* dwarf2-frame.c (execute_cfa_program): Move DWA_CFA_nop before
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include <readline/readline.h>
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
204
205 static int
206 compare_psymbols (const void *s1p, const void *s2p)
207 {
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
211 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
212 SYMBOL_NATURAL_NAME (*s2));
213 }
214
215 void
216 sort_pst_symbols (struct partial_symtab *pst)
217 {
218 /* Sort the global list; don't sort the static list */
219
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
222 compare_psymbols);
223 }
224
225 /* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230 char *
231 obsavestring (const char *ptr, int size, struct obstack *obstackp)
232 {
233 char *p = (char *) obstack_alloc (obstackp, size + 1);
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
238 const char *p1 = ptr;
239 char *p2 = p;
240 const char *end = ptr + size;
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246 }
247
248 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251 char *
252 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
254 {
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261 }
262
263 /* True if we are nested inside psymtab_to_symtab. */
264
265 int currently_reading_symtab = 0;
266
267 static void
268 decrement_reading_symtab (void *dummy)
269 {
270 currently_reading_symtab--;
271 }
272
273 /* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278 struct symtab *
279 psymtab_to_symtab (struct partial_symtab *pst)
280 {
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
287 {
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295 }
296
297 /* Initialize entry point information for this objfile. */
298
299 void
300 init_entry_point_info (struct objfile *objfile)
301 {
302 /* Save startup file's range of PC addresses to help blockframe.c
303 decide where the bottom of the stack is. */
304
305 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
306 {
307 /* Executable file -- record its entry point so we'll recognize
308 the startup file because it contains the entry point. */
309 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
310 }
311 else
312 {
313 /* Examination of non-executable.o files. Short-circuit this stuff. */
314 objfile->ei.entry_point = INVALID_ENTRY_POINT;
315 }
316 objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
317 objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
318 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
319 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
320 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
321 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
322 }
323
324 /* Get current entry point address. */
325
326 CORE_ADDR
327 entry_point_address (void)
328 {
329 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
330 }
331
332 /* Remember the lowest-addressed loadable section we've seen.
333 This function is called via bfd_map_over_sections.
334
335 In case of equal vmas, the section with the largest size becomes the
336 lowest-addressed loadable section.
337
338 If the vmas and sizes are equal, the last section is considered the
339 lowest-addressed loadable section. */
340
341 void
342 find_lowest_section (bfd *abfd, asection *sect, void *obj)
343 {
344 asection **lowest = (asection **) obj;
345
346 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
347 return;
348 if (!*lowest)
349 *lowest = sect; /* First loadable section */
350 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
351 *lowest = sect; /* A lower loadable section */
352 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
353 && (bfd_section_size (abfd, (*lowest))
354 <= bfd_section_size (abfd, sect)))
355 *lowest = sect;
356 }
357
358 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
359
360 struct section_addr_info *
361 alloc_section_addr_info (size_t num_sections)
362 {
363 struct section_addr_info *sap;
364 size_t size;
365
366 size = (sizeof (struct section_addr_info)
367 + sizeof (struct other_sections) * (num_sections - 1));
368 sap = (struct section_addr_info *) xmalloc (size);
369 memset (sap, 0, size);
370 sap->num_sections = num_sections;
371
372 return sap;
373 }
374
375 /* Build (allocate and populate) a section_addr_info struct from
376 an existing section table. */
377
378 extern struct section_addr_info *
379 build_section_addr_info_from_section_table (const struct section_table *start,
380 const struct section_table *end)
381 {
382 struct section_addr_info *sap;
383 const struct section_table *stp;
384 int oidx;
385
386 sap = alloc_section_addr_info (end - start);
387
388 for (stp = start, oidx = 0; stp != end; stp++)
389 {
390 if (bfd_get_section_flags (stp->bfd,
391 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
392 && oidx < end - start)
393 {
394 sap->other[oidx].addr = stp->addr;
395 sap->other[oidx].name
396 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
397 sap->other[oidx].sectindex = stp->the_bfd_section->index;
398 oidx++;
399 }
400 }
401
402 return sap;
403 }
404
405
406 /* Free all memory allocated by build_section_addr_info_from_section_table. */
407
408 extern void
409 free_section_addr_info (struct section_addr_info *sap)
410 {
411 int idx;
412
413 for (idx = 0; idx < sap->num_sections; idx++)
414 if (sap->other[idx].name)
415 xfree (sap->other[idx].name);
416 xfree (sap);
417 }
418
419
420 /* Initialize OBJFILE's sect_index_* members. */
421 static void
422 init_objfile_sect_indices (struct objfile *objfile)
423 {
424 asection *sect;
425 int i;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".text");
428 if (sect)
429 objfile->sect_index_text = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".data");
432 if (sect)
433 objfile->sect_index_data = sect->index;
434
435 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
436 if (sect)
437 objfile->sect_index_bss = sect->index;
438
439 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
440 if (sect)
441 objfile->sect_index_rodata = sect->index;
442
443 /* This is where things get really weird... We MUST have valid
444 indices for the various sect_index_* members or gdb will abort.
445 So if for example, there is no ".text" section, we have to
446 accomodate that. Except when explicitly adding symbol files at
447 some address, section_offsets contains nothing but zeros, so it
448 doesn't matter which slot in section_offsets the individual
449 sect_index_* members index into. So if they are all zero, it is
450 safe to just point all the currently uninitialized indices to the
451 first slot. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473
474 /* Parse the user's idea of an offset for dynamic linking, into our idea
475 of how to represent it for fast symbol reading. This is the default
476 version of the sym_fns.sym_offsets function for symbol readers that
477 don't need to do anything special. It allocates a section_offsets table
478 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
479
480 void
481 default_symfile_offsets (struct objfile *objfile,
482 struct section_addr_info *addrs)
483 {
484 int i;
485
486 objfile->num_sections = bfd_count_sections (objfile->obfd);
487 objfile->section_offsets = (struct section_offsets *)
488 obstack_alloc (&objfile->psymbol_obstack,
489 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
490 memset (objfile->section_offsets, 0,
491 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
492
493 /* Now calculate offsets for section that were specified by the
494 caller. */
495 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
496 {
497 struct other_sections *osp ;
498
499 osp = &addrs->other[i] ;
500 if (osp->addr == 0)
501 continue;
502
503 /* Record all sections in offsets */
504 /* The section_offsets in the objfile are here filled in using
505 the BFD index. */
506 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
507 }
508
509 /* Remember the bfd indexes for the .text, .data, .bss and
510 .rodata sections. */
511 init_objfile_sect_indices (objfile);
512 }
513
514
515 /* Process a symbol file, as either the main file or as a dynamically
516 loaded file.
517
518 OBJFILE is where the symbols are to be read from.
519
520 ADDRS is the list of section load addresses. If the user has given
521 an 'add-symbol-file' command, then this is the list of offsets and
522 addresses he or she provided as arguments to the command; or, if
523 we're handling a shared library, these are the actual addresses the
524 sections are loaded at, according to the inferior's dynamic linker
525 (as gleaned by GDB's shared library code). We convert each address
526 into an offset from the section VMA's as it appears in the object
527 file, and then call the file's sym_offsets function to convert this
528 into a format-specific offset table --- a `struct section_offsets'.
529 If ADDRS is non-zero, OFFSETS must be zero.
530
531 OFFSETS is a table of section offsets already in the right
532 format-specific representation. NUM_OFFSETS is the number of
533 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
534 assume this is the proper table the call to sym_offsets described
535 above would produce. Instead of calling sym_offsets, we just dump
536 it right into objfile->section_offsets. (When we're re-reading
537 symbols from an objfile, we don't have the original load address
538 list any more; all we have is the section offset table.) If
539 OFFSETS is non-zero, ADDRS must be zero.
540
541 MAINLINE is nonzero if this is the main symbol file, or zero if
542 it's an extra symbol file such as dynamically loaded code.
543
544 VERBO is nonzero if the caller has printed a verbose message about
545 the symbol reading (and complaints can be more terse about it). */
546
547 void
548 syms_from_objfile (struct objfile *objfile,
549 struct section_addr_info *addrs,
550 struct section_offsets *offsets,
551 int num_offsets,
552 int mainline,
553 int verbo)
554 {
555 struct section_addr_info *local_addr = NULL;
556 struct cleanup *old_chain;
557
558 gdb_assert (! (addrs && offsets));
559
560 init_entry_point_info (objfile);
561 find_sym_fns (objfile);
562
563 if (objfile->sf == NULL)
564 return; /* No symbols. */
565
566 /* Make sure that partially constructed symbol tables will be cleaned up
567 if an error occurs during symbol reading. */
568 old_chain = make_cleanup_free_objfile (objfile);
569
570 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
571 list. We now establish the convention that an addr of zero means
572 no load address was specified. */
573 if (! addrs && ! offsets)
574 {
575 local_addr
576 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
577 make_cleanup (xfree, local_addr);
578 addrs = local_addr;
579 }
580
581 /* Now either addrs or offsets is non-zero. */
582
583 if (mainline)
584 {
585 /* We will modify the main symbol table, make sure that all its users
586 will be cleaned up if an error occurs during symbol reading. */
587 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
588
589 /* Since no error yet, throw away the old symbol table. */
590
591 if (symfile_objfile != NULL)
592 {
593 free_objfile (symfile_objfile);
594 symfile_objfile = NULL;
595 }
596
597 /* Currently we keep symbols from the add-symbol-file command.
598 If the user wants to get rid of them, they should do "symbol-file"
599 without arguments first. Not sure this is the best behavior
600 (PR 2207). */
601
602 (*objfile->sf->sym_new_init) (objfile);
603 }
604
605 /* Convert addr into an offset rather than an absolute address.
606 We find the lowest address of a loaded segment in the objfile,
607 and assume that <addr> is where that got loaded.
608
609 We no longer warn if the lowest section is not a text segment (as
610 happens for the PA64 port. */
611 if (!mainline && addrs && addrs->other[0].name)
612 {
613 asection *lower_sect;
614 asection *sect;
615 CORE_ADDR lower_offset;
616 int i;
617
618 /* Find lowest loadable section to be used as starting point for
619 continguous sections. FIXME!! won't work without call to find
620 .text first, but this assumes text is lowest section. */
621 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
622 if (lower_sect == NULL)
623 bfd_map_over_sections (objfile->obfd, find_lowest_section,
624 &lower_sect);
625 if (lower_sect == NULL)
626 warning ("no loadable sections found in added symbol-file %s",
627 objfile->name);
628 else
629 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
630 warning ("Lowest section in %s is %s at %s",
631 objfile->name,
632 bfd_section_name (objfile->obfd, lower_sect),
633 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
634 if (lower_sect != NULL)
635 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
636 else
637 lower_offset = 0;
638
639 /* Calculate offsets for the loadable sections.
640 FIXME! Sections must be in order of increasing loadable section
641 so that contiguous sections can use the lower-offset!!!
642
643 Adjust offsets if the segments are not contiguous.
644 If the section is contiguous, its offset should be set to
645 the offset of the highest loadable section lower than it
646 (the loadable section directly below it in memory).
647 this_offset = lower_offset = lower_addr - lower_orig_addr */
648
649 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
650 {
651 if (addrs->other[i].addr != 0)
652 {
653 sect = bfd_get_section_by_name (objfile->obfd,
654 addrs->other[i].name);
655 if (sect)
656 {
657 addrs->other[i].addr
658 -= bfd_section_vma (objfile->obfd, sect);
659 lower_offset = addrs->other[i].addr;
660 /* This is the index used by BFD. */
661 addrs->other[i].sectindex = sect->index ;
662 }
663 else
664 {
665 warning ("section %s not found in %s",
666 addrs->other[i].name,
667 objfile->name);
668 addrs->other[i].addr = 0;
669 }
670 }
671 else
672 addrs->other[i].addr = lower_offset;
673 }
674 }
675
676 /* Initialize symbol reading routines for this objfile, allow complaints to
677 appear for this new file, and record how verbose to be, then do the
678 initial symbol reading for this file. */
679
680 (*objfile->sf->sym_init) (objfile);
681 clear_complaints (&symfile_complaints, 1, verbo);
682
683 if (addrs)
684 (*objfile->sf->sym_offsets) (objfile, addrs);
685 else
686 {
687 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
688
689 /* Just copy in the offset table directly as given to us. */
690 objfile->num_sections = num_offsets;
691 objfile->section_offsets
692 = ((struct section_offsets *)
693 obstack_alloc (&objfile->psymbol_obstack, size));
694 memcpy (objfile->section_offsets, offsets, size);
695
696 init_objfile_sect_indices (objfile);
697 }
698
699 #ifndef DEPRECATED_IBM6000_TARGET
700 /* This is a SVR4/SunOS specific hack, I think. In any event, it
701 screws RS/6000. sym_offsets should be doing this sort of thing,
702 because it knows the mapping between bfd sections and
703 section_offsets. */
704 /* This is a hack. As far as I can tell, section offsets are not
705 target dependent. They are all set to addr with a couple of
706 exceptions. The exceptions are sysvr4 shared libraries, whose
707 offsets are kept in solib structures anyway and rs6000 xcoff
708 which handles shared libraries in a completely unique way.
709
710 Section offsets are built similarly, except that they are built
711 by adding addr in all cases because there is no clear mapping
712 from section_offsets into actual sections. Note that solib.c
713 has a different algorithm for finding section offsets.
