2002-01-11 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40 #include "completer.h"
41
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*pre_add_symbol_hook) (char *);
73 void (*post_add_symbol_hook) (void);
74 void (*target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 struct complaint oldsyms_complaint =
82 {
83 "Replacing old symbols for `%s'", 0, 0
84 };
85
86 struct complaint empty_symtab_complaint =
87 {
88 "Empty symbol table found for `%s'", 0, 0
89 };
90
91 struct complaint unknown_option_complaint =
92 {
93 "Unknown option `%s' ignored", 0, 0
94 };
95
96 /* External variables and functions referenced. */
97
98 extern void report_transfer_performance (unsigned long, time_t, time_t);
99
100 /* Functions this file defines */
101
102 #if 0
103 static int simple_read_overlay_region_table (void);
104 static void simple_free_overlay_region_table (void);
105 #endif
106
107 static void set_initial_language (void);
108
109 static void load_command (char *, int);
110
111 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
112
113 static void add_symbol_file_command (char *, int);
114
115 static void add_shared_symbol_files_command (char *, int);
116
117 static void cashier_psymtab (struct partial_symtab *);
118
119 bfd *symfile_bfd_open (char *);
120
121 static void find_sym_fns (struct objfile *);
122
123 static void decrement_reading_symtab (void *);
124
125 static void overlay_invalidate_all (void);
126
127 static int overlay_is_mapped (struct obj_section *);
128
129 void list_overlays_command (char *, int);
130
131 void map_overlay_command (char *, int);
132
133 void unmap_overlay_command (char *, int);
134
135 static void overlay_auto_command (char *, int);
136
137 static void overlay_manual_command (char *, int);
138
139 static void overlay_off_command (char *, int);
140
141 static void overlay_load_command (char *, int);
142
143 static void overlay_command (char *, int);
144
145 static void simple_free_overlay_table (void);
146
147 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
148
149 static int simple_read_overlay_table (void);
150
151 static int simple_overlay_update_1 (struct obj_section *);
152
153 static void add_filename_language (char *ext, enum language lang);
154
155 static void set_ext_lang_command (char *args, int from_tty);
156
157 static void info_ext_lang_command (char *args, int from_tty);
158
159 static void init_filename_language_table (void);
160
161 void _initialize_symfile (void);
162
163 /* List of all available sym_fns. On gdb startup, each object file reader
164 calls add_symtab_fns() to register information on each format it is
165 prepared to read. */
166
167 static struct sym_fns *symtab_fns = NULL;
168
169 /* Flag for whether user will be reloading symbols multiple times.
170 Defaults to ON for VxWorks, otherwise OFF. */
171
172 #ifdef SYMBOL_RELOADING_DEFAULT
173 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
174 #else
175 int symbol_reloading = 0;
176 #endif
177
178 /* If non-zero, shared library symbols will be added automatically
179 when the inferior is created, new libraries are loaded, or when
180 attaching to the inferior. This is almost always what users will
181 want to have happen; but for very large programs, the startup time
182 will be excessive, and so if this is a problem, the user can clear
183 this flag and then add the shared library symbols as needed. Note
184 that there is a potential for confusion, since if the shared
185 library symbols are not loaded, commands like "info fun" will *not*
186 report all the functions that are actually present. */
187
188 int auto_solib_add = 1;
189
190 /* For systems that support it, a threshold size in megabytes. If
191 automatically adding a new library's symbol table to those already
192 known to the debugger would cause the total shared library symbol
193 size to exceed this threshhold, then the shlib's symbols are not
194 added. The threshold is ignored if the user explicitly asks for a
195 shlib to be added, such as when using the "sharedlibrary"
196 command. */
197
198 int auto_solib_limit;
199 \f
200
201 /* Since this function is called from within qsort, in an ANSI environment
202 it must conform to the prototype for qsort, which specifies that the
203 comparison function takes two "void *" pointers. */
204
205 static int
206 compare_symbols (const void *s1p, const void *s2p)
207 {
208 register struct symbol **s1, **s2;
209
210 s1 = (struct symbol **) s1p;
211 s2 = (struct symbol **) s2p;
212 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
213 }
214
215 /*
216
217 LOCAL FUNCTION
218
219 compare_psymbols -- compare two partial symbols by name
220
221 DESCRIPTION
222
223 Given pointers to pointers to two partial symbol table entries,
224 compare them by name and return -N, 0, or +N (ala strcmp).
225 Typically used by sorting routines like qsort().
226
227 NOTES
228
229 Does direct compare of first two characters before punting
230 and passing to strcmp for longer compares. Note that the
231 original version had a bug whereby two null strings or two
232 identically named one character strings would return the
233 comparison of memory following the null byte.
234
235 */
236
237 static int
238 compare_psymbols (const void *s1p, const void *s2p)
239 {
240 register struct partial_symbol **s1, **s2;
241 register char *st1, *st2;
242
243 s1 = (struct partial_symbol **) s1p;
244 s2 = (struct partial_symbol **) s2p;
245 st1 = SYMBOL_SOURCE_NAME (*s1);
246 st2 = SYMBOL_SOURCE_NAME (*s2);
247
248
249 if ((st1[0] - st2[0]) || !st1[0])
250 {
251 return (st1[0] - st2[0]);
252 }
253 else if ((st1[1] - st2[1]) || !st1[1])
254 {
255 return (st1[1] - st2[1]);
256 }
257 else
258 {
259 return (strcmp (st1, st2));
260 }
261 }
262
263 void
264 sort_pst_symbols (struct partial_symtab *pst)
265 {
266 /* Sort the global list; don't sort the static list */
267
268 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
269 pst->n_global_syms, sizeof (struct partial_symbol *),
270 compare_psymbols);
271 }
272
273 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
274
275 void
276 sort_block_syms (register struct block *b)
277 {
278 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
279 sizeof (struct symbol *), compare_symbols);
280 }
281
282 /* Call sort_symtab_syms to sort alphabetically
283 the symbols of each block of one symtab. */
284
285 void
286 sort_symtab_syms (register struct symtab *s)
287 {
288 register struct blockvector *bv;
289 int nbl;
290 int i;
291 register struct block *b;
292
293 if (s == 0)
294 return;
295 bv = BLOCKVECTOR (s);
296 nbl = BLOCKVECTOR_NBLOCKS (bv);
297 for (i = 0; i < nbl; i++)
298 {
299 b = BLOCKVECTOR_BLOCK (bv, i);
300 if (BLOCK_SHOULD_SORT (b))
301 sort_block_syms (b);
302 }
303 }
304
305 /* Make a null terminated copy of the string at PTR with SIZE characters in
306 the obstack pointed to by OBSTACKP . Returns the address of the copy.
307 Note that the string at PTR does not have to be null terminated, I.E. it
308 may be part of a larger string and we are only saving a substring. */
309
310 char *
311 obsavestring (char *ptr, int size, struct obstack *obstackp)
312 {
313 register char *p = (char *) obstack_alloc (obstackp, size + 1);
314 /* Open-coded memcpy--saves function call time. These strings are usually
315 short. FIXME: Is this really still true with a compiler that can
316 inline memcpy? */
317 {
318 register char *p1 = ptr;
319 register char *p2 = p;
320 char *end = ptr + size;
321 while (p1 != end)
322 *p2++ = *p1++;
323 }
324 p[size] = 0;
325 return p;
326 }
327
328 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
329 in the obstack pointed to by OBSTACKP. */
330
331 char *
332 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
333 const char *s3)
334 {
335 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
336 register char *val = (char *) obstack_alloc (obstackp, len);
337 strcpy (val, s1);
338 strcat (val, s2);
339 strcat (val, s3);
340 return val;
341 }
342
343 /* True if we are nested inside psymtab_to_symtab. */
344
345 int currently_reading_symtab = 0;
346
347 static void
348 decrement_reading_symtab (void *dummy)
349 {
350 currently_reading_symtab--;
351 }
352
353 /* Get the symbol table that corresponds to a partial_symtab.
354 This is fast after the first time you do it. In fact, there
355 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
356 case inline. */
357
358 struct symtab *
359 psymtab_to_symtab (register struct partial_symtab *pst)
360 {
361 /* If it's been looked up before, return it. */
362 if (pst->symtab)
363 return pst->symtab;
364
365 /* If it has not yet been read in, read it. */
366 if (!pst->readin)
367 {
368 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
369 currently_reading_symtab++;
370 (*pst->read_symtab) (pst);
371 do_cleanups (back_to);
372 }
373
374 return pst->symtab;
375 }
376
377 /* Initialize entry point information for this objfile. */
378
379 void
380 init_entry_point_info (struct objfile *objfile)
381 {
382 /* Save startup file's range of PC addresses to help blockframe.c
383 decide where the bottom of the stack is. */
384
385 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
386 {
387 /* Executable file -- record its entry point so we'll recognize
388 the startup file because it contains the entry point. */
389 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
390 }
391 else
392 {
393 /* Examination of non-executable.o files. Short-circuit this stuff. */
394 objfile->ei.entry_point = INVALID_ENTRY_POINT;
395 }
396 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
397 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
398 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
400 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
402 }
403
404 /* Get current entry point address. */
405
406 CORE_ADDR
407 entry_point_address (void)
408 {
409 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
410 }
411
412 /* Remember the lowest-addressed loadable section we've seen.
413 This function is called via bfd_map_over_sections.
414
415 In case of equal vmas, the section with the largest size becomes the
416 lowest-addressed loadable section.
417
418 If the vmas and sizes are equal, the last section is considered the
419 lowest-addressed loadable section. */
420
421 void
422 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
423 {
424 asection **lowest = (asection **) obj;
425
426 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
427 return;
428 if (!*lowest)
429 *lowest = sect; /* First loadable section */
430 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
431 *lowest = sect; /* A lower loadable section */
432 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
433 && (bfd_section_size (abfd, (*lowest))
434 <= bfd_section_size (abfd, sect)))
435 *lowest = sect;
436 }
437
438
439 /* Build (allocate and populate) a section_addr_info struct from
440 an existing section table. */
441
442 extern struct section_addr_info *
443 build_section_addr_info_from_section_table (const struct section_table *start,
444 const struct section_table *end)
445 {
446 struct section_addr_info *sap;
447 const struct section_table *stp;
448 int oidx;
449
450 sap = xmalloc (sizeof (struct section_addr_info));
451 memset (sap, 0, sizeof (struct section_addr_info));
452
453 for (stp = start, oidx = 0; stp != end; stp++)
454 {
455 if (bfd_get_section_flags (stp->bfd,
456 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
457 && oidx < MAX_SECTIONS)
458 {
459 sap->other[oidx].addr = stp->addr;
460 sap->other[oidx].name
461 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
462 sap->other[oidx].sectindex = stp->the_bfd_section->index;
463 oidx++;
464 }
465 }
466
467 return sap;
468 }
469
470
471 /* Free all memory allocated by build_section_addr_info_from_section_table. */
472
473 extern void
474 free_section_addr_info (struct section_addr_info *sap)
475 {
476 int idx;
477
478 for (idx = 0; idx < MAX_SECTIONS; idx++)
479 if (sap->other[idx].name)
480 xfree (sap->other[idx].name);
481 xfree (sap);
482 }
483
484
485 /* Parse the user's idea of an offset for dynamic linking, into our idea
486 of how to represent it for fast symbol reading. This is the default
487 version of the sym_fns.sym_offsets function for symbol readers that
488 don't need to do anything special. It allocates a section_offsets table
489 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
490
491 void
492 default_symfile_offsets (struct objfile *objfile,
493 struct section_addr_info *addrs)
494 {
495 int i;
496 asection *sect = NULL;
497
498 objfile->num_sections = SECT_OFF_MAX;
499 objfile->section_offsets = (struct section_offsets *)
500 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
501 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
502
503 /* Now calculate offsets for section that were specified by the
504 caller. */
505 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
506 {
507 struct other_sections *osp ;
508
509 osp = &addrs->other[i] ;
510 if (osp->addr == 0)
511 continue;
512
513 /* Record all sections in offsets */
514 /* The section_offsets in the objfile are here filled in using
515 the BFD index. */
516 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
517 }
518
519 /* Remember the bfd indexes for the .text, .data, .bss and
520 .rodata sections. */
521
522 sect = bfd_get_section_by_name (objfile->obfd, ".text");
523 if (sect)
524 objfile->sect_index_text = sect->index;
525
526 sect = bfd_get_section_by_name (objfile->obfd, ".data");
527 if (sect)
528 objfile->sect_index_data = sect->index;
529
530 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
531 if (sect)
532 objfile->sect_index_bss = sect->index;
533
534 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
535 if (sect)
536 objfile->sect_index_rodata = sect->index;
537
538 }
539
540 /* Process a symbol file, as either the main file or as a dynamically
541 loaded file.
