readin)
384 {
385 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
386 currently_reading_symtab++;
387 (*pst->read_symtab) (pst);
388 do_cleanups (back_to);
389 }
390
391 return pst->symtab;
392 }
393
394 /* Initialize entry point information for this objfile. */
395
396 void
397 init_entry_point_info (objfile)
398 struct objfile *objfile;
399 {
400 /* Save startup file's range of PC addresses to help blockframe.c
401 decide where the bottom of the stack is. */
402
403 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
404 {
405 /* Executable file -- record its entry point so we'll recognize
406 the startup file because it contains the entry point. */
407 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
408 }
409 else
410 {
411 /* Examination of non-executable.o files. Short-circuit this stuff. */
412 objfile->ei.entry_point = INVALID_ENTRY_POINT;
413 }
414 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
415 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
416 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
417 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
418 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
419 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
420 }
421
422 /* Get current entry point address. */
423
424 CORE_ADDR
425 entry_point_address ()
426 {
427 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
428 }
429
430 /* Remember the lowest-addressed loadable section we've seen.
431 This function is called via bfd_map_over_sections.
432
433 In case of equal vmas, the section with the largest size becomes the
434 lowest-addressed loadable section.
435
436 If the vmas and sizes are equal, the last section is considered the
437 lowest-addressed loadable section. */
438
439 void
440 find_lowest_section (abfd, sect, obj)
441 bfd *abfd;
442 asection *sect;
443 PTR obj;
444 {
445 asection **lowest = (asection **) obj;
446
447 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
448 return;
449 if (!*lowest)
450 *lowest = sect; /* First loadable section */
451 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
452 *lowest = sect; /* A lower loadable section */
453 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
454 && (bfd_section_size (abfd, (*lowest))
455 <= bfd_section_size (abfd, sect)))
456 *lowest = sect;
457 }
458
459 /* Parse the user's idea of an offset for dynamic linking, into our idea
460 of how to represent it for fast symbol reading. This is the default
461 version of the sym_fns.sym_offsets function for symbol readers that
462 don't need to do anything special. It allocates a section_offsets table
463 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
464
465 void
466 default_symfile_offsets (objfile, addrs)
467 struct objfile *objfile;
468 struct section_addr_info *addrs;
469 {
470 int i;
471
472 objfile->num_sections = SECT_OFF_MAX;
473 objfile->section_offsets = (struct section_offsets *)
474 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
475 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
476
477 /* If user explicitly specified values for data and bss, set them here. */
478
479 if (addrs->text_addr)
480 ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT) = addrs->text_addr;
481 if (addrs->data_addr)
482 ANOFFSET (objfile->section_offsets, SECT_OFF_DATA) = addrs->data_addr;
483 if (addrs->bss_addr)
484 ANOFFSET (objfile->section_offsets, SECT_OFF_BSS) = addrs->bss_addr;
485
486 /* Now calculate offsets for other sections. */
487 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
488 {
489 struct other_sections *osp ;
490
491 osp = &addrs->other[i] ;
492 if (addrs->other[i].addr == 0)
493 continue;
494 #if 0
495 if (strcmp (".text", osp->name) == 0)
496 SECT_OFF_TEXT = osp->sectindex ;
497 else if (strcmp (".data", osp->name) == 0)
498 SECT_OFF_DATA = osp->sectindex ;
499 else if (strcmp (".bss", osp->name) == 0)
500 SECT_OFF_BSS = osp->sectindex ;
501 #endif
502 /* Record all sections in offsets */
503 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
504 }
505 }
506
507
508 /* Process a symbol file, as either the main file or as a dynamically
509 loaded file.
510
511 OBJFILE is where the symbols are to be read from.
512
513 ADDR is the address where the text segment was loaded, unless the
514 objfile is the main symbol file, in which case it is zero.
515
516 MAINLINE is nonzero if this is the main symbol file, or zero if
517 it's an extra symbol file such as dynamically loaded code.
518
519 VERBO is nonzero if the caller has printed a verbose message about
520 the symbol reading (and complaints can be more terse about it). */
521
522 void
523 syms_from_objfile (objfile, addrs, mainline, verbo)
524 struct objfile *objfile;
525 struct section_addr_info *addrs;
526 int mainline;
527 int verbo;
528 {
529 struct section_offsets *section_offsets;
530 asection *lower_sect;
531 asection *sect;
532 CORE_ADDR lower_offset;
533 struct section_addr_info local_addr;
534 struct cleanup *old_chain;
535 int i;
536
537 /* If ADDRS is NULL, initialize the local section_addr_info struct and
538 point ADDRS to it. We now establish the convention that an addr of
539 zero means no load address was specified. */
540
541 if (addrs == NULL)
542 {
543 memset (&local_addr, 0, sizeof (local_addr));
544 addrs = &local_addr;
545 }
546
547 init_entry_point_info (objfile);
548 find_sym_fns (objfile);
549
550 /* Make sure that partially constructed symbol tables will be cleaned up
551 if an error occurs during symbol reading. */
552 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
553
554 if (mainline)
555 {
556 /* We will modify the main symbol table, make sure that all its users
557 will be cleaned up if an error occurs during symbol reading. */
558 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
559
560 /* Since no error yet, throw away the old symbol table. */
561
562 if (symfile_objfile != NULL)
563 {
564 free_objfile (symfile_objfile);
565 symfile_objfile = NULL;
566 }
567
568 /* Currently we keep symbols from the add-symbol-file command.
569 If the user wants to get rid of them, they should do "symbol-file"
570 without arguments first. Not sure this is the best behavior
571 (PR 2207). */
572
573 (*objfile->sf->sym_new_init) (objfile);
574 }
575
576 /* Convert addr into an offset rather than an absolute address.
577 We find the lowest address of a loaded segment in the objfile,
578 and assume that <addr> is where that got loaded.
579
580 We no longer warn if the lowest section is not a text segment (as
581 happens for the PA64 port. */
582 if (mainline)
583 {
584 /* No offset from objfile addresses. */
585 addrs -> text_addr = 0;
586 addrs -> data_addr = 0;
587 addrs -> bss_addr = 0;
588 }
589 else
590 {
591 /* Find lowest loadable section to be used as starting point for
592 continguous sections. FIXME!! won't work without call to find
593 .text first, but this assumes text is lowest section. */
594 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
595 if (lower_sect == NULL)
596 bfd_map_over_sections (objfile->obfd, find_lowest_section,
597 (PTR) &lower_sect);
598 if (lower_sect == NULL)
599 warning ("no loadable sections found in added symbol-file %s",
600 objfile->name);
601 else if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE)
602 == 0)
603 warning ("Lowest section in %s is %s at %s",
604 objfile->name,
605 bfd_section_name (objfile->obfd, lower_sect),
606 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
607 if (lower_sect != NULL)
608 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
609 else
610 lower_offset = 0;
611
612 /* Calculate offsets for the loadable sections.
613 FIXME! Sections must be in order of increasing loadable section
614 so that contiguous sections can use the lower-offset!!!
615
616 Adjust offsets if the segments are not contiguous.
617 If the section is contiguous, its offset should be set to
618 the offset of the highest loadable section lower than it
619 (the loadable section directly below it in memory).
620 this_offset = lower_offset = lower_addr - lower_orig_addr */
621
622 /* FIXME: These sections will not need special treatment because ALL
623 sections are in the other sections table */
624
625 if (addrs->text_addr != 0)
626 {
627 sect = bfd_get_section_by_name (objfile->obfd, ".text");
628 if (sect)
629 {
630 addrs->text_addr -= bfd_section_vma (objfile->obfd, sect);
631 lower_offset = addrs->text_addr;
632 }
633 }
634 else
635 /* ??? who's below me? */
636 addrs->text_addr = lower_offset;
637
638 if (addrs->data_addr != 0)
639 {
640 sect = bfd_get_section_by_name (objfile->obfd, ".data");
641 if (sect)
642 {
643 addrs->data_addr -= bfd_section_vma (objfile->obfd, sect);
644 lower_offset = addrs->data_addr;
645 }
646 }
647 else
648 addrs->data_addr = lower_offset;
649
650 if (addrs->bss_addr != 0)
651 {
652 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
653 if (sect)
654 {
655 addrs->bss_addr -= bfd_section_vma (objfile->obfd, sect);
656 lower_offset = addrs->bss_addr;
657 }
658 }
659 else
660 addrs->bss_addr = lower_offset;
661
662 /* Now calculate offsets for other sections. */
663 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
664 {
665
666 if (addrs->other[i].addr != 0)
667 {
668 sect=bfd_get_section_by_name(objfile->obfd, addrs->other[i].name);
669 if (sect)
670 {
671 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
672 lower_offset = addrs->other[i].addr;
673 addrs->other[i].sectindex = sect->index ;
674 }
675 else
676 {
677 warning ("section %s not found in %s", addrs->other[i].name,
678 objfile->name);
679 addrs->other[i].addr = 0;
680 }
681 }
682 else
683 addrs->other[i].addr = lower_offset;
684 }
685 }
686
687 /* Initialize symbol reading routines for this objfile, allow complaints to
688 appear for this new file, and record how verbose to be, then do the
689 initial symbol reading for this file. */
690
691 (*objfile->sf->sym_init) (objfile);
692 clear_complaints (1, verbo);
693
694 (*objfile->sf->sym_offsets) (objfile, addrs);
695
696 #ifndef IBM6000_TARGET
697 /* This is a SVR4/SunOS specific hack, I think. In any event, it
698 screws RS/6000. sym_offsets should be doing this sort of thing,
699 because it knows the mapping between bfd sections and
700 section_offsets. */
701 /* This is a hack. As far as I can tell, section offsets are not
702 target dependent. They are all set to addr with a couple of
703 exceptions. The exceptions are sysvr4 shared libraries, whose
704 offsets are kept in solib structures anyway and rs6000 xcoff
705 which handles shared libraries in a completely unique way.
706
707 Section offsets are built similarly, except that they are built
708 by adding addr in all cases because there is no clear mapping
709 from section_offsets into actual sections. Note that solib.c
710 has a different algorithm for finding section offsets.
711
712 These should probably all be collapsed into some target
713 independent form of shared library support. FIXME. */
714
715 if (addrs)
716 {
717 struct obj_section *s;
718
719 /* Map section offsets in "addr" back to the object's
720 sections by comparing the section names with bfd's
721 section names. Then adjust the section address by
722 the offset. */ /* for gdb/13815 */
723
724 ALL_OBJFILE_OSECTIONS (objfile, s)
725 {
726 CORE_ADDR s_addr = 0;
727 int i;
728
729 if (strcmp (s->the_bfd_section->name, ".text") == 0)
730 s_addr = addrs->text_addr;
731 else if (strcmp (s->the_bfd_section->name, ".data") == 0)
732 s_addr = addrs->data_addr;
733 else if (strcmp (s->the_bfd_section->name, ".bss") == 0)
734 s_addr = addrs->bss_addr;
735 else
736 for (i = 0; !s_addr && addrs->other[i].name; i++)
737 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
738 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
739
740 s->addr -= s->offset;
741 s->addr += s_addr;
742 s->endaddr -= s->offset;
743 s->endaddr += s_addr;
744 s->offset += s_addr;
745 }
746 }
747 #endif /* not IBM6000_TARGET */
748
749 (*objfile->sf->sym_read) (objfile, mainline);
750
751 if (!have_partial_symbols () && !have_full_symbols ())
752 {
753 wrap_here ("");
754 printf_filtered ("(no debugging symbols found)...");
755 wrap_here ("");
756 }
757
758 /* Don't allow char * to have a typename (else would get caddr_t).
