* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
374 {
375 struct section_addr_info *sap;
376 const struct target_section *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 static void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
748
749 void
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int add_flags)
755 {
756 struct section_addr_info *local_addr = NULL;
757 struct cleanup *old_chain;
758 const int mainline = add_flags & SYMFILE_MAINLINE;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int add_flags)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (add_flags & SYMFILE_MAINLINE)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
923 {
924 breakpoint_re_set ();
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
943
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
946
947 static struct objfile *
948 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961 const int from_tty = add_flags & SYMFILE_VERBOSE;
962
963 my_cleanups = make_cleanup_bfd_close (abfd);
964
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
967
968 if ((have_full_symbols () || have_partial_symbols ())
969 && (add_flags & SYMFILE_MAINLINE)
970 && from_tty
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
973
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
976
977 if (addrs)
978 {
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
981 }
982
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
987 {
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
990 else
991 {
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
998 }
999 }
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1001 add_flags);
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1009 {
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1011 {
1012 printf_unfiltered (_("expanding to full symbols..."));
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
1017 for (psymtab = objfile->psymtabs;
1018 psymtab != NULL;
1019 psymtab = psymtab->next)
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1030 if (debugfile)
1031 {
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
1044
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1048
1049 xfree (debugfile);
1050 }
1051
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1054 {
1055 wrap_here ("");
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1059 else
1060 printf_unfiltered ("\n");
1061 wrap_here ("");
1062 }
1063
1064 if (from_tty || info_verbose)
1065 {
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1068 else
1069 {
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1072 }
1073 }
1074
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
1080 do_cleanups (my_cleanups);
1081
1082 if (objfile->sf == NULL)
1083 return objfile; /* No symbols. */
1084
1085 new_symfile_objfile (objfile, add_flags);
1086
1087 observer_notify_new_objfile (objfile);
1088
1089 bfd_cache_close_all ();
1090 return (objfile);
1091 }
1092
1093
1094 /* Process the symbol file ABFD, as either the main file or as a
1095 dynamically loaded file.
1096
1097 See symbol_file_add_with_addrs_or_offsets's comments for
1098 details. */
1099 struct objfile *
1100 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1101 struct section_addr_info *addrs,
1102 int flags)
1103 {
1104 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1105 flags);
1106 }
1107
1108
1109 /* Process a symbol file, as either the main file or as a dynamically
1110 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1111 for details. */
1112 struct objfile *
1113 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1114 int flags)
1115 {
1116 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1117 flags);
1118 }
1119
1120
1121 /* Call symbol_file_add() with default values and update whatever is
1122 affected by the loading of a new main().
1123 Used when the file is supplied in the gdb command line
1124 and by some targets with special loading requirements.
1125 The auxiliary function, symbol_file_add_main_1(), has the flags
1126 argument for the switches that can only be specified in the symbol_file
1127 command itself. */
1128
1129 void
1130 symbol_file_add_main (char *args, int from_tty)
1131 {
1132 symbol_file_add_main_1 (args, from_tty, 0);
1133 }
1134
1135 static void
1136 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1137 {
1138 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1139 symbol_file_add (args, add_flags, NULL, flags);
1140
1141 /* Getting new symbols may change our opinion about
1142 what is frameless. */
1143 reinit_frame_cache ();
1144
1145 set_initial_language ();
1146 }
1147
1148 void
1149 symbol_file_clear (int from_tty)
1150 {
1151 if ((have_full_symbols () || have_partial_symbols ())
1152 && from_tty
1153 && (symfile_objfile
1154 ? !query (_("Discard symbol table from `%s'? "),
1155 symfile_objfile->name)
1156 : !query (_("Discard symbol table? "))))
1157 error (_("Not confirmed."));
1158
1159 free_all_objfiles ();
1160
1161 /* solib descriptors may have handles to objfiles. Since their
1162 storage has just been released, we'd better wipe the solib
1163 descriptors as well. */
1164 no_shared_libraries (NULL, from_tty);
1165
1166 symfile_objfile = NULL;
1167 if (from_tty)
1168 printf_unfiltered (_("No symbol file now.\n"));
1169 }
1170
1171 struct build_id
1172 {
1173 size_t size;
1174 gdb_byte data[1];
1175 };
1176
1177 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1178
1179 static struct build_id *
1180 build_id_bfd_get (bfd *abfd)
1181 {
1182 struct build_id *retval;
1183
1184 if (!bfd_check_format (abfd, bfd_object)
1185 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1186 || elf_tdata (abfd)->build_id == NULL)
1187 return NULL;
1188
1189 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1190 retval->size = elf_tdata (abfd)->build_id_size;
1191 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1192
1193 return retval;
1194 }
1195
1196 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1197
1198 static int
1199 build_id_verify (const char *filename, struct build_id *check)
1200 {
1201 bfd *abfd;
1202 struct build_id *found = NULL;
1203 int retval = 0;
1204
1205 /* We expect to be silent on the non-existing files. */
1206 if (remote_filename_p (filename))
1207 abfd = remote_bfd_open (filename, gnutarget);
1208 else
1209 abfd = bfd_openr (filename, gnutarget);
1210 if (abfd == NULL)
1211 return 0;
1212
1213 found = build_id_bfd_get (abfd);
1214
1215 if (found == NULL)
1216 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1217 else if (found->size != check->size
1218 || memcmp (found->data, check->data, found->size) != 0)
1219 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1220 else
1221 retval = 1;
1222
1223 if (!bfd_close (abfd))
1224 warning (_("cannot close \"%s\": %s"), filename,
1225 bfd_errmsg (bfd_get_error ()));
1226
1227 xfree (found);
1228
1229 return retval;
1230 }
1231
1232 static char *
1233 build_id_to_debug_filename (struct build_id *build_id)
1234 {
1235 char *link, *s, *retval = NULL;
1236 gdb_byte *data = build_id->data;
1237 size_t size = build_id->size;
1238
1239 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1240 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1241 + 2 * size + (sizeof ".debug" - 1) + 1);
1242 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1243 if (size > 0)
1244 {
1245 size--;
1246 s += sprintf (s, "%02x", (unsigned) *data++);
1247 }
1248 if (size > 0)
1249 *s++ = '/';
1250 while (size-- > 0)
1251 s += sprintf (s, "%02x", (unsigned) *data++);
1252 strcpy (s, ".debug");
1253
1254 /* lrealpath() is expensive even for the usually non-existent files. */
1255 if (access (link, F_OK) == 0)
1256 retval = lrealpath (link);
1257 xfree (link);
1258
1259 if (retval != NULL && !build_id_verify (retval, build_id))
1260 {
1261 xfree (retval);
1262 retval = NULL;
1263 }
1264
1265 return retval;
1266 }
1267
1268 static char *
1269 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270 {
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
1276 unsigned char *p;
1277
1278 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1279
1280 if (sect == NULL)
1281 return NULL;
1282
1283 debuglink_size = bfd_section_size (objfile->obfd, sect);
1284
1285 contents = xmalloc (debuglink_size);
1286 bfd_get_section_contents (objfile->obfd, sect, contents,
1287 (file_ptr)0, (bfd_size_type)debuglink_size);
1288
1289 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1290 crc_offset = strlen (contents) + 1;
1291 crc_offset = (crc_offset + 3) & ~3;
1292
1293 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1294
1295 *crc32_out = crc32;
1296 return contents;
1297 }
1298
1299 static int
1300 separate_debug_file_exists (const char *name, unsigned long crc)
1301 {
1302 unsigned long file_crc = 0;
1303 bfd *abfd;
1304 gdb_byte buffer[8*1024];
1305 int count;
1306
1307 if (remote_filename_p (name))
1308 abfd = remote_bfd_open (name, gnutarget);
1309 else
1310 abfd = bfd_openr (name, gnutarget);
1311
1312 if (!abfd)
1313 return 0;
1314
1315 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1316 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1317
1318 bfd_close (abfd);
1319
1320 return crc == file_crc;
1321 }
1322
1323 char *debug_file_directory = NULL;
1324 static void
1325 show_debug_file_directory (struct ui_file *file, int from_tty,
1326 struct cmd_list_element *c, const char *value)
1327 {
1328 fprintf_filtered (file, _("\
1329 The directory where separate debug symbols are searched for is \"%s\".\n"),
1330 value);
1331 }
1332
1333 #if ! defined (DEBUG_SUBDIRECTORY)
1334 #define DEBUG_SUBDIRECTORY ".debug"
1335 #endif
1336
1337 static char *
1338 find_separate_debug_file (struct objfile *objfile)
1339 {
1340 asection *sect;
1341 char *basename;
1342 char *dir;
1343 char *debugfile;
1344 char *name_copy;
1345 char *canon_name;
1346 bfd_size_type debuglink_size;
1347 unsigned long crc32;
1348 int i;
1349 struct build_id *build_id;
1350
1351 build_id = build_id_bfd_get (objfile->obfd);
1352 if (build_id != NULL)
1353 {
1354 char *build_id_name;
1355
1356 build_id_name = build_id_to_debug_filename (build_id);
1357 xfree (build_id);
1358 /* Prevent looping on a stripped .debug file. */
1359 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1360 {
1361 warning (_("\"%s\": separate debug info file has no debug info"),
1362 build_id_name);
1363 xfree (build_id_name);
1364 }
1365 else if (build_id_name != NULL)
1366 return build_id_name;
1367 }
1368
1369 basename = get_debug_link_info (objfile, &crc32);
1370
1371 if (basename == NULL)
1372 return NULL;
1373
1374 dir = xstrdup (objfile->name);
1375
1376 /* Strip off the final filename part, leaving the directory name,
1377 followed by a slash. Objfile names should always be absolute and
1378 tilde-expanded, so there should always be a slash in there
1379 somewhere. */
1380 for (i = strlen(dir) - 1; i >= 0; i--)
1381 {
1382 if (IS_DIR_SEPARATOR (dir[i]))
1383 break;
1384 }
1385 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1386 dir[i+1] = '\0';
1387
1388 debugfile = alloca (strlen (debug_file_directory) + 1
1389 + strlen (dir)
1390 + strlen (DEBUG_SUBDIRECTORY)
1391 + strlen ("/")
1392 + strlen (basename)
1393 + 1);
1394
1395 /* First try in the same directory as the original file. */
1396 strcpy (debugfile, dir);
1397 strcat (debugfile, basename);
1398
1399 if (separate_debug_file_exists (debugfile, crc32))
1400 {
1401 xfree (basename);
1402 xfree (dir);
1403 return xstrdup (debugfile);
1404 }
1405
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, basename);
1411
1412 if (separate_debug_file_exists (debugfile, crc32))
1413 {
1414 xfree (basename);
1415 xfree (dir);
1416 return xstrdup (debugfile);
1417 }
1418
1419 /* Then try in the global debugfile directory. */
1420 strcpy (debugfile, debug_file_directory);
1421 strcat (debugfile, "/");
1422 strcat (debugfile, dir);
1423 strcat (debugfile, basename);
1424
1425 if (separate_debug_file_exists (debugfile, crc32))
1426 {
1427 xfree (basename);
1428 xfree (dir);
1429 return xstrdup (debugfile);
1430 }
1431
1432 /* If the file is in the sysroot, try using its base path in the
1433 global debugfile directory. */
1434 canon_name = lrealpath (dir);
1435 if (canon_name
1436 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1437 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1438 {
1439 strcpy (debugfile, debug_file_directory);
1440 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
1444 if (separate_debug_file_exists (debugfile, crc32))
1445 {
1446 xfree (canon_name);
1447 xfree (basename);
1448 xfree (dir);
1449 return xstrdup (debugfile);
1450 }
1451 }
1452
1453 if (canon_name)
1454 xfree (canon_name);
1455
1456 xfree (basename);
1457 xfree (dir);
1458 return NULL;
1459 }
1460
1461
1462 /* This is the symbol-file command. Read the file, analyze its
1463 symbols, and add a struct symtab to a symtab list. The syntax of
1464 the command is rather bizarre:
1465
1466 1. The function buildargv implements various quoting conventions
1467 which are undocumented and have little or nothing in common with
1468 the way things are quoted (or not quoted) elsewhere in GDB.
