* s/sourceware.cygnus.com/sources.redhat.com/ throughout
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "breakpoint.h"
33 #include "language.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "inferior.h" /* for write_pc */
37 #include "gdb-stabs.h"
38 #include "obstack.h"
39
40 #include <assert.h>
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47
48 #ifndef O_BINARY
49 #define O_BINARY 0
50 #endif
51
52 #ifdef HPUXHPPA
53
54 /* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57 extern int hp_som_som_object_present;
58 extern int hp_cxx_exception_support_initialized;
59 #define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63 #endif
64
65 int (*ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*pre_add_symbol_hook) (char *);
72 void (*post_add_symbol_hook) (void);
73 void (*target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 struct complaint oldsyms_complaint =
81 {
82 "Replacing old symbols for `%s'", 0, 0
83 };
84
85 struct complaint empty_symtab_complaint =
86 {
87 "Empty symbol table found for `%s'", 0, 0
88 };
89
90 struct complaint unknown_option_complaint =
91 {
92 "Unknown option `%s' ignored", 0, 0
93 };
94
95 /* External variables and functions referenced. */
96
97 extern int info_verbose;
98
99 extern void report_transfer_performance (unsigned long, time_t, time_t);
100
101 /* Functions this file defines */
102
103 #if 0
104 static int simple_read_overlay_region_table (void);
105 static void simple_free_overlay_region_table (void);
106 #endif
107
108 static void set_initial_language (void);
109
110 static void load_command (char *, int);
111
112 static void add_symbol_file_command (char *, int);
113
114 static void add_shared_symbol_files_command (char *, int);
115
116 static void cashier_psymtab (struct partial_symtab *);
117
118 static int compare_psymbols (const void *, const void *);
119
120 static int compare_symbols (const void *, const void *);
121
122 bfd *symfile_bfd_open (char *);
123
124 static void find_sym_fns (struct objfile *);
125
126 static void decrement_reading_symtab (void *);
127
128 static void overlay_invalidate_all (void);
129
130 static int overlay_is_mapped (struct obj_section *);
131
132 void list_overlays_command (char *, int);
133
134 void map_overlay_command (char *, int);
135
136 void unmap_overlay_command (char *, int);
137
138 static void overlay_auto_command (char *, int);
139
140 static void overlay_manual_command (char *, int);
141
142 static void overlay_off_command (char *, int);
143
144 static void overlay_load_command (char *, int);
145
146 static void overlay_command (char *, int);
147
148 static void simple_free_overlay_table (void);
149
150 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
151
152 static int simple_read_overlay_table (void);
153
154 static int simple_overlay_update_1 (struct obj_section *);
155
156 static void add_filename_language (char *ext, enum language lang);
157
158 static void set_ext_lang_command (char *args, int from_tty);
159
160 static void info_ext_lang_command (char *args, int from_tty);
161
162 static void init_filename_language_table (void);
163
164 void _initialize_symfile (void);
165
166 /* List of all available sym_fns. On gdb startup, each object file reader
167 calls add_symtab_fns() to register information on each format it is
168 prepared to read. */
169
170 static struct sym_fns *symtab_fns = NULL;
171
172 /* Flag for whether user will be reloading symbols multiple times.
173 Defaults to ON for VxWorks, otherwise OFF. */
174
175 #ifdef SYMBOL_RELOADING_DEFAULT
176 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
177 #else
178 int symbol_reloading = 0;
179 #endif
180
181 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
182 this variable is interpreted as a threshhold. If adding a new
183 library's symbol table to those already known to the debugger would
184 exceed this threshhold, then the shlib's symbols are not added.
185
186 If non-zero on other platforms, shared library symbols will be added
187 automatically when the inferior is created, new libraries are loaded,
188 or when attaching to the inferior. This is almost always what users
189 will want to have happen; but for very large programs, the startup
190 time will be excessive, and so if this is a problem, the user can
191 clear this flag and then add the shared library symbols as needed.
192 Note that there is a potential for confusion, since if the shared
193 library symbols are not loaded, commands like "info fun" will *not*
194 report all the functions that are actually present.
195
196 Note that HP-UX interprets this variable to mean, "threshhold size
197 in megabytes, where zero means never add". Other platforms interpret
198 this variable to mean, "always add if non-zero, never add if zero."
