*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154 #ifdef SYMBOL_RELOADING_DEFAULT
155 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156 #else
157 int symbol_reloading = 0;
158 #endif
159 static void
160 show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
165 value);
166 }
167
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178 int auto_solib_add = 1;
179 \f
180
181 /* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
183 Note that the string at PTR does not have to be null terminated, I.e. it
184 may be part of a larger string and we are only saving a substring. */
185
186 char *
187 obsavestring (const char *ptr, int size, struct obstack *obstackp)
188 {
189 char *p = (char *) obstack_alloc (obstackp, size + 1);
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
192 inline memcpy? */
193 {
194 const char *p1 = ptr;
195 char *p2 = p;
196 const char *end = ptr + size;
197
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203 }
204
205 /* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
209
210 char *
211 obconcat (struct obstack *obstackp, ...)
212 {
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
229 }
230
231 /* True if we are reading a symbol table. */
232
233 int currently_reading_symtab = 0;
234
235 static void
236 decrement_reading_symtab (void *dummy)
237 {
238 currently_reading_symtab--;
239 }
240
241 /* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243 struct cleanup *
244 increment_reading_symtab (void)
245 {
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
248 }
249
250 /* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259 void
260 find_lowest_section (bfd *abfd, asection *sect, void *obj)
261 {
262 asection **lowest = (asection **) obj;
263
264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274 }
275
276 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278 struct section_addr_info *
279 alloc_section_addr_info (size_t num_sections)
280 {
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291 }
292
293 /* Build (allocate and populate) a section_addr_info struct from
294 an existing section table. */
295
296 extern struct section_addr_info *
297 build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
299 {
300 struct section_addr_info *sap;
301 const struct target_section *stp;
302 int oidx;
303
304 sap = alloc_section_addr_info (end - start);
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
308 if (bfd_get_section_flags (stp->bfd,
309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
310 && oidx < end - start)
311 {
312 sap->other[oidx].addr = stp->addr;
313 sap->other[oidx].name
314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321 }
322
323 /* Create a section_addr_info from section offsets in ABFD. */
324
325 static struct section_addr_info *
326 build_section_addr_info_from_bfd (bfd *abfd)
327 {
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
335 {
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
341 return sap;
342 }
343
344 /* Create a section_addr_info from section offsets in OBJFILE. */
345
346 struct section_addr_info *
347 build_section_addr_info_from_objfile (const struct objfile *objfile)
348 {
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363 }
364
365 /* Free all memory allocated by build_section_addr_info_from_section_table. */
366
367 extern void
368 free_section_addr_info (struct section_addr_info *sap)
369 {
370 int idx;
371
372 for (idx = 0; idx < sap->num_sections; idx++)
373 if (sap->other[idx].name)
374 xfree (sap->other[idx].name);
375 xfree (sap);
376 }
377
378
379 /* Initialize OBJFILE's sect_index_* members. */
380 static void
381 init_objfile_sect_indices (struct objfile *objfile)
382 {
383 asection *sect;
384 int i;
385
386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
387 if (sect)
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
391 if (sect)
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
395 if (sect)
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
399 if (sect)
400 objfile->sect_index_rodata = sect->index;
401
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
437 }
438
439 /* The arguments to place_section. */
440
441 struct place_section_arg
442 {
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445 };
446
447 /* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
450 static void
451 place_section (bfd *abfd, asection *sect, void *obj)
452 {
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
457
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
467 start_addr = (arg->lowest + align - 1) & -align;
468
469 do {
470 asection *cur_sec;
471
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
499 break;
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
509 }
510
511 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
514
515 void
516 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
519 {
520 int i;
521
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
523
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
526 {
527 struct other_sections *osp;
528
529 osp = &addrs->other[i];
530 if (osp->sectindex == -1)
531 continue;
532
533 /* Record all sections in offsets. */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538 }
539
540 /* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546 static const char *
547 addr_section_name (const char *s)
548 {
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555 }
556
557 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560 static int
561 addrs_section_compar (const void *ap, const void *bp)
562 {
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
568 if (retval)
569 return retval;
570
571 return a->sectindex - b->sectindex;
572 }
573
574 /* Provide sorted array of pointers to sections of ADDRS. The array is
575 terminated by NULL. Caller is responsible to call xfree for it. */
576
577 static struct other_sections **
578 addrs_section_sort (struct section_addr_info *addrs)
579 {
580 struct other_sections **array;
581 int i;
582
583 /* `+ 1' for the NULL terminator. */
584 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
585 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
586 array[i] = &addrs->other[i];
587 array[i] = NULL;
588
589 qsort (array, i, sizeof (*array), addrs_section_compar);
590
591 return array;
592 }
593
594 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
595 also SECTINDEXes specific to ABFD there. This function can be used to
596 rebase ADDRS to start referencing different BFD than before. */
597
598 void
599 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
600 {
601 asection *lower_sect;
602 CORE_ADDR lower_offset;
603 int i;
604 struct cleanup *my_cleanup;
605 struct section_addr_info *abfd_addrs;
606 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
607 struct other_sections **addrs_to_abfd_addrs;
608
609 /* Find lowest loadable section to be used as starting point for
610 continguous sections. */
611 lower_sect = NULL;
612 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
613 if (lower_sect == NULL)
614 {
615 warning (_("no loadable sections found in added symbol-file %s"),
616 bfd_get_filename (abfd));
617 lower_offset = 0;
618 }
619 else
620 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
621
622 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
623 in ABFD. Section names are not unique - there can be multiple sections of
624 the same name. Also the sections of the same name do not have to be
625 adjacent to each other. Some sections may be present only in one of the
626 files. Even sections present in both files do not have to be in the same
627 order.
628
629 Use stable sort by name for the sections in both files. Then linearly
630 scan both lists matching as most of the entries as possible. */
631
632 addrs_sorted = addrs_section_sort (addrs);
633 my_cleanup = make_cleanup (xfree, addrs_sorted);
634
635 abfd_addrs = build_section_addr_info_from_bfd (abfd);
636 make_cleanup_free_section_addr_info (abfd_addrs);
637 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
638 make_cleanup (xfree, abfd_addrs_sorted);
639
640 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
641 ABFD_ADDRS_SORTED. */
642
643 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
644 * addrs->num_sections);
645 make_cleanup (xfree, addrs_to_abfd_addrs);
646
647 while (*addrs_sorted)
648 {
649 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
650
651 while (*abfd_addrs_sorted
652 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
653 sect_name) < 0)
654 abfd_addrs_sorted++;
655
656 if (*abfd_addrs_sorted
657 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
658 sect_name) == 0)
659 {
660 int index_in_addrs;
661
662 /* Make the found item directly addressable from ADDRS. */
663 index_in_addrs = *addrs_sorted - addrs->other;
664 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
665 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
666
667 /* Never use the same ABFD entry twice. */
668 abfd_addrs_sorted++;
669 }
670
671 addrs_sorted++;
672 }
673
674 /* Calculate offsets for the loadable sections.
675 FIXME! Sections must be in order of increasing loadable section
676 so that contiguous sections can use the lower-offset!!!
677
678 Adjust offsets if the segments are not contiguous.
679 If the section is contiguous, its offset should be set to
680 the offset of the highest loadable section lower than it
681 (the loadable section directly below it in memory).
682 this_offset = lower_offset = lower_addr - lower_orig_addr */
683
684 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
685 {
686 struct other_sections *sect = addrs_to_abfd_addrs[i];
687
688 if (sect)
689 {
690 /* This is the index used by BFD. */
691 addrs->other[i].sectindex = sect->sectindex;
692
693 if (addrs->other[i].addr != 0)
694 {
695 addrs->other[i].addr -= sect->addr;
696 lower_offset = addrs->other[i].addr;
697 }
698 else
699 addrs->other[i].addr = lower_offset;
700 }
701 else
702 {
703 /* addr_section_name transformation is not used for SECT_NAME. */
704 const char *sect_name = addrs->other[i].name;
705
706 /* This section does not exist in ABFD, which is normally
707 unexpected and we want to issue a warning.
708
709 However, the ELF prelinker does create a few sections which are
710 marked in the main executable as loadable (they are loaded in
711 memory from the DYNAMIC segment) and yet are not present in
712 separate debug info files. This is fine, and should not cause
713 a warning. Shared libraries contain just the section
714 ".gnu.liblist" but it is not marked as loadable there. There is
715 no other way to identify them than by their name as the sections
716 created by prelink have no special flags.
717
718 For the sections `.bss' and `.sbss' see addr_section_name. */
719
720 if (!(strcmp (sect_name, ".gnu.liblist") == 0
721 || strcmp (sect_name, ".gnu.conflict") == 0
722 || (strcmp (sect_name, ".bss") == 0
723 && i > 0
724 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
725 && addrs_to_abfd_addrs[i - 1] != NULL)
726 || (strcmp (sect_name, ".sbss") == 0
727 && i > 0
728 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
729 && addrs_to_abfd_addrs[i - 1] != NULL)))
730 warning (_("section %s not found in %s"), sect_name,
731 bfd_get_filename (abfd));
732
733 addrs->other[i].addr = 0;
734 addrs->other[i].sectindex = -1;
735 }
736 }
737
738 do_cleanups (my_cleanup);
739 }
740
741 /* Parse the user's idea of an offset for dynamic linking, into our idea
742 of how to represent it for fast symbol reading. This is the default
743 version of the sym_fns.sym_offsets function for symbol readers that
744 don't need to do anything special. It allocates a section_offsets table
745 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
746
747 void
748 default_symfile_offsets (struct objfile *objfile,
749 struct section_addr_info *addrs)
750 {
751 objfile->num_sections = bfd_count_sections (objfile->obfd);
752 objfile->section_offsets = (struct section_offsets *)
753 obstack_alloc (&objfile->objfile_obstack,
754 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
755 relative_addr_info_to_section_offsets (objfile->section_offsets,
756 objfile->num_sections, addrs);
757
758 /* For relocatable files, all loadable sections will start at zero.
759 The zero is meaningless, so try to pick arbitrary addresses such
760 that no loadable sections overlap. This algorithm is quadratic,
761 but the number of sections in a single object file is generally
762 small. */
763 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
764 {
765 struct place_section_arg arg;
766 bfd *abfd = objfile->obfd;
767 asection *cur_sec;
768
769 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
770 /* We do not expect this to happen; just skip this step if the
771 relocatable file has a section with an assigned VMA. */
772 if (bfd_section_vma (abfd, cur_sec) != 0)
773 break;
774
775 if (cur_sec == NULL)
776 {
777 CORE_ADDR *offsets = objfile->section_offsets->offsets;
778
779 /* Pick non-overlapping offsets for sections the user did not
780 place explicitly. */
781 arg.offsets = objfile->section_offsets;
782 arg.lowest = 0;
783 bfd_map_over_sections (objfile->obfd, place_section, &arg);
784
785 /* Correctly filling in the section offsets is not quite
786 enough. Relocatable files have two properties that
787 (most) shared objects do not:
788
789 - Their debug information will contain relocations. Some
790 shared libraries do also, but many do not, so this can not
791 be assumed.
792
793 - If there are multiple code sections they will be loaded
794 at different relative addresses in memory than they are
795 in the objfile, since all sections in the file will start
796 at address zero.
797
798 Because GDB has very limited ability to map from an
799 address in debug info to the correct code section,
800 it relies on adding SECT_OFF_TEXT to things which might be
801 code. If we clear all the section offsets, and set the
802 section VMAs instead, then symfile_relocate_debug_section
803 will return meaningful debug information pointing at the
804 correct sections.
805
806 GDB has too many different data structures for section
807 addresses - a bfd, objfile, and so_list all have section
808 tables, as does exec_ops. Some of these could probably
809 be eliminated. */
810
811 for (cur_sec = abfd->sections; cur_sec != NULL;
812 cur_sec = cur_sec->next)
813 {
814 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
815 continue;
816
817 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
818 exec_set_section_address (bfd_get_filename (abfd),
819 cur_sec->index,
820 offsets[cur_sec->index]);
821 offsets[cur_sec->index] = 0;
822 }
823 }
824 }
825
826 /* Remember the bfd indexes for the .text, .data, .bss and
827 .rodata sections. */
828 init_objfile_sect_indices (objfile);
829 }
830
831
832 /* Divide the file into segments, which are individual relocatable units.
833 This is the default version of the sym_fns.sym_segments function for
834 symbol readers that do not have an explicit representation of segments.