1469
1470 2. Options are used, which are not generally used in GDB (perhaps
1471 "set mapped on", "set readnow on" would be better)
1472
1473 3. The order of options matters, which is contrary to GNU
1474 conventions (because it is confusing and inconvenient). */
1475
1476 void
1477 symbol_file_command (char *args, int from_tty)
1478 {
1479 dont_repeat ();
1480
1481 if (args == NULL)
1482 {
1483 symbol_file_clear (from_tty);
1484 }
1485 else
1486 {
1487 char **argv = gdb_buildargv (args);
1488 int flags = OBJF_USERLOADED;
1489 struct cleanup *cleanups;
1490 char *name = NULL;
1491
1492 cleanups = make_cleanup_freeargv (argv);
1493 while (*argv != NULL)
1494 {
1495 if (strcmp (*argv, "-readnow") == 0)
1496 flags |= OBJF_READNOW;
1497 else if (**argv == '-')
1498 error (_("unknown option `%s'"), *argv);
1499 else
1500 {
1501 symbol_file_add_main_1 (*argv, from_tty, flags);
1502 name = *argv;
1503 }
1504
1505 argv++;
1506 }
1507
1508 if (name == NULL)
1509 error (_("no symbol file name was specified"));
1510
1511 do_cleanups (cleanups);
1512 }
1513 }
1514
1515 /* Set the initial language.
1516
1517 FIXME: A better solution would be to record the language in the
1518 psymtab when reading partial symbols, and then use it (if known) to
1519 set the language. This would be a win for formats that encode the
1520 language in an easily discoverable place, such as DWARF. For
1521 stabs, we can jump through hoops looking for specially named
1522 symbols or try to intuit the language from the specific type of
1523 stabs we find, but we can't do that until later when we read in
1524 full symbols. */
1525
1526 void
1527 set_initial_language (void)
1528 {
1529 struct partial_symtab *pst;
1530 enum language lang = language_unknown;
1531
1532 pst = find_main_psymtab ();
1533 if (pst != NULL)
1534 {
1535 if (pst->filename != NULL)
1536 lang = deduce_language_from_filename (pst->filename);
1537
1538 if (lang == language_unknown)
1539 {
1540 /* Make C the default language */
1541 lang = language_c;
1542 }
1543
1544 set_language (lang);
1545 expected_language = current_language; /* Don't warn the user. */
1546 }
1547 }
1548
1549 /* Open the file specified by NAME and hand it off to BFD for
1550 preliminary analysis. Return a newly initialized bfd *, which
1551 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1552 absolute). In case of trouble, error() is called. */
1553
1554 bfd *
1555 symfile_bfd_open (char *name)
1556 {
1557 bfd *sym_bfd;
1558 int desc;
1559 char *absolute_name;
1560
1561 if (remote_filename_p (name))
1562 {
1563 name = xstrdup (name);
1564 sym_bfd = remote_bfd_open (name, gnutarget);
1565 if (!sym_bfd)
1566 {
1567 make_cleanup (xfree, name);
1568 error (_("`%s': can't open to read symbols: %s."), name,
1569 bfd_errmsg (bfd_get_error ()));
1570 }
1571
1572 if (!bfd_check_format (sym_bfd, bfd_object))
1573 {
1574 bfd_close (sym_bfd);
1575 make_cleanup (xfree, name);
1576 error (_("`%s': can't read symbols: %s."), name,
1577 bfd_errmsg (bfd_get_error ()));
1578 }
1579
1580 return sym_bfd;
1581 }
1582
1583 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1584
1585 /* Look down path for it, allocate 2nd new malloc'd copy. */
1586 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1587 O_RDONLY | O_BINARY, &absolute_name);
1588 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1589 if (desc < 0)
1590 {
1591 char *exename = alloca (strlen (name) + 5);
1592 strcat (strcpy (exename, name), ".exe");
1593 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1594 O_RDONLY | O_BINARY, &absolute_name);
1595 }
1596 #endif
1597 if (desc < 0)
1598 {
1599 make_cleanup (xfree, name);
1600 perror_with_name (name);
1601 }
1602
1603 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1604 bfd. It'll be freed in free_objfile(). */
1605 xfree (name);
1606 name = absolute_name;
1607
1608 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1609 if (!sym_bfd)
1610 {
1611 close (desc);
1612 make_cleanup (xfree, name);
1613 error (_("`%s': can't open to read symbols: %s."), name,
1614 bfd_errmsg (bfd_get_error ()));
1615 }
1616 bfd_set_cacheable (sym_bfd, 1);
1617
1618 if (!bfd_check_format (sym_bfd, bfd_object))
1619 {
1620 /* FIXME: should be checking for errors from bfd_close (for one
1621 thing, on error it does not free all the storage associated
1622 with the bfd). */
1623 bfd_close (sym_bfd); /* This also closes desc. */
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628
1629 return sym_bfd;
1630 }
1631
1632 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1633 the section was not found. */
1634
1635 int
1636 get_section_index (struct objfile *objfile, char *section_name)
1637 {
1638 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1639
1640 if (sect)
1641 return sect->index;
1642 else
1643 return -1;
1644 }
1645
1646 /* Link SF into the global symtab_fns list. Called on startup by the
1647 _initialize routine in each object file format reader, to register
1648 information about each format the the reader is prepared to
1649 handle. */
1650
1651 void
1652 add_symtab_fns (struct sym_fns *sf)
1653 {
1654 sf->next = symtab_fns;
1655 symtab_fns = sf;
1656 }
1657
1658 /* Initialize OBJFILE to read symbols from its associated BFD. It
1659 either returns or calls error(). The result is an initialized
1660 struct sym_fns in the objfile structure, that contains cached
1661 information about the symbol file. */
1662
1663 static struct sym_fns *
1664 find_sym_fns (bfd *abfd)
1665 {
1666 struct sym_fns *sf;
1667 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1668
1669 if (our_flavour == bfd_target_srec_flavour
1670 || our_flavour == bfd_target_ihex_flavour
1671 || our_flavour == bfd_target_tekhex_flavour)
1672 return NULL; /* No symbols. */
1673
1674 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1675 if (our_flavour == sf->sym_flavour)
1676 return sf;
1677
1678 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1679 bfd_get_target (abfd));
1680 }
1681 \f
1682
1683 /* This function runs the load command of our current target. */
1684
1685 static void
1686 load_command (char *arg, int from_tty)
1687 {
1688 /* The user might be reloading because the binary has changed. Take
1689 this opportunity to check. */
1690 reopen_exec_file ();
1691 reread_symbols ();
1692
1693 if (arg == NULL)
1694 {
1695 char *parg;
1696 int count = 0;
1697
1698 parg = arg = get_exec_file (1);
1699
1700 /* Count how many \ " ' tab space there are in the name. */
1701 while ((parg = strpbrk (parg, "\\\"'\t ")))
1702 {
1703 parg++;
1704 count++;
1705 }
1706
1707 if (count)
1708 {
1709 /* We need to quote this string so buildargv can pull it apart. */
1710 char *temp = xmalloc (strlen (arg) + count + 1 );
1711 char *ptemp = temp;
1712 char *prev;
1713
1714 make_cleanup (xfree, temp);
1715
1716 prev = parg = arg;
1717 while ((parg = strpbrk (parg, "\\\"'\t ")))
1718 {
1719 strncpy (ptemp, prev, parg - prev);
1720 ptemp += parg - prev;
1721 prev = parg++;
1722 *ptemp++ = '\\';
1723 }
1724 strcpy (ptemp, prev);
1725
1726 arg = temp;
1727 }
1728 }
1729
1730 target_load (arg, from_tty);
1731
1732 /* After re-loading the executable, we don't really know which
1733 overlays are mapped any more. */
1734 overlay_cache_invalid = 1;
1735 }
1736
1737 /* This version of "load" should be usable for any target. Currently
1738 it is just used for remote targets, not inftarg.c or core files,
1739 on the theory that only in that case is it useful.
1740
1741 Avoiding xmodem and the like seems like a win (a) because we don't have
1742 to worry about finding it, and (b) On VMS, fork() is very slow and so
1743 we don't want to run a subprocess. On the other hand, I'm not sure how
1744 performance compares. */
1745
1746 static int validate_download = 0;
1747
1748 /* Callback service function for generic_load (bfd_map_over_sections). */
1749
1750 static void
1751 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1752 {
1753 bfd_size_type *sum = data;
1754
1755 *sum += bfd_get_section_size (asec);
1756 }
1757
1758 /* Opaque data for load_section_callback. */
1759 struct load_section_data {
1760 unsigned long load_offset;
1761 struct load_progress_data *progress_data;
1762 VEC(memory_write_request_s) *requests;
1763 };
1764
1765 /* Opaque data for load_progress. */
1766 struct load_progress_data {
1767 /* Cumulative data. */
1768 unsigned long write_count;
1769 unsigned long data_count;
1770 bfd_size_type total_size;
1771 };
1772
1773 /* Opaque data for load_progress for a single section. */
1774 struct load_progress_section_data {
1775 struct load_progress_data *cumulative;
1776
1777 /* Per-section data. */
1778 const char *section_name;
1779 ULONGEST section_sent;
1780 ULONGEST section_size;
1781 CORE_ADDR lma;
1782 gdb_byte *buffer;
1783 };
1784
1785 /* Target write callback routine for progress reporting. */
1786
1787 static void
1788 load_progress (ULONGEST bytes, void *untyped_arg)
1789 {
1790 struct load_progress_section_data *args = untyped_arg;
1791 struct load_progress_data *totals;
1792
1793 if (args == NULL)
1794 /* Writing padding data. No easy way to get at the cumulative
1795 stats, so just ignore this. */
1796 return;
1797
1798 totals = args->cumulative;
1799
1800 if (bytes == 0 && args->section_sent == 0)
1801 {
1802 /* The write is just starting. Let the user know we've started
1803 this section. */
1804 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1805 args->section_name, hex_string (args->section_size),
1806 paddress (target_gdbarch, args->lma));
1807 return;
1808 }
1809
1810 if (validate_download)
1811 {
1812 /* Broken memories and broken monitors manifest themselves here
1813 when bring new computers to life. This doubles already slow
1814 downloads. */
1815 /* NOTE: cagney/1999-10-18: A more efficient implementation
1816 might add a verify_memory() method to the target vector and
1817 then use that. remote.c could implement that method using
1818 the ``qCRC'' packet. */
1819 gdb_byte *check = xmalloc (bytes);
1820 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1821
1822 if (target_read_memory (args->lma, check, bytes) != 0)
1823 error (_("Download verify read failed at %s"),
1824 paddress (target_gdbarch, args->lma));
1825 if (memcmp (args->buffer, check, bytes) != 0)
1826 error (_("Download verify compare failed at %s"),
1827 paddress (target_gdbarch, args->lma));
1828 do_cleanups (verify_cleanups);
1829 }
1830 totals->data_count += bytes;
1831 args->lma += bytes;
1832 args->buffer += bytes;
1833 totals->write_count += 1;
1834 args->section_sent += bytes;
1835 if (quit_flag
1836 || (deprecated_ui_load_progress_hook != NULL
1837 && deprecated_ui_load_progress_hook (args->section_name,
1838 args->section_sent)))
1839 error (_("Canceled the download"));
1840
1841 if (deprecated_show_load_progress != NULL)
1842 deprecated_show_load_progress (args->section_name,
1843 args->section_sent,
1844 args->section_size,
1845 totals->data_count,
1846 totals->total_size);
1847 }
1848
1849 /* Callback service function for generic_load (bfd_map_over_sections). */
1850
1851 static void
1852 load_section_callback (bfd *abfd, asection *asec, void *data)
1853 {
1854 struct memory_write_request *new_request;
1855 struct load_section_data *args = data;
1856 struct load_progress_section_data *section_data;
1857 bfd_size_type size = bfd_get_section_size (asec);
1858 gdb_byte *buffer;
1859 const char *sect_name = bfd_get_section_name (abfd, asec);
1860
1861 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1862 return;
1863
1864 if (size == 0)
1865 return;
1866
1867 new_request = VEC_safe_push (memory_write_request_s,
1868 args->requests, NULL);
1869 memset (new_request, 0, sizeof (struct memory_write_request));
1870 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1871 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1872 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1873 new_request->data = xmalloc (size);
1874 new_request->baton = section_data;
1875
1876 buffer = new_request->data;
1877
1878 section_data->cumulative = args->progress_data;
1879 section_data->section_name = sect_name;
1880 section_data->section_size = size;
1881 section_data->lma = new_request->begin;
1882 section_data->buffer = buffer;
1883
1884 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1885 }
1886
1887 /* Clean up an entire memory request vector, including load
1888 data and progress records. */
1889
1890 static void
1891 clear_memory_write_data (void *arg)
1892 {
1893 VEC(memory_write_request_s) **vec_p = arg;
1894 VEC(memory_write_request_s) *vec = *vec_p;
1895 int i;
1896 struct memory_write_request *mr;
1897
1898 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1899 {
1900 xfree (mr->data);
1901 xfree (mr->baton);
1902 }
1903 VEC_free (memory_write_request_s, vec);
1904 }
1905
1906 void
1907 generic_load (char *args, int from_tty)
1908 {
1909 bfd *loadfile_bfd;
1910 struct timeval start_time, end_time;
1911 char *filename;
1912 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1913 struct load_section_data cbdata;
1914 struct load_progress_data total_progress;
1915
1916 CORE_ADDR entry;
1917 char **argv;
1918
1919 memset (&cbdata, 0, sizeof (cbdata));
1920 memset (&total_progress, 0, sizeof (total_progress));
1921 cbdata.progress_data = &total_progress;
1922
1923 make_cleanup (clear_memory_write_data, &cbdata.requests);