199 */
200
201 int auto_solib_add = 1;
202 \f
203
204 /* Since this function is called from within qsort, in an ANSI environment
205 it must conform to the prototype for qsort, which specifies that the
206 comparison function takes two "void *" pointers. */
207
208 static int
209 compare_symbols (s1p, s2p)
210 const PTR s1p;
211 const PTR s2p;
212 {
213 register struct symbol **s1, **s2;
214
215 s1 = (struct symbol **) s1p;
216 s2 = (struct symbol **) s2p;
217
218 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
219 }
220
221 /*
222
223 LOCAL FUNCTION
224
225 compare_psymbols -- compare two partial symbols by name
226
227 DESCRIPTION
228
229 Given pointers to pointers to two partial symbol table entries,
230 compare them by name and return -N, 0, or +N (ala strcmp).
231 Typically used by sorting routines like qsort().
232
233 NOTES
234
235 Does direct compare of first two characters before punting
236 and passing to strcmp for longer compares. Note that the
237 original version had a bug whereby two null strings or two
238 identically named one character strings would return the
239 comparison of memory following the null byte.
240
241 */
242
243 static int
244 compare_psymbols (s1p, s2p)
245 const PTR s1p;
246 const PTR s2p;
247 {
248 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
249 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
250
251 if ((st1[0] - st2[0]) || !st1[0])
252 {
253 return (st1[0] - st2[0]);
254 }
255 else if ((st1[1] - st2[1]) || !st1[1])
256 {
257 return (st1[1] - st2[1]);
258 }
259 else
260 {
261 /* Note: I replaced the STRCMP line (commented out below)
262 * with a simpler "strcmp()" which compares the 2 strings
263 * from the beginning. (STRCMP is a macro which first compares
264 * the initial characters, then falls back on strcmp).
265 * The reason is that the STRCMP line was tickling a C compiler
266 * bug on HP-UX 10.30, which is avoided with the simpler
267 * code. The performance gain from the more complicated code
268 * is negligible, given that we have already checked the
269 * initial 2 characters above. I reported the compiler bug,
270 * and once it is fixed the original line can be put back. RT
271 */
272 /* return ( STRCMP (st1 + 2, st2 + 2)); */
273 return (strcmp (st1, st2));
274 }
275 }
276
277 void
278 sort_pst_symbols (pst)
279 struct partial_symtab *pst;
280 {
281 /* Sort the global list; don't sort the static list */
282
283 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
284 pst->n_global_syms, sizeof (struct partial_symbol *),
285 compare_psymbols);
286 }
287
288 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
289
290 void
291 sort_block_syms (b)
292 register struct block *b;
293 {
294 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
295 sizeof (struct symbol *), compare_symbols);
296 }
297
298 /* Call sort_symtab_syms to sort alphabetically
299 the symbols of each block of one symtab. */
300
301 void
302 sort_symtab_syms (s)
303 register struct symtab *s;
304 {
305 register struct blockvector *bv;
306 int nbl;
307 int i;
308 register struct block *b;
309
310 if (s == 0)
311 return;
312 bv = BLOCKVECTOR (s);
313 nbl = BLOCKVECTOR_NBLOCKS (bv);
314 for (i = 0; i < nbl; i++)
315 {
316 b = BLOCKVECTOR_BLOCK (bv, i);
317 if (BLOCK_SHOULD_SORT (b))
318 sort_block_syms (b);
319 }
320 }
321
322 /* Make a null terminated copy of the string at PTR with SIZE characters in
323 the obstack pointed to by OBSTACKP . Returns the address of the copy.