542
543 OBJFILE is where the symbols are to be read from.
544
545 ADDR is the address where the text segment was loaded, unless the
546 objfile is the main symbol file, in which case it is zero.
547
548 MAINLINE is nonzero if this is the main symbol file, or zero if
549 it's an extra symbol file such as dynamically loaded code.
550
551 VERBO is nonzero if the caller has printed a verbose message about
552 the symbol reading (and complaints can be more terse about it). */
553
554 void
555 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
556 int mainline, int verbo)
557 {
558 asection *lower_sect;
559 asection *sect;
560 CORE_ADDR lower_offset;
561 struct section_addr_info local_addr;
562 struct cleanup *old_chain;
563 int i;
564
565 /* If ADDRS is NULL, initialize the local section_addr_info struct and
566 point ADDRS to it. We now establish the convention that an addr of
567 zero means no load address was specified. */
568
569 if (addrs == NULL)
570 {
571 memset (&local_addr, 0, sizeof (local_addr));
572 addrs = &local_addr;
573 }
574
575 init_entry_point_info (objfile);
576 find_sym_fns (objfile);
577
578 /* Make sure that partially constructed symbol tables will be cleaned up
579 if an error occurs during symbol reading. */
580 old_chain = make_cleanup_free_objfile (objfile);
581
582 if (mainline)
583 {
584 /* We will modify the main symbol table, make sure that all its users
585 will be cleaned up if an error occurs during symbol reading. */
586 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
587
588 /* Since no error yet, throw away the old symbol table. */
589
590 if (symfile_objfile != NULL)
591 {
592 free_objfile (symfile_objfile);
593 symfile_objfile = NULL;
594 }
595
596 /* Currently we keep symbols from the add-symbol-file command.
597 If the user wants to get rid of them, they should do "symbol-file"
598 without arguments first. Not sure this is the best behavior
599 (PR 2207). */
600
601 (*objfile->sf->sym_new_init) (objfile);
602 }
603
604 /* Convert addr into an offset rather than an absolute address.
605 We find the lowest address of a loaded segment in the objfile,
606 and assume that <addr> is where that got loaded.
607
608 We no longer warn if the lowest section is not a text segment (as
609 happens for the PA64 port. */
610 if (!mainline)
611 {
612 /* Find lowest loadable section to be used as starting point for
613 continguous sections. FIXME!! won't work without call to find
614 .text first, but this assumes text is lowest section. */
615 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
616 if (lower_sect == NULL)
617 bfd_map_over_sections (objfile->obfd, find_lowest_section,
618 (PTR) &lower_sect);
619 if (lower_sect == NULL)
620 warning ("no loadable sections found in added symbol-file %s",
621 objfile->name);
622 else
623 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
624 warning ("Lowest section in %s is %s at %s",
625 objfile->name,
626 bfd_section_name (objfile->obfd, lower_sect),
627 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
628 if (lower_sect != NULL)
629 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
630 else
631 lower_offset = 0;
632
633 /* Calculate offsets for the loadable sections.
634 FIXME! Sections must be in order of increasing loadable section
635 so that contiguous sections can use the lower-offset!!!
636
637 Adjust offsets if the segments are not contiguous.
638 If the section is contiguous, its offset should be set to
639 the offset of the highest loadable section lower than it
640 (the loadable section directly below it in memory).
641 this_offset = lower_offset = lower_addr - lower_orig_addr */
642
643 /* Calculate offsets for sections. */
644 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
645 {
646 if (addrs->other[i].addr != 0)
647 {
648 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
649 if (sect)
650 {
651 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
652 lower_offset = addrs->other[i].addr;
653 /* This is the index used by BFD. */
654 addrs->other[i].sectindex = sect->index ;
655 }
656 else
657 {
658 warning ("section %s not found in %s", addrs->other[i].name,
659 objfile->name);
660 addrs->other[i].addr = 0;
661 }
662 }
663 else
664 addrs->other[i].addr = lower_offset;
665 }
666 }
667
668 /* Initialize symbol reading routines for this objfile, allow complaints to
669 appear for this new file, and record how verbose to be, then do the
670 initial symbol reading for this file. */
671
672 (*objfile->sf->sym_init) (objfile);
673 clear_complaints (1, verbo);
674
675 (*objfile->sf->sym_offsets) (objfile, addrs);
676
677 #ifndef IBM6000_TARGET
678 /* This is a SVR4/SunOS specific hack, I think. In any event, it
679 screws RS/6000. sym_offsets should be doing this sort of thing,
680 because it knows the mapping between bfd sections and
681 section_offsets. */
682 /* This is a hack. As far as I can tell, section offsets are not
683 target dependent. They are all set to addr with a couple of
684 exceptions. The exceptions are sysvr4 shared libraries, whose
685 offsets are kept in solib structures anyway and rs6000 xcoff
686 which handles shared libraries in a completely unique way.
687
688 Section offsets are built similarly, except that they are built
689 by adding addr in all cases because there is no clear mapping
690 from section_offsets into actual sections. Note that solib.c
691 has a different algorithm for finding section offsets.
692
693 These should probably all be collapsed into some target
694 independent form of shared library support. FIXME. */
695
696 if (addrs)
697 {
698 struct obj_section *s;
699
700 /* Map section offsets in "addr" back to the object's
701 sections by comparing the section names with bfd's
702 section names. Then adjust the section address by
703 the offset. */ /* for gdb/13815 */
704
705 ALL_OBJFILE_OSECTIONS (objfile, s)
706 {
707 CORE_ADDR s_addr = 0;
708 int i;
709
710 for (i = 0;
711 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
712 i++)
713 if (strcmp (bfd_section_name (s->objfile->obfd,
714 s->the_bfd_section),
715 addrs->other[i].name) == 0)
716 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
717
718 s->addr -= s->offset;
719 s->addr += s_addr;
720 s->endaddr -= s->offset;
721 s->endaddr += s_addr;
722 s->offset += s_addr;
723 }
724 }
725 #endif /* not IBM6000_TARGET */
726
727 (*objfile->sf->sym_read) (objfile, mainline);
728
729 if (!have_partial_symbols () && !have_full_symbols ())
730 {
731 wrap_here ("");
732 printf_filtered ("(no debugging symbols found)...");
733 wrap_here ("");
734 }
735
736 /* Don't allow char * to have a typename (else would get caddr_t).
737 Ditto void *. FIXME: Check whether this is now done by all the
738 symbol readers themselves (many of them now do), and if so remove
739 it from here. */
740
741 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
742 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
743
744 /* Mark the objfile has having had initial symbol read attempted. Note
745 that this does not mean we found any symbols... */
746
747 objfile->flags |= OBJF_SYMS;
748
749 /* Discard cleanups as symbol reading was successful. */
750
751 discard_cleanups (old_chain);
752
753 /* Call this after reading in a new symbol table to give target
754 dependent code a crack at the new symbols. For instance, this
755 could be used to update the values of target-specific symbols GDB
756 needs to keep track of (such as _sigtramp, or whatever). */
757
758 TARGET_SYMFILE_POSTREAD (objfile);
759 }
760
761 /* Perform required actions after either reading in the initial
762 symbols for a new objfile, or mapping in the symbols from a reusable
763 objfile. */
764
765 void
766 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
767 {
768
769 /* If this is the main symbol file we have to clean up all users of the
770 old main symbol file. Otherwise it is sufficient to fixup all the
771 breakpoints that may have been redefined by this symbol file. */
772 if (mainline)
773 {
774 /* OK, make it the "real" symbol file. */
775 symfile_objfile = objfile;
776
777 clear_symtab_users ();
778 }
779 else
780 {
781 breakpoint_re_set ();
782 }
783
784 /* We're done reading the symbol file; finish off complaints. */
785 clear_complaints (0, verbo);
786 }
787
788 /* Process a symbol file, as either the main file or as a dynamically
789 loaded file.
790
791 NAME is the file name (which will be tilde-expanded and made
792 absolute herein) (but we don't free or modify NAME itself).
793 FROM_TTY says how verbose to be. MAINLINE specifies whether this
794 is the main symbol file, or whether it's an extra symbol file such
795 as dynamically loaded code. If !mainline, ADDR is the address
796 where the text segment was loaded.
797
798 Upon success, returns a pointer to the objfile that was added.
799 Upon failure, jumps back to command level (never returns). */
800
801 struct objfile *
802 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
803 int mainline, int flags)
804 {
805 struct objfile *objfile;
806 struct partial_symtab *psymtab;
807 bfd *abfd;
808
809 /* Open a bfd for the file, and give user a chance to burp if we'd be
810 interactively wiping out any existing symbols. */
811
812 abfd = symfile_bfd_open (name);
813
814 if ((have_full_symbols () || have_partial_symbols ())
815 && mainline
816 && from_tty
817 && !query ("Load new symbol table from \"%s\"? ", name))
818 error ("Not confirmed.");
819
820 objfile = allocate_objfile (abfd, flags);
821
822 /* If the objfile uses a mapped symbol file, and we have a psymtab for
823 it, then skip reading any symbols at this time. */
824
825 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
826 {
827 /* We mapped in an existing symbol table file that already has had
828 initial symbol reading performed, so we can skip that part. Notify
829 the user that instead of reading the symbols, they have been mapped.
830 */
831 if (from_tty || info_verbose)
832 {
833 printf_filtered ("Mapped symbols for %s...", name);
834 wrap_here ("");
835 gdb_flush (gdb_stdout);
836 }
837 init_entry_point_info (objfile);
838 find_sym_fns (objfile);
839 }
840 else
841 {
842 /* We either created a new mapped symbol table, mapped an existing
843 symbol table file which has not had initial symbol reading
844 performed, or need to read an unmapped symbol table. */
845 if (from_tty || info_verbose)
846 {
847 if (pre_add_symbol_hook)
848 pre_add_symbol_hook (name);
849 else
850 {
851 printf_filtered ("Reading symbols from %s...", name);
852 wrap_here ("");
853 gdb_flush (gdb_stdout);
854 }
855 }
856 syms_from_objfile (objfile, addrs, mainline, from_tty);
857 }
858
859 /* We now have at least a partial symbol table. Check to see if the
860 user requested that all symbols be read on initial access via either
861 the gdb startup command line or on a per symbol file basis. Expand
862 all partial symbol tables for this objfile if so. */
863
864 if ((flags & OBJF_READNOW) || readnow_symbol_files)
865 {
866 if (from_tty || info_verbose)
867 {
868 printf_filtered ("expanding to full symbols...");
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872
873 for (psymtab = objfile->psymtabs;
874 psymtab != NULL;
875 psymtab = psymtab->next)
876 {
877 psymtab_to_symtab (psymtab);
878 }
879 }
880
881 if (from_tty || info_verbose)
882 {
883 if (post_add_symbol_hook)
884 post_add_symbol_hook ();
885 else
886 {
887 printf_filtered ("done.\n");
888 gdb_flush (gdb_stdout);
889 }
890 }
891
892 new_symfile_objfile (objfile, mainline, from_tty);
893
894 if (target_new_objfile_hook)
895 target_new_objfile_hook (objfile);
896
897 return (objfile);
898 }
899
900 /* Call symbol_file_add() with default values and update whatever is
901 affected by the loading of a new main().
902 Used when the file is supplied in the gdb command line
903 and by some targets with special loading requirements.
904 The auxiliary function, symbol_file_add_main_1(), has the flags
905 argument for the switches that can only be specified in the symbol_file
906 command itself. */
907
908 void
909 symbol_file_add_main (char *args, int from_tty)
910 {
911 symbol_file_add_main_1 (args, from_tty, 0);
912 }
913
914 static void
915 symbol_file_add_main_1 (char *args, int from_tty, int flags)
916 {
917 symbol_file_add (args, from_tty, NULL, 1, flags);
918
919 #ifdef HPUXHPPA
920 RESET_HP_UX_GLOBALS ();
921 #endif
922
923 /* Getting new symbols may change our opinion about
924 what is frameless. */
925 reinit_frame_cache ();
926
927 set_initial_language ();
928 }
929
930 void
931 symbol_file_clear (int from_tty)
932 {
933 if ((have_full_symbols () || have_partial_symbols ())
934 && from_tty
935 && !query ("Discard symbol table from `%s'? ",
936 symfile_objfile->name))
937 error ("Not confirmed.");
938 free_all_objfiles ();
939
940 /* solib descriptors may have handles to objfiles. Since their
941 storage has just been released, we'd better wipe the solib
942 descriptors as well.