835 It assumes that object files do not have segments, and fully linked
836 files have a single segment. */
837
838 struct symfile_segment_data *
839 default_symfile_segments (bfd *abfd)
840 {
841 int num_sections, i;
842 asection *sect;
843 struct symfile_segment_data *data;
844 CORE_ADDR low, high;
845
846 /* Relocatable files contain enough information to position each
847 loadable section independently; they should not be relocated
848 in segments. */
849 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
850 return NULL;
851
852 /* Make sure there is at least one loadable section in the file. */
853 for (sect = abfd->sections; sect != NULL; sect = sect->next)
854 {
855 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
856 continue;
857
858 break;
859 }
860 if (sect == NULL)
861 return NULL;
862
863 low = bfd_get_section_vma (abfd, sect);
864 high = low + bfd_get_section_size (sect);
865
866 data = XZALLOC (struct symfile_segment_data);
867 data->num_segments = 1;
868 data->segment_bases = XCALLOC (1, CORE_ADDR);
869 data->segment_sizes = XCALLOC (1, CORE_ADDR);
870
871 num_sections = bfd_count_sections (abfd);
872 data->segment_info = XCALLOC (num_sections, int);
873
874 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
875 {
876 CORE_ADDR vma;
877
878 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
879 continue;
880
881 vma = bfd_get_section_vma (abfd, sect);
882 if (vma < low)
883 low = vma;
884 if (vma + bfd_get_section_size (sect) > high)
885 high = vma + bfd_get_section_size (sect);
886
887 data->segment_info[i] = 1;
888 }
889
890 data->segment_bases[0] = low;
891 data->segment_sizes[0] = high - low;
892
893 return data;
894 }
895
896 /* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
899 OBJFILE is where the symbols are to be read from.
900
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926 void
927 syms_from_objfile (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
931 int add_flags)
932 {
933 struct section_addr_info *local_addr = NULL;
934 struct cleanup *old_chain;
935 const int mainline = add_flags & SYMFILE_MAINLINE;
936
937 gdb_assert (! (addrs && offsets));
938
939 init_entry_point_info (objfile);
940 objfile->sf = find_sym_fns (objfile->obfd);
941
942 if (objfile->sf == NULL)
943 return; /* No symbols. */
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup_free_objfile (objfile);
948
949 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
950 list. We now establish the convention that an addr of zero means
951 no load address was specified. */
952 if (! addrs && ! offsets)
953 {
954 local_addr
955 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
956 make_cleanup (xfree, local_addr);
957 addrs = local_addr;
958 }
959
960 /* Now either addrs or offsets is non-zero. */
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs && addrs->other[0].name)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 if (addrs)
1001 (*objfile->sf->sym_offsets) (objfile, addrs);
1002 else
1003 {
1004 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1005
1006 /* Just copy in the offset table directly as given to us. */
1007 objfile->num_sections = num_offsets;
1008 objfile->section_offsets
1009 = ((struct section_offsets *)
1010 obstack_alloc (&objfile->objfile_obstack, size));
1011 memcpy (objfile->section_offsets, offsets, size);
1012
1013 init_objfile_sect_indices (objfile);
1014 }
1015
1016 (*objfile->sf->sym_read) (objfile, add_flags);
1017
1018 if ((add_flags & SYMFILE_NO_READ) == 0)
1019 require_partial_symbols (objfile, 0);
1020
1021 /* Discard cleanups as symbol reading was successful. */
1022
1023 discard_cleanups (old_chain);
1024 xfree (local_addr);
1025 }
1026
1027 /* Perform required actions after either reading in the initial
1028 symbols for a new objfile, or mapping in the symbols from a reusable
1029 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1030
1031 void
1032 new_symfile_objfile (struct objfile *objfile, int add_flags)
1033 {
1034 /* If this is the main symbol file we have to clean up all users of the
1035 old main symbol file. Otherwise it is sufficient to fixup all the
1036 breakpoints that may have been redefined by this symbol file. */
1037 if (add_flags & SYMFILE_MAINLINE)
1038 {
1039 /* OK, make it the "real" symbol file. */
1040 symfile_objfile = objfile;
1041
1042 clear_symtab_users (add_flags);
1043 }
1044 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1045 {
1046 breakpoint_re_set ();
1047 }
1048
1049 /* We're done reading the symbol file; finish off complaints. */
1050 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1051 }
1052
1053 /* Process a symbol file, as either the main file or as a dynamically
1054 loaded file.
1055
1056 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1057 This BFD will be closed on error, and is always consumed by this function.
1058
1059 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1060 extra, such as dynamically loaded code, and what to do with breakpoins.
1061
1062 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1063 syms_from_objfile, above.
1064 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1065
1066 PARENT is the original objfile if ABFD is a separate debug info file.
1067 Otherwise PARENT is NULL.
1068
1069 Upon success, returns a pointer to the objfile that was added.
1070 Upon failure, jumps back to command level (never returns). */
1071
1072 static struct objfile *
1073 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1074 int add_flags,
1075 struct section_addr_info *addrs,
1076 struct section_offsets *offsets,
1077 int num_offsets,
1078 int flags, struct objfile *parent)
1079 {
1080 struct objfile *objfile;
1081 struct cleanup *my_cleanups;
1082 const char *name = bfd_get_filename (abfd);
1083 const int from_tty = add_flags & SYMFILE_VERBOSE;
1084 const int should_print = ((from_tty || info_verbose)
1085 && (readnow_symbol_files
1086 || (add_flags & SYMFILE_NO_READ) == 0));
1087
1088 if (readnow_symbol_files)
1089 {
1090 flags |= OBJF_READNOW;
1091 add_flags &= ~SYMFILE_NO_READ;
1092 }
1093
1094 my_cleanups = make_cleanup_bfd_close (abfd);
1095
1096 /* Give user a chance to burp if we'd be
1097 interactively wiping out any existing symbols. */
1098
1099 if ((have_full_symbols () || have_partial_symbols ())
1100 && (add_flags & SYMFILE_MAINLINE)
1101 && from_tty
1102 && !query (_("Load new symbol table from \"%s\"? "), name))
1103 error (_("Not confirmed."));
1104
1105 objfile = allocate_objfile (abfd, flags);
1106 discard_cleanups (my_cleanups);
1107
1108 if (parent)
1109 add_separate_debug_objfile (objfile, parent);
1110
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (should_print)
1115 {
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1119 {
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124 }
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (should_print)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if (should_print && !objfile_has_symbols (objfile))
1147 {
1148 wrap_here ("");
1149 printf_unfiltered (_("(no debugging symbols found)..."));
1150 wrap_here ("");
1151 }
1152
1153 if (should_print)
1154 {
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
1157 else
1158 printf_unfiltered (_("done.\n"));
1159 }
1160
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
1166 do_cleanups (my_cleanups);
1167
1168 if (objfile->sf == NULL)
1169 {
1170 observer_notify_new_objfile (objfile);
1171 return objfile; /* No symbols. */
1172 }
1173
1174 new_symfile_objfile (objfile, add_flags);
1175
1176 observer_notify_new_objfile (objfile);
1177
1178 bfd_cache_close_all ();
1179 return (objfile);
1180 }
1181
1182 /* Add BFD as a separate debug file for OBJFILE. */
1183
1184 void
1185 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1186 {
1187 struct objfile *new_objfile;
1188 struct section_addr_info *sap;
1189 struct cleanup *my_cleanup;
1190
1191 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1192 because sections of BFD may not match sections of OBJFILE and because
1193 vma may have been modified by tools such as prelink. */
1194 sap = build_section_addr_info_from_objfile (objfile);
1195 my_cleanup = make_cleanup_free_section_addr_info (sap);
1196
1197 new_objfile = symbol_file_add_with_addrs_or_offsets
1198 (bfd, symfile_flags,
1199 sap, NULL, 0,
1200 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1201 | OBJF_USERLOADED),
1202 objfile);
1203
1204 do_cleanups (my_cleanup);
1205 }
1206
1207 /* Process the symbol file ABFD, as either the main file or as a
1208 dynamically loaded file.
1209
1210 See symbol_file_add_with_addrs_or_offsets's comments for
1211 details. */
1212 struct objfile *
1213 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1214 struct section_addr_info *addrs,
1215 int flags, struct objfile *parent)
1216 {
1217 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1218 flags, parent);
1219 }
1220
1221
1222 /* Process a symbol file, as either the main file or as a dynamically
1223 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1224 for details. */
1225 struct objfile *
1226 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1227 int flags)
1228 {
1229 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1230 flags, NULL);
1231 }
1232
1233
1234 /* Call symbol_file_add() with default values and update whatever is
1235 affected by the loading of a new main().
1236 Used when the file is supplied in the gdb command line
1237 and by some targets with special loading requirements.
1238 The auxiliary function, symbol_file_add_main_1(), has the flags
1239 argument for the switches that can only be specified in the symbol_file
1240 command itself. */
1241
1242 void
1243 symbol_file_add_main (char *args, int from_tty)
1244 {
1245 symbol_file_add_main_1 (args, from_tty, 0);
1246 }
1247
1248 static void
1249 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1250 {
1251 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1252 symbol_file_add (args, add_flags, NULL, flags);
1253
1254 /* Getting new symbols may change our opinion about
1255 what is frameless. */
1256 reinit_frame_cache ();
1257
1258 set_initial_language ();
1259 }
1260
1261 void
1262 symbol_file_clear (int from_tty)
1263 {
1264 if ((have_full_symbols () || have_partial_symbols ())
1265 && from_tty
1266 && (symfile_objfile
1267 ? !query (_("Discard symbol table from `%s'? "),
1268 symfile_objfile->name)
1269 : !query (_("Discard symbol table? "))))
1270 error (_("Not confirmed."));
1271
1272 /* solib descriptors may have handles to objfiles. Wipe them before their
1273 objfiles get stale by free_all_objfiles. */
1274 no_shared_libraries (NULL, from_tty);
1275
1276 free_all_objfiles ();
1277
1278 gdb_assert (symfile_objfile == NULL);
1279 if (from_tty)
1280 printf_unfiltered (_("No symbol file now.\n"));
1281 }
1282
1283 static char *
1284 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1285 {
1286 asection *sect;
1287 bfd_size_type debuglink_size;
1288 unsigned long crc32;
1289 char *contents;
1290 int crc_offset;
1291
1292 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1293
1294 if (sect == NULL)
1295 return NULL;
1296
1297 debuglink_size = bfd_section_size (objfile->obfd, sect);
1298
1299 contents = xmalloc (debuglink_size);
1300 bfd_get_section_contents (objfile->obfd, sect, contents,
1301 (file_ptr)0, (bfd_size_type)debuglink_size);
1302
1303 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1304 crc_offset = strlen (contents) + 1;
1305 crc_offset = (crc_offset + 3) & ~3;
1306
1307 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1308
1309 *crc32_out = crc32;
1310 return contents;
1311 }
1312
1313 static int
1314 separate_debug_file_exists (const char *name, unsigned long crc,
1315 struct objfile *parent_objfile)
1316 {
1317 unsigned long file_crc = 0;
1318 bfd *abfd;
1319 gdb_byte buffer[8*1024];
1320 int count;
1321 struct stat parent_stat, abfd_stat;
1322
1323 /* Find a separate debug info file as if symbols would be present in
1324 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1325 section can contain just the basename of PARENT_OBJFILE without any
1326 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1327 the separate debug infos with the same basename can exist. */
1328
1329 if (filename_cmp (name, parent_objfile->name) == 0)
1330 return 0;
1331
1332 abfd = bfd_open_maybe_remote (name);
1333
1334 if (!abfd)
1335 return 0;
1336
1337 /* Verify symlinks were not the cause of filename_cmp name difference above.