714
715 These should probably all be collapsed into some target
716 independent form of shared library support. FIXME. */
717
718 if (addrs)
719 {
720 struct obj_section *s;
721
722 /* Map section offsets in "addr" back to the object's
723 sections by comparing the section names with bfd's
724 section names. Then adjust the section address by
725 the offset. */ /* for gdb/13815 */
726
727 ALL_OBJFILE_OSECTIONS (objfile, s)
728 {
729 CORE_ADDR s_addr = 0;
730 int i;
731
732 for (i = 0;
733 !s_addr && i < addrs->num_sections && addrs->other[i].name;
734 i++)
735 if (strcmp (bfd_section_name (s->objfile->obfd,
736 s->the_bfd_section),
737 addrs->other[i].name) == 0)
738 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
739
740 s->addr -= s->offset;
741 s->addr += s_addr;
742 s->endaddr -= s->offset;
743 s->endaddr += s_addr;
744 s->offset += s_addr;
745 }
746 }
747 #endif /* not DEPRECATED_IBM6000_TARGET */
748
749 (*objfile->sf->sym_read) (objfile, mainline);
750
751 /* Don't allow char * to have a typename (else would get caddr_t).
752 Ditto void *. FIXME: Check whether this is now done by all the
753 symbol readers themselves (many of them now do), and if so remove
754 it from here. */
755
756 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
757 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
758
759 /* Mark the objfile has having had initial symbol read attempted. Note
760 that this does not mean we found any symbols... */
761
762 objfile->flags |= OBJF_SYMS;
763
764 /* Discard cleanups as symbol reading was successful. */
765
766 discard_cleanups (old_chain);
767 }
768
769 /* Perform required actions after either reading in the initial
770 symbols for a new objfile, or mapping in the symbols from a reusable
771 objfile. */
772
773 void
774 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
775 {
776
777 /* If this is the main symbol file we have to clean up all users of the
778 old main symbol file. Otherwise it is sufficient to fixup all the
779 breakpoints that may have been redefined by this symbol file. */
780 if (mainline)
781 {
782 /* OK, make it the "real" symbol file. */
783 symfile_objfile = objfile;
784
785 clear_symtab_users ();
786 }
787 else
788 {
789 breakpoint_re_set ();
790 }
791
792 /* We're done reading the symbol file; finish off complaints. */
793 clear_complaints (&symfile_complaints, 0, verbo);
794 }
795
796 /* Process a symbol file, as either the main file or as a dynamically
797 loaded file.
798
799 NAME is the file name (which will be tilde-expanded and made
800 absolute herein) (but we don't free or modify NAME itself).
801
802 FROM_TTY says how verbose to be.
803
804 MAINLINE specifies whether this is the main symbol file, or whether
805 it's an extra symbol file such as dynamically loaded code.
806
807 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
808 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
809 non-zero.
810
811 Upon success, returns a pointer to the objfile that was added.
812 Upon failure, jumps back to command level (never returns). */
813 static struct objfile *
814 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
815 struct section_addr_info *addrs,
816 struct section_offsets *offsets,
817 int num_offsets,
818 int mainline, int flags)
819 {
820 struct objfile *objfile;
821 struct partial_symtab *psymtab;
822 char *debugfile;
823 bfd *abfd;
824 struct section_addr_info *orig_addrs;
825 struct cleanup *my_cleanups;
826
827 /* Open a bfd for the file, and give user a chance to burp if we'd be
828 interactively wiping out any existing symbols. */
829
830 abfd = symfile_bfd_open (name);
831
832 if ((have_full_symbols () || have_partial_symbols ())
833 && mainline
834 && from_tty
835 && !query ("Load new symbol table from \"%s\"? ", name))
836 error ("Not confirmed.");
837
838 objfile = allocate_objfile (abfd, flags);
839
840 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
841 my_cleanups = make_cleanup (xfree, orig_addrs);
842 if (addrs)
843 {
844 int i;
845 orig_addrs->num_sections = addrs->num_sections;
846 for (i = 0; i < addrs->num_sections; i++)
847 orig_addrs->other[i] = addrs->other[i];
848 }
849
850 /* If the objfile uses a mapped symbol file, and we have a psymtab for
851 it, then skip reading any symbols at this time. */
852
853 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
854 {
855 /* We mapped in an existing symbol table file that already has had
856 initial symbol reading performed, so we can skip that part. Notify
857 the user that instead of reading the symbols, they have been mapped.
858 */
859 if (from_tty || info_verbose)
860 {
861 printf_unfiltered ("Mapped symbols for %s...", name);
862 wrap_here ("");
863 gdb_flush (gdb_stdout);
864 }
865 init_entry_point_info (objfile);
866 find_sym_fns (objfile);
867 }
868 else
869 {
870 /* We either created a new mapped symbol table, mapped an existing
871 symbol table file which has not had initial symbol reading
872 performed, or need to read an unmapped symbol table. */
873 if (from_tty || info_verbose)
874 {
875 if (pre_add_symbol_hook)
876 pre_add_symbol_hook (name);
877 else
878 {
879 printf_unfiltered ("Reading symbols from %s...", name);
880 wrap_here ("");
881 gdb_flush (gdb_stdout);
882 }
883 }
884 syms_from_objfile (objfile, addrs, offsets, num_offsets,
885 mainline, from_tty);
886 }
887
888 /* We now have at least a partial symbol table. Check to see if the
889 user requested that all symbols be read on initial access via either
890 the gdb startup command line or on a per symbol file basis. Expand
891 all partial symbol tables for this objfile if so. */
892
893 if ((flags & OBJF_READNOW) || readnow_symbol_files)
894 {
895 if (from_tty || info_verbose)
896 {
897 printf_unfiltered ("expanding to full symbols...");
898 wrap_here ("");
899 gdb_flush (gdb_stdout);
900 }
901
902 for (psymtab = objfile->psymtabs;
903 psymtab != NULL;
904 psymtab = psymtab->next)
905 {
906 psymtab_to_symtab (psymtab);
907 }
908 }
909
910 debugfile = find_separate_debug_file (objfile);
911 if (debugfile)
912 {
913 if (addrs != NULL)
914 {
915 objfile->separate_debug_objfile
916 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
917 }
918 else
919 {
920 objfile->separate_debug_objfile
921 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
922 }
923 objfile->separate_debug_objfile->separate_debug_objfile_backlink
924 = objfile;
925
926 /* Put the separate debug object before the normal one, this is so that
927 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
928 put_objfile_before (objfile->separate_debug_objfile, objfile);
929
930 xfree (debugfile);
931 }
932
933 if (!have_partial_symbols () && !have_full_symbols ())
934 {
935 wrap_here ("");
936 printf_unfiltered ("(no debugging symbols found)...");
937 wrap_here ("");
938 }
939
940 if (from_tty || info_verbose)
941 {
942 if (post_add_symbol_hook)
943 post_add_symbol_hook ();
944 else
945 {
946 printf_unfiltered ("done.\n");
947 }
948 }
949
950 /* We print some messages regardless of whether 'from_tty ||
951 info_verbose' is true, so make sure they go out at the right
952 time. */
953 gdb_flush (gdb_stdout);
954
955 do_cleanups (my_cleanups);
956
957 if (objfile->sf == NULL)
958 return objfile; /* No symbols. */
959
960 new_symfile_objfile (objfile, mainline, from_tty);
961
962 if (target_new_objfile_hook)
963 target_new_objfile_hook (objfile);
964
965 return (objfile);
966 }
967
968
969 /* Process a symbol file, as either the main file or as a dynamically
970 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
971 for details. */
972 struct objfile *
973 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
974 int mainline, int flags)
975 {
976 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
977 mainline, flags);
978 }
979
980
981 /* Call symbol_file_add() with default values and update whatever is
982 affected by the loading of a new main().
983 Used when the file is supplied in the gdb command line
984 and by some targets with special loading requirements.
985 The auxiliary function, symbol_file_add_main_1(), has the flags
986 argument for the switches that can only be specified in the symbol_file
987 command itself. */
988
989 void
990 symbol_file_add_main (char *args, int from_tty)
991 {
992 symbol_file_add_main_1 (args, from_tty, 0);
993 }
994
995 static void
996 symbol_file_add_main_1 (char *args, int from_tty, int flags)
997 {
998 symbol_file_add (args, from_tty, NULL, 1, flags);
999
1000 #ifdef HPUXHPPA
1001 RESET_HP_UX_GLOBALS ();
1002 #endif
1003
1004 /* Getting new symbols may change our opinion about
1005 what is frameless. */
1006 reinit_frame_cache ();
1007
1008 set_initial_language ();
1009 }
1010
1011 void
1012 symbol_file_clear (int from_tty)
1013 {
1014 if ((have_full_symbols () || have_partial_symbols ())
1015 && from_tty
1016 && !query ("Discard symbol table from `%s'? ",
1017 symfile_objfile->name))
1018 error ("Not confirmed.");
1019 free_all_objfiles ();
1020
1021 /* solib descriptors may have handles to objfiles. Since their
1022 storage has just been released, we'd better wipe the solib
1023 descriptors as well.
1024 */
1025 #if defined(SOLIB_RESTART)
1026 SOLIB_RESTART ();
1027 #endif
1028
1029 symfile_objfile = NULL;
1030 if (from_tty)
1031 printf_unfiltered ("No symbol file now.\n");
1032 #ifdef HPUXHPPA
1033 RESET_HP_UX_GLOBALS ();
1034 #endif
1035 }
1036
1037 static char *
1038 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1039 {
1040 asection *sect;
1041 bfd_size_type debuglink_size;
1042 unsigned long crc32;
1043 char *contents;
1044 int crc_offset;
1045 unsigned char *p;
1046
1047 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1048
1049 if (sect == NULL)
1050 return NULL;
1051
1052 debuglink_size = bfd_section_size (objfile->obfd, sect);
1053
1054 contents = xmalloc (debuglink_size);
1055 bfd_get_section_contents (objfile->obfd, sect, contents,
1056 (file_ptr)0, (bfd_size_type)debuglink_size);
1057
1058 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1059 crc_offset = strlen (contents) + 1;
1060 crc_offset = (crc_offset + 3) & ~3;
1061
1062 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1063
1064 *crc32_out = crc32;
1065 return contents;
1066 }
1067
1068 static int
1069 separate_debug_file_exists (const char *name, unsigned long crc)
1070 {
1071 unsigned long file_crc = 0;
1072 int fd;
1073 char buffer[8*1024];
1074 int count;
1075
1076 fd = open (name, O_RDONLY | O_BINARY);
1077 if (fd < 0)
1078 return 0;
1079
1080 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1081 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1082
1083 close (fd);
1084
1085 return crc == file_crc;
1086 }
1087
1088 static char *debug_file_directory = NULL;
1089
1090 #if ! defined (DEBUG_SUBDIRECTORY)
1091 #define DEBUG_SUBDIRECTORY ".debug"
1092 #endif
1093
1094 static char *
1095 find_separate_debug_file (struct objfile *objfile)
1096 {
1097 asection *sect;
1098 char *basename;
1099 char *dir;
1100 char *debugfile;
1101 char *name_copy;
1102 bfd_size_type debuglink_size;
1103 unsigned long crc32;
1104 int i;
1105
1106 basename = get_debug_link_info (objfile, &crc32);
1107
1108 if (basename == NULL)
1109 return NULL;
1110
1111 dir = xstrdup (objfile->name);
1112
1113 /* Strip off the final filename part, leaving the directory name,
1114 followed by a slash. Objfile names should always be absolute and
1115 tilde-expanded, so there should always be a slash in there
1116 somewhere. */
1117 for (i = strlen(dir) - 1; i >= 0; i--)
1118 {
1119 if (IS_DIR_SEPARATOR (dir[i]))
1120 break;
1121 }
1122 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1123 dir[i+1] = '\0';
1124
1125 debugfile = alloca (strlen (debug_file_directory) + 1
1126 + strlen (dir)
1127 + strlen (DEBUG_SUBDIRECTORY)
1128 + strlen ("/")
1129 + strlen (basename)
1130 + 1);
1131
1132 /* First try in the same directory as the original file. */
1133 strcpy (debugfile, dir);
1134 strcat (debugfile, basename);
1135
1136 if (separate_debug_file_exists (debugfile, crc32))
1137 {
1138 xfree (basename);
1139 xfree (dir);
1140 return xstrdup (debugfile);
1141 }
1142
1143 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1144 strcpy (debugfile, dir);
1145 strcat (debugfile, DEBUG_SUBDIRECTORY);
1146 strcat (debugfile, "/");
1147 strcat (debugfile, basename);
1148
1149 if (separate_debug_file_exists (debugfile, crc32))
1150 {
1151 xfree (basename);
1152 xfree (dir);
1153 return xstrdup (debugfile);
1154 }
1155
1156 /* Then try in the global debugfile directory. */
1157 strcpy (debugfile, debug_file_directory);
1158 strcat (debugfile, "/");
1159 strcat (debugfile, dir);
1160 strcat (debugfile, basename);
1161
1162 if (separate_debug_file_exists (debugfile, crc32))
1163 {
1164 xfree (basename);
1165 xfree (dir);
1166 return xstrdup (debugfile);
1167 }
1168
1169 xfree (basename);
1170 xfree (dir);
1171 return NULL;
1172 }
1173
1174
1175 /* This is the symbol-file command. Read the file, analyze its
1176 symbols, and add a struct symtab to a symtab list. The syntax of
1177 the command is rather bizarre--(1) buildargv implements various
1178 quoting conventions which are undocumented and have little or
1179 nothing in common with the way things are quoted (or not quoted)
1180 elsewhere in GDB, (2) options are used, which are not generally
1181 used in GDB (perhaps "set mapped on", "set readnow on" would be
1182 better), (3) the order of options matters, which is contrary to GNU
1183 conventions (because it is confusing and inconvenient). */
1184 /* Note: ezannoni 2000-04-17. This function used to have support for
1185 rombug (see remote-os9k.c). It consisted of a call to target_link()
1186 (target.c) to get the address of the text segment from the target,
1187 and pass that to symbol_file_add(). This is no longer supported. */
1188
1189 void
1190 symbol_file_command (char *args, int from_tty)
1191 {
1192 char **argv;
1193 char *name = NULL;
1194 struct cleanup *cleanups;
1195 int flags = OBJF_USERLOADED;
1196
1197 dont_repeat ();
1198
1199 if (args == NULL)
1200 {
1201 symbol_file_clear (from_tty);
1202 }
1203 else
1204 {
1205 if ((argv = buildargv (args)) == NULL)
1206 {
1207 nomem (0);
1208 }
1209 cleanups = make_cleanup_freeargv (argv);
1210 while (*argv != NULL)
1211 {
1212 if (strcmp (*argv, "-mapped") == 0)
1213 flags |= OBJF_MAPPED;
1214 else
1215 if (strcmp (*argv, "-readnow") == 0)
1216 flags |= OBJF_READNOW;
1217 else
1218 if (**argv == '-')
1219 error ("unknown option `%s'", *argv);
1220 else
1221 {
1222 name = *argv;
1223
1224 symbol_file_add_main_1 (name, from_tty, flags);
1225 }
1226 argv++;
1227 }
1228
1229 if (name == NULL)
1230 {
1231 error ("no symbol file name was specified");
1232 }
1233 do_cleanups (cleanups);
1234 }
1235 }
1236
1237 /* Set the initial language.
