2007-03-27 Anton Blanchard <anton@samba.org>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74 void (*deprecated_target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void set_initial_language (void);
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void add_shared_symbol_files_command (char *, int);
101
102 static void reread_separate_symbols (struct objfile *objfile);
103
104 static void cashier_psymtab (struct partial_symtab *);
105
106 bfd *symfile_bfd_open (char *);
107
108 int get_section_index (struct objfile *, char *);
109
110 static void find_sym_fns (struct objfile *);
111
112 static void decrement_reading_symtab (void *);
113
114 static void overlay_invalidate_all (void);
115
116 static int overlay_is_mapped (struct obj_section *);
117
118 void list_overlays_command (char *, int);
119
120 void map_overlay_command (char *, int);
121
122 void unmap_overlay_command (char *, int);
123
124 static void overlay_auto_command (char *, int);
125
126 static void overlay_manual_command (char *, int);
127
128 static void overlay_off_command (char *, int);
129
130 static void overlay_load_command (char *, int);
131
132 static void overlay_command (char *, int);
133
134 static void simple_free_overlay_table (void);
135
136 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
137
138 static int simple_read_overlay_table (void);
139
140 static int simple_overlay_update_1 (struct obj_section *);
141
142 static void add_filename_language (char *ext, enum language lang);
143
144 static void info_ext_lang_command (char *args, int from_tty);
145
146 static char *find_separate_debug_file (struct objfile *objfile);
147
148 static void init_filename_language_table (void);
149
150 void _initialize_symfile (void);
151
152 /* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156 static struct sym_fns *symtab_fns = NULL;
157
158 /* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161 #ifdef SYMBOL_RELOADING_DEFAULT
162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 #else
164 int symbol_reloading = 0;
165 #endif
166 static void
167 show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("\
171 Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173 }
174
175
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
185
186 int auto_solib_add = 1;
187
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196 int auto_solib_limit;
197 \f
198
199 /* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
201
202 static int
203 compare_psymbols (const void *s1p, const void *s2p)
204 {
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
210 }
211
212 void
213 sort_pst_symbols (struct partial_symtab *pst)
214 {
215 /* Sort the global list; don't sort the static list */
216
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
219 compare_psymbols);
220 }
221
222 /* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227 char *
228 obsavestring (const char *ptr, int size, struct obstack *obstackp)
229 {
230 char *p = (char *) obstack_alloc (obstackp, size + 1);
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
235 const char *p1 = ptr;
236 char *p2 = p;
237 const char *end = ptr + size;
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243 }
244
245 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248 char *
249 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
251 {
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258 }
259
260 /* True if we are nested inside psymtab_to_symtab. */
261
262 int currently_reading_symtab = 0;
263
264 static void
265 decrement_reading_symtab (void *dummy)
266 {
267 currently_reading_symtab--;
268 }
269
270 /* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275 struct symtab *
276 psymtab_to_symtab (struct partial_symtab *pst)
277 {
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
284 {
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292 }
293
294 /* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303 void
304 find_lowest_section (bfd *abfd, asection *sect, void *obj)
305 {
306 asection **lowest = (asection **) obj;
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318 }
319
320 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322 struct section_addr_info *
323 alloc_section_addr_info (size_t num_sections)
324 {
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335 }
336
337
338 /* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340 struct section_addr_info *
341 copy_section_addr_info (struct section_addr_info *addrs)
342 {
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359 }
360
361
362
363 /* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366 extern struct section_addr_info *
367 build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369 {
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
374 sap = alloc_section_addr_info (end - start);
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
378 if (bfd_get_section_flags (stp->bfd,
379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380 && oidx < end - start)
381 {
382 sap->other[oidx].addr = stp->addr;
383 sap->other[oidx].name
384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391 }
392
393
394 /* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396 extern void
397 free_section_addr_info (struct section_addr_info *sap)
398 {
399 int idx;
400
401 for (idx = 0; idx < sap->num_sections; idx++)
402 if (sap->other[idx].name)
403 xfree (sap->other[idx].name);
404 xfree (sap);
405 }
406
407
408 /* Initialize OBJFILE's sect_index_* members. */
409 static void
410 init_objfile_sect_indices (struct objfile *objfile)
411 {
412 asection *sect;
413 int i;
414
415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
416 if (sect)
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
420 if (sect)
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424 if (sect)
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428 if (sect)
429 objfile->sect_index_rodata = sect->index;
430
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
439 first slot. */
440
441 for (i = 0; i < objfile->num_sections; i++)
442 {
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
444 {
445 break;
446 }
447 }
448 if (i == objfile->num_sections)
449 {
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
458 }
459 }
460
461 /* The arguments to place_section. */
462
463 struct place_section_arg
464 {
465 struct section_offsets *offsets;
466 CORE_ADDR lowest;
467 };
468
469 /* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
471
472 void
473 place_section (bfd *abfd, asection *sect, void *obj)
474 {
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
477 int done;
478 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
479
480 /* We are only interested in allocated sections. */
481 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
482 return;
483
484 /* If the user specified an offset, honor it. */
485 if (offsets[sect->index] != 0)
486 return;
487
488 /* Otherwise, let's try to find a place for the section. */
489 start_addr = (arg->lowest + align - 1) & -align;
490
491 do {
492 asection *cur_sec;
493
494 done = 1;
495
496 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
497 {
498 int indx = cur_sec->index;
499 CORE_ADDR cur_offset;
500
501 /* We don't need to compare against ourself. */
502 if (cur_sec == sect)
503 continue;
504
505 /* We can only conflict with allocated sections. */
506 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
507 continue;
508
509 /* If the section offset is 0, either the section has not been placed
510 yet, or it was the lowest section placed (in which case LOWEST
511 will be past its end). */
512 if (offsets[indx] == 0)
513 continue;
514
515 /* If this section would overlap us, then we must move up. */
516 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
517 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
518 {
519 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
520 start_addr = (start_addr + align - 1) & -align;
521 done = 0;
522 break;
523 }
524
525 /* Otherwise, we appear to be OK. So far. */
526 }
527 }
528 while (!done);
529
530 offsets[sect->index] = start_addr;
531 arg->lowest = start_addr + bfd_get_section_size (sect);
532
533 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
534 }
535
536 /* Parse the user's idea of an offset for dynamic linking, into our idea
537 of how to represent it for fast symbol reading. This is the default
538 version of the sym_fns.sym_offsets function for symbol readers that
539 don't need to do anything special. It allocates a section_offsets table
540 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
541
542 void
543 default_symfile_offsets (struct objfile *objfile,
544 struct section_addr_info *addrs)
545 {
546 int i;
547
548 objfile->num_sections = bfd_count_sections (objfile->obfd);
549 objfile->section_offsets = (struct section_offsets *)
550 obstack_alloc (&objfile->objfile_obstack,
551 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
552 memset (objfile->section_offsets, 0,
553 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
554
555 /* Now calculate offsets for section that were specified by the
556 caller. */
557 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
558 {
559 struct other_sections *osp ;
560
561 osp = &addrs->other[i] ;
562 if (osp->addr == 0)
563 continue;
564
565 /* Record all sections in offsets */
566 /* The section_offsets in the objfile are here filled in using
567 the BFD index. */
568 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
569 }
570
571 /* For relocatable files, all loadable sections will start at zero.
572 The zero is meaningless, so try to pick arbitrary addresses such
573 that no loadable sections overlap. This algorithm is quadratic,
574 but the number of sections in a single object file is generally
575 small. */
576 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
577 {
578 struct place_section_arg arg;
579 bfd *abfd = objfile->obfd;
580 asection *cur_sec;
581 CORE_ADDR lowest = 0;
582
583 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
584 /* We do not expect this to happen; just skip this step if the
585 relocatable file has a section with an assigned VMA. */
586 if (bfd_section_vma (abfd, cur_sec) != 0)
587 break;
588
589 if (cur_sec == NULL)
590 {
591 CORE_ADDR *offsets = objfile->section_offsets->offsets;
592
593 /* Pick non-overlapping offsets for sections the user did not
594 place explicitly. */
595 arg.offsets = objfile->section_offsets;
596 arg.lowest = 0;
597 bfd_map_over_sections (objfile->obfd, place_section, &arg);
598
599 /* Correctly filling in the section offsets is not quite
600 enough. Relocatable files have two properties that
601 (most) shared objects do not:
602
603 - Their debug information will contain relocations. Some
604 shared libraries do also, but many do not, so this can not
605 be assumed.
606
607 - If there are multiple code sections they will be loaded
608 at different relative addresses in memory than they are
609 in the objfile, since all sections in the file will start
610 at address zero.
611
612 Because GDB has very limited ability to map from an
613 address in debug info to the correct code section,
614 it relies on adding SECT_OFF_TEXT to things which might be
615 code. If we clear all the section offsets, and set the
616 section VMAs instead, then symfile_relocate_debug_section
617 will return meaningful debug information pointing at the
618 correct sections.
619
620 GDB has too many different data structures for section
621 addresses - a bfd, objfile, and so_list all have section
622 tables, as does exec_ops. Some of these could probably
623 be eliminated. */
624
625 for (cur_sec = abfd->sections; cur_sec != NULL;
626 cur_sec = cur_sec->next)
627 {
628 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
629 continue;
630
631 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
632 offsets[cur_sec->index] = 0;
633 }
634 }
635 }
636
637 /* Remember the bfd indexes for the .text, .data, .bss and
638 .rodata sections. */
639 init_objfile_sect_indices (objfile);
640 }
641
642
643 /* Process a symbol file, as either the main file or as a dynamically
644 loaded file.
645
646 OBJFILE is where the symbols are to be read from.
647
648 ADDRS is the list of section load addresses. If the user has given
649 an 'add-symbol-file' command, then this is the list of offsets and
650 addresses he or she provided as arguments to the command; or, if
651 we're handling a shared library, these are the actual addresses the
652 sections are loaded at, according to the inferior's dynamic linker
653 (as gleaned by GDB's shared library code). We convert each address
654 into an offset from the section VMA's as it appears in the object
655 file, and then call the file's sym_offsets function to convert this
656 into a format-specific offset table --- a `struct section_offsets'.
657 If ADDRS is non-zero, OFFSETS must be zero.
658
659 OFFSETS is a table of section offsets already in the right
660 format-specific representation. NUM_OFFSETS is the number of
661 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
662 assume this is the proper table the call to sym_offsets described
663 above would produce. Instead of calling sym_offsets, we just dump
664 it right into objfile->section_offsets. (When we're re-reading
665 symbols from an objfile, we don't have the original load address
666 list any more; all we have is the section offset table.) If
667 OFFSETS is non-zero, ADDRS must be zero.
668
669 MAINLINE is nonzero if this is the main symbol file, or zero if
670 it's an extra symbol file such as dynamically loaded code.
671
672 VERBO is nonzero if the caller has printed a verbose message about
673 the symbol reading (and complaints can be more terse about it). */
674
675 void
676 syms_from_objfile (struct objfile *objfile,
677 struct section_addr_info *addrs,
678 struct section_offsets *offsets,
679 int num_offsets,
680 int mainline,
681 int verbo)
682 {
683 struct section_addr_info *local_addr = NULL;
684 struct cleanup *old_chain;
685
686 gdb_assert (! (addrs && offsets));
687
688 init_entry_point_info (objfile);
689 find_sym_fns (objfile);
690
691 if (objfile->sf == NULL)
692 return; /* No symbols. */
693
694 /* Make sure that partially constructed symbol tables will be cleaned up
695 if an error occurs during symbol reading. */
696 old_chain = make_cleanup_free_objfile (objfile);
697
698 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
699 list. We now establish the convention that an addr of zero means
700 no load address was specified. */
701 if (! addrs && ! offsets)
702 {
703 local_addr
704 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
705 make_cleanup (xfree, local_addr);
706 addrs = local_addr;
707 }
708
709 /* Now either addrs or offsets is non-zero. */
710
711 if (mainline)
712 {
713 /* We will modify the main symbol table, make sure that all its users
714 will be cleaned up if an error occurs during symbol reading. */
715 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
716
717 /* Since no error yet, throw away the old symbol table. */
718
719 if (symfile_objfile != NULL)
720 {
721 free_objfile (symfile_objfile);
722 symfile_objfile = NULL;
723 }
724
725 /* Currently we keep symbols from the add-symbol-file command.
726 If the user wants to get rid of them, they should do "symbol-file"
727 without arguments first. Not sure this is the best behavior
728 (PR 2207). */
729
730 (*objfile->sf->sym_new_init) (objfile);
731 }
732
733 /* Convert addr into an offset rather than an absolute address.
734 We find the lowest address of a loaded segment in the objfile,
735 and assume that <addr> is where that got loaded.
736
737 We no longer warn if the lowest section is not a text segment (as
738 happens for the PA64 port. */
739 if (!mainline && addrs && addrs->other[0].name)
740 {
741 asection *lower_sect;
742 asection *sect;
743 CORE_ADDR lower_offset;
744 int i;
745
746 /* Find lowest loadable section to be used as starting point for
747 continguous sections. FIXME!! won't work without call to find
748 .text first, but this assumes text is lowest section. */
749 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
750 if (lower_sect == NULL)
751 bfd_map_over_sections (objfile->obfd, find_lowest_section,
752 &lower_sect);
753 if (lower_sect == NULL)
754 warning (_("no loadable sections found in added symbol-file %s"),
755 objfile->name);
756 else
757 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
758 warning (_("Lowest section in %s is %s at %s"),
759 objfile->name,
760 bfd_section_name (objfile->obfd, lower_sect),
761 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
762 if (lower_sect != NULL)
763 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
764 else
765 lower_offset = 0;
766
767 /* Calculate offsets for the loadable sections.
768 FIXME! Sections must be in order of increasing loadable section
769 so that contiguous sections can use the lower-offset!!!
770
771 Adjust offsets if the segments are not contiguous.
772 If the section is contiguous, its offset should be set to
773 the offset of the highest loadable section lower than it
774 (the loadable section directly below it in memory).