1338
1339 Some operating systems, e.g. Windows, do not provide a meaningful
1340 st_ino; they always set it to zero. (Windows does provide a
1341 meaningful st_dev.) Do not indicate a duplicate library in that
1342 case. While there is no guarantee that a system that provides
1343 meaningful inode numbers will never set st_ino to zero, this is
1344 merely an optimization, so we do not need to worry about false
1345 negatives. */
1346
1347 if (bfd_stat (abfd, &abfd_stat) == 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1349 && abfd_stat.st_dev == parent_stat.st_dev
1350 && abfd_stat.st_ino == parent_stat.st_ino
1351 && abfd_stat.st_ino != 0)
1352 {
1353 bfd_close (abfd);
1354 return 0;
1355 }
1356
1357 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 bfd_close (abfd);
1361
1362 if (crc != file_crc)
1363 {
1364 warning (_("the debug information found in \"%s\""
1365 " does not match \"%s\" (CRC mismatch).\n"),
1366 name, parent_objfile->name);
1367 return 0;
1368 }
1369
1370 return 1;
1371 }
1372
1373 char *debug_file_directory = NULL;
1374 static void
1375 show_debug_file_directory (struct ui_file *file, int from_tty,
1376 struct cmd_list_element *c, const char *value)
1377 {
1378 fprintf_filtered (file,
1379 _("The directory where separate debug "
1380 "symbols are searched for is \"%s\".\n"),
1381 value);
1382 }
1383
1384 #if ! defined (DEBUG_SUBDIRECTORY)
1385 #define DEBUG_SUBDIRECTORY ".debug"
1386 #endif
1387
1388 char *
1389 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1390 {
1391 char *basename, *debugdir;
1392 char *dir = NULL;
1393 char *debugfile = NULL;
1394 char *canon_name = NULL;
1395 unsigned long crc32;
1396 int i;
1397
1398 basename = get_debug_link_info (objfile, &crc32);
1399
1400 if (basename == NULL)
1401 /* There's no separate debug info, hence there's no way we could
1402 load it => no warning. */
1403 goto cleanup_return_debugfile;
1404
1405 dir = xstrdup (objfile->name);
1406
1407 /* Strip off the final filename part, leaving the directory name,
1408 followed by a slash. The directory can be relative or absolute. */
1409 for (i = strlen(dir) - 1; i >= 0; i--)
1410 {
1411 if (IS_DIR_SEPARATOR (dir[i]))
1412 break;
1413 }
1414 /* If I is -1 then no directory is present there and DIR will be "". */
1415 dir[i+1] = '\0';
1416
1417 /* Set I to max (strlen (canon_name), strlen (dir)). */
1418 canon_name = lrealpath (dir);
1419 i = strlen (dir);
1420 if (canon_name && strlen (canon_name) > i)
1421 i = strlen (canon_name);
1422
1423 debugfile = xmalloc (strlen (debug_file_directory) + 1
1424 + i
1425 + strlen (DEBUG_SUBDIRECTORY)
1426 + strlen ("/")
1427 + strlen (basename)
1428 + 1);
1429
1430 /* First try in the same directory as the original file. */
1431 strcpy (debugfile, dir);
1432 strcat (debugfile, basename);
1433
1434 if (separate_debug_file_exists (debugfile, crc32, objfile))
1435 goto cleanup_return_debugfile;
1436
1437 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, DEBUG_SUBDIRECTORY);
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32, objfile))
1444 goto cleanup_return_debugfile;
1445
1446 /* Then try in the global debugfile directories.
1447
1448 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1449 cause "/..." lookups. */
1450
1451 debugdir = debug_file_directory;
1452 do
1453 {
1454 char *debugdir_end;
1455
1456 while (*debugdir == DIRNAME_SEPARATOR)
1457 debugdir++;
1458
1459 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1460 if (debugdir_end == NULL)
1461 debugdir_end = &debugdir[strlen (debugdir)];
1462
1463 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1464 debugfile[debugdir_end - debugdir] = 0;
1465 strcat (debugfile, "/");
1466 strcat (debugfile, dir);
1467 strcat (debugfile, basename);
1468
1469 if (separate_debug_file_exists (debugfile, crc32, objfile))
1470 goto cleanup_return_debugfile;
1471
1472 /* If the file is in the sysroot, try using its base path in the
1473 global debugfile directory. */
1474 if (canon_name
1475 && filename_ncmp (canon_name, gdb_sysroot,
1476 strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 {
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 goto cleanup_return_debugfile;
1487 }
1488
1489 debugdir = debugdir_end;
1490 }
1491 while (*debugdir != 0);
1492
1493 xfree (debugfile);
1494 debugfile = NULL;
1495
1496 cleanup_return_debugfile:
1497 xfree (canon_name);
1498 xfree (basename);
1499 xfree (dir);
1500 return debugfile;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = gdb_buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 cleanups = make_cleanup_freeargv (argv);
1535 while (*argv != NULL)
1536 {
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
1540 error (_("unknown option `%s'"), *argv);
1541 else
1542 {
1543 symbol_file_add_main_1 (*argv, from_tty, flags);
1544 name = *argv;
1545 }
1546
1547 argv++;
1548 }
1549
1550 if (name == NULL)
1551 error (_("no symbol file name was specified"));
1552
1553 do_cleanups (cleanups);
1554 }
1555 }
1556
1557 /* Set the initial language.
1558
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
1567
1568 void
1569 set_initial_language (void)
1570 {
1571 enum language lang = language_unknown;
1572
1573 if (language_of_main != language_unknown)
1574 lang = language_of_main;
1575 else
1576 {
1577 const char *filename;
1578
1579 filename = find_main_filename ();
1580 if (filename != NULL)
1581 lang = deduce_language_from_filename (filename);
1582 }
1583
1584 if (lang == language_unknown)
1585 {
1586 /* Make C the default language */
1587 lang = language_c;
1588 }
1589
1590 set_language (lang);
1591 expected_language = current_language; /* Don't warn the user. */
1592 }
1593
1594 /* If NAME is a remote name open the file using remote protocol, otherwise
1595 open it normally. */
1596
1597 bfd *
1598 bfd_open_maybe_remote (const char *name)
1599 {
1600 if (remote_filename_p (name))
1601 return remote_bfd_open (name, gnutarget);
1602 else
1603 return bfd_openr (name, gnutarget);
1604 }
1605
1606
1607 /* Open the file specified by NAME and hand it off to BFD for
1608 preliminary analysis. Return a newly initialized bfd *, which
1609 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1610 absolute). In case of trouble, error() is called. */
1611
1612 bfd *
1613 symfile_bfd_open (char *name)
1614 {
1615 bfd *sym_bfd;
1616 int desc;
1617 char *absolute_name;
1618
1619 if (remote_filename_p (name))
1620 {
1621 name = xstrdup (name);
1622 sym_bfd = remote_bfd_open (name, gnutarget);
1623 if (!sym_bfd)
1624 {
1625 make_cleanup (xfree, name);
1626 error (_("`%s': can't open to read symbols: %s."), name,
1627 bfd_errmsg (bfd_get_error ()));
1628 }
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 bfd_close (sym_bfd);
1633 make_cleanup (xfree, name);
1634 error (_("`%s': can't read symbols: %s."), name,
1635 bfd_errmsg (bfd_get_error ()));
1636 }
1637
1638 return sym_bfd;
1639 }
1640
1641 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1642
1643 /* Look down path for it, allocate 2nd new malloc'd copy. */
1644 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1645 O_RDONLY | O_BINARY, &absolute_name);
1646 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1647 if (desc < 0)
1648 {
1649 char *exename = alloca (strlen (name) + 5);
1650
1651 strcat (strcpy (exename, name), ".exe");
1652 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1653 O_RDONLY | O_BINARY, &absolute_name);
1654 }
1655 #endif
1656 if (desc < 0)
1657 {
1658 make_cleanup (xfree, name);
1659 perror_with_name (name);
1660 }
1661
1662 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1663 bfd. It'll be freed in free_objfile(). */
1664 xfree (name);
1665 name = absolute_name;
1666
1667 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1668 if (!sym_bfd)
1669 {
1670 close (desc);
1671 make_cleanup (xfree, name);
1672 error (_("`%s': can't open to read symbols: %s."), name,
1673 bfd_errmsg (bfd_get_error ()));
1674 }
1675 bfd_set_cacheable (sym_bfd, 1);
1676
1677 if (!bfd_check_format (sym_bfd, bfd_object))
1678 {
1679 /* FIXME: should be checking for errors from bfd_close (for one
1680 thing, on error it does not free all the storage associated
1681 with the bfd). */
1682 bfd_close (sym_bfd); /* This also closes desc. */
1683 make_cleanup (xfree, name);
1684 error (_("`%s': can't read symbols: %s."), name,
1685 bfd_errmsg (bfd_get_error ()));
1686 }
1687
1688 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1689 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1690
1691 return sym_bfd;
1692 }
1693
1694 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1695 the section was not found. */
1696
1697 int
1698 get_section_index (struct objfile *objfile, char *section_name)
1699 {
1700 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1701
1702 if (sect)
1703 return sect->index;
1704 else
1705 return -1;
1706 }
1707
1708 /* Link SF into the global symtab_fns list. Called on startup by the
1709 _initialize routine in each object file format reader, to register
1710 information about each format the reader is prepared to handle. */
1711
1712 void
1713 add_symtab_fns (const struct sym_fns *sf)
1714 {
1715 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1716 }
1717
1718 /* Initialize OBJFILE to read symbols from its associated BFD. It
1719 either returns or calls error(). The result is an initialized
1720 struct sym_fns in the objfile structure, that contains cached
1721 information about the symbol file. */
1722
1723 static const struct sym_fns *
1724 find_sym_fns (bfd *abfd)
1725 {
1726 const struct sym_fns *sf;
1727 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1728 int i;
1729
1730 if (our_flavour == bfd_target_srec_flavour
1731 || our_flavour == bfd_target_ihex_flavour
1732 || our_flavour == bfd_target_tekhex_flavour)
1733 return NULL; /* No symbols. */
1734
1735 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1736 if (our_flavour == sf->sym_flavour)
1737 return sf;
1738
1739 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1740 bfd_get_target (abfd));
1741 }
1742 \f
1743
1744 /* This function runs the load command of our current target. */
1745
1746 static void
1747 load_command (char *arg, int from_tty)
1748 {
1749 dont_repeat ();
1750
1751 /* The user might be reloading because the binary has changed. Take
1752 this opportunity to check. */
1753 reopen_exec_file ();
1754 reread_symbols ();
1755
1756 if (arg == NULL)
1757 {
1758 char *parg;
1759 int count = 0;
1760
1761 parg = arg = get_exec_file (1);
1762
1763 /* Count how many \ " ' tab space there are in the name. */
1764 while ((parg = strpbrk (parg, "\\\"'\t ")))
1765 {
1766 parg++;
1767 count++;
1768 }
1769
1770 if (count)
1771 {
1772 /* We need to quote this string so buildargv can pull it apart. */
1773 char *temp = xmalloc (strlen (arg) + count + 1 );
1774 char *ptemp = temp;
1775 char *prev;
1776
1777 make_cleanup (xfree, temp);
1778
1779 prev = parg = arg;
1780 while ((parg = strpbrk (parg, "\\\"'\t ")))
1781 {
1782 strncpy (ptemp, prev, parg - prev);
1783 ptemp += parg - prev;
1784 prev = parg++;
1785 *ptemp++ = '\\';
1786 }
1787 strcpy (ptemp, prev);
1788
1789 arg = temp;
1790 }
1791 }
1792
1793 target_load (arg, from_tty);
1794
1795 /* After re-loading the executable, we don't really know which
1796 overlays are mapped any more. */
1797 overlay_cache_invalid = 1;
1798 }
1799
1800 /* This version of "load" should be usable for any target. Currently
1801 it is just used for remote targets, not inftarg.c or core files,
1802 on the theory that only in that case is it useful.