943 */
944 #if defined(SOLIB_RESTART)
945 SOLIB_RESTART ();
946 #endif
947
948 symfile_objfile = NULL;
949 if (from_tty)
950 printf_unfiltered ("No symbol file now.\n");
951 #ifdef HPUXHPPA
952 RESET_HP_UX_GLOBALS ();
953 #endif
954 }
955
956 /* This is the symbol-file command. Read the file, analyze its
957 symbols, and add a struct symtab to a symtab list. The syntax of
958 the command is rather bizarre--(1) buildargv implements various
959 quoting conventions which are undocumented and have little or
960 nothing in common with the way things are quoted (or not quoted)
961 elsewhere in GDB, (2) options are used, which are not generally
962 used in GDB (perhaps "set mapped on", "set readnow on" would be
963 better), (3) the order of options matters, which is contrary to GNU
964 conventions (because it is confusing and inconvenient). */
965 /* Note: ezannoni 2000-04-17. This function used to have support for
966 rombug (see remote-os9k.c). It consisted of a call to target_link()
967 (target.c) to get the address of the text segment from the target,
968 and pass that to symbol_file_add(). This is no longer supported. */
969
970 void
971 symbol_file_command (char *args, int from_tty)
972 {
973 char **argv;
974 char *name = NULL;
975 struct cleanup *cleanups;
976 int flags = OBJF_USERLOADED;
977
978 dont_repeat ();
979
980 if (args == NULL)
981 {
982 symbol_file_clear (from_tty);
983 }
984 else
985 {
986 if ((argv = buildargv (args)) == NULL)
987 {
988 nomem (0);
989 }
990 cleanups = make_cleanup_freeargv (argv);
991 while (*argv != NULL)
992 {
993 if (STREQ (*argv, "-mapped"))
994 flags |= OBJF_MAPPED;
995 else
996 if (STREQ (*argv, "-readnow"))
997 flags |= OBJF_READNOW;
998 else
999 if (**argv == '-')
1000 error ("unknown option `%s'", *argv);
1001 else
1002 {
1003 name = *argv;
1004
1005 symbol_file_add_main_1 (name, from_tty, flags);
1006 }
1007 argv++;
1008 }
1009
1010 if (name == NULL)
1011 {
1012 error ("no symbol file name was specified");
1013 }
1014 do_cleanups (cleanups);
1015 }
1016 }
1017
1018 /* Set the initial language.
1019
1020 A better solution would be to record the language in the psymtab when reading
1021 partial symbols, and then use it (if known) to set the language. This would
1022 be a win for formats that encode the language in an easily discoverable place,
1023 such as DWARF. For stabs, we can jump through hoops looking for specially
1024 named symbols or try to intuit the language from the specific type of stabs
1025 we find, but we can't do that until later when we read in full symbols.
1026 FIXME. */
1027
1028 static void
1029 set_initial_language (void)
1030 {
1031 struct partial_symtab *pst;
1032 enum language lang = language_unknown;
1033
1034 pst = find_main_psymtab ();
1035 if (pst != NULL)
1036 {
1037 if (pst->filename != NULL)
1038 {
1039 lang = deduce_language_from_filename (pst->filename);
1040 }
1041 if (lang == language_unknown)
1042 {
1043 /* Make C the default language */
1044 lang = language_c;
1045 }
1046 set_language (lang);
1047 expected_language = current_language; /* Don't warn the user */
1048 }
1049 }
1050
1051 /* Open file specified by NAME and hand it off to BFD for preliminary
1052 analysis. Result is a newly initialized bfd *, which includes a newly
1053 malloc'd` copy of NAME (tilde-expanded and made absolute).
1054 In case of trouble, error() is called. */
1055
1056 bfd *
1057 symfile_bfd_open (char *name)
1058 {
1059 bfd *sym_bfd;
1060 int desc;
1061 char *absolute_name;
1062
1063
1064
1065 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1066
1067 /* Look down path for it, allocate 2nd new malloc'd copy. */
1068 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1069 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1070 if (desc < 0)
1071 {
1072 char *exename = alloca (strlen (name) + 5);
1073 strcat (strcpy (exename, name), ".exe");
1074 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1075 0, &absolute_name);
1076 }
1077 #endif
1078 if (desc < 0)
1079 {
1080 make_cleanup (xfree, name);
1081 perror_with_name (name);
1082 }
1083 xfree (name); /* Free 1st new malloc'd copy */
1084 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1085 /* It'll be freed in free_objfile(). */
1086
1087 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1088 if (!sym_bfd)
1089 {
1090 close (desc);
1091 make_cleanup (xfree, name);
1092 error ("\"%s\": can't open to read symbols: %s.", name,
1093 bfd_errmsg (bfd_get_error ()));
1094 }
1095 sym_bfd->cacheable = true;
1096
1097 if (!bfd_check_format (sym_bfd, bfd_object))
1098 {
1099 /* FIXME: should be checking for errors from bfd_close (for one thing,
1100 on error it does not free all the storage associated with the
1101 bfd). */
1102 bfd_close (sym_bfd); /* This also closes desc */
1103 make_cleanup (xfree, name);
1104 error ("\"%s\": can't read symbols: %s.", name,
1105 bfd_errmsg (bfd_get_error ()));
1106 }
1107 return (sym_bfd);
1108 }
1109
1110 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1111 startup by the _initialize routine in each object file format reader,
1112 to register information about each format the the reader is prepared
1113 to handle. */
1114
1115 void
1116 add_symtab_fns (struct sym_fns *sf)
1117 {
1118 sf->next = symtab_fns;
1119 symtab_fns = sf;
1120 }
1121
1122
1123 /* Initialize to read symbols from the symbol file sym_bfd. It either
1124 returns or calls error(). The result is an initialized struct sym_fns
1125 in the objfile structure, that contains cached information about the
1126 symbol file. */
1127
1128 static void
1129 find_sym_fns (struct objfile *objfile)
1130 {
1131 struct sym_fns *sf;
1132 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1133 char *our_target = bfd_get_target (objfile->obfd);
1134
1135 /* Special kludge for apollo. See dstread.c. */
1136 if (STREQN (our_target, "apollo", 6))
1137 our_flavour = (enum bfd_flavour) -2;
1138
1139 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1140 {
1141 if (our_flavour == sf->sym_flavour)
1142 {
1143 objfile->sf = sf;
1144 return;
1145 }
1146 }
1147 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1148 bfd_get_target (objfile->obfd));
1149 }
1150 \f
1151 /* This function runs the load command of our current target. */
1152
1153 static void
1154 load_command (char *arg, int from_tty)
1155 {
1156 if (arg == NULL)
1157 arg = get_exec_file (1);
1158 target_load (arg, from_tty);
1159
1160 /* After re-loading the executable, we don't really know which
1161 overlays are mapped any more. */
1162 overlay_cache_invalid = 1;
1163 }
1164
1165 /* This version of "load" should be usable for any target. Currently
1166 it is just used for remote targets, not inftarg.c or core files,
1167 on the theory that only in that case is it useful.
1168
1169 Avoiding xmodem and the like seems like a win (a) because we don't have
1170 to worry about finding it, and (b) On VMS, fork() is very slow and so
1171 we don't want to run a subprocess. On the other hand, I'm not sure how
1172 performance compares. */
1173
1174 static int download_write_size = 512;
1175 static int validate_download = 0;
1176
1177 void
1178 generic_load (char *args, int from_tty)
1179 {
1180 asection *s;
1181 bfd *loadfile_bfd;
1182 time_t start_time, end_time; /* Start and end times of download */
1183 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1184 unsigned long write_count = 0; /* Number of writes needed. */
1185 unsigned long load_offset; /* offset to add to vma for each section */
1186 char *filename;
1187 struct cleanup *old_cleanups;
1188 char *offptr;
1189 bfd_size_type total_size = 0;
1190
1191 /* Parse the input argument - the user can specify a load offset as
1192 a second argument. */
1193 filename = xmalloc (strlen (args) + 1);
1194 old_cleanups = make_cleanup (xfree, filename);
1195 strcpy (filename, args);
1196 offptr = strchr (filename, ' ');
1197 if (offptr != NULL)
1198 {
1199 char *endptr;
1200
1201 load_offset = strtoul (offptr, &endptr, 0);
1202 if (offptr == endptr)
1203 error ("Invalid download offset:%s\n", offptr);
1204 *offptr = '\0';
1205 }
1206 else
1207 load_offset = 0;
1208
1209 /* Open the file for loading. */
1210 loadfile_bfd = bfd_openr (filename, gnutarget);
1211 if (loadfile_bfd == NULL)
1212 {
1213 perror_with_name (filename);
1214 return;
1215 }
1216
1217 /* FIXME: should be checking for errors from bfd_close (for one thing,
1218 on error it does not free all the storage associated with the
1219 bfd). */
1220 make_cleanup_bfd_close (loadfile_bfd);
1221
1222 if (!bfd_check_format (loadfile_bfd, bfd_object))
1223 {
1224 error ("\"%s\" is not an object file: %s", filename,
1225 bfd_errmsg (bfd_get_error ()));
1226 }
1227
1228 for (s = loadfile_bfd->sections; s; s = s->next)
1229 if (bfd_get_section_flags (loadfile_bfd, s) & SEC_LOAD)
1230 total_size += bfd_get_section_size_before_reloc (s);
1231
1232 start_time = time (NULL);
1233
1234 for (s = loadfile_bfd->sections; s; s = s->next)
1235 {
1236 if (s->flags & SEC_LOAD)
1237 {
1238 bfd_size_type size = bfd_get_section_size_before_reloc (s);
1239
1240 if (size > 0)
1241 {
1242 char *buffer;
1243 struct cleanup *old_chain;
1244 CORE_ADDR lma = bfd_section_lma (loadfile_bfd, s) + load_offset;
1245 bfd_size_type block_size;
1246 int err;
1247 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1248 bfd_size_type sent;
1249
1250 if (download_write_size > 0 && size > download_write_size)
1251 block_size = download_write_size;
1252 else
1253 block_size = size;
1254
1255 buffer = xmalloc (size);
1256 old_chain = make_cleanup (xfree, buffer);
1257
1258 /* Is this really necessary? I guess it gives the user something
1259 to look at during a long download. */
1260 #ifdef UI_OUT
1261 ui_out_message (uiout, 0,
1262 "Loading section %s, size 0x%s lma 0x%s\n",
1263 sect_name, paddr_nz (size), paddr_nz (lma));
1264 #else
1265 fprintf_unfiltered (gdb_stdout,
1266 "Loading section %s, size 0x%s lma 0x%s\n",
1267 sect_name, paddr_nz (size), paddr_nz (lma));
1268 #endif
1269
1270 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1271
1272 sent = 0;
1273 do
1274 {
1275 int len;
1276 bfd_size_type this_transfer = size - sent;
1277
1278 if (this_transfer >= block_size)
1279 this_transfer = block_size;
1280 len = target_write_memory_partial (lma, buffer,
1281 this_transfer, &err);
1282 if (err)
1283 break;
1284 if (validate_download)
1285 {
1286 /* Broken memories and broken monitors manifest
1287 themselves here when bring new computers to
1288 life. This doubles already slow downloads. */
1289 /* NOTE: cagney/1999-10-18: A more efficient
1290 implementation might add a verify_memory()
1291 method to the target vector and then use
1292 that. remote.c could implement that method
1293 using the ``qCRC'' packet. */
1294 char *check = xmalloc (len);
1295 struct cleanup *verify_cleanups = make_cleanup (xfree,
1296 check);
1297
1298 if (target_read_memory (lma, check, len) != 0)
1299 error ("Download verify read failed at 0x%s",
1300 paddr (lma));
1301 if (memcmp (buffer, check, len) != 0)
1302 error ("Download verify compare failed at 0x%s",
1303 paddr (lma));
1304 do_cleanups (verify_cleanups);
1305 }
1306 data_count += len;
1307 lma += len;
1308 buffer += len;
1309 write_count += 1;
1310 sent += len;
1311 if (quit_flag
1312 || (ui_load_progress_hook != NULL
1313 && ui_load_progress_hook (sect_name, sent)))
1314 error ("Canceled the download");
1315
1316 if (show_load_progress != NULL)
1317 show_load_progress (sect_name, sent, size,
1318 data_count, total_size);
1319 }
1320 while (sent < size);
1321
1322 if (err != 0)
1323 error ("Memory access error while loading section %s.",
1324 sect_name);
1325
1326 do_cleanups (old_chain);
1327 }
1328 }
1329 }
1330
1331 end_time = time (NULL);
1332 {
1333 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd);
1334
1335 #ifdef UI_OUT
1336 ui_out_text (uiout, "Start address ");
1337 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1338 ui_out_text (uiout, ", load size ");
1339 ui_out_field_fmt (uiout, "load-size", "%lu", data_count);
1340 ui_out_text (uiout, "\n");
1341
1342 #else
1343 fprintf_unfiltered (gdb_stdout,
1344 "Start address 0x%s, load size %lu\n",
1345 paddr_nz (entry), data_count);
1346 #endif
1347 /* We were doing this in remote-mips.c, I suspect it is right
1348 for other targets too. */
1349 write_pc (entry);
1350 }
1351
1352 /* FIXME: are we supposed to call symbol_file_add or not? According to
1353 a comment from remote-mips.c (where a call to symbol_file_add was
1354 commented out), making the call confuses GDB if more than one file is
1355 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1356 does. */
1357
1358 print_transfer_performance (gdb_stdout, data_count, write_count,
1359 end_time - start_time);
1360
1361 do_cleanups (old_cleanups);
1362 }
1363
1364 /* Report how fast the transfer went. */
1365
1366 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1367 replaced by print_transfer_performance (with a very different
1368 function signature). */
1369
1370 void
1371 report_transfer_performance (unsigned long data_count, time_t start_time,
1372 time_t end_time)
1373 {
1374 print_transfer_performance (gdb_stdout, data_count,
1375 end_time - start_time, 0);
1376 }
1377
1378 void
1379 print_transfer_performance (struct ui_file *stream,
1380 unsigned long data_count,
1381 unsigned long write_count,
1382 unsigned long time_count)
1383 {
1384 #ifdef UI_OUT
1385 ui_out_text (uiout, "Transfer rate: ");
1386 if (time_count > 0)
1387 {
1388 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1389 (data_count * 8) / time_count);
1390 ui_out_text (uiout, " bits/sec");
1391 }
1392 else
1393 {
1394 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1395 ui_out_text (uiout, " bits in <1 sec");
1396 }
1397 if (write_count > 0)
1398 {
1399 ui_out_text (uiout, ", ");
1400 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1401 ui_out_text (uiout, " bytes/write");
1402 }
1403 ui_out_text (uiout, ".\n");
1404 #else
1405 fprintf_unfiltered (stream, "Transfer rate: ");
1406 if (time_count > 0)
1407 fprintf_unfiltered (stream, "%lu bits/sec", (data_count * 8) / time_count);
1408 else
1409 fprintf_unfiltered (stream, "%lu bits in <1 sec", (data_count * 8));
1410 if (write_count > 0)
1411 fprintf_unfiltered (stream, ", %lu bytes/write", data_count / write_count);
1412 fprintf_unfiltered (stream, ".\n");
1413 #endif
1414 }
1415
1416 /* This function allows the addition of incrementally linked object files.