1238
1239 A better solution would be to record the language in the psymtab when reading
1240 partial symbols, and then use it (if known) to set the language. This would
1241 be a win for formats that encode the language in an easily discoverable place,
1242 such as DWARF. For stabs, we can jump through hoops looking for specially
1243 named symbols or try to intuit the language from the specific type of stabs
1244 we find, but we can't do that until later when we read in full symbols.
1245 FIXME. */
1246
1247 static void
1248 set_initial_language (void)
1249 {
1250 struct partial_symtab *pst;
1251 enum language lang = language_unknown;
1252
1253 pst = find_main_psymtab ();
1254 if (pst != NULL)
1255 {
1256 if (pst->filename != NULL)
1257 {
1258 lang = deduce_language_from_filename (pst->filename);
1259 }
1260 if (lang == language_unknown)
1261 {
1262 /* Make C the default language */
1263 lang = language_c;
1264 }
1265 set_language (lang);
1266 expected_language = current_language; /* Don't warn the user */
1267 }
1268 }
1269
1270 /* Open file specified by NAME and hand it off to BFD for preliminary
1271 analysis. Result is a newly initialized bfd *, which includes a newly
1272 malloc'd` copy of NAME (tilde-expanded and made absolute).
1273 In case of trouble, error() is called. */
1274
1275 bfd *
1276 symfile_bfd_open (char *name)
1277 {
1278 bfd *sym_bfd;
1279 int desc;
1280 char *absolute_name;
1281
1282
1283
1284 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1285
1286 /* Look down path for it, allocate 2nd new malloc'd copy. */
1287 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1288 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1289 if (desc < 0)
1290 {
1291 char *exename = alloca (strlen (name) + 5);
1292 strcat (strcpy (exename, name), ".exe");
1293 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1294 0, &absolute_name);
1295 }
1296 #endif
1297 if (desc < 0)
1298 {
1299 make_cleanup (xfree, name);
1300 perror_with_name (name);
1301 }
1302 xfree (name); /* Free 1st new malloc'd copy */
1303 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1304 /* It'll be freed in free_objfile(). */
1305
1306 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1307 if (!sym_bfd)
1308 {
1309 close (desc);
1310 make_cleanup (xfree, name);
1311 error ("\"%s\": can't open to read symbols: %s.", name,
1312 bfd_errmsg (bfd_get_error ()));
1313 }
1314 sym_bfd->cacheable = 1;
1315
1316 if (!bfd_check_format (sym_bfd, bfd_object))
1317 {
1318 /* FIXME: should be checking for errors from bfd_close (for one thing,
1319 on error it does not free all the storage associated with the
1320 bfd). */
1321 bfd_close (sym_bfd); /* This also closes desc */
1322 make_cleanup (xfree, name);
1323 error ("\"%s\": can't read symbols: %s.", name,
1324 bfd_errmsg (bfd_get_error ()));
1325 }
1326 return (sym_bfd);
1327 }
1328
1329 /* Return the section index for the given section name. Return -1 if
1330 the section was not found. */
1331 int
1332 get_section_index (struct objfile *objfile, char *section_name)
1333 {
1334 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1335 if (sect)
1336 return sect->index;
1337 else
1338 return -1;
1339 }
1340
1341 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1342 startup by the _initialize routine in each object file format reader,
1343 to register information about each format the the reader is prepared
1344 to handle. */
1345
1346 void
1347 add_symtab_fns (struct sym_fns *sf)
1348 {
1349 sf->next = symtab_fns;
1350 symtab_fns = sf;
1351 }
1352
1353
1354 /* Initialize to read symbols from the symbol file sym_bfd. It either
1355 returns or calls error(). The result is an initialized struct sym_fns
1356 in the objfile structure, that contains cached information about the
1357 symbol file. */
1358
1359 static void
1360 find_sym_fns (struct objfile *objfile)
1361 {
1362 struct sym_fns *sf;
1363 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1364 char *our_target = bfd_get_target (objfile->obfd);
1365
1366 if (our_flavour == bfd_target_srec_flavour
1367 || our_flavour == bfd_target_ihex_flavour
1368 || our_flavour == bfd_target_tekhex_flavour)
1369 return; /* No symbols. */
1370
1371 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1372 {
1373 if (our_flavour == sf->sym_flavour)
1374 {
1375 objfile->sf = sf;
1376 return;
1377 }
1378 }
1379 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1380 bfd_get_target (objfile->obfd));
1381 }
1382 \f
1383 /* This function runs the load command of our current target. */
1384
1385 static void
1386 load_command (char *arg, int from_tty)
1387 {
1388 if (arg == NULL)
1389 arg = get_exec_file (1);
1390 target_load (arg, from_tty);
1391
1392 /* After re-loading the executable, we don't really know which
1393 overlays are mapped any more. */
1394 overlay_cache_invalid = 1;
1395 }
1396
1397 /* This version of "load" should be usable for any target. Currently
1398 it is just used for remote targets, not inftarg.c or core files,
1399 on the theory that only in that case is it useful.
1400
1401 Avoiding xmodem and the like seems like a win (a) because we don't have
1402 to worry about finding it, and (b) On VMS, fork() is very slow and so
1403 we don't want to run a subprocess. On the other hand, I'm not sure how
1404 performance compares. */
1405
1406 static int download_write_size = 512;
1407 static int validate_download = 0;
1408
1409 /* Callback service function for generic_load (bfd_map_over_sections). */
1410
1411 static void
1412 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1413 {
1414 bfd_size_type *sum = data;
1415
1416 *sum += bfd_get_section_size_before_reloc (asec);
1417 }
1418
1419 /* Opaque data for load_section_callback. */
1420 struct load_section_data {
1421 unsigned long load_offset;
1422 unsigned long write_count;
1423 unsigned long data_count;
1424 bfd_size_type total_size;
1425 };
1426
1427 /* Callback service function for generic_load (bfd_map_over_sections). */
1428
1429 static void
1430 load_section_callback (bfd *abfd, asection *asec, void *data)
1431 {
1432 struct load_section_data *args = data;
1433
1434 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1435 {
1436 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1437 if (size > 0)
1438 {
1439 char *buffer;
1440 struct cleanup *old_chain;
1441 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1442 bfd_size_type block_size;
1443 int err;
1444 const char *sect_name = bfd_get_section_name (abfd, asec);
1445 bfd_size_type sent;
1446
1447 if (download_write_size > 0 && size > download_write_size)
1448 block_size = download_write_size;
1449 else
1450 block_size = size;
1451
1452 buffer = xmalloc (size);
1453 old_chain = make_cleanup (xfree, buffer);
1454
1455 /* Is this really necessary? I guess it gives the user something
1456 to look at during a long download. */
1457 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1458 sect_name, paddr_nz (size), paddr_nz (lma));
1459
1460 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1461
1462 sent = 0;
1463 do
1464 {
1465 int len;
1466 bfd_size_type this_transfer = size - sent;
1467
1468 if (this_transfer >= block_size)
1469 this_transfer = block_size;
1470 len = target_write_memory_partial (lma, buffer,
1471 this_transfer, &err);
1472 if (err)
1473 break;
1474 if (validate_download)
1475 {
1476 /* Broken memories and broken monitors manifest
1477 themselves here when bring new computers to
1478 life. This doubles already slow downloads. */
1479 /* NOTE: cagney/1999-10-18: A more efficient
1480 implementation might add a verify_memory()
1481 method to the target vector and then use
1482 that. remote.c could implement that method
1483 using the ``qCRC'' packet. */
1484 char *check = xmalloc (len);
1485 struct cleanup *verify_cleanups =
1486 make_cleanup (xfree, check);
1487
1488 if (target_read_memory (lma, check, len) != 0)
1489 error ("Download verify read failed at 0x%s",
1490 paddr (lma));
1491 if (memcmp (buffer, check, len) != 0)
1492 error ("Download verify compare failed at 0x%s",
1493 paddr (lma));
1494 do_cleanups (verify_cleanups);
1495 }
1496 args->data_count += len;
1497 lma += len;
1498 buffer += len;
1499 args->write_count += 1;
1500 sent += len;
1501 if (quit_flag
1502 || (ui_load_progress_hook != NULL
1503 && ui_load_progress_hook (sect_name, sent)))
1504 error ("Canceled the download");
1505
1506 if (show_load_progress != NULL)
1507 show_load_progress (sect_name, sent, size,
1508 args->data_count, args->total_size);
1509 }
1510 while (sent < size);
1511
1512 if (err != 0)
1513 error ("Memory access error while loading section %s.", sect_name);
1514
1515 do_cleanups (old_chain);
1516 }
1517 }
1518 }
1519
1520 void
1521 generic_load (char *args, int from_tty)
1522 {
1523 asection *s;
1524 bfd *loadfile_bfd;
1525 time_t start_time, end_time; /* Start and end times of download */
1526 char *filename;
1527 struct cleanup *old_cleanups;
1528 char *offptr;
1529 struct load_section_data cbdata;
1530 CORE_ADDR entry;
1531
1532 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1533 cbdata.write_count = 0; /* Number of writes needed. */
1534 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1535 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1536
1537 /* Parse the input argument - the user can specify a load offset as
1538 a second argument. */
1539 filename = xmalloc (strlen (args) + 1);
1540 old_cleanups = make_cleanup (xfree, filename);
1541 strcpy (filename, args);
1542 offptr = strchr (filename, ' ');
1543 if (offptr != NULL)
1544 {
1545 char *endptr;
1546
1547 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1548 if (offptr == endptr)
1549 error ("Invalid download offset:%s\n", offptr);
1550 *offptr = '\0';
1551 }
1552 else
1553 cbdata.load_offset = 0;
1554
1555 /* Open the file for loading. */
1556 loadfile_bfd = bfd_openr (filename, gnutarget);
1557 if (loadfile_bfd == NULL)
1558 {
1559 perror_with_name (filename);
1560 return;
1561 }
1562
1563 /* FIXME: should be checking for errors from bfd_close (for one thing,
1564 on error it does not free all the storage associated with the
1565 bfd). */
1566 make_cleanup_bfd_close (loadfile_bfd);
1567
1568 if (!bfd_check_format (loadfile_bfd, bfd_object))
1569 {
1570 error ("\"%s\" is not an object file: %s", filename,
1571 bfd_errmsg (bfd_get_error ()));
1572 }
1573
1574 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1575 (void *) &cbdata.total_size);
1576
1577 start_time = time (NULL);
1578
1579 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1580
1581 end_time = time (NULL);
1582
1583 entry = bfd_get_start_address (loadfile_bfd);
1584 ui_out_text (uiout, "Start address ");
1585 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1586 ui_out_text (uiout, ", load size ");
1587 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1588 ui_out_text (uiout, "\n");
1589 /* We were doing this in remote-mips.c, I suspect it is right
1590 for other targets too. */
1591 write_pc (entry);
1592
1593 /* FIXME: are we supposed to call symbol_file_add or not? According
1594 to a comment from remote-mips.c (where a call to symbol_file_add
1595 was commented out), making the call confuses GDB if more than one
1596 file is loaded in. Some targets do (e.g., remote-vx.c) but
1597 others don't (or didn't - perhaphs they have all been deleted). */
1598
1599 print_transfer_performance (gdb_stdout, cbdata.data_count,
1600 cbdata.write_count, end_time - start_time);
1601
1602 do_cleanups (old_cleanups);
1603 }
1604
1605 /* Report how fast the transfer went. */
1606
1607 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1608 replaced by print_transfer_performance (with a very different
1609 function signature). */
1610
1611 void
1612 report_transfer_performance (unsigned long data_count, time_t start_time,
1613 time_t end_time)
1614 {
1615 print_transfer_performance (gdb_stdout, data_count,
1616 end_time - start_time, 0);
1617 }
1618
1619 void
1620 print_transfer_performance (struct ui_file *stream,
1621 unsigned long data_count,
1622 unsigned long write_count,
1623 unsigned long time_count)
1624 {
1625 ui_out_text (uiout, "Transfer rate: ");
1626 if (time_count > 0)
1627 {
1628 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1629 (data_count * 8) / time_count);
1630 ui_out_text (uiout, " bits/sec");
1631 }
1632 else
1633 {
1634 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1635 ui_out_text (uiout, " bits in <1 sec");
1636 }
1637 if (write_count > 0)
1638 {
1639 ui_out_text (uiout, ", ");
1640 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1641 ui_out_text (uiout, " bytes/write");
1642 }
1643 ui_out_text (uiout, ".\n");
1644 }
1645
1646 /* This function allows the addition of incrementally linked object files.