775 this_offset = lower_offset = lower_addr - lower_orig_addr */
776
777 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
778 {
779 if (addrs->other[i].addr != 0)
780 {
781 sect = bfd_get_section_by_name (objfile->obfd,
782 addrs->other[i].name);
783 if (sect)
784 {
785 addrs->other[i].addr
786 -= bfd_section_vma (objfile->obfd, sect);
787 lower_offset = addrs->other[i].addr;
788 /* This is the index used by BFD. */
789 addrs->other[i].sectindex = sect->index ;
790 }
791 else
792 {
793 warning (_("section %s not found in %s"),
794 addrs->other[i].name,
795 objfile->name);
796 addrs->other[i].addr = 0;
797 }
798 }
799 else
800 addrs->other[i].addr = lower_offset;
801 }
802 }
803
804 /* Initialize symbol reading routines for this objfile, allow complaints to
805 appear for this new file, and record how verbose to be, then do the
806 initial symbol reading for this file. */
807
808 (*objfile->sf->sym_init) (objfile);
809 clear_complaints (&symfile_complaints, 1, verbo);
810
811 if (addrs)
812 (*objfile->sf->sym_offsets) (objfile, addrs);
813 else
814 {
815 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
816
817 /* Just copy in the offset table directly as given to us. */
818 objfile->num_sections = num_offsets;
819 objfile->section_offsets
820 = ((struct section_offsets *)
821 obstack_alloc (&objfile->objfile_obstack, size));
822 memcpy (objfile->section_offsets, offsets, size);
823
824 init_objfile_sect_indices (objfile);
825 }
826
827 #ifndef DEPRECATED_IBM6000_TARGET
828 /* This is a SVR4/SunOS specific hack, I think. In any event, it
829 screws RS/6000. sym_offsets should be doing this sort of thing,
830 because it knows the mapping between bfd sections and
831 section_offsets. */
832 /* This is a hack. As far as I can tell, section offsets are not
833 target dependent. They are all set to addr with a couple of
834 exceptions. The exceptions are sysvr4 shared libraries, whose
835 offsets are kept in solib structures anyway and rs6000 xcoff
836 which handles shared libraries in a completely unique way.
837
838 Section offsets are built similarly, except that they are built
839 by adding addr in all cases because there is no clear mapping
840 from section_offsets into actual sections. Note that solib.c
841 has a different algorithm for finding section offsets.
842
843 These should probably all be collapsed into some target
844 independent form of shared library support. FIXME. */
845
846 if (addrs)
847 {
848 struct obj_section *s;
849
850 /* Map section offsets in "addr" back to the object's
851 sections by comparing the section names with bfd's
852 section names. Then adjust the section address by
853 the offset. */ /* for gdb/13815 */
854
855 ALL_OBJFILE_OSECTIONS (objfile, s)
856 {
857 CORE_ADDR s_addr = 0;
858 int i;
859
860 for (i = 0;
861 !s_addr && i < addrs->num_sections && addrs->other[i].name;
862 i++)
863 if (strcmp (bfd_section_name (s->objfile->obfd,
864 s->the_bfd_section),
865 addrs->other[i].name) == 0)
866 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
867
868 s->addr -= s->offset;
869 s->addr += s_addr;
870 s->endaddr -= s->offset;
871 s->endaddr += s_addr;
872 s->offset += s_addr;
873 }
874 }
875 #endif /* not DEPRECATED_IBM6000_TARGET */
876
877 (*objfile->sf->sym_read) (objfile, mainline);
878
879 /* Don't allow char * to have a typename (else would get caddr_t).
880 Ditto void *. FIXME: Check whether this is now done by all the
881 symbol readers themselves (many of them now do), and if so remove
882 it from here. */
883
884 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
885 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
886
887 /* Mark the objfile has having had initial symbol read attempted. Note
888 that this does not mean we found any symbols... */
889
890 objfile->flags |= OBJF_SYMS;
891
892 /* Discard cleanups as symbol reading was successful. */
893
894 discard_cleanups (old_chain);
895 }
896
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
900
901 void
902 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
903 {
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
908 if (mainline)
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
915 else
916 {
917 breakpoint_re_set ();
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, verbo);
922 }
923
924 /* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
929
930 FROM_TTY says how verbose to be.
931
932 MAINLINE specifies whether this is the main symbol file, or whether
933 it's an extra symbol file such as dynamically loaded code.
934
935 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
936 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
937 non-zero.
938
939 Upon success, returns a pointer to the objfile that was added.
940 Upon failure, jumps back to command level (never returns). */
941 static struct objfile *
942 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int mainline, int flags)
947 {
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
950 char *debugfile;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
954
955 my_cleanups = make_cleanup_bfd_close (abfd);
956
957 /* Give user a chance to burp if we'd be
958 interactively wiping out any existing symbols. */
959
960 if ((have_full_symbols () || have_partial_symbols ())
961 && mainline
962 && from_tty
963 && !query ("Load new symbol table from \"%s\"? ", name))
964 error (_("Not confirmed."));
965
966 objfile = allocate_objfile (abfd, flags);
967 discard_cleanups (my_cleanups);
968
969 if (addrs)
970 {
971 orig_addrs = copy_section_addr_info (addrs);
972 make_cleanup_free_section_addr_info (orig_addrs);
973 }
974
975 /* We either created a new mapped symbol table, mapped an existing
976 symbol table file which has not had initial symbol reading
977 performed, or need to read an unmapped symbol table. */
978 if (from_tty || info_verbose)
979 {
980 if (deprecated_pre_add_symbol_hook)
981 deprecated_pre_add_symbol_hook (name);
982 else
983 {
984 printf_unfiltered (_("Reading symbols from %s..."), name);
985 wrap_here ("");
986 gdb_flush (gdb_stdout);
987 }
988 }
989 syms_from_objfile (objfile, addrs, offsets, num_offsets,
990 mainline, from_tty);
991
992 /* We now have at least a partial symbol table. Check to see if the
993 user requested that all symbols be read on initial access via either
994 the gdb startup command line or on a per symbol file basis. Expand
995 all partial symbol tables for this objfile if so. */
996
997 if ((flags & OBJF_READNOW) || readnow_symbol_files)
998 {
999 if (from_tty || info_verbose)
1000 {
1001 printf_unfiltered (_("expanding to full symbols..."));
1002 wrap_here ("");
1003 gdb_flush (gdb_stdout);
1004 }
1005
1006 for (psymtab = objfile->psymtabs;
1007 psymtab != NULL;
1008 psymtab = psymtab->next)
1009 {
1010 psymtab_to_symtab (psymtab);
1011 }
1012 }
1013
1014 debugfile = find_separate_debug_file (objfile);
1015 if (debugfile)
1016 {
1017 if (addrs != NULL)
1018 {
1019 objfile->separate_debug_objfile
1020 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1021 }
1022 else
1023 {
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1026 }
1027 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1028 = objfile;
1029
1030 /* Put the separate debug object before the normal one, this is so that
1031 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1032 put_objfile_before (objfile->separate_debug_objfile, objfile);
1033
1034 xfree (debugfile);
1035 }
1036
1037 if (!have_partial_symbols () && !have_full_symbols ())
1038 {
1039 wrap_here ("");
1040 printf_filtered (_("(no debugging symbols found)"));
1041 if (from_tty || info_verbose)
1042 printf_filtered ("...");
1043 else
1044 printf_filtered ("\n");
1045 wrap_here ("");
1046 }
1047
1048 if (from_tty || info_verbose)
1049 {
1050 if (deprecated_post_add_symbol_hook)
1051 deprecated_post_add_symbol_hook ();
1052 else
1053 {
1054 printf_unfiltered (_("done.\n"));
1055 }
1056 }
1057
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (my_cleanups);
1064
1065 if (objfile->sf == NULL)
1066 return objfile; /* No symbols. */
1067
1068 new_symfile_objfile (objfile, mainline, from_tty);
1069
1070 if (deprecated_target_new_objfile_hook)
1071 deprecated_target_new_objfile_hook (objfile);
1072
1073 bfd_cache_close_all ();
1074 return (objfile);
1075 }
1076
1077
1078 /* Process the symbol file ABFD, as either the main file or as a
1079 dynamically loaded file.
1080
1081 See symbol_file_add_with_addrs_or_offsets's comments for
1082 details. */
1083 struct objfile *
1084 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1085 struct section_addr_info *addrs,
1086 int mainline, int flags)
1087 {
1088 return symbol_file_add_with_addrs_or_offsets (abfd,
1089 from_tty, addrs, 0, 0,
1090 mainline, flags);
1091 }
1092
1093
1094 /* Process a symbol file, as either the main file or as a dynamically
1095 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1096 for details. */
1097 struct objfile *
1098 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1099 int mainline, int flags)
1100 {
1101 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1102 addrs, mainline, flags);
1103 }
1104
1105
1106 /* Call symbol_file_add() with default values and update whatever is
1107 affected by the loading of a new main().
1108 Used when the file is supplied in the gdb command line
1109 and by some targets with special loading requirements.
1110 The auxiliary function, symbol_file_add_main_1(), has the flags
1111 argument for the switches that can only be specified in the symbol_file
1112 command itself. */
1113
1114 void
1115 symbol_file_add_main (char *args, int from_tty)
1116 {
1117 symbol_file_add_main_1 (args, from_tty, 0);
1118 }
1119
1120 static void
1121 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1122 {
1123 symbol_file_add (args, from_tty, NULL, 1, flags);
1124
1125 /* Getting new symbols may change our opinion about
1126 what is frameless. */
1127 reinit_frame_cache ();
1128
1129 set_initial_language ();
1130 }
1131
1132 void
1133 symbol_file_clear (int from_tty)
1134 {
1135 if ((have_full_symbols () || have_partial_symbols ())
1136 && from_tty
1137 && (symfile_objfile
1138 ? !query (_("Discard symbol table from `%s'? "),
1139 symfile_objfile->name)
1140 : !query (_("Discard symbol table? "))))
1141 error (_("Not confirmed."));
1142 free_all_objfiles ();
1143
1144 /* solib descriptors may have handles to objfiles. Since their
1145 storage has just been released, we'd better wipe the solib
1146 descriptors as well.
1147 */
1148 #if defined(SOLIB_RESTART)
1149 SOLIB_RESTART ();
1150 #endif
1151
1152 symfile_objfile = NULL;
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1155 }
1156
1157 static char *
1158 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1159 {
1160 asection *sect;
1161 bfd_size_type debuglink_size;
1162 unsigned long crc32;
1163 char *contents;
1164 int crc_offset;
1165 unsigned char *p;
1166
1167 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1168
1169 if (sect == NULL)
1170 return NULL;
1171
1172 debuglink_size = bfd_section_size (objfile->obfd, sect);
1173
1174 contents = xmalloc (debuglink_size);
1175 bfd_get_section_contents (objfile->obfd, sect, contents,
1176 (file_ptr)0, (bfd_size_type)debuglink_size);
1177
1178 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1179 crc_offset = strlen (contents) + 1;
1180 crc_offset = (crc_offset + 3) & ~3;
1181
1182 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1183
1184 *crc32_out = crc32;
1185 return contents;
1186 }
1187
1188 static int
1189 separate_debug_file_exists (const char *name, unsigned long crc)
1190 {
1191 unsigned long file_crc = 0;
1192 int fd;
1193 gdb_byte buffer[8*1024];
1194 int count;
1195
1196 fd = open (name, O_RDONLY | O_BINARY);
1197 if (fd < 0)
1198 return 0;
1199
1200 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1201 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1202
1203 close (fd);
1204
1205 return crc == file_crc;
1206 }
1207
1208 char *debug_file_directory = NULL;
1209 static void
1210 show_debug_file_directory (struct ui_file *file, int from_tty,
1211 struct cmd_list_element *c, const char *value)
1212 {
1213 fprintf_filtered (file, _("\
1214 The directory where separate debug symbols are searched for is \"%s\".\n"),
1215 value);
1216 }
1217
1218 #if ! defined (DEBUG_SUBDIRECTORY)
1219 #define DEBUG_SUBDIRECTORY ".debug"
1220 #endif
1221
1222 static char *
1223 find_separate_debug_file (struct objfile *objfile)
1224 {
1225 asection *sect;
1226 char *basename;
1227 char *dir;
1228 char *debugfile;
1229 char *name_copy;
1230 char *canon_name;
1231 bfd_size_type debuglink_size;
1232 unsigned long crc32;
1233 int i;
1234
1235 basename = get_debug_link_info (objfile, &crc32);
1236
1237 if (basename == NULL)
1238 return NULL;
1239
1240 dir = xstrdup (objfile->name);
1241
1242 /* Strip off the final filename part, leaving the directory name,
1243 followed by a slash. Objfile names should always be absolute and
1244 tilde-expanded, so there should always be a slash in there
1245 somewhere. */
1246 for (i = strlen(dir) - 1; i >= 0; i--)
1247 {
1248 if (IS_DIR_SEPARATOR (dir[i]))
1249 break;
1250 }
1251 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1252 dir[i+1] = '\0';
1253
1254 debugfile = alloca (strlen (debug_file_directory) + 1
1255 + strlen (dir)
1256 + strlen (DEBUG_SUBDIRECTORY)
1257 + strlen ("/")
1258 + strlen (basename)
1259 + 1);
1260
1261 /* First try in the same directory as the original file. */
1262 strcpy (debugfile, dir);
1263 strcat (debugfile, basename);
1264
1265 if (separate_debug_file_exists (debugfile, crc32))
1266 {
1267 xfree (basename);
1268 xfree (dir);
1269 return xstrdup (debugfile);
1270 }
1271
1272 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1273 strcpy (debugfile, dir);
1274 strcat (debugfile, DEBUG_SUBDIRECTORY);
1275 strcat (debugfile, "/");
1276 strcat (debugfile, basename);
1277
1278 if (separate_debug_file_exists (debugfile, crc32))
1279 {
1280 xfree (basename);
1281 xfree (dir);
1282 return xstrdup (debugfile);
1283 }
1284
1285 /* Then try in the global debugfile directory. */
1286 strcpy (debugfile, debug_file_directory);
1287 strcat (debugfile, "/");
1288 strcat (debugfile, dir);
1289 strcat (debugfile, basename);
1290
1291 if (separate_debug_file_exists (debugfile, crc32))
1292 {
1293 xfree (basename);
1294 xfree (dir);
1295 return xstrdup (debugfile);
1296 }
1297
1298 /* If the file is in the sysroot, try using its base path in the
1299 global debugfile directory. */
1300 canon_name = lrealpath (dir);
1301 if (canon_name
1302 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1303 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1304 {
1305 strcpy (debugfile, debug_file_directory);
1306 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1307 strcat (debugfile, "/");
1308 strcat (debugfile, basename);
1309
1310 if (separate_debug_file_exists (debugfile, crc32))
1311 {
1312 xfree (canon_name);
1313 xfree (basename);
1314 xfree (dir);
1315 return xstrdup (debugfile);
1316 }
1317 }
1318
1319 if (canon_name)
1320 xfree (canon_name);
1321
1322 xfree (basename);
1323 xfree (dir);
1324 return NULL;
1325 }
1326
1327
1328 /* This is the symbol-file command. Read the file, analyze its
1329 symbols, and add a struct symtab to a symtab list. The syntax of
1330 the command is rather bizarre:
1331
1332 1. The function buildargv implements various quoting conventions
1333 which are undocumented and have little or nothing in common with
1334 the way things are quoted (or not quoted) elsewhere in GDB.