1803
1804 Avoiding xmodem and the like seems like a win (a) because we don't have
1805 to worry about finding it, and (b) On VMS, fork() is very slow and so
1806 we don't want to run a subprocess. On the other hand, I'm not sure how
1807 performance compares. */
1808
1809 static int validate_download = 0;
1810
1811 /* Callback service function for generic_load (bfd_map_over_sections). */
1812
1813 static void
1814 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1815 {
1816 bfd_size_type *sum = data;
1817
1818 *sum += bfd_get_section_size (asec);
1819 }
1820
1821 /* Opaque data for load_section_callback. */
1822 struct load_section_data {
1823 unsigned long load_offset;
1824 struct load_progress_data *progress_data;
1825 VEC(memory_write_request_s) *requests;
1826 };
1827
1828 /* Opaque data for load_progress. */
1829 struct load_progress_data {
1830 /* Cumulative data. */
1831 unsigned long write_count;
1832 unsigned long data_count;
1833 bfd_size_type total_size;
1834 };
1835
1836 /* Opaque data for load_progress for a single section. */
1837 struct load_progress_section_data {
1838 struct load_progress_data *cumulative;
1839
1840 /* Per-section data. */
1841 const char *section_name;
1842 ULONGEST section_sent;
1843 ULONGEST section_size;
1844 CORE_ADDR lma;
1845 gdb_byte *buffer;
1846 };
1847
1848 /* Target write callback routine for progress reporting. */
1849
1850 static void
1851 load_progress (ULONGEST bytes, void *untyped_arg)
1852 {
1853 struct load_progress_section_data *args = untyped_arg;
1854 struct load_progress_data *totals;
1855
1856 if (args == NULL)
1857 /* Writing padding data. No easy way to get at the cumulative
1858 stats, so just ignore this. */
1859 return;
1860
1861 totals = args->cumulative;
1862
1863 if (bytes == 0 && args->section_sent == 0)
1864 {
1865 /* The write is just starting. Let the user know we've started
1866 this section. */
1867 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1868 args->section_name, hex_string (args->section_size),
1869 paddress (target_gdbarch, args->lma));
1870 return;
1871 }
1872
1873 if (validate_download)
1874 {
1875 /* Broken memories and broken monitors manifest themselves here
1876 when bring new computers to life. This doubles already slow
1877 downloads. */
1878 /* NOTE: cagney/1999-10-18: A more efficient implementation
1879 might add a verify_memory() method to the target vector and
1880 then use that. remote.c could implement that method using
1881 the ``qCRC'' packet. */
1882 gdb_byte *check = xmalloc (bytes);
1883 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1884
1885 if (target_read_memory (args->lma, check, bytes) != 0)
1886 error (_("Download verify read failed at %s"),
1887 paddress (target_gdbarch, args->lma));
1888 if (memcmp (args->buffer, check, bytes) != 0)
1889 error (_("Download verify compare failed at %s"),
1890 paddress (target_gdbarch, args->lma));
1891 do_cleanups (verify_cleanups);
1892 }
1893 totals->data_count += bytes;
1894 args->lma += bytes;
1895 args->buffer += bytes;
1896 totals->write_count += 1;
1897 args->section_sent += bytes;
1898 if (quit_flag
1899 || (deprecated_ui_load_progress_hook != NULL
1900 && deprecated_ui_load_progress_hook (args->section_name,
1901 args->section_sent)))
1902 error (_("Canceled the download"));
1903
1904 if (deprecated_show_load_progress != NULL)
1905 deprecated_show_load_progress (args->section_name,
1906 args->section_sent,
1907 args->section_size,
1908 totals->data_count,
1909 totals->total_size);
1910 }
1911
1912 /* Callback service function for generic_load (bfd_map_over_sections). */
1913
1914 static void
1915 load_section_callback (bfd *abfd, asection *asec, void *data)
1916 {
1917 struct memory_write_request *new_request;
1918 struct load_section_data *args = data;
1919 struct load_progress_section_data *section_data;
1920 bfd_size_type size = bfd_get_section_size (asec);
1921 gdb_byte *buffer;
1922 const char *sect_name = bfd_get_section_name (abfd, asec);
1923
1924 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1925 return;
1926
1927 if (size == 0)
1928 return;
1929
1930 new_request = VEC_safe_push (memory_write_request_s,
1931 args->requests, NULL);
1932 memset (new_request, 0, sizeof (struct memory_write_request));
1933 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1934 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1935 new_request->end = new_request->begin + size; /* FIXME Should size
1936 be in instead? */
1937 new_request->data = xmalloc (size);
1938 new_request->baton = section_data;
1939
1940 buffer = new_request->data;
1941
1942 section_data->cumulative = args->progress_data;
1943 section_data->section_name = sect_name;
1944 section_data->section_size = size;
1945 section_data->lma = new_request->begin;
1946 section_data->buffer = buffer;
1947
1948 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1949 }
1950
1951 /* Clean up an entire memory request vector, including load
1952 data and progress records. */
1953
1954 static void
1955 clear_memory_write_data (void *arg)
1956 {
1957 VEC(memory_write_request_s) **vec_p = arg;
1958 VEC(memory_write_request_s) *vec = *vec_p;
1959 int i;
1960 struct memory_write_request *mr;
1961
1962 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1963 {
1964 xfree (mr->data);
1965 xfree (mr->baton);
1966 }
1967 VEC_free (memory_write_request_s, vec);
1968 }
1969
1970 void
1971 generic_load (char *args, int from_tty)
1972 {
1973 bfd *loadfile_bfd;
1974 struct timeval start_time, end_time;
1975 char *filename;
1976 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1977 struct load_section_data cbdata;
1978 struct load_progress_data total_progress;
1979
1980 CORE_ADDR entry;
1981 char **argv;
1982
1983 memset (&cbdata, 0, sizeof (cbdata));
1984 memset (&total_progress, 0, sizeof (total_progress));
1985 cbdata.progress_data = &total_progress;
1986
1987 make_cleanup (clear_memory_write_data, &cbdata.requests);
1988
1989 if (args == NULL)
1990 error_no_arg (_("file to load"));
1991
1992 argv = gdb_buildargv (args);
1993 make_cleanup_freeargv (argv);
1994
1995 filename = tilde_expand (argv[0]);
1996 make_cleanup (xfree, filename);
1997
1998 if (argv[1] != NULL)
1999 {
2000 char *endptr;
2001
2002 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2003
2004 /* If the last word was not a valid number then
2005 treat it as a file name with spaces in. */
2006 if (argv[1] == endptr)
2007 error (_("Invalid download offset:%s."), argv[1]);
2008
2009 if (argv[2] != NULL)
2010 error (_("Too many parameters."));
2011 }
2012
2013 /* Open the file for loading. */
2014 loadfile_bfd = bfd_openr (filename, gnutarget);
2015 if (loadfile_bfd == NULL)
2016 {
2017 perror_with_name (filename);
2018 return;
2019 }
2020
2021 /* FIXME: should be checking for errors from bfd_close (for one thing,
2022 on error it does not free all the storage associated with the
2023 bfd). */
2024 make_cleanup_bfd_close (loadfile_bfd);
2025
2026 if (!bfd_check_format (loadfile_bfd, bfd_object))
2027 {
2028 error (_("\"%s\" is not an object file: %s"), filename,
2029 bfd_errmsg (bfd_get_error ()));
2030 }
2031
2032 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2033 (void *) &total_progress.total_size);
2034
2035 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2036
2037 gettimeofday (&start_time, NULL);
2038
2039 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2040 load_progress) != 0)
2041 error (_("Load failed"));
2042
2043 gettimeofday (&end_time, NULL);
2044
2045 entry = bfd_get_start_address (loadfile_bfd);
2046 ui_out_text (uiout, "Start address ");
2047 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2048 ui_out_text (uiout, ", load size ");
2049 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2050 ui_out_text (uiout, "\n");
2051 /* We were doing this in remote-mips.c, I suspect it is right
2052 for other targets too. */
2053 regcache_write_pc (get_current_regcache (), entry);
2054
2055 /* Reset breakpoints, now that we have changed the load image. For
2056 instance, breakpoints may have been set (or reset, by
2057 post_create_inferior) while connected to the target but before we
2058 loaded the program. In that case, the prologue analyzer could
2059 have read instructions from the target to find the right
2060 breakpoint locations. Loading has changed the contents of that
2061 memory. */
2062
2063 breakpoint_re_set ();
2064
2065 /* FIXME: are we supposed to call symbol_file_add or not? According
2066 to a comment from remote-mips.c (where a call to symbol_file_add
2067 was commented out), making the call confuses GDB if more than one
2068 file is loaded in. Some targets do (e.g., remote-vx.c) but
2069 others don't (or didn't - perhaps they have all been deleted). */
2070
2071 print_transfer_performance (gdb_stdout, total_progress.data_count,
2072 total_progress.write_count,
2073 &start_time, &end_time);
2074
2075 do_cleanups (old_cleanups);
2076 }
2077
2078 /* Report how fast the transfer went. */
2079
2080 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2081 replaced by print_transfer_performance (with a very different
2082 function signature). */
2083
2084 void
2085 report_transfer_performance (unsigned long data_count, time_t start_time,
2086 time_t end_time)
2087 {
2088 struct timeval start, end;
2089
2090 start.tv_sec = start_time;
2091 start.tv_usec = 0;
2092 end.tv_sec = end_time;
2093 end.tv_usec = 0;
2094
2095 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2096 }
2097
2098 void
2099 print_transfer_performance (struct ui_file *stream,
2100 unsigned long data_count,
2101 unsigned long write_count,
2102 const struct timeval *start_time,
2103 const struct timeval *end_time)
2104 {
2105 ULONGEST time_count;
2106
2107 /* Compute the elapsed time in milliseconds, as a tradeoff between
2108 accuracy and overflow. */
2109 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2110 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2111
2112 ui_out_text (uiout, "Transfer rate: ");
2113 if (time_count > 0)
2114 {
2115 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2116
2117 if (ui_out_is_mi_like_p (uiout))
2118 {
2119 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2120 ui_out_text (uiout, " bits/sec");
2121 }
2122 else if (rate < 1024)
2123 {
2124 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2125 ui_out_text (uiout, " bytes/sec");
2126 }
2127 else
2128 {
2129 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2130 ui_out_text (uiout, " KB/sec");
2131 }
2132 }
2133 else
2134 {
2135 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2136 ui_out_text (uiout, " bits in <1 sec");
2137 }
2138 if (write_count > 0)
2139 {
2140 ui_out_text (uiout, ", ");
2141 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2142 ui_out_text (uiout, " bytes/write");
2143 }
2144 ui_out_text (uiout, ".\n");
2145 }
2146
2147 /* This function allows the addition of incrementally linked object files.
2148 It does not modify any state in the target, only in the debugger. */
2149 /* Note: ezannoni 2000-04-13 This function/command used to have a
2150 special case syntax for the rombug target (Rombug is the boot
2151 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2152 rombug case, the user doesn't need to supply a text address,
2153 instead a call to target_link() (in target.c) would supply the
2154 value to use. We are now discontinuing this type of ad hoc syntax. */
2155
2156 static void
2157 add_symbol_file_command (char *args, int from_tty)
2158 {
2159 struct gdbarch *gdbarch = get_current_arch ();
2160 char *filename = NULL;
2161 int flags = OBJF_USERLOADED;
2162 char *arg;
2163 int section_index = 0;
2164 int argcnt = 0;
2165 int sec_num = 0;
2166 int i;
2167 int expecting_sec_name = 0;
2168 int expecting_sec_addr = 0;
2169 char **argv;
2170
2171 struct sect_opt
2172 {
2173 char *name;
2174 char *value;
2175 };
2176
2177 struct section_addr_info *section_addrs;
2178 struct sect_opt *sect_opts = NULL;
2179 size_t num_sect_opts = 0;
2180 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2181
2182 num_sect_opts = 16;
2183 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2184 * sizeof (struct sect_opt));
2185
2186 dont_repeat ();
2187
2188 if (args == NULL)
2189 error (_("add-symbol-file takes a file name and an address"));
2190
2191 argv = gdb_buildargv (args);
2192 make_cleanup_freeargv (argv);
2193
2194 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2195 {
2196 /* Process the argument. */
2197 if (argcnt == 0)
2198 {
2199 /* The first argument is the file name. */
2200 filename = tilde_expand (arg);
2201 make_cleanup (xfree, filename);
2202 }
2203 else
2204 if (argcnt == 1)
2205 {
2206 /* The second argument is always the text address at which
2207 to load the program. */
2208 sect_opts[section_index].name = ".text";
2209 sect_opts[section_index].value = arg;
2210 if (++section_index >= num_sect_opts)
2211 {
2212 num_sect_opts *= 2;
2213 sect_opts = ((struct sect_opt *)
2214 xrealloc (sect_opts,
2215 num_sect_opts
2216 * sizeof (struct sect_opt)));
2217 }
2218 }
2219 else
2220 {
2221 /* It's an option (starting with '-') or it's an argument
2222 to an option. */
2223
2224 if (*arg == '-')
2225 {
2226 if (strcmp (arg, "-readnow") == 0)
2227 flags |= OBJF_READNOW;
2228 else if (strcmp (arg, "-s") == 0)
2229 {
2230 expecting_sec_name = 1;
2231 expecting_sec_addr = 1;
2232 }
2233 }
2234 else
2235 {
2236 if (expecting_sec_name)
2237 {
2238 sect_opts[section_index].name = arg;
2239 expecting_sec_name = 0;
2240 }
2241 else
2242 if (expecting_sec_addr)
2243 {
2244 sect_opts[section_index].value = arg;
2245 expecting_sec_addr = 0;
2246 if (++section_index >= num_sect_opts)
2247 {
2248 num_sect_opts *= 2;
2249 sect_opts = ((struct sect_opt *)
2250 xrealloc (sect_opts,
2251 num_sect_opts
2252 * sizeof (struct sect_opt)));
2253 }
2254 }
2255 else
2256 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2257 " [-mapped] [-readnow] [-s <secname> <addr>]*"));
2258 }
2259 }
2260 }
2261
2262 /* This command takes at least two arguments. The first one is a
2263 filename, and the second is the address where this file has been
2264 loaded. Abort now if this address hasn't been provided by the
2265 user. */
2266 if (section_index < 1)
2267 error (_("The address where %s has been loaded is missing"), filename);
2268
2269 /* Print the prompt for the query below. And save the arguments into
2270 a sect_addr_info structure to be passed around to other
2271 functions. We have to split this up into separate print
2272 statements because hex_string returns a local static
2273 string. */
2274
2275 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2276 section_addrs = alloc_section_addr_info (section_index);
2277 make_cleanup (xfree, section_addrs);
2278 for (i = 0; i < section_index; i++)
2279 {
2280 CORE_ADDR addr;
2281 char *val = sect_opts[i].value;
2282 char *sec = sect_opts[i].name;
2283
2284 addr = parse_and_eval_address (val);
2285
2286 /* Here we store the section offsets in the order they were
2287 entered on the command line. */
2288 section_addrs->other[sec_num].name = sec;
2289 section_addrs->other[sec_num].addr = addr;
2290 printf_unfiltered ("\t%s_addr = %s\n", sec,
2291 paddress (gdbarch, addr));
2292 sec_num++;
2293
2294 /* The object's sections are initialized when a
2295 call is made to build_objfile_section_table (objfile).