1647 It does not modify any state in the target, only in the debugger. */
1648 /* Note: ezannoni 2000-04-13 This function/command used to have a
1649 special case syntax for the rombug target (Rombug is the boot
1650 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1651 rombug case, the user doesn't need to supply a text address,
1652 instead a call to target_link() (in target.c) would supply the
1653 value to use. We are now discontinuing this type of ad hoc syntax. */
1654
1655 static void
1656 add_symbol_file_command (char *args, int from_tty)
1657 {
1658 char *filename = NULL;
1659 int flags = OBJF_USERLOADED;
1660 char *arg;
1661 int expecting_option = 0;
1662 int section_index = 0;
1663 int argcnt = 0;
1664 int sec_num = 0;
1665 int i;
1666 int expecting_sec_name = 0;
1667 int expecting_sec_addr = 0;
1668
1669 struct sect_opt
1670 {
1671 char *name;
1672 char *value;
1673 };
1674
1675 struct section_addr_info *section_addrs;
1676 struct sect_opt *sect_opts = NULL;
1677 size_t num_sect_opts = 0;
1678 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1679
1680 num_sect_opts = 16;
1681 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1682 * sizeof (struct sect_opt));
1683
1684 dont_repeat ();
1685
1686 if (args == NULL)
1687 error ("add-symbol-file takes a file name and an address");
1688
1689 /* Make a copy of the string that we can safely write into. */
1690 args = xstrdup (args);
1691
1692 while (*args != '\000')
1693 {
1694 /* Any leading spaces? */
1695 while (isspace (*args))
1696 args++;
1697
1698 /* Point arg to the beginning of the argument. */
1699 arg = args;
1700
1701 /* Move args pointer over the argument. */
1702 while ((*args != '\000') && !isspace (*args))
1703 args++;
1704
1705 /* If there are more arguments, terminate arg and
1706 proceed past it. */
1707 if (*args != '\000')
1708 *args++ = '\000';
1709
1710 /* Now process the argument. */
1711 if (argcnt == 0)
1712 {
1713 /* The first argument is the file name. */
1714 filename = tilde_expand (arg);
1715 make_cleanup (xfree, filename);
1716 }
1717 else
1718 if (argcnt == 1)
1719 {
1720 /* The second argument is always the text address at which
1721 to load the program. */
1722 sect_opts[section_index].name = ".text";
1723 sect_opts[section_index].value = arg;
1724 if (++section_index > num_sect_opts)
1725 {
1726 num_sect_opts *= 2;
1727 sect_opts = ((struct sect_opt *)
1728 xrealloc (sect_opts,
1729 num_sect_opts
1730 * sizeof (struct sect_opt)));
1731 }
1732 }
1733 else
1734 {
1735 /* It's an option (starting with '-') or it's an argument
1736 to an option */
1737
1738 if (*arg == '-')
1739 {
1740 if (strcmp (arg, "-mapped") == 0)
1741 flags |= OBJF_MAPPED;
1742 else
1743 if (strcmp (arg, "-readnow") == 0)
1744 flags |= OBJF_READNOW;
1745 else
1746 if (strcmp (arg, "-s") == 0)
1747 {
1748 expecting_sec_name = 1;
1749 expecting_sec_addr = 1;
1750 }
1751 }
1752 else
1753 {
1754 if (expecting_sec_name)
1755 {
1756 sect_opts[section_index].name = arg;
1757 expecting_sec_name = 0;
1758 }
1759 else
1760 if (expecting_sec_addr)
1761 {
1762 sect_opts[section_index].value = arg;
1763 expecting_sec_addr = 0;
1764 if (++section_index > num_sect_opts)
1765 {
1766 num_sect_opts *= 2;
1767 sect_opts = ((struct sect_opt *)
1768 xrealloc (sect_opts,
1769 num_sect_opts
1770 * sizeof (struct sect_opt)));
1771 }
1772 }
1773 else
1774 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1775 }
1776 }
1777 argcnt++;
1778 }
1779
1780 /* Print the prompt for the query below. And save the arguments into
1781 a sect_addr_info structure to be passed around to other
1782 functions. We have to split this up into separate print
1783 statements because local_hex_string returns a local static
1784 string. */
1785
1786 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1787 section_addrs = alloc_section_addr_info (section_index);
1788 make_cleanup (xfree, section_addrs);
1789 for (i = 0; i < section_index; i++)
1790 {
1791 CORE_ADDR addr;
1792 char *val = sect_opts[i].value;
1793 char *sec = sect_opts[i].name;
1794
1795 addr = parse_and_eval_address (val);
1796
1797 /* Here we store the section offsets in the order they were
1798 entered on the command line. */
1799 section_addrs->other[sec_num].name = sec;
1800 section_addrs->other[sec_num].addr = addr;
1801 printf_unfiltered ("\t%s_addr = %s\n",
1802 sec,
1803 local_hex_string ((unsigned long)addr));
1804 sec_num++;
1805
1806 /* The object's sections are initialized when a
1807 call is made to build_objfile_section_table (objfile).
1808 This happens in reread_symbols.
1809 At this point, we don't know what file type this is,
1810 so we can't determine what section names are valid. */
1811 }
1812
1813 if (from_tty && (!query ("%s", "")))
1814 error ("Not confirmed.");
1815
1816 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1817
1818 /* Getting new symbols may change our opinion about what is
1819 frameless. */
1820 reinit_frame_cache ();
1821 do_cleanups (my_cleanups);
1822 }
1823 \f
1824 static void
1825 add_shared_symbol_files_command (char *args, int from_tty)
1826 {
1827 #ifdef ADD_SHARED_SYMBOL_FILES
1828 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1829 #else
1830 error ("This command is not available in this configuration of GDB.");
1831 #endif
1832 }
1833 \f
1834 /* Re-read symbols if a symbol-file has changed. */
1835 void
1836 reread_symbols (void)
1837 {
1838 struct objfile *objfile;
1839 long new_modtime;
1840 int reread_one = 0;
1841 struct stat new_statbuf;
1842 int res;
1843
1844 /* With the addition of shared libraries, this should be modified,
1845 the load time should be saved in the partial symbol tables, since
1846 different tables may come from different source files. FIXME.
1847 This routine should then walk down each partial symbol table
1848 and see if the symbol table that it originates from has been changed */
1849
1850 for (objfile = object_files; objfile; objfile = objfile->next)
1851 {
1852 if (objfile->obfd)
1853 {
1854 #ifdef DEPRECATED_IBM6000_TARGET
1855 /* If this object is from a shared library, then you should
1856 stat on the library name, not member name. */
1857
1858 if (objfile->obfd->my_archive)
1859 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1860 else
1861 #endif
1862 res = stat (objfile->name, &new_statbuf);
1863 if (res != 0)
1864 {
1865 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1866 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1867 objfile->name);
1868 continue;
1869 }
1870 new_modtime = new_statbuf.st_mtime;
1871 if (new_modtime != objfile->mtime)
1872 {
1873 struct cleanup *old_cleanups;
1874 struct section_offsets *offsets;
1875 int num_offsets;
1876 char *obfd_filename;
1877
1878 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1879 objfile->name);
1880
1881 /* There are various functions like symbol_file_add,
1882 symfile_bfd_open, syms_from_objfile, etc., which might
1883 appear to do what we want. But they have various other
1884 effects which we *don't* want. So we just do stuff
1885 ourselves. We don't worry about mapped files (for one thing,
1886 any mapped file will be out of date). */
1887
1888 /* If we get an error, blow away this objfile (not sure if
1889 that is the correct response for things like shared
1890 libraries). */
1891 old_cleanups = make_cleanup_free_objfile (objfile);
1892 /* We need to do this whenever any symbols go away. */
1893 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1894
1895 /* Clean up any state BFD has sitting around. We don't need
1896 to close the descriptor but BFD lacks a way of closing the
1897 BFD without closing the descriptor. */
1898 obfd_filename = bfd_get_filename (objfile->obfd);
1899 if (!bfd_close (objfile->obfd))
1900 error ("Can't close BFD for %s: %s", objfile->name,
1901 bfd_errmsg (bfd_get_error ()));
1902 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1903 if (objfile->obfd == NULL)
1904 error ("Can't open %s to read symbols.", objfile->name);
1905 /* bfd_openr sets cacheable to true, which is what we want. */
1906 if (!bfd_check_format (objfile->obfd, bfd_object))
1907 error ("Can't read symbols from %s: %s.", objfile->name,
1908 bfd_errmsg (bfd_get_error ()));
1909
1910 /* Save the offsets, we will nuke them with the rest of the
1911 psymbol_obstack. */
1912 num_offsets = objfile->num_sections;
1913 offsets = ((struct section_offsets *)
1914 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1915 memcpy (offsets, objfile->section_offsets,
1916 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1917
1918 /* Nuke all the state that we will re-read. Much of the following
1919 code which sets things to NULL really is necessary to tell
1920 other parts of GDB that there is nothing currently there. */
1921
1922 /* FIXME: Do we have to free a whole linked list, or is this
1923 enough? */
1924 if (objfile->global_psymbols.list)
1925 xmfree (objfile->md, objfile->global_psymbols.list);
1926 memset (&objfile->global_psymbols, 0,
1927 sizeof (objfile->global_psymbols));
1928 if (objfile->static_psymbols.list)
1929 xmfree (objfile->md, objfile->static_psymbols.list);
1930 memset (&objfile->static_psymbols, 0,
1931 sizeof (objfile->static_psymbols));
1932
1933 /* Free the obstacks for non-reusable objfiles */
1934 bcache_xfree (objfile->psymbol_cache);
1935 objfile->psymbol_cache = bcache_xmalloc ();
1936 bcache_xfree (objfile->macro_cache);
1937 objfile->macro_cache = bcache_xmalloc ();
1938 if (objfile->demangled_names_hash != NULL)
1939 {
1940 htab_delete (objfile->demangled_names_hash);
1941 objfile->demangled_names_hash = NULL;
1942 }
1943 obstack_free (&objfile->psymbol_obstack, 0);
1944 obstack_free (&objfile->symbol_obstack, 0);
1945 obstack_free (&objfile->type_obstack, 0);
1946 objfile->sections = NULL;
1947 objfile->symtabs = NULL;
1948 objfile->psymtabs = NULL;
1949 objfile->free_psymtabs = NULL;
1950 objfile->msymbols = NULL;
1951 objfile->sym_private = NULL;
1952 objfile->minimal_symbol_count = 0;
1953 memset (&objfile->msymbol_hash, 0,
1954 sizeof (objfile->msymbol_hash));
1955 memset (&objfile->msymbol_demangled_hash, 0,
1956 sizeof (objfile->msymbol_demangled_hash));
1957 objfile->fundamental_types = NULL;
1958 clear_objfile_data (objfile);
1959 if (objfile->sf != NULL)
1960 {
1961 (*objfile->sf->sym_finish) (objfile);
1962 }
1963
1964 /* We never make this a mapped file. */
1965 objfile->md = NULL;
1966 /* obstack_specify_allocation also initializes the obstack so
1967 it is empty. */
1968 objfile->psymbol_cache = bcache_xmalloc ();
1969 objfile->macro_cache = bcache_xmalloc ();
1970 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1971 xmalloc, xfree);
1972 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1973 xmalloc, xfree);
1974 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1975 xmalloc, xfree);
1976 if (build_objfile_section_table (objfile))
1977 {
1978 error ("Can't find the file sections in `%s': %s",
1979 objfile->name, bfd_errmsg (bfd_get_error ()));
1980 }
1981 terminate_minimal_symbol_table (objfile);
1982
1983 /* We use the same section offsets as from last time. I'm not
1984 sure whether that is always correct for shared libraries. */
1985 objfile->section_offsets = (struct section_offsets *)
1986 obstack_alloc (&objfile->psymbol_obstack,
1987 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1988 memcpy (objfile->section_offsets, offsets,
1989 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1990 objfile->num_sections = num_offsets;
1991
1992 /* What the hell is sym_new_init for, anyway? The concept of
1993 distinguishing between the main file and additional files
1994 in this way seems rather dubious. */
1995 if (objfile == symfile_objfile)
1996 {
1997 (*objfile->sf->sym_new_init) (objfile);
1998 #ifdef HPUXHPPA
1999 RESET_HP_UX_GLOBALS ();
2000 #endif
2001 }
2002
2003 (*objfile->sf->sym_init) (objfile);
2004 clear_complaints (&symfile_complaints, 1, 1);
2005 /* The "mainline" parameter is a hideous hack; I think leaving it
2006 zero is OK since dbxread.c also does what it needs to do if
2007 objfile->global_psymbols.size is 0. */
2008 (*objfile->sf->sym_read) (objfile, 0);
2009 if (!have_partial_symbols () && !have_full_symbols ())
2010 {
2011 wrap_here ("");
2012 printf_unfiltered ("(no debugging symbols found)\n");
2013 wrap_here ("");
2014 }
2015 objfile->flags |= OBJF_SYMS;
2016
2017 /* We're done reading the symbol file; finish off complaints. */
2018 clear_complaints (&symfile_complaints, 0, 1);
2019
2020 /* Getting new symbols may change our opinion about what is
2021 frameless. */
2022
2023 reinit_frame_cache ();
2024
2025 /* Discard cleanups as symbol reading was successful. */
2026 discard_cleanups (old_cleanups);
2027
2028 /* If the mtime has changed between the time we set new_modtime
2029 and now, we *want* this to be out of date, so don't call stat
2030 again now. */
2031 objfile->mtime = new_modtime;
2032 reread_one = 1;
2033 reread_separate_symbols (objfile);
2034 }
2035 }
2036 }
2037
2038 if (reread_one)
2039 clear_symtab_users ();
2040 }
2041
2042
2043 /* Handle separate debug info for OBJFILE, which has just been
2044 re-read:
2045 - If we had separate debug info before, but now we don't, get rid
2046 of the separated objfile.