759 Ditto void *. FIXME: Check whether this is now done by all the
760 symbol readers themselves (many of them now do), and if so remove
761 it from here. */
762
763 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
764 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
765
766 /* Mark the objfile has having had initial symbol read attempted. Note
767 that this does not mean we found any symbols... */
768
769 objfile->flags |= OBJF_SYMS;
770
771 /* Discard cleanups as symbol reading was successful. */
772
773 discard_cleanups (old_chain);
774
775 /* Call this after reading in a new symbol table to give target
776 dependant code a crack at the new symbols. For instance, this
777 could be used to update the values of target-specific symbols GDB
778 needs to keep track of (such as _sigtramp, or whatever). */
779
780 TARGET_SYMFILE_POSTREAD (objfile);
781 }
782
783 /* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
786
787 void
788 new_symfile_objfile (objfile, mainline, verbo)
789 struct objfile *objfile;
790 int mainline;
791 int verbo;
792 {
793
794 /* If this is the main symbol file we have to clean up all users of the
795 old main symbol file. Otherwise it is sufficient to fixup all the
796 breakpoints that may have been redefined by this symbol file. */
797 if (mainline)
798 {
799 /* OK, make it the "real" symbol file. */
800 symfile_objfile = objfile;
801
802 clear_symtab_users ();
803 }
804 else
805 {
806 breakpoint_re_set ();
807 }
808
809 /* We're done reading the symbol file; finish off complaints. */
810 clear_complaints (0, verbo);
811 }
812
813 /* Process a symbol file, as either the main file or as a dynamically
814 loaded file.
815
816 NAME is the file name (which will be tilde-expanded and made
817 absolute herein) (but we don't free or modify NAME itself).
818 FROM_TTY says how verbose to be. MAINLINE specifies whether this
819 is the main symbol file, or whether it's an extra symbol file such
820 as dynamically loaded code. If !mainline, ADDR is the address
821 where the text segment was loaded.
822
823 USER_LOADED is TRUE if the add-symbol-file command was how this
824 symbol file came to be processed.
825
826 IS_SOLIB is TRUE if this symbol file represents a solib, as discovered
827 by the target's implementation of the solib package.
828
829 Upon success, returns a pointer to the objfile that was added.
830 Upon failure, jumps back to command level (never returns). */
831
832 struct objfile *
833 symbol_file_add (name, from_tty, addrs, mainline, flags, user_loaded, is_solib)
834 char *name;
835 int from_tty;
836 struct section_addr_info *addrs;
837 int mainline;
838 int flags;
839 int user_loaded;
840 int is_solib;
841 {
842 struct objfile *objfile;
843 struct partial_symtab *psymtab;
844 bfd *abfd;
845
846 /* Open a bfd for the file, and give user a chance to burp if we'd be
847 interactively wiping out any existing symbols. */
848
849 abfd = symfile_bfd_open (name);
850
851 if ((have_full_symbols () || have_partial_symbols ())
852 && mainline
853 && from_tty
854 && !query ("Load new symbol table from \"%s\"? ", name))
855 error ("Not confirmed.");
856
857 objfile = allocate_objfile (abfd, flags & OBJF_MAPPED, user_loaded, is_solib);
858
859 /* If the objfile uses a mapped symbol file, and we have a psymtab for
860 it, then skip reading any symbols at this time. */
861
862 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
863 {
864 /* We mapped in an existing symbol table file that already has had
865 initial symbol reading performed, so we can skip that part. Notify
866 the user that instead of reading the symbols, they have been mapped.
867 */
868 if (from_tty || info_verbose)
869 {
870 printf_filtered ("Mapped symbols for %s...", name);
871 wrap_here ("");
872 gdb_flush (gdb_stdout);
873 }
874 init_entry_point_info (objfile);
875 find_sym_fns (objfile);
876 }
877 else
878 {
879 /* We either created a new mapped symbol table, mapped an existing
880 symbol table file which has not had initial symbol reading
881 performed, or need to read an unmapped symbol table. */
882 if (from_tty || info_verbose)
883 {
884 if (pre_add_symbol_hook)
885 pre_add_symbol_hook (name);
886 else
887 {
888 printf_filtered ("Reading symbols from %s...", name);
889 wrap_here ("");
890 gdb_flush (gdb_stdout);
891 }
892 }
893 syms_from_objfile (objfile, addrs, mainline, from_tty);
894 }
895
896 /* We now have at least a partial symbol table. Check to see if the
897 user requested that all symbols be read on initial access via either
898 the gdb startup command line or on a per symbol file basis. Expand
899 all partial symbol tables for this objfile if so. */
900
901 if ((flags & OBJF_READNOW) || readnow_symbol_files)
902 {
903 if (from_tty || info_verbose)
904 {
905 printf_filtered ("expanding to full symbols...");
906 wrap_here ("");
907 gdb_flush (gdb_stdout);
908 }
909
910 for (psymtab = objfile->psymtabs;
911 psymtab != NULL;
912 psymtab = psymtab->next)
913 {
914 psymtab_to_symtab (psymtab);
915 }
916 }
917
918 if (from_tty || info_verbose)
919 {
920 if (post_add_symbol_hook)
921 post_add_symbol_hook ();
922 else
923 {
924 printf_filtered ("done.\n");
925 gdb_flush (gdb_stdout);
926 }
927 }
928
929 new_symfile_objfile (objfile, mainline, from_tty);
930
931 target_new_objfile (objfile);
932
933 return (objfile);
934 }
935
936 /* This is the symbol-file command. Read the file, analyze its
937 symbols, and add a struct symtab to a symtab list. The syntax of
938 the command is rather bizarre--(1) buildargv implements various
939 quoting conventions which are undocumented and have little or
940 nothing in common with the way things are quoted (or not quoted)
941 elsewhere in GDB, (2) options are used, which are not generally
942 used in GDB (perhaps "set mapped on", "set readnow on" would be
943 better), (3) the order of options matters, which is contrary to GNU
944 conventions (because it is confusing and inconvenient). */
945
946 void
947 symbol_file_command (args, from_tty)
948 char *args;
949 int from_tty;
950 {
951 char **argv;
952 char *name = NULL;
953 CORE_ADDR text_relocation = 0; /* text_relocation */
954 struct cleanup *cleanups;
955 int flags = 0;
956
957 dont_repeat ();
958
959 if (args == NULL)
960 {
961 if ((have_full_symbols () || have_partial_symbols ())
962 && from_tty
963 && !query ("Discard symbol table from `%s'? ",
964 symfile_objfile->name))
965 error ("Not confirmed.");
966 free_all_objfiles ();
967
968 /* solib descriptors may have handles to objfiles. Since their
969 storage has just been released, we'd better wipe the solib
970 descriptors as well.
971 */
972 #if defined(SOLIB_RESTART)
973 SOLIB_RESTART ();
974 #endif
975
976 symfile_objfile = NULL;
977 if (from_tty)
978 {
979 printf_unfiltered ("No symbol file now.\n");
980 }
981 #ifdef HPUXHPPA
982 RESET_HP_UX_GLOBALS ();
983 #endif
984 }
985 else
986 {
987 if ((argv = buildargv (args)) == NULL)
988 {
989 nomem (0);
990 }
991 cleanups = make_cleanup_freeargv (argv);
992 while (*argv != NULL)
993 {
994 if (STREQ (*argv, "-mapped"))
995 {
996 flags |= OBJF_MAPPED;
997 }
998 else if (STREQ (*argv, "-readnow"))
999 {
1000 flags |= OBJF_READNOW;
1001 }
1002 else if (**argv == '-')
1003 {
1004 error ("unknown option `%s'", *argv);
1005 }
1006 else
1007 {
1008 char *p;
1009
1010 name = *argv;
1011
1012 /* this is for rombug remote only, to get the text relocation by
1013 using link command */
1014 p = strrchr (name, '/');
1015 if (p != NULL)
1016 p++;
1017 else
1018 p = name;
1019
1020 target_link (p, &text_relocation);
1021
1022 if (text_relocation == (CORE_ADDR) 0)
1023 return;
1024 else if (text_relocation == (CORE_ADDR) -1)
1025 {
1026 symbol_file_add (name, from_tty, NULL,
1027 1, flags, 1, 0);
1028 #ifdef HPUXHPPA
1029 RESET_HP_UX_GLOBALS ();
1030 #endif
1031 }
1032 else
1033 {
1034 struct section_addr_info section_addrs;
1035 memset (&section_addrs, 0, sizeof (section_addrs));
1036 section_addrs.text_addr = (CORE_ADDR) text_relocation;
1037 symbol_file_add (name, from_tty, &section_addrs,
1038 0, flags, 1, 0);
1039 }
1040
1041 /* Getting new symbols may change our opinion about what is
1042 frameless. */
1043 reinit_frame_cache ();
1044
1045 set_initial_language ();
1046 }
1047 argv++;
1048 }
1049
1050 if (name == NULL)
1051 {
1052 error ("no symbol file name was specified");
1053 }
1054 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1055 do_cleanups (cleanups);
1056 }
1057 }
1058
1059 /* Set the initial language.
1060
1061 A better solution would be to record the language in the psymtab when reading
1062 partial symbols, and then use it (if known) to set the language. This would
1063 be a win for formats that encode the language in an easily discoverable place,
1064 such as DWARF. For stabs, we can jump through hoops looking for specially
1065 named symbols or try to intuit the language from the specific type of stabs
1066 we find, but we can't do that until later when we read in full symbols.
1067 FIXME. */
1068
1069 static void
1070 set_initial_language ()
1071 {
1072 struct partial_symtab *pst;
1073 enum language lang = language_unknown;
1074
1075 pst = find_main_psymtab ();
1076 if (pst != NULL)
1077 {
1078 if (pst->filename != NULL)
1079 {
1080 lang = deduce_language_from_filename (pst->filename);
1081 }
1082 if (lang == language_unknown)
1083 {
1084 /* Make C the default language */
1085 lang = language_c;
1086 }
1087 set_language (lang);
1088 expected_language = current_language; /* Don't warn the user */
1089 }
1090 }
1091
1092 /* Open file specified by NAME and hand it off to BFD for preliminary
1093 analysis. Result is a newly initialized bfd *, which includes a newly
1094 malloc'd` copy of NAME (tilde-expanded and made absolute).