1335
1336 2. Options are used, which are not generally used in GDB (perhaps
1337 "set mapped on", "set readnow on" would be better)
1338
1339 3. The order of options matters, which is contrary to GNU
1340 conventions (because it is confusing and inconvenient). */
1341
1342 void
1343 symbol_file_command (char *args, int from_tty)
1344 {
1345 dont_repeat ();
1346
1347 if (args == NULL)
1348 {
1349 symbol_file_clear (from_tty);
1350 }
1351 else
1352 {
1353 char **argv = buildargv (args);
1354 int flags = OBJF_USERLOADED;
1355 struct cleanup *cleanups;
1356 char *name = NULL;
1357
1358 if (argv == NULL)
1359 nomem (0);
1360
1361 cleanups = make_cleanup_freeargv (argv);
1362 while (*argv != NULL)
1363 {
1364 if (strcmp (*argv, "-readnow") == 0)
1365 flags |= OBJF_READNOW;
1366 else if (**argv == '-')
1367 error (_("unknown option `%s'"), *argv);
1368 else
1369 {
1370 symbol_file_add_main_1 (*argv, from_tty, flags);
1371 name = *argv;
1372 }
1373
1374 argv++;
1375 }
1376
1377 if (name == NULL)
1378 error (_("no symbol file name was specified"));
1379
1380 do_cleanups (cleanups);
1381 }
1382 }
1383
1384 /* Set the initial language.
1385
1386 FIXME: A better solution would be to record the language in the
1387 psymtab when reading partial symbols, and then use it (if known) to
1388 set the language. This would be a win for formats that encode the
1389 language in an easily discoverable place, such as DWARF. For
1390 stabs, we can jump through hoops looking for specially named
1391 symbols or try to intuit the language from the specific type of
1392 stabs we find, but we can't do that until later when we read in
1393 full symbols. */
1394
1395 static void
1396 set_initial_language (void)
1397 {
1398 struct partial_symtab *pst;
1399 enum language lang = language_unknown;
1400
1401 pst = find_main_psymtab ();
1402 if (pst != NULL)
1403 {
1404 if (pst->filename != NULL)
1405 lang = deduce_language_from_filename (pst->filename);
1406
1407 if (lang == language_unknown)
1408 {
1409 /* Make C the default language */
1410 lang = language_c;
1411 }
1412
1413 set_language (lang);
1414 expected_language = current_language; /* Don't warn the user. */
1415 }
1416 }
1417
1418 /* Open the file specified by NAME and hand it off to BFD for
1419 preliminary analysis. Return a newly initialized bfd *, which
1420 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1421 absolute). In case of trouble, error() is called. */
1422
1423 bfd *
1424 symfile_bfd_open (char *name)
1425 {
1426 bfd *sym_bfd;
1427 int desc;
1428 char *absolute_name;
1429
1430 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1431
1432 /* Look down path for it, allocate 2nd new malloc'd copy. */
1433 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1434 O_RDONLY | O_BINARY, 0, &absolute_name);
1435 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1436 if (desc < 0)
1437 {
1438 char *exename = alloca (strlen (name) + 5);
1439 strcat (strcpy (exename, name), ".exe");
1440 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1441 O_RDONLY | O_BINARY, 0, &absolute_name);
1442 }
1443 #endif
1444 if (desc < 0)
1445 {
1446 make_cleanup (xfree, name);
1447 perror_with_name (name);
1448 }
1449
1450 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1451 bfd. It'll be freed in free_objfile(). */
1452 xfree (name);
1453 name = absolute_name;
1454
1455 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1456 if (!sym_bfd)
1457 {
1458 close (desc);
1459 make_cleanup (xfree, name);
1460 error (_("\"%s\": can't open to read symbols: %s."), name,
1461 bfd_errmsg (bfd_get_error ()));
1462 }
1463 bfd_set_cacheable (sym_bfd, 1);
1464
1465 if (!bfd_check_format (sym_bfd, bfd_object))
1466 {
1467 /* FIXME: should be checking for errors from bfd_close (for one
1468 thing, on error it does not free all the storage associated
1469 with the bfd). */
1470 bfd_close (sym_bfd); /* This also closes desc. */
1471 make_cleanup (xfree, name);
1472 error (_("\"%s\": can't read symbols: %s."), name,
1473 bfd_errmsg (bfd_get_error ()));
1474 }
1475
1476 return sym_bfd;
1477 }
1478
1479 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1480 the section was not found. */
1481
1482 int
1483 get_section_index (struct objfile *objfile, char *section_name)
1484 {
1485 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1486
1487 if (sect)
1488 return sect->index;
1489 else
1490 return -1;
1491 }
1492
1493 /* Link SF into the global symtab_fns list. Called on startup by the
1494 _initialize routine in each object file format reader, to register
1495 information about each format the the reader is prepared to
1496 handle. */
1497
1498 void
1499 add_symtab_fns (struct sym_fns *sf)
1500 {
1501 sf->next = symtab_fns;
1502 symtab_fns = sf;
1503 }
1504
1505 /* Initialize OBJFILE to read symbols from its associated BFD. It
1506 either returns or calls error(). The result is an initialized
1507 struct sym_fns in the objfile structure, that contains cached
1508 information about the symbol file. */
1509
1510 static void
1511 find_sym_fns (struct objfile *objfile)
1512 {
1513 struct sym_fns *sf;
1514 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1515 char *our_target = bfd_get_target (objfile->obfd);
1516
1517 if (our_flavour == bfd_target_srec_flavour
1518 || our_flavour == bfd_target_ihex_flavour
1519 || our_flavour == bfd_target_tekhex_flavour)
1520 return; /* No symbols. */
1521
1522 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1523 {
1524 if (our_flavour == sf->sym_flavour)
1525 {
1526 objfile->sf = sf;
1527 return;
1528 }
1529 }
1530
1531 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1532 bfd_get_target (objfile->obfd));
1533 }
1534 \f
1535
1536 /* This function runs the load command of our current target. */
1537
1538 static void
1539 load_command (char *arg, int from_tty)
1540 {
1541 if (arg == NULL)
1542 {
1543 char *parg;
1544 int count = 0;
1545
1546 parg = arg = get_exec_file (1);
1547
1548 /* Count how many \ " ' tab space there are in the name. */
1549 while ((parg = strpbrk (parg, "\\\"'\t ")))
1550 {
1551 parg++;
1552 count++;
1553 }
1554
1555 if (count)
1556 {
1557 /* We need to quote this string so buildargv can pull it apart. */
1558 char *temp = xmalloc (strlen (arg) + count + 1 );
1559 char *ptemp = temp;
1560 char *prev;
1561
1562 make_cleanup (xfree, temp);
1563
1564 prev = parg = arg;
1565 while ((parg = strpbrk (parg, "\\\"'\t ")))
1566 {
1567 strncpy (ptemp, prev, parg - prev);
1568 ptemp += parg - prev;
1569 prev = parg++;
1570 *ptemp++ = '\\';
1571 }
1572 strcpy (ptemp, prev);
1573
1574 arg = temp;
1575 }
1576 }
1577
1578 /* The user might be reloading because the binary has changed. Take
1579 this opportunity to check. */
1580 reopen_exec_file ();
1581 reread_symbols ();
1582
1583 target_load (arg, from_tty);
1584
1585 /* After re-loading the executable, we don't really know which
1586 overlays are mapped any more. */
1587 overlay_cache_invalid = 1;
1588 }
1589
1590 /* This version of "load" should be usable for any target. Currently
1591 it is just used for remote targets, not inftarg.c or core files,
1592 on the theory that only in that case is it useful.
1593
1594 Avoiding xmodem and the like seems like a win (a) because we don't have
1595 to worry about finding it, and (b) On VMS, fork() is very slow and so
1596 we don't want to run a subprocess. On the other hand, I'm not sure how
1597 performance compares. */
1598
1599 static int validate_download = 0;
1600
1601 /* Callback service function for generic_load (bfd_map_over_sections). */
1602
1603 static void
1604 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1605 {
1606 bfd_size_type *sum = data;
1607
1608 *sum += bfd_get_section_size (asec);
1609 }
1610
1611 /* Opaque data for load_section_callback. */
1612 struct load_section_data {
1613 unsigned long load_offset;
1614 struct load_progress_data *progress_data;
1615 VEC(memory_write_request_s) *requests;
1616 };
1617
1618 /* Opaque data for load_progress. */
1619 struct load_progress_data {
1620 /* Cumulative data. */
1621 unsigned long write_count;
1622 unsigned long data_count;
1623 bfd_size_type total_size;
1624 };
1625
1626 /* Opaque data for load_progress for a single section. */
1627 struct load_progress_section_data {
1628 struct load_progress_data *cumulative;
1629
1630 /* Per-section data. */
1631 const char *section_name;
1632 ULONGEST section_sent;
1633 ULONGEST section_size;
1634 CORE_ADDR lma;
1635 gdb_byte *buffer;
1636 };
1637
1638 /* Target write callback routine for progress reporting. */
1639
1640 static void
1641 load_progress (ULONGEST bytes, void *untyped_arg)
1642 {
1643 struct load_progress_section_data *args = untyped_arg;
1644 struct load_progress_data *totals;
1645
1646 if (args == NULL)
1647 /* Writing padding data. No easy way to get at the cumulative
1648 stats, so just ignore this. */
1649 return;
1650
1651 totals = args->cumulative;
1652
1653 if (bytes == 0 && args->section_sent == 0)
1654 {
1655 /* The write is just starting. Let the user know we've started
1656 this section. */
1657 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1658 args->section_name, paddr_nz (args->section_size),
1659 paddr_nz (args->lma));
1660 return;
1661 }
1662
1663 if (validate_download)
1664 {
1665 /* Broken memories and broken monitors manifest themselves here
1666 when bring new computers to life. This doubles already slow
1667 downloads. */
1668 /* NOTE: cagney/1999-10-18: A more efficient implementation
1669 might add a verify_memory() method to the target vector and
1670 then use that. remote.c could implement that method using
1671 the ``qCRC'' packet. */
1672 gdb_byte *check = xmalloc (bytes);
1673 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1674
1675 if (target_read_memory (args->lma, check, bytes) != 0)
1676 error (_("Download verify read failed at 0x%s"),
1677 paddr (args->lma));
1678 if (memcmp (args->buffer, check, bytes) != 0)
1679 error (_("Download verify compare failed at 0x%s"),
1680 paddr (args->lma));
1681 do_cleanups (verify_cleanups);
1682 }
1683 totals->data_count += bytes;
1684 args->lma += bytes;
1685 args->buffer += bytes;
1686 totals->write_count += 1;
1687 args->section_sent += bytes;
1688 if (quit_flag
1689 || (deprecated_ui_load_progress_hook != NULL
1690 && deprecated_ui_load_progress_hook (args->section_name,
1691 args->section_sent)))
1692 error (_("Canceled the download"));
1693
1694 if (deprecated_show_load_progress != NULL)
1695 deprecated_show_load_progress (args->section_name,
1696 args->section_sent,
1697 args->section_size,
1698 totals->data_count,
1699 totals->total_size);
1700 }
1701
1702 /* Callback service function for generic_load (bfd_map_over_sections). */
1703
1704 static void
1705 load_section_callback (bfd *abfd, asection *asec, void *data)
1706 {
1707 struct memory_write_request *new_request;
1708 struct load_section_data *args = data;
1709 struct load_progress_section_data *section_data;
1710 bfd_size_type size = bfd_get_section_size (asec);
1711 gdb_byte *buffer;
1712 const char *sect_name = bfd_get_section_name (abfd, asec);
1713
1714 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1715 return;
1716
1717 if (size == 0)
1718 return;
1719
1720 new_request = VEC_safe_push (memory_write_request_s,
1721 args->requests, NULL);
1722 memset (new_request, 0, sizeof (struct memory_write_request));
1723 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1724 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1725 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1726 new_request->data = xmalloc (size);
1727 new_request->baton = section_data;
1728
1729 buffer = new_request->data;
1730
1731 section_data->cumulative = args->progress_data;
1732 section_data->section_name = sect_name;
1733 section_data->section_size = size;
1734 section_data->lma = new_request->begin;
1735 section_data->buffer = buffer;
1736
1737 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1738 }
1739
1740 /* Clean up an entire memory request vector, including load
1741 data and progress records. */
1742
1743 static void
1744 clear_memory_write_data (void *arg)
1745 {
1746 VEC(memory_write_request_s) **vec_p = arg;
1747 VEC(memory_write_request_s) *vec = *vec_p;
1748 int i;
1749 struct memory_write_request *mr;
1750
1751 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1752 {
1753 xfree (mr->data);
1754 xfree (mr->baton);
1755 }
1756 VEC_free (memory_write_request_s, vec);
1757 }
1758
1759 void
1760 generic_load (char *args, int from_tty)
1761 {
1762 bfd *loadfile_bfd;
1763 struct timeval start_time, end_time;
1764 char *filename;
1765 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1766 struct load_section_data cbdata;
1767 struct load_progress_data total_progress;
1768
1769 CORE_ADDR entry;
1770 char **argv;
1771
1772 memset (&cbdata, 0, sizeof (cbdata));
1773 memset (&total_progress, 0, sizeof (total_progress));
1774 cbdata.progress_data = &total_progress;
1775
1776 make_cleanup (clear_memory_write_data, &cbdata.requests);
1777
1778 argv = buildargv (args);
1779
1780 if (argv == NULL)
1781 nomem(0);
1782
1783 make_cleanup_freeargv (argv);
1784
1785 filename = tilde_expand (argv[0]);
1786 make_cleanup (xfree, filename);
1787
1788 if (argv[1] != NULL)
1789 {
1790 char *endptr;
1791
1792 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1793
1794 /* If the last word was not a valid number then
1795 treat it as a file name with spaces in. */
1796 if (argv[1] == endptr)
1797 error (_("Invalid download offset:%s."), argv[1]);
1798
1799 if (argv[2] != NULL)
1800 error (_("Too many parameters."));
1801 }
1802
1803 /* Open the file for loading. */
1804 loadfile_bfd = bfd_openr (filename, gnutarget);
1805 if (loadfile_bfd == NULL)
1806 {
1807 perror_with_name (filename);
1808 return;
1809 }
1810
1811 /* FIXME: should be checking for errors from bfd_close (for one thing,
1812 on error it does not free all the storage associated with the
1813 bfd). */
1814 make_cleanup_bfd_close (loadfile_bfd);
1815
1816 if (!bfd_check_format (loadfile_bfd, bfd_object))
1817 {
1818 error (_("\"%s\" is not an object file: %s"), filename,
1819 bfd_errmsg (bfd_get_error ()));
1820 }
1821
1822 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1823 (void *) &total_progress.total_size);
1824
1825 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1826
1827 gettimeofday (&start_time, NULL);
1828
1829 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1830 load_progress) != 0)
1831 error (_("Load failed"));
1832
1833 gettimeofday (&end_time, NULL);
1834
1835 entry = bfd_get_start_address (loadfile_bfd);
1836 ui_out_text (uiout, "Start address ");
1837 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1838 ui_out_text (uiout, ", load size ");
1839 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1840 ui_out_text (uiout, "\n");
1841 /* We were doing this in remote-mips.c, I suspect it is right
1842 for other targets too. */
1843 write_pc (entry);
1844
1845 /* FIXME: are we supposed to call symbol_file_add or not? According
1846 to a comment from remote-mips.c (where a call to symbol_file_add
1847 was commented out), making the call confuses GDB if more than one
1848 file is loaded in. Some targets do (e.g., remote-vx.c) but
1849 others don't (or didn't - perhaps they have all been deleted). */
1850
1851 print_transfer_performance (gdb_stdout, total_progress.data_count,
1852 total_progress.write_count,
1853 &start_time, &end_time);
1854
1855 do_cleanups (old_cleanups);
1856 }
1857
1858 /* Report how fast the transfer went. */
1859
1860 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1861 replaced by print_transfer_performance (with a very different
1862 function signature). */
1863
1864 void
1865 report_transfer_performance (unsigned long data_count, time_t start_time,
1866 time_t end_time)
1867 {
1868 struct timeval start, end;
1869
1870 start.tv_sec = start_time;
1871 start.tv_usec = 0;
1872 end.tv_sec = end_time;
1873 end.tv_usec = 0;
1874
1875 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1876 }
1877
1878 void
1879 print_transfer_performance (struct ui_file *stream,
1880 unsigned long data_count,
1881 unsigned long write_count,
1882 const struct timeval *start_time,
1883 const struct timeval *end_time)
1884 {
1885 unsigned long time_count;
1886
1887 /* Compute the elapsed time in milliseconds, as a tradeoff between
1888 accuracy and overflow. */
1889 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1890 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1891
1892 ui_out_text (uiout, "Transfer rate: ");
1893 if (time_count > 0)
1894 {
1895 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1896 1000 * (data_count * 8) / time_count);
1897 ui_out_text (uiout, " bits/sec");
1898 }
1899 else
1900 {
1901 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1902 ui_out_text (uiout, " bits in <1 sec");
1903 }
1904 if (write_count > 0)
1905 {
1906 ui_out_text (uiout, ", ");
1907 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1908 ui_out_text (uiout, " bytes/write");
1909 }
1910 ui_out_text (uiout, ".\n");
1911 }
1912
1913 /* This function allows the addition of incrementally linked object files.