2047 - If we didn't have separated debug info before, but now we do,
2048 read in the new separated debug info file.
2049 - If the debug link points to a different file, toss the old one
2050 and read the new one.
2051 This function does *not* handle the case where objfile is still
2052 using the same separate debug info file, but that file's timestamp
2053 has changed. That case should be handled by the loop in
2054 reread_symbols already. */
2055 static void
2056 reread_separate_symbols (struct objfile *objfile)
2057 {
2058 char *debug_file;
2059 unsigned long crc32;
2060
2061 /* Does the updated objfile's debug info live in a
2062 separate file? */
2063 debug_file = find_separate_debug_file (objfile);
2064
2065 if (objfile->separate_debug_objfile)
2066 {
2067 /* There are two cases where we need to get rid of
2068 the old separated debug info objfile:
2069 - if the new primary objfile doesn't have
2070 separated debug info, or
2071 - if the new primary objfile has separate debug
2072 info, but it's under a different filename.
2073
2074 If the old and new objfiles both have separate
2075 debug info, under the same filename, then we're
2076 okay --- if the separated file's contents have
2077 changed, we will have caught that when we
2078 visited it in this function's outermost
2079 loop. */
2080 if (! debug_file
2081 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2082 free_objfile (objfile->separate_debug_objfile);
2083 }
2084
2085 /* If the new objfile has separate debug info, and we
2086 haven't loaded it already, do so now. */
2087 if (debug_file
2088 && ! objfile->separate_debug_objfile)
2089 {
2090 /* Use the same section offset table as objfile itself.
2091 Preserve the flags from objfile that make sense. */
2092 objfile->separate_debug_objfile
2093 = (symbol_file_add_with_addrs_or_offsets
2094 (debug_file,
2095 info_verbose, /* from_tty: Don't override the default. */
2096 0, /* No addr table. */
2097 objfile->section_offsets, objfile->num_sections,
2098 0, /* Not mainline. See comments about this above. */
2099 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2100 | OBJF_SHARED | OBJF_READNOW
2101 | OBJF_USERLOADED)));
2102 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2103 = objfile;
2104 }
2105 }
2106
2107
2108 \f
2109
2110
2111 typedef struct
2112 {
2113 char *ext;
2114 enum language lang;
2115 }
2116 filename_language;
2117
2118 static filename_language *filename_language_table;
2119 static int fl_table_size, fl_table_next;
2120
2121 static void
2122 add_filename_language (char *ext, enum language lang)
2123 {
2124 if (fl_table_next >= fl_table_size)
2125 {
2126 fl_table_size += 10;
2127 filename_language_table =
2128 xrealloc (filename_language_table,
2129 fl_table_size * sizeof (*filename_language_table));
2130 }
2131
2132 filename_language_table[fl_table_next].ext = xstrdup (ext);
2133 filename_language_table[fl_table_next].lang = lang;
2134 fl_table_next++;
2135 }
2136
2137 static char *ext_args;
2138
2139 static void
2140 set_ext_lang_command (char *args, int from_tty)
2141 {
2142 int i;
2143 char *cp = ext_args;
2144 enum language lang;
2145
2146 /* First arg is filename extension, starting with '.' */
2147 if (*cp != '.')
2148 error ("'%s': Filename extension must begin with '.'", ext_args);
2149
2150 /* Find end of first arg. */
2151 while (*cp && !isspace (*cp))
2152 cp++;
2153
2154 if (*cp == '\0')
2155 error ("'%s': two arguments required -- filename extension and language",
2156 ext_args);
2157
2158 /* Null-terminate first arg */
2159 *cp++ = '\0';
2160
2161 /* Find beginning of second arg, which should be a source language. */
2162 while (*cp && isspace (*cp))
2163 cp++;
2164
2165 if (*cp == '\0')
2166 error ("'%s': two arguments required -- filename extension and language",
2167 ext_args);
2168
2169 /* Lookup the language from among those we know. */
2170 lang = language_enum (cp);
2171
2172 /* Now lookup the filename extension: do we already know it? */
2173 for (i = 0; i < fl_table_next; i++)
2174 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2175 break;
2176
2177 if (i >= fl_table_next)
2178 {
2179 /* new file extension */
2180 add_filename_language (ext_args, lang);
2181 }
2182 else
2183 {
2184 /* redefining a previously known filename extension */
2185
2186 /* if (from_tty) */
2187 /* query ("Really make files of type %s '%s'?", */
2188 /* ext_args, language_str (lang)); */
2189
2190 xfree (filename_language_table[i].ext);
2191 filename_language_table[i].ext = xstrdup (ext_args);
2192 filename_language_table[i].lang = lang;
2193 }
2194 }
2195
2196 static void
2197 info_ext_lang_command (char *args, int from_tty)
2198 {
2199 int i;
2200
2201 printf_filtered ("Filename extensions and the languages they represent:");
2202 printf_filtered ("\n\n");
2203 for (i = 0; i < fl_table_next; i++)
2204 printf_filtered ("\t%s\t- %s\n",
2205 filename_language_table[i].ext,
2206 language_str (filename_language_table[i].lang));
2207 }
2208
2209 static void
2210 init_filename_language_table (void)
2211 {
2212 if (fl_table_size == 0) /* protect against repetition */
2213 {
2214 fl_table_size = 20;
2215 fl_table_next = 0;
2216 filename_language_table =
2217 xmalloc (fl_table_size * sizeof (*filename_language_table));
2218 add_filename_language (".c", language_c);
2219 add_filename_language (".C", language_cplus);
2220 add_filename_language (".cc", language_cplus);
2221 add_filename_language (".cp", language_cplus);
2222 add_filename_language (".cpp", language_cplus);
2223 add_filename_language (".cxx", language_cplus);
2224 add_filename_language (".c++", language_cplus);
2225 add_filename_language (".java", language_java);
2226 add_filename_language (".class", language_java);
2227 add_filename_language (".m", language_objc);
2228 add_filename_language (".f", language_fortran);
2229 add_filename_language (".F", language_fortran);
2230 add_filename_language (".s", language_asm);
2231 add_filename_language (".S", language_asm);
2232 add_filename_language (".pas", language_pascal);
2233 add_filename_language (".p", language_pascal);
2234 add_filename_language (".pp", language_pascal);
2235 }
2236 }
2237
2238 enum language
2239 deduce_language_from_filename (char *filename)
2240 {
2241 int i;
2242 char *cp;
2243
2244 if (filename != NULL)
2245 if ((cp = strrchr (filename, '.')) != NULL)
2246 for (i = 0; i < fl_table_next; i++)
2247 if (strcmp (cp, filename_language_table[i].ext) == 0)
2248 return filename_language_table[i].lang;
2249
2250 return language_unknown;
2251 }
2252 \f
2253 /* allocate_symtab:
2254
2255 Allocate and partly initialize a new symbol table. Return a pointer
2256 to it. error() if no space.
2257
2258 Caller must set these fields:
2259 LINETABLE(symtab)
2260 symtab->blockvector
2261 symtab->dirname
2262 symtab->free_code
2263 symtab->free_ptr
2264 possibly free_named_symtabs (symtab->filename);
2265 */
2266
2267 struct symtab *
2268 allocate_symtab (char *filename, struct objfile *objfile)
2269 {
2270 struct symtab *symtab;
2271
2272 symtab = (struct symtab *)
2273 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2274 memset (symtab, 0, sizeof (*symtab));
2275 symtab->filename = obsavestring (filename, strlen (filename),
2276 &objfile->symbol_obstack);
2277 symtab->fullname = NULL;
2278 symtab->language = deduce_language_from_filename (filename);
2279 symtab->debugformat = obsavestring ("unknown", 7,
2280 &objfile->symbol_obstack);
2281
2282 /* Hook it to the objfile it comes from */
2283
2284 symtab->objfile = objfile;
2285 symtab->next = objfile->symtabs;
2286 objfile->symtabs = symtab;
2287
2288 /* FIXME: This should go away. It is only defined for the Z8000,
2289 and the Z8000 definition of this macro doesn't have anything to
2290 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2291 here for convenience. */
2292 #ifdef INIT_EXTRA_SYMTAB_INFO
2293 INIT_EXTRA_SYMTAB_INFO (symtab);
2294 #endif
2295
2296 return (symtab);
2297 }
2298
2299 struct partial_symtab *
2300 allocate_psymtab (char *filename, struct objfile *objfile)
2301 {
2302 struct partial_symtab *psymtab;
2303
2304 if (objfile->free_psymtabs)
2305 {
2306 psymtab = objfile->free_psymtabs;
2307 objfile->free_psymtabs = psymtab->next;
2308 }
2309 else
2310 psymtab = (struct partial_symtab *)
2311 obstack_alloc (&objfile->psymbol_obstack,
2312 sizeof (struct partial_symtab));
2313
2314 memset (psymtab, 0, sizeof (struct partial_symtab));
2315 psymtab->filename = obsavestring (filename, strlen (filename),
2316 &objfile->psymbol_obstack);
2317 psymtab->symtab = NULL;
2318
2319 /* Prepend it to the psymtab list for the objfile it belongs to.
2320 Psymtabs are searched in most recent inserted -> least recent
2321 inserted order. */
2322
2323 psymtab->objfile = objfile;
2324 psymtab->next = objfile->psymtabs;
2325 objfile->psymtabs = psymtab;
2326 #if 0
2327 {
2328 struct partial_symtab **prev_pst;
2329 psymtab->objfile = objfile;
2330 psymtab->next = NULL;
2331 prev_pst = &(objfile->psymtabs);
2332 while ((*prev_pst) != NULL)
2333 prev_pst = &((*prev_pst)->next);
2334 (*prev_pst) = psymtab;
2335 }
2336 #endif
2337
2338 return (psymtab);
2339 }
2340
2341 void
2342 discard_psymtab (struct partial_symtab *pst)
2343 {
2344 struct partial_symtab **prev_pst;
2345
2346 /* From dbxread.c:
2347 Empty psymtabs happen as a result of header files which don't
2348 have any symbols in them. There can be a lot of them. But this
2349 check is wrong, in that a psymtab with N_SLINE entries but
2350 nothing else is not empty, but we don't realize that. Fixing
2351 that without slowing things down might be tricky. */
2352
2353 /* First, snip it out of the psymtab chain */
2354
2355 prev_pst = &(pst->objfile->psymtabs);
2356 while ((*prev_pst) != pst)
2357 prev_pst = &((*prev_pst)->next);
2358 (*prev_pst) = pst->next;
2359
2360 /* Next, put it on a free list for recycling */
2361
2362 pst->next = pst->objfile->free_psymtabs;
2363 pst->objfile->free_psymtabs = pst;
2364 }
2365 \f
2366
2367 /* Reset all data structures in gdb which may contain references to symbol
2368 table data. */
2369
2370 void
2371 clear_symtab_users (void)
2372 {
2373 /* Someday, we should do better than this, by only blowing away
2374 the things that really need to be blown. */
2375 clear_value_history ();
2376 clear_displays ();
2377 clear_internalvars ();
2378 breakpoint_re_set ();
2379 set_default_breakpoint (0, 0, 0, 0);
2380 clear_current_source_symtab_and_line ();
2381 clear_pc_function_cache ();
2382 if (target_new_objfile_hook)
2383 target_new_objfile_hook (NULL);
2384 }
2385
2386 static void
2387 clear_symtab_users_cleanup (void *ignore)
2388 {
2389 clear_symtab_users ();
2390 }
2391
2392 /* clear_symtab_users_once:
2393
2394 This function is run after symbol reading, or from a cleanup.
2395 If an old symbol table was obsoleted, the old symbol table
2396 has been blown away, but the other GDB data structures that may
2397 reference it have not yet been cleared or re-directed. (The old
2398 symtab was zapped, and the cleanup queued, in free_named_symtab()
2399 below.)
2400
2401 This function can be queued N times as a cleanup, or called
2402 directly; it will do all the work the first time, and then will be a
2403 no-op until the next time it is queued. This works by bumping a
2404 counter at queueing time. Much later when the cleanup is run, or at
2405 the end of symbol processing (in case the cleanup is discarded), if
2406 the queued count is greater than the "done-count", we do the work
2407 and set the done-count to the queued count. If the queued count is
2408 less than or equal to the done-count, we just ignore the call. This
2409 is needed because reading a single .o file will often replace many
2410 symtabs (one per .h file, for example), and we don't want to reset
2411 the breakpoints N times in the user's face.