1417 It does not modify any state in the target, only in the debugger. */
1418 /* Note: ezannoni 2000-04-13 This function/command used to have a
1419 special case syntax for the rombug target (Rombug is the boot
1420 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1421 rombug case, the user doesn't need to supply a text address,
1422 instead a call to target_link() (in target.c) would supply the
1423 value to use. We are now discontinuing this type of ad hoc syntax. */
1424
1425 /* ARGSUSED */
1426 static void
1427 add_symbol_file_command (char *args, int from_tty)
1428 {
1429 char *filename = NULL;
1430 int flags = OBJF_USERLOADED;
1431 char *arg;
1432 int expecting_option = 0;
1433 int section_index = 0;
1434 int argcnt = 0;
1435 int sec_num = 0;
1436 int i;
1437 int expecting_sec_name = 0;
1438 int expecting_sec_addr = 0;
1439
1440 struct
1441 {
1442 char *name;
1443 char *value;
1444 } sect_opts[SECT_OFF_MAX];
1445
1446 struct section_addr_info section_addrs;
1447 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1448
1449 dont_repeat ();
1450
1451 if (args == NULL)
1452 error ("add-symbol-file takes a file name and an address");
1453
1454 /* Make a copy of the string that we can safely write into. */
1455 args = xstrdup (args);
1456
1457 /* Ensure section_addrs is initialized */
1458 memset (&section_addrs, 0, sizeof (section_addrs));
1459
1460 while (*args != '\000')
1461 {
1462 /* Any leading spaces? */
1463 while (isspace (*args))
1464 args++;
1465
1466 /* Point arg to the beginning of the argument. */
1467 arg = args;
1468
1469 /* Move args pointer over the argument. */
1470 while ((*args != '\000') && !isspace (*args))
1471 args++;
1472
1473 /* If there are more arguments, terminate arg and
1474 proceed past it. */
1475 if (*args != '\000')
1476 *args++ = '\000';
1477
1478 /* Now process the argument. */
1479 if (argcnt == 0)
1480 {
1481 /* The first argument is the file name. */
1482 filename = tilde_expand (arg);
1483 make_cleanup (xfree, filename);
1484 }
1485 else
1486 if (argcnt == 1)
1487 {
1488 /* The second argument is always the text address at which
1489 to load the program. */
1490 sect_opts[section_index].name = ".text";
1491 sect_opts[section_index].value = arg;
1492 section_index++;
1493 }
1494 else
1495 {
1496 /* It's an option (starting with '-') or it's an argument
1497 to an option */
1498
1499 if (*arg == '-')
1500 {
1501 if (strcmp (arg, "-mapped") == 0)
1502 flags |= OBJF_MAPPED;
1503 else
1504 if (strcmp (arg, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1506 else
1507 if (strcmp (arg, "-s") == 0)
1508 {
1509 if (section_index >= SECT_OFF_MAX)
1510 error ("Too many sections specified.");
1511 expecting_sec_name = 1;
1512 expecting_sec_addr = 1;
1513 }
1514 }
1515 else
1516 {
1517 if (expecting_sec_name)
1518 {
1519 sect_opts[section_index].name = arg;
1520 expecting_sec_name = 0;
1521 }
1522 else
1523 if (expecting_sec_addr)
1524 {
1525 sect_opts[section_index].value = arg;
1526 expecting_sec_addr = 0;
1527 section_index++;
1528 }
1529 else
1530 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1531 }
1532 }
1533 argcnt++;
1534 }
1535
1536 /* Print the prompt for the query below. And save the arguments into
1537 a sect_addr_info structure to be passed around to other
1538 functions. We have to split this up into separate print
1539 statements because local_hex_string returns a local static
1540 string. */
1541
1542 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1543 for (i = 0; i < section_index; i++)
1544 {
1545 CORE_ADDR addr;
1546 char *val = sect_opts[i].value;
1547 char *sec = sect_opts[i].name;
1548
1549 val = sect_opts[i].value;
1550 if (val[0] == '0' && val[1] == 'x')
1551 addr = strtoul (val+2, NULL, 16);
1552 else
1553 addr = strtoul (val, NULL, 10);
1554
1555 /* Here we store the section offsets in the order they were
1556 entered on the command line. */
1557 section_addrs.other[sec_num].name = sec;
1558 section_addrs.other[sec_num].addr = addr;
1559 printf_filtered ("\t%s_addr = %s\n",
1560 sec,
1561 local_hex_string ((unsigned long)addr));
1562 sec_num++;
1563
1564 /* The object's sections are initialized when a
1565 call is made to build_objfile_section_table (objfile).
1566 This happens in reread_symbols.
1567 At this point, we don't know what file type this is,
1568 so we can't determine what section names are valid. */
1569 }
1570
1571 if (from_tty && (!query ("%s", "")))
1572 error ("Not confirmed.");
1573
1574 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1575
1576 /* Getting new symbols may change our opinion about what is
1577 frameless. */
1578 reinit_frame_cache ();
1579 do_cleanups (my_cleanups);
1580 }
1581 \f
1582 static void
1583 add_shared_symbol_files_command (char *args, int from_tty)
1584 {
1585 #ifdef ADD_SHARED_SYMBOL_FILES
1586 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1587 #else
1588 error ("This command is not available in this configuration of GDB.");
1589 #endif
1590 }
1591 \f
1592 /* Re-read symbols if a symbol-file has changed. */
1593 void
1594 reread_symbols (void)
1595 {
1596 struct objfile *objfile;
1597 long new_modtime;
1598 int reread_one = 0;
1599 struct stat new_statbuf;
1600 int res;
1601
1602 /* With the addition of shared libraries, this should be modified,
1603 the load time should be saved in the partial symbol tables, since
1604 different tables may come from different source files. FIXME.
1605 This routine should then walk down each partial symbol table
1606 and see if the symbol table that it originates from has been changed */
1607
1608 for (objfile = object_files; objfile; objfile = objfile->next)
1609 {
1610 if (objfile->obfd)
1611 {
1612 #ifdef IBM6000_TARGET
1613 /* If this object is from a shared library, then you should
1614 stat on the library name, not member name. */
1615
1616 if (objfile->obfd->my_archive)
1617 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1618 else
1619 #endif
1620 res = stat (objfile->name, &new_statbuf);
1621 if (res != 0)
1622 {
1623 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1624 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1625 objfile->name);
1626 continue;
1627 }
1628 new_modtime = new_statbuf.st_mtime;
1629 if (new_modtime != objfile->mtime)
1630 {
1631 struct cleanup *old_cleanups;
1632 struct section_offsets *offsets;
1633 int num_offsets;
1634 char *obfd_filename;
1635
1636 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1637 objfile->name);
1638
1639 /* There are various functions like symbol_file_add,
1640 symfile_bfd_open, syms_from_objfile, etc., which might
1641 appear to do what we want. But they have various other
1642 effects which we *don't* want. So we just do stuff
1643 ourselves. We don't worry about mapped files (for one thing,
1644 any mapped file will be out of date). */
1645
1646 /* If we get an error, blow away this objfile (not sure if
1647 that is the correct response for things like shared
1648 libraries). */
1649 old_cleanups = make_cleanup_free_objfile (objfile);
1650 /* We need to do this whenever any symbols go away. */
1651 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1652
1653 /* Clean up any state BFD has sitting around. We don't need
1654 to close the descriptor but BFD lacks a way of closing the
1655 BFD without closing the descriptor. */
1656 obfd_filename = bfd_get_filename (objfile->obfd);
1657 if (!bfd_close (objfile->obfd))
1658 error ("Can't close BFD for %s: %s", objfile->name,
1659 bfd_errmsg (bfd_get_error ()));
1660 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1661 if (objfile->obfd == NULL)
1662 error ("Can't open %s to read symbols.", objfile->name);
1663 /* bfd_openr sets cacheable to true, which is what we want. */
1664 if (!bfd_check_format (objfile->obfd, bfd_object))
1665 error ("Can't read symbols from %s: %s.", objfile->name,
1666 bfd_errmsg (bfd_get_error ()));
1667
1668 /* Save the offsets, we will nuke them with the rest of the
1669 psymbol_obstack. */
1670 num_offsets = objfile->num_sections;
1671 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1672 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1673
1674 /* Nuke all the state that we will re-read. Much of the following
1675 code which sets things to NULL really is necessary to tell
1676 other parts of GDB that there is nothing currently there. */
1677
1678 /* FIXME: Do we have to free a whole linked list, or is this
1679 enough? */
1680 if (objfile->global_psymbols.list)
1681 xmfree (objfile->md, objfile->global_psymbols.list);
1682 memset (&objfile->global_psymbols, 0,
1683 sizeof (objfile->global_psymbols));
1684 if (objfile->static_psymbols.list)
1685 xmfree (objfile->md, objfile->static_psymbols.list);
1686 memset (&objfile->static_psymbols, 0,
1687 sizeof (objfile->static_psymbols));
1688
1689 /* Free the obstacks for non-reusable objfiles */
1690 free_bcache (&objfile->psymbol_cache);
1691 obstack_free (&objfile->psymbol_obstack, 0);
1692 obstack_free (&objfile->symbol_obstack, 0);
1693 obstack_free (&objfile->type_obstack, 0);
1694 objfile->sections = NULL;
1695 objfile->symtabs = NULL;
1696 objfile->psymtabs = NULL;
1697 objfile->free_psymtabs = NULL;
1698 objfile->msymbols = NULL;
1699 objfile->minimal_symbol_count = 0;
1700 memset (&objfile->msymbol_hash, 0,
1701 sizeof (objfile->msymbol_hash));
1702 memset (&objfile->msymbol_demangled_hash, 0,
1703 sizeof (objfile->msymbol_demangled_hash));
1704 objfile->fundamental_types = NULL;
1705 if (objfile->sf != NULL)
1706 {
1707 (*objfile->sf->sym_finish) (objfile);
1708 }
1709
1710 /* We never make this a mapped file. */
1711 objfile->md = NULL;
1712 /* obstack_specify_allocation also initializes the obstack so
1713 it is empty. */
1714 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1715 xmalloc, xfree);
1716 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1717 xmalloc, xfree);
1718 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1719 xmalloc, xfree);
1720 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1721 xmalloc, xfree);
1722 if (build_objfile_section_table (objfile))
1723 {
1724 error ("Can't find the file sections in `%s': %s",
1725 objfile->name, bfd_errmsg (bfd_get_error ()));
1726 }
1727
1728 /* We use the same section offsets as from last time. I'm not
1729 sure whether that is always correct for shared libraries. */
1730 objfile->section_offsets = (struct section_offsets *)
1731 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1732 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1733 objfile->num_sections = num_offsets;
1734
1735 /* What the hell is sym_new_init for, anyway? The concept of
1736 distinguishing between the main file and additional files
1737 in this way seems rather dubious. */
1738 if (objfile == symfile_objfile)
1739 {
1740 (*objfile->sf->sym_new_init) (objfile);
1741 #ifdef HPUXHPPA
1742 RESET_HP_UX_GLOBALS ();
1743 #endif
1744 }
1745
1746 (*objfile->sf->sym_init) (objfile);
1747 clear_complaints (1, 1);
1748 /* The "mainline" parameter is a hideous hack; I think leaving it
1749 zero is OK since dbxread.c also does what it needs to do if
1750 objfile->global_psymbols.size is 0. */
1751 (*objfile->sf->sym_read) (objfile, 0);
1752 if (!have_partial_symbols () && !have_full_symbols ())
1753 {
1754 wrap_here ("");
1755 printf_filtered ("(no debugging symbols found)\n");
1756 wrap_here ("");
1757 }
1758 objfile->flags |= OBJF_SYMS;
1759
1760 /* We're done reading the symbol file; finish off complaints. */
1761 clear_complaints (0, 1);
1762
1763 /* Getting new symbols may change our opinion about what is
1764 frameless. */
1765
1766 reinit_frame_cache ();
1767
1768 /* Discard cleanups as symbol reading was successful. */
1769 discard_cleanups (old_cleanups);
1770
1771 /* If the mtime has changed between the time we set new_modtime
1772 and now, we *want* this to be out of date, so don't call stat
1773 again now. */
1774 objfile->mtime = new_modtime;
1775 reread_one = 1;
1776
1777 /* Call this after reading in a new symbol table to give target
1778 dependent code a crack at the new symbols. For instance, this
1779 could be used to update the values of target-specific symbols GDB
1780 needs to keep track of (such as _sigtramp, or whatever). */
1781
1782 TARGET_SYMFILE_POSTREAD (objfile);
1783 }
1784 }
1785 }
1786
1787 if (reread_one)
1788 clear_symtab_users ();
1789 }
1790 \f
1791
1792
1793 typedef struct
1794 {
1795 char *ext;
1796 enum language lang;
1797 }
1798 filename_language;
1799
1800 static filename_language *filename_language_table;
1801 static int fl_table_size, fl_table_next;
1802
1803 static void
1804 add_filename_language (char *ext, enum language lang)
1805 {
1806 if (fl_table_next >= fl_table_size)
1807 {
1808 fl_table_size += 10;
1809 filename_language_table = xrealloc (filename_language_table,
1810 fl_table_size);
1811 }
1812
1813 filename_language_table[fl_table_next].ext = xstrdup (ext);
1814 filename_language_table[fl_table_next].lang = lang;
1815 fl_table_next++;
1816 }
1817
1818 static char *ext_args;
1819
1820 static void
1821 set_ext_lang_command (char *args, int from_tty)
1822 {
1823 int i;
1824 char *cp = ext_args;
1825 enum language lang;
1826
1827 /* First arg is filename extension, starting with '.' */
1828 if (*cp != '.')