1914 It does not modify any state in the target, only in the debugger. */
1915 /* Note: ezannoni 2000-04-13 This function/command used to have a
1916 special case syntax for the rombug target (Rombug is the boot
1917 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1918 rombug case, the user doesn't need to supply a text address,
1919 instead a call to target_link() (in target.c) would supply the
1920 value to use. We are now discontinuing this type of ad hoc syntax. */
1921
1922 static void
1923 add_symbol_file_command (char *args, int from_tty)
1924 {
1925 char *filename = NULL;
1926 int flags = OBJF_USERLOADED;
1927 char *arg;
1928 int expecting_option = 0;
1929 int section_index = 0;
1930 int argcnt = 0;
1931 int sec_num = 0;
1932 int i;
1933 int expecting_sec_name = 0;
1934 int expecting_sec_addr = 0;
1935 char **argv;
1936
1937 struct sect_opt
1938 {
1939 char *name;
1940 char *value;
1941 };
1942
1943 struct section_addr_info *section_addrs;
1944 struct sect_opt *sect_opts = NULL;
1945 size_t num_sect_opts = 0;
1946 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1947
1948 num_sect_opts = 16;
1949 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1950 * sizeof (struct sect_opt));
1951
1952 dont_repeat ();
1953
1954 if (args == NULL)
1955 error (_("add-symbol-file takes a file name and an address"));
1956
1957 argv = buildargv (args);
1958 make_cleanup_freeargv (argv);
1959
1960 if (argv == NULL)
1961 nomem (0);
1962
1963 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1964 {
1965 /* Process the argument. */
1966 if (argcnt == 0)
1967 {
1968 /* The first argument is the file name. */
1969 filename = tilde_expand (arg);
1970 make_cleanup (xfree, filename);
1971 }
1972 else
1973 if (argcnt == 1)
1974 {
1975 /* The second argument is always the text address at which
1976 to load the program. */
1977 sect_opts[section_index].name = ".text";
1978 sect_opts[section_index].value = arg;
1979 if (++section_index >= num_sect_opts)
1980 {
1981 num_sect_opts *= 2;
1982 sect_opts = ((struct sect_opt *)
1983 xrealloc (sect_opts,
1984 num_sect_opts
1985 * sizeof (struct sect_opt)));
1986 }
1987 }
1988 else
1989 {
1990 /* It's an option (starting with '-') or it's an argument
1991 to an option */
1992
1993 if (*arg == '-')
1994 {
1995 if (strcmp (arg, "-readnow") == 0)
1996 flags |= OBJF_READNOW;
1997 else if (strcmp (arg, "-s") == 0)
1998 {
1999 expecting_sec_name = 1;
2000 expecting_sec_addr = 1;
2001 }
2002 }
2003 else
2004 {
2005 if (expecting_sec_name)
2006 {
2007 sect_opts[section_index].name = arg;
2008 expecting_sec_name = 0;
2009 }
2010 else
2011 if (expecting_sec_addr)
2012 {
2013 sect_opts[section_index].value = arg;
2014 expecting_sec_addr = 0;
2015 if (++section_index >= num_sect_opts)
2016 {
2017 num_sect_opts *= 2;
2018 sect_opts = ((struct sect_opt *)
2019 xrealloc (sect_opts,
2020 num_sect_opts
2021 * sizeof (struct sect_opt)));
2022 }
2023 }
2024 else
2025 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2026 }
2027 }
2028 }
2029
2030 /* This command takes at least two arguments. The first one is a
2031 filename, and the second is the address where this file has been
2032 loaded. Abort now if this address hasn't been provided by the
2033 user. */
2034 if (section_index < 1)
2035 error (_("The address where %s has been loaded is missing"), filename);
2036
2037 /* Print the prompt for the query below. And save the arguments into
2038 a sect_addr_info structure to be passed around to other
2039 functions. We have to split this up into separate print
2040 statements because hex_string returns a local static
2041 string. */
2042
2043 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2044 section_addrs = alloc_section_addr_info (section_index);
2045 make_cleanup (xfree, section_addrs);
2046 for (i = 0; i < section_index; i++)
2047 {
2048 CORE_ADDR addr;
2049 char *val = sect_opts[i].value;
2050 char *sec = sect_opts[i].name;
2051
2052 addr = parse_and_eval_address (val);
2053
2054 /* Here we store the section offsets in the order they were
2055 entered on the command line. */
2056 section_addrs->other[sec_num].name = sec;
2057 section_addrs->other[sec_num].addr = addr;
2058 printf_unfiltered ("\t%s_addr = %s\n",
2059 sec, hex_string ((unsigned long)addr));
2060 sec_num++;
2061
2062 /* The object's sections are initialized when a
2063 call is made to build_objfile_section_table (objfile).
2064 This happens in reread_symbols.
2065 At this point, we don't know what file type this is,
2066 so we can't determine what section names are valid. */
2067 }
2068
2069 if (from_tty && (!query ("%s", "")))
2070 error (_("Not confirmed."));
2071
2072 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2073
2074 /* Getting new symbols may change our opinion about what is
2075 frameless. */
2076 reinit_frame_cache ();
2077 do_cleanups (my_cleanups);
2078 }
2079 \f
2080 static void
2081 add_shared_symbol_files_command (char *args, int from_tty)
2082 {
2083 #ifdef ADD_SHARED_SYMBOL_FILES
2084 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2085 #else
2086 error (_("This command is not available in this configuration of GDB."));
2087 #endif
2088 }
2089 \f
2090 /* Re-read symbols if a symbol-file has changed. */
2091 void
2092 reread_symbols (void)
2093 {
2094 struct objfile *objfile;
2095 long new_modtime;
2096 int reread_one = 0;
2097 struct stat new_statbuf;
2098 int res;
2099
2100 /* With the addition of shared libraries, this should be modified,
2101 the load time should be saved in the partial symbol tables, since
2102 different tables may come from different source files. FIXME.
2103 This routine should then walk down each partial symbol table
2104 and see if the symbol table that it originates from has been changed */
2105
2106 for (objfile = object_files; objfile; objfile = objfile->next)
2107 {
2108 if (objfile->obfd)
2109 {
2110 #ifdef DEPRECATED_IBM6000_TARGET
2111 /* If this object is from a shared library, then you should
2112 stat on the library name, not member name. */
2113
2114 if (objfile->obfd->my_archive)
2115 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2116 else
2117 #endif
2118 res = stat (objfile->name, &new_statbuf);
2119 if (res != 0)
2120 {
2121 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2122 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2123 objfile->name);
2124 continue;
2125 }
2126 new_modtime = new_statbuf.st_mtime;
2127 if (new_modtime != objfile->mtime)
2128 {
2129 struct cleanup *old_cleanups;
2130 struct section_offsets *offsets;
2131 int num_offsets;
2132 char *obfd_filename;
2133
2134 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2135 objfile->name);
2136
2137 /* There are various functions like symbol_file_add,
2138 symfile_bfd_open, syms_from_objfile, etc., which might
2139 appear to do what we want. But they have various other
2140 effects which we *don't* want. So we just do stuff
2141 ourselves. We don't worry about mapped files (for one thing,
2142 any mapped file will be out of date). */
2143
2144 /* If we get an error, blow away this objfile (not sure if
2145 that is the correct response for things like shared
2146 libraries). */
2147 old_cleanups = make_cleanup_free_objfile (objfile);
2148 /* We need to do this whenever any symbols go away. */
2149 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2150
2151 /* Clean up any state BFD has sitting around. We don't need
2152 to close the descriptor but BFD lacks a way of closing the
2153 BFD without closing the descriptor. */
2154 obfd_filename = bfd_get_filename (objfile->obfd);
2155 if (!bfd_close (objfile->obfd))
2156 error (_("Can't close BFD for %s: %s"), objfile->name,
2157 bfd_errmsg (bfd_get_error ()));
2158 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2159 if (objfile->obfd == NULL)
2160 error (_("Can't open %s to read symbols."), objfile->name);
2161 /* bfd_openr sets cacheable to true, which is what we want. */
2162 if (!bfd_check_format (objfile->obfd, bfd_object))
2163 error (_("Can't read symbols from %s: %s."), objfile->name,
2164 bfd_errmsg (bfd_get_error ()));
2165
2166 /* Save the offsets, we will nuke them with the rest of the
2167 objfile_obstack. */
2168 num_offsets = objfile->num_sections;
2169 offsets = ((struct section_offsets *)
2170 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2171 memcpy (offsets, objfile->section_offsets,
2172 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2173
2174 /* Remove any references to this objfile in the global
2175 value lists. */
2176 preserve_values (objfile);
2177
2178 /* Nuke all the state that we will re-read. Much of the following
2179 code which sets things to NULL really is necessary to tell
2180 other parts of GDB that there is nothing currently there. */
2181
2182 /* FIXME: Do we have to free a whole linked list, or is this
2183 enough? */
2184 if (objfile->global_psymbols.list)
2185 xfree (objfile->global_psymbols.list);
2186 memset (&objfile->global_psymbols, 0,
2187 sizeof (objfile->global_psymbols));
2188 if (objfile->static_psymbols.list)
2189 xfree (objfile->static_psymbols.list);
2190 memset (&objfile->static_psymbols, 0,
2191 sizeof (objfile->static_psymbols));
2192
2193 /* Free the obstacks for non-reusable objfiles */
2194 bcache_xfree (objfile->psymbol_cache);
2195 objfile->psymbol_cache = bcache_xmalloc ();
2196 bcache_xfree (objfile->macro_cache);
2197 objfile->macro_cache = bcache_xmalloc ();
2198 if (objfile->demangled_names_hash != NULL)
2199 {
2200 htab_delete (objfile->demangled_names_hash);
2201 objfile->demangled_names_hash = NULL;
2202 }
2203 obstack_free (&objfile->objfile_obstack, 0);
2204 objfile->sections = NULL;
2205 objfile->symtabs = NULL;
2206 objfile->psymtabs = NULL;
2207 objfile->free_psymtabs = NULL;
2208 objfile->cp_namespace_symtab = NULL;
2209 objfile->msymbols = NULL;
2210 objfile->deprecated_sym_private = NULL;
2211 objfile->minimal_symbol_count = 0;
2212 memset (&objfile->msymbol_hash, 0,
2213 sizeof (objfile->msymbol_hash));
2214 memset (&objfile->msymbol_demangled_hash, 0,
2215 sizeof (objfile->msymbol_demangled_hash));
2216 objfile->fundamental_types = NULL;
2217 clear_objfile_data (objfile);
2218 if (objfile->sf != NULL)
2219 {
2220 (*objfile->sf->sym_finish) (objfile);
2221 }
2222
2223 /* We never make this a mapped file. */
2224 objfile->md = NULL;
2225 objfile->psymbol_cache = bcache_xmalloc ();
2226 objfile->macro_cache = bcache_xmalloc ();
2227 /* obstack_init also initializes the obstack so it is
2228 empty. We could use obstack_specify_allocation but
2229 gdb_obstack.h specifies the alloc/dealloc
2230 functions. */
2231 obstack_init (&objfile->objfile_obstack);
2232 if (build_objfile_section_table (objfile))
2233 {
2234 error (_("Can't find the file sections in `%s': %s"),
2235 objfile->name, bfd_errmsg (bfd_get_error ()));
2236 }
2237 terminate_minimal_symbol_table (objfile);
2238
2239 /* We use the same section offsets as from last time. I'm not
2240 sure whether that is always correct for shared libraries. */
2241 objfile->section_offsets = (struct section_offsets *)
2242 obstack_alloc (&objfile->objfile_obstack,
2243 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2244 memcpy (objfile->section_offsets, offsets,
2245 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2246 objfile->num_sections = num_offsets;
2247
2248 /* What the hell is sym_new_init for, anyway? The concept of
2249 distinguishing between the main file and additional files
2250 in this way seems rather dubious. */
2251 if (objfile == symfile_objfile)
2252 {
2253 (*objfile->sf->sym_new_init) (objfile);
2254 }
2255
2256 (*objfile->sf->sym_init) (objfile);
2257 clear_complaints (&symfile_complaints, 1, 1);
2258 /* The "mainline" parameter is a hideous hack; I think leaving it
2259 zero is OK since dbxread.c also does what it needs to do if
2260 objfile->global_psymbols.size is 0. */
2261 (*objfile->sf->sym_read) (objfile, 0);
2262 if (!have_partial_symbols () && !have_full_symbols ())
2263 {
2264 wrap_here ("");
2265 printf_unfiltered (_("(no debugging symbols found)\n"));
2266 wrap_here ("");
2267 }
2268 objfile->flags |= OBJF_SYMS;
2269
2270 /* We're done reading the symbol file; finish off complaints. */
2271 clear_complaints (&symfile_complaints, 0, 1);
2272
2273 /* Getting new symbols may change our opinion about what is
2274 frameless. */
2275
2276 reinit_frame_cache ();
2277
2278 /* Discard cleanups as symbol reading was successful. */
2279 discard_cleanups (old_cleanups);
2280
2281 /* If the mtime has changed between the time we set new_modtime
2282 and now, we *want* this to be out of date, so don't call stat
2283 again now. */
2284 objfile->mtime = new_modtime;
2285 reread_one = 1;
2286 reread_separate_symbols (objfile);
2287 }
2288 }
2289 }
2290
2291 if (reread_one)
2292 {
2293 clear_symtab_users ();
2294 /* At least one objfile has changed, so we can consider that
2295 the executable we're debugging has changed too. */
2296 observer_notify_executable_changed (NULL);
2297 }
2298
2299 }
2300
2301
2302 /* Handle separate debug info for OBJFILE, which has just been
2303 re-read:
2304 - If we had separate debug info before, but now we don't, get rid
2305 of the separated objfile.