2296 This happens in reread_symbols.
2297 At this point, we don't know what file type this is,
2298 so we can't determine what section names are valid. */
2299 }
2300
2301 if (from_tty && (!query ("%s", "")))
2302 error (_("Not confirmed."));
2303
2304 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2305 section_addrs, flags);
2306
2307 /* Getting new symbols may change our opinion about what is
2308 frameless. */
2309 reinit_frame_cache ();
2310 do_cleanups (my_cleanups);
2311 }
2312 \f
2313
2314 /* Re-read symbols if a symbol-file has changed. */
2315 void
2316 reread_symbols (void)
2317 {
2318 struct objfile *objfile;
2319 long new_modtime;
2320 int reread_one = 0;
2321 struct stat new_statbuf;
2322 int res;
2323
2324 /* With the addition of shared libraries, this should be modified,
2325 the load time should be saved in the partial symbol tables, since
2326 different tables may come from different source files. FIXME.
2327 This routine should then walk down each partial symbol table
2328 and see if the symbol table that it originates from has been changed. */
2329
2330 for (objfile = object_files; objfile; objfile = objfile->next)
2331 {
2332 /* solib-sunos.c creates one objfile with obfd. */
2333 if (objfile->obfd == NULL)
2334 continue;
2335
2336 /* Separate debug objfiles are handled in the main objfile. */
2337 if (objfile->separate_debug_objfile_backlink)
2338 continue;
2339
2340 /* If this object is from an archive (what you usually create with
2341 `ar', often called a `static library' on most systems, though
2342 a `shared library' on AIX is also an archive), then you should
2343 stat on the archive name, not member name. */
2344 if (objfile->obfd->my_archive)
2345 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2346 else
2347 res = stat (objfile->name, &new_statbuf);
2348 if (res != 0)
2349 {
2350 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2351 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2352 objfile->name);
2353 continue;
2354 }
2355 new_modtime = new_statbuf.st_mtime;
2356 if (new_modtime != objfile->mtime)
2357 {
2358 struct cleanup *old_cleanups;
2359 struct section_offsets *offsets;
2360 int num_offsets;
2361 char *obfd_filename;
2362
2363 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2364 objfile->name);
2365
2366 /* There are various functions like symbol_file_add,
2367 symfile_bfd_open, syms_from_objfile, etc., which might
2368 appear to do what we want. But they have various other
2369 effects which we *don't* want. So we just do stuff
2370 ourselves. We don't worry about mapped files (for one thing,
2371 any mapped file will be out of date). */
2372
2373 /* If we get an error, blow away this objfile (not sure if
2374 that is the correct response for things like shared
2375 libraries). */
2376 old_cleanups = make_cleanup_free_objfile (objfile);
2377 /* We need to do this whenever any symbols go away. */
2378 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2379
2380 if (exec_bfd != NULL
2381 && filename_cmp (bfd_get_filename (objfile->obfd),
2382 bfd_get_filename (exec_bfd)) == 0)
2383 {
2384 /* Reload EXEC_BFD without asking anything. */
2385
2386 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2387 }
2388
2389 /* Clean up any state BFD has sitting around. We don't need
2390 to close the descriptor but BFD lacks a way of closing the
2391 BFD without closing the descriptor. */
2392 obfd_filename = bfd_get_filename (objfile->obfd);
2393 if (!bfd_close (objfile->obfd))
2394 error (_("Can't close BFD for %s: %s"), objfile->name,
2395 bfd_errmsg (bfd_get_error ()));
2396 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2397 if (objfile->obfd == NULL)
2398 error (_("Can't open %s to read symbols."), objfile->name);
2399 else
2400 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2401 /* bfd_openr sets cacheable to true, which is what we want. */
2402 if (!bfd_check_format (objfile->obfd, bfd_object))
2403 error (_("Can't read symbols from %s: %s."), objfile->name,
2404 bfd_errmsg (bfd_get_error ()));
2405
2406 /* Save the offsets, we will nuke them with the rest of the
2407 objfile_obstack. */
2408 num_offsets = objfile->num_sections;
2409 offsets = ((struct section_offsets *)
2410 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2411 memcpy (offsets, objfile->section_offsets,
2412 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2413
2414 /* Remove any references to this objfile in the global
2415 value lists. */
2416 preserve_values (objfile);
2417
2418 /* Nuke all the state that we will re-read. Much of the following
2419 code which sets things to NULL really is necessary to tell
2420 other parts of GDB that there is nothing currently there.
2421
2422 Try to keep the freeing order compatible with free_objfile. */
2423
2424 if (objfile->sf != NULL)
2425 {
2426 (*objfile->sf->sym_finish) (objfile);
2427 }
2428
2429 clear_objfile_data (objfile);
2430
2431 /* Free the separate debug objfiles. It will be
2432 automatically recreated by sym_read. */
2433 free_objfile_separate_debug (objfile);
2434
2435 /* FIXME: Do we have to free a whole linked list, or is this
2436 enough? */
2437 if (objfile->global_psymbols.list)
2438 xfree (objfile->global_psymbols.list);
2439 memset (&objfile->global_psymbols, 0,
2440 sizeof (objfile->global_psymbols));
2441 if (objfile->static_psymbols.list)
2442 xfree (objfile->static_psymbols.list);
2443 memset (&objfile->static_psymbols, 0,
2444 sizeof (objfile->static_psymbols));
2445
2446 /* Free the obstacks for non-reusable objfiles. */
2447 psymbol_bcache_free (objfile->psymbol_cache);
2448 objfile->psymbol_cache = psymbol_bcache_init ();
2449 bcache_xfree (objfile->macro_cache);
2450 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2451 bcache_xfree (objfile->filename_cache);
2452 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2453 if (objfile->demangled_names_hash != NULL)
2454 {
2455 htab_delete (objfile->demangled_names_hash);
2456 objfile->demangled_names_hash = NULL;
2457 }
2458 obstack_free (&objfile->objfile_obstack, 0);
2459 objfile->sections = NULL;
2460 objfile->symtabs = NULL;
2461 objfile->psymtabs = NULL;
2462 objfile->psymtabs_addrmap = NULL;
2463 objfile->free_psymtabs = NULL;
2464 objfile->template_symbols = NULL;
2465 objfile->msymbols = NULL;
2466 objfile->deprecated_sym_private = NULL;
2467 objfile->minimal_symbol_count = 0;
2468 memset (&objfile->msymbol_hash, 0,
2469 sizeof (objfile->msymbol_hash));
2470 memset (&objfile->msymbol_demangled_hash, 0,
2471 sizeof (objfile->msymbol_demangled_hash));
2472
2473 objfile->psymbol_cache = psymbol_bcache_init ();
2474 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2475 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2476 /* obstack_init also initializes the obstack so it is
2477 empty. We could use obstack_specify_allocation but
2478 gdb_obstack.h specifies the alloc/dealloc
2479 functions. */
2480 obstack_init (&objfile->objfile_obstack);
2481 if (build_objfile_section_table (objfile))
2482 {
2483 error (_("Can't find the file sections in `%s': %s"),
2484 objfile->name, bfd_errmsg (bfd_get_error ()));
2485 }
2486 terminate_minimal_symbol_table (objfile);
2487
2488 /* We use the same section offsets as from last time. I'm not
2489 sure whether that is always correct for shared libraries. */
2490 objfile->section_offsets = (struct section_offsets *)
2491 obstack_alloc (&objfile->objfile_obstack,
2492 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2493 memcpy (objfile->section_offsets, offsets,
2494 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2495 objfile->num_sections = num_offsets;
2496
2497 /* What the hell is sym_new_init for, anyway? The concept of
2498 distinguishing between the main file and additional files
2499 in this way seems rather dubious. */
2500 if (objfile == symfile_objfile)
2501 {
2502 (*objfile->sf->sym_new_init) (objfile);
2503 }
2504
2505 (*objfile->sf->sym_init) (objfile);
2506 clear_complaints (&symfile_complaints, 1, 1);
2507 /* Do not set flags as this is safe and we don't want to be
2508 verbose. */
2509 (*objfile->sf->sym_read) (objfile, 0);
2510 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2511 {
2512 objfile->flags &= ~OBJF_PSYMTABS_READ;
2513 require_partial_symbols (objfile, 0);
2514 }
2515
2516 if (!objfile_has_symbols (objfile))
2517 {
2518 wrap_here ("");
2519 printf_unfiltered (_("(no debugging symbols found)\n"));
2520 wrap_here ("");
2521 }
2522
2523 /* We're done reading the symbol file; finish off complaints. */
2524 clear_complaints (&symfile_complaints, 0, 1);
2525
2526 /* Getting new symbols may change our opinion about what is
2527 frameless. */
2528
2529 reinit_frame_cache ();
2530
2531 /* Discard cleanups as symbol reading was successful. */
2532 discard_cleanups (old_cleanups);
2533
2534 /* If the mtime has changed between the time we set new_modtime
2535 and now, we *want* this to be out of date, so don't call stat
2536 again now. */
2537 objfile->mtime = new_modtime;
2538 reread_one = 1;
2539 init_entry_point_info (objfile);
2540 }
2541 }
2542
2543 if (reread_one)
2544 {
2545 /* Notify objfiles that we've modified objfile sections. */
2546 objfiles_changed ();
2547
2548 clear_symtab_users (0);
2549 /* At least one objfile has changed, so we can consider that
2550 the executable we're debugging has changed too. */
2551 observer_notify_executable_changed ();
2552 }
2553 }
2554 \f
2555
2556
2557 typedef struct
2558 {
2559 char *ext;
2560 enum language lang;
2561 }
2562 filename_language;
2563
2564 static filename_language *filename_language_table;
2565 static int fl_table_size, fl_table_next;
2566
2567 static void
2568 add_filename_language (char *ext, enum language lang)
2569 {
2570 if (fl_table_next >= fl_table_size)
2571 {
2572 fl_table_size += 10;
2573 filename_language_table =
2574 xrealloc (filename_language_table,
2575 fl_table_size * sizeof (*filename_language_table));
2576 }
2577
2578 filename_language_table[fl_table_next].ext = xstrdup (ext);
2579 filename_language_table[fl_table_next].lang = lang;
2580 fl_table_next++;
2581 }
2582
2583 static char *ext_args;
2584 static void
2585 show_ext_args (struct ui_file *file, int from_tty,
2586 struct cmd_list_element *c, const char *value)
2587 {
2588 fprintf_filtered (file,
2589 _("Mapping between filename extension "
2590 "and source language is \"%s\".\n"),
2591 value);
2592 }
2593
2594 static void
2595 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2596 {
2597 int i;
2598 char *cp = ext_args;
2599 enum language lang;
2600
2601 /* First arg is filename extension, starting with '.' */
2602 if (*cp != '.')