1924
1925 if (args == NULL)
1926 error_no_arg (_("file to load"));
1927
1928 argv = gdb_buildargv (args);
1929 make_cleanup_freeargv (argv);
1930
1931 filename = tilde_expand (argv[0]);
1932 make_cleanup (xfree, filename);
1933
1934 if (argv[1] != NULL)
1935 {
1936 char *endptr;
1937
1938 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1939
1940 /* If the last word was not a valid number then
1941 treat it as a file name with spaces in. */
1942 if (argv[1] == endptr)
1943 error (_("Invalid download offset:%s."), argv[1]);
1944
1945 if (argv[2] != NULL)
1946 error (_("Too many parameters."));
1947 }
1948
1949 /* Open the file for loading. */
1950 loadfile_bfd = bfd_openr (filename, gnutarget);
1951 if (loadfile_bfd == NULL)
1952 {
1953 perror_with_name (filename);
1954 return;
1955 }
1956
1957 /* FIXME: should be checking for errors from bfd_close (for one thing,
1958 on error it does not free all the storage associated with the
1959 bfd). */
1960 make_cleanup_bfd_close (loadfile_bfd);
1961
1962 if (!bfd_check_format (loadfile_bfd, bfd_object))
1963 {
1964 error (_("\"%s\" is not an object file: %s"), filename,
1965 bfd_errmsg (bfd_get_error ()));
1966 }
1967
1968 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1969 (void *) &total_progress.total_size);
1970
1971 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1972
1973 gettimeofday (&start_time, NULL);
1974
1975 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1976 load_progress) != 0)
1977 error (_("Load failed"));
1978
1979 gettimeofday (&end_time, NULL);
1980
1981 entry = bfd_get_start_address (loadfile_bfd);
1982 ui_out_text (uiout, "Start address ");
1983 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1984 ui_out_text (uiout, ", load size ");
1985 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1986 ui_out_text (uiout, "\n");
1987 /* We were doing this in remote-mips.c, I suspect it is right
1988 for other targets too. */
1989 regcache_write_pc (get_current_regcache (), entry);
1990
1991 /* FIXME: are we supposed to call symbol_file_add or not? According
1992 to a comment from remote-mips.c (where a call to symbol_file_add
1993 was commented out), making the call confuses GDB if more than one
1994 file is loaded in. Some targets do (e.g., remote-vx.c) but
1995 others don't (or didn't - perhaps they have all been deleted). */
1996
1997 print_transfer_performance (gdb_stdout, total_progress.data_count,
1998 total_progress.write_count,
1999 &start_time, &end_time);
2000
2001 do_cleanups (old_cleanups);
2002 }
2003
2004 /* Report how fast the transfer went. */
2005
2006 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2007 replaced by print_transfer_performance (with a very different
2008 function signature). */
2009
2010 void
2011 report_transfer_performance (unsigned long data_count, time_t start_time,
2012 time_t end_time)
2013 {
2014 struct timeval start, end;
2015
2016 start.tv_sec = start_time;
2017 start.tv_usec = 0;
2018 end.tv_sec = end_time;
2019 end.tv_usec = 0;
2020
2021 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2022 }
2023
2024 void
2025 print_transfer_performance (struct ui_file *stream,
2026 unsigned long data_count,
2027 unsigned long write_count,
2028 const struct timeval *start_time,
2029 const struct timeval *end_time)
2030 {
2031 ULONGEST time_count;
2032
2033 /* Compute the elapsed time in milliseconds, as a tradeoff between
2034 accuracy and overflow. */
2035 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2036 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2037
2038 ui_out_text (uiout, "Transfer rate: ");
2039 if (time_count > 0)
2040 {
2041 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2042
2043 if (ui_out_is_mi_like_p (uiout))
2044 {
2045 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2046 ui_out_text (uiout, " bits/sec");
2047 }
2048 else if (rate < 1024)
2049 {
2050 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2051 ui_out_text (uiout, " bytes/sec");
2052 }
2053 else
2054 {
2055 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2056 ui_out_text (uiout, " KB/sec");
2057 }
2058 }
2059 else
2060 {
2061 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2062 ui_out_text (uiout, " bits in <1 sec");
2063 }
2064 if (write_count > 0)
2065 {
2066 ui_out_text (uiout, ", ");
2067 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2068 ui_out_text (uiout, " bytes/write");
2069 }
2070 ui_out_text (uiout, ".\n");
2071 }
2072
2073 /* This function allows the addition of incrementally linked object files.
2074 It does not modify any state in the target, only in the debugger. */
2075 /* Note: ezannoni 2000-04-13 This function/command used to have a
2076 special case syntax for the rombug target (Rombug is the boot
2077 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2078 rombug case, the user doesn't need to supply a text address,
2079 instead a call to target_link() (in target.c) would supply the
2080 value to use. We are now discontinuing this type of ad hoc syntax. */
2081
2082 static void
2083 add_symbol_file_command (char *args, int from_tty)
2084 {
2085 struct gdbarch *gdbarch = get_current_arch ();
2086 char *filename = NULL;
2087 int flags = OBJF_USERLOADED;
2088 char *arg;
2089 int expecting_option = 0;
2090 int section_index = 0;
2091 int argcnt = 0;
2092 int sec_num = 0;
2093 int i;
2094 int expecting_sec_name = 0;
2095 int expecting_sec_addr = 0;
2096 char **argv;
2097
2098 struct sect_opt
2099 {
2100 char *name;
2101 char *value;
2102 };
2103
2104 struct section_addr_info *section_addrs;
2105 struct sect_opt *sect_opts = NULL;
2106 size_t num_sect_opts = 0;
2107 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2108
2109 num_sect_opts = 16;
2110 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2111 * sizeof (struct sect_opt));
2112
2113 dont_repeat ();
2114
2115 if (args == NULL)
2116 error (_("add-symbol-file takes a file name and an address"));
2117
2118 argv = gdb_buildargv (args);
2119 make_cleanup_freeargv (argv);
2120
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2122 {
2123 /* Process the argument. */
2124 if (argcnt == 0)
2125 {
2126 /* The first argument is the file name. */
2127 filename = tilde_expand (arg);
2128 make_cleanup (xfree, filename);
2129 }
2130 else
2131 if (argcnt == 1)
2132 {
2133 /* The second argument is always the text address at which
2134 to load the program. */
2135 sect_opts[section_index].name = ".text";
2136 sect_opts[section_index].value = arg;
2137 if (++section_index >= num_sect_opts)
2138 {
2139 num_sect_opts *= 2;
2140 sect_opts = ((struct sect_opt *)
2141 xrealloc (sect_opts,
2142 num_sect_opts
2143 * sizeof (struct sect_opt)));
2144 }
2145 }
2146 else
2147 {
2148 /* It's an option (starting with '-') or it's an argument
2149 to an option */
2150
2151 if (*arg == '-')
2152 {
2153 if (strcmp (arg, "-readnow") == 0)
2154 flags |= OBJF_READNOW;
2155 else if (strcmp (arg, "-s") == 0)
2156 {
2157 expecting_sec_name = 1;
2158 expecting_sec_addr = 1;
2159 }
2160 }
2161 else
2162 {
2163 if (expecting_sec_name)
2164 {
2165 sect_opts[section_index].name = arg;
2166 expecting_sec_name = 0;
2167 }
2168 else
2169 if (expecting_sec_addr)
2170 {
2171 sect_opts[section_index].value = arg;
2172 expecting_sec_addr = 0;
2173 if (++section_index >= num_sect_opts)
2174 {
2175 num_sect_opts *= 2;
2176 sect_opts = ((struct sect_opt *)
2177 xrealloc (sect_opts,
2178 num_sect_opts
2179 * sizeof (struct sect_opt)));
2180 }
2181 }
2182 else
2183 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2184 }
2185 }
2186 }
2187
2188 /* This command takes at least two arguments. The first one is a
2189 filename, and the second is the address where this file has been
2190 loaded. Abort now if this address hasn't been provided by the
2191 user. */
2192 if (section_index < 1)
2193 error (_("The address where %s has been loaded is missing"), filename);
2194
2195 /* Print the prompt for the query below. And save the arguments into
2196 a sect_addr_info structure to be passed around to other
2197 functions. We have to split this up into separate print
2198 statements because hex_string returns a local static
2199 string. */
2200
2201 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2202 section_addrs = alloc_section_addr_info (section_index);
2203 make_cleanup (xfree, section_addrs);
2204 for (i = 0; i < section_index; i++)
2205 {
2206 CORE_ADDR addr;
2207 char *val = sect_opts[i].value;
2208 char *sec = sect_opts[i].name;
2209
2210 addr = parse_and_eval_address (val);
2211
2212 /* Here we store the section offsets in the order they were
2213 entered on the command line. */
2214 section_addrs->other[sec_num].name = sec;
2215 section_addrs->other[sec_num].addr = addr;
2216 printf_unfiltered ("\t%s_addr = %s\n", sec,
2217 paddress (gdbarch, addr));
2218 sec_num++;
2219
2220 /* The object's sections are initialized when a
2221 call is made to build_objfile_section_table (objfile).
2222 This happens in reread_symbols.
2223 At this point, we don't know what file type this is,
2224 so we can't determine what section names are valid. */
2225 }
2226
2227 if (from_tty && (!query ("%s", "")))
2228 error (_("Not confirmed."));
2229
2230 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2231 section_addrs, flags);
2232
2233 /* Getting new symbols may change our opinion about what is
2234 frameless. */
2235 reinit_frame_cache ();
2236 do_cleanups (my_cleanups);
2237 }
2238 \f
2239
2240 /* Re-read symbols if a symbol-file has changed. */
2241 void
2242 reread_symbols (void)
2243 {
2244 struct objfile *objfile;
2245 long new_modtime;
2246 int reread_one = 0;
2247 struct stat new_statbuf;
2248 int res;
2249
2250 /* With the addition of shared libraries, this should be modified,
2251 the load time should be saved in the partial symbol tables, since
2252 different tables may come from different source files. FIXME.
2253 This routine should then walk down each partial symbol table
2254 and see if the symbol table that it originates from has been changed */
2255
2256 for (objfile = object_files; objfile; objfile = objfile->next)
2257 {
2258 if (objfile->obfd)
2259 {
2260 #ifdef DEPRECATED_IBM6000_TARGET
2261 /* If this object is from a shared library, then you should
2262 stat on the library name, not member name. */
2263
2264 if (objfile->obfd->my_archive)
2265 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2266 else
2267 #endif
2268 res = stat (objfile->name, &new_statbuf);
2269 if (res != 0)
2270 {
2271 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2272 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2273 objfile->name);
2274 continue;
2275 }
2276 new_modtime = new_statbuf.st_mtime;
2277 if (new_modtime != objfile->mtime)
2278 {
2279 struct cleanup *old_cleanups;
2280 struct section_offsets *offsets;
2281 int num_offsets;
2282 char *obfd_filename;
2283
2284 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2285 objfile->name);
2286
2287 /* There are various functions like symbol_file_add,
2288 symfile_bfd_open, syms_from_objfile, etc., which might
2289 appear to do what we want. But they have various other
2290 effects which we *don't* want. So we just do stuff
2291 ourselves. We don't worry about mapped files (for one thing,
2292 any mapped file will be out of date). */
2293
2294 /* If we get an error, blow away this objfile (not sure if
2295 that is the correct response for things like shared
2296 libraries). */
2297 old_cleanups = make_cleanup_free_objfile (objfile);
2298 /* We need to do this whenever any symbols go away. */
2299 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2300
2301 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2302 bfd_get_filename (exec_bfd)) == 0)
2303 {
2304 /* Reload EXEC_BFD without asking anything. */
2305
2306 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2307 }
2308
2309 /* Clean up any state BFD has sitting around. We don't need
2310 to close the descriptor but BFD lacks a way of closing the
2311 BFD without closing the descriptor. */
2312 obfd_filename = bfd_get_filename (objfile->obfd);
2313 if (!bfd_close (objfile->obfd))
2314 error (_("Can't close BFD for %s: %s"), objfile->name,
2315 bfd_errmsg (bfd_get_error ()));
2316 if (remote_filename_p (obfd_filename))
2317 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2318 else
2319 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2320 if (objfile->obfd == NULL)
2321 error (_("Can't open %s to read symbols."), objfile->name);
2322 /* bfd_openr sets cacheable to true, which is what we want. */
2323 if (!bfd_check_format (objfile->obfd, bfd_object))
2324 error (_("Can't read symbols from %s: %s."), objfile->name,
2325 bfd_errmsg (bfd_get_error ()));
2326
2327 /* Save the offsets, we will nuke them with the rest of the
2328 objfile_obstack. */
2329 num_offsets = objfile->num_sections;
2330 offsets = ((struct section_offsets *)
2331 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2332 memcpy (offsets, objfile->section_offsets,
2333 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2334
2335 /* Remove any references to this objfile in the global
2336 value lists. */
2337 preserve_values (objfile);
2338
2339 /* Nuke all the state that we will re-read. Much of the following
2340 code which sets things to NULL really is necessary to tell
2341 other parts of GDB that there is nothing currently there.