2412
2413 The reason we both queue a cleanup, and call it directly after symbol
2414 reading, is because the cleanup protects us in case of errors, but is
2415 discarded if symbol reading is successful. */
2416
2417 #if 0
2418 /* FIXME: As free_named_symtabs is currently a big noop this function
2419 is no longer needed. */
2420 static void clear_symtab_users_once (void);
2421
2422 static int clear_symtab_users_queued;
2423 static int clear_symtab_users_done;
2424
2425 static void
2426 clear_symtab_users_once (void)
2427 {
2428 /* Enforce once-per-`do_cleanups'-semantics */
2429 if (clear_symtab_users_queued <= clear_symtab_users_done)
2430 return;
2431 clear_symtab_users_done = clear_symtab_users_queued;
2432
2433 clear_symtab_users ();
2434 }
2435 #endif
2436
2437 /* Delete the specified psymtab, and any others that reference it. */
2438
2439 static void
2440 cashier_psymtab (struct partial_symtab *pst)
2441 {
2442 struct partial_symtab *ps, *pprev = NULL;
2443 int i;
2444
2445 /* Find its previous psymtab in the chain */
2446 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2447 {
2448 if (ps == pst)
2449 break;
2450 pprev = ps;
2451 }
2452
2453 if (ps)
2454 {
2455 /* Unhook it from the chain. */
2456 if (ps == pst->objfile->psymtabs)
2457 pst->objfile->psymtabs = ps->next;
2458 else
2459 pprev->next = ps->next;
2460
2461 /* FIXME, we can't conveniently deallocate the entries in the
2462 partial_symbol lists (global_psymbols/static_psymbols) that
2463 this psymtab points to. These just take up space until all
2464 the psymtabs are reclaimed. Ditto the dependencies list and
2465 filename, which are all in the psymbol_obstack. */
2466
2467 /* We need to cashier any psymtab that has this one as a dependency... */
2468 again:
2469 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2470 {
2471 for (i = 0; i < ps->number_of_dependencies; i++)
2472 {
2473 if (ps->dependencies[i] == pst)
2474 {
2475 cashier_psymtab (ps);
2476 goto again; /* Must restart, chain has been munged. */
2477 }
2478 }
2479 }
2480 }
2481 }
2482
2483 /* If a symtab or psymtab for filename NAME is found, free it along
2484 with any dependent breakpoints, displays, etc.
2485 Used when loading new versions of object modules with the "add-file"
2486 command. This is only called on the top-level symtab or psymtab's name;
2487 it is not called for subsidiary files such as .h files.
2488
2489 Return value is 1 if we blew away the environment, 0 if not.
2490 FIXME. The return value appears to never be used.
2491
2492 FIXME. I think this is not the best way to do this. We should
2493 work on being gentler to the environment while still cleaning up
2494 all stray pointers into the freed symtab. */
2495
2496 int
2497 free_named_symtabs (char *name)
2498 {
2499 #if 0
2500 /* FIXME: With the new method of each objfile having it's own
2501 psymtab list, this function needs serious rethinking. In particular,
2502 why was it ever necessary to toss psymtabs with specific compilation
2503 unit filenames, as opposed to all psymtabs from a particular symbol
2504 file? -- fnf
2505 Well, the answer is that some systems permit reloading of particular
2506 compilation units. We want to blow away any old info about these
2507 compilation units, regardless of which objfiles they arrived in. --gnu. */
2508
2509 struct symtab *s;
2510 struct symtab *prev;
2511 struct partial_symtab *ps;
2512 struct blockvector *bv;
2513 int blewit = 0;
2514
2515 /* We only wack things if the symbol-reload switch is set. */
2516 if (!symbol_reloading)
2517 return 0;
2518
2519 /* Some symbol formats have trouble providing file names... */
2520 if (name == 0 || *name == '\0')
2521 return 0;
2522
2523 /* Look for a psymtab with the specified name. */
2524
2525 again2:
2526 for (ps = partial_symtab_list; ps; ps = ps->next)
2527 {
2528 if (strcmp (name, ps->filename) == 0)
2529 {
2530 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2531 goto again2; /* Must restart, chain has been munged */
2532 }
2533 }
2534
2535 /* Look for a symtab with the specified name. */
2536
2537 for (s = symtab_list; s; s = s->next)
2538 {
2539 if (strcmp (name, s->filename) == 0)
2540 break;
2541 prev = s;
2542 }
2543
2544 if (s)
2545 {
2546 if (s == symtab_list)
2547 symtab_list = s->next;
2548 else
2549 prev->next = s->next;
2550
2551 /* For now, queue a delete for all breakpoints, displays, etc., whether
2552 or not they depend on the symtab being freed. This should be
2553 changed so that only those data structures affected are deleted. */
2554
2555 /* But don't delete anything if the symtab is empty.
2556 This test is necessary due to a bug in "dbxread.c" that
2557 causes empty symtabs to be created for N_SO symbols that
2558 contain the pathname of the object file. (This problem
2559 has been fixed in GDB 3.9x). */
2560
2561 bv = BLOCKVECTOR (s);
2562 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2563 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2564 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2565 {
2566 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2567 name);
2568 clear_symtab_users_queued++;
2569 make_cleanup (clear_symtab_users_once, 0);
2570 blewit = 1;
2571 }
2572 else
2573 {
2574 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2575 name);
2576 }
2577
2578 free_symtab (s);
2579 }
2580 else
2581 {
2582 /* It is still possible that some breakpoints will be affected
2583 even though no symtab was found, since the file might have
2584 been compiled without debugging, and hence not be associated
2585 with a symtab. In order to handle this correctly, we would need
2586 to keep a list of text address ranges for undebuggable files.
2587 For now, we do nothing, since this is a fairly obscure case. */
2588 ;
2589 }
2590
2591 /* FIXME, what about the minimal symbol table? */
2592 return blewit;
2593 #else
2594 return (0);
2595 #endif
2596 }
2597 \f
2598 /* Allocate and partially fill a partial symtab. It will be
2599 completely filled at the end of the symbol list.
2600
2601 FILENAME is the name of the symbol-file we are reading from. */
2602
2603 struct partial_symtab *
2604 start_psymtab_common (struct objfile *objfile,
2605 struct section_offsets *section_offsets, char *filename,
2606 CORE_ADDR textlow, struct partial_symbol **global_syms,
2607 struct partial_symbol **static_syms)
2608 {
2609 struct partial_symtab *psymtab;
2610
2611 psymtab = allocate_psymtab (filename, objfile);
2612 psymtab->section_offsets = section_offsets;
2613 psymtab->textlow = textlow;
2614 psymtab->texthigh = psymtab->textlow; /* default */
2615 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2616 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2617 return (psymtab);
2618 }
2619 \f
2620 /* Add a symbol with a long value to a psymtab.
2621 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2622 Return the partial symbol that has been added. */
2623
2624 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2625 symbol is so that callers can get access to the symbol's demangled
2626 name, which they don't have any cheap way to determine otherwise.
2627 (Currenly, dwarf2read.c is the only file who uses that information,
2628 though it's possible that other readers might in the future.)
2629 Elena wasn't thrilled about that, and I don't blame her, but we
2630 couldn't come up with a better way to get that information. If
2631 it's needed in other situations, we could consider breaking up
2632 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2633 cache. */
2634
2635 const struct partial_symbol *
2636 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2637 enum address_class class,
2638 struct psymbol_allocation_list *list, long val, /* Value as a long */
2639 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2640 enum language language, struct objfile *objfile)
2641 {
2642 struct partial_symbol *psym;
2643 char *buf = alloca (namelength + 1);
2644 /* psymbol is static so that there will be no uninitialized gaps in the
2645 structure which might contain random data, causing cache misses in
2646 bcache. */
2647 static struct partial_symbol psymbol;
2648
2649 /* Create local copy of the partial symbol */
2650 memcpy (buf, name, namelength);
2651 buf[namelength] = '\0';
2652 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2653 if (val != 0)
2654 {
2655 SYMBOL_VALUE (&psymbol) = val;
2656 }
2657 else
2658 {
2659 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2660 }
2661 SYMBOL_SECTION (&psymbol) = 0;
2662 SYMBOL_LANGUAGE (&psymbol) = language;
2663 PSYMBOL_DOMAIN (&psymbol) = domain;
2664 PSYMBOL_CLASS (&psymbol) = class;
2665
2666 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2667
2668 /* Stash the partial symbol away in the cache */
2669 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2670 objfile->psymbol_cache);
2671
2672 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2673 if (list->next >= list->list + list->size)
2674 {
2675 extend_psymbol_list (list, objfile);
2676 }
2677 *list->next++ = psym;
2678 OBJSTAT (objfile, n_psyms++);
2679
2680 return psym;
2681 }
2682
2683 /* Add a symbol with a long value to a psymtab. This differs from
2684 * add_psymbol_to_list above in taking both a mangled and a demangled
2685 * name. */
2686
2687 void
2688 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2689 int dem_namelength, domain_enum domain,
2690 enum address_class class,
2691 struct psymbol_allocation_list *list, long val, /* Value as a long */
2692 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2693 enum language language,
2694 struct objfile *objfile)
2695 {
2696 struct partial_symbol *psym;
2697 char *buf = alloca (namelength + 1);
2698 /* psymbol is static so that there will be no uninitialized gaps in the
2699 structure which might contain random data, causing cache misses in
2700 bcache. */
2701 static struct partial_symbol psymbol;
2702
2703 /* Create local copy of the partial symbol */
2704
2705 memcpy (buf, name, namelength);
2706 buf[namelength] = '\0';
2707 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2708 objfile->psymbol_cache);
2709
2710 buf = alloca (dem_namelength + 1);
2711 memcpy (buf, dem_name, dem_namelength);
2712 buf[dem_namelength] = '\0';
2713
2714 switch (language)
2715 {
2716 case language_c:
2717 case language_cplus:
2718 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2719 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2720 break;
2721 /* FIXME What should be done for the default case? Ignoring for now. */
2722 }
2723
2724 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2725 if (val != 0)
2726 {
2727 SYMBOL_VALUE (&psymbol) = val;
2728 }
2729 else
2730 {
2731 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2732 }
2733 SYMBOL_SECTION (&psymbol) = 0;
2734 SYMBOL_LANGUAGE (&psymbol) = language;
2735 PSYMBOL_DOMAIN (&psymbol) = domain;
2736 PSYMBOL_CLASS (&psymbol) = class;
2737 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2738
2739 /* Stash the partial symbol away in the cache */
2740 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2741 objfile->psymbol_cache);
2742
2743 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2744 if (list->next >= list->list + list->size)
2745 {
2746 extend_psymbol_list (list, objfile);
2747 }
2748 *list->next++ = psym;
2749 OBJSTAT (objfile, n_psyms++);
2750 }
2751
2752 /* Initialize storage for partial symbols. */
2753
2754 void
2755 init_psymbol_list (struct objfile *objfile, int total_symbols)
2756 {
2757 /* Free any previously allocated psymbol lists. */
2758
2759 if (objfile->global_psymbols.list)
2760 {
2761 xmfree (objfile->md, objfile->global_psymbols.list);
2762 }
2763 if (objfile->static_psymbols.list)
2764 {
2765 xmfree (objfile->md, objfile->static_psymbols.list);
2766 }
2767
2768 /* Current best guess is that approximately a twentieth
2769 of the total symbols (in a debugging file) are global or static
2770 oriented symbols */
2771
2772 objfile->global_psymbols.size = total_symbols / 10;
2773 objfile->static_psymbols.size = total_symbols / 10;
2774
2775 if (objfile->global_psymbols.size > 0)
2776 {
2777 objfile->global_psymbols.next =
2778 objfile->global_psymbols.list = (struct partial_symbol **)
2779 xmmalloc (objfile->md, (objfile->global_psymbols.size
2780 * sizeof (struct partial_symbol *)));
2781 }
2782 if (objfile->static_psymbols.size > 0)
2783 {
2784 objfile->static_psymbols.next =
2785 objfile->static_psymbols.list = (struct partial_symbol **)
2786 xmmalloc (objfile->md, (objfile->static_psymbols.size
2787 * sizeof (struct partial_symbol *)));
2788 }
2789 }
2790
2791 /* OVERLAYS:
2792 The following code implements an abstraction for debugging overlay sections.
2793
2794 The target model is as follows:
2795 1) The gnu linker will permit multiple sections to be mapped into the
2796 same VMA, each with its own unique LMA (or load address).
2797 2) It is assumed that some runtime mechanism exists for mapping the
2798 sections, one by one, from the load address into the VMA address.
2799 3) This code provides a mechanism for gdb to keep track of which
2800 sections should be considered to be mapped from the VMA to the LMA.
2801 This information is used for symbol lookup, and memory read/write.
2802 For instance, if a section has been mapped then its contents
2803 should be read from the VMA, otherwise from the LMA.
2804
2805 Two levels of debugger support for overlays are available. One is
2806 "manual", in which the debugger relies on the user to tell it which
2807 overlays are currently mapped. This level of support is
2808 implemented entirely in the core debugger, and the information about
2809 whether a section is mapped is kept in the objfile->obj_section table.
2810
2811 The second level of support is "automatic", and is only available if
2812 the target-specific code provides functionality to read the target's
2813 overlay mapping table, and translate its contents for the debugger
2814 (by updating the mapped state information in the obj_section tables).
2815
2816 The interface is as follows:
2817 User commands:
2818 overlay map <name> -- tell gdb to consider this section mapped
2819 overlay unmap <name> -- tell gdb to consider this section unmapped
2820 overlay list -- list the sections that GDB thinks are mapped
2821 overlay read-target -- get the target's state of what's mapped
2822 overlay off/manual/auto -- set overlay debugging state
2823 Functional interface:
2824 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2825 section, return that section.