2306 - If we didn't have separated debug info before, but now we do,
2307 read in the new separated debug info file.
2308 - If the debug link points to a different file, toss the old one
2309 and read the new one.
2310 This function does *not* handle the case where objfile is still
2311 using the same separate debug info file, but that file's timestamp
2312 has changed. That case should be handled by the loop in
2313 reread_symbols already. */
2314 static void
2315 reread_separate_symbols (struct objfile *objfile)
2316 {
2317 char *debug_file;
2318 unsigned long crc32;
2319
2320 /* Does the updated objfile's debug info live in a
2321 separate file? */
2322 debug_file = find_separate_debug_file (objfile);
2323
2324 if (objfile->separate_debug_objfile)
2325 {
2326 /* There are two cases where we need to get rid of
2327 the old separated debug info objfile:
2328 - if the new primary objfile doesn't have
2329 separated debug info, or
2330 - if the new primary objfile has separate debug
2331 info, but it's under a different filename.
2332
2333 If the old and new objfiles both have separate
2334 debug info, under the same filename, then we're
2335 okay --- if the separated file's contents have
2336 changed, we will have caught that when we
2337 visited it in this function's outermost
2338 loop. */
2339 if (! debug_file
2340 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2341 free_objfile (objfile->separate_debug_objfile);
2342 }
2343
2344 /* If the new objfile has separate debug info, and we
2345 haven't loaded it already, do so now. */
2346 if (debug_file
2347 && ! objfile->separate_debug_objfile)
2348 {
2349 /* Use the same section offset table as objfile itself.
2350 Preserve the flags from objfile that make sense. */
2351 objfile->separate_debug_objfile
2352 = (symbol_file_add_with_addrs_or_offsets
2353 (symfile_bfd_open (debug_file),
2354 info_verbose, /* from_tty: Don't override the default. */
2355 0, /* No addr table. */
2356 objfile->section_offsets, objfile->num_sections,
2357 0, /* Not mainline. See comments about this above. */
2358 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2359 | OBJF_USERLOADED)));
2360 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2361 = objfile;
2362 }
2363 }
2364
2365
2366 \f
2367
2368
2369 typedef struct
2370 {
2371 char *ext;
2372 enum language lang;
2373 }
2374 filename_language;
2375
2376 static filename_language *filename_language_table;
2377 static int fl_table_size, fl_table_next;
2378
2379 static void
2380 add_filename_language (char *ext, enum language lang)
2381 {
2382 if (fl_table_next >= fl_table_size)
2383 {
2384 fl_table_size += 10;
2385 filename_language_table =
2386 xrealloc (filename_language_table,
2387 fl_table_size * sizeof (*filename_language_table));
2388 }
2389
2390 filename_language_table[fl_table_next].ext = xstrdup (ext);
2391 filename_language_table[fl_table_next].lang = lang;
2392 fl_table_next++;
2393 }
2394
2395 static char *ext_args;
2396 static void
2397 show_ext_args (struct ui_file *file, int from_tty,
2398 struct cmd_list_element *c, const char *value)
2399 {
2400 fprintf_filtered (file, _("\
2401 Mapping between filename extension and source language is \"%s\".\n"),
2402 value);
2403 }
2404
2405 static void
2406 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2407 {
2408 int i;
2409 char *cp = ext_args;
2410 enum language lang;
2411
2412 /* First arg is filename extension, starting with '.' */
2413 if (*cp != '.')
2414 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2415
2416 /* Find end of first arg. */
2417 while (*cp && !isspace (*cp))
2418 cp++;
2419
2420 if (*cp == '\0')
2421 error (_("'%s': two arguments required -- filename extension and language"),
2422 ext_args);
2423
2424 /* Null-terminate first arg */
2425 *cp++ = '\0';
2426
2427 /* Find beginning of second arg, which should be a source language. */
2428 while (*cp && isspace (*cp))
2429 cp++;
2430
2431 if (*cp == '\0')
2432 error (_("'%s': two arguments required -- filename extension and language"),
2433 ext_args);
2434
2435 /* Lookup the language from among those we know. */
2436 lang = language_enum (cp);
2437
2438 /* Now lookup the filename extension: do we already know it? */
2439 for (i = 0; i < fl_table_next; i++)
2440 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2441 break;
2442
2443 if (i >= fl_table_next)
2444 {
2445 /* new file extension */
2446 add_filename_language (ext_args, lang);
2447 }
2448 else
2449 {
2450 /* redefining a previously known filename extension */
2451
2452 /* if (from_tty) */
2453 /* query ("Really make files of type %s '%s'?", */
2454 /* ext_args, language_str (lang)); */
2455
2456 xfree (filename_language_table[i].ext);
2457 filename_language_table[i].ext = xstrdup (ext_args);
2458 filename_language_table[i].lang = lang;
2459 }
2460 }
2461
2462 static void
2463 info_ext_lang_command (char *args, int from_tty)
2464 {
2465 int i;
2466
2467 printf_filtered (_("Filename extensions and the languages they represent:"));
2468 printf_filtered ("\n\n");
2469 for (i = 0; i < fl_table_next; i++)
2470 printf_filtered ("\t%s\t- %s\n",
2471 filename_language_table[i].ext,
2472 language_str (filename_language_table[i].lang));
2473 }
2474
2475 static void
2476 init_filename_language_table (void)
2477 {
2478 if (fl_table_size == 0) /* protect against repetition */
2479 {
2480 fl_table_size = 20;
2481 fl_table_next = 0;
2482 filename_language_table =
2483 xmalloc (fl_table_size * sizeof (*filename_language_table));
2484 add_filename_language (".c", language_c);
2485 add_filename_language (".C", language_cplus);
2486 add_filename_language (".cc", language_cplus);
2487 add_filename_language (".cp", language_cplus);
2488 add_filename_language (".cpp", language_cplus);
2489 add_filename_language (".cxx", language_cplus);
2490 add_filename_language (".c++", language_cplus);
2491 add_filename_language (".java", language_java);
2492 add_filename_language (".class", language_java);
2493 add_filename_language (".m", language_objc);
2494 add_filename_language (".f", language_fortran);
2495 add_filename_language (".F", language_fortran);
2496 add_filename_language (".s", language_asm);
2497 add_filename_language (".S", language_asm);
2498 add_filename_language (".pas", language_pascal);
2499 add_filename_language (".p", language_pascal);
2500 add_filename_language (".pp", language_pascal);
2501 add_filename_language (".adb", language_ada);
2502 add_filename_language (".ads", language_ada);
2503 add_filename_language (".a", language_ada);
2504 add_filename_language (".ada", language_ada);
2505 }
2506 }
2507
2508 enum language
2509 deduce_language_from_filename (char *filename)
2510 {
2511 int i;
2512 char *cp;
2513
2514 if (filename != NULL)
2515 if ((cp = strrchr (filename, '.')) != NULL)
2516 for (i = 0; i < fl_table_next; i++)
2517 if (strcmp (cp, filename_language_table[i].ext) == 0)
2518 return filename_language_table[i].lang;
2519
2520 return language_unknown;
2521 }
2522 \f
2523 /* allocate_symtab:
2524
2525 Allocate and partly initialize a new symbol table. Return a pointer
2526 to it. error() if no space.
2527
2528 Caller must set these fields:
2529 LINETABLE(symtab)
2530 symtab->blockvector
2531 symtab->dirname
2532 symtab->free_code
2533 symtab->free_ptr
2534 possibly free_named_symtabs (symtab->filename);
2535 */
2536
2537 struct symtab *
2538 allocate_symtab (char *filename, struct objfile *objfile)
2539 {
2540 struct symtab *symtab;
2541
2542 symtab = (struct symtab *)
2543 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2544 memset (symtab, 0, sizeof (*symtab));
2545 symtab->filename = obsavestring (filename, strlen (filename),
2546 &objfile->objfile_obstack);
2547 symtab->fullname = NULL;
2548 symtab->language = deduce_language_from_filename (filename);
2549 symtab->debugformat = obsavestring ("unknown", 7,
2550 &objfile->objfile_obstack);
2551
2552 /* Hook it to the objfile it comes from */
2553
2554 symtab->objfile = objfile;
2555 symtab->next = objfile->symtabs;
2556 objfile->symtabs = symtab;
2557
2558 return (symtab);
2559 }
2560
2561 struct partial_symtab *
2562 allocate_psymtab (char *filename, struct objfile *objfile)
2563 {
2564 struct partial_symtab *psymtab;
2565
2566 if (objfile->free_psymtabs)
2567 {
2568 psymtab = objfile->free_psymtabs;
2569 objfile->free_psymtabs = psymtab->next;
2570 }
2571 else
2572 psymtab = (struct partial_symtab *)
2573 obstack_alloc (&objfile->objfile_obstack,
2574 sizeof (struct partial_symtab));
2575
2576 memset (psymtab, 0, sizeof (struct partial_symtab));
2577 psymtab->filename = obsavestring (filename, strlen (filename),
2578 &objfile->objfile_obstack);
2579 psymtab->symtab = NULL;
2580
2581 /* Prepend it to the psymtab list for the objfile it belongs to.
2582 Psymtabs are searched in most recent inserted -> least recent
2583 inserted order. */
2584
2585 psymtab->objfile = objfile;
2586 psymtab->next = objfile->psymtabs;
2587 objfile->psymtabs = psymtab;
2588 #if 0
2589 {
2590 struct partial_symtab **prev_pst;
2591 psymtab->objfile = objfile;
2592 psymtab->next = NULL;
2593 prev_pst = &(objfile->psymtabs);
2594 while ((*prev_pst) != NULL)
2595 prev_pst = &((*prev_pst)->next);
2596 (*prev_pst) = psymtab;
2597 }
2598 #endif
2599
2600 return (psymtab);
2601 }
2602
2603 void
2604 discard_psymtab (struct partial_symtab *pst)
2605 {
2606 struct partial_symtab **prev_pst;
2607
2608 /* From dbxread.c:
2609 Empty psymtabs happen as a result of header files which don't
2610 have any symbols in them. There can be a lot of them. But this
2611 check is wrong, in that a psymtab with N_SLINE entries but
2612 nothing else is not empty, but we don't realize that. Fixing
2613 that without slowing things down might be tricky. */
2614
2615 /* First, snip it out of the psymtab chain */
2616
2617 prev_pst = &(pst->objfile->psymtabs);
2618 while ((*prev_pst) != pst)
2619 prev_pst = &((*prev_pst)->next);
2620 (*prev_pst) = pst->next;
2621
2622 /* Next, put it on a free list for recycling */
2623
2624 pst->next = pst->objfile->free_psymtabs;
2625 pst->objfile->free_psymtabs = pst;
2626 }
2627 \f
2628
2629 /* Reset all data structures in gdb which may contain references to symbol
2630 table data. */
2631
2632 void
2633 clear_symtab_users (void)
2634 {
2635 /* Someday, we should do better than this, by only blowing away
2636 the things that really need to be blown. */
2637
2638 /* Clear the "current" symtab first, because it is no longer valid.