1829 error ("'%s': Filename extension must begin with '.'", ext_args);
1830
1831 /* Find end of first arg. */
1832 while (*cp && !isspace (*cp))
1833 cp++;
1834
1835 if (*cp == '\0')
1836 error ("'%s': two arguments required -- filename extension and language",
1837 ext_args);
1838
1839 /* Null-terminate first arg */
1840 *cp++ = '\0';
1841
1842 /* Find beginning of second arg, which should be a source language. */
1843 while (*cp && isspace (*cp))
1844 cp++;
1845
1846 if (*cp == '\0')
1847 error ("'%s': two arguments required -- filename extension and language",
1848 ext_args);
1849
1850 /* Lookup the language from among those we know. */
1851 lang = language_enum (cp);
1852
1853 /* Now lookup the filename extension: do we already know it? */
1854 for (i = 0; i < fl_table_next; i++)
1855 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1856 break;
1857
1858 if (i >= fl_table_next)
1859 {
1860 /* new file extension */
1861 add_filename_language (ext_args, lang);
1862 }
1863 else
1864 {
1865 /* redefining a previously known filename extension */
1866
1867 /* if (from_tty) */
1868 /* query ("Really make files of type %s '%s'?", */
1869 /* ext_args, language_str (lang)); */
1870
1871 xfree (filename_language_table[i].ext);
1872 filename_language_table[i].ext = xstrdup (ext_args);
1873 filename_language_table[i].lang = lang;
1874 }
1875 }
1876
1877 static void
1878 info_ext_lang_command (char *args, int from_tty)
1879 {
1880 int i;
1881
1882 printf_filtered ("Filename extensions and the languages they represent:");
1883 printf_filtered ("\n\n");
1884 for (i = 0; i < fl_table_next; i++)
1885 printf_filtered ("\t%s\t- %s\n",
1886 filename_language_table[i].ext,
1887 language_str (filename_language_table[i].lang));
1888 }
1889
1890 static void
1891 init_filename_language_table (void)
1892 {
1893 if (fl_table_size == 0) /* protect against repetition */
1894 {
1895 fl_table_size = 20;
1896 fl_table_next = 0;
1897 filename_language_table =
1898 xmalloc (fl_table_size * sizeof (*filename_language_table));
1899 add_filename_language (".c", language_c);
1900 add_filename_language (".C", language_cplus);
1901 add_filename_language (".cc", language_cplus);
1902 add_filename_language (".cp", language_cplus);
1903 add_filename_language (".cpp", language_cplus);
1904 add_filename_language (".cxx", language_cplus);
1905 add_filename_language (".c++", language_cplus);
1906 add_filename_language (".java", language_java);
1907 add_filename_language (".class", language_java);
1908 add_filename_language (".ch", language_chill);
1909 add_filename_language (".c186", language_chill);
1910 add_filename_language (".c286", language_chill);
1911 add_filename_language (".f", language_fortran);
1912 add_filename_language (".F", language_fortran);
1913 add_filename_language (".s", language_asm);
1914 add_filename_language (".S", language_asm);
1915 add_filename_language (".pas", language_pascal);
1916 add_filename_language (".p", language_pascal);
1917 add_filename_language (".pp", language_pascal);
1918 }
1919 }
1920
1921 enum language
1922 deduce_language_from_filename (char *filename)
1923 {
1924 int i;
1925 char *cp;
1926
1927 if (filename != NULL)
1928 if ((cp = strrchr (filename, '.')) != NULL)
1929 for (i = 0; i < fl_table_next; i++)
1930 if (strcmp (cp, filename_language_table[i].ext) == 0)
1931 return filename_language_table[i].lang;
1932
1933 return language_unknown;
1934 }
1935 \f
1936 /* allocate_symtab:
1937
1938 Allocate and partly initialize a new symbol table. Return a pointer
1939 to it. error() if no space.
1940
1941 Caller must set these fields:
1942 LINETABLE(symtab)
1943 symtab->blockvector
1944 symtab->dirname
1945 symtab->free_code
1946 symtab->free_ptr
1947 possibly free_named_symtabs (symtab->filename);
1948 */
1949
1950 struct symtab *
1951 allocate_symtab (char *filename, struct objfile *objfile)
1952 {
1953 register struct symtab *symtab;
1954
1955 symtab = (struct symtab *)
1956 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1957 memset (symtab, 0, sizeof (*symtab));
1958 symtab->filename = obsavestring (filename, strlen (filename),
1959 &objfile->symbol_obstack);
1960 symtab->fullname = NULL;
1961 symtab->language = deduce_language_from_filename (filename);
1962 symtab->debugformat = obsavestring ("unknown", 7,
1963 &objfile->symbol_obstack);
1964
1965 /* Hook it to the objfile it comes from */
1966
1967 symtab->objfile = objfile;
1968 symtab->next = objfile->symtabs;
1969 objfile->symtabs = symtab;
1970
1971 /* FIXME: This should go away. It is only defined for the Z8000,
1972 and the Z8000 definition of this macro doesn't have anything to
1973 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1974 here for convenience. */
1975 #ifdef INIT_EXTRA_SYMTAB_INFO
1976 INIT_EXTRA_SYMTAB_INFO (symtab);
1977 #endif
1978
1979 return (symtab);
1980 }
1981
1982 struct partial_symtab *
1983 allocate_psymtab (char *filename, struct objfile *objfile)
1984 {
1985 struct partial_symtab *psymtab;
1986
1987 if (objfile->free_psymtabs)
1988 {
1989 psymtab = objfile->free_psymtabs;
1990 objfile->free_psymtabs = psymtab->next;
1991 }
1992 else
1993 psymtab = (struct partial_symtab *)
1994 obstack_alloc (&objfile->psymbol_obstack,
1995 sizeof (struct partial_symtab));
1996
1997 memset (psymtab, 0, sizeof (struct partial_symtab));
1998 psymtab->filename = obsavestring (filename, strlen (filename),
1999 &objfile->psymbol_obstack);
2000 psymtab->symtab = NULL;
2001
2002 /* Prepend it to the psymtab list for the objfile it belongs to.
2003 Psymtabs are searched in most recent inserted -> least recent
2004 inserted order. */
2005
2006 psymtab->objfile = objfile;
2007 psymtab->next = objfile->psymtabs;
2008 objfile->psymtabs = psymtab;
2009 #if 0
2010 {
2011 struct partial_symtab **prev_pst;
2012 psymtab->objfile = objfile;
2013 psymtab->next = NULL;
2014 prev_pst = &(objfile->psymtabs);
2015 while ((*prev_pst) != NULL)
2016 prev_pst = &((*prev_pst)->next);
2017 (*prev_pst) = psymtab;
2018 }
2019 #endif
2020
2021 return (psymtab);
2022 }
2023
2024 void
2025 discard_psymtab (struct partial_symtab *pst)
2026 {
2027 struct partial_symtab **prev_pst;
2028
2029 /* From dbxread.c:
2030 Empty psymtabs happen as a result of header files which don't
2031 have any symbols in them. There can be a lot of them. But this
2032 check is wrong, in that a psymtab with N_SLINE entries but
2033 nothing else is not empty, but we don't realize that. Fixing
2034 that without slowing things down might be tricky. */
2035
2036 /* First, snip it out of the psymtab chain */
2037
2038 prev_pst = &(pst->objfile->psymtabs);
2039 while ((*prev_pst) != pst)
2040 prev_pst = &((*prev_pst)->next);
2041 (*prev_pst) = pst->next;
2042
2043 /* Next, put it on a free list for recycling */
2044
2045 pst->next = pst->objfile->free_psymtabs;
2046 pst->objfile->free_psymtabs = pst;
2047 }
2048 \f
2049
2050 /* Reset all data structures in gdb which may contain references to symbol
2051 table data. */
2052
2053 void
2054 clear_symtab_users (void)
2055 {
2056 /* Someday, we should do better than this, by only blowing away
2057 the things that really need to be blown. */
2058 clear_value_history ();
2059 clear_displays ();
2060 clear_internalvars ();
2061 breakpoint_re_set ();
2062 set_default_breakpoint (0, 0, 0, 0);
2063 current_source_symtab = 0;
2064 current_source_line = 0;
2065 clear_pc_function_cache ();
2066 if (target_new_objfile_hook)
2067 target_new_objfile_hook (NULL);
2068 }
2069
2070 static void
2071 clear_symtab_users_cleanup (void *ignore)
2072 {
2073 clear_symtab_users ();
2074 }
2075
2076 /* clear_symtab_users_once:
2077
2078 This function is run after symbol reading, or from a cleanup.
2079 If an old symbol table was obsoleted, the old symbol table
2080 has been blown away, but the other GDB data structures that may
2081 reference it have not yet been cleared or re-directed. (The old
2082 symtab was zapped, and the cleanup queued, in free_named_symtab()
2083 below.)
2084
2085 This function can be queued N times as a cleanup, or called
2086 directly; it will do all the work the first time, and then will be a
2087 no-op until the next time it is queued. This works by bumping a
2088 counter at queueing time. Much later when the cleanup is run, or at
2089 the end of symbol processing (in case the cleanup is discarded), if
2090 the queued count is greater than the "done-count", we do the work
2091 and set the done-count to the queued count. If the queued count is
2092 less than or equal to the done-count, we just ignore the call. This
2093 is needed because reading a single .o file will often replace many
2094 symtabs (one per .h file, for example), and we don't want to reset
2095 the breakpoints N times in the user's face.