2342
2343 Try to keep the freeing order compatible with free_objfile. */
2344
2345 if (objfile->sf != NULL)
2346 {
2347 (*objfile->sf->sym_finish) (objfile);
2348 }
2349
2350 clear_objfile_data (objfile);
2351
2352 /* FIXME: Do we have to free a whole linked list, or is this
2353 enough? */
2354 if (objfile->global_psymbols.list)
2355 xfree (objfile->global_psymbols.list);
2356 memset (&objfile->global_psymbols, 0,
2357 sizeof (objfile->global_psymbols));
2358 if (objfile->static_psymbols.list)
2359 xfree (objfile->static_psymbols.list);
2360 memset (&objfile->static_psymbols, 0,
2361 sizeof (objfile->static_psymbols));
2362
2363 /* Free the obstacks for non-reusable objfiles */
2364 bcache_xfree (objfile->psymbol_cache);
2365 objfile->psymbol_cache = bcache_xmalloc ();
2366 bcache_xfree (objfile->macro_cache);
2367 objfile->macro_cache = bcache_xmalloc ();
2368 if (objfile->demangled_names_hash != NULL)
2369 {
2370 htab_delete (objfile->demangled_names_hash);
2371 objfile->demangled_names_hash = NULL;
2372 }
2373 obstack_free (&objfile->objfile_obstack, 0);
2374 objfile->sections = NULL;
2375 objfile->symtabs = NULL;
2376 objfile->psymtabs = NULL;
2377 objfile->psymtabs_addrmap = NULL;
2378 objfile->free_psymtabs = NULL;
2379 objfile->cp_namespace_symtab = NULL;
2380 objfile->msymbols = NULL;
2381 objfile->deprecated_sym_private = NULL;
2382 objfile->minimal_symbol_count = 0;
2383 memset (&objfile->msymbol_hash, 0,
2384 sizeof (objfile->msymbol_hash));
2385 memset (&objfile->msymbol_demangled_hash, 0,
2386 sizeof (objfile->msymbol_demangled_hash));
2387
2388 objfile->psymbol_cache = bcache_xmalloc ();
2389 objfile->macro_cache = bcache_xmalloc ();
2390 /* obstack_init also initializes the obstack so it is
2391 empty. We could use obstack_specify_allocation but
2392 gdb_obstack.h specifies the alloc/dealloc
2393 functions. */
2394 obstack_init (&objfile->objfile_obstack);
2395 if (build_objfile_section_table (objfile))
2396 {
2397 error (_("Can't find the file sections in `%s': %s"),
2398 objfile->name, bfd_errmsg (bfd_get_error ()));
2399 }
2400 terminate_minimal_symbol_table (objfile);
2401
2402 /* We use the same section offsets as from last time. I'm not
2403 sure whether that is always correct for shared libraries. */
2404 objfile->section_offsets = (struct section_offsets *)
2405 obstack_alloc (&objfile->objfile_obstack,
2406 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2407 memcpy (objfile->section_offsets, offsets,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409 objfile->num_sections = num_offsets;
2410
2411 /* What the hell is sym_new_init for, anyway? The concept of
2412 distinguishing between the main file and additional files
2413 in this way seems rather dubious. */
2414 if (objfile == symfile_objfile)
2415 {
2416 (*objfile->sf->sym_new_init) (objfile);
2417 }
2418
2419 (*objfile->sf->sym_init) (objfile);
2420 clear_complaints (&symfile_complaints, 1, 1);
2421 /* The "mainline" parameter is a hideous hack; I think leaving it
2422 zero is OK since dbxread.c also does what it needs to do if
2423 objfile->global_psymbols.size is 0. */
2424 (*objfile->sf->sym_read) (objfile, 0);
2425 if (!have_partial_symbols () && !have_full_symbols ())
2426 {
2427 wrap_here ("");
2428 printf_unfiltered (_("(no debugging symbols found)\n"));
2429 wrap_here ("");
2430 }
2431
2432 /* We're done reading the symbol file; finish off complaints. */
2433 clear_complaints (&symfile_complaints, 0, 1);
2434
2435 /* Getting new symbols may change our opinion about what is
2436 frameless. */
2437
2438 reinit_frame_cache ();
2439
2440 /* Discard cleanups as symbol reading was successful. */
2441 discard_cleanups (old_cleanups);
2442
2443 /* If the mtime has changed between the time we set new_modtime
2444 and now, we *want* this to be out of date, so don't call stat
2445 again now. */
2446 objfile->mtime = new_modtime;
2447 reread_one = 1;
2448 reread_separate_symbols (objfile);
2449 init_entry_point_info (objfile);
2450 }
2451 }
2452 }
2453
2454 if (reread_one)
2455 {
2456 clear_symtab_users ();
2457 /* At least one objfile has changed, so we can consider that
2458 the executable we're debugging has changed too. */
2459 observer_notify_executable_changed ();
2460 }
2461
2462 }
2463
2464
2465 /* Handle separate debug info for OBJFILE, which has just been
2466 re-read:
2467 - If we had separate debug info before, but now we don't, get rid
2468 of the separated objfile.
2469 - If we didn't have separated debug info before, but now we do,
2470 read in the new separated debug info file.
2471 - If the debug link points to a different file, toss the old one
2472 and read the new one.
2473 This function does *not* handle the case where objfile is still
2474 using the same separate debug info file, but that file's timestamp
2475 has changed. That case should be handled by the loop in
2476 reread_symbols already. */
2477 static void
2478 reread_separate_symbols (struct objfile *objfile)
2479 {
2480 char *debug_file;
2481 unsigned long crc32;
2482
2483 /* Does the updated objfile's debug info live in a
2484 separate file? */
2485 debug_file = find_separate_debug_file (objfile);
2486
2487 if (objfile->separate_debug_objfile)
2488 {
2489 /* There are two cases where we need to get rid of
2490 the old separated debug info objfile:
2491 - if the new primary objfile doesn't have
2492 separated debug info, or
2493 - if the new primary objfile has separate debug
2494 info, but it's under a different filename.
2495
2496 If the old and new objfiles both have separate
2497 debug info, under the same filename, then we're
2498 okay --- if the separated file's contents have
2499 changed, we will have caught that when we
2500 visited it in this function's outermost
2501 loop. */
2502 if (! debug_file
2503 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2504 free_objfile (objfile->separate_debug_objfile);
2505 }
2506
2507 /* If the new objfile has separate debug info, and we
2508 haven't loaded it already, do so now. */
2509 if (debug_file
2510 && ! objfile->separate_debug_objfile)
2511 {
2512 /* Use the same section offset table as objfile itself.
2513 Preserve the flags from objfile that make sense. */
2514 objfile->separate_debug_objfile
2515 = (symbol_file_add_with_addrs_or_offsets
2516 (symfile_bfd_open (debug_file),
2517 info_verbose ? SYMFILE_VERBOSE : 0,
2518 0, /* No addr table. */
2519 objfile->section_offsets, objfile->num_sections,
2520 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2521 | OBJF_USERLOADED)));
2522 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2523 = objfile;
2524 }
2525 if (debug_file)
2526 xfree (debug_file);
2527 }
2528
2529
2530 \f
2531
2532
2533 typedef struct
2534 {
2535 char *ext;
2536 enum language lang;
2537 }
2538 filename_language;
2539
2540 static filename_language *filename_language_table;
2541 static int fl_table_size, fl_table_next;
2542
2543 static void
2544 add_filename_language (char *ext, enum language lang)
2545 {
2546 if (fl_table_next >= fl_table_size)
2547 {
2548 fl_table_size += 10;
2549 filename_language_table =
2550 xrealloc (filename_language_table,
2551 fl_table_size * sizeof (*filename_language_table));
2552 }
2553
2554 filename_language_table[fl_table_next].ext = xstrdup (ext);
2555 filename_language_table[fl_table_next].lang = lang;
2556 fl_table_next++;
2557 }
2558
2559 static char *ext_args;
2560 static void
2561 show_ext_args (struct ui_file *file, int from_tty,
2562 struct cmd_list_element *c, const char *value)
2563 {
2564 fprintf_filtered (file, _("\
2565 Mapping between filename extension and source language is \"%s\".\n"),
2566 value);
2567 }
2568
2569 static void
2570 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2571 {
2572 int i;
2573 char *cp = ext_args;
2574 enum language lang;
2575
2576 /* First arg is filename extension, starting with '.' */
2577 if (*cp != '.')
2578 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2579
2580 /* Find end of first arg. */
2581 while (*cp && !isspace (*cp))
2582 cp++;
2583
2584 if (*cp == '\0')
2585 error (_("'%s': two arguments required -- filename extension and language"),
2586 ext_args);
2587
2588 /* Null-terminate first arg */
2589 *cp++ = '\0';
2590
2591 /* Find beginning of second arg, which should be a source language. */
2592 while (*cp && isspace (*cp))
2593 cp++;
2594
2595 if (*cp == '\0')
2596 error (_("'%s': two arguments required -- filename extension and language"),
2597 ext_args);
2598
2599 /* Lookup the language from among those we know. */
2600 lang = language_enum (cp);
2601
2602 /* Now lookup the filename extension: do we already know it? */
2603 for (i = 0; i < fl_table_next; i++)
2604 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2605 break;
2606
2607 if (i >= fl_table_next)
2608 {
2609 /* new file extension */
2610 add_filename_language (ext_args, lang);
2611 }
2612 else
2613 {
2614 /* redefining a previously known filename extension */
2615
2616 /* if (from_tty) */
2617 /* query ("Really make files of type %s '%s'?", */
2618 /* ext_args, language_str (lang)); */
2619
2620 xfree (filename_language_table[i].ext);
2621 filename_language_table[i].ext = xstrdup (ext_args);
2622 filename_language_table[i].lang = lang;
2623 }
2624 }
2625
2626 static void
2627 info_ext_lang_command (char *args, int from_tty)
2628 {
2629 int i;
2630
2631 printf_filtered (_("Filename extensions and the languages they represent:"));
2632 printf_filtered ("\n\n");
2633 for (i = 0; i < fl_table_next; i++)
2634 printf_filtered ("\t%s\t- %s\n",
2635 filename_language_table[i].ext,
2636 language_str (filename_language_table[i].lang));
2637 }
2638
2639 static void
2640 init_filename_language_table (void)
2641 {
2642 if (fl_table_size == 0) /* protect against repetition */
2643 {
2644 fl_table_size = 20;
2645 fl_table_next = 0;
2646 filename_language_table =
2647 xmalloc (fl_table_size * sizeof (*filename_language_table));
2648 add_filename_language (".c", language_c);
2649 add_filename_language (".C", language_cplus);
2650 add_filename_language (".cc", language_cplus);
2651 add_filename_language (".cp", language_cplus);
2652 add_filename_language (".cpp", language_cplus);
2653 add_filename_language (".cxx", language_cplus);
2654 add_filename_language (".c++", language_cplus);
2655 add_filename_language (".java", language_java);
2656 add_filename_language (".class", language_java);
2657 add_filename_language (".m", language_objc);
2658 add_filename_language (".f", language_fortran);
2659 add_filename_language (".F", language_fortran);
2660 add_filename_language (".s", language_asm);
2661 add_filename_language (".sx", language_asm);
2662 add_filename_language (".S", language_asm);
2663 add_filename_language (".pas", language_pascal);
2664 add_filename_language (".p", language_pascal);
2665 add_filename_language (".pp", language_pascal);
2666 add_filename_language (".adb", language_ada);
2667 add_filename_language (".ads", language_ada);
2668 add_filename_language (".a", language_ada);
2669 add_filename_language (".ada", language_ada);
2670 }
2671 }
2672
2673 enum language
2674 deduce_language_from_filename (char *filename)
2675 {
2676 int i;
2677 char *cp;
2678
2679 if (filename != NULL)
2680 if ((cp = strrchr (filename, '.')) != NULL)
2681 for (i = 0; i < fl_table_next; i++)
2682 if (strcmp (cp, filename_language_table[i].ext) == 0)
2683 return filename_language_table[i].lang;
2684
2685 return language_unknown;
2686 }
2687 \f
2688 /* allocate_symtab:
2689
2690 Allocate and partly initialize a new symbol table. Return a pointer
2691 to it. error() if no space.