1095 In case of trouble, error() is called. */
1096
1097 bfd *
1098 symfile_bfd_open (name)
1099 char *name;
1100 {
1101 bfd *sym_bfd;
1102 int desc;
1103 char *absolute_name;
1104
1105
1106
1107 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1108
1109 /* Look down path for it, allocate 2nd new malloc'd copy. */
1110 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1111 #if defined(__GO32__) || defined(_WIN32)
1112 if (desc < 0)
1113 {
1114 char *exename = alloca (strlen (name) + 5);
1115 strcat (strcpy (exename, name), ".exe");
1116 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1117 0, &absolute_name);
1118 }
1119 #endif
1120 if (desc < 0)
1121 {
1122 make_cleanup (free, name);
1123 perror_with_name (name);
1124 }
1125 free (name); /* Free 1st new malloc'd copy */
1126 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1127 /* It'll be freed in free_objfile(). */
1128
1129 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1130 if (!sym_bfd)
1131 {
1132 close (desc);
1133 make_cleanup (free, name);
1134 error ("\"%s\": can't open to read symbols: %s.", name,
1135 bfd_errmsg (bfd_get_error ()));
1136 }
1137 sym_bfd->cacheable = true;
1138
1139 if (!bfd_check_format (sym_bfd, bfd_object))
1140 {
1141 /* FIXME: should be checking for errors from bfd_close (for one thing,
1142 on error it does not free all the storage associated with the
1143 bfd). */
1144 bfd_close (sym_bfd); /* This also closes desc */
1145 make_cleanup (free, name);
1146 error ("\"%s\": can't read symbols: %s.", name,
1147 bfd_errmsg (bfd_get_error ()));
1148 }
1149 return (sym_bfd);
1150 }
1151
1152 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1153 startup by the _initialize routine in each object file format reader,
1154 to register information about each format the the reader is prepared
1155 to handle. */
1156
1157 void
1158 add_symtab_fns (sf)
1159 struct sym_fns *sf;
1160 {
1161 sf->next = symtab_fns;
1162 symtab_fns = sf;
1163 }
1164
1165
1166 /* Initialize to read symbols from the symbol file sym_bfd. It either
1167 returns or calls error(). The result is an initialized struct sym_fns
1168 in the objfile structure, that contains cached information about the
1169 symbol file. */
1170
1171 static void
1172 find_sym_fns (objfile)
1173 struct objfile *objfile;
1174 {
1175 struct sym_fns *sf;
1176 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1177 char *our_target = bfd_get_target (objfile->obfd);
1178
1179 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1180 if (STREQ (our_target, "aixcoff-rs6000") ||
1181 STREQ (our_target, "xcoff-powermac"))
1182 our_flavour = (enum bfd_flavour) -1;
1183
1184 /* Special kludge for apollo. See dstread.c. */
1185 if (STREQN (our_target, "apollo", 6))
1186 our_flavour = (enum bfd_flavour) -2;
1187
1188 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1189 {
1190 if (our_flavour == sf->sym_flavour)
1191 {
1192 objfile->sf = sf;
1193 return;
1194 }
1195 }
1196 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1197 bfd_get_target (objfile->obfd));
1198 }
1199 \f
1200 /* This function runs the load command of our current target. */
1201
1202 static void
1203 load_command (arg, from_tty)
1204 char *arg;
1205 int from_tty;
1206 {
1207 if (arg == NULL)
1208 arg = get_exec_file (1);
1209 target_load (arg, from_tty);
1210 }
1211
1212 /* This version of "load" should be usable for any target. Currently
1213 it is just used for remote targets, not inftarg.c or core files,
1214 on the theory that only in that case is it useful.
1215
1216 Avoiding xmodem and the like seems like a win (a) because we don't have
1217 to worry about finding it, and (b) On VMS, fork() is very slow and so
1218 we don't want to run a subprocess. On the other hand, I'm not sure how
1219 performance compares. */
1220 #define GENERIC_LOAD_CHUNK 256
1221 #define VALIDATE_DOWNLOAD 0
1222 void
1223 generic_load (filename, from_tty)
1224 char *filename;
1225 int from_tty;
1226 {
1227 struct cleanup *old_cleanups;
1228 asection *s;
1229 bfd *loadfile_bfd;
1230 time_t start_time, end_time; /* Start and end times of download */
1231 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1232 int n;
1233 unsigned long load_offset = 0; /* offset to add to vma for each section */
1234 char buf[GENERIC_LOAD_CHUNK + 8];
1235 #if VALIDATE_DOWNLOAD
1236 char verify_buffer[GENERIC_LOAD_CHUNK + 8];
1237 #endif
1238
1239 /* enable user to specify address for downloading as 2nd arg to load */
1240 n = sscanf (filename, "%s 0x%lx", buf, &load_offset);
1241 if (n > 1)
1242 filename = buf;
1243 else
1244 load_offset = 0;
1245
1246 loadfile_bfd = bfd_openr (filename, gnutarget);
1247 if (loadfile_bfd == NULL)
1248 {
1249 perror_with_name (filename);
1250 return;
1251 }
1252 /* FIXME: should be checking for errors from bfd_close (for one thing,
1253 on error it does not free all the storage associated with the
1254 bfd). */
1255 old_cleanups = make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1256
1257 if (!bfd_check_format (loadfile_bfd, bfd_object))
1258 {
1259 error ("\"%s\" is not an object file: %s", filename,
1260 bfd_errmsg (bfd_get_error ()));
1261 }
1262
1263 start_time = time (NULL);
1264
1265 for (s = loadfile_bfd->sections; s; s = s->next)
1266 {
1267 if (s->flags & SEC_LOAD)
1268 {
1269 bfd_size_type size;
1270
1271 size = bfd_get_section_size_before_reloc (s);
1272 if (size > 0)
1273 {
1274 char *buffer;
1275 struct cleanup *old_chain;
1276 bfd_vma lma;
1277 unsigned long l = size;
1278 int err;
1279 char *sect;
1280 unsigned long sent;
1281 unsigned long len;
1282
1283 l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l;
1284
1285 buffer = xmalloc (size);
1286 old_chain = make_cleanup (free, buffer);
1287
1288 lma = s->lma;
1289 lma += load_offset;
1290
1291 /* Is this really necessary? I guess it gives the user something
1292 to look at during a long download. */
1293 printf_filtered ("Loading section %s, size 0x%lx lma ",
1294 bfd_get_section_name (loadfile_bfd, s),
1295 (unsigned long) size);
1296 print_address_numeric (lma, 1, gdb_stdout);
1297 printf_filtered ("\n");
1298
1299 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1300
1301 sect = (char *) bfd_get_section_name (loadfile_bfd, s);
1302 sent = 0;
1303 do
1304 {
1305 len = (size - sent) < l ? (size - sent) : l;
1306 sent += len;
1307 err = target_write_memory (lma, buffer, len);
1308 if (ui_load_progress_hook)
1309 if (ui_load_progress_hook (sect, sent))
1310 error ("Canceled the download");
1311 #if VALIDATE_DOWNLOAD
1312 /* Broken memories and broken monitors manifest themselves
1313 here when bring new computers to life.
1314 This doubles already slow downloads.
1315 */
1316 if (err)
1317 break;
1318 {
1319 target_read_memory (lma, verify_buffer, len);
1320 if (0 != bcmp (buffer, verify_buffer, len))
1321 error ("Download verify failed at %08x",
1322 (unsigned long) lma);
1323 }
1324
1325 #endif
1326 data_count += len;
1327 lma += len;
1328 buffer += len;
1329 } /* od */
1330 while (err == 0 && sent < size);
1331
1332 if (err != 0)
1333 error ("Memory access error while loading section %s.",
1334 bfd_get_section_name (loadfile_bfd, s));
1335
1336 do_cleanups (old_chain);
1337 }
1338 }
1339 }
1340
1341 end_time = time (NULL);
1342 {
1343 unsigned long entry;
1344 entry = bfd_get_start_address (loadfile_bfd);
1345 printf_filtered ("Start address 0x%lx , load size %ld\n", entry, data_count);
1346 /* We were doing this in remote-mips.c, I suspect it is right
1347 for other targets too. */
1348 write_pc (entry);
1349 }
1350
1351 /* FIXME: are we supposed to call symbol_file_add or not? According to
1352 a comment from remote-mips.c (where a call to symbol_file_add was
1353 commented out), making the call confuses GDB if more than one file is
1354 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1355 does. */
1356
1357 report_transfer_performance (data_count, start_time, end_time);
1358
1359 do_cleanups (old_cleanups);
1360 }
1361
1362 /* Report how fast the transfer went. */
1363
1364 void
1365 report_transfer_performance (data_count, start_time, end_time)
1366 unsigned long data_count;
1367 time_t start_time, end_time;
1368 {
1369 printf_filtered ("Transfer rate: ");
1370 if (end_time != start_time)
1371 printf_filtered ("%ld bits/sec",
1372 (data_count * 8) / (end_time - start_time));
1373 else
1374 printf_filtered ("%ld bits in <1 sec", (data_count * 8));
1375 printf_filtered (".\n");
1376 }
1377
1378 /* This function allows the addition of incrementally linked object files.
1379 It does not modify any state in the target, only in the debugger. */
1380
1381 /* ARGSUSED */
1382 static void
1383 add_symbol_file_command (args, from_tty)
1384 char *args;
1385 int from_tty;
1386 {
1387 char *name = NULL;
1388 CORE_ADDR text_addr;
1389 int flags = 0;
1390 char *arg;
1391 int expecting_option = 0;
1392 int option_index = 0;
1393 int argcnt = 0;
1394 int sec_num = 0;
1395 int i;
1396 struct
1397 {
1398 enum { OPT_SECTION } type;
1399 char *name;
1400 char *value;
1401 } opt[SECT_OFF_MAX];
1402 struct section_addr_info section_addrs;
1403
1404 dont_repeat ();
1405
1406 if (args == NULL)
1407 {
1408 error ("add-symbol-file takes a file name and an address");
1409 }
1410
1411 /* Make a copy of the string that we can safely write into. */
1412
1413 args = strdup (args);
1414 make_cleanup (free, args);
1415
1416 /* Ensure section_addrs is initialized */
1417 memset (&section_addrs, 0, sizeof (section_addrs));
1418
1419 /* Pick off any -option args and the file name. */
1420
1421 while (*args != '\000')
1422 {
1423 while (isspace (*args))
1424 {
1425 args++;
1426 }
1427 arg = args;
1428 while ((*args != '\000') && !isspace (*args))
1429 {
1430 args++;
1431 }
1432 if (*args != '\000')
1433 {
1434 *args++ = '\000';
1435 }
1436 if (*arg != '-')
1437 {
1438 if (expecting_option)
1439 {
1440 opt[option_index++].value = arg;
1441 expecting_option = 0;
1442 }
1443 else
1444 {
1445 switch (argcnt)
1446 {
1447 case 0:
1448 name = arg;
1449 break;
1450 case 1:
1451 opt[option_index].type = OPT_SECTION;
1452 opt[option_index].name = ".text";
1453 opt[option_index++].value = arg;
1454 break;
1455 case 2:
1456 opt[option_index].type = OPT_SECTION;
1457 opt[option_index].name = ".data";
1458 opt[option_index++].value = arg;
1459 break;
1460 case 3:
1461 opt[option_index].type = OPT_SECTION;
1462 opt[option_index].name = ".bss";
1463 opt[option_index++].value = arg;
1464 break;
1465 default:
1466 warning ("Too many arguments entered; see \"help add-symbol-file\" for command syntax.");
1467 }
1468 argcnt++;
1469 }
1470 }
1471 else if (STREQ (arg, "-mapped"))
1472 {
1473 flags |= OBJF_MAPPED;
1474 }
1475 else if (STREQ (arg, "-readnow"))
1476 {
1477 flags |= OBJF_READNOW;
1478 }
1479 else if (STREQN (arg, "-T", 2))
1480 {
1481 if (option_index >= SECT_OFF_MAX)
1482 {
1483 warning ("Number of options exceeds maximum allowed.");
1484 }
1485 else
1486 {
1487 expecting_option = 1;
1488 opt[option_index].type = OPT_SECTION;
1489 opt[option_index].name = arg + 2;
1490 }
1491 }
1492 else
1493 {
1494 error ("Unknown option `%s'", arg);
1495 }
1496 }
1497
1498 if (name == NULL)
1499 {
1500 error ("add-symbol-file takes a file name");
1501 }
1502 name = tilde_expand (name);
1503 make_cleanup (free, name);
1504
1505 if (option_index > 0)
1506 {
1507 /* Print the prompt for the query below.