324 Note that the string at PTR does not have to be null terminated, I.E. it
325 may be part of a larger string and we are only saving a substring. */
326
327 char *
328 obsavestring (ptr, size, obstackp)
329 char *ptr;
330 int size;
331 struct obstack *obstackp;
332 {
333 register char *p = (char *) obstack_alloc (obstackp, size + 1);
334 /* Open-coded memcpy--saves function call time. These strings are usually
335 short. FIXME: Is this really still true with a compiler that can
336 inline memcpy? */
337 {
338 register char *p1 = ptr;
339 register char *p2 = p;
340 char *end = ptr + size;
341 while (p1 != end)
342 *p2++ = *p1++;
343 }
344 p[size] = 0;
345 return p;
346 }
347
348 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
349 in the obstack pointed to by OBSTACKP. */
350
351 char *
352 obconcat (obstackp, s1, s2, s3)
353 struct obstack *obstackp;
354 const char *s1, *s2, *s3;
355 {
356 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
357 register char *val = (char *) obstack_alloc (obstackp, len);
358 strcpy (val, s1);
359 strcat (val, s2);
360 strcat (val, s3);
361 return val;
362 }
363
364 /* True if we are nested inside psymtab_to_symtab. */
365
366 int currently_reading_symtab = 0;
367
368 static void
369 decrement_reading_symtab (dummy)
370 void *dummy;
371 {
372 currently_reading_symtab--;
373 }
374
375 /* Get the symbol table that corresponds to a partial_symtab.
376 This is fast after the first time you do it. In fact, there
377 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
378 case inline. */
379
380 struct symtab *
381 psymtab_to_symtab (pst)
382 register struct partial_symtab *pst;
383 {
384 /* If it's been looked up before, return it. */
385 if (pst->symtab)
386 return pst->symtab;
387
388 /* If it has not yet been read in, read it. */
389 if (!pst->readin)
390 {
391 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
392 currently_reading_symtab++;
393 (*pst->read_symtab) (pst);
394 do_cleanups (back_to);
395 }
396
397 return pst->symtab;
398 }
399
400 /* Initialize entry point information for this objfile. */
401
402 void
403 init_entry_point_info (objfile)
404 struct objfile *objfile;
405 {
406 /* Save startup file's range of PC addresses to help blockframe.c
407 decide where the bottom of the stack is. */
408
409 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
410 {
411 /* Executable file -- record its entry point so we'll recognize
412 the startup file because it contains the entry point. */
413 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
414 }
415 else
416 {
417 /* Examination of non-executable.o files. Short-circuit this stuff. */
418 objfile->ei.entry_point = INVALID_ENTRY_POINT;
419 }
420 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
421 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
422 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
423 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
424 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
425 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
426 }
427
428 /* Get current entry point address. */
429
430 CORE_ADDR
431 entry_point_address ()
432 {
433 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
434 }
435
436 /* Remember the lowest-addressed loadable section we've seen.
437 This function is called via bfd_map_over_sections.
438
439 In case of equal vmas, the section with the largest size becomes the
440 lowest-addressed loadable section.
441
442 If the vmas and sizes are equal, the last section is considered the
443 lowest-addressed loadable section. */
444
445 void
446 find_lowest_section (abfd, sect, obj)
447 bfd *abfd;
448 asection *sect;
449 PTR obj;
450 {
451 asection **lowest = (asection **) obj;
452
453 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
454 return;
455 if (!*lowest)
456 *lowest = sect; /* First loadable section */
457 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
458 *lowest = sect; /* A lower loadable section */
459 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
460 && (bfd_section_size (abfd, (*lowest))
461 <= bfd_section_size (abfd, sect)))
462 *lowest = sect;
463 }
464
465
466 /* Build (allocate and populate) a section_addr_info struct from
467 an existing section table. */
468
469 extern struct section_addr_info *
470 build_section_addr_info_from_section_table (const struct section_table *start,
471 const struct section_table *end)
472 {
473 struct section_addr_info *sap;
474 const struct section_table *stp;
475 int oidx;
476
477 sap = xmalloc (sizeof (struct section_addr_info));
478 memset (sap, 0, sizeof (struct section_addr_info));
479
480 for (stp = start, oidx = 0; stp != end; stp++)
481 {
482 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