2603 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2604
2605 /* Find end of first arg. */
2606 while (*cp && !isspace (*cp))
2607 cp++;
2608
2609 if (*cp == '\0')
2610 error (_("'%s': two arguments required -- "
2611 "filename extension and language"),
2612 ext_args);
2613
2614 /* Null-terminate first arg. */
2615 *cp++ = '\0';
2616
2617 /* Find beginning of second arg, which should be a source language. */
2618 while (*cp && isspace (*cp))
2619 cp++;
2620
2621 if (*cp == '\0')
2622 error (_("'%s': two arguments required -- "
2623 "filename extension and language"),
2624 ext_args);
2625
2626 /* Lookup the language from among those we know. */
2627 lang = language_enum (cp);
2628
2629 /* Now lookup the filename extension: do we already know it? */
2630 for (i = 0; i < fl_table_next; i++)
2631 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2632 break;
2633
2634 if (i >= fl_table_next)
2635 {
2636 /* New file extension. */
2637 add_filename_language (ext_args, lang);
2638 }
2639 else
2640 {
2641 /* Redefining a previously known filename extension. */
2642
2643 /* if (from_tty) */
2644 /* query ("Really make files of type %s '%s'?", */
2645 /* ext_args, language_str (lang)); */
2646
2647 xfree (filename_language_table[i].ext);
2648 filename_language_table[i].ext = xstrdup (ext_args);
2649 filename_language_table[i].lang = lang;
2650 }
2651 }
2652
2653 static void
2654 info_ext_lang_command (char *args, int from_tty)
2655 {
2656 int i;
2657
2658 printf_filtered (_("Filename extensions and the languages they represent:"));
2659 printf_filtered ("\n\n");
2660 for (i = 0; i < fl_table_next; i++)
2661 printf_filtered ("\t%s\t- %s\n",
2662 filename_language_table[i].ext,
2663 language_str (filename_language_table[i].lang));
2664 }
2665
2666 static void
2667 init_filename_language_table (void)
2668 {
2669 if (fl_table_size == 0) /* Protect against repetition. */
2670 {
2671 fl_table_size = 20;
2672 fl_table_next = 0;
2673 filename_language_table =
2674 xmalloc (fl_table_size * sizeof (*filename_language_table));
2675 add_filename_language (".c", language_c);
2676 add_filename_language (".d", language_d);
2677 add_filename_language (".C", language_cplus);
2678 add_filename_language (".cc", language_cplus);
2679 add_filename_language (".cp", language_cplus);
2680 add_filename_language (".cpp", language_cplus);
2681 add_filename_language (".cxx", language_cplus);
2682 add_filename_language (".c++", language_cplus);
2683 add_filename_language (".java", language_java);
2684 add_filename_language (".class", language_java);
2685 add_filename_language (".m", language_objc);
2686 add_filename_language (".f", language_fortran);
2687 add_filename_language (".F", language_fortran);
2688 add_filename_language (".for", language_fortran);
2689 add_filename_language (".FOR", language_fortran);
2690 add_filename_language (".ftn", language_fortran);
2691 add_filename_language (".FTN", language_fortran);
2692 add_filename_language (".fpp", language_fortran);
2693 add_filename_language (".FPP", language_fortran);
2694 add_filename_language (".f90", language_fortran);
2695 add_filename_language (".F90", language_fortran);
2696 add_filename_language (".f95", language_fortran);
2697 add_filename_language (".F95", language_fortran);
2698 add_filename_language (".f03", language_fortran);
2699 add_filename_language (".F03", language_fortran);
2700 add_filename_language (".f08", language_fortran);
2701 add_filename_language (".F08", language_fortran);
2702 add_filename_language (".s", language_asm);
2703 add_filename_language (".sx", language_asm);
2704 add_filename_language (".S", language_asm);
2705 add_filename_language (".pas", language_pascal);
2706 add_filename_language (".p", language_pascal);
2707 add_filename_language (".pp", language_pascal);
2708 add_filename_language (".adb", language_ada);
2709 add_filename_language (".ads", language_ada);
2710 add_filename_language (".a", language_ada);
2711 add_filename_language (".ada", language_ada);
2712 add_filename_language (".dg", language_ada);
2713 }
2714 }
2715
2716 enum language
2717 deduce_language_from_filename (const char *filename)
2718 {
2719 int i;
2720 char *cp;
2721
2722 if (filename != NULL)
2723 if ((cp = strrchr (filename, '.')) != NULL)
2724 for (i = 0; i < fl_table_next; i++)
2725 if (strcmp (cp, filename_language_table[i].ext) == 0)
2726 return filename_language_table[i].lang;
2727
2728 return language_unknown;
2729 }
2730 \f
2731 /* allocate_symtab:
2732
2733 Allocate and partly initialize a new symbol table. Return a pointer
2734 to it. error() if no space.
2735
2736 Caller must set these fields:
2737 LINETABLE(symtab)
2738 symtab->blockvector
2739 symtab->dirname
2740 symtab->free_code
2741 symtab->free_ptr
2742 */
2743
2744 struct symtab *
2745 allocate_symtab (const char *filename, struct objfile *objfile)
2746 {
2747 struct symtab *symtab;
2748
2749 symtab = (struct symtab *)
2750 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2751 memset (symtab, 0, sizeof (*symtab));
2752 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2753 objfile->filename_cache);
2754 symtab->fullname = NULL;
2755 symtab->language = deduce_language_from_filename (filename);
2756 symtab->debugformat = "unknown";
2757
2758 /* Hook it to the objfile it comes from. */
2759
2760 symtab->objfile = objfile;
2761 symtab->next = objfile->symtabs;
2762 objfile->symtabs = symtab;
2763
2764 return (symtab);
2765 }
2766 \f
2767
2768 /* Reset all data structures in gdb which may contain references to symbol
2769 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2770
2771 void
2772 clear_symtab_users (int add_flags)
2773 {
2774 /* Someday, we should do better than this, by only blowing away
2775 the things that really need to be blown. */
2776
2777 /* Clear the "current" symtab first, because it is no longer valid.
2778 breakpoint_re_set may try to access the current symtab. */
2779 clear_current_source_symtab_and_line ();
2780
2781 clear_displays ();
2782 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2783 breakpoint_re_set ();
2784 set_default_breakpoint (0, NULL, 0, 0, 0);
2785 clear_pc_function_cache ();
2786 observer_notify_new_objfile (NULL);
2787
2788 /* Clear globals which might have pointed into a removed objfile.
2789 FIXME: It's not clear which of these are supposed to persist
2790 between expressions and which ought to be reset each time. */
2791 expression_context_block = NULL;
2792 innermost_block = NULL;
2793
2794 /* Varobj may refer to old symbols, perform a cleanup. */
2795 varobj_invalidate ();
2796
2797 }
2798
2799 static void
2800 clear_symtab_users_cleanup (void *ignore)
2801 {
2802 clear_symtab_users (0);
2803 }
2804 \f
2805 /* OVERLAYS:
2806 The following code implements an abstraction for debugging overlay sections.
2807
2808 The target model is as follows:
2809 1) The gnu linker will permit multiple sections to be mapped into the
2810 same VMA, each with its own unique LMA (or load address).
2811 2) It is assumed that some runtime mechanism exists for mapping the
2812 sections, one by one, from the load address into the VMA address.
2813 3) This code provides a mechanism for gdb to keep track of which
2814 sections should be considered to be mapped from the VMA to the LMA.
2815 This information is used for symbol lookup, and memory read/write.
2816 For instance, if a section has been mapped then its contents
2817 should be read from the VMA, otherwise from the LMA.
2818
2819 Two levels of debugger support for overlays are available. One is
2820 "manual", in which the debugger relies on the user to tell it which
2821 overlays are currently mapped. This level of support is
2822 implemented entirely in the core debugger, and the information about
2823 whether a section is mapped is kept in the objfile->obj_section table.
2824
2825 The second level of support is "automatic", and is only available if
2826 the target-specific code provides functionality to read the target's
2827 overlay mapping table, and translate its contents for the debugger
2828 (by updating the mapped state information in the obj_section tables).
2829
2830 The interface is as follows:
2831 User commands:
2832 overlay map <name> -- tell gdb to consider this section mapped
2833 overlay unmap <name> -- tell gdb to consider this section unmapped
2834 overlay list -- list the sections that GDB thinks are mapped
2835 overlay read-target -- get the target's state of what's mapped
2836 overlay off/manual/auto -- set overlay debugging state
2837 Functional interface:
2838 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2839 section, return that section.
2840 find_pc_overlay(pc): find any overlay section that contains
2841 the pc, either in its VMA or its LMA
2842 section_is_mapped(sect): true if overlay is marked as mapped
2843 section_is_overlay(sect): true if section's VMA != LMA
2844 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2845 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2846 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2847 overlay_mapped_address(...): map an address from section's LMA to VMA
2848 overlay_unmapped_address(...): map an address from section's VMA to LMA
2849 symbol_overlayed_address(...): Return a "current" address for symbol:
2850 either in VMA or LMA depending on whether
2851 the symbol's section is currently mapped. */
2852
2853 /* Overlay debugging state: */
2854
2855 enum overlay_debugging_state overlay_debugging = ovly_off;
2856 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2857
2858 /* Function: section_is_overlay (SECTION)
2859 Returns true if SECTION has VMA not equal to LMA, ie.
2860 SECTION is loaded at an address different from where it will "run". */
2861
2862 int
2863 section_is_overlay (struct obj_section *section)
2864 {
2865 if (overlay_debugging && section)
2866 {
2867 bfd *abfd = section->objfile->obfd;
2868 asection *bfd_section = section->the_bfd_section;
2869
2870 if (bfd_section_lma (abfd, bfd_section) != 0
2871 && bfd_section_lma (abfd, bfd_section)
2872 != bfd_section_vma (abfd, bfd_section))
2873 return 1;
2874 }
2875
2876 return 0;
2877 }
2878
2879 /* Function: overlay_invalidate_all (void)
2880 Invalidate the mapped state of all overlay sections (mark it as stale). */
2881
2882 static void
2883 overlay_invalidate_all (void)
2884 {
2885 struct objfile *objfile;
2886 struct obj_section *sect;
2887
2888 ALL_OBJSECTIONS (objfile, sect)
2889 if (section_is_overlay (sect))
2890 sect->ovly_mapped = -1;
2891 }
2892
2893 /* Function: section_is_mapped (SECTION)
2894 Returns true if section is an overlay, and is currently mapped.
2895
2896 Access to the ovly_mapped flag is restricted to this function, so
2897 that we can do automatic update. If the global flag
2898 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2899 overlay_invalidate_all. If the mapped state of the particular
2900 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2901
2902 int
2903 section_is_mapped (struct obj_section *osect)
2904 {
2905 struct gdbarch *gdbarch;
2906
2907 if (osect == 0 || !section_is_overlay (osect))
2908 return 0;
2909
2910 switch (overlay_debugging)
2911 {
2912 default:
2913 case ovly_off:
2914 return 0; /* overlay debugging off */
2915 case ovly_auto: /* overlay debugging automatic */
2916 /* Unles there is a gdbarch_overlay_update function,
2917 there's really nothing useful to do here (can't really go auto). */
2918 gdbarch = get_objfile_arch (osect->objfile);
2919 if (gdbarch_overlay_update_p (gdbarch))
2920 {
2921 if (overlay_cache_invalid)
2922 {
2923 overlay_invalidate_all ();
2924 overlay_cache_invalid = 0;
2925 }
2926 if (osect->ovly_mapped == -1)
2927 gdbarch_overlay_update (gdbarch, osect);
2928 }
2929 /* fall thru to manual case */
2930 case ovly_on: /* overlay debugging manual */
2931 return osect->ovly_mapped == 1;
2932 }
2933 }
2934
2935 /* Function: pc_in_unmapped_range
2936 If PC falls into the lma range of SECTION, return true, else false. */
2937
2938 CORE_ADDR
2939 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2940 {
2941 if (section_is_overlay (section))
2942 {
2943 bfd *abfd = section->objfile->obfd;
2944 asection *bfd_section = section->the_bfd_section;
2945
2946 /* We assume the LMA is relocated by the same offset as the VMA. */
2947 bfd_vma size = bfd_get_section_size (bfd_section);
2948 CORE_ADDR offset = obj_section_offset (section);
2949
2950 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2951 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2952 return 1;
2953 }
2954
2955 return 0;
2956 }
2957
2958 /* Function: pc_in_mapped_range
2959 If PC falls into the vma range of SECTION, return true, else false. */
2960
2961 CORE_ADDR
2962 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2963 {
2964 if (section_is_overlay (section))
2965 {
2966 if (obj_section_addr (section) <= pc
2967 && pc < obj_section_endaddr (section))
2968 return 1;
2969 }
2970
2971 return 0;
2972 }
2973
2974
2975 /* Return true if the mapped ranges of sections A and B overlap, false
2976 otherwise. */
2977 static int
2978 sections_overlap (struct obj_section *a, struct obj_section *b)
2979 {
2980 CORE_ADDR a_start = obj_section_addr (a);
2981 CORE_ADDR a_end = obj_section_endaddr (a);
2982 CORE_ADDR b_start = obj_section_addr (b);
2983 CORE_ADDR b_end = obj_section_endaddr (b);
2984
2985 return (a_start < b_end && b_start < a_end);
2986 }
2987
2988 /* Function: overlay_unmapped_address (PC, SECTION)
2989 Returns the address corresponding to PC in the unmapped (load) range.
2990 May be the same as PC. */
2991
2992 CORE_ADDR
2993 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2994 {
2995 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2996 {
2997 bfd *abfd = section->objfile->obfd;
2998 asection *bfd_section = section->the_bfd_section;
2999
3000 return pc + bfd_section_lma (abfd, bfd_section)
3001 - bfd_section_vma (abfd, bfd_section);
3002 }
3003
3004 return pc;
3005 }
3006
3007 /* Function: overlay_mapped_address (PC, SECTION)
3008 Returns the address corresponding to PC in the mapped (runtime) range.
3009 May be the same as PC. */
3010
3011 CORE_ADDR
3012 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3013 {
3014 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3015 {
3016 bfd *abfd = section->objfile->obfd;
3017 asection *bfd_section = section->the_bfd_section;
3018
3019 return pc + bfd_section_vma (abfd, bfd_section)
3020 - bfd_section_lma (abfd, bfd_section);
3021 }
3022
3023 return pc;
3024 }
3025
3026
3027 /* Function: symbol_overlayed_address
3028 Return one of two addresses (relative to the VMA or to the LMA),
3029 depending on whether the section is mapped or not. */
3030
3031 CORE_ADDR
3032 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3033 {
3034 if (overlay_debugging)
3035 {
3036 /* If the symbol has no section, just return its regular address. */
3037 if (section == 0)
3038 return address;
3039 /* If the symbol's section is not an overlay, just return its
3040 address. */
3041 if (!section_is_overlay (section))
3042 return address;
3043 /* If the symbol's section is mapped, just return its address. */
3044 if (section_is_mapped (section))
3045 return address;
3046 /*
3047 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3048 * then return its LOADED address rather than its vma address!!