1508 We have to split this up into 3 print statements because
1509 local_hex_string returns a local static string. */
1510
1511 printf_filtered ("add symbol table from file \"%s\" at\n", name);
1512 for (i = 0; i < option_index; i++)
1513 {
1514 switch (opt[i].type)
1515 {
1516 case OPT_SECTION:
1517 {
1518 CORE_ADDR addr;
1519 char *val = opt[i].value;
1520 char *sec = opt[i].name;
1521
1522 val = opt[i].value;
1523 if (val[0] == '0' && val[1] == 'x')
1524 addr = strtoul (val+2, NULL, 16);
1525 else
1526 addr = strtoul (val, NULL, 10);
1527
1528 if (strcmp (sec, ".text") == 0)
1529 section_addrs.text_addr = addr;
1530 else if (strcmp (sec, ".data") == 0)
1531 section_addrs.data_addr = addr;
1532 else if (strcmp (sec, ".bss") == 0)
1533 section_addrs.bss_addr = addr;
1534 /* Add the section to the others even if it is a
1535 text data or bss section. This is redundent but
1536 eventually, none will be given special treatment */
1537 {
1538 section_addrs.other[sec_num].name = strdup (sec);
1539 make_cleanup (free, section_addrs.other[sec_num].name);
1540 section_addrs.other[sec_num++].addr = addr;
1541 printf_filtered ("\t%s_addr = %s\n",
1542 sec,
1543 local_hex_string ((unsigned long)addr));
1544 }
1545
1546 /* The object's sections are initialized when a
1547 call is made to build_objfile_section_table (objfile).
1548 This happens in reread_symbols.
1549 At this point, we don't know what file type this is,
1550 so we can't determine what section names are valid. */
1551 }
1552 break;
1553 default:
1554 complain (&unknown_option_complaint, opt[i].name);
1555 }
1556 }
1557 /* Eventually, these hard coded names will be obsolete */
1558 /* All the addresses will be on the others section */
1559 }
1560 else
1561 {
1562 CORE_ADDR text_addr;
1563 target_link (name, &text_addr);
1564 if (text_addr == (CORE_ADDR) -1)
1565 error("Don't know how to get text start location for this file");
1566 section_addrs.text_addr = text_addr;
1567 section_addrs.data_addr = 0;
1568 section_addrs.bss_addr = 0;
1569 printf_filtered("add symbol table from file \"%s\" at text_addr = %s?\n",
1570 name, local_hex_string ((unsigned long)text_addr));
1571 }
1572 if (from_tty && (!query ("%s", "")))
1573 error ("Not confirmed.");
1574
1575 symbol_file_add (name, from_tty, &section_addrs, 0, flags,
1576 1, /* user_loaded */
1577 0); /* We'll guess it's ! is_solib */
1578
1579 /* Getting new symbols may change our opinion about what is
1580 frameless. */
1581 reinit_frame_cache ();
1582 }
1583 \f
1584 static void
1585 add_shared_symbol_files_command (args, from_tty)
1586 char *args;
1587 int from_tty;
1588 {
1589 #ifdef ADD_SHARED_SYMBOL_FILES
1590 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1591 #else
1592 error ("This command is not available in this configuration of GDB.");
1593 #endif
1594 }
1595 \f
1596 /* Re-read symbols if a symbol-file has changed. */
1597 void
1598 reread_symbols ()
1599 {
1600 struct objfile *objfile;
1601 long new_modtime;
1602 int reread_one = 0;
1603 struct stat new_statbuf;
1604 int res;
1605
1606 /* With the addition of shared libraries, this should be modified,
1607 the load time should be saved in the partial symbol tables, since
1608 different tables may come from different source files. FIXME.
1609 This routine should then walk down each partial symbol table
1610 and see if the symbol table that it originates from has been changed */
1611
1612 for (objfile = object_files; objfile; objfile = objfile->next)
1613 {
1614 if (objfile->obfd)
1615 {
1616 #ifdef IBM6000_TARGET
1617 /* If this object is from a shared library, then you should
1618 stat on the library name, not member name. */
1619
1620 if (objfile->obfd->my_archive)
1621 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1622 else
1623 #endif
1624 res = stat (objfile->name, &new_statbuf);
1625 if (res != 0)
1626 {
1627 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1628 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1629 objfile->name);
1630 continue;
1631 }
1632 new_modtime = new_statbuf.st_mtime;
1633 if (new_modtime != objfile->mtime)
1634 {
1635 struct cleanup *old_cleanups;
1636 struct section_offsets *offsets;
1637 int num_offsets;
1638 char *obfd_filename;
1639
1640 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1641 objfile->name);
1642
1643 /* There are various functions like symbol_file_add,
1644 symfile_bfd_open, syms_from_objfile, etc., which might
1645 appear to do what we want. But they have various other
1646 effects which we *don't* want. So we just do stuff
1647 ourselves. We don't worry about mapped files (for one thing,
1648 any mapped file will be out of date). */
1649
1650 /* If we get an error, blow away this objfile (not sure if
1651 that is the correct response for things like shared
1652 libraries). */
1653 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1654 objfile);
1655 /* We need to do this whenever any symbols go away. */
1656 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1657
1658 /* Clean up any state BFD has sitting around. We don't need
1659 to close the descriptor but BFD lacks a way of closing the
1660 BFD without closing the descriptor. */
1661 obfd_filename = bfd_get_filename (objfile->obfd);
1662 if (!bfd_close (objfile->obfd))
1663 error ("Can't close BFD for %s: %s", objfile->name,
1664 bfd_errmsg (bfd_get_error ()));
1665 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1666 if (objfile->obfd == NULL)
1667 error ("Can't open %s to read symbols.", objfile->name);
1668 /* bfd_openr sets cacheable to true, which is what we want. */
1669 if (!bfd_check_format (objfile->obfd, bfd_object))
1670 error ("Can't read symbols from %s: %s.", objfile->name,
1671 bfd_errmsg (bfd_get_error ()));
1672
1673 /* Save the offsets, we will nuke them with the rest of the
1674 psymbol_obstack. */
1675 num_offsets = objfile->num_sections;
1676 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1677 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1678
1679 /* Nuke all the state that we will re-read. Much of the following
1680 code which sets things to NULL really is necessary to tell
1681 other parts of GDB that there is nothing currently there. */
1682
1683 /* FIXME: Do we have to free a whole linked list, or is this
1684 enough? */
1685 if (objfile->global_psymbols.list)
1686 mfree (objfile->md, objfile->global_psymbols.list);
1687 memset (&objfile->global_psymbols, 0,
1688 sizeof (objfile->global_psymbols));
1689 if (objfile->static_psymbols.list)
1690 mfree (objfile->md, objfile->static_psymbols.list);
1691 memset (&objfile->static_psymbols, 0,
1692 sizeof (objfile->static_psymbols));
1693
1694 /* Free the obstacks for non-reusable objfiles */
1695 obstack_free (&objfile->psymbol_cache.cache, 0);
1696 memset (&objfile->psymbol_cache, 0,
1697 sizeof (objfile->psymbol_cache));
1698 obstack_free (&objfile->psymbol_obstack, 0);
1699 obstack_free (&objfile->symbol_obstack, 0);
1700 obstack_free (&objfile->type_obstack, 0);
1701 objfile->sections = NULL;
1702 objfile->symtabs = NULL;
1703 objfile->psymtabs = NULL;
1704 objfile->free_psymtabs = NULL;
1705 objfile->msymbols = NULL;
1706 objfile->minimal_symbol_count = 0;
1707 objfile->fundamental_types = NULL;
1708 if (objfile->sf != NULL)
1709 {
1710 (*objfile->sf->sym_finish) (objfile);
1711 }
1712
1713 /* We never make this a mapped file. */
1714 objfile->md = NULL;
1715 /* obstack_specify_allocation also initializes the obstack so
1716 it is empty. */
1717 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1718 xmalloc, free);
1719 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1720 xmalloc, free);
1721 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1722 xmalloc, free);
1723 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1724 xmalloc, free);
1725 if (build_objfile_section_table (objfile))
1726 {
1727 error ("Can't find the file sections in `%s': %s",
1728 objfile->name, bfd_errmsg (bfd_get_error ()));
1729 }
1730
1731 /* We use the same section offsets as from last time. I'm not
1732 sure whether that is always correct for shared libraries. */
1733 objfile->section_offsets = (struct section_offsets *)
1734 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1735 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1736 objfile->num_sections = num_offsets;
1737
1738 /* What the hell is sym_new_init for, anyway? The concept of
1739 distinguishing between the main file and additional files
1740 in this way seems rather dubious. */
1741 if (objfile == symfile_objfile)
1742 {
1743 (*objfile->sf->sym_new_init) (objfile);
1744 #ifdef HPUXHPPA
1745 RESET_HP_UX_GLOBALS ();
1746 #endif
1747 }
1748
1749 (*objfile->sf->sym_init) (objfile);
1750 clear_complaints (1, 1);
1751 /* The "mainline" parameter is a hideous hack; I think leaving it
1752 zero is OK since dbxread.c also does what it needs to do if
1753 objfile->global_psymbols.size is 0. */
1754 (*objfile->sf->sym_read) (objfile, 0);
1755 if (!have_partial_symbols () && !have_full_symbols ())
1756 {
1757 wrap_here ("");
1758 printf_filtered ("(no debugging symbols found)\n");
1759 wrap_here ("");
1760 }
1761 objfile->flags |= OBJF_SYMS;
1762
1763 /* We're done reading the symbol file; finish off complaints. */
1764 clear_complaints (0, 1);
1765
1766 /* Getting new symbols may change our opinion about what is
1767 frameless. */
1768
1769 reinit_frame_cache ();
1770
1771 /* Discard cleanups as symbol reading was successful. */
1772 discard_cleanups (old_cleanups);
1773
1774 /* If the mtime has changed between the time we set new_modtime
1775 and now, we *want* this to be out of date, so don't call stat
1776 again now. */
1777 objfile->mtime = new_modtime;
1778 reread_one = 1;
1779
1780 /* Call this after reading in a new symbol table to give target
1781 dependant code a crack at the new symbols. For instance, this
1782 could be used to update the values of target-specific symbols GDB
1783 needs to keep track of (such as _sigtramp, or whatever). */
1784
1785 TARGET_SYMFILE_POSTREAD (objfile);
1786 }
1787 }
1788 }
1789
1790 if (reread_one)
1791 clear_symtab_users ();
1792 }
1793 \f
1794
1795
1796 typedef struct
1797 {
1798 char *ext;
1799 enum language lang;
1800 }
1801 filename_language;
1802
1803 static filename_language *filename_language_table;
1804 static int fl_table_size, fl_table_next;
1805
1806 static void
1807 add_filename_language (ext, lang)
1808 char *ext;
1809 enum language lang;
1810 {
1811 if (fl_table_next >= fl_table_size)
1812 {
1813 fl_table_size += 10;
1814 filename_language_table = realloc (filename_language_table,
1815 fl_table_size);
1816 }
1817
1818 filename_language_table[fl_table_next].ext = strsave (ext);
1819 filename_language_table[fl_table_next].lang = lang;
1820 fl_table_next++;
1821 }
1822
1823 static char *ext_args;
1824
1825 static void
1826 set_ext_lang_command (args, from_tty)
1827 char *args;
1828 int from_tty;
1829 {
1830 int i;
1831 char *cp = ext_args;
1832 enum language lang;
1833
1834 /* First arg is filename extension, starting with '.' */
1835 if (*cp != '.')