2692
2693 Caller must set these fields:
2694 LINETABLE(symtab)
2695 symtab->blockvector
2696 symtab->dirname
2697 symtab->free_code
2698 symtab->free_ptr
2699 possibly free_named_symtabs (symtab->filename);
2700 */
2701
2702 struct symtab *
2703 allocate_symtab (char *filename, struct objfile *objfile)
2704 {
2705 struct symtab *symtab;
2706
2707 symtab = (struct symtab *)
2708 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2709 memset (symtab, 0, sizeof (*symtab));
2710 symtab->filename = obsavestring (filename, strlen (filename),
2711 &objfile->objfile_obstack);
2712 symtab->fullname = NULL;
2713 symtab->language = deduce_language_from_filename (filename);
2714 symtab->debugformat = obsavestring ("unknown", 7,
2715 &objfile->objfile_obstack);
2716
2717 /* Hook it to the objfile it comes from */
2718
2719 symtab->objfile = objfile;
2720 symtab->next = objfile->symtabs;
2721 objfile->symtabs = symtab;
2722
2723 return (symtab);
2724 }
2725
2726 struct partial_symtab *
2727 allocate_psymtab (char *filename, struct objfile *objfile)
2728 {
2729 struct partial_symtab *psymtab;
2730
2731 if (objfile->free_psymtabs)
2732 {
2733 psymtab = objfile->free_psymtabs;
2734 objfile->free_psymtabs = psymtab->next;
2735 }
2736 else
2737 psymtab = (struct partial_symtab *)
2738 obstack_alloc (&objfile->objfile_obstack,
2739 sizeof (struct partial_symtab));
2740
2741 memset (psymtab, 0, sizeof (struct partial_symtab));
2742 psymtab->filename = obsavestring (filename, strlen (filename),
2743 &objfile->objfile_obstack);
2744 psymtab->symtab = NULL;
2745
2746 /* Prepend it to the psymtab list for the objfile it belongs to.
2747 Psymtabs are searched in most recent inserted -> least recent
2748 inserted order. */
2749
2750 psymtab->objfile = objfile;
2751 psymtab->next = objfile->psymtabs;
2752 objfile->psymtabs = psymtab;
2753 #if 0
2754 {
2755 struct partial_symtab **prev_pst;
2756 psymtab->objfile = objfile;
2757 psymtab->next = NULL;
2758 prev_pst = &(objfile->psymtabs);
2759 while ((*prev_pst) != NULL)
2760 prev_pst = &((*prev_pst)->next);
2761 (*prev_pst) = psymtab;
2762 }
2763 #endif
2764
2765 return (psymtab);
2766 }
2767
2768 void
2769 discard_psymtab (struct partial_symtab *pst)
2770 {
2771 struct partial_symtab **prev_pst;
2772
2773 /* From dbxread.c:
2774 Empty psymtabs happen as a result of header files which don't
2775 have any symbols in them. There can be a lot of them. But this
2776 check is wrong, in that a psymtab with N_SLINE entries but
2777 nothing else is not empty, but we don't realize that. Fixing
2778 that without slowing things down might be tricky. */
2779
2780 /* First, snip it out of the psymtab chain */
2781
2782 prev_pst = &(pst->objfile->psymtabs);
2783 while ((*prev_pst) != pst)
2784 prev_pst = &((*prev_pst)->next);
2785 (*prev_pst) = pst->next;
2786
2787 /* Next, put it on a free list for recycling */
2788
2789 pst->next = pst->objfile->free_psymtabs;
2790 pst->objfile->free_psymtabs = pst;
2791 }
2792 \f
2793
2794 /* Reset all data structures in gdb which may contain references to symbol
2795 table data. */
2796
2797 void
2798 clear_symtab_users (void)
2799 {
2800 /* Someday, we should do better than this, by only blowing away
2801 the things that really need to be blown. */
2802
2803 /* Clear the "current" symtab first, because it is no longer valid.
2804 breakpoint_re_set may try to access the current symtab. */
2805 clear_current_source_symtab_and_line ();
2806
2807 clear_displays ();
2808 breakpoint_re_set ();
2809 set_default_breakpoint (0, 0, 0, 0);
2810 clear_pc_function_cache ();
2811 observer_notify_new_objfile (NULL);
2812
2813 /* Clear globals which might have pointed into a removed objfile.
2814 FIXME: It's not clear which of these are supposed to persist
2815 between expressions and which ought to be reset each time. */
2816 expression_context_block = NULL;
2817 innermost_block = NULL;
2818
2819 /* Varobj may refer to old symbols, perform a cleanup. */
2820 varobj_invalidate ();
2821
2822 }
2823
2824 static void
2825 clear_symtab_users_cleanup (void *ignore)
2826 {
2827 clear_symtab_users ();
2828 }
2829
2830 /* clear_symtab_users_once:
2831
2832 This function is run after symbol reading, or from a cleanup.
2833 If an old symbol table was obsoleted, the old symbol table
2834 has been blown away, but the other GDB data structures that may
2835 reference it have not yet been cleared or re-directed. (The old
2836 symtab was zapped, and the cleanup queued, in free_named_symtab()
2837 below.)
2838
2839 This function can be queued N times as a cleanup, or called
2840 directly; it will do all the work the first time, and then will be a
2841 no-op until the next time it is queued. This works by bumping a
2842 counter at queueing time. Much later when the cleanup is run, or at
2843 the end of symbol processing (in case the cleanup is discarded), if
2844 the queued count is greater than the "done-count", we do the work
2845 and set the done-count to the queued count. If the queued count is
2846 less than or equal to the done-count, we just ignore the call. This
2847 is needed because reading a single .o file will often replace many
2848 symtabs (one per .h file, for example), and we don't want to reset
2849 the breakpoints N times in the user's face.
2850
2851 The reason we both queue a cleanup, and call it directly after symbol
2852 reading, is because the cleanup protects us in case of errors, but is
2853 discarded if symbol reading is successful. */
2854
2855 #if 0
2856 /* FIXME: As free_named_symtabs is currently a big noop this function
2857 is no longer needed. */
2858 static void clear_symtab_users_once (void);
2859
2860 static int clear_symtab_users_queued;
2861 static int clear_symtab_users_done;
2862
2863 static void
2864 clear_symtab_users_once (void)
2865 {
2866 /* Enforce once-per-`do_cleanups'-semantics */
2867 if (clear_symtab_users_queued <= clear_symtab_users_done)
2868 return;
2869 clear_symtab_users_done = clear_symtab_users_queued;
2870
2871 clear_symtab_users ();
2872 }
2873 #endif
2874
2875 /* Delete the specified psymtab, and any others that reference it. */
2876
2877 static void
2878 cashier_psymtab (struct partial_symtab *pst)
2879 {
2880 struct partial_symtab *ps, *pprev = NULL;
2881 int i;
2882
2883 /* Find its previous psymtab in the chain */
2884 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2885 {
2886 if (ps == pst)
2887 break;
2888 pprev = ps;
2889 }
2890
2891 if (ps)
2892 {
2893 /* Unhook it from the chain. */
2894 if (ps == pst->objfile->psymtabs)
2895 pst->objfile->psymtabs = ps->next;
2896 else
2897 pprev->next = ps->next;
2898
2899 /* FIXME, we can't conveniently deallocate the entries in the
2900 partial_symbol lists (global_psymbols/static_psymbols) that
2901 this psymtab points to. These just take up space until all
2902 the psymtabs are reclaimed. Ditto the dependencies list and
2903 filename, which are all in the objfile_obstack. */
2904
2905 /* We need to cashier any psymtab that has this one as a dependency... */
2906 again:
2907 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2908 {
2909 for (i = 0; i < ps->number_of_dependencies; i++)
2910 {
2911 if (ps->dependencies[i] == pst)
2912 {
2913 cashier_psymtab (ps);
2914 goto again; /* Must restart, chain has been munged. */
2915 }
2916 }
2917 }
2918 }
2919 }
2920
2921 /* If a symtab or psymtab for filename NAME is found, free it along
2922 with any dependent breakpoints, displays, etc.
2923 Used when loading new versions of object modules with the "add-file"
2924 command. This is only called on the top-level symtab or psymtab's name;
2925 it is not called for subsidiary files such as .h files.
2926
2927 Return value is 1 if we blew away the environment, 0 if not.
2928 FIXME. The return value appears to never be used.
2929
2930 FIXME. I think this is not the best way to do this. We should
2931 work on being gentler to the environment while still cleaning up
2932 all stray pointers into the freed symtab. */
2933
2934 int
2935 free_named_symtabs (char *name)
2936 {
2937 #if 0
2938 /* FIXME: With the new method of each objfile having it's own
2939 psymtab list, this function needs serious rethinking. In particular,
2940 why was it ever necessary to toss psymtabs with specific compilation
2941 unit filenames, as opposed to all psymtabs from a particular symbol
2942 file? -- fnf
2943 Well, the answer is that some systems permit reloading of particular
2944 compilation units. We want to blow away any old info about these
2945 compilation units, regardless of which objfiles they arrived in. --gnu. */
2946
2947 struct symtab *s;
2948 struct symtab *prev;
2949 struct partial_symtab *ps;
2950 struct blockvector *bv;
2951 int blewit = 0;
2952
2953 /* We only wack things if the symbol-reload switch is set. */
2954 if (!symbol_reloading)
2955 return 0;
2956
2957 /* Some symbol formats have trouble providing file names... */
2958 if (name == 0 || *name == '\0')
2959 return 0;
2960
2961 /* Look for a psymtab with the specified name. */
2962
2963 again2:
2964 for (ps = partial_symtab_list; ps; ps = ps->next)
2965 {
2966 if (strcmp (name, ps->filename) == 0)
2967 {
2968 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2969 goto again2; /* Must restart, chain has been munged */
2970 }
2971 }
2972
2973 /* Look for a symtab with the specified name. */
2974
2975 for (s = symtab_list; s; s = s->next)
2976 {
2977 if (strcmp (name, s->filename) == 0)
2978 break;
2979 prev = s;
2980 }
2981
2982 if (s)
2983 {
2984 if (s == symtab_list)
2985 symtab_list = s->next;
2986 else
2987 prev->next = s->next;
2988
2989 /* For now, queue a delete for all breakpoints, displays, etc., whether
2990 or not they depend on the symtab being freed. This should be
2991 changed so that only those data structures affected are deleted. */
2992
2993 /* But don't delete anything if the symtab is empty.
2994 This test is necessary due to a bug in "dbxread.c" that
2995 causes empty symtabs to be created for N_SO symbols that
2996 contain the pathname of the object file. (This problem
2997 has been fixed in GDB 3.9x). */
2998
2999 bv = BLOCKVECTOR (s);
3000 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3001 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3002 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3003 {
3004 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3005 name);
3006 clear_symtab_users_queued++;
3007 make_cleanup (clear_symtab_users_once, 0);
3008 blewit = 1;
3009 }
3010 else
3011 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3012 name);
3013
3014 free_symtab (s);
3015 }
3016 else
3017 {
3018 /* It is still possible that some breakpoints will be affected
3019 even though no symtab was found, since the file might have
3020 been compiled without debugging, and hence not be associated
3021 with a symtab. In order to handle this correctly, we would need
3022 to keep a list of text address ranges for undebuggable files.