2639 breakpoint_re_set may try to access the current symtab. */
2640 clear_current_source_symtab_and_line ();
2641
2642 clear_displays ();
2643 breakpoint_re_set ();
2644 set_default_breakpoint (0, 0, 0, 0);
2645 clear_pc_function_cache ();
2646 if (deprecated_target_new_objfile_hook)
2647 deprecated_target_new_objfile_hook (NULL);
2648
2649 /* Clear globals which might have pointed into a removed objfile.
2650 FIXME: It's not clear which of these are supposed to persist
2651 between expressions and which ought to be reset each time. */
2652 expression_context_block = NULL;
2653 innermost_block = NULL;
2654
2655 /* Varobj may refer to old symbols, perform a cleanup. */
2656 varobj_invalidate ();
2657
2658 }
2659
2660 static void
2661 clear_symtab_users_cleanup (void *ignore)
2662 {
2663 clear_symtab_users ();
2664 }
2665
2666 /* clear_symtab_users_once:
2667
2668 This function is run after symbol reading, or from a cleanup.
2669 If an old symbol table was obsoleted, the old symbol table
2670 has been blown away, but the other GDB data structures that may
2671 reference it have not yet been cleared or re-directed. (The old
2672 symtab was zapped, and the cleanup queued, in free_named_symtab()
2673 below.)
2674
2675 This function can be queued N times as a cleanup, or called
2676 directly; it will do all the work the first time, and then will be a
2677 no-op until the next time it is queued. This works by bumping a
2678 counter at queueing time. Much later when the cleanup is run, or at
2679 the end of symbol processing (in case the cleanup is discarded), if
2680 the queued count is greater than the "done-count", we do the work
2681 and set the done-count to the queued count. If the queued count is
2682 less than or equal to the done-count, we just ignore the call. This
2683 is needed because reading a single .o file will often replace many
2684 symtabs (one per .h file, for example), and we don't want to reset
2685 the breakpoints N times in the user's face.
2686
2687 The reason we both queue a cleanup, and call it directly after symbol
2688 reading, is because the cleanup protects us in case of errors, but is
2689 discarded if symbol reading is successful. */
2690
2691 #if 0
2692 /* FIXME: As free_named_symtabs is currently a big noop this function
2693 is no longer needed. */
2694 static void clear_symtab_users_once (void);
2695
2696 static int clear_symtab_users_queued;
2697 static int clear_symtab_users_done;
2698
2699 static void
2700 clear_symtab_users_once (void)
2701 {
2702 /* Enforce once-per-`do_cleanups'-semantics */
2703 if (clear_symtab_users_queued <= clear_symtab_users_done)
2704 return;
2705 clear_symtab_users_done = clear_symtab_users_queued;
2706
2707 clear_symtab_users ();
2708 }
2709 #endif
2710
2711 /* Delete the specified psymtab, and any others that reference it. */
2712
2713 static void
2714 cashier_psymtab (struct partial_symtab *pst)
2715 {
2716 struct partial_symtab *ps, *pprev = NULL;
2717 int i;
2718
2719 /* Find its previous psymtab in the chain */
2720 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2721 {
2722 if (ps == pst)
2723 break;
2724 pprev = ps;
2725 }
2726
2727 if (ps)
2728 {
2729 /* Unhook it from the chain. */
2730 if (ps == pst->objfile->psymtabs)
2731 pst->objfile->psymtabs = ps->next;
2732 else
2733 pprev->next = ps->next;
2734
2735 /* FIXME, we can't conveniently deallocate the entries in the
2736 partial_symbol lists (global_psymbols/static_psymbols) that
2737 this psymtab points to. These just take up space until all
2738 the psymtabs are reclaimed. Ditto the dependencies list and
2739 filename, which are all in the objfile_obstack. */
2740
2741 /* We need to cashier any psymtab that has this one as a dependency... */
2742 again:
2743 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2744 {
2745 for (i = 0; i < ps->number_of_dependencies; i++)
2746 {
2747 if (ps->dependencies[i] == pst)
2748 {
2749 cashier_psymtab (ps);
2750 goto again; /* Must restart, chain has been munged. */
2751 }
2752 }
2753 }
2754 }
2755 }
2756
2757 /* If a symtab or psymtab for filename NAME is found, free it along
2758 with any dependent breakpoints, displays, etc.
2759 Used when loading new versions of object modules with the "add-file"
2760 command. This is only called on the top-level symtab or psymtab's name;
2761 it is not called for subsidiary files such as .h files.
2762
2763 Return value is 1 if we blew away the environment, 0 if not.
2764 FIXME. The return value appears to never be used.
2765
2766 FIXME. I think this is not the best way to do this. We should
2767 work on being gentler to the environment while still cleaning up
2768 all stray pointers into the freed symtab. */
2769
2770 int
2771 free_named_symtabs (char *name)
2772 {
2773 #if 0
2774 /* FIXME: With the new method of each objfile having it's own
2775 psymtab list, this function needs serious rethinking. In particular,
2776 why was it ever necessary to toss psymtabs with specific compilation
2777 unit filenames, as opposed to all psymtabs from a particular symbol
2778 file? -- fnf
2779 Well, the answer is that some systems permit reloading of particular
2780 compilation units. We want to blow away any old info about these
2781 compilation units, regardless of which objfiles they arrived in. --gnu. */
2782
2783 struct symtab *s;
2784 struct symtab *prev;
2785 struct partial_symtab *ps;
2786 struct blockvector *bv;
2787 int blewit = 0;
2788
2789 /* We only wack things if the symbol-reload switch is set. */
2790 if (!symbol_reloading)
2791 return 0;
2792
2793 /* Some symbol formats have trouble providing file names... */
2794 if (name == 0 || *name == '\0')
2795 return 0;
2796
2797 /* Look for a psymtab with the specified name. */
2798
2799 again2:
2800 for (ps = partial_symtab_list; ps; ps = ps->next)
2801 {
2802 if (strcmp (name, ps->filename) == 0)
2803 {
2804 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2805 goto again2; /* Must restart, chain has been munged */
2806 }
2807 }
2808
2809 /* Look for a symtab with the specified name. */
2810
2811 for (s = symtab_list; s; s = s->next)
2812 {
2813 if (strcmp (name, s->filename) == 0)
2814 break;
2815 prev = s;
2816 }
2817
2818 if (s)
2819 {
2820 if (s == symtab_list)
2821 symtab_list = s->next;
2822 else
2823 prev->next = s->next;
2824
2825 /* For now, queue a delete for all breakpoints, displays, etc., whether
2826 or not they depend on the symtab being freed. This should be
2827 changed so that only those data structures affected are deleted. */
2828
2829 /* But don't delete anything if the symtab is empty.
2830 This test is necessary due to a bug in "dbxread.c" that
2831 causes empty symtabs to be created for N_SO symbols that
2832 contain the pathname of the object file. (This problem
2833 has been fixed in GDB 3.9x). */
2834
2835 bv = BLOCKVECTOR (s);
2836 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2837 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2838 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2839 {
2840 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2841 name);
2842 clear_symtab_users_queued++;
2843 make_cleanup (clear_symtab_users_once, 0);
2844 blewit = 1;
2845 }
2846 else
2847 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2848 name);
2849
2850 free_symtab (s);
2851 }
2852 else
2853 {
2854 /* It is still possible that some breakpoints will be affected
2855 even though no symtab was found, since the file might have
2856 been compiled without debugging, and hence not be associated
2857 with a symtab. In order to handle this correctly, we would need
2858 to keep a list of text address ranges for undebuggable files.
2859 For now, we do nothing, since this is a fairly obscure case. */
2860 ;
2861 }
2862
2863 /* FIXME, what about the minimal symbol table? */
2864 return blewit;
2865 #else
2866 return (0);
2867 #endif
2868 }
2869 \f
2870 /* Allocate and partially fill a partial symtab. It will be
2871 completely filled at the end of the symbol list.
2872
2873 FILENAME is the name of the symbol-file we are reading from. */
2874
2875 struct partial_symtab *
2876 start_psymtab_common (struct objfile *objfile,
2877 struct section_offsets *section_offsets, char *filename,
2878 CORE_ADDR textlow, struct partial_symbol **global_syms,
2879 struct partial_symbol **static_syms)
2880 {
2881 struct partial_symtab *psymtab;
2882
2883 psymtab = allocate_psymtab (filename, objfile);
2884 psymtab->section_offsets = section_offsets;
2885 psymtab->textlow = textlow;
2886 psymtab->texthigh = psymtab->textlow; /* default */
2887 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2888 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2889 return (psymtab);
2890 }
2891 \f
2892 /* Add a symbol with a long value to a psymtab.
2893 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2894 Return the partial symbol that has been added. */
2895
2896 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2897 symbol is so that callers can get access to the symbol's demangled
2898 name, which they don't have any cheap way to determine otherwise.
2899 (Currenly, dwarf2read.c is the only file who uses that information,
2900 though it's possible that other readers might in the future.)
2901 Elena wasn't thrilled about that, and I don't blame her, but we
2902 couldn't come up with a better way to get that information. If
2903 it's needed in other situations, we could consider breaking up
2904 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2905 cache. */
2906
2907 const struct partial_symbol *
2908 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2909 enum address_class class,
2910 struct psymbol_allocation_list *list, long val, /* Value as a long */
2911 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2912 enum language language, struct objfile *objfile)
2913 {
2914 struct partial_symbol *psym;
2915 char *buf = alloca (namelength + 1);
2916 /* psymbol is static so that there will be no uninitialized gaps in the
2917 structure which might contain random data, causing cache misses in
2918 bcache. */
2919 static struct partial_symbol psymbol;
2920
2921 /* Create local copy of the partial symbol */
2922 memcpy (buf, name, namelength);
2923 buf[namelength] = '\0';
2924 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2925 if (val != 0)
2926 {
2927 SYMBOL_VALUE (&psymbol) = val;
2928 }
2929 else
2930 {
2931 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2932 }
2933 SYMBOL_SECTION (&psymbol) = 0;
2934 SYMBOL_LANGUAGE (&psymbol) = language;
2935 PSYMBOL_DOMAIN (&psymbol) = domain;
2936 PSYMBOL_CLASS (&psymbol) = class;
2937
2938 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2939
2940 /* Stash the partial symbol away in the cache */
2941 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2942 objfile->psymbol_cache);
2943
2944 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2945 if (list->next >= list->list + list->size)
2946 {
2947 extend_psymbol_list (list, objfile);
2948 }
2949 *list->next++ = psym;
2950 OBJSTAT (objfile, n_psyms++);
2951
2952 return psym;
2953 }
2954
2955 /* Add a symbol with a long value to a psymtab. This differs from
2956 * add_psymbol_to_list above in taking both a mangled and a demangled
2957 * name. */
2958
2959 void
2960 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2961 int dem_namelength, domain_enum domain,
2962 enum address_class class,
2963 struct psymbol_allocation_list *list, long val, /* Value as a long */
2964 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2965 enum language language,
2966 struct objfile *objfile)
2967 {
2968 struct partial_symbol *psym;
2969 char *buf = alloca (namelength + 1);
2970 /* psymbol is static so that there will be no uninitialized gaps in the
2971 structure which might contain random data, causing cache misses in
2972 bcache. */
2973 static struct partial_symbol psymbol;
2974
2975 /* Create local copy of the partial symbol */
2976
2977 memcpy (buf, name, namelength);
2978 buf[namelength] = '\0';
2979 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2980 objfile->psymbol_cache);
2981
2982 buf = alloca (dem_namelength + 1);
2983 memcpy (buf, dem_name, dem_namelength);
2984 buf[dem_namelength] = '\0';
2985
2986 switch (language)
2987 {
2988 case language_c:
2989 case language_cplus:
2990 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2991 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2992 break;
2993 /* FIXME What should be done for the default case? Ignoring for now. */
2994 }
2995
2996 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2997 if (val != 0)
2998 {
2999 SYMBOL_VALUE (&psymbol) = val;
3000 }
3001 else
3002 {
3003 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3004 }
3005 SYMBOL_SECTION (&psymbol) = 0;
3006 SYMBOL_LANGUAGE (&psymbol) = language;
3007 PSYMBOL_DOMAIN (&psymbol) = domain;
3008 PSYMBOL_CLASS (&psymbol) = class;
3009 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
3010
3011 /* Stash the partial symbol away in the cache */
3012 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3013 objfile->psymbol_cache);
3014
3015 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3016 if (list->next >= list->list + list->size)
3017 {
3018 extend_psymbol_list (list, objfile);
3019 }
3020 *list->next++ = psym;
3021 OBJSTAT (objfile, n_psyms++);
3022 }
3023
3024 /* Initialize storage for partial symbols. */
3025
3026 void
3027 init_psymbol_list (struct objfile *objfile, int total_symbols)
3028 {
3029 /* Free any previously allocated psymbol lists. */
3030
3031 if (objfile->global_psymbols.list)
3032 {
3033 xfree (objfile->global_psymbols.list);
3034 }
3035 if (objfile->static_psymbols.list)
3036 {
3037 xfree (objfile->static_psymbols.list);
3038 }
3039
3040 /* Current best guess is that approximately a twentieth
3041 of the total symbols (in a debugging file) are global or static
3042 oriented symbols */
3043
3044 objfile->global_psymbols.size = total_symbols / 10;
3045 objfile->static_psymbols.size = total_symbols / 10;
3046
3047 if (objfile->global_psymbols.size > 0)
3048 {
3049 objfile->global_psymbols.next =
3050 objfile->global_psymbols.list = (struct partial_symbol **)
3051 xmalloc ((objfile->global_psymbols.size
3052 * sizeof (struct partial_symbol *)));
3053 }
3054 if (objfile->static_psymbols.size > 0)
3055 {
3056 objfile->static_psymbols.next =
3057 objfile->static_psymbols.list = (struct partial_symbol **)
3058 xmalloc ((objfile->static_psymbols.size
3059 * sizeof (struct partial_symbol *)));
3060 }
3061 }
3062
3063 /* OVERLAYS:
3064 The following code implements an abstraction for debugging overlay sections.
3065
3066 The target model is as follows:
3067 1) The gnu linker will permit multiple sections to be mapped into the
3068 same VMA, each with its own unique LMA (or load address).
3069 2) It is assumed that some runtime mechanism exists for mapping the
3070 sections, one by one, from the load address into the VMA address.