1836 error ("'%s': Filename extension must begin with '.'", ext_args);
1837
1838 /* Find end of first arg. */
1839 while (*cp && !isspace (*cp))
1840 cp++;
1841
1842 if (*cp == '\0')
1843 error ("'%s': two arguments required -- filename extension and language",
1844 ext_args);
1845
1846 /* Null-terminate first arg */
1847 *cp++ = '\0';
1848
1849 /* Find beginning of second arg, which should be a source language. */
1850 while (*cp && isspace (*cp))
1851 cp++;
1852
1853 if (*cp == '\0')
1854 error ("'%s': two arguments required -- filename extension and language",
1855 ext_args);
1856
1857 /* Lookup the language from among those we know. */
1858 lang = language_enum (cp);
1859
1860 /* Now lookup the filename extension: do we already know it? */
1861 for (i = 0; i < fl_table_next; i++)
1862 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1863 break;
1864
1865 if (i >= fl_table_next)
1866 {
1867 /* new file extension */
1868 add_filename_language (ext_args, lang);
1869 }
1870 else
1871 {
1872 /* redefining a previously known filename extension */
1873
1874 /* if (from_tty) */
1875 /* query ("Really make files of type %s '%s'?", */
1876 /* ext_args, language_str (lang)); */
1877
1878 free (filename_language_table[i].ext);
1879 filename_language_table[i].ext = strsave (ext_args);
1880 filename_language_table[i].lang = lang;
1881 }
1882 }
1883
1884 static void
1885 info_ext_lang_command (args, from_tty)
1886 char *args;
1887 int from_tty;
1888 {
1889 int i;
1890
1891 printf_filtered ("Filename extensions and the languages they represent:");
1892 printf_filtered ("\n\n");
1893 for (i = 0; i < fl_table_next; i++)
1894 printf_filtered ("\t%s\t- %s\n",
1895 filename_language_table[i].ext,
1896 language_str (filename_language_table[i].lang));
1897 }
1898
1899 static void
1900 init_filename_language_table ()
1901 {
1902 if (fl_table_size == 0) /* protect against repetition */
1903 {
1904 fl_table_size = 20;
1905 fl_table_next = 0;
1906 filename_language_table =
1907 xmalloc (fl_table_size * sizeof (*filename_language_table));
1908 add_filename_language (".c", language_c);
1909 add_filename_language (".C", language_cplus);
1910 add_filename_language (".cc", language_cplus);
1911 add_filename_language (".cp", language_cplus);
1912 add_filename_language (".cpp", language_cplus);
1913 add_filename_language (".cxx", language_cplus);
1914 add_filename_language (".c++", language_cplus);
1915 add_filename_language (".java", language_java);
1916 add_filename_language (".class", language_java);
1917 add_filename_language (".ch", language_chill);
1918 add_filename_language (".c186", language_chill);
1919 add_filename_language (".c286", language_chill);
1920 add_filename_language (".f", language_fortran);
1921 add_filename_language (".F", language_fortran);
1922 add_filename_language (".s", language_asm);
1923 add_filename_language (".S", language_asm);
1924 }
1925 }
1926
1927 enum language
1928 deduce_language_from_filename (filename)
1929 char *filename;
1930 {
1931 int i;
1932 char *cp;
1933
1934 if (filename != NULL)
1935 if ((cp = strrchr (filename, '.')) != NULL)
1936 for (i = 0; i < fl_table_next; i++)
1937 if (strcmp (cp, filename_language_table[i].ext) == 0)
1938 return filename_language_table[i].lang;
1939
1940 return language_unknown;
1941 }
1942 \f
1943 /* allocate_symtab:
1944
1945 Allocate and partly initialize a new symbol table. Return a pointer
1946 to it. error() if no space.
1947
1948 Caller must set these fields:
1949 LINETABLE(symtab)
1950 symtab->blockvector
1951 symtab->dirname
1952 symtab->free_code
1953 symtab->free_ptr
1954 possibly free_named_symtabs (symtab->filename);
1955 */
1956
1957 struct symtab *
1958 allocate_symtab (filename, objfile)
1959 char *filename;
1960 struct objfile *objfile;
1961 {
1962 register struct symtab *symtab;
1963
1964 symtab = (struct symtab *)
1965 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1966 memset (symtab, 0, sizeof (*symtab));
1967 symtab->filename = obsavestring (filename, strlen (filename),
1968 &objfile->symbol_obstack);
1969 symtab->fullname = NULL;
1970 symtab->language = deduce_language_from_filename (filename);
1971 symtab->debugformat = obsavestring ("unknown", 7,
1972 &objfile->symbol_obstack);
1973
1974 /* Hook it to the objfile it comes from */
1975
1976 symtab->objfile = objfile;
1977 symtab->next = objfile->symtabs;
1978 objfile->symtabs = symtab;
1979
1980 /* FIXME: This should go away. It is only defined for the Z8000,
1981 and the Z8000 definition of this macro doesn't have anything to
1982 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1983 here for convenience. */
1984 #ifdef INIT_EXTRA_SYMTAB_INFO
1985 INIT_EXTRA_SYMTAB_INFO (symtab);
1986 #endif
1987
1988 return (symtab);
1989 }
1990
1991 struct partial_symtab *
1992 allocate_psymtab (filename, objfile)
1993 char *filename;
1994 struct objfile *objfile;
1995 {
1996 struct partial_symtab *psymtab;
1997
1998 if (objfile->free_psymtabs)
1999 {
2000 psymtab = objfile->free_psymtabs;
2001 objfile->free_psymtabs = psymtab->next;
2002 }
2003 else
2004 psymtab = (struct partial_symtab *)
2005 obstack_alloc (&objfile->psymbol_obstack,
2006 sizeof (struct partial_symtab));
2007
2008 memset (psymtab, 0, sizeof (struct partial_symtab));
2009 psymtab->filename = obsavestring (filename, strlen (filename),
2010 &objfile->psymbol_obstack);
2011 psymtab->symtab = NULL;
2012
2013 /* Prepend it to the psymtab list for the objfile it belongs to.
2014 Psymtabs are searched in most recent inserted -> least recent
2015 inserted order. */
2016
2017 psymtab->objfile = objfile;
2018 psymtab->next = objfile->psymtabs;
2019 objfile->psymtabs = psymtab;
2020 #if 0
2021 {
2022 struct partial_symtab **prev_pst;
2023 psymtab->objfile = objfile;
2024 psymtab->next = NULL;
2025 prev_pst = &(objfile->psymtabs);
2026 while ((*prev_pst) != NULL)
2027 prev_pst = &((*prev_pst)->next);
2028 (*prev_pst) = psymtab;
2029 }
2030 #endif
2031
2032 return (psymtab);
2033 }
2034
2035 void
2036 discard_psymtab (pst)
2037 struct partial_symtab *pst;
2038 {
2039 struct partial_symtab **prev_pst;
2040
2041 /* From dbxread.c:
2042 Empty psymtabs happen as a result of header files which don't
2043 have any symbols in them. There can be a lot of them. But this
2044 check is wrong, in that a psymtab with N_SLINE entries but
2045 nothing else is not empty, but we don't realize that. Fixing
2046 that without slowing things down might be tricky. */
2047
2048 /* First, snip it out of the psymtab chain */
2049
2050 prev_pst = &(pst->objfile->psymtabs);
2051 while ((*prev_pst) != pst)
2052 prev_pst = &((*prev_pst)->next);
2053 (*prev_pst) = pst->next;
2054
2055 /* Next, put it on a free list for recycling */
2056
2057 pst->next = pst->objfile->free_psymtabs;
2058 pst->objfile->free_psymtabs = pst;
2059 }
2060 \f
2061
2062 /* Reset all data structures in gdb which may contain references to symbol
2063 table data. */
2064
2065 void
2066 clear_symtab_users ()
2067 {
2068 /* Someday, we should do better than this, by only blowing away
2069 the things that really need to be blown. */
2070 clear_value_history ();
2071 clear_displays ();
2072 clear_internalvars ();
2073 breakpoint_re_set ();
2074 set_default_breakpoint (0, 0, 0, 0);
2075 current_source_symtab = 0;
2076 current_source_line = 0;
2077 clear_pc_function_cache ();
2078 target_new_objfile (NULL);
2079 }
2080
2081 /* clear_symtab_users_once:
2082
2083 This function is run after symbol reading, or from a cleanup.
2084 If an old symbol table was obsoleted, the old symbol table
2085 has been blown away, but the other GDB data structures that may
2086 reference it have not yet been cleared or re-directed. (The old
2087 symtab was zapped, and the cleanup queued, in free_named_symtab()
2088 below.)
2089
2090 This function can be queued N times as a cleanup, or called
2091 directly; it will do all the work the first time, and then will be a
2092 no-op until the next time it is queued. This works by bumping a
2093 counter at queueing time. Much later when the cleanup is run, or at
2094 the end of symbol processing (in case the cleanup is discarded), if
2095 the queued count is greater than the "done-count", we do the work
2096 and set the done-count to the queued count. If the queued count is
2097 less than or equal to the done-count, we just ignore the call. This
2098 is needed because reading a single .o file will often replace many
2099 symtabs (one per .h file, for example), and we don't want to reset
2100 the breakpoints N times in the user's face.
2101
2102 The reason we both queue a cleanup, and call it directly after symbol
2103 reading, is because the cleanup protects us in case of errors, but is
2104 discarded if symbol reading is successful. */
2105
2106 #if 0
2107 /* FIXME: As free_named_symtabs is currently a big noop this function
2108 is no longer needed. */
2109 static void
2110 clear_symtab_users_once PARAMS ((void));
2111
2112 static int clear_symtab_users_queued;
2113 static int clear_symtab_users_done;
2114
2115 static void
2116 clear_symtab_users_once ()
2117 {
2118 /* Enforce once-per-`do_cleanups'-semantics */
2119 if (clear_symtab_users_queued <= clear_symtab_users_done)
2120 return;
2121 clear_symtab_users_done = clear_symtab_users_queued;
2122
2123 clear_symtab_users ();
2124 }
2125 #endif
2126
2127 /* Delete the specified psymtab, and any others that reference it. */
2128
2129 static void
2130 cashier_psymtab (pst)
2131 struct partial_symtab *pst;
2132 {
2133 struct partial_symtab *ps, *pprev = NULL;
2134 int i;
2135
2136 /* Find its previous psymtab in the chain */
2137 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2138 {
2139 if (ps == pst)
2140 break;
2141 pprev = ps;
2142 }
2143
2144 if (ps)
2145 {
2146 /* Unhook it from the chain. */
2147 if (ps == pst->objfile->psymtabs)
2148 pst->objfile->psymtabs = ps->next;
2149 else
2150 pprev->next = ps->next;
2151
2152 /* FIXME, we can't conveniently deallocate the entries in the
2153 partial_symbol lists (global_psymbols/static_psymbols) that
2154 this psymtab points to. These just take up space until all
2155 the psymtabs are reclaimed. Ditto the dependencies list and
2156 filename, which are all in the psymbol_obstack. */
2157
2158 /* We need to cashier any psymtab that has this one as a dependency... */
2159 again:
2160 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2161 {
2162 for (i = 0; i < ps->number_of_dependencies; i++)
2163 {
2164 if (ps->dependencies[i] == pst)
2165 {
2166 cashier_psymtab (ps);
2167 goto again; /* Must restart, chain has been munged. */
2168 }
2169 }
2170 }
2171 }
2172 }
2173
2174 /* If a symtab or psymtab for filename NAME is found, free it along
2175 with any dependent breakpoints, displays, etc.
2176 Used when loading new versions of object modules with the "add-file"
2177 command. This is only called on the top-level symtab or psymtab's name;
2178 it is not called for subsidiary files such as .h files.