3023 For now, we do nothing, since this is a fairly obscure case. */
3024 ;
3025 }
3026
3027 /* FIXME, what about the minimal symbol table? */
3028 return blewit;
3029 #else
3030 return (0);
3031 #endif
3032 }
3033 \f
3034 /* Allocate and partially fill a partial symtab. It will be
3035 completely filled at the end of the symbol list.
3036
3037 FILENAME is the name of the symbol-file we are reading from. */
3038
3039 struct partial_symtab *
3040 start_psymtab_common (struct objfile *objfile,
3041 struct section_offsets *section_offsets, char *filename,
3042 CORE_ADDR textlow, struct partial_symbol **global_syms,
3043 struct partial_symbol **static_syms)
3044 {
3045 struct partial_symtab *psymtab;
3046
3047 psymtab = allocate_psymtab (filename, objfile);
3048 psymtab->section_offsets = section_offsets;
3049 psymtab->textlow = textlow;
3050 psymtab->texthigh = psymtab->textlow; /* default */
3051 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3052 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3053 return (psymtab);
3054 }
3055 \f
3056 /* Helper function, initialises partial symbol structure and stashes
3057 it into objfile's bcache. Note that our caching mechanism will
3058 use all fields of struct partial_symbol to determine hash value of the
3059 structure. In other words, having two symbols with the same name but
3060 different domain (or address) is possible and correct. */
3061
3062 static const struct partial_symbol *
3063 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3064 enum address_class class,
3065 long val, /* Value as a long */
3066 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3067 enum language language, struct objfile *objfile,
3068 int *added)
3069 {
3070 char *buf = name;
3071 /* psymbol is static so that there will be no uninitialized gaps in the
3072 structure which might contain random data, causing cache misses in
3073 bcache. */
3074 static struct partial_symbol psymbol;
3075
3076 if (name[namelength] != '\0')
3077 {
3078 buf = alloca (namelength + 1);
3079 /* Create local copy of the partial symbol */
3080 memcpy (buf, name, namelength);
3081 buf[namelength] = '\0';
3082 }
3083 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3084 if (val != 0)
3085 {
3086 SYMBOL_VALUE (&psymbol) = val;
3087 }
3088 else
3089 {
3090 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3091 }
3092 SYMBOL_SECTION (&psymbol) = 0;
3093 SYMBOL_LANGUAGE (&psymbol) = language;
3094 PSYMBOL_DOMAIN (&psymbol) = domain;
3095 PSYMBOL_CLASS (&psymbol) = class;
3096
3097 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3098
3099 /* Stash the partial symbol away in the cache */
3100 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3101 objfile->psymbol_cache, added);
3102 }
3103
3104 /* Helper function, adds partial symbol to the given partial symbol
3105 list. */
3106
3107 static void
3108 append_psymbol_to_list (struct psymbol_allocation_list *list,
3109 const struct partial_symbol *psym,
3110 struct objfile *objfile)
3111 {
3112 if (list->next >= list->list + list->size)
3113 extend_psymbol_list (list, objfile);
3114 *list->next++ = (struct partial_symbol *) psym;
3115 OBJSTAT (objfile, n_psyms++);
3116 }
3117
3118 /* Add a symbol with a long value to a psymtab.
3119 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3120 Return the partial symbol that has been added. */
3121
3122 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3123 symbol is so that callers can get access to the symbol's demangled
3124 name, which they don't have any cheap way to determine otherwise.
3125 (Currenly, dwarf2read.c is the only file who uses that information,
3126 though it's possible that other readers might in the future.)
3127 Elena wasn't thrilled about that, and I don't blame her, but we
3128 couldn't come up with a better way to get that information. If
3129 it's needed in other situations, we could consider breaking up
3130 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3131 cache. */
3132
3133 const struct partial_symbol *
3134 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3135 enum address_class class,
3136 struct psymbol_allocation_list *list,
3137 long val, /* Value as a long */
3138 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3139 enum language language, struct objfile *objfile)
3140 {
3141 const struct partial_symbol *psym;
3142
3143 int added;
3144
3145 /* Stash the partial symbol away in the cache */
3146 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3147 val, coreaddr, language, objfile, &added);
3148
3149 /* Do not duplicate global partial symbols. */
3150 if (list == &objfile->global_psymbols
3151 && !added)
3152 return psym;
3153
3154 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3155 append_psymbol_to_list (list, psym, objfile);
3156 return psym;
3157 }
3158
3159 /* Initialize storage for partial symbols. */
3160
3161 void
3162 init_psymbol_list (struct objfile *objfile, int total_symbols)
3163 {
3164 /* Free any previously allocated psymbol lists. */
3165
3166 if (objfile->global_psymbols.list)
3167 {
3168 xfree (objfile->global_psymbols.list);
3169 }
3170 if (objfile->static_psymbols.list)
3171 {
3172 xfree (objfile->static_psymbols.list);
3173 }
3174
3175 /* Current best guess is that approximately a twentieth
3176 of the total symbols (in a debugging file) are global or static
3177 oriented symbols */
3178
3179 objfile->global_psymbols.size = total_symbols / 10;
3180 objfile->static_psymbols.size = total_symbols / 10;
3181
3182 if (objfile->global_psymbols.size > 0)
3183 {
3184 objfile->global_psymbols.next =
3185 objfile->global_psymbols.list = (struct partial_symbol **)
3186 xmalloc ((objfile->global_psymbols.size
3187 * sizeof (struct partial_symbol *)));
3188 }
3189 if (objfile->static_psymbols.size > 0)
3190 {
3191 objfile->static_psymbols.next =
3192 objfile->static_psymbols.list = (struct partial_symbol **)
3193 xmalloc ((objfile->static_psymbols.size
3194 * sizeof (struct partial_symbol *)));
3195 }
3196 }
3197
3198 /* OVERLAYS:
3199 The following code implements an abstraction for debugging overlay sections.
3200
3201 The target model is as follows:
3202 1) The gnu linker will permit multiple sections to be mapped into the
3203 same VMA, each with its own unique LMA (or load address).
3204 2) It is assumed that some runtime mechanism exists for mapping the
3205 sections, one by one, from the load address into the VMA address.
3206 3) This code provides a mechanism for gdb to keep track of which
3207 sections should be considered to be mapped from the VMA to the LMA.
3208 This information is used for symbol lookup, and memory read/write.
3209 For instance, if a section has been mapped then its contents
3210 should be read from the VMA, otherwise from the LMA.
3211
3212 Two levels of debugger support for overlays are available. One is
3213 "manual", in which the debugger relies on the user to tell it which
3214 overlays are currently mapped. This level of support is
3215 implemented entirely in the core debugger, and the information about
3216 whether a section is mapped is kept in the objfile->obj_section table.
3217
3218 The second level of support is "automatic", and is only available if
3219 the target-specific code provides functionality to read the target's
3220 overlay mapping table, and translate its contents for the debugger
3221 (by updating the mapped state information in the obj_section tables).
3222
3223 The interface is as follows:
3224 User commands:
3225 overlay map <name> -- tell gdb to consider this section mapped
3226 overlay unmap <name> -- tell gdb to consider this section unmapped
3227 overlay list -- list the sections that GDB thinks are mapped
3228 overlay read-target -- get the target's state of what's mapped
3229 overlay off/manual/auto -- set overlay debugging state
3230 Functional interface:
3231 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3232 section, return that section.
3233 find_pc_overlay(pc): find any overlay section that contains
3234 the pc, either in its VMA or its LMA
3235 section_is_mapped(sect): true if overlay is marked as mapped
3236 section_is_overlay(sect): true if section's VMA != LMA
3237 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3238 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3239 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3240 overlay_mapped_address(...): map an address from section's LMA to VMA
3241 overlay_unmapped_address(...): map an address from section's VMA to LMA
3242 symbol_overlayed_address(...): Return a "current" address for symbol:
3243 either in VMA or LMA depending on whether
3244 the symbol's section is currently mapped
3245 */
3246
3247 /* Overlay debugging state: */
3248
3249 enum overlay_debugging_state overlay_debugging = ovly_off;
3250 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3251
3252 /* Function: section_is_overlay (SECTION)
3253 Returns true if SECTION has VMA not equal to LMA, ie.
3254 SECTION is loaded at an address different from where it will "run". */
3255
3256 int
3257 section_is_overlay (struct obj_section *section)
3258 {
3259 if (overlay_debugging && section)
3260 {
3261 bfd *abfd = section->objfile->obfd;
3262 asection *bfd_section = section->the_bfd_section;
3263
3264 if (bfd_section_lma (abfd, bfd_section) != 0
3265 && bfd_section_lma (abfd, bfd_section)
3266 != bfd_section_vma (abfd, bfd_section))
3267 return 1;
3268 }
3269
3270 return 0;
3271 }
3272
3273 /* Function: overlay_invalidate_all (void)
3274 Invalidate the mapped state of all overlay sections (mark it as stale). */
3275
3276 static void
3277 overlay_invalidate_all (void)
3278 {
3279 struct objfile *objfile;
3280 struct obj_section *sect;
3281
3282 ALL_OBJSECTIONS (objfile, sect)
3283 if (section_is_overlay (sect))
3284 sect->ovly_mapped = -1;
3285 }
3286
3287 /* Function: section_is_mapped (SECTION)
3288 Returns true if section is an overlay, and is currently mapped.
3289
3290 Access to the ovly_mapped flag is restricted to this function, so
3291 that we can do automatic update. If the global flag
3292 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3293 overlay_invalidate_all. If the mapped state of the particular
3294 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3295
3296 int
3297 section_is_mapped (struct obj_section *osect)
3298 {
3299 struct gdbarch *gdbarch;
3300
3301 if (osect == 0 || !section_is_overlay (osect))
3302 return 0;
3303
3304 switch (overlay_debugging)
3305 {
3306 default:
3307 case ovly_off:
3308 return 0; /* overlay debugging off */
3309 case ovly_auto: /* overlay debugging automatic */
3310 /* Unles there is a gdbarch_overlay_update function,
3311 there's really nothing useful to do here (can't really go auto) */
3312 gdbarch = get_objfile_arch (osect->objfile);
3313 if (gdbarch_overlay_update_p (gdbarch))
3314 {
3315 if (overlay_cache_invalid)
3316 {
3317 overlay_invalidate_all ();
3318 overlay_cache_invalid = 0;
3319 }
3320 if (osect->ovly_mapped == -1)
3321 gdbarch_overlay_update (gdbarch, osect);
3322 }
3323 /* fall thru to manual case */
3324 case ovly_on: /* overlay debugging manual */
3325 return osect->ovly_mapped == 1;
3326 }
3327 }
3328
3329 /* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332 CORE_ADDR
3333 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3334 {
3335 if (section_is_overlay (section))
3336 {
3337 bfd *abfd = section->objfile->obfd;
3338 asection *bfd_section = section->the_bfd_section;
3339
3340 /* We assume the LMA is relocated by the same offset as the VMA. */
3341 bfd_vma size = bfd_get_section_size (bfd_section);
3342 CORE_ADDR offset = obj_section_offset (section);
3343
3344 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3345 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3346 return 1;
3347 }
3348
3349 return 0;
3350 }
3351
3352 /* Function: pc_in_mapped_range
3353 If PC falls into the vma range of SECTION, return true, else false. */
3354
3355 CORE_ADDR
3356 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3357 {
3358 if (section_is_overlay (section))
3359 {
3360 if (obj_section_addr (section) <= pc
3361 && pc < obj_section_endaddr (section))
3362 return 1;
3363 }
3364
3365 return 0;
3366 }
3367
3368
3369 /* Return true if the mapped ranges of sections A and B overlap, false
3370 otherwise. */
3371 static int
3372 sections_overlap (struct obj_section *a, struct obj_section *b)
3373 {
3374 CORE_ADDR a_start = obj_section_addr (a);
3375 CORE_ADDR a_end = obj_section_endaddr (a);
3376 CORE_ADDR b_start = obj_section_addr (b);
3377 CORE_ADDR b_end = obj_section_endaddr (b);
3378
3379 return (a_start < b_end && b_start < a_end);
3380 }
3381
3382 /* Function: overlay_unmapped_address (PC, SECTION)