3071 3) This code provides a mechanism for gdb to keep track of which
3072 sections should be considered to be mapped from the VMA to the LMA.
3073 This information is used for symbol lookup, and memory read/write.
3074 For instance, if a section has been mapped then its contents
3075 should be read from the VMA, otherwise from the LMA.
3076
3077 Two levels of debugger support for overlays are available. One is
3078 "manual", in which the debugger relies on the user to tell it which
3079 overlays are currently mapped. This level of support is
3080 implemented entirely in the core debugger, and the information about
3081 whether a section is mapped is kept in the objfile->obj_section table.
3082
3083 The second level of support is "automatic", and is only available if
3084 the target-specific code provides functionality to read the target's
3085 overlay mapping table, and translate its contents for the debugger
3086 (by updating the mapped state information in the obj_section tables).
3087
3088 The interface is as follows:
3089 User commands:
3090 overlay map <name> -- tell gdb to consider this section mapped
3091 overlay unmap <name> -- tell gdb to consider this section unmapped
3092 overlay list -- list the sections that GDB thinks are mapped
3093 overlay read-target -- get the target's state of what's mapped
3094 overlay off/manual/auto -- set overlay debugging state
3095 Functional interface:
3096 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3097 section, return that section.
3098 find_pc_overlay(pc): find any overlay section that contains
3099 the pc, either in its VMA or its LMA
3100 overlay_is_mapped(sect): true if overlay is marked as mapped
3101 section_is_overlay(sect): true if section's VMA != LMA
3102 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3103 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3104 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3105 overlay_mapped_address(...): map an address from section's LMA to VMA
3106 overlay_unmapped_address(...): map an address from section's VMA to LMA
3107 symbol_overlayed_address(...): Return a "current" address for symbol:
3108 either in VMA or LMA depending on whether
3109 the symbol's section is currently mapped
3110 */
3111
3112 /* Overlay debugging state: */
3113
3114 enum overlay_debugging_state overlay_debugging = ovly_off;
3115 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3116
3117 /* Target vector for refreshing overlay mapped state */
3118 static void simple_overlay_update (struct obj_section *);
3119 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
3120
3121 /* Function: section_is_overlay (SECTION)
3122 Returns true if SECTION has VMA not equal to LMA, ie.
3123 SECTION is loaded at an address different from where it will "run". */
3124
3125 int
3126 section_is_overlay (asection *section)
3127 {
3128 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3129
3130 if (overlay_debugging)
3131 if (section && section->lma != 0 &&
3132 section->vma != section->lma)
3133 return 1;
3134
3135 return 0;
3136 }
3137
3138 /* Function: overlay_invalidate_all (void)
3139 Invalidate the mapped state of all overlay sections (mark it as stale). */
3140
3141 static void
3142 overlay_invalidate_all (void)
3143 {
3144 struct objfile *objfile;
3145 struct obj_section *sect;
3146
3147 ALL_OBJSECTIONS (objfile, sect)
3148 if (section_is_overlay (sect->the_bfd_section))
3149 sect->ovly_mapped = -1;
3150 }
3151
3152 /* Function: overlay_is_mapped (SECTION)
3153 Returns true if section is an overlay, and is currently mapped.
3154 Private: public access is thru function section_is_mapped.
3155
3156 Access to the ovly_mapped flag is restricted to this function, so
3157 that we can do automatic update. If the global flag
3158 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3159 overlay_invalidate_all. If the mapped state of the particular
3160 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3161
3162 static int
3163 overlay_is_mapped (struct obj_section *osect)
3164 {
3165 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3166 return 0;
3167
3168 switch (overlay_debugging)
3169 {
3170 default:
3171 case ovly_off:
3172 return 0; /* overlay debugging off */
3173 case ovly_auto: /* overlay debugging automatic */
3174 /* Unles there is a target_overlay_update function,
3175 there's really nothing useful to do here (can't really go auto) */
3176 if (target_overlay_update)
3177 {
3178 if (overlay_cache_invalid)
3179 {
3180 overlay_invalidate_all ();
3181 overlay_cache_invalid = 0;
3182 }
3183 if (osect->ovly_mapped == -1)
3184 (*target_overlay_update) (osect);
3185 }
3186 /* fall thru to manual case */
3187 case ovly_on: /* overlay debugging manual */
3188 return osect->ovly_mapped == 1;
3189 }
3190 }
3191
3192 /* Function: section_is_mapped
3193 Returns true if section is an overlay, and is currently mapped. */
3194
3195 int
3196 section_is_mapped (asection *section)
3197 {
3198 struct objfile *objfile;
3199 struct obj_section *osect;
3200
3201 if (overlay_debugging)
3202 if (section && section_is_overlay (section))
3203 ALL_OBJSECTIONS (objfile, osect)
3204 if (osect->the_bfd_section == section)
3205 return overlay_is_mapped (osect);
3206
3207 return 0;
3208 }
3209
3210 /* Function: pc_in_unmapped_range
3211 If PC falls into the lma range of SECTION, return true, else false. */
3212
3213 CORE_ADDR
3214 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3215 {
3216 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3217
3218 int size;
3219
3220 if (overlay_debugging)
3221 if (section && section_is_overlay (section))
3222 {
3223 size = bfd_get_section_size (section);
3224 if (section->lma <= pc && pc < section->lma + size)
3225 return 1;
3226 }
3227 return 0;
3228 }
3229
3230 /* Function: pc_in_mapped_range
3231 If PC falls into the vma range of SECTION, return true, else false. */
3232
3233 CORE_ADDR
3234 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3235 {
3236 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3237
3238 int size;
3239
3240 if (overlay_debugging)
3241 if (section && section_is_overlay (section))
3242 {
3243 size = bfd_get_section_size (section);
3244 if (section->vma <= pc && pc < section->vma + size)
3245 return 1;
3246 }
3247 return 0;
3248 }
3249
3250
3251 /* Return true if the mapped ranges of sections A and B overlap, false
3252 otherwise. */
3253 static int
3254 sections_overlap (asection *a, asection *b)
3255 {
3256 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3257
3258 CORE_ADDR a_start = a->vma;
3259 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3260 CORE_ADDR b_start = b->vma;
3261 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3262
3263 return (a_start < b_end && b_start < a_end);
3264 }
3265
3266 /* Function: overlay_unmapped_address (PC, SECTION)
3267 Returns the address corresponding to PC in the unmapped (load) range.
3268 May be the same as PC. */
3269
3270 CORE_ADDR
3271 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3272 {
3273 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3274
3275 if (overlay_debugging)
3276 if (section && section_is_overlay (section) &&
3277 pc_in_mapped_range (pc, section))
3278 return pc + section->lma - section->vma;
3279
3280 return pc;
3281 }
3282
3283 /* Function: overlay_mapped_address (PC, SECTION)
3284 Returns the address corresponding to PC in the mapped (runtime) range.
3285 May be the same as PC. */
3286
3287 CORE_ADDR
3288 overlay_mapped_address (CORE_ADDR pc, asection *section)
3289 {
3290 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3291
3292 if (overlay_debugging)
3293 if (section && section_is_overlay (section) &&
3294 pc_in_unmapped_range (pc, section))
3295 return pc + section->vma - section->lma;
3296
3297 return pc;
3298 }
3299
3300
3301 /* Function: symbol_overlayed_address
3302 Return one of two addresses (relative to the VMA or to the LMA),
3303 depending on whether the section is mapped or not. */
3304
3305 CORE_ADDR
3306 symbol_overlayed_address (CORE_ADDR address, asection *section)
3307 {
3308 if (overlay_debugging)
3309 {
3310 /* If the symbol has no section, just return its regular address. */
3311 if (section == 0)
3312 return address;
3313 /* If the symbol's section is not an overlay, just return its address */
3314 if (!section_is_overlay (section))
3315 return address;
3316 /* If the symbol's section is mapped, just return its address */
3317 if (section_is_mapped (section))
3318 return address;
3319 /*
3320 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3321 * then return its LOADED address rather than its vma address!!
3322 */
3323 return overlay_unmapped_address (address, section);
3324 }
3325 return address;
3326 }
3327
3328 /* Function: find_pc_overlay (PC)
3329 Return the best-match overlay section for PC:
3330 If PC matches a mapped overlay section's VMA, return that section.
3331 Else if PC matches an unmapped section's VMA, return that section.
3332 Else if PC matches an unmapped section's LMA, return that section. */
3333
3334 asection *
3335 find_pc_overlay (CORE_ADDR pc)
3336 {
3337 struct objfile *objfile;
3338 struct obj_section *osect, *best_match = NULL;
3339
3340 if (overlay_debugging)
3341 ALL_OBJSECTIONS (objfile, osect)
3342 if (section_is_overlay (osect->the_bfd_section))
3343 {
3344 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3345 {
3346 if (overlay_is_mapped (osect))
3347 return osect->the_bfd_section;
3348 else
3349 best_match = osect;
3350 }
3351 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3352 best_match = osect;
3353 }
3354 return best_match ? best_match->the_bfd_section : NULL;
3355 }
3356
3357 /* Function: find_pc_mapped_section (PC)
3358 If PC falls into the VMA address range of an overlay section that is
3359 currently marked as MAPPED, return that section. Else return NULL. */
3360
3361 asection *
3362 find_pc_mapped_section (CORE_ADDR pc)
3363 {
3364 struct objfile *objfile;
3365 struct obj_section *osect;
3366
3367 if (overlay_debugging)
3368 ALL_OBJSECTIONS (objfile, osect)
3369 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3370 overlay_is_mapped (osect))
3371 return osect->the_bfd_section;
3372
3373 return NULL;
3374 }
3375
3376 /* Function: list_overlays_command
3377 Print a list of mapped sections and their PC ranges */
3378
3379 void
3380 list_overlays_command (char *args, int from_tty)
3381 {
3382 int nmapped = 0;
3383 struct objfile *objfile;
3384 struct obj_section *osect;
3385
3386 if (overlay_debugging)
3387 ALL_OBJSECTIONS (objfile, osect)
3388 if (overlay_is_mapped (osect))
3389 {
3390 const char *name;
3391 bfd_vma lma, vma;
3392 int size;
3393
3394 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3395 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3396 size = bfd_get_section_size (osect->the_bfd_section);
3397 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3398
3399 printf_filtered ("Section %s, loaded at ", name);
3400 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3401 puts_filtered (" - ");
3402 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3403 printf_filtered (", mapped at ");
3404 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3405 puts_filtered (" - ");
3406 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3407 puts_filtered ("\n");
3408
3409 nmapped++;
3410 }
3411 if (nmapped == 0)
3412 printf_filtered (_("No sections are mapped.\n"));
3413 }
3414
3415 /* Function: map_overlay_command
3416 Mark the named section as mapped (ie. residing at its VMA address). */
3417
3418 void
3419 map_overlay_command (char *args, int from_tty)
3420 {
3421 struct objfile *objfile, *objfile2;
3422 struct obj_section *sec, *sec2;
3423 asection *bfdsec;
3424
3425 if (!overlay_debugging)
3426 error (_("\
3427 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3428 the 'overlay manual' command."));
3429
3430 if (args == 0 || *args == 0)
3431 error (_("Argument required: name of an overlay section"));
3432
3433 /* First, find a section matching the user supplied argument */
3434 ALL_OBJSECTIONS (objfile, sec)
3435 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3436 {
3437 /* Now, check to see if the section is an overlay. */
3438 bfdsec = sec->the_bfd_section;
3439 if (!section_is_overlay (bfdsec))
3440 continue; /* not an overlay section */
3441
3442 /* Mark the overlay as "mapped" */
3443 sec->ovly_mapped = 1;
3444
3445 /* Next, make a pass and unmap any sections that are
3446 overlapped by this new section: */
3447 ALL_OBJSECTIONS (objfile2, sec2)
3448 if (sec2->ovly_mapped
3449 && sec != sec2
3450 && sec->the_bfd_section != sec2->the_bfd_section
3451 && sections_overlap (sec->the_bfd_section,
3452 sec2->the_bfd_section))
3453 {
3454 if (info_verbose)
3455 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3456 bfd_section_name (objfile->obfd,
3457 sec2->the_bfd_section));
3458 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3459 }
3460 return;
3461 }
3462 error (_("No overlay section called %s"), args);
3463 }
3464
3465 /* Function: unmap_overlay_command
3466 Mark the overlay section as unmapped
3467 (ie. resident in its LMA address range, rather than the VMA range). */
3468
3469 void
3470 unmap_overlay_command (char *args, int from_tty)
3471 {
3472 struct objfile *objfile;
3473 struct obj_section *sec;
3474
3475 if (!overlay_debugging)
3476 error (_("\
3477 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3478 the 'overlay manual' command."));
3479
3480 if (args == 0 || *args == 0)
3481 error (_("Argument required: name of an overlay section"));
3482
3483 /* First, find a section matching the user supplied argument */
3484 ALL_OBJSECTIONS (objfile, sec)
3485 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3486 {
3487 if (!sec->ovly_mapped)
3488 error (_("Section %s is not mapped"), args);
3489 sec->ovly_mapped = 0;
3490 return;
3491 }
3492 error (_("No overlay section called %s"), args);
3493 }
3494
3495 /* Function: overlay_auto_command
3496 A utility command to turn on overlay debugging.
3497 Possibly this should be done via a set/show command. */
3498
3499 static void
3500 overlay_auto_command (char *args, int from_tty)
3501 {
3502 overlay_debugging = ovly_auto;
3503 enable_overlay_breakpoints ();
3504 if (info_verbose)
3505 printf_unfiltered (_("Automatic overlay debugging enabled."));
3506 }
3507
3508 /* Function: overlay_manual_command
3509 A utility command to turn on overlay debugging.
3510 Possibly this should be done via a set/show command. */
3511
3512 static void
3513 overlay_manual_command (char *args, int from_tty)
3514 {
3515 overlay_debugging = ovly_on;
3516 disable_overlay_breakpoints ();
3517 if (info_verbose)
3518 printf_unfiltered (_("Overlay debugging enabled."));
3519 }
3520
3521 /* Function: overlay_off_command
3522 A utility command to turn on overlay debugging.
3523 Possibly this should be done via a set/show command. */
3524
3525 static void
3526 overlay_off_command (char *args, int from_tty)
3527 {
3528 overlay_debugging = ovly_off;
3529 disable_overlay_breakpoints ();
3530 if (info_verbose)
3531 printf_unfiltered (_("Overlay debugging disabled."));
3532 }
3533
3534 static void
3535 overlay_load_command (char *args, int from_tty)
3536 {
3537 if (target_overlay_update)
3538 (*target_overlay_update) (NULL);
3539 else
3540 error (_("This target does not know how to read its overlay state."));
3541 }
3542
3543 /* Function: overlay_command
3544 A place-holder for a mis-typed command */
3545
3546 /* Command list chain containing all defined "overlay" subcommands. */
3547 struct cmd_list_element *overlaylist;
3548
3549 static void
3550 overlay_command (char *args, int from_tty)
3551 {
3552 printf_unfiltered
3553 ("\"overlay\" must be followed by the name of an overlay command.\n");
3554 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3555 }
3556
3557
3558 /* Target Overlays for the "Simplest" overlay manager:
3559
3560 This is GDB's default target overlay layer. It works with the
3561 minimal overlay manager supplied as an example by Cygnus. The
3562 entry point is via a function pointer "target_overlay_update",
3563 so targets that use a different runtime overlay manager can
3564 substitute their own overlay_update function and take over the
3565 function pointer.