3049 */
3050 return overlay_unmapped_address (address, section);
3051 }
3052 return address;
3053 }
3054
3055 /* Function: find_pc_overlay (PC)
3056 Return the best-match overlay section for PC:
3057 If PC matches a mapped overlay section's VMA, return that section.
3058 Else if PC matches an unmapped section's VMA, return that section.
3059 Else if PC matches an unmapped section's LMA, return that section. */
3060
3061 struct obj_section *
3062 find_pc_overlay (CORE_ADDR pc)
3063 {
3064 struct objfile *objfile;
3065 struct obj_section *osect, *best_match = NULL;
3066
3067 if (overlay_debugging)
3068 ALL_OBJSECTIONS (objfile, osect)
3069 if (section_is_overlay (osect))
3070 {
3071 if (pc_in_mapped_range (pc, osect))
3072 {
3073 if (section_is_mapped (osect))
3074 return osect;
3075 else
3076 best_match = osect;
3077 }
3078 else if (pc_in_unmapped_range (pc, osect))
3079 best_match = osect;
3080 }
3081 return best_match;
3082 }
3083
3084 /* Function: find_pc_mapped_section (PC)
3085 If PC falls into the VMA address range of an overlay section that is
3086 currently marked as MAPPED, return that section. Else return NULL. */
3087
3088 struct obj_section *
3089 find_pc_mapped_section (CORE_ADDR pc)
3090 {
3091 struct objfile *objfile;
3092 struct obj_section *osect;
3093
3094 if (overlay_debugging)
3095 ALL_OBJSECTIONS (objfile, osect)
3096 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3097 return osect;
3098
3099 return NULL;
3100 }
3101
3102 /* Function: list_overlays_command
3103 Print a list of mapped sections and their PC ranges. */
3104
3105 void
3106 list_overlays_command (char *args, int from_tty)
3107 {
3108 int nmapped = 0;
3109 struct objfile *objfile;
3110 struct obj_section *osect;
3111
3112 if (overlay_debugging)
3113 ALL_OBJSECTIONS (objfile, osect)
3114 if (section_is_mapped (osect))
3115 {
3116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3117 const char *name;
3118 bfd_vma lma, vma;
3119 int size;
3120
3121 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3122 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3123 size = bfd_get_section_size (osect->the_bfd_section);
3124 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3125
3126 printf_filtered ("Section %s, loaded at ", name);
3127 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3128 puts_filtered (" - ");
3129 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3130 printf_filtered (", mapped at ");
3131 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3132 puts_filtered (" - ");
3133 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3134 puts_filtered ("\n");
3135
3136 nmapped++;
3137 }
3138 if (nmapped == 0)
3139 printf_filtered (_("No sections are mapped.\n"));
3140 }
3141
3142 /* Function: map_overlay_command
3143 Mark the named section as mapped (ie. residing at its VMA address). */
3144
3145 void
3146 map_overlay_command (char *args, int from_tty)
3147 {
3148 struct objfile *objfile, *objfile2;
3149 struct obj_section *sec, *sec2;
3150
3151 if (!overlay_debugging)
3152 error (_("Overlay debugging not enabled. Use "
3153 "either the 'overlay auto' or\n"
3154 "the 'overlay manual' command."));
3155
3156 if (args == 0 || *args == 0)
3157 error (_("Argument required: name of an overlay section"));
3158
3159 /* First, find a section matching the user supplied argument. */
3160 ALL_OBJSECTIONS (objfile, sec)
3161 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3162 {
3163 /* Now, check to see if the section is an overlay. */
3164 if (!section_is_overlay (sec))
3165 continue; /* not an overlay section */
3166
3167 /* Mark the overlay as "mapped". */
3168 sec->ovly_mapped = 1;
3169
3170 /* Next, make a pass and unmap any sections that are
3171 overlapped by this new section: */
3172 ALL_OBJSECTIONS (objfile2, sec2)
3173 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3174 {
3175 if (info_verbose)
3176 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3177 bfd_section_name (objfile->obfd,
3178 sec2->the_bfd_section));
3179 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3180 }
3181 return;
3182 }
3183 error (_("No overlay section called %s"), args);
3184 }
3185
3186 /* Function: unmap_overlay_command
3187 Mark the overlay section as unmapped
3188 (ie. resident in its LMA address range, rather than the VMA range). */
3189
3190 void
3191 unmap_overlay_command (char *args, int from_tty)
3192 {
3193 struct objfile *objfile;
3194 struct obj_section *sec;
3195
3196 if (!overlay_debugging)
3197 error (_("Overlay debugging not enabled. "
3198 "Use either the 'overlay auto' or\n"
3199 "the 'overlay manual' command."));
3200
3201 if (args == 0 || *args == 0)
3202 error (_("Argument required: name of an overlay section"));
3203
3204 /* First, find a section matching the user supplied argument. */
3205 ALL_OBJSECTIONS (objfile, sec)
3206 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3207 {
3208 if (!sec->ovly_mapped)
3209 error (_("Section %s is not mapped"), args);
3210 sec->ovly_mapped = 0;
3211 return;
3212 }
3213 error (_("No overlay section called %s"), args);
3214 }
3215
3216 /* Function: overlay_auto_command
3217 A utility command to turn on overlay debugging.
3218 Possibly this should be done via a set/show command. */
3219
3220 static void
3221 overlay_auto_command (char *args, int from_tty)
3222 {
3223 overlay_debugging = ovly_auto;
3224 enable_overlay_breakpoints ();
3225 if (info_verbose)
3226 printf_unfiltered (_("Automatic overlay debugging enabled."));
3227 }
3228
3229 /* Function: overlay_manual_command
3230 A utility command to turn on overlay debugging.
3231 Possibly this should be done via a set/show command. */
3232
3233 static void
3234 overlay_manual_command (char *args, int from_tty)
3235 {
3236 overlay_debugging = ovly_on;
3237 disable_overlay_breakpoints ();
3238 if (info_verbose)
3239 printf_unfiltered (_("Overlay debugging enabled."));
3240 }
3241
3242 /* Function: overlay_off_command
3243 A utility command to turn on overlay debugging.
3244 Possibly this should be done via a set/show command. */
3245
3246 static void
3247 overlay_off_command (char *args, int from_tty)
3248 {
3249 overlay_debugging = ovly_off;
3250 disable_overlay_breakpoints ();
3251 if (info_verbose)
3252 printf_unfiltered (_("Overlay debugging disabled."));
3253 }
3254
3255 static void
3256 overlay_load_command (char *args, int from_tty)
3257 {
3258 struct gdbarch *gdbarch = get_current_arch ();
3259
3260 if (gdbarch_overlay_update_p (gdbarch))
3261 gdbarch_overlay_update (gdbarch, NULL);
3262 else
3263 error (_("This target does not know how to read its overlay state."));
3264 }
3265
3266 /* Function: overlay_command
3267 A place-holder for a mis-typed command. */
3268
3269 /* Command list chain containing all defined "overlay" subcommands. */
3270 struct cmd_list_element *overlaylist;
3271
3272 static void
3273 overlay_command (char *args, int from_tty)
3274 {
3275 printf_unfiltered
3276 ("\"overlay\" must be followed by the name of an overlay command.\n");
3277 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3278 }
3279
3280
3281 /* Target Overlays for the "Simplest" overlay manager:
3282
3283 This is GDB's default target overlay layer. It works with the
3284 minimal overlay manager supplied as an example by Cygnus. The
3285 entry point is via a function pointer "gdbarch_overlay_update",
3286 so targets that use a different runtime overlay manager can
3287 substitute their own overlay_update function and take over the
3288 function pointer.
3289
3290 The overlay_update function pokes around in the target's data structures
3291 to see what overlays are mapped, and updates GDB's overlay mapping with
3292 this information.
3293
3294 In this simple implementation, the target data structures are as follows:
3295 unsigned _novlys; /# number of overlay sections #/
3296 unsigned _ovly_table[_novlys][4] = {
3297 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3298 {..., ..., ..., ...},
3299 }
3300 unsigned _novly_regions; /# number of overlay regions #/
3301 unsigned _ovly_region_table[_novly_regions][3] = {
3302 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3303 {..., ..., ...},
3304 }
3305 These functions will attempt to update GDB's mappedness state in the
3306 symbol section table, based on the target's mappedness state.
3307
3308 To do this, we keep a cached copy of the target's _ovly_table, and
3309 attempt to detect when the cached copy is invalidated. The main
3310 entry point is "simple_overlay_update(SECT), which looks up SECT in
3311 the cached table and re-reads only the entry for that section from
3312 the target (whenever possible). */
3313
3314 /* Cached, dynamically allocated copies of the target data structures: */
3315 static unsigned (*cache_ovly_table)[4] = 0;
3316 static unsigned cache_novlys = 0;
3317 static CORE_ADDR cache_ovly_table_base = 0;
3318 enum ovly_index
3319 {
3320 VMA, SIZE, LMA, MAPPED
3321 };
3322
3323 /* Throw away the cached copy of _ovly_table. */
3324 static void
3325 simple_free_overlay_table (void)
3326 {
3327 if (cache_ovly_table)
3328 xfree (cache_ovly_table);
3329 cache_novlys = 0;
3330 cache_ovly_table = NULL;
3331 cache_ovly_table_base = 0;
3332 }
3333
3334 /* Read an array of ints of size SIZE from the target into a local buffer.
3335 Convert to host order. int LEN is number of ints. */
3336 static void
3337 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3338 int len, int size, enum bfd_endian byte_order)
3339 {
3340 /* FIXME (alloca): Not safe if array is very large. */
3341 gdb_byte *buf = alloca (len * size);
3342 int i;
3343
3344 read_memory (memaddr, buf, len * size);
3345 for (i = 0; i < len; i++)
3346 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3347 }
3348
3349 /* Find and grab a copy of the target _ovly_table
3350 (and _novlys, which is needed for the table's size). */
3351 static int
3352 simple_read_overlay_table (void)
3353 {
3354 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3355 struct gdbarch *gdbarch;
3356 int word_size;
3357 enum bfd_endian byte_order;
3358
3359 simple_free_overlay_table ();
3360 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3361 if (! novlys_msym)
3362 {
3363 error (_("Error reading inferior's overlay table: "
3364 "couldn't find `_novlys' variable\n"
3365 "in inferior. Use `overlay manual' mode."));
3366 return 0;
3367 }
3368
3369 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3370 if (! ovly_table_msym)
3371 {
3372 error (_("Error reading inferior's overlay table: couldn't find "
3373 "`_ovly_table' array\n"
3374 "in inferior. Use `overlay manual' mode."));
3375 return 0;
3376 }
3377
3378 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3379 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3380 byte_order = gdbarch_byte_order (gdbarch);
3381
3382 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3383 4, byte_order);
3384 cache_ovly_table
3385 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3386 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3387 read_target_long_array (cache_ovly_table_base,
3388 (unsigned int *) cache_ovly_table,
3389 cache_novlys * 4, word_size, byte_order);
3390
3391 return 1; /* SUCCESS */
3392 }
3393
3394 /* Function: simple_overlay_update_1
3395 A helper function for simple_overlay_update. Assuming a cached copy
3396 of _ovly_table exists, look through it to find an entry whose vma,
3397 lma and size match those of OSECT. Re-read the entry and make sure
3398 it still matches OSECT (else the table may no longer be valid).