2179
2180 Return value is 1 if we blew away the environment, 0 if not.
2181 FIXME. The return valu appears to never be used.
2182
2183 FIXME. I think this is not the best way to do this. We should
2184 work on being gentler to the environment while still cleaning up
2185 all stray pointers into the freed symtab. */
2186
2187 int
2188 free_named_symtabs (name)
2189 char *name;
2190 {
2191 #if 0
2192 /* FIXME: With the new method of each objfile having it's own
2193 psymtab list, this function needs serious rethinking. In particular,
2194 why was it ever necessary to toss psymtabs with specific compilation
2195 unit filenames, as opposed to all psymtabs from a particular symbol
2196 file? -- fnf
2197 Well, the answer is that some systems permit reloading of particular
2198 compilation units. We want to blow away any old info about these
2199 compilation units, regardless of which objfiles they arrived in. --gnu. */
2200
2201 register struct symtab *s;
2202 register struct symtab *prev;
2203 register struct partial_symtab *ps;
2204 struct blockvector *bv;
2205 int blewit = 0;
2206
2207 /* We only wack things if the symbol-reload switch is set. */
2208 if (!symbol_reloading)
2209 return 0;
2210
2211 /* Some symbol formats have trouble providing file names... */
2212 if (name == 0 || *name == '\0')
2213 return 0;
2214
2215 /* Look for a psymtab with the specified name. */
2216
2217 again2:
2218 for (ps = partial_symtab_list; ps; ps = ps->next)
2219 {
2220 if (STREQ (name, ps->filename))
2221 {
2222 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2223 goto again2; /* Must restart, chain has been munged */
2224 }
2225 }
2226
2227 /* Look for a symtab with the specified name. */
2228
2229 for (s = symtab_list; s; s = s->next)
2230 {
2231 if (STREQ (name, s->filename))
2232 break;
2233 prev = s;
2234 }
2235
2236 if (s)
2237 {
2238 if (s == symtab_list)
2239 symtab_list = s->next;
2240 else
2241 prev->next = s->next;
2242
2243 /* For now, queue a delete for all breakpoints, displays, etc., whether
2244 or not they depend on the symtab being freed. This should be
2245 changed so that only those data structures affected are deleted. */
2246
2247 /* But don't delete anything if the symtab is empty.
2248 This test is necessary due to a bug in "dbxread.c" that
2249 causes empty symtabs to be created for N_SO symbols that
2250 contain the pathname of the object file. (This problem
2251 has been fixed in GDB 3.9x). */
2252
2253 bv = BLOCKVECTOR (s);
2254 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2255 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2256 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2257 {
2258 complain (&oldsyms_complaint, name);
2259
2260 clear_symtab_users_queued++;
2261 make_cleanup (clear_symtab_users_once, 0);
2262 blewit = 1;
2263 }
2264 else
2265 {
2266 complain (&empty_symtab_complaint, name);
2267 }
2268
2269 free_symtab (s);
2270 }
2271 else
2272 {
2273 /* It is still possible that some breakpoints will be affected
2274 even though no symtab was found, since the file might have
2275 been compiled without debugging, and hence not be associated
2276 with a symtab. In order to handle this correctly, we would need
2277 to keep a list of text address ranges for undebuggable files.
2278 For now, we do nothing, since this is a fairly obscure case. */
2279 ;
2280 }
2281
2282 /* FIXME, what about the minimal symbol table? */
2283 return blewit;
2284 #else
2285 return (0);
2286 #endif
2287 }
2288 \f
2289 /* Allocate and partially fill a partial symtab. It will be
2290 completely filled at the end of the symbol list.
2291
2292 FILENAME is the name of the symbol-file we are reading from. */
2293
2294 struct partial_symtab *
2295 start_psymtab_common (objfile, section_offsets,
2296 filename, textlow, global_syms, static_syms)
2297 struct objfile *objfile;
2298 struct section_offsets *section_offsets;
2299 char *filename;
2300 CORE_ADDR textlow;
2301 struct partial_symbol **global_syms;
2302 struct partial_symbol **static_syms;
2303 {
2304 struct partial_symtab *psymtab;
2305
2306 psymtab = allocate_psymtab (filename, objfile);
2307 psymtab->section_offsets = section_offsets;
2308 psymtab->textlow = textlow;
2309 psymtab->texthigh = psymtab->textlow; /* default */
2310 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2311 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2312 return (psymtab);
2313 }
2314 \f
2315 /* Add a symbol with a long value to a psymtab.
2316 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2317
2318 void
2319 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2320 language, objfile)
2321 char *name;
2322 int namelength;
2323 namespace_enum namespace;
2324 enum address_class class;
2325 struct psymbol_allocation_list *list;
2326 long val; /* Value as a long */
2327 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2328 enum language language;
2329 struct objfile *objfile;
2330 {
2331 register struct partial_symbol *psym;
2332 char *buf = alloca (namelength + 1);
2333 /* psymbol is static so that there will be no uninitialized gaps in the
2334 structure which might contain random data, causing cache misses in
2335 bcache. */
2336 static struct partial_symbol psymbol;
2337
2338 /* Create local copy of the partial symbol */
2339 memcpy (buf, name, namelength);
2340 buf[namelength] = '\0';
2341 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2342 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2343 if (val != 0)
2344 {
2345 SYMBOL_VALUE (&psymbol) = val;
2346 }
2347 else
2348 {
2349 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2350 }
2351 SYMBOL_SECTION (&psymbol) = 0;
2352 SYMBOL_LANGUAGE (&psymbol) = language;
2353 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2354 PSYMBOL_CLASS (&psymbol) = class;
2355 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2356
2357 /* Stash the partial symbol away in the cache */
2358 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2359
2360 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2361 if (list->next >= list->list + list->size)
2362 {
2363 extend_psymbol_list (list, objfile);
2364 }
2365 *list->next++ = psym;
2366 OBJSTAT (objfile, n_psyms++);
2367 }
2368
2369 /* Add a symbol with a long value to a psymtab. This differs from
2370 * add_psymbol_to_list above in taking both a mangled and a demangled
2371 * name. */
2372
2373 void
2374 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2375 namespace, class, list, val, coreaddr, language, objfile)
2376 char *name;
2377 int namelength;
2378 char *dem_name;
2379 int dem_namelength;
2380 namespace_enum namespace;
2381 enum address_class class;
2382 struct psymbol_allocation_list *list;
2383 long val; /* Value as a long */
2384 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2385 enum language language;
2386 struct objfile *objfile;
2387 {
2388 register struct partial_symbol *psym;
2389 char *buf = alloca (namelength + 1);
2390 /* psymbol is static so that there will be no uninitialized gaps in the
2391 structure which might contain random data, causing cache misses in
2392 bcache. */
2393 static struct partial_symbol psymbol;
2394
2395 /* Create local copy of the partial symbol */
2396
2397 memcpy (buf, name, namelength);
2398 buf[namelength] = '\0';
2399 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2400
2401 buf = alloca (dem_namelength + 1);
2402 memcpy (buf, dem_name, dem_namelength);
2403 buf[dem_namelength] = '\0';
2404
2405 switch (language)
2406 {
2407 case language_c:
2408 case language_cplus:
2409 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2410 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2411 break;
2412 case language_chill:
2413 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2414 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2415
2416 /* FIXME What should be done for the default case? Ignoring for now. */
2417 }
2418
2419 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2420 if (val != 0)
2421 {
2422 SYMBOL_VALUE (&psymbol) = val;
2423 }
2424 else
2425 {
2426 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2427 }
2428 SYMBOL_SECTION (&psymbol) = 0;
2429 SYMBOL_LANGUAGE (&psymbol) = language;
2430 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2431 PSYMBOL_CLASS (&psymbol) = class;
2432 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2433
2434 /* Stash the partial symbol away in the cache */
2435 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2436
2437 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2438 if (list->next >= list->list + list->size)
2439 {
2440 extend_psymbol_list (list, objfile);
2441 }
2442 *list->next++ = psym;
2443 OBJSTAT (objfile, n_psyms++);
2444 }
2445
2446 /* Initialize storage for partial symbols. */
2447
2448 void
2449 init_psymbol_list (objfile, total_symbols)
2450 struct objfile *objfile;
2451 int total_symbols;
2452 {
2453 /* Free any previously allocated psymbol lists. */
2454
2455 if (objfile->global_psymbols.list)
2456 {
2457 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2458 }
2459 if (objfile->static_psymbols.list)
2460 {
2461 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2462 }
2463
2464 /* Current best guess is that approximately a twentieth
2465 of the total symbols (in a debugging file) are global or static
2466 oriented symbols */
2467
2468 objfile->global_psymbols.size = total_symbols / 10;
2469 objfile->static_psymbols.size = total_symbols / 10;
2470
2471 if (objfile->global_psymbols.size > 0)
2472 {
2473 objfile->global_psymbols.next =
2474 objfile->global_psymbols.list = (struct partial_symbol **)
2475 xmmalloc (objfile->md, (objfile->global_psymbols.size
2476 * sizeof (struct partial_symbol *)));
2477 }
2478 if (objfile->static_psymbols.size > 0)
2479 {
2480 objfile->static_psymbols.next =
2481 objfile->static_psymbols.list = (struct partial_symbol **)
2482 xmmalloc (objfile->md, (objfile->static_psymbols.size
2483 * sizeof (struct partial_symbol *)));
2484 }
2485 }
2486
2487 /* OVERLAYS:
2488 The following code implements an abstraction for debugging overlay sections.
2489
2490 The target model is as follows:
2491 1) The gnu linker will permit multiple sections to be mapped into the
2492 same VMA, each with its own unique LMA (or load address).
2493 2) It is assumed that some runtime mechanism exists for mapping the
2494 sections, one by one, from the load address into the VMA address.
2495 3) This code provides a mechanism for gdb to keep track of which
2496 sections should be considered to be mapped from the VMA to the LMA.
2497 This information is used for symbol lookup, and memory read/write.
2498 For instance, if a section has been mapped then its contents
2499 should be read from the VMA, otherwise from the LMA.
2500
2501 Two levels of debugger support for overlays are available. One is
2502 "manual", in which the debugger relies on the user to tell it which
2503 overlays are currently mapped. This level of support is
2504 implemented entirely in the core debugger, and the information about
2505 whether a section is mapped is kept in the objfile->obj_section table.
2506
2507 The second level of support is "automatic", and is only available if
2508 the target-specific code provides functionality to read the target's
2509 overlay mapping table, and translate its contents for the debugger
2510 (by updating the mapped state information in the obj_section tables).
2511
2512 The interface is as follows:
2513 User commands:
2514 overlay map <name> -- tell gdb to consider this section mapped
2515 overlay unmap <name> -- tell gdb to consider this section unmapped
2516 overlay list -- list the sections that GDB thinks are mapped
2517 overlay read-target -- get the target's state of what's mapped
2518 overlay off/manual/auto -- set overlay debugging state
2519 Functional interface:
2520 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2521 section, return that section.
2522 find_pc_overlay(pc): find any overlay section that contains
2523 the pc, either in its VMA or its LMA
2524 overlay_is_mapped(sect): true if overlay is marked as mapped
2525 section_is_overlay(sect): true if section's VMA != LMA
2526 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2527 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2528 overlay_mapped_address(...): map an address from section's LMA to VMA
2529 overlay_unmapped_address(...): map an address from section's VMA to LMA
2530 symbol_overlayed_address(...): Return a "current" address for symbol:
2531 either in VMA or LMA depending on whether
2532 the symbol's section is currently mapped
2533 */
2534
2535 /* Overlay debugging state: */
2536
2537 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2538 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2539
2540 /* Target vector for refreshing overlay mapped state */
2541 static void simple_overlay_update PARAMS ((struct obj_section *));
2542 void (*target_overlay_update) PARAMS ((struct obj_section *))
2543 = simple_overlay_update;
2544
2545 /* Function: section_is_overlay (SECTION)
2546 Returns true if SECTION has VMA not equal to LMA, ie.
2547 SECTION is loaded at an address different from where it will "run". */
2548
2549 int
2550 section_is_overlay (section)
2551 asection *section;
2552 {
2553 if (overlay_debugging)
2554 if (section && section->lma != 0 &&
2555 section->vma != section->lma)
2556 return 1;
2557
2558 return 0;
2559 }
2560
2561 /* Function: overlay_invalidate_all (void)
2562 Invalidate the mapped state of all overlay sections (mark it as stale). */
2563
2564 static void
2565 overlay_invalidate_all ()
2566 {
2567 struct objfile *objfile;
2568 struct obj_section *sect;
2569
2570 ALL_OBJSECTIONS (objfile, sect)
2571 if (section_is_overlay (sect->the_bfd_section))
2572 sect->ovly_mapped = -1;
2573 }
2574
2575 /* Function: overlay_is_mapped (SECTION)