3566
3567 The overlay_update function pokes around in the target's data structures
3568 to see what overlays are mapped, and updates GDB's overlay mapping with
3569 this information.
3570
3571 In this simple implementation, the target data structures are as follows:
3572 unsigned _novlys; /# number of overlay sections #/
3573 unsigned _ovly_table[_novlys][4] = {
3574 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3575 {..., ..., ..., ...},
3576 }
3577 unsigned _novly_regions; /# number of overlay regions #/
3578 unsigned _ovly_region_table[_novly_regions][3] = {
3579 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3580 {..., ..., ...},
3581 }
3582 These functions will attempt to update GDB's mappedness state in the
3583 symbol section table, based on the target's mappedness state.
3584
3585 To do this, we keep a cached copy of the target's _ovly_table, and
3586 attempt to detect when the cached copy is invalidated. The main
3587 entry point is "simple_overlay_update(SECT), which looks up SECT in
3588 the cached table and re-reads only the entry for that section from
3589 the target (whenever possible).
3590 */
3591
3592 /* Cached, dynamically allocated copies of the target data structures: */
3593 static unsigned (*cache_ovly_table)[4] = 0;
3594 #if 0
3595 static unsigned (*cache_ovly_region_table)[3] = 0;
3596 #endif
3597 static unsigned cache_novlys = 0;
3598 #if 0
3599 static unsigned cache_novly_regions = 0;
3600 #endif
3601 static CORE_ADDR cache_ovly_table_base = 0;
3602 #if 0
3603 static CORE_ADDR cache_ovly_region_table_base = 0;
3604 #endif
3605 enum ovly_index
3606 {
3607 VMA, SIZE, LMA, MAPPED
3608 };
3609 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3610
3611 /* Throw away the cached copy of _ovly_table */
3612 static void
3613 simple_free_overlay_table (void)
3614 {
3615 if (cache_ovly_table)
3616 xfree (cache_ovly_table);
3617 cache_novlys = 0;
3618 cache_ovly_table = NULL;
3619 cache_ovly_table_base = 0;
3620 }
3621
3622 #if 0
3623 /* Throw away the cached copy of _ovly_region_table */
3624 static void
3625 simple_free_overlay_region_table (void)
3626 {
3627 if (cache_ovly_region_table)
3628 xfree (cache_ovly_region_table);
3629 cache_novly_regions = 0;
3630 cache_ovly_region_table = NULL;
3631 cache_ovly_region_table_base = 0;
3632 }
3633 #endif
3634
3635 /* Read an array of ints from the target into a local buffer.
3636 Convert to host order. int LEN is number of ints */
3637 static void
3638 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3639 {
3640 /* FIXME (alloca): Not safe if array is very large. */
3641 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3642 int i;
3643
3644 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3645 for (i = 0; i < len; i++)
3646 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3647 TARGET_LONG_BYTES);
3648 }
3649
3650 /* Find and grab a copy of the target _ovly_table
3651 (and _novlys, which is needed for the table's size) */
3652 static int
3653 simple_read_overlay_table (void)
3654 {
3655 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3656
3657 simple_free_overlay_table ();
3658 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3659 if (! novlys_msym)
3660 {
3661 error (_("Error reading inferior's overlay table: "
3662 "couldn't find `_novlys' variable\n"
3663 "in inferior. Use `overlay manual' mode."));
3664 return 0;
3665 }
3666
3667 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3668 if (! ovly_table_msym)
3669 {
3670 error (_("Error reading inferior's overlay table: couldn't find "
3671 "`_ovly_table' array\n"
3672 "in inferior. Use `overlay manual' mode."));
3673 return 0;
3674 }
3675
3676 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3677 cache_ovly_table
3678 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3679 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3680 read_target_long_array (cache_ovly_table_base,
3681 (unsigned int *) cache_ovly_table,
3682 cache_novlys * 4);
3683
3684 return 1; /* SUCCESS */
3685 }
3686
3687 #if 0
3688 /* Find and grab a copy of the target _ovly_region_table
3689 (and _novly_regions, which is needed for the table's size) */
3690 static int
3691 simple_read_overlay_region_table (void)
3692 {
3693 struct minimal_symbol *msym;
3694
3695 simple_free_overlay_region_table ();
3696 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3697 if (msym != NULL)
3698 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3699 else
3700 return 0; /* failure */
3701 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3702 if (cache_ovly_region_table != NULL)
3703 {
3704 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3705 if (msym != NULL)
3706 {
3707 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3708 read_target_long_array (cache_ovly_region_table_base,
3709 (unsigned int *) cache_ovly_region_table,
3710 cache_novly_regions * 3);
3711 }
3712 else
3713 return 0; /* failure */
3714 }
3715 else
3716 return 0; /* failure */
3717 return 1; /* SUCCESS */
3718 }
3719 #endif
3720
3721 /* Function: simple_overlay_update_1
3722 A helper function for simple_overlay_update. Assuming a cached copy
3723 of _ovly_table exists, look through it to find an entry whose vma,
3724 lma and size match those of OSECT. Re-read the entry and make sure
3725 it still matches OSECT (else the table may no longer be valid).
3726 Set OSECT's mapped state to match the entry. Return: 1 for
3727 success, 0 for failure. */
3728
3729 static int
3730 simple_overlay_update_1 (struct obj_section *osect)
3731 {
3732 int i, size;
3733 bfd *obfd = osect->objfile->obfd;
3734 asection *bsect = osect->the_bfd_section;
3735
3736 size = bfd_get_section_size (osect->the_bfd_section);
3737 for (i = 0; i < cache_novlys; i++)
3738 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3739 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3740 /* && cache_ovly_table[i][SIZE] == size */ )
3741 {
3742 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3743 (unsigned int *) cache_ovly_table[i], 4);
3744 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3745 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3746 /* && cache_ovly_table[i][SIZE] == size */ )
3747 {
3748 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3749 return 1;
3750 }
3751 else /* Warning! Warning! Target's ovly table has changed! */
3752 return 0;
3753 }
3754 return 0;
3755 }
3756
3757 /* Function: simple_overlay_update
3758 If OSECT is NULL, then update all sections' mapped state
3759 (after re-reading the entire target _ovly_table).
3760 If OSECT is non-NULL, then try to find a matching entry in the
3761 cached ovly_table and update only OSECT's mapped state.
3762 If a cached entry can't be found or the cache isn't valid, then
3763 re-read the entire cache, and go ahead and update all sections. */
3764
3765 static void
3766 simple_overlay_update (struct obj_section *osect)
3767 {
3768 struct objfile *objfile;
3769
3770 /* Were we given an osect to look up? NULL means do all of them. */
3771 if (osect)
3772 /* Have we got a cached copy of the target's overlay table? */
3773 if (cache_ovly_table != NULL)
3774 /* Does its cached location match what's currently in the symtab? */
3775 if (cache_ovly_table_base ==
3776 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3777 /* Then go ahead and try to look up this single section in the cache */
3778 if (simple_overlay_update_1 (osect))
3779 /* Found it! We're done. */
3780 return;
3781
3782 /* Cached table no good: need to read the entire table anew.
3783 Or else we want all the sections, in which case it's actually
3784 more efficient to read the whole table in one block anyway. */
3785
3786 if (! simple_read_overlay_table ())
3787 return;
3788
3789 /* Now may as well update all sections, even if only one was requested. */
3790 ALL_OBJSECTIONS (objfile, osect)
3791 if (section_is_overlay (osect->the_bfd_section))
3792 {
3793 int i, size;
3794 bfd *obfd = osect->objfile->obfd;
3795 asection *bsect = osect->the_bfd_section;
3796
3797 size = bfd_get_section_size (bsect);
3798 for (i = 0; i < cache_novlys; i++)
3799 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3800 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3801 /* && cache_ovly_table[i][SIZE] == size */ )
3802 { /* obj_section matches i'th entry in ovly_table */
3803 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3804 break; /* finished with inner for loop: break out */
3805 }
3806 }
3807 }
3808
3809 /* Set the output sections and output offsets for section SECTP in
3810 ABFD. The relocation code in BFD will read these offsets, so we
3811 need to be sure they're initialized. We map each section to itself,
3812 with no offset; this means that SECTP->vma will be honored. */
3813
3814 static void
3815 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3816 {
3817 sectp->output_section = sectp;
3818 sectp->output_offset = 0;
3819 }
3820
3821 /* Relocate the contents of a debug section SECTP in ABFD. The
3822 contents are stored in BUF if it is non-NULL, or returned in a
3823 malloc'd buffer otherwise.
3824
3825 For some platforms and debug info formats, shared libraries contain
3826 relocations against the debug sections (particularly for DWARF-2;
3827 one affected platform is PowerPC GNU/Linux, although it depends on
3828 the version of the linker in use). Also, ELF object files naturally
3829 have unresolved relocations for their debug sections. We need to apply
3830 the relocations in order to get the locations of symbols correct. */
3831
3832 bfd_byte *
3833 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3834 {
3835 /* We're only interested in debugging sections with relocation
3836 information. */
3837 if ((sectp->flags & SEC_RELOC) == 0)
3838 return NULL;
3839 if ((sectp->flags & SEC_DEBUGGING) == 0)
3840 return NULL;
3841
3842 /* We will handle section offsets properly elsewhere, so relocate as if
3843 all sections begin at 0. */
3844 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3845
3846 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3847 }
3848
3849 void
3850 _initialize_symfile (void)
3851 {
3852 struct cmd_list_element *c;
3853
3854 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3855 Load symbol table from executable file FILE.\n\
3856 The `file' command can also load symbol tables, as well as setting the file\n\
3857 to execute."), &cmdlist);
3858 set_cmd_completer (c, filename_completer);
3859
3860 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3861 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3862 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3863 ADDR is the starting address of the file's text.\n\
3864 The optional arguments are section-name section-address pairs and\n\
3865 should be specified if the data and bss segments are not contiguous\n\
3866 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3867 &cmdlist);
3868 set_cmd_completer (c, filename_completer);
3869
3870 c = add_cmd ("add-shared-symbol-files", class_files,
3871 add_shared_symbol_files_command, _("\
3872 Load the symbols from shared objects in the dynamic linker's link map."),
3873 &cmdlist);
3874 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3875 &cmdlist);
3876
3877 c = add_cmd ("load", class_files, load_command, _("\
3878 Dynamically load FILE into the running program, and record its symbols\n\
3879 for access from GDB.\n\
3880 A load OFFSET may also be given."), &cmdlist);
3881 set_cmd_completer (c, filename_completer);
3882
3883 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3884 &symbol_reloading, _("\
3885 Set dynamic symbol table reloading multiple times in one run."), _("\
3886 Show dynamic symbol table reloading multiple times in one run."), NULL,
3887 NULL,
3888 show_symbol_reloading,
3889 &setlist, &showlist);
3890
3891 add_prefix_cmd ("overlay", class_support, overlay_command,
3892 _("Commands for debugging overlays."), &overlaylist,
3893 "overlay ", 0, &cmdlist);
3894
3895 add_com_alias ("ovly", "overlay", class_alias, 1);
3896 add_com_alias ("ov", "overlay", class_alias, 1);
3897
3898 add_cmd ("map-overlay", class_support, map_overlay_command,
3899 _("Assert that an overlay section is mapped."), &overlaylist);
3900
3901 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3902 _("Assert that an overlay section is unmapped."), &overlaylist);
3903
3904 add_cmd ("list-overlays", class_support, list_overlays_command,
3905 _("List mappings of overlay sections."), &overlaylist);
3906
3907 add_cmd ("manual", class_support, overlay_manual_command,
3908 _("Enable overlay debugging."), &overlaylist);
3909 add_cmd ("off", class_support, overlay_off_command,
3910 _("Disable overlay debugging."), &overlaylist);
3911 add_cmd ("auto", class_support, overlay_auto_command,
3912 _("Enable automatic overlay debugging."), &overlaylist);
3913 add_cmd ("load-target", class_support, overlay_load_command,
3914 _("Read the overlay mapping state from the target."), &overlaylist);
3915
3916 /* Filename extension to source language lookup table: */
3917 init_filename_language_table ();
3918 add_setshow_string_noescape_cmd ("extension-language", class_files,
3919 &ext_args, _("\
3920 Set mapping between filename extension and source language."), _("\
3921 Show mapping between filename extension and source language."), _("\
3922 Usage: set extension-language .foo bar"),
3923 set_ext_lang_command,
3924 show_ext_args,
3925 &setlist, &showlist);
3926
3927 add_info ("extensions", info_ext_lang_command,
3928 _("All filename extensions associated with a source language."));
3929
3930 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3931 &debug_file_directory, _("\
3932 Set the directory where separate debug symbols are searched for."), _("\
3933 Show the directory where separate debug symbols are searched for."), _("\
3934 Separate debug symbols are first searched for in the same\n\
3935 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3936 and lastly at the path of the directory of the binary with\n\
3937 the global debug-file directory prepended."),
3938 NULL,
3939 show_debug_file_directory,
3940 &setlist, &showlist);
3941 }
This page took 0.113537 seconds and 4 git commands to generate.