3399 Set OSECT's mapped state to match the entry. Return: 1 for
3400 success, 0 for failure. */
3401
3402 static int
3403 simple_overlay_update_1 (struct obj_section *osect)
3404 {
3405 int i, size;
3406 bfd *obfd = osect->objfile->obfd;
3407 asection *bsect = osect->the_bfd_section;
3408 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3409 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3411
3412 size = bfd_get_section_size (osect->the_bfd_section);
3413 for (i = 0; i < cache_novlys; i++)
3414 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3415 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3416 /* && cache_ovly_table[i][SIZE] == size */ )
3417 {
3418 read_target_long_array (cache_ovly_table_base + i * word_size,
3419 (unsigned int *) cache_ovly_table[i],
3420 4, word_size, byte_order);
3421 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3422 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3423 /* && cache_ovly_table[i][SIZE] == size */ )
3424 {
3425 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3426 return 1;
3427 }
3428 else /* Warning! Warning! Target's ovly table has changed! */
3429 return 0;
3430 }
3431 return 0;
3432 }
3433
3434 /* Function: simple_overlay_update
3435 If OSECT is NULL, then update all sections' mapped state
3436 (after re-reading the entire target _ovly_table).
3437 If OSECT is non-NULL, then try to find a matching entry in the
3438 cached ovly_table and update only OSECT's mapped state.
3439 If a cached entry can't be found or the cache isn't valid, then
3440 re-read the entire cache, and go ahead and update all sections. */
3441
3442 void
3443 simple_overlay_update (struct obj_section *osect)
3444 {
3445 struct objfile *objfile;
3446
3447 /* Were we given an osect to look up? NULL means do all of them. */
3448 if (osect)
3449 /* Have we got a cached copy of the target's overlay table? */
3450 if (cache_ovly_table != NULL)
3451 {
3452 /* Does its cached location match what's currently in the
3453 symtab? */
3454 struct minimal_symbol *minsym
3455 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3456
3457 if (minsym == NULL)
3458 error (_("Error reading inferior's overlay table: couldn't "
3459 "find `_ovly_table' array\n"
3460 "in inferior. Use `overlay manual' mode."));
3461
3462 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3463 /* Then go ahead and try to look up this single section in
3464 the cache. */
3465 if (simple_overlay_update_1 (osect))
3466 /* Found it! We're done. */
3467 return;
3468 }
3469
3470 /* Cached table no good: need to read the entire table anew.
3471 Or else we want all the sections, in which case it's actually
3472 more efficient to read the whole table in one block anyway. */
3473
3474 if (! simple_read_overlay_table ())
3475 return;
3476
3477 /* Now may as well update all sections, even if only one was requested. */
3478 ALL_OBJSECTIONS (objfile, osect)
3479 if (section_is_overlay (osect))
3480 {
3481 int i, size;
3482 bfd *obfd = osect->objfile->obfd;
3483 asection *bsect = osect->the_bfd_section;
3484
3485 size = bfd_get_section_size (bsect);
3486 for (i = 0; i < cache_novlys; i++)
3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3488 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3489 /* && cache_ovly_table[i][SIZE] == size */ )
3490 { /* obj_section matches i'th entry in ovly_table. */
3491 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3492 break; /* finished with inner for loop: break out. */
3493 }
3494 }
3495 }
3496
3497 /* Set the output sections and output offsets for section SECTP in
3498 ABFD. The relocation code in BFD will read these offsets, so we
3499 need to be sure they're initialized. We map each section to itself,
3500 with no offset; this means that SECTP->vma will be honored. */
3501
3502 static void
3503 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3504 {
3505 sectp->output_section = sectp;
3506 sectp->output_offset = 0;
3507 }
3508
3509 /* Default implementation for sym_relocate. */
3510
3511
3512 bfd_byte *
3513 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3514 bfd_byte *buf)
3515 {
3516 bfd *abfd = objfile->obfd;
3517
3518 /* We're only interested in sections with relocation
3519 information. */
3520 if ((sectp->flags & SEC_RELOC) == 0)
3521 return NULL;
3522
3523 /* We will handle section offsets properly elsewhere, so relocate as if
3524 all sections begin at 0. */
3525 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3526
3527 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3528 }
3529
3530 /* Relocate the contents of a debug section SECTP in ABFD. The
3531 contents are stored in BUF if it is non-NULL, or returned in a
3532 malloc'd buffer otherwise.
3533
3534 For some platforms and debug info formats, shared libraries contain
3535 relocations against the debug sections (particularly for DWARF-2;
3536 one affected platform is PowerPC GNU/Linux, although it depends on
3537 the version of the linker in use). Also, ELF object files naturally
3538 have unresolved relocations for their debug sections. We need to apply
3539 the relocations in order to get the locations of symbols correct.
3540 Another example that may require relocation processing, is the
3541 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3542 debug section. */
3543
3544 bfd_byte *
3545 symfile_relocate_debug_section (struct objfile *objfile,
3546 asection *sectp, bfd_byte *buf)
3547 {
3548 gdb_assert (objfile->sf->sym_relocate);
3549
3550 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3551 }
3552
3553 struct symfile_segment_data *
3554 get_symfile_segment_data (bfd *abfd)
3555 {
3556 const struct sym_fns *sf = find_sym_fns (abfd);
3557
3558 if (sf == NULL)
3559 return NULL;
3560
3561 return sf->sym_segments (abfd);
3562 }
3563
3564 void
3565 free_symfile_segment_data (struct symfile_segment_data *data)
3566 {
3567 xfree (data->segment_bases);
3568 xfree (data->segment_sizes);
3569 xfree (data->segment_info);
3570 xfree (data);
3571 }
3572
3573
3574 /* Given:
3575 - DATA, containing segment addresses from the object file ABFD, and
3576 the mapping from ABFD's sections onto the segments that own them,
3577 and
3578 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3579 segment addresses reported by the target,
3580 store the appropriate offsets for each section in OFFSETS.
3581
3582 If there are fewer entries in SEGMENT_BASES than there are segments
3583 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3584
3585 If there are more entries, then ignore the extra. The target may
3586 not be able to distinguish between an empty data segment and a
3587 missing data segment; a missing text segment is less plausible. */
3588 int
3589 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3590 struct section_offsets *offsets,
3591 int num_segment_bases,
3592 const CORE_ADDR *segment_bases)
3593 {
3594 int i;
3595 asection *sect;
3596
3597 /* It doesn't make sense to call this function unless you have some
3598 segment base addresses. */
3599 gdb_assert (num_segment_bases > 0);
3600
3601 /* If we do not have segment mappings for the object file, we
3602 can not relocate it by segments. */
3603 gdb_assert (data != NULL);
3604 gdb_assert (data->num_segments > 0);
3605
3606 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3607 {
3608 int which = data->segment_info[i];
3609
3610 gdb_assert (0 <= which && which <= data->num_segments);
3611
3612 /* Don't bother computing offsets for sections that aren't
3613 loaded as part of any segment. */
3614 if (! which)
3615 continue;
3616
3617 /* Use the last SEGMENT_BASES entry as the address of any extra
3618 segments mentioned in DATA->segment_info. */
3619 if (which > num_segment_bases)
3620 which = num_segment_bases;
3621
3622 offsets->offsets[i] = (segment_bases[which - 1]
3623 - data->segment_bases[which - 1]);
3624 }
3625
3626 return 1;
3627 }
3628
3629 static void
3630 symfile_find_segment_sections (struct objfile *objfile)
3631 {
3632 bfd *abfd = objfile->obfd;
3633 int i;
3634 asection *sect;
3635 struct symfile_segment_data *data;
3636
3637 data = get_symfile_segment_data (objfile->obfd);
3638 if (data == NULL)
3639 return;
3640
3641 if (data->num_segments != 1 && data->num_segments != 2)
3642 {
3643 free_symfile_segment_data (data);
3644 return;
3645 }
3646
3647 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3648 {
3649 int which = data->segment_info[i];
3650
3651 if (which == 1)
3652 {
3653 if (objfile->sect_index_text == -1)
3654 objfile->sect_index_text = sect->index;
3655
3656 if (objfile->sect_index_rodata == -1)
3657 objfile->sect_index_rodata = sect->index;
3658 }
3659 else if (which == 2)
3660 {
3661 if (objfile->sect_index_data == -1)
3662 objfile->sect_index_data = sect->index;
3663
3664 if (objfile->sect_index_bss == -1)
3665 objfile->sect_index_bss = sect->index;
3666 }
3667 }
3668
3669 free_symfile_segment_data (data);
3670 }
3671
3672 void
3673 _initialize_symfile (void)
3674 {
3675 struct cmd_list_element *c;
3676
3677 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3678 Load symbol table from executable file FILE.\n\
3679 The `file' command can also load symbol tables, as well as setting the file\n\
3680 to execute."), &cmdlist);
3681 set_cmd_completer (c, filename_completer);
3682
3683 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3684 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3685 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3686 ...]\nADDR is the starting address of the file's text.\n\
3687 The optional arguments are section-name section-address pairs and\n\
3688 should be specified if the data and bss segments are not contiguous\n\
3689 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3690 &cmdlist);
3691 set_cmd_completer (c, filename_completer);
3692
3693 c = add_cmd ("load", class_files, load_command, _("\
3694 Dynamically load FILE into the running program, and record its symbols\n\
3695 for access from GDB.\n\
3696 A load OFFSET may also be given."), &cmdlist);
3697 set_cmd_completer (c, filename_completer);
3698
3699 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3700 &symbol_reloading, _("\
3701 Set dynamic symbol table reloading multiple times in one run."), _("\
3702 Show dynamic symbol table reloading multiple times in one run."), NULL,
3703 NULL,
3704 show_symbol_reloading,
3705 &setlist, &showlist);
3706
3707 add_prefix_cmd ("overlay", class_support, overlay_command,
3708 _("Commands for debugging overlays."), &overlaylist,
3709 "overlay ", 0, &cmdlist);
3710
3711 add_com_alias ("ovly", "overlay", class_alias, 1);
3712 add_com_alias ("ov", "overlay", class_alias, 1);
3713
3714 add_cmd ("map-overlay", class_support, map_overlay_command,
3715 _("Assert that an overlay section is mapped."), &overlaylist);
3716
3717 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3718 _("Assert that an overlay section is unmapped."), &overlaylist);
3719
3720 add_cmd ("list-overlays", class_support, list_overlays_command,
3721 _("List mappings of overlay sections."), &overlaylist);
3722
3723 add_cmd ("manual", class_support, overlay_manual_command,
3724 _("Enable overlay debugging."), &overlaylist);
3725 add_cmd ("off", class_support, overlay_off_command,
3726 _("Disable overlay debugging."), &overlaylist);
3727 add_cmd ("auto", class_support, overlay_auto_command,
3728 _("Enable automatic overlay debugging."), &overlaylist);
3729 add_cmd ("load-target", class_support, overlay_load_command,
3730 _("Read the overlay mapping state from the target."), &overlaylist);
3731
3732 /* Filename extension to source language lookup table: */
3733 init_filename_language_table ();
3734 add_setshow_string_noescape_cmd ("extension-language", class_files,
3735 &ext_args, _("\
3736 Set mapping between filename extension and source language."), _("\
3737 Show mapping between filename extension and source language."), _("\
3738 Usage: set extension-language .foo bar"),
3739 set_ext_lang_command,
3740 show_ext_args,
3741 &setlist, &showlist);
3742
3743 add_info ("extensions", info_ext_lang_command,
3744 _("All filename extensions associated with a source language."));
3745
3746 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3747 &debug_file_directory, _("\
3748 Set the directories where separate debug symbols are searched for."), _("\
3749 Show the directories where separate debug symbols are searched for."), _("\
3750 Separate debug symbols are first searched for in the same\n\
3751 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3752 and lastly at the path of the directory of the binary with\n\
3753 each global debug-file-directory component prepended."),
3754 NULL,
3755 show_debug_file_directory,
3756 &setlist, &showlist);
3757 }
This page took 0.389777 seconds and 4 git commands to generate.