2576 Returns true if section is an overlay, and is currently mapped.
2577 Private: public access is thru function section_is_mapped.
2578
2579 Access to the ovly_mapped flag is restricted to this function, so
2580 that we can do automatic update. If the global flag
2581 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2582 overlay_invalidate_all. If the mapped state of the particular
2583 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2584
2585 static int
2586 overlay_is_mapped (osect)
2587 struct obj_section *osect;
2588 {
2589 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2590 return 0;
2591
2592 switch (overlay_debugging)
2593 {
2594 default:
2595 case 0:
2596 return 0; /* overlay debugging off */
2597 case -1: /* overlay debugging automatic */
2598 /* Unles there is a target_overlay_update function,
2599 there's really nothing useful to do here (can't really go auto) */
2600 if (target_overlay_update)
2601 {
2602 if (overlay_cache_invalid)
2603 {
2604 overlay_invalidate_all ();
2605 overlay_cache_invalid = 0;
2606 }
2607 if (osect->ovly_mapped == -1)
2608 (*target_overlay_update) (osect);
2609 }
2610 /* fall thru to manual case */
2611 case 1: /* overlay debugging manual */
2612 return osect->ovly_mapped == 1;
2613 }
2614 }
2615
2616 /* Function: section_is_mapped
2617 Returns true if section is an overlay, and is currently mapped. */
2618
2619 int
2620 section_is_mapped (section)
2621 asection *section;
2622 {
2623 struct objfile *objfile;
2624 struct obj_section *osect;
2625
2626 if (overlay_debugging)
2627 if (section && section_is_overlay (section))
2628 ALL_OBJSECTIONS (objfile, osect)
2629 if (osect->the_bfd_section == section)
2630 return overlay_is_mapped (osect);
2631
2632 return 0;
2633 }
2634
2635 /* Function: pc_in_unmapped_range
2636 If PC falls into the lma range of SECTION, return true, else false. */
2637
2638 CORE_ADDR
2639 pc_in_unmapped_range (pc, section)
2640 CORE_ADDR pc;
2641 asection *section;
2642 {
2643 int size;
2644
2645 if (overlay_debugging)
2646 if (section && section_is_overlay (section))
2647 {
2648 size = bfd_get_section_size_before_reloc (section);
2649 if (section->lma <= pc && pc < section->lma + size)
2650 return 1;
2651 }
2652 return 0;
2653 }
2654
2655 /* Function: pc_in_mapped_range
2656 If PC falls into the vma range of SECTION, return true, else false. */
2657
2658 CORE_ADDR
2659 pc_in_mapped_range (pc, section)
2660 CORE_ADDR pc;
2661 asection *section;
2662 {
2663 int size;
2664
2665 if (overlay_debugging)
2666 if (section && section_is_overlay (section))
2667 {
2668 size = bfd_get_section_size_before_reloc (section);
2669 if (section->vma <= pc && pc < section->vma + size)
2670 return 1;
2671 }
2672 return 0;
2673 }
2674
2675 /* Function: overlay_unmapped_address (PC, SECTION)
2676 Returns the address corresponding to PC in the unmapped (load) range.
2677 May be the same as PC. */
2678
2679 CORE_ADDR
2680 overlay_unmapped_address (pc, section)
2681 CORE_ADDR pc;
2682 asection *section;
2683 {
2684 if (overlay_debugging)
2685 if (section && section_is_overlay (section) &&
2686 pc_in_mapped_range (pc, section))
2687 return pc + section->lma - section->vma;
2688
2689 return pc;
2690 }
2691
2692 /* Function: overlay_mapped_address (PC, SECTION)
2693 Returns the address corresponding to PC in the mapped (runtime) range.
2694 May be the same as PC. */
2695
2696 CORE_ADDR
2697 overlay_mapped_address (pc, section)
2698 CORE_ADDR pc;
2699 asection *section;
2700 {
2701 if (overlay_debugging)
2702 if (section && section_is_overlay (section) &&
2703 pc_in_unmapped_range (pc, section))
2704 return pc + section->vma - section->lma;
2705
2706 return pc;
2707 }
2708
2709
2710 /* Function: symbol_overlayed_address
2711 Return one of two addresses (relative to the VMA or to the LMA),
2712 depending on whether the section is mapped or not. */
2713
2714 CORE_ADDR
2715 symbol_overlayed_address (address, section)
2716 CORE_ADDR address;
2717 asection *section;
2718 {
2719 if (overlay_debugging)
2720 {
2721 /* If the symbol has no section, just return its regular address. */
2722 if (section == 0)
2723 return address;
2724 /* If the symbol's section is not an overlay, just return its address */
2725 if (!section_is_overlay (section))
2726 return address;
2727 /* If the symbol's section is mapped, just return its address */
2728 if (section_is_mapped (section))
2729 return address;
2730 /*
2731 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2732 * then return its LOADED address rather than its vma address!!
2733 */
2734 return overlay_unmapped_address (address, section);
2735 }
2736 return address;
2737 }
2738
2739 /* Function: find_pc_overlay (PC)
2740 Return the best-match overlay section for PC:
2741 If PC matches a mapped overlay section's VMA, return that section.
2742 Else if PC matches an unmapped section's VMA, return that section.
2743 Else if PC matches an unmapped section's LMA, return that section. */
2744
2745 asection *
2746 find_pc_overlay (pc)
2747 CORE_ADDR pc;
2748 {
2749 struct objfile *objfile;
2750 struct obj_section *osect, *best_match = NULL;
2751
2752 if (overlay_debugging)
2753 ALL_OBJSECTIONS (objfile, osect)
2754 if (section_is_overlay (osect->the_bfd_section))
2755 {
2756 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2757 {
2758 if (overlay_is_mapped (osect))
2759 return osect->the_bfd_section;
2760 else
2761 best_match = osect;
2762 }
2763 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2764 best_match = osect;
2765 }
2766 return best_match ? best_match->the_bfd_section : NULL;
2767 }
2768
2769 /* Function: find_pc_mapped_section (PC)
2770 If PC falls into the VMA address range of an overlay section that is
2771 currently marked as MAPPED, return that section. Else return NULL. */
2772
2773 asection *
2774 find_pc_mapped_section (pc)
2775 CORE_ADDR pc;
2776 {
2777 struct objfile *objfile;
2778 struct obj_section *osect;
2779
2780 if (overlay_debugging)
2781 ALL_OBJSECTIONS (objfile, osect)
2782 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2783 overlay_is_mapped (osect))
2784 return osect->the_bfd_section;
2785
2786 return NULL;
2787 }
2788
2789 /* Function: list_overlays_command
2790 Print a list of mapped sections and their PC ranges */
2791
2792 void
2793 list_overlays_command (args, from_tty)
2794 char *args;
2795 int from_tty;
2796 {
2797 int nmapped = 0;
2798 struct objfile *objfile;
2799 struct obj_section *osect;
2800
2801 if (overlay_debugging)
2802 ALL_OBJSECTIONS (objfile, osect)
2803 if (overlay_is_mapped (osect))
2804 {
2805 const char *name;
2806 bfd_vma lma, vma;
2807 int size;
2808
2809 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2810 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2811 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2812 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2813
2814 printf_filtered ("Section %s, loaded at ", name);
2815 print_address_numeric (lma, 1, gdb_stdout);
2816 puts_filtered (" - ");
2817 print_address_numeric (lma + size, 1, gdb_stdout);
2818 printf_filtered (", mapped at ");
2819 print_address_numeric (vma, 1, gdb_stdout);
2820 puts_filtered (" - ");
2821 print_address_numeric (vma + size, 1, gdb_stdout);
2822 puts_filtered ("\n");
2823
2824 nmapped++;
2825 }
2826 if (nmapped == 0)
2827 printf_filtered ("No sections are mapped.\n");
2828 }
2829
2830 /* Function: map_overlay_command
2831 Mark the named section as mapped (ie. residing at its VMA address). */
2832
2833 void
2834 map_overlay_command (args, from_tty)
2835 char *args;
2836 int from_tty;
2837 {
2838 struct objfile *objfile, *objfile2;
2839 struct obj_section *sec, *sec2;
2840 asection *bfdsec;
2841
2842 if (!overlay_debugging)
2843 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2844
2845 if (args == 0 || *args == 0)
2846 error ("Argument required: name of an overlay section");
2847
2848 /* First, find a section matching the user supplied argument */
2849 ALL_OBJSECTIONS (objfile, sec)
2850 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2851 {
2852 /* Now, check to see if the section is an overlay. */
2853 bfdsec = sec->the_bfd_section;
2854 if (!section_is_overlay (bfdsec))
2855 continue; /* not an overlay section */
2856
2857 /* Mark the overlay as "mapped" */
2858 sec->ovly_mapped = 1;
2859
2860 /* Next, make a pass and unmap any sections that are
2861 overlapped by this new section: */
2862 ALL_OBJSECTIONS (objfile2, sec2)
2863 if (sec2->ovly_mapped &&
2864 sec != sec2 &&
2865 sec->the_bfd_section != sec2->the_bfd_section &&
2866 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2867 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2868 {
2869 if (info_verbose)
2870 printf_filtered ("Note: section %s unmapped by overlap\n",
2871 bfd_section_name (objfile->obfd,
2872 sec2->the_bfd_section));
2873 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2874 }
2875 return;
2876 }
2877 error ("No overlay section called %s", args);
2878 }
2879
2880 /* Function: unmap_overlay_command
2881 Mark the overlay section as unmapped
2882 (ie. resident in its LMA address range, rather than the VMA range). */
2883
2884 void
2885 unmap_overlay_command (args, from_tty)
2886 char *args;
2887 int from_tty;
2888 {
2889 struct objfile *objfile;
2890 struct obj_section *sec;
2891
2892 if (!overlay_debugging)
2893 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2894
2895 if (args == 0 || *args == 0)
2896 error ("Argument required: name of an overlay section");
2897
2898 /* First, find a section matching the user supplied argument */
2899 ALL_OBJSECTIONS (objfile, sec)
2900 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2901 {
2902 if (!sec->ovly_mapped)
2903 error ("Section %s is not mapped", args);
2904 sec->ovly_mapped = 0;
2905 return;
2906 }
2907 error ("No overlay section called %s", args);
2908 }
2909
2910 /* Function: overlay_auto_command
2911 A utility command to turn on overlay debugging.
2912 Possibly this should be done via a set/show command. */
2913
2914 static void
2915 overlay_auto_command (args, from_tty)
2916 char *args;
2917 int from_tty;
2918 {
2919 overlay_debugging = -1;
2920 if (info_verbose)
2921 printf_filtered ("Automatic overlay debugging enabled.");
2922 }
2923
2924 /* Function: overlay_manual_command
2925 A utility command to turn on overlay debugging.
2926 Possibly this should be done via a set/show command. */
2927
2928 static void
2929 overlay_manual_command (args, from_tty)
2930 char *args;
2931 int from_tty;
2932 {
2933 overlay_debugging = 1;
2934 if (info_verbose)
2935 printf_filtered ("Overlay debugging enabled.");
2936 }
2937
2938 /* Function: overlay_off_command
2939 A utility command to turn on overlay debugging.
2940 Possibly this should be done via a set/show command. */
2941
2942 static void
2943 overlay_off_command (args, from_tty)
2944 char *args;
2945 int from_tty;
2946 {
2947 overlay_debugging = 0;
2948 if (info_verbose)
2949 printf_filtered ("Overlay debugging disabled.");
2950 }
2951
2952 static void
2953 overlay_load_command (args, from_tty)
2954 char *args;
2955 int from_tty;
2956 {
2957 if (target_overlay_update)
2958 (*target_overlay_update) (NULL);
2959 else
2960 error ("This target does not know how to read its overlay state.");
2961 }
2962
2963 /* Function: overlay_command
2964 A place-holder for a mis-typed command */
2965
2966 /* Command list chain containing all defined "overlay" subcommands. */
2967 struct cmd_list_element *overlaylist;
2968
2969 static void
2970 overlay_command (args, from_tty)
2971 char *args;
2972 int from_tty;
2973 {
2974 printf_unfiltered
2975 ("\"overlay\" must be followed by the name of an overlay command.\n");
2976 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2977 }
2978
2979
2980 /* Target Overlays for the "Simplest" overlay manager:
2981
2982 This is GDB's default target overlay layer. It works with the
2983 minimal overlay manager supplied as an example by Cygnus. The
2984 entry point is via a function pointer "target_overlay_update",
2985 so targets that use a different runtime overlay manager can
2986 substitute their own overlay_update function and take over the
2987 function pointer.