3383 Returns the address corresponding to PC in the unmapped (load) range.
3384 May be the same as PC. */
3385
3386 CORE_ADDR
3387 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3388 {
3389 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3390 {
3391 bfd *abfd = section->objfile->obfd;
3392 asection *bfd_section = section->the_bfd_section;
3393
3394 return pc + bfd_section_lma (abfd, bfd_section)
3395 - bfd_section_vma (abfd, bfd_section);
3396 }
3397
3398 return pc;
3399 }
3400
3401 /* Function: overlay_mapped_address (PC, SECTION)
3402 Returns the address corresponding to PC in the mapped (runtime) range.
3403 May be the same as PC. */
3404
3405 CORE_ADDR
3406 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3407 {
3408 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3409 {
3410 bfd *abfd = section->objfile->obfd;
3411 asection *bfd_section = section->the_bfd_section;
3412
3413 return pc + bfd_section_vma (abfd, bfd_section)
3414 - bfd_section_lma (abfd, bfd_section);
3415 }
3416
3417 return pc;
3418 }
3419
3420
3421 /* Function: symbol_overlayed_address
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3424
3425 CORE_ADDR
3426 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3427 {
3428 if (overlay_debugging)
3429 {
3430 /* If the symbol has no section, just return its regular address. */
3431 if (section == 0)
3432 return address;
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3435 return address;
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3438 return address;
3439 /*
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3442 */
3443 return overlay_unmapped_address (address, section);
3444 }
3445 return address;
3446 }
3447
3448 /* Function: find_pc_overlay (PC)
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3453
3454 struct obj_section *
3455 find_pc_overlay (CORE_ADDR pc)
3456 {
3457 struct objfile *objfile;
3458 struct obj_section *osect, *best_match = NULL;
3459
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
3462 if (section_is_overlay (osect))
3463 {
3464 if (pc_in_mapped_range (pc, osect))
3465 {
3466 if (section_is_mapped (osect))
3467 return osect;
3468 else
3469 best_match = osect;
3470 }
3471 else if (pc_in_unmapped_range (pc, osect))
3472 best_match = osect;
3473 }
3474 return best_match;
3475 }
3476
3477 /* Function: find_pc_mapped_section (PC)
3478 If PC falls into the VMA address range of an overlay section that is
3479 currently marked as MAPPED, return that section. Else return NULL. */
3480
3481 struct obj_section *
3482 find_pc_mapped_section (CORE_ADDR pc)
3483 {
3484 struct objfile *objfile;
3485 struct obj_section *osect;
3486
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
3489 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3490 return osect;
3491
3492 return NULL;
3493 }
3494
3495 /* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498 void
3499 list_overlays_command (char *args, int from_tty)
3500 {
3501 int nmapped = 0;
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (section_is_mapped (osect))
3508 {
3509 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3510 const char *name;
3511 bfd_vma lma, vma;
3512 int size;
3513
3514 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3515 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3516 size = bfd_get_section_size (osect->the_bfd_section);
3517 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3518
3519 printf_filtered ("Section %s, loaded at ", name);
3520 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3521 puts_filtered (" - ");
3522 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3523 printf_filtered (", mapped at ");
3524 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3525 puts_filtered (" - ");
3526 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3527 puts_filtered ("\n");
3528
3529 nmapped++;
3530 }
3531 if (nmapped == 0)
3532 printf_filtered (_("No sections are mapped.\n"));
3533 }
3534
3535 /* Function: map_overlay_command
3536 Mark the named section as mapped (ie. residing at its VMA address). */
3537
3538 void
3539 map_overlay_command (char *args, int from_tty)
3540 {
3541 struct objfile *objfile, *objfile2;
3542 struct obj_section *sec, *sec2;
3543
3544 if (!overlay_debugging)
3545 error (_("\
3546 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3547 the 'overlay manual' command."));
3548
3549 if (args == 0 || *args == 0)
3550 error (_("Argument required: name of an overlay section"));
3551
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3555 {
3556 /* Now, check to see if the section is an overlay. */
3557 if (!section_is_overlay (sec))
3558 continue; /* not an overlay section */
3559
3560 /* Mark the overlay as "mapped" */
3561 sec->ovly_mapped = 1;
3562
3563 /* Next, make a pass and unmap any sections that are
3564 overlapped by this new section: */
3565 ALL_OBJSECTIONS (objfile2, sec2)
3566 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3567 {
3568 if (info_verbose)
3569 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3570 bfd_section_name (objfile->obfd,
3571 sec2->the_bfd_section));
3572 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3573 }
3574 return;
3575 }
3576 error (_("No overlay section called %s"), args);
3577 }
3578
3579 /* Function: unmap_overlay_command
3580 Mark the overlay section as unmapped
3581 (ie. resident in its LMA address range, rather than the VMA range). */
3582
3583 void
3584 unmap_overlay_command (char *args, int from_tty)
3585 {
3586 struct objfile *objfile;
3587 struct obj_section *sec;
3588
3589 if (!overlay_debugging)
3590 error (_("\
3591 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3592 the 'overlay manual' command."));
3593
3594 if (args == 0 || *args == 0)
3595 error (_("Argument required: name of an overlay section"));
3596
3597 /* First, find a section matching the user supplied argument */
3598 ALL_OBJSECTIONS (objfile, sec)
3599 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3600 {
3601 if (!sec->ovly_mapped)
3602 error (_("Section %s is not mapped"), args);
3603 sec->ovly_mapped = 0;
3604 return;
3605 }
3606 error (_("No overlay section called %s"), args);
3607 }
3608
3609 /* Function: overlay_auto_command
3610 A utility command to turn on overlay debugging.
3611 Possibly this should be done via a set/show command. */
3612
3613 static void
3614 overlay_auto_command (char *args, int from_tty)
3615 {
3616 overlay_debugging = ovly_auto;
3617 enable_overlay_breakpoints ();
3618 if (info_verbose)
3619 printf_unfiltered (_("Automatic overlay debugging enabled."));
3620 }
3621
3622 /* Function: overlay_manual_command
3623 A utility command to turn on overlay debugging.
3624 Possibly this should be done via a set/show command. */
3625
3626 static void
3627 overlay_manual_command (char *args, int from_tty)
3628 {
3629 overlay_debugging = ovly_on;
3630 disable_overlay_breakpoints ();
3631 if (info_verbose)
3632 printf_unfiltered (_("Overlay debugging enabled."));
3633 }
3634
3635 /* Function: overlay_off_command
3636 A utility command to turn on overlay debugging.
3637 Possibly this should be done via a set/show command. */
3638
3639 static void
3640 overlay_off_command (char *args, int from_tty)
3641 {
3642 overlay_debugging = ovly_off;
3643 disable_overlay_breakpoints ();
3644 if (info_verbose)
3645 printf_unfiltered (_("Overlay debugging disabled."));
3646 }
3647
3648 static void
3649 overlay_load_command (char *args, int from_tty)
3650 {
3651 struct gdbarch *gdbarch = get_current_arch ();
3652
3653 if (gdbarch_overlay_update_p (gdbarch))
3654 gdbarch_overlay_update (gdbarch, NULL);
3655 else
3656 error (_("This target does not know how to read its overlay state."));
3657 }
3658
3659 /* Function: overlay_command
3660 A place-holder for a mis-typed command */
3661
3662 /* Command list chain containing all defined "overlay" subcommands. */
3663 struct cmd_list_element *overlaylist;
3664
3665 static void
3666 overlay_command (char *args, int from_tty)
3667 {
3668 printf_unfiltered
3669 ("\"overlay\" must be followed by the name of an overlay command.\n");
3670 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3671 }
3672
3673
3674 /* Target Overlays for the "Simplest" overlay manager:
3675
3676 This is GDB's default target overlay layer. It works with the
3677 minimal overlay manager supplied as an example by Cygnus. The
3678 entry point is via a function pointer "gdbarch_overlay_update",
3679 so targets that use a different runtime overlay manager can
3680 substitute their own overlay_update function and take over the
3681 function pointer.
3682
3683 The overlay_update function pokes around in the target's data structures
3684 to see what overlays are mapped, and updates GDB's overlay mapping with
3685 this information.
3686
3687 In this simple implementation, the target data structures are as follows:
3688 unsigned _novlys; /# number of overlay sections #/
3689 unsigned _ovly_table[_novlys][4] = {
3690 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3691 {..., ..., ..., ...},
3692 }
3693 unsigned _novly_regions; /# number of overlay regions #/
3694 unsigned _ovly_region_table[_novly_regions][3] = {
3695 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3696 {..., ..., ...},
3697 }
3698 These functions will attempt to update GDB's mappedness state in the
3699 symbol section table, based on the target's mappedness state.
3700
3701 To do this, we keep a cached copy of the target's _ovly_table, and
3702 attempt to detect when the cached copy is invalidated. The main
3703 entry point is "simple_overlay_update(SECT), which looks up SECT in
3704 the cached table and re-reads only the entry for that section from
3705 the target (whenever possible).
3706 */
3707
3708 /* Cached, dynamically allocated copies of the target data structures: */
3709 static unsigned (*cache_ovly_table)[4] = 0;
3710 #if 0
3711 static unsigned (*cache_ovly_region_table)[3] = 0;
3712 #endif
3713 static unsigned cache_novlys = 0;
3714 #if 0
3715 static unsigned cache_novly_regions = 0;
3716 #endif
3717 static CORE_ADDR cache_ovly_table_base = 0;
3718 #if 0
3719 static CORE_ADDR cache_ovly_region_table_base = 0;
3720 #endif
3721 enum ovly_index
3722 {
3723 VMA, SIZE, LMA, MAPPED
3724 };
3725
3726 /* Throw away the cached copy of _ovly_table */
3727 static void
3728 simple_free_overlay_table (void)
3729 {
3730 if (cache_ovly_table)
3731 xfree (cache_ovly_table);
3732 cache_novlys = 0;
3733 cache_ovly_table = NULL;
3734 cache_ovly_table_base = 0;
3735 }
3736
3737 #if 0
3738 /* Throw away the cached copy of _ovly_region_table */
3739 static void
3740 simple_free_overlay_region_table (void)
3741 {
3742 if (cache_ovly_region_table)
3743 xfree (cache_ovly_region_table);
3744 cache_novly_regions = 0;
3745 cache_ovly_region_table = NULL;
3746 cache_ovly_region_table_base = 0;
3747 }
3748 #endif
3749
3750 /* Read an array of ints of size SIZE from the target into a local buffer.
3751 Convert to host order. int LEN is number of ints */
3752 static void
3753 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3754 int len, int size, enum bfd_endian byte_order)
3755 {
3756 /* FIXME (alloca): Not safe if array is very large. */
3757 gdb_byte *buf = alloca (len * size);
3758 int i;
3759
3760 read_memory (memaddr, buf, len * size);
3761 for (i = 0; i < len; i++)
3762 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3763 }
3764
3765 /* Find and grab a copy of the target _ovly_table
3766 (and _novlys, which is needed for the table's size) */
3767 static int
3768 simple_read_overlay_table (void)
3769 {
3770 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3771 struct gdbarch *gdbarch;
3772 int word_size;
3773 enum bfd_endian byte_order;
3774
3775 simple_free_overlay_table ();
3776 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3777 if (! novlys_msym)
3778 {
3779 error (_("Error reading inferior's overlay table: "
3780 "couldn't find `_novlys' variable\n"
3781 "in inferior. Use `overlay manual' mode."));
3782 return 0;
3783 }
3784
3785 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3786 if (! ovly_table_msym)
3787 {
3788 error (_("Error reading inferior's overlay table: couldn't find "
3789 "`_ovly_table' array\n"
3790 "in inferior. Use `overlay manual' mode."));
3791 return 0;
3792 }
3793
3794 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3795 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3796 byte_order = gdbarch_byte_order (gdbarch);
3797
3798 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3799 4, byte_order);
3800 cache_ovly_table
3801 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3802 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3803 read_target_long_array (cache_ovly_table_base,
3804 (unsigned int *) cache_ovly_table,
3805 cache_novlys * 4, word_size, byte_order);
3806
3807 return 1; /* SUCCESS */
3808 }
3809
3810 #if 0
3811 /* Find and grab a copy of the target _ovly_region_table
3812 (and _novly_regions, which is needed for the table's size) */
3813 static int
3814 simple_read_overlay_region_table (void)
3815 {
3816 struct minimal_symbol *msym;
3817 struct gdbarch *gdbarch;
3818 int word_size;
3819 enum bfd_endian byte_order;
3820
3821 simple_free_overlay_region_table ();
3822 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3823 if (msym == NULL)
3824 return 0; /* failure */
3825
3826 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3827 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3828 byte_order = gdbarch_byte_order (gdbarch);
3829
3830 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3831 4, byte_order);
3832
3833 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3834 if (cache_ovly_region_table != NULL)
3835 {
3836 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3837 if (msym != NULL)
3838 {
3839 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3840 read_target_long_array (cache_ovly_region_table_base,
3841 (unsigned int *) cache_ovly_region_table,
3842 cache_novly_regions * 3,
3843 word_size, byte_order);
3844 }
3845 else
3846 return 0; /* failure */
3847 }
3848 else
3849 return 0; /* failure */
3850 return 1; /* SUCCESS */
3851 }
3852 #endif
3853
3854 /* Function: simple_overlay_update_1
3855 A helper function for simple_overlay_update. Assuming a cached copy
3856 of _ovly_table exists, look through it to find an entry whose vma,
3857 lma and size match those of OSECT. Re-read the entry and make sure
3858 it still matches OSECT (else the table may no longer be valid).