2826 find_pc_overlay(pc): find any overlay section that contains
2827 the pc, either in its VMA or its LMA
2828 overlay_is_mapped(sect): true if overlay is marked as mapped
2829 section_is_overlay(sect): true if section's VMA != LMA
2830 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2831 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2832 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2833 overlay_mapped_address(...): map an address from section's LMA to VMA
2834 overlay_unmapped_address(...): map an address from section's VMA to LMA
2835 symbol_overlayed_address(...): Return a "current" address for symbol:
2836 either in VMA or LMA depending on whether
2837 the symbol's section is currently mapped
2838 */
2839
2840 /* Overlay debugging state: */
2841
2842 enum overlay_debugging_state overlay_debugging = ovly_off;
2843 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2844
2845 /* Target vector for refreshing overlay mapped state */
2846 static void simple_overlay_update (struct obj_section *);
2847 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2848
2849 /* Function: section_is_overlay (SECTION)
2850 Returns true if SECTION has VMA not equal to LMA, ie.
2851 SECTION is loaded at an address different from where it will "run". */
2852
2853 int
2854 section_is_overlay (asection *section)
2855 {
2856 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2857
2858 if (overlay_debugging)
2859 if (section && section->lma != 0 &&
2860 section->vma != section->lma)
2861 return 1;
2862
2863 return 0;
2864 }
2865
2866 /* Function: overlay_invalidate_all (void)
2867 Invalidate the mapped state of all overlay sections (mark it as stale). */
2868
2869 static void
2870 overlay_invalidate_all (void)
2871 {
2872 struct objfile *objfile;
2873 struct obj_section *sect;
2874
2875 ALL_OBJSECTIONS (objfile, sect)
2876 if (section_is_overlay (sect->the_bfd_section))
2877 sect->ovly_mapped = -1;
2878 }
2879
2880 /* Function: overlay_is_mapped (SECTION)
2881 Returns true if section is an overlay, and is currently mapped.
2882 Private: public access is thru function section_is_mapped.
2883
2884 Access to the ovly_mapped flag is restricted to this function, so
2885 that we can do automatic update. If the global flag
2886 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2887 overlay_invalidate_all. If the mapped state of the particular
2888 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2889
2890 static int
2891 overlay_is_mapped (struct obj_section *osect)
2892 {
2893 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2894 return 0;
2895
2896 switch (overlay_debugging)
2897 {
2898 default:
2899 case ovly_off:
2900 return 0; /* overlay debugging off */
2901 case ovly_auto: /* overlay debugging automatic */
2902 /* Unles there is a target_overlay_update function,
2903 there's really nothing useful to do here (can't really go auto) */
2904 if (target_overlay_update)
2905 {
2906 if (overlay_cache_invalid)
2907 {
2908 overlay_invalidate_all ();
2909 overlay_cache_invalid = 0;
2910 }
2911 if (osect->ovly_mapped == -1)
2912 (*target_overlay_update) (osect);
2913 }
2914 /* fall thru to manual case */
2915 case ovly_on: /* overlay debugging manual */
2916 return osect->ovly_mapped == 1;
2917 }
2918 }
2919
2920 /* Function: section_is_mapped
2921 Returns true if section is an overlay, and is currently mapped. */
2922
2923 int
2924 section_is_mapped (asection *section)
2925 {
2926 struct objfile *objfile;
2927 struct obj_section *osect;
2928
2929 if (overlay_debugging)
2930 if (section && section_is_overlay (section))
2931 ALL_OBJSECTIONS (objfile, osect)
2932 if (osect->the_bfd_section == section)
2933 return overlay_is_mapped (osect);
2934
2935 return 0;
2936 }
2937
2938 /* Function: pc_in_unmapped_range
2939 If PC falls into the lma range of SECTION, return true, else false. */
2940
2941 CORE_ADDR
2942 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2943 {
2944 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2945
2946 int size;
2947
2948 if (overlay_debugging)
2949 if (section && section_is_overlay (section))
2950 {
2951 size = bfd_get_section_size_before_reloc (section);
2952 if (section->lma <= pc && pc < section->lma + size)
2953 return 1;
2954 }
2955 return 0;
2956 }
2957
2958 /* Function: pc_in_mapped_range
2959 If PC falls into the vma range of SECTION, return true, else false. */
2960
2961 CORE_ADDR
2962 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2963 {
2964 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2965
2966 int size;
2967
2968 if (overlay_debugging)
2969 if (section && section_is_overlay (section))
2970 {
2971 size = bfd_get_section_size_before_reloc (section);
2972 if (section->vma <= pc && pc < section->vma + size)
2973 return 1;
2974 }
2975 return 0;
2976 }
2977
2978
2979 /* Return true if the mapped ranges of sections A and B overlap, false
2980 otherwise. */
2981 static int
2982 sections_overlap (asection *a, asection *b)
2983 {
2984 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2985
2986 CORE_ADDR a_start = a->vma;
2987 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2988 CORE_ADDR b_start = b->vma;
2989 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2990
2991 return (a_start < b_end && b_start < a_end);
2992 }
2993
2994 /* Function: overlay_unmapped_address (PC, SECTION)
2995 Returns the address corresponding to PC in the unmapped (load) range.
2996 May be the same as PC. */
2997
2998 CORE_ADDR
2999 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3000 {
3001 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3002
3003 if (overlay_debugging)
3004 if (section && section_is_overlay (section) &&
3005 pc_in_mapped_range (pc, section))
3006 return pc + section->lma - section->vma;
3007
3008 return pc;
3009 }
3010
3011 /* Function: overlay_mapped_address (PC, SECTION)
3012 Returns the address corresponding to PC in the mapped (runtime) range.
3013 May be the same as PC. */
3014
3015 CORE_ADDR
3016 overlay_mapped_address (CORE_ADDR pc, asection *section)
3017 {
3018 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3019
3020 if (overlay_debugging)
3021 if (section && section_is_overlay (section) &&
3022 pc_in_unmapped_range (pc, section))
3023 return pc + section->vma - section->lma;
3024
3025 return pc;
3026 }
3027
3028
3029 /* Function: symbol_overlayed_address
3030 Return one of two addresses (relative to the VMA or to the LMA),
3031 depending on whether the section is mapped or not. */
3032
3033 CORE_ADDR
3034 symbol_overlayed_address (CORE_ADDR address, asection *section)
3035 {
3036 if (overlay_debugging)
3037 {
3038 /* If the symbol has no section, just return its regular address. */
3039 if (section == 0)
3040 return address;
3041 /* If the symbol's section is not an overlay, just return its address */
3042 if (!section_is_overlay (section))
3043 return address;
3044 /* If the symbol's section is mapped, just return its address */
3045 if (section_is_mapped (section))
3046 return address;
3047 /*
3048 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3049 * then return its LOADED address rather than its vma address!!
3050 */
3051 return overlay_unmapped_address (address, section);
3052 }
3053 return address;
3054 }
3055
3056 /* Function: find_pc_overlay (PC)
3057 Return the best-match overlay section for PC:
3058 If PC matches a mapped overlay section's VMA, return that section.
3059 Else if PC matches an unmapped section's VMA, return that section.
3060 Else if PC matches an unmapped section's LMA, return that section. */
3061
3062 asection *
3063 find_pc_overlay (CORE_ADDR pc)
3064 {
3065 struct objfile *objfile;
3066 struct obj_section *osect, *best_match = NULL;
3067
3068 if (overlay_debugging)
3069 ALL_OBJSECTIONS (objfile, osect)
3070 if (section_is_overlay (osect->the_bfd_section))
3071 {
3072 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3073 {
3074 if (overlay_is_mapped (osect))
3075 return osect->the_bfd_section;
3076 else
3077 best_match = osect;
3078 }
3079 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3080 best_match = osect;
3081 }
3082 return best_match ? best_match->the_bfd_section : NULL;
3083 }
3084
3085 /* Function: find_pc_mapped_section (PC)
3086 If PC falls into the VMA address range of an overlay section that is
3087 currently marked as MAPPED, return that section. Else return NULL. */
3088
3089 asection *
3090 find_pc_mapped_section (CORE_ADDR pc)
3091 {
3092 struct objfile *objfile;
3093 struct obj_section *osect;
3094
3095 if (overlay_debugging)
3096 ALL_OBJSECTIONS (objfile, osect)
3097 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3098 overlay_is_mapped (osect))
3099 return osect->the_bfd_section;
3100
3101 return NULL;
3102 }
3103
3104 /* Function: list_overlays_command
3105 Print a list of mapped sections and their PC ranges */
3106
3107 void
3108 list_overlays_command (char *args, int from_tty)
3109 {
3110 int nmapped = 0;
3111 struct objfile *objfile;
3112 struct obj_section *osect;
3113
3114 if (overlay_debugging)
3115 ALL_OBJSECTIONS (objfile, osect)
3116 if (overlay_is_mapped (osect))
3117 {
3118 const char *name;
3119 bfd_vma lma, vma;
3120 int size;
3121
3122 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3123 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3124 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3125 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3126
3127 printf_filtered ("Section %s, loaded at ", name);
3128 print_address_numeric (lma, 1, gdb_stdout);
3129 puts_filtered (" - ");
3130 print_address_numeric (lma + size, 1, gdb_stdout);
3131 printf_filtered (", mapped at ");
3132 print_address_numeric (vma, 1, gdb_stdout);
3133 puts_filtered (" - ");
3134 print_address_numeric (vma + size, 1, gdb_stdout);
3135 puts_filtered ("\n");
3136
3137 nmapped++;
3138 }
3139 if (nmapped == 0)
3140 printf_filtered ("No sections are mapped.\n");
3141 }
3142
3143 /* Function: map_overlay_command
3144 Mark the named section as mapped (ie. residing at its VMA address). */
3145
3146 void
3147 map_overlay_command (char *args, int from_tty)
3148 {
3149 struct objfile *objfile, *objfile2;
3150 struct obj_section *sec, *sec2;
3151 asection *bfdsec;
3152
3153 if (!overlay_debugging)
3154 error ("\
3155 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3156 the 'overlay manual' command.");
3157
3158 if (args == 0 || *args == 0)
3159 error ("Argument required: name of an overlay section");
3160
3161 /* First, find a section matching the user supplied argument */
3162 ALL_OBJSECTIONS (objfile, sec)
3163 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3164 {
3165 /* Now, check to see if the section is an overlay. */
3166 bfdsec = sec->the_bfd_section;
3167 if (!section_is_overlay (bfdsec))
3168 continue; /* not an overlay section */
3169
3170 /* Mark the overlay as "mapped" */
3171 sec->ovly_mapped = 1;
3172
3173 /* Next, make a pass and unmap any sections that are
3174 overlapped by this new section: */
3175 ALL_OBJSECTIONS (objfile2, sec2)
3176 if (sec2->ovly_mapped
3177 && sec != sec2
3178 && sec->the_bfd_section != sec2->the_bfd_section
3179 && sections_overlap (sec->the_bfd_section,
3180 sec2->the_bfd_section))
3181 {
3182 if (info_verbose)
3183 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3184 bfd_section_name (objfile->obfd,
3185 sec2->the_bfd_section));
3186 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3187 }
3188 return;
3189 }
3190 error ("No overlay section called %s", args);
3191 }
3192
3193 /* Function: unmap_overlay_command
3194 Mark the overlay section as unmapped
3195 (ie. resident in its LMA address range, rather than the VMA range). */
3196
3197 void
3198 unmap_overlay_command (char *args, int from_tty)
3199 {
3200 struct objfile *objfile;
3201 struct obj_section *sec;
3202
3203 if (!overlay_debugging)
3204 error ("\
3205 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3206 the 'overlay manual' command.");
3207
3208 if (args == 0 || *args == 0)
3209 error ("Argument required: name of an overlay section");
3210
3211 /* First, find a section matching the user supplied argument */
3212 ALL_OBJSECTIONS (objfile, sec)
3213 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3214 {
3215 if (!sec->ovly_mapped)
3216 error ("Section %s is not mapped", args);
3217 sec->ovly_mapped = 0;
3218 return;
3219 }
3220 error ("No overlay section called %s", args);
3221 }
3222
3223 /* Function: overlay_auto_command
3224 A utility command to turn on overlay debugging.
3225 Possibly this should be done via a set/show command. */
3226
3227 static void
3228 overlay_auto_command (char *args, int from_tty)
3229 {
3230 overlay_debugging = ovly_auto;
3231 enable_overlay_breakpoints ();
3232 if (info_verbose)
3233 printf_unfiltered ("Automatic overlay debugging enabled.");
3234 }
3235
3236 /* Function: overlay_manual_command
3237 A utility command to turn on overlay debugging.
3238 Possibly this should be done via a set/show command. */
3239
3240 static void
3241 overlay_manual_command (char *args, int from_tty)
3242 {
3243 overlay_debugging = ovly_on;
3244 disable_overlay_breakpoints ();
3245 if (info_verbose)
3246 printf_unfiltered ("Overlay debugging enabled.");
3247 }
3248
3249 /* Function: overlay_off_command
3250 A utility command to turn on overlay debugging.
3251 Possibly this should be done via a set/show command. */
3252
3253 static void
3254 overlay_off_command (char *args, int from_tty)
3255 {
3256 overlay_debugging = ovly_off;
3257 disable_overlay_breakpoints ();
3258 if (info_verbose)
3259 printf_unfiltered ("Overlay debugging disabled.");
3260 }
3261
3262 static void
3263 overlay_load_command (char *args, int from_tty)
3264 {
3265 if (target_overlay_update)
3266 (*target_overlay_update) (NULL);
3267 else
3268 error ("This target does not know how to read its overlay state.");
3269 }
3270
3271 /* Function: overlay_command
3272 A place-holder for a mis-typed command */
3273
3274 /* Command list chain containing all defined "overlay" subcommands. */
3275 struct cmd_list_element *overlaylist;
3276
3277 static void
3278 overlay_command (char *args, int from_tty)
3279 {
3280 printf_unfiltered
3281 ("\"overlay\" must be followed by the name of an overlay command.\n");
3282 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3283 }
3284
3285
3286 /* Target Overlays for the "Simplest" overlay manager:
3287
3288 This is GDB's default target overlay layer. It works with the
3289 minimal overlay manager supplied as an example by Cygnus. The
3290 entry point is via a function pointer "target_overlay_update",
3291 so targets that use a different runtime overlay manager can
3292 substitute their own overlay_update function and take over the
3293 function pointer.