2096
2097 The reason we both queue a cleanup, and call it directly after symbol
2098 reading, is because the cleanup protects us in case of errors, but is
2099 discarded if symbol reading is successful. */
2100
2101 #if 0
2102 /* FIXME: As free_named_symtabs is currently a big noop this function
2103 is no longer needed. */
2104 static void clear_symtab_users_once (void);
2105
2106 static int clear_symtab_users_queued;
2107 static int clear_symtab_users_done;
2108
2109 static void
2110 clear_symtab_users_once (void)
2111 {
2112 /* Enforce once-per-`do_cleanups'-semantics */
2113 if (clear_symtab_users_queued <= clear_symtab_users_done)
2114 return;
2115 clear_symtab_users_done = clear_symtab_users_queued;
2116
2117 clear_symtab_users ();
2118 }
2119 #endif
2120
2121 /* Delete the specified psymtab, and any others that reference it. */
2122
2123 static void
2124 cashier_psymtab (struct partial_symtab *pst)
2125 {
2126 struct partial_symtab *ps, *pprev = NULL;
2127 int i;
2128
2129 /* Find its previous psymtab in the chain */
2130 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2131 {
2132 if (ps == pst)
2133 break;
2134 pprev = ps;
2135 }
2136
2137 if (ps)
2138 {
2139 /* Unhook it from the chain. */
2140 if (ps == pst->objfile->psymtabs)
2141 pst->objfile->psymtabs = ps->next;
2142 else
2143 pprev->next = ps->next;
2144
2145 /* FIXME, we can't conveniently deallocate the entries in the
2146 partial_symbol lists (global_psymbols/static_psymbols) that
2147 this psymtab points to. These just take up space until all
2148 the psymtabs are reclaimed. Ditto the dependencies list and
2149 filename, which are all in the psymbol_obstack. */
2150
2151 /* We need to cashier any psymtab that has this one as a dependency... */
2152 again:
2153 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2154 {
2155 for (i = 0; i < ps->number_of_dependencies; i++)
2156 {
2157 if (ps->dependencies[i] == pst)
2158 {
2159 cashier_psymtab (ps);
2160 goto again; /* Must restart, chain has been munged. */
2161 }
2162 }
2163 }
2164 }
2165 }
2166
2167 /* If a symtab or psymtab for filename NAME is found, free it along
2168 with any dependent breakpoints, displays, etc.
2169 Used when loading new versions of object modules with the "add-file"
2170 command. This is only called on the top-level symtab or psymtab's name;
2171 it is not called for subsidiary files such as .h files.
2172
2173 Return value is 1 if we blew away the environment, 0 if not.
2174 FIXME. The return value appears to never be used.
2175
2176 FIXME. I think this is not the best way to do this. We should
2177 work on being gentler to the environment while still cleaning up
2178 all stray pointers into the freed symtab. */
2179
2180 int
2181 free_named_symtabs (char *name)
2182 {
2183 #if 0
2184 /* FIXME: With the new method of each objfile having it's own
2185 psymtab list, this function needs serious rethinking. In particular,
2186 why was it ever necessary to toss psymtabs with specific compilation
2187 unit filenames, as opposed to all psymtabs from a particular symbol
2188 file? -- fnf
2189 Well, the answer is that some systems permit reloading of particular
2190 compilation units. We want to blow away any old info about these
2191 compilation units, regardless of which objfiles they arrived in. --gnu. */
2192
2193 register struct symtab *s;
2194 register struct symtab *prev;
2195 register struct partial_symtab *ps;
2196 struct blockvector *bv;
2197 int blewit = 0;
2198
2199 /* We only wack things if the symbol-reload switch is set. */
2200 if (!symbol_reloading)
2201 return 0;
2202
2203 /* Some symbol formats have trouble providing file names... */
2204 if (name == 0 || *name == '\0')
2205 return 0;
2206
2207 /* Look for a psymtab with the specified name. */
2208
2209 again2:
2210 for (ps = partial_symtab_list; ps; ps = ps->next)
2211 {
2212 if (STREQ (name, ps->filename))
2213 {
2214 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2215 goto again2; /* Must restart, chain has been munged */
2216 }
2217 }
2218
2219 /* Look for a symtab with the specified name. */
2220
2221 for (s = symtab_list; s; s = s->next)
2222 {
2223 if (STREQ (name, s->filename))
2224 break;
2225 prev = s;
2226 }
2227
2228 if (s)
2229 {
2230 if (s == symtab_list)
2231 symtab_list = s->next;
2232 else
2233 prev->next = s->next;
2234
2235 /* For now, queue a delete for all breakpoints, displays, etc., whether
2236 or not they depend on the symtab being freed. This should be
2237 changed so that only those data structures affected are deleted. */
2238
2239 /* But don't delete anything if the symtab is empty.
2240 This test is necessary due to a bug in "dbxread.c" that
2241 causes empty symtabs to be created for N_SO symbols that
2242 contain the pathname of the object file. (This problem
2243 has been fixed in GDB 3.9x). */
2244
2245 bv = BLOCKVECTOR (s);
2246 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2247 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2248 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2249 {
2250 complain (&oldsyms_complaint, name);
2251
2252 clear_symtab_users_queued++;
2253 make_cleanup (clear_symtab_users_once, 0);
2254 blewit = 1;
2255 }
2256 else
2257 {
2258 complain (&empty_symtab_complaint, name);
2259 }
2260
2261 free_symtab (s);
2262 }
2263 else
2264 {
2265 /* It is still possible that some breakpoints will be affected
2266 even though no symtab was found, since the file might have
2267 been compiled without debugging, and hence not be associated
2268 with a symtab. In order to handle this correctly, we would need
2269 to keep a list of text address ranges for undebuggable files.
2270 For now, we do nothing, since this is a fairly obscure case. */
2271 ;
2272 }
2273
2274 /* FIXME, what about the minimal symbol table? */
2275 return blewit;
2276 #else
2277 return (0);
2278 #endif
2279 }
2280 \f
2281 /* Allocate and partially fill a partial symtab. It will be
2282 completely filled at the end of the symbol list.
2283
2284 FILENAME is the name of the symbol-file we are reading from. */
2285
2286 struct partial_symtab *
2287 start_psymtab_common (struct objfile *objfile,
2288 struct section_offsets *section_offsets, char *filename,
2289 CORE_ADDR textlow, struct partial_symbol **global_syms,
2290 struct partial_symbol **static_syms)
2291 {
2292 struct partial_symtab *psymtab;
2293
2294 psymtab = allocate_psymtab (filename, objfile);
2295 psymtab->section_offsets = section_offsets;
2296 psymtab->textlow = textlow;
2297 psymtab->texthigh = psymtab->textlow; /* default */
2298 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2299 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2300 return (psymtab);
2301 }
2302 \f
2303 /* Add a symbol with a long value to a psymtab.
2304 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2305
2306 void
2307 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2308 enum address_class class,
2309 struct psymbol_allocation_list *list, long val, /* Value as a long */
2310 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2311 enum language language, struct objfile *objfile)
2312 {
2313 register struct partial_symbol *psym;
2314 char *buf = alloca (namelength + 1);
2315 /* psymbol is static so that there will be no uninitialized gaps in the
2316 structure which might contain random data, causing cache misses in
2317 bcache. */
2318 static struct partial_symbol psymbol;
2319
2320 /* Create local copy of the partial symbol */
2321 memcpy (buf, name, namelength);
2322 buf[namelength] = '\0';
2323 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2324 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2325 if (val != 0)
2326 {
2327 SYMBOL_VALUE (&psymbol) = val;
2328 }
2329 else
2330 {
2331 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2332 }
2333 SYMBOL_SECTION (&psymbol) = 0;
2334 SYMBOL_LANGUAGE (&psymbol) = language;
2335 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2336 PSYMBOL_CLASS (&psymbol) = class;
2337 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2338
2339 /* Stash the partial symbol away in the cache */
2340 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2341
2342 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2343 if (list->next >= list->list + list->size)
2344 {
2345 extend_psymbol_list (list, objfile);
2346 }
2347 *list->next++ = psym;
2348 OBJSTAT (objfile, n_psyms++);
2349 }
2350
2351 /* Add a symbol with a long value to a psymtab. This differs from
2352 * add_psymbol_to_list above in taking both a mangled and a demangled
2353 * name. */
2354
2355 void
2356 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2357 int dem_namelength, namespace_enum namespace,
2358 enum address_class class,
2359 struct psymbol_allocation_list *list, long val, /* Value as a long */
2360 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2361 enum language language,
2362 struct objfile *objfile)
2363 {
2364 register struct partial_symbol *psym;
2365 char *buf = alloca (namelength + 1);
2366 /* psymbol is static so that there will be no uninitialized gaps in the
2367 structure which might contain random data, causing cache misses in
2368 bcache. */
2369 static struct partial_symbol psymbol;
2370
2371 /* Create local copy of the partial symbol */
2372
2373 memcpy (buf, name, namelength);
2374 buf[namelength] = '\0';
2375 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2376
2377 buf = alloca (dem_namelength + 1);
2378 memcpy (buf, dem_name, dem_namelength);
2379 buf[dem_namelength] = '\0';
2380
2381 switch (language)
2382 {
2383 case language_c:
2384 case language_cplus:
2385 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2386 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2387 break;
2388 case language_chill:
2389 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2390 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2391
2392 /* FIXME What should be done for the default case? Ignoring for now. */
2393 }
2394
2395 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2396 if (val != 0)
2397 {
2398 SYMBOL_VALUE (&psymbol) = val;
2399 }
2400 else
2401 {
2402 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2403 }
2404 SYMBOL_SECTION (&psymbol) = 0;
2405 SYMBOL_LANGUAGE (&psymbol) = language;
2406 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2407 PSYMBOL_CLASS (&psymbol) = class;
2408 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2409
2410 /* Stash the partial symbol away in the cache */
2411 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2412
2413 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2414 if (list->next >= list->list + list->size)
2415 {
2416 extend_psymbol_list (list, objfile);
2417 }
2418 *list->next++ = psym;
2419 OBJSTAT (objfile, n_psyms++);
2420 }
2421
2422 /* Initialize storage for partial symbols. */
2423
2424 void
2425 init_psymbol_list (struct objfile *objfile, int total_symbols)
2426 {
2427 /* Free any previously allocated psymbol lists. */
2428
2429 if (objfile->global_psymbols.list)
2430 {
2431 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2432 }
2433 if (objfile->static_psymbols.list)
2434 {
2435 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2436 }
2437
2438 /* Current best guess is that approximately a twentieth
2439 of the total symbols (in a debugging file) are global or static
2440 oriented symbols */
2441
2442 objfile->global_psymbols.size = total_symbols / 10;
2443 objfile->static_psymbols.size = total_symbols / 10;
2444
2445 if (objfile->global_psymbols.size > 0)
2446 {
2447 objfile->global_psymbols.next =
2448 objfile->global_psymbols.list = (struct partial_symbol **)
2449 xmmalloc (objfile->md, (objfile->global_psymbols.size
2450 * sizeof (struct partial_symbol *)));
2451 }
2452 if (objfile->static_psymbols.size > 0)
2453 {
2454 objfile->static_psymbols.next =
2455 objfile->static_psymbols.list = (struct partial_symbol **)
2456 xmmalloc (objfile->md, (objfile->static_psymbols.size
2457 * sizeof (struct partial_symbol *)));
2458 }
2459 }
2460
2461 /* OVERLAYS:
2462 The following code implements an abstraction for debugging overlay sections.
2463
2464 The target model is as follows:
2465 1) The gnu linker will permit multiple sections to be mapped into the
2466 same VMA, each with its own unique LMA (or load address).
2467 2) It is assumed that some runtime mechanism exists for mapping the
2468 sections, one by one, from the load address into the VMA address.
2469 3) This code provides a mechanism for gdb to keep track of which
2470 sections should be considered to be mapped from the VMA to the LMA.
2471 This information is used for symbol lookup, and memory read/write.
2472 For instance, if a section has been mapped then its contents
2473 should be read from the VMA, otherwise from the LMA.
2474
2475 Two levels of debugger support for overlays are available. One is
2476 "manual", in which the debugger relies on the user to tell it which
2477 overlays are currently mapped. This level of support is
2478 implemented entirely in the core debugger, and the information about
2479 whether a section is mapped is kept in the objfile->obj_section table.
2480
2481 The second level of support is "automatic", and is only available if
2482 the target-specific code provides functionality to read the target's
2483 overlay mapping table, and translate its contents for the debugger
2484 (by updating the mapped state information in the obj_section tables).
2485
2486 The interface is as follows:
2487 User commands:
2488 overlay map <name> -- tell gdb to consider this section mapped
2489 overlay unmap <name> -- tell gdb to consider this section unmapped
2490 overlay list -- list the sections that GDB thinks are mapped
2491 overlay read-target -- get the target's state of what's mapped
2492 overlay off/manual/auto -- set overlay debugging state
2493 Functional interface:
2494 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2495 section, return that section.