483 && oidx < MAX_SECTIONS)
484 {
485 sap->other[oidx].addr = stp->addr;
486 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
487 sap->other[oidx].sectindex = stp->the_bfd_section->index;
488 oidx++;
489 }
490 }
491
492 return sap;
493 }
494
495
496 /* Free all memory allocated by build_section_addr_info_from_section_table. */
497
498 extern void
499 free_section_addr_info (struct section_addr_info *sap)
500 {
501 int idx;
502
503 for (idx = 0; idx < MAX_SECTIONS; idx++)
504 if (sap->other[idx].name)
505 free (sap->other[idx].name);
506 free (sap);
507 }
508
509
510 /* Parse the user's idea of an offset for dynamic linking, into our idea
511 of how to represent it for fast symbol reading. This is the default
512 version of the sym_fns.sym_offsets function for symbol readers that
513 don't need to do anything special. It allocates a section_offsets table
514 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
515
516 void
517 default_symfile_offsets (objfile, addrs)
518 struct objfile *objfile;
519 struct section_addr_info *addrs;
520 {
521 int i;
522 asection *sect = NULL;
523
524 objfile->num_sections = SECT_OFF_MAX;
525 objfile->section_offsets = (struct section_offsets *)
526 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
527 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
528
529 /* Now calculate offsets for section that were specified by the
530 caller. */
531 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
532 {
533 struct other_sections *osp ;
534
535 osp = &addrs->other[i] ;
536 if (osp->addr == 0)
537 continue;
538
539 /* Record all sections in offsets */
540 /* The section_offsets in the objfile are here filled in using
541 the BFD index. */
542 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
543 }
544
545 /* Remember the bfd indexes for the .text, .data, .bss and
546 .rodata sections. */
547
548 sect = bfd_get_section_by_name (objfile->obfd, ".text");
549 if (sect)
550 objfile->sect_index_text = sect->index;
551
552 sect = bfd_get_section_by_name (objfile->obfd, ".data");
553 if (sect)
554 objfile->sect_index_data = sect->index;
555
556 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
557 if (sect)
558 objfile->sect_index_bss = sect->index;
559
560 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
561 if (sect)
562 objfile->sect_index_rodata = sect->index;
563
564 }
565
566 /* Process a symbol file, as either the main file or as a dynamically
567 loaded file.
568
569 OBJFILE is where the symbols are to be read from.
570
571 ADDR is the address where the text segment was loaded, unless the
572 objfile is the main symbol file, in which case it is zero.
573
574 MAINLINE is nonzero if this is the main symbol file, or zero if
575 it's an extra symbol file such as dynamically loaded code.
576
577 VERBO is nonzero if the caller has printed a verbose message about
578 the symbol reading (and complaints can be more terse about it). */
579
580 void
581 syms_from_objfile (objfile, addrs, mainline, verbo)
582 struct objfile *objfile;
583 struct section_addr_info *addrs;
584 int mainline;
585 int verbo;
586 {
587 asection *lower_sect;
588 asection *sect;
589 CORE_ADDR lower_offset;
590 struct section_addr_info local_addr;
591 struct cleanup *old_chain;
592 int i;
593
594 /* If ADDRS is NULL, initialize the local section_addr_info struct and
595 point ADDRS to it. We now establish the convention that an addr of
596 zero means no load address was specified. */
597
598 if (addrs == NULL)
599 {
600 memset (&local_addr, 0, sizeof (local_addr));
601 addrs = &local_addr;
602 }
603
604 init_entry_point_info (objfile);
605 find_sym_fns (objfile);
606
607 /* Make sure that partially constructed symbol tables will be cleaned up
608 if an error occurs during symbol reading. */
609 old_chain = make_cleanup_free_objfile (objfile);
610
611 if (mainline)
612 {
613 /* We will modify the main symbol table, make sure that all its users
614 will be cleaned up if an error occurs during symbol reading. */
615 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
616
617 /* Since no error yet, throw away the old symbol table. */
618
619 if (symfile_objfile != NULL)
620 {
621 free_objfile (symfile_objfile);
622 symfile_objfile = NULL;
623 }
624
625 /* Currently we keep symbols from the add-symbol-file command.
626 If the user wants to get rid of them, they should do "symbol-file"
627 without arguments first. Not sure this is the best behavior
628 (PR 2207). */
629
630 (*objfile->sf->sym_new_init) (objfile);
631 }
632
633 /* Convert addr into an offset rather than an absolute address.
634 We find the lowest address of a loaded segment in the objfile,
635 and assume that <addr> is where that got loaded.