3859 Set OSECT's mapped state to match the entry. Return: 1 for
3860 success, 0 for failure. */
3861
3862 static int
3863 simple_overlay_update_1 (struct obj_section *osect)
3864 {
3865 int i, size;
3866 bfd *obfd = osect->objfile->obfd;
3867 asection *bsect = osect->the_bfd_section;
3868 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3869 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3871
3872 size = bfd_get_section_size (osect->the_bfd_section);
3873 for (i = 0; i < cache_novlys; i++)
3874 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3875 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3876 /* && cache_ovly_table[i][SIZE] == size */ )
3877 {
3878 read_target_long_array (cache_ovly_table_base + i * word_size,
3879 (unsigned int *) cache_ovly_table[i],
3880 4, word_size, byte_order);
3881 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3882 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3883 /* && cache_ovly_table[i][SIZE] == size */ )
3884 {
3885 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3886 return 1;
3887 }
3888 else /* Warning! Warning! Target's ovly table has changed! */
3889 return 0;
3890 }
3891 return 0;
3892 }
3893
3894 /* Function: simple_overlay_update
3895 If OSECT is NULL, then update all sections' mapped state
3896 (after re-reading the entire target _ovly_table).
3897 If OSECT is non-NULL, then try to find a matching entry in the
3898 cached ovly_table and update only OSECT's mapped state.
3899 If a cached entry can't be found or the cache isn't valid, then
3900 re-read the entire cache, and go ahead and update all sections. */
3901
3902 void
3903 simple_overlay_update (struct obj_section *osect)
3904 {
3905 struct objfile *objfile;
3906
3907 /* Were we given an osect to look up? NULL means do all of them. */
3908 if (osect)
3909 /* Have we got a cached copy of the target's overlay table? */
3910 if (cache_ovly_table != NULL)
3911 /* Does its cached location match what's currently in the symtab? */
3912 if (cache_ovly_table_base ==
3913 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3914 /* Then go ahead and try to look up this single section in the cache */
3915 if (simple_overlay_update_1 (osect))
3916 /* Found it! We're done. */
3917 return;
3918
3919 /* Cached table no good: need to read the entire table anew.
3920 Or else we want all the sections, in which case it's actually
3921 more efficient to read the whole table in one block anyway. */
3922
3923 if (! simple_read_overlay_table ())
3924 return;
3925
3926 /* Now may as well update all sections, even if only one was requested. */
3927 ALL_OBJSECTIONS (objfile, osect)
3928 if (section_is_overlay (osect))
3929 {
3930 int i, size;
3931 bfd *obfd = osect->objfile->obfd;
3932 asection *bsect = osect->the_bfd_section;
3933
3934 size = bfd_get_section_size (bsect);
3935 for (i = 0; i < cache_novlys; i++)
3936 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3937 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3938 /* && cache_ovly_table[i][SIZE] == size */ )
3939 { /* obj_section matches i'th entry in ovly_table */
3940 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3941 break; /* finished with inner for loop: break out */
3942 }
3943 }
3944 }
3945
3946 /* Set the output sections and output offsets for section SECTP in
3947 ABFD. The relocation code in BFD will read these offsets, so we
3948 need to be sure they're initialized. We map each section to itself,
3949 with no offset; this means that SECTP->vma will be honored. */
3950
3951 static void
3952 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3953 {
3954 sectp->output_section = sectp;
3955 sectp->output_offset = 0;
3956 }
3957
3958 /* Relocate the contents of a debug section SECTP in ABFD. The
3959 contents are stored in BUF if it is non-NULL, or returned in a
3960 malloc'd buffer otherwise.
3961
3962 For some platforms and debug info formats, shared libraries contain
3963 relocations against the debug sections (particularly for DWARF-2;
3964 one affected platform is PowerPC GNU/Linux, although it depends on
3965 the version of the linker in use). Also, ELF object files naturally
3966 have unresolved relocations for their debug sections. We need to apply
3967 the relocations in order to get the locations of symbols correct.
3968 Another example that may require relocation processing, is the
3969 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3970 debug section. */
3971
3972 bfd_byte *
3973 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3974 {
3975 /* We're only interested in sections with relocation
3976 information. */
3977 if ((sectp->flags & SEC_RELOC) == 0)
3978 return NULL;
3979
3980 /* We will handle section offsets properly elsewhere, so relocate as if
3981 all sections begin at 0. */
3982 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3983
3984 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3985 }
3986
3987 struct symfile_segment_data *
3988 get_symfile_segment_data (bfd *abfd)
3989 {
3990 struct sym_fns *sf = find_sym_fns (abfd);
3991
3992 if (sf == NULL)
3993 return NULL;
3994
3995 return sf->sym_segments (abfd);
3996 }
3997
3998 void
3999 free_symfile_segment_data (struct symfile_segment_data *data)
4000 {
4001 xfree (data->segment_bases);
4002 xfree (data->segment_sizes);
4003 xfree (data->segment_info);
4004 xfree (data);
4005 }
4006
4007
4008 /* Given:
4009 - DATA, containing segment addresses from the object file ABFD, and
4010 the mapping from ABFD's sections onto the segments that own them,
4011 and
4012 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4013 segment addresses reported by the target,
4014 store the appropriate offsets for each section in OFFSETS.
4015
4016 If there are fewer entries in SEGMENT_BASES than there are segments
4017 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4018
4019 If there are more entries, then ignore the extra. The target may
4020 not be able to distinguish between an empty data segment and a
4021 missing data segment; a missing text segment is less plausible. */
4022 int
4023 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4024 struct section_offsets *offsets,
4025 int num_segment_bases,
4026 const CORE_ADDR *segment_bases)
4027 {
4028 int i;
4029 asection *sect;
4030
4031 /* It doesn't make sense to call this function unless you have some
4032 segment base addresses. */
4033 gdb_assert (segment_bases > 0);
4034
4035 /* If we do not have segment mappings for the object file, we
4036 can not relocate it by segments. */
4037 gdb_assert (data != NULL);
4038 gdb_assert (data->num_segments > 0);
4039
4040 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4041 {
4042 int which = data->segment_info[i];
4043
4044 gdb_assert (0 <= which && which <= data->num_segments);
4045
4046 /* Don't bother computing offsets for sections that aren't
4047 loaded as part of any segment. */
4048 if (! which)
4049 continue;
4050
4051 /* Use the last SEGMENT_BASES entry as the address of any extra
4052 segments mentioned in DATA->segment_info. */
4053 if (which > num_segment_bases)
4054 which = num_segment_bases;
4055
4056 offsets->offsets[i] = (segment_bases[which - 1]
4057 - data->segment_bases[which - 1]);
4058 }
4059
4060 return 1;
4061 }
4062
4063 static void
4064 symfile_find_segment_sections (struct objfile *objfile)
4065 {
4066 bfd *abfd = objfile->obfd;
4067 int i;
4068 asection *sect;
4069 struct symfile_segment_data *data;
4070
4071 data = get_symfile_segment_data (objfile->obfd);
4072 if (data == NULL)
4073 return;
4074
4075 if (data->num_segments != 1 && data->num_segments != 2)
4076 {
4077 free_symfile_segment_data (data);
4078 return;
4079 }
4080
4081 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4082 {
4083 CORE_ADDR vma;
4084 int which = data->segment_info[i];
4085
4086 if (which == 1)
4087 {
4088 if (objfile->sect_index_text == -1)
4089 objfile->sect_index_text = sect->index;
4090
4091 if (objfile->sect_index_rodata == -1)
4092 objfile->sect_index_rodata = sect->index;
4093 }
4094 else if (which == 2)
4095 {
4096 if (objfile->sect_index_data == -1)
4097 objfile->sect_index_data = sect->index;
4098
4099 if (objfile->sect_index_bss == -1)
4100 objfile->sect_index_bss = sect->index;
4101 }
4102 }
4103
4104 free_symfile_segment_data (data);
4105 }
4106
4107 void
4108 _initialize_symfile (void)
4109 {
4110 struct cmd_list_element *c;
4111
4112 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4113 Load symbol table from executable file FILE.\n\
4114 The `file' command can also load symbol tables, as well as setting the file\n\
4115 to execute."), &cmdlist);
4116 set_cmd_completer (c, filename_completer);
4117
4118 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4119 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4120 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4121 ADDR is the starting address of the file's text.\n\
4122 The optional arguments are section-name section-address pairs and\n\
4123 should be specified if the data and bss segments are not contiguous\n\
4124 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4125 &cmdlist);
4126 set_cmd_completer (c, filename_completer);
4127
4128 c = add_cmd ("load", class_files, load_command, _("\
4129 Dynamically load FILE into the running program, and record its symbols\n\
4130 for access from GDB.\n\
4131 A load OFFSET may also be given."), &cmdlist);
4132 set_cmd_completer (c, filename_completer);
4133
4134 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4135 &symbol_reloading, _("\
4136 Set dynamic symbol table reloading multiple times in one run."), _("\
4137 Show dynamic symbol table reloading multiple times in one run."), NULL,
4138 NULL,
4139 show_symbol_reloading,
4140 &setlist, &showlist);
4141
4142 add_prefix_cmd ("overlay", class_support, overlay_command,
4143 _("Commands for debugging overlays."), &overlaylist,
4144 "overlay ", 0, &cmdlist);
4145
4146 add_com_alias ("ovly", "overlay", class_alias, 1);
4147 add_com_alias ("ov", "overlay", class_alias, 1);
4148
4149 add_cmd ("map-overlay", class_support, map_overlay_command,
4150 _("Assert that an overlay section is mapped."), &overlaylist);
4151
4152 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4153 _("Assert that an overlay section is unmapped."), &overlaylist);
4154
4155 add_cmd ("list-overlays", class_support, list_overlays_command,
4156 _("List mappings of overlay sections."), &overlaylist);
4157
4158 add_cmd ("manual", class_support, overlay_manual_command,
4159 _("Enable overlay debugging."), &overlaylist);
4160 add_cmd ("off", class_support, overlay_off_command,
4161 _("Disable overlay debugging."), &overlaylist);
4162 add_cmd ("auto", class_support, overlay_auto_command,
4163 _("Enable automatic overlay debugging."), &overlaylist);
4164 add_cmd ("load-target", class_support, overlay_load_command,
4165 _("Read the overlay mapping state from the target."), &overlaylist);
4166
4167 /* Filename extension to source language lookup table: */
4168 init_filename_language_table ();
4169 add_setshow_string_noescape_cmd ("extension-language", class_files,
4170 &ext_args, _("\
4171 Set mapping between filename extension and source language."), _("\
4172 Show mapping between filename extension and source language."), _("\
4173 Usage: set extension-language .foo bar"),
4174 set_ext_lang_command,
4175 show_ext_args,
4176 &setlist, &showlist);
4177
4178 add_info ("extensions", info_ext_lang_command,
4179 _("All filename extensions associated with a source language."));
4180
4181 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4182 &debug_file_directory, _("\
4183 Set the directory where separate debug symbols are searched for."), _("\
4184 Show the directory where separate debug symbols are searched for."), _("\
4185 Separate debug symbols are first searched for in the same\n\
4186 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4187 and lastly at the path of the directory of the binary with\n\
4188 the global debug-file directory prepended."),
4189 NULL,
4190 show_debug_file_directory,
4191 &setlist, &showlist);
4192
4193 add_setshow_boolean_cmd ("symbol-loading", no_class,
4194 &print_symbol_loading, _("\
4195 Set printing of symbol loading messages."), _("\
4196 Show printing of symbol loading messages."), NULL,
4197 NULL,
4198 NULL,
4199 &setprintlist, &showprintlist);
4200 }
This page took 0.117395 seconds and 4 git commands to generate.