2496 find_pc_overlay(pc): find any overlay section that contains
2497 the pc, either in its VMA or its LMA
2498 overlay_is_mapped(sect): true if overlay is marked as mapped
2499 section_is_overlay(sect): true if section's VMA != LMA
2500 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2501 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2502 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2503 overlay_mapped_address(...): map an address from section's LMA to VMA
2504 overlay_unmapped_address(...): map an address from section's VMA to LMA
2505 symbol_overlayed_address(...): Return a "current" address for symbol:
2506 either in VMA or LMA depending on whether
2507 the symbol's section is currently mapped
2508 */
2509
2510 /* Overlay debugging state: */
2511
2512 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2513 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2514
2515 /* Target vector for refreshing overlay mapped state */
2516 static void simple_overlay_update (struct obj_section *);
2517 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2518
2519 /* Function: section_is_overlay (SECTION)
2520 Returns true if SECTION has VMA not equal to LMA, ie.
2521 SECTION is loaded at an address different from where it will "run". */
2522
2523 int
2524 section_is_overlay (asection *section)
2525 {
2526 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2527
2528 if (overlay_debugging)
2529 if (section && section->lma != 0 &&
2530 section->vma != section->lma)
2531 return 1;
2532
2533 return 0;
2534 }
2535
2536 /* Function: overlay_invalidate_all (void)
2537 Invalidate the mapped state of all overlay sections (mark it as stale). */
2538
2539 static void
2540 overlay_invalidate_all (void)
2541 {
2542 struct objfile *objfile;
2543 struct obj_section *sect;
2544
2545 ALL_OBJSECTIONS (objfile, sect)
2546 if (section_is_overlay (sect->the_bfd_section))
2547 sect->ovly_mapped = -1;
2548 }
2549
2550 /* Function: overlay_is_mapped (SECTION)
2551 Returns true if section is an overlay, and is currently mapped.
2552 Private: public access is thru function section_is_mapped.
2553
2554 Access to the ovly_mapped flag is restricted to this function, so
2555 that we can do automatic update. If the global flag
2556 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2557 overlay_invalidate_all. If the mapped state of the particular
2558 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2559
2560 static int
2561 overlay_is_mapped (struct obj_section *osect)
2562 {
2563 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2564 return 0;
2565
2566 switch (overlay_debugging)
2567 {
2568 default:
2569 case 0:
2570 return 0; /* overlay debugging off */
2571 case -1: /* overlay debugging automatic */
2572 /* Unles there is a target_overlay_update function,
2573 there's really nothing useful to do here (can't really go auto) */
2574 if (target_overlay_update)
2575 {
2576 if (overlay_cache_invalid)
2577 {
2578 overlay_invalidate_all ();
2579 overlay_cache_invalid = 0;
2580 }
2581 if (osect->ovly_mapped == -1)
2582 (*target_overlay_update) (osect);
2583 }
2584 /* fall thru to manual case */
2585 case 1: /* overlay debugging manual */
2586 return osect->ovly_mapped == 1;
2587 }
2588 }
2589
2590 /* Function: section_is_mapped
2591 Returns true if section is an overlay, and is currently mapped. */
2592
2593 int
2594 section_is_mapped (asection *section)
2595 {
2596 struct objfile *objfile;
2597 struct obj_section *osect;
2598
2599 if (overlay_debugging)
2600 if (section && section_is_overlay (section))
2601 ALL_OBJSECTIONS (objfile, osect)
2602 if (osect->the_bfd_section == section)
2603 return overlay_is_mapped (osect);
2604
2605 return 0;
2606 }
2607
2608 /* Function: pc_in_unmapped_range
2609 If PC falls into the lma range of SECTION, return true, else false. */
2610
2611 CORE_ADDR
2612 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2613 {
2614 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2615
2616 int size;
2617
2618 if (overlay_debugging)
2619 if (section && section_is_overlay (section))
2620 {
2621 size = bfd_get_section_size_before_reloc (section);
2622 if (section->lma <= pc && pc < section->lma + size)
2623 return 1;
2624 }
2625 return 0;
2626 }
2627
2628 /* Function: pc_in_mapped_range
2629 If PC falls into the vma range of SECTION, return true, else false. */
2630
2631 CORE_ADDR
2632 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2633 {
2634 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2635
2636 int size;
2637
2638 if (overlay_debugging)
2639 if (section && section_is_overlay (section))
2640 {
2641 size = bfd_get_section_size_before_reloc (section);
2642 if (section->vma <= pc && pc < section->vma + size)
2643 return 1;
2644 }
2645 return 0;
2646 }
2647
2648
2649 /* Return true if the mapped ranges of sections A and B overlap, false
2650 otherwise. */
2651 int
2652 sections_overlap (asection *a, asection *b)
2653 {
2654 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2655
2656 CORE_ADDR a_start = a->vma;
2657 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2658 CORE_ADDR b_start = b->vma;
2659 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2660
2661 return (a_start < b_end && b_start < a_end);
2662 }
2663
2664 /* Function: overlay_unmapped_address (PC, SECTION)
2665 Returns the address corresponding to PC in the unmapped (load) range.
2666 May be the same as PC. */
2667
2668 CORE_ADDR
2669 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2670 {
2671 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2672
2673 if (overlay_debugging)
2674 if (section && section_is_overlay (section) &&
2675 pc_in_mapped_range (pc, section))
2676 return pc + section->lma - section->vma;
2677
2678 return pc;
2679 }
2680
2681 /* Function: overlay_mapped_address (PC, SECTION)
2682 Returns the address corresponding to PC in the mapped (runtime) range.
2683 May be the same as PC. */
2684
2685 CORE_ADDR
2686 overlay_mapped_address (CORE_ADDR pc, asection *section)
2687 {
2688 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2689
2690 if (overlay_debugging)
2691 if (section && section_is_overlay (section) &&
2692 pc_in_unmapped_range (pc, section))
2693 return pc + section->vma - section->lma;
2694
2695 return pc;
2696 }
2697
2698
2699 /* Function: symbol_overlayed_address
2700 Return one of two addresses (relative to the VMA or to the LMA),
2701 depending on whether the section is mapped or not. */
2702
2703 CORE_ADDR
2704 symbol_overlayed_address (CORE_ADDR address, asection *section)
2705 {
2706 if (overlay_debugging)
2707 {
2708 /* If the symbol has no section, just return its regular address. */
2709 if (section == 0)
2710 return address;
2711 /* If the symbol's section is not an overlay, just return its address */
2712 if (!section_is_overlay (section))
2713 return address;
2714 /* If the symbol's section is mapped, just return its address */
2715 if (section_is_mapped (section))
2716 return address;
2717 /*
2718 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2719 * then return its LOADED address rather than its vma address!!
2720 */
2721 return overlay_unmapped_address (address, section);
2722 }
2723 return address;
2724 }
2725
2726 /* Function: find_pc_overlay (PC)
2727 Return the best-match overlay section for PC:
2728 If PC matches a mapped overlay section's VMA, return that section.
2729 Else if PC matches an unmapped section's VMA, return that section.
2730 Else if PC matches an unmapped section's LMA, return that section. */
2731
2732 asection *
2733 find_pc_overlay (CORE_ADDR pc)
2734 {
2735 struct objfile *objfile;
2736 struct obj_section *osect, *best_match = NULL;
2737
2738 if (overlay_debugging)
2739 ALL_OBJSECTIONS (objfile, osect)
2740 if (section_is_overlay (osect->the_bfd_section))
2741 {
2742 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2743 {
2744 if (overlay_is_mapped (osect))
2745 return osect->the_bfd_section;
2746 else
2747 best_match = osect;
2748 }
2749 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2750 best_match = osect;
2751 }
2752 return best_match ? best_match->the_bfd_section : NULL;
2753 }
2754
2755 /* Function: find_pc_mapped_section (PC)
2756 If PC falls into the VMA address range of an overlay section that is
2757 currently marked as MAPPED, return that section. Else return NULL. */
2758
2759 asection *
2760 find_pc_mapped_section (CORE_ADDR pc)
2761 {
2762 struct objfile *objfile;
2763 struct obj_section *osect;
2764
2765 if (overlay_debugging)
2766 ALL_OBJSECTIONS (objfile, osect)
2767 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2768 overlay_is_mapped (osect))
2769 return osect->the_bfd_section;
2770
2771 return NULL;
2772 }
2773
2774 /* Function: list_overlays_command
2775 Print a list of mapped sections and their PC ranges */
2776
2777 void
2778 list_overlays_command (char *args, int from_tty)
2779 {
2780 int nmapped = 0;
2781 struct objfile *objfile;
2782 struct obj_section *osect;
2783
2784 if (overlay_debugging)
2785 ALL_OBJSECTIONS (objfile, osect)
2786 if (overlay_is_mapped (osect))
2787 {
2788 const char *name;
2789 bfd_vma lma, vma;
2790 int size;
2791
2792 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2793 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2794 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2795 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2796
2797 printf_filtered ("Section %s, loaded at ", name);
2798 print_address_numeric (lma, 1, gdb_stdout);
2799 puts_filtered (" - ");
2800 print_address_numeric (lma + size, 1, gdb_stdout);
2801 printf_filtered (", mapped at ");
2802 print_address_numeric (vma, 1, gdb_stdout);
2803 puts_filtered (" - ");
2804 print_address_numeric (vma + size, 1, gdb_stdout);
2805 puts_filtered ("\n");
2806
2807 nmapped++;
2808 }
2809 if (nmapped == 0)
2810 printf_filtered ("No sections are mapped.\n");
2811 }
2812
2813 /* Function: map_overlay_command
2814 Mark the named section as mapped (ie. residing at its VMA address). */
2815
2816 void
2817 map_overlay_command (char *args, int from_tty)
2818 {
2819 struct objfile *objfile, *objfile2;
2820 struct obj_section *sec, *sec2;
2821 asection *bfdsec;
2822
2823 if (!overlay_debugging)
2824 error ("\
2825 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2826 the 'overlay manual' command.");
2827
2828 if (args == 0 || *args == 0)
2829 error ("Argument required: name of an overlay section");
2830
2831 /* First, find a section matching the user supplied argument */
2832 ALL_OBJSECTIONS (objfile, sec)
2833 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2834 {
2835 /* Now, check to see if the section is an overlay. */
2836 bfdsec = sec->the_bfd_section;
2837 if (!section_is_overlay (bfdsec))
2838 continue; /* not an overlay section */
2839
2840 /* Mark the overlay as "mapped" */
2841 sec->ovly_mapped = 1;
2842
2843 /* Next, make a pass and unmap any sections that are
2844 overlapped by this new section: */
2845 ALL_OBJSECTIONS (objfile2, sec2)
2846 if (sec2->ovly_mapped
2847 && sec != sec2
2848 && sec->the_bfd_section != sec2->the_bfd_section
2849 && sections_overlap (sec->the_bfd_section,
2850 sec2->the_bfd_section))
2851 {
2852 if (info_verbose)
2853 printf_filtered ("Note: section %s unmapped by overlap\n",
2854 bfd_section_name (objfile->obfd,
2855 sec2->the_bfd_section));
2856 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2857 }
2858 return;
2859 }
2860 error ("No overlay section called %s", args);
2861 }
2862
2863 /* Function: unmap_overlay_command
2864 Mark the overlay section as unmapped
2865 (ie. resident in its LMA address range, rather than the VMA range). */
2866
2867 void
2868 unmap_overlay_command (char *args, int from_tty)
2869 {
2870 struct objfile *objfile;
2871 struct obj_section *sec;
2872
2873 if (!overlay_debugging)
2874 error ("\
2875 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2876 the 'overlay manual' command.");
2877
2878 if (args == 0 || *args == 0)
2879 error ("Argument required: name of an overlay section");
2880
2881 /* First, find a section matching the user supplied argument */
2882 ALL_OBJSECTIONS (objfile, sec)
2883 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2884 {
2885 if (!sec->ovly_mapped)
2886 error ("Section %s is not mapped", args);
2887 sec->ovly_mapped = 0;
2888 return;
2889 }
2890 error ("No overlay section called %s", args);
2891 }
2892
2893 /* Function: overlay_auto_command
2894 A utility command to turn on overlay debugging.
2895 Possibly this should be done via a set/show command. */
2896
2897 static void
2898 overlay_auto_command (char *args, int from_tty)
2899 {
2900 overlay_debugging = -1;
2901 if (info_verbose)
2902 printf_filtered ("Automatic overlay debugging enabled.");
2903 }
2904
2905 /* Function: overlay_manual_command
2906 A utility command to turn on overlay debugging.
2907 Possibly this should be done via a set/show command. */
2908
2909 static void
2910 overlay_manual_command (char *args, int from_tty)
2911 {
2912 overlay_debugging = 1;
2913 if (info_verbose)
2914 printf_filtered ("Overlay debugging enabled.");
2915 }
2916
2917 /* Function: overlay_off_command
2918 A utility command to turn on overlay debugging.
2919 Possibly this should be done via a set/show command. */
2920
2921 static void
2922 overlay_off_command (char *args, int from_tty)
2923 {
2924 overlay_debugging = 0;
2925 if (info_verbose)
2926 printf_filtered ("Overlay debugging disabled.");
2927 }
2928
2929 static void
2930 overlay_load_command (char *args, int from_tty)
2931 {
2932 if (target_overlay_update)
2933 (*target_overlay_update) (NULL);
2934 else
2935 error ("This target does not know how to read its overlay state.");
2936 }
2937
2938 /* Function: overlay_command
2939 A place-holder for a mis-typed command */
2940
2941 /* Command list chain containing all defined "overlay" subcommands. */
2942 struct cmd_list_element *overlaylist;
2943
2944 static void
2945 overlay_command (char *args, int from_tty)
2946 {
2947 printf_unfiltered
2948 ("\"overlay\" must be followed by the name of an overlay command.\n");
2949 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2950 }
2951
2952
2953 /* Target Overlays for the "Simplest" overlay manager:
2954
2955 This is GDB's default target overlay layer. It works with the
2956 minimal overlay manager supplied as an example by Cygnus. The
2957 entry point is via a function pointer "target_overlay_update",
2958 so targets that use a different runtime overlay manager can
2959 substitute their own overlay_update function and take over the
2960 function pointer.