636
637 We no longer warn if the lowest section is not a text segment (as
638 happens for the PA64 port. */
639 if (!mainline)
640 {
641 /* Find lowest loadable section to be used as starting point for
642 continguous sections. FIXME!! won't work without call to find
643 .text first, but this assumes text is lowest section. */
644 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
645 if (lower_sect == NULL)
646 bfd_map_over_sections (objfile->obfd, find_lowest_section,
647 (PTR) &lower_sect);
648 if (lower_sect == NULL)
649 warning ("no loadable sections found in added symbol-file %s",
650 objfile->name);
651 else
652 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
653 warning ("Lowest section in %s is %s at %s",
654 objfile->name,
655 bfd_section_name (objfile->obfd, lower_sect),
656 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
657 if (lower_sect != NULL)
658 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
659 else
660 lower_offset = 0;
661
662 /* Calculate offsets for the loadable sections.
663 FIXME! Sections must be in order of increasing loadable section
664 so that contiguous sections can use the lower-offset!!!
665
666 Adjust offsets if the segments are not contiguous.
667 If the section is contiguous, its offset should be set to
668 the offset of the highest loadable section lower than it
669 (the loadable section directly below it in memory).
670 this_offset = lower_offset = lower_addr - lower_orig_addr */
671
672 /* Calculate offsets for sections. */
673 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
674 {
675 if (addrs->other[i].addr != 0)
676 {
677 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
678 if (sect)
679 {
680 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
681 lower_offset = addrs->other[i].addr;
682 /* This is the index used by BFD. */
683 addrs->other[i].sectindex = sect->index ;
684 }
685 else
686 {
687 warning ("section %s not found in %s", addrs->other[i].name,
688 objfile->name);
689 addrs->other[i].addr = 0;
690 }
691 }
692 else
693 addrs->other[i].addr = lower_offset;
694 }
695 }
696
697 /* Initialize symbol reading routines for this objfile, allow complaints to
698 appear for this new file, and record how verbose to be, then do the
699 initial symbol reading for this file. */
700
701 (*objfile->sf->sym_init) (objfile);
702 clear_complaints (1, verbo);
703
704 (*objfile->sf->sym_offsets) (objfile, addrs);
705
706 #ifndef IBM6000_TARGET
707 /* This is a SVR4/SunOS specific hack, I think. In any event, it
708 screws RS/6000. sym_offsets should be doing this sort of thing,
709 because it knows the mapping between bfd sections and
710 section_offsets. */
711 /* This is a hack. As far as I can tell, section offsets are not
712 target dependent. They are all set to addr with a couple of
713 exceptions. The exceptions are sysvr4 shared libraries, whose
714 offsets are kept in solib structures anyway and rs6000 xcoff
715 which handles shared libraries in a completely unique way.
716
717 Section offsets are built similarly, except that they are built
718 by adding addr in all cases because there is no clear mapping
719 from section_offsets into actual sections. Note that solib.c
720 has a different algorithm for finding section offsets.
721
722 These should probably all be collapsed into some target
723 independent form of shared library support. FIXME. */
724
725 if (addrs)
726 {
727 struct obj_section *s;
728
729 /* Map section offsets in "addr" back to the object's
730 sections by comparing the section names with bfd's
731 section names. Then adjust the section address by
732 the offset. */ /* for gdb/13815 */
733
734 ALL_OBJFILE_OSECTIONS (objfile, s)
735 {
736 CORE_ADDR s_addr = 0;
737 int i;
738
739 for (i = 0;
740 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
741 i++)
742 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
743 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
744
745 s->addr -= s->offset;
746 s->addr += s_addr;
747 s->endaddr -= s->offset;
748 s->endaddr += s_addr;
749 s->offset += s_addr;
750 }
751 }
752 #endif /* not IBM6000_TARGET */
753
754 (*objfile->sf->sym_read) (objfile, mainline);
755
756 if (!have_partial_symbols () && !have_full_symbols ())
757 {
758 wrap_here ("");
759 printf_filtered ("(no debugging symbols found)...");
760 wrap_here ("");
761 }
762
763 /* Don't allow char * to have a typename (else would get caddr_t).