2988
2989 The overlay_update function pokes around in the target's data structures
2990 to see what overlays are mapped, and updates GDB's overlay mapping with
2991 this information.
2992
2993 In this simple implementation, the target data structures are as follows:
2994 unsigned _novlys; /# number of overlay sections #/
2995 unsigned _ovly_table[_novlys][4] = {
2996 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2997 {..., ..., ..., ...},
2998 }
2999 unsigned _novly_regions; /# number of overlay regions #/
3000 unsigned _ovly_region_table[_novly_regions][3] = {
3001 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3002 {..., ..., ...},
3003 }
3004 These functions will attempt to update GDB's mappedness state in the
3005 symbol section table, based on the target's mappedness state.
3006
3007 To do this, we keep a cached copy of the target's _ovly_table, and
3008 attempt to detect when the cached copy is invalidated. The main
3009 entry point is "simple_overlay_update(SECT), which looks up SECT in
3010 the cached table and re-reads only the entry for that section from
3011 the target (whenever possible).
3012 */
3013
3014 /* Cached, dynamically allocated copies of the target data structures: */
3015 static unsigned (*cache_ovly_table)[4] = 0;
3016 #if 0
3017 static unsigned (*cache_ovly_region_table)[3] = 0;
3018 #endif
3019 static unsigned cache_novlys = 0;
3020 #if 0
3021 static unsigned cache_novly_regions = 0;
3022 #endif
3023 static CORE_ADDR cache_ovly_table_base = 0;
3024 #if 0
3025 static CORE_ADDR cache_ovly_region_table_base = 0;
3026 #endif
3027 enum ovly_index
3028 {
3029 VMA, SIZE, LMA, MAPPED
3030 };
3031 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3032
3033 /* Throw away the cached copy of _ovly_table */
3034 static void
3035 simple_free_overlay_table ()
3036 {
3037 if (cache_ovly_table)
3038 free (cache_ovly_table);
3039 cache_novlys = 0;
3040 cache_ovly_table = NULL;
3041 cache_ovly_table_base = 0;
3042 }
3043
3044 #if 0
3045 /* Throw away the cached copy of _ovly_region_table */
3046 static void
3047 simple_free_overlay_region_table ()
3048 {
3049 if (cache_ovly_region_table)
3050 free (cache_ovly_region_table);
3051 cache_novly_regions = 0;
3052 cache_ovly_region_table = NULL;
3053 cache_ovly_region_table_base = 0;
3054 }
3055 #endif
3056
3057 /* Read an array of ints from the target into a local buffer.
3058 Convert to host order. int LEN is number of ints */
3059 static void
3060 read_target_long_array (memaddr, myaddr, len)
3061 CORE_ADDR memaddr;
3062 unsigned int *myaddr;
3063 int len;
3064 {
3065 char *buf = alloca (len * TARGET_LONG_BYTES);
3066 int i;
3067
3068 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3069 for (i = 0; i < len; i++)
3070 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3071 TARGET_LONG_BYTES);
3072 }
3073
3074 /* Find and grab a copy of the target _ovly_table
3075 (and _novlys, which is needed for the table's size) */
3076 static int
3077 simple_read_overlay_table ()
3078 {
3079 struct minimal_symbol *msym;
3080
3081 simple_free_overlay_table ();
3082 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3083 if (msym != NULL)
3084 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3085 else
3086 return 0; /* failure */
3087 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3088 if (cache_ovly_table != NULL)
3089 {
3090 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3091 if (msym != NULL)
3092 {
3093 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3094 read_target_long_array (cache_ovly_table_base,
3095 (int *) cache_ovly_table,
3096 cache_novlys * 4);
3097 }
3098 else
3099 return 0; /* failure */
3100 }
3101 else
3102 return 0; /* failure */
3103 return 1; /* SUCCESS */
3104 }
3105
3106 #if 0
3107 /* Find and grab a copy of the target _ovly_region_table
3108 (and _novly_regions, which is needed for the table's size) */
3109 static int
3110 simple_read_overlay_region_table ()
3111 {
3112 struct minimal_symbol *msym;
3113
3114 simple_free_overlay_region_table ();
3115 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3116 if (msym != NULL)
3117 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3118 else
3119 return 0; /* failure */
3120 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3121 if (cache_ovly_region_table != NULL)
3122 {
3123 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3124 if (msym != NULL)
3125 {
3126 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3127 read_target_long_array (cache_ovly_region_table_base,
3128 (int *) cache_ovly_region_table,
3129 cache_novly_regions * 3);
3130 }
3131 else
3132 return 0; /* failure */
3133 }
3134 else
3135 return 0; /* failure */
3136 return 1; /* SUCCESS */
3137 }
3138 #endif
3139
3140 /* Function: simple_overlay_update_1
3141 A helper function for simple_overlay_update. Assuming a cached copy
3142 of _ovly_table exists, look through it to find an entry whose vma,
3143 lma and size match those of OSECT. Re-read the entry and make sure
3144 it still matches OSECT (else the table may no longer be valid).
3145 Set OSECT's mapped state to match the entry. Return: 1 for
3146 success, 0 for failure. */
3147
3148 static int
3149 simple_overlay_update_1 (osect)
3150 struct obj_section *osect;
3151 {
3152 int i, size;
3153
3154 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3155 for (i = 0; i < cache_novlys; i++)
3156 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3157 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3158 cache_ovly_table[i][SIZE] == size */ )
3159 {
3160 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3161 (int *) cache_ovly_table[i], 4);
3162 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3163 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3164 cache_ovly_table[i][SIZE] == size */ )
3165 {
3166 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3167 return 1;
3168 }
3169 else /* Warning! Warning! Target's ovly table has changed! */
3170 return 0;
3171 }
3172 return 0;
3173 }
3174
3175 /* Function: simple_overlay_update
3176 If OSECT is NULL, then update all sections' mapped state
3177 (after re-reading the entire target _ovly_table).
3178 If OSECT is non-NULL, then try to find a matching entry in the
3179 cached ovly_table and update only OSECT's mapped state.
3180 If a cached entry can't be found or the cache isn't valid, then
3181 re-read the entire cache, and go ahead and update all sections. */
3182
3183 static void
3184 simple_overlay_update (osect)
3185 struct obj_section *osect;
3186 {
3187 struct objfile *objfile;
3188
3189 /* Were we given an osect to look up? NULL means do all of them. */
3190 if (osect)
3191 /* Have we got a cached copy of the target's overlay table? */
3192 if (cache_ovly_table != NULL)
3193 /* Does its cached location match what's currently in the symtab? */
3194 if (cache_ovly_table_base ==
3195 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3196 /* Then go ahead and try to look up this single section in the cache */
3197 if (simple_overlay_update_1 (osect))
3198 /* Found it! We're done. */
3199 return;
3200
3201 /* Cached table no good: need to read the entire table anew.
3202 Or else we want all the sections, in which case it's actually
3203 more efficient to read the whole table in one block anyway. */
3204
3205 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3206 {
3207 warning ("Failed to read the target overlay mapping table.");
3208 return;
3209 }
3210 /* Now may as well update all sections, even if only one was requested. */
3211 ALL_OBJSECTIONS (objfile, osect)
3212 if (section_is_overlay (osect->the_bfd_section))
3213 {
3214 int i, size;
3215
3216 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3217 for (i = 0; i < cache_novlys; i++)
3218 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3219 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3220 cache_ovly_table[i][SIZE] == size */ )
3221 { /* obj_section matches i'th entry in ovly_table */
3222 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3223 break; /* finished with inner for loop: break out */
3224 }
3225 }
3226 }
3227
3228
3229 void
3230 _initialize_symfile ()
3231 {
3232 struct cmd_list_element *c;
3233
3234 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3235 "Load symbol table from executable file FILE.\n\
3236 The `file' command can also load symbol tables, as well as setting the file\n\
3237 to execute.", &cmdlist);
3238 c->completer = filename_completer;
3239
3240 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3241 "Usage: add-symbol-file FILE ADDR [DATA_ADDR [BSS_ADDR]]\n\
3242 or: add-symbol-file FILE -T<SECT> <SECT_ADDR> -T<SECT> <SECT_ADDR> ...\n\
3243 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3244 ADDR is the starting address of the file's text.\n\
3245 The optional arguments, DATA_ADDR and BSS_ADDR, should be specified\n\
3246 if the data and bss segments are not contiguous with the text.\n\
3247 For complicated cases, SECT is a section name to be loaded at SECT_ADDR.",
3248 &cmdlist);
3249 c->completer = filename_completer;
3250
3251 c = add_cmd ("add-shared-symbol-files", class_files,
3252 add_shared_symbol_files_command,
3253 "Load the symbols from shared objects in the dynamic linker's link map.",
3254 &cmdlist);
3255 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3256 &cmdlist);
3257
3258 c = add_cmd ("load", class_files, load_command,
3259 "Dynamically load FILE into the running program, and record its symbols\n\
3260 for access from GDB.", &cmdlist);
3261 c->completer = filename_completer;
3262
3263 add_show_from_set
3264 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3265 (char *) &symbol_reloading,
3266 "Set dynamic symbol table reloading multiple times in one run.",
3267 &setlist),
3268 &showlist);
3269
3270 add_prefix_cmd ("overlay", class_support, overlay_command,
3271 "Commands for debugging overlays.", &overlaylist,
3272 "overlay ", 0, &cmdlist);
3273
3274 add_com_alias ("ovly", "overlay", class_alias, 1);
3275 add_com_alias ("ov", "overlay", class_alias, 1);
3276
3277 add_cmd ("map-overlay", class_support, map_overlay_command,
3278 "Assert that an overlay section is mapped.", &overlaylist);
3279
3280 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3281 "Assert that an overlay section is unmapped.", &overlaylist);
3282
3283 add_cmd ("list-overlays", class_support, list_overlays_command,
3284 "List mappings of overlay sections.", &overlaylist);
3285
3286 add_cmd ("manual", class_support, overlay_manual_command,
3287 "Enable overlay debugging.", &overlaylist);
3288 add_cmd ("off", class_support, overlay_off_command,
3289 "Disable overlay debugging.", &overlaylist);
3290 add_cmd ("auto", class_support, overlay_auto_command,
3291 "Enable automatic overlay debugging.", &overlaylist);
3292 add_cmd ("load-target", class_support, overlay_load_command,
3293 "Read the overlay mapping state from the target.", &overlaylist);
3294
3295 /* Filename extension to source language lookup table: */
3296 init_filename_language_table ();
3297 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3298 (char *) &ext_args,
3299 "Set mapping between filename extension and source language.\n\
3300 Usage: set extension-language .foo bar",
3301 &setlist);
3302 c->function.cfunc = set_ext_lang_command;
3303
3304 add_info ("extensions", info_ext_lang_command,
3305 "All filename extensions associated with a source language.");
3306 }
This page took 0.153625 seconds and 4 git commands to generate.