2961
2962 The overlay_update function pokes around in the target's data structures
2963 to see what overlays are mapped, and updates GDB's overlay mapping with
2964 this information.
2965
2966 In this simple implementation, the target data structures are as follows:
2967 unsigned _novlys; /# number of overlay sections #/
2968 unsigned _ovly_table[_novlys][4] = {
2969 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2970 {..., ..., ..., ...},
2971 }
2972 unsigned _novly_regions; /# number of overlay regions #/
2973 unsigned _ovly_region_table[_novly_regions][3] = {
2974 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2975 {..., ..., ...},
2976 }
2977 These functions will attempt to update GDB's mappedness state in the
2978 symbol section table, based on the target's mappedness state.
2979
2980 To do this, we keep a cached copy of the target's _ovly_table, and
2981 attempt to detect when the cached copy is invalidated. The main
2982 entry point is "simple_overlay_update(SECT), which looks up SECT in
2983 the cached table and re-reads only the entry for that section from
2984 the target (whenever possible).
2985 */
2986
2987 /* Cached, dynamically allocated copies of the target data structures: */
2988 static unsigned (*cache_ovly_table)[4] = 0;
2989 #if 0
2990 static unsigned (*cache_ovly_region_table)[3] = 0;
2991 #endif
2992 static unsigned cache_novlys = 0;
2993 #if 0
2994 static unsigned cache_novly_regions = 0;
2995 #endif
2996 static CORE_ADDR cache_ovly_table_base = 0;
2997 #if 0
2998 static CORE_ADDR cache_ovly_region_table_base = 0;
2999 #endif
3000 enum ovly_index
3001 {
3002 VMA, SIZE, LMA, MAPPED
3003 };
3004 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3005
3006 /* Throw away the cached copy of _ovly_table */
3007 static void
3008 simple_free_overlay_table (void)
3009 {
3010 if (cache_ovly_table)
3011 xfree (cache_ovly_table);
3012 cache_novlys = 0;
3013 cache_ovly_table = NULL;
3014 cache_ovly_table_base = 0;
3015 }
3016
3017 #if 0
3018 /* Throw away the cached copy of _ovly_region_table */
3019 static void
3020 simple_free_overlay_region_table (void)
3021 {
3022 if (cache_ovly_region_table)
3023 xfree (cache_ovly_region_table);
3024 cache_novly_regions = 0;
3025 cache_ovly_region_table = NULL;
3026 cache_ovly_region_table_base = 0;
3027 }
3028 #endif
3029
3030 /* Read an array of ints from the target into a local buffer.
3031 Convert to host order. int LEN is number of ints */
3032 static void
3033 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3034 {
3035 /* FIXME (alloca): Not safe if array is very large. */
3036 char *buf = alloca (len * TARGET_LONG_BYTES);
3037 int i;
3038
3039 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3040 for (i = 0; i < len; i++)
3041 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3042 TARGET_LONG_BYTES);
3043 }
3044
3045 /* Find and grab a copy of the target _ovly_table
3046 (and _novlys, which is needed for the table's size) */
3047 static int
3048 simple_read_overlay_table (void)
3049 {
3050 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3051
3052 simple_free_overlay_table ();
3053 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3054 if (! novlys_msym)
3055 {
3056 error ("Error reading inferior's overlay table: "
3057 "couldn't find `_novlys' variable\n"
3058 "in inferior. Use `overlay manual' mode.");
3059 return 0;
3060 }
3061
3062 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3063 if (! ovly_table_msym)
3064 {
3065 error ("Error reading inferior's overlay table: couldn't find "
3066 "`_ovly_table' array\n"
3067 "in inferior. Use `overlay manual' mode.");
3068 return 0;
3069 }
3070
3071 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3072 cache_ovly_table
3073 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3074 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3075 read_target_long_array (cache_ovly_table_base,
3076 (int *) cache_ovly_table,
3077 cache_novlys * 4);
3078
3079 return 1; /* SUCCESS */
3080 }
3081
3082 #if 0
3083 /* Find and grab a copy of the target _ovly_region_table
3084 (and _novly_regions, which is needed for the table's size) */
3085 static int
3086 simple_read_overlay_region_table (void)
3087 {
3088 struct minimal_symbol *msym;
3089
3090 simple_free_overlay_region_table ();
3091 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3092 if (msym != NULL)
3093 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3094 else
3095 return 0; /* failure */
3096 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3097 if (cache_ovly_region_table != NULL)
3098 {
3099 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3100 if (msym != NULL)
3101 {
3102 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3103 read_target_long_array (cache_ovly_region_table_base,
3104 (int *) cache_ovly_region_table,
3105 cache_novly_regions * 3);
3106 }
3107 else
3108 return 0; /* failure */
3109 }
3110 else
3111 return 0; /* failure */
3112 return 1; /* SUCCESS */
3113 }
3114 #endif
3115
3116 /* Function: simple_overlay_update_1
3117 A helper function for simple_overlay_update. Assuming a cached copy
3118 of _ovly_table exists, look through it to find an entry whose vma,
3119 lma and size match those of OSECT. Re-read the entry and make sure
3120 it still matches OSECT (else the table may no longer be valid).
3121 Set OSECT's mapped state to match the entry. Return: 1 for
3122 success, 0 for failure. */
3123
3124 static int
3125 simple_overlay_update_1 (struct obj_section *osect)
3126 {
3127 int i, size;
3128 bfd *obfd = osect->objfile->obfd;
3129 asection *bsect = osect->the_bfd_section;
3130
3131 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3132 for (i = 0; i < cache_novlys; i++)
3133 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3134 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3135 /* && cache_ovly_table[i][SIZE] == size */ )
3136 {
3137 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3138 (int *) cache_ovly_table[i], 4);
3139 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3140 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3141 /* && cache_ovly_table[i][SIZE] == size */ )
3142 {
3143 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3144 return 1;
3145 }
3146 else /* Warning! Warning! Target's ovly table has changed! */
3147 return 0;
3148 }
3149 return 0;
3150 }
3151
3152 /* Function: simple_overlay_update
3153 If OSECT is NULL, then update all sections' mapped state
3154 (after re-reading the entire target _ovly_table).
3155 If OSECT is non-NULL, then try to find a matching entry in the
3156 cached ovly_table and update only OSECT's mapped state.
3157 If a cached entry can't be found or the cache isn't valid, then
3158 re-read the entire cache, and go ahead and update all sections. */
3159
3160 static void
3161 simple_overlay_update (struct obj_section *osect)
3162 {
3163 struct objfile *objfile;
3164
3165 /* Were we given an osect to look up? NULL means do all of them. */
3166 if (osect)
3167 /* Have we got a cached copy of the target's overlay table? */
3168 if (cache_ovly_table != NULL)
3169 /* Does its cached location match what's currently in the symtab? */
3170 if (cache_ovly_table_base ==
3171 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3172 /* Then go ahead and try to look up this single section in the cache */
3173 if (simple_overlay_update_1 (osect))
3174 /* Found it! We're done. */
3175 return;
3176
3177 /* Cached table no good: need to read the entire table anew.
3178 Or else we want all the sections, in which case it's actually
3179 more efficient to read the whole table in one block anyway. */
3180
3181 if (! simple_read_overlay_table ())
3182 return;
3183
3184 /* Now may as well update all sections, even if only one was requested. */
3185 ALL_OBJSECTIONS (objfile, osect)
3186 if (section_is_overlay (osect->the_bfd_section))
3187 {
3188 int i, size;
3189 bfd *obfd = osect->objfile->obfd;
3190 asection *bsect = osect->the_bfd_section;
3191
3192 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3193 for (i = 0; i < cache_novlys; i++)
3194 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3195 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3196 /* && cache_ovly_table[i][SIZE] == size */ )
3197 { /* obj_section matches i'th entry in ovly_table */
3198 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3199 break; /* finished with inner for loop: break out */
3200 }
3201 }
3202 }
3203
3204
3205 void
3206 _initialize_symfile (void)
3207 {
3208 struct cmd_list_element *c;
3209
3210 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3211 "Load symbol table from executable file FILE.\n\
3212 The `file' command can also load symbol tables, as well as setting the file\n\
3213 to execute.", &cmdlist);
3214 c->completer = filename_completer;
3215
3216 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3217 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3218 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3219 ADDR is the starting address of the file's text.\n\
3220 The optional arguments are section-name section-address pairs and\n\
3221 should be specified if the data and bss segments are not contiguous\n\
3222 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3223 &cmdlist);
3224 c->completer = filename_completer;
3225
3226 c = add_cmd ("add-shared-symbol-files", class_files,
3227 add_shared_symbol_files_command,
3228 "Load the symbols from shared objects in the dynamic linker's link map.",
3229 &cmdlist);
3230 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3231 &cmdlist);
3232
3233 c = add_cmd ("load", class_files, load_command,
3234 "Dynamically load FILE into the running program, and record its symbols\n\
3235 for access from GDB.", &cmdlist);
3236 c->completer = filename_completer;
3237
3238 add_show_from_set
3239 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3240 (char *) &symbol_reloading,
3241 "Set dynamic symbol table reloading multiple times in one run.",
3242 &setlist),
3243 &showlist);
3244
3245 add_prefix_cmd ("overlay", class_support, overlay_command,
3246 "Commands for debugging overlays.", &overlaylist,
3247 "overlay ", 0, &cmdlist);
3248
3249 add_com_alias ("ovly", "overlay", class_alias, 1);
3250 add_com_alias ("ov", "overlay", class_alias, 1);
3251
3252 add_cmd ("map-overlay", class_support, map_overlay_command,
3253 "Assert that an overlay section is mapped.", &overlaylist);
3254
3255 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3256 "Assert that an overlay section is unmapped.", &overlaylist);
3257
3258 add_cmd ("list-overlays", class_support, list_overlays_command,
3259 "List mappings of overlay sections.", &overlaylist);
3260
3261 add_cmd ("manual", class_support, overlay_manual_command,
3262 "Enable overlay debugging.", &overlaylist);
3263 add_cmd ("off", class_support, overlay_off_command,
3264 "Disable overlay debugging.", &overlaylist);
3265 add_cmd ("auto", class_support, overlay_auto_command,
3266 "Enable automatic overlay debugging.", &overlaylist);
3267 add_cmd ("load-target", class_support, overlay_load_command,
3268 "Read the overlay mapping state from the target.", &overlaylist);
3269
3270 /* Filename extension to source language lookup table: */
3271 init_filename_language_table ();
3272 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3273 (char *) &ext_args,
3274 "Set mapping between filename extension and source language.\n\
3275 Usage: set extension-language .foo bar",
3276 &setlist);
3277 c->function.cfunc = set_ext_lang_command;
3278
3279 add_info ("extensions", info_ext_lang_command,
3280 "All filename extensions associated with a source language.");
3281
3282 add_show_from_set
3283 (add_set_cmd ("download-write-size", class_obscure,
3284 var_integer, (char *) &download_write_size,
3285 "Set the write size used when downloading a program.\n"
3286 "Only used when downloading a program onto a remote\n"
3287 "target. Specify zero, or a negative value, to disable\n"
3288 "blocked writes. The actual size of each transfer is also\n"
3289 "limited by the size of the target packet and the memory\n"
3290 "cache.\n",
3291 &setlist),
3292 &showlist);
3293 }
This page took 0.100973 seconds and 4 git commands to generate.