3294
3295 The overlay_update function pokes around in the target's data structures
3296 to see what overlays are mapped, and updates GDB's overlay mapping with
3297 this information.
3298
3299 In this simple implementation, the target data structures are as follows:
3300 unsigned _novlys; /# number of overlay sections #/
3301 unsigned _ovly_table[_novlys][4] = {
3302 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3303 {..., ..., ..., ...},
3304 }
3305 unsigned _novly_regions; /# number of overlay regions #/
3306 unsigned _ovly_region_table[_novly_regions][3] = {
3307 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3308 {..., ..., ...},
3309 }
3310 These functions will attempt to update GDB's mappedness state in the
3311 symbol section table, based on the target's mappedness state.
3312
3313 To do this, we keep a cached copy of the target's _ovly_table, and
3314 attempt to detect when the cached copy is invalidated. The main
3315 entry point is "simple_overlay_update(SECT), which looks up SECT in
3316 the cached table and re-reads only the entry for that section from
3317 the target (whenever possible).
3318 */
3319
3320 /* Cached, dynamically allocated copies of the target data structures: */
3321 static unsigned (*cache_ovly_table)[4] = 0;
3322 #if 0
3323 static unsigned (*cache_ovly_region_table)[3] = 0;
3324 #endif
3325 static unsigned cache_novlys = 0;
3326 #if 0
3327 static unsigned cache_novly_regions = 0;
3328 #endif
3329 static CORE_ADDR cache_ovly_table_base = 0;
3330 #if 0
3331 static CORE_ADDR cache_ovly_region_table_base = 0;
3332 #endif
3333 enum ovly_index
3334 {
3335 VMA, SIZE, LMA, MAPPED
3336 };
3337 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3338
3339 /* Throw away the cached copy of _ovly_table */
3340 static void
3341 simple_free_overlay_table (void)
3342 {
3343 if (cache_ovly_table)
3344 xfree (cache_ovly_table);
3345 cache_novlys = 0;
3346 cache_ovly_table = NULL;
3347 cache_ovly_table_base = 0;
3348 }
3349
3350 #if 0
3351 /* Throw away the cached copy of _ovly_region_table */
3352 static void
3353 simple_free_overlay_region_table (void)
3354 {
3355 if (cache_ovly_region_table)
3356 xfree (cache_ovly_region_table);
3357 cache_novly_regions = 0;
3358 cache_ovly_region_table = NULL;
3359 cache_ovly_region_table_base = 0;
3360 }
3361 #endif
3362
3363 /* Read an array of ints from the target into a local buffer.
3364 Convert to host order. int LEN is number of ints */
3365 static void
3366 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3367 {
3368 /* FIXME (alloca): Not safe if array is very large. */
3369 char *buf = alloca (len * TARGET_LONG_BYTES);
3370 int i;
3371
3372 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3373 for (i = 0; i < len; i++)
3374 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3375 TARGET_LONG_BYTES);
3376 }
3377
3378 /* Find and grab a copy of the target _ovly_table
3379 (and _novlys, which is needed for the table's size) */
3380 static int
3381 simple_read_overlay_table (void)
3382 {
3383 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3384
3385 simple_free_overlay_table ();
3386 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3387 if (! novlys_msym)
3388 {
3389 error ("Error reading inferior's overlay table: "
3390 "couldn't find `_novlys' variable\n"
3391 "in inferior. Use `overlay manual' mode.");
3392 return 0;
3393 }
3394
3395 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3396 if (! ovly_table_msym)
3397 {
3398 error ("Error reading inferior's overlay table: couldn't find "
3399 "`_ovly_table' array\n"
3400 "in inferior. Use `overlay manual' mode.");
3401 return 0;
3402 }
3403
3404 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3405 cache_ovly_table
3406 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3407 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3408 read_target_long_array (cache_ovly_table_base,
3409 (int *) cache_ovly_table,
3410 cache_novlys * 4);
3411
3412 return 1; /* SUCCESS */
3413 }
3414
3415 #if 0
3416 /* Find and grab a copy of the target _ovly_region_table
3417 (and _novly_regions, which is needed for the table's size) */
3418 static int
3419 simple_read_overlay_region_table (void)
3420 {
3421 struct minimal_symbol *msym;
3422
3423 simple_free_overlay_region_table ();
3424 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3425 if (msym != NULL)
3426 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3427 else
3428 return 0; /* failure */
3429 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3430 if (cache_ovly_region_table != NULL)
3431 {
3432 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3433 if (msym != NULL)
3434 {
3435 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3436 read_target_long_array (cache_ovly_region_table_base,
3437 (int *) cache_ovly_region_table,
3438 cache_novly_regions * 3);
3439 }
3440 else
3441 return 0; /* failure */
3442 }
3443 else
3444 return 0; /* failure */
3445 return 1; /* SUCCESS */
3446 }
3447 #endif
3448
3449 /* Function: simple_overlay_update_1
3450 A helper function for simple_overlay_update. Assuming a cached copy
3451 of _ovly_table exists, look through it to find an entry whose vma,
3452 lma and size match those of OSECT. Re-read the entry and make sure
3453 it still matches OSECT (else the table may no longer be valid).
3454 Set OSECT's mapped state to match the entry. Return: 1 for
3455 success, 0 for failure. */
3456
3457 static int
3458 simple_overlay_update_1 (struct obj_section *osect)
3459 {
3460 int i, size;
3461 bfd *obfd = osect->objfile->obfd;
3462 asection *bsect = osect->the_bfd_section;
3463
3464 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3465 for (i = 0; i < cache_novlys; i++)
3466 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3467 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3468 /* && cache_ovly_table[i][SIZE] == size */ )
3469 {
3470 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3471 (int *) cache_ovly_table[i], 4);
3472 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3473 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3474 /* && cache_ovly_table[i][SIZE] == size */ )
3475 {
3476 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3477 return 1;
3478 }
3479 else /* Warning! Warning! Target's ovly table has changed! */
3480 return 0;
3481 }
3482 return 0;
3483 }
3484
3485 /* Function: simple_overlay_update
3486 If OSECT is NULL, then update all sections' mapped state
3487 (after re-reading the entire target _ovly_table).
3488 If OSECT is non-NULL, then try to find a matching entry in the
3489 cached ovly_table and update only OSECT's mapped state.
3490 If a cached entry can't be found or the cache isn't valid, then
3491 re-read the entire cache, and go ahead and update all sections. */
3492
3493 static void
3494 simple_overlay_update (struct obj_section *osect)
3495 {
3496 struct objfile *objfile;
3497
3498 /* Were we given an osect to look up? NULL means do all of them. */
3499 if (osect)
3500 /* Have we got a cached copy of the target's overlay table? */
3501 if (cache_ovly_table != NULL)
3502 /* Does its cached location match what's currently in the symtab? */
3503 if (cache_ovly_table_base ==
3504 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3505 /* Then go ahead and try to look up this single section in the cache */
3506 if (simple_overlay_update_1 (osect))
3507 /* Found it! We're done. */
3508 return;
3509
3510 /* Cached table no good: need to read the entire table anew.
3511 Or else we want all the sections, in which case it's actually
3512 more efficient to read the whole table in one block anyway. */
3513
3514 if (! simple_read_overlay_table ())
3515 return;
3516
3517 /* Now may as well update all sections, even if only one was requested. */
3518 ALL_OBJSECTIONS (objfile, osect)
3519 if (section_is_overlay (osect->the_bfd_section))
3520 {
3521 int i, size;
3522 bfd *obfd = osect->objfile->obfd;
3523 asection *bsect = osect->the_bfd_section;
3524
3525 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3526 for (i = 0; i < cache_novlys; i++)
3527 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3528 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3529 /* && cache_ovly_table[i][SIZE] == size */ )
3530 { /* obj_section matches i'th entry in ovly_table */
3531 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3532 break; /* finished with inner for loop: break out */
3533 }
3534 }
3535 }
3536
3537 /* Set the output sections and output offsets for section SECTP in
3538 ABFD. The relocation code in BFD will read these offsets, so we
3539 need to be sure they're initialized. We map each section to itself,
3540 with no offset; this means that SECTP->vma will be honored. */
3541
3542 static void
3543 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3544 {
3545 sectp->output_section = sectp;
3546 sectp->output_offset = 0;
3547 }
3548
3549 /* Relocate the contents of a debug section SECTP in ABFD. The
3550 contents are stored in BUF if it is non-NULL, or returned in a
3551 malloc'd buffer otherwise.
3552
3553 For some platforms and debug info formats, shared libraries contain
3554 relocations against the debug sections (particularly for DWARF-2;
3555 one affected platform is PowerPC GNU/Linux, although it depends on
3556 the version of the linker in use). Also, ELF object files naturally
3557 have unresolved relocations for their debug sections. We need to apply
3558 the relocations in order to get the locations of symbols correct. */
3559
3560 bfd_byte *
3561 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3562 {
3563 /* We're only interested in debugging sections with relocation
3564 information. */
3565 if ((sectp->flags & SEC_RELOC) == 0)
3566 return NULL;
3567 if ((sectp->flags & SEC_DEBUGGING) == 0)
3568 return NULL;
3569
3570 /* We will handle section offsets properly elsewhere, so relocate as if
3571 all sections begin at 0. */
3572 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575 }
3576
3577 void
3578 _initialize_symfile (void)
3579 {
3580 struct cmd_list_element *c;
3581
3582 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3583 "Load symbol table from executable file FILE.\n\
3584 The `file' command can also load symbol tables, as well as setting the file\n\
3585 to execute.", &cmdlist);
3586 set_cmd_completer (c, filename_completer);
3587
3588 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3589 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3590 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3591 ADDR is the starting address of the file's text.\n\
3592 The optional arguments are section-name section-address pairs and\n\
3593 should be specified if the data and bss segments are not contiguous\n\
3594 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3595 &cmdlist);
3596 set_cmd_completer (c, filename_completer);
3597
3598 c = add_cmd ("add-shared-symbol-files", class_files,
3599 add_shared_symbol_files_command,
3600 "Load the symbols from shared objects in the dynamic linker's link map.",
3601 &cmdlist);
3602 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3603 &cmdlist);
3604
3605 c = add_cmd ("load", class_files, load_command,
3606 "Dynamically load FILE into the running program, and record its symbols\n\
3607 for access from GDB.", &cmdlist);
3608 set_cmd_completer (c, filename_completer);
3609
3610 add_show_from_set
3611 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3612 (char *) &symbol_reloading,
3613 "Set dynamic symbol table reloading multiple times in one run.",
3614 &setlist),
3615 &showlist);
3616
3617 add_prefix_cmd ("overlay", class_support, overlay_command,
3618 "Commands for debugging overlays.", &overlaylist,
3619 "overlay ", 0, &cmdlist);
3620
3621 add_com_alias ("ovly", "overlay", class_alias, 1);
3622 add_com_alias ("ov", "overlay", class_alias, 1);
3623
3624 add_cmd ("map-overlay", class_support, map_overlay_command,
3625 "Assert that an overlay section is mapped.", &overlaylist);
3626
3627 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3628 "Assert that an overlay section is unmapped.", &overlaylist);
3629
3630 add_cmd ("list-overlays", class_support, list_overlays_command,
3631 "List mappings of overlay sections.", &overlaylist);
3632
3633 add_cmd ("manual", class_support, overlay_manual_command,
3634 "Enable overlay debugging.", &overlaylist);
3635 add_cmd ("off", class_support, overlay_off_command,
3636 "Disable overlay debugging.", &overlaylist);
3637 add_cmd ("auto", class_support, overlay_auto_command,
3638 "Enable automatic overlay debugging.", &overlaylist);
3639 add_cmd ("load-target", class_support, overlay_load_command,
3640 "Read the overlay mapping state from the target.", &overlaylist);
3641
3642 /* Filename extension to source language lookup table: */
3643 init_filename_language_table ();
3644 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3645 (char *) &ext_args,
3646 "Set mapping between filename extension and source language.\n\
3647 Usage: set extension-language .foo bar",
3648 &setlist);
3649 set_cmd_cfunc (c, set_ext_lang_command);
3650
3651 add_info ("extensions", info_ext_lang_command,
3652 "All filename extensions associated with a source language.");
3653
3654 add_show_from_set
3655 (add_set_cmd ("download-write-size", class_obscure,
3656 var_integer, (char *) &download_write_size,
3657 "Set the write size used when downloading a program.\n"
3658 "Only used when downloading a program onto a remote\n"
3659 "target. Specify zero, or a negative value, to disable\n"
3660 "blocked writes. The actual size of each transfer is also\n"
3661 "limited by the size of the target packet and the memory\n"
3662 "cache.\n",
3663 &setlist),
3664 &showlist);
3665
3666 debug_file_directory = xstrdup (DEBUGDIR);
3667 c = (add_set_cmd
3668 ("debug-file-directory", class_support, var_string,
3669 (char *) &debug_file_directory,
3670 "Set the directory where separate debug symbols are searched for.\n"
3671 "Separate debug symbols are first searched for in the same\n"
3672 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3673 "' subdirectory,\n"
3674 "and lastly at the path of the directory of the binary with\n"
3675 "the global debug-file directory prepended\n",
3676 &setlist));
3677 add_show_from_set (c, &showlist);
3678 set_cmd_completer (c, filename_completer);
3679 }
This page took 0.103938 seconds and 4 git commands to generate.