764 Ditto void *. FIXME: Check whether this is now done by all the
765 symbol readers themselves (many of them now do), and if so remove
766 it from here. */
767
768 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
769 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
770
771 /* Mark the objfile has having had initial symbol read attempted. Note
772 that this does not mean we found any symbols... */
773
774 objfile->flags |= OBJF_SYMS;
775
776 /* Discard cleanups as symbol reading was successful. */
777
778 discard_cleanups (old_chain);
779
780 /* Call this after reading in a new symbol table to give target
781 dependant code a crack at the new symbols. For instance, this
782 could be used to update the values of target-specific symbols GDB
783 needs to keep track of (such as _sigtramp, or whatever). */
784
785 TARGET_SYMFILE_POSTREAD (objfile);
786 }
787
788 /* Perform required actions after either reading in the initial
789 symbols for a new objfile, or mapping in the symbols from a reusable
790 objfile. */
791
792 void
793 new_symfile_objfile (objfile, mainline, verbo)
794 struct objfile *objfile;
795 int mainline;
796 int verbo;
797 {
798
799 /* If this is the main symbol file we have to clean up all users of the
800 old main symbol file. Otherwise it is sufficient to fixup all the
801 breakpoints that may have been redefined by this symbol file. */
802 if (mainline)
803 {
804 /* OK, make it the "real" symbol file. */
805 symfile_objfile = objfile;
806
807 clear_symtab_users ();
808 }
809 else
810 {
811 breakpoint_re_set ();
812 }
813
814 /* We're done reading the symbol file; finish off complaints. */
815 clear_complaints (0, verbo);
816 }
817
818 /* Process a symbol file, as either the main file or as a dynamically
819 loaded file.
820
821 NAME is the file name (which will be tilde-expanded and made
822 absolute herein) (but we don't free or modify NAME itself).
823 FROM_TTY says how verbose to be. MAINLINE specifies whether this
824 is the main symbol file, or whether it's an extra symbol file such
825 as dynamically loaded code. If !mainline, ADDR is the address
826 where the text segment was loaded.
827
828 Upon success, returns a pointer to the objfile that was added.
829 Upon failure, jumps back to command level (never returns). */
830
831 struct objfile *
832 symbol_file_add (name, from_tty, addrs, mainline, flags)
833 char *name;
834 int from_tty;
835 struct section_addr_info *addrs;
836 int mainline;
837 int flags;
838 {
839 struct objfile *objfile;
840 struct partial_symtab *psymtab;
841 bfd *abfd;
842
843 /* Open a bfd for the file, and give user a chance to burp if we'd be
844 interactively wiping out any existing symbols. */
845
846 abfd = symfile_bfd_open (name);
847
848 if ((have_full_symbols () || have_partial_symbols ())
849 && mainline
850 && from_tty
851 && !query ("Load new symbol table from \"%s\"? ", name))
852 error ("Not confirmed.");
853
854 objfile = allocate_objfile (abfd, flags);
855
856 /* If the objfile uses a mapped symbol file, and we have a psymtab for
857 it, then skip reading any symbols at this time. */
858
859 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
860 {
861 /* We mapped in an existing symbol table file that already has had
862 initial symbol reading performed, so we can skip that part. Notify
863 the user that instead of reading the symbols, they have been mapped.
864 */
865 if (from_tty || info_verbose)
866 {
867 printf_filtered ("Mapped symbols for %s...", name);
868 wrap_here ("");
869 gdb_flush (gdb_stdout);
870 }
871 init_entry_point_info (objfile);
872 find_sym_fns (objfile);
873 }
874 else
875 {
876 /* We either created a new mapped symbol table, mapped an existing
877 symbol table file which has not had initial symbol reading
878 performed, or need to read an unmapped symbol table. */
879 if (from_tty || info_verbose)
880 {
881 if (pre_add_symbol_hook)
882 pre_add_symbol_hook (name);
883 else
884 {
885 printf_filtered ("Reading symbols from %s...", name);
886 wrap_here ("");
887 gdb_flush (gdb_stdout);
888 }
889 }
890 syms_from_objfile (objfile, addrs, mainline, from_tty);
891 }
892
893 /* We now have at least a partial symbol table. Check to see if the
894 user requested that all symbols be read on initial access via either
895 the gdb startup command line or on a per symbol file basis. Expand
896 all partial symbol tables for this objfile if so. */
897
898 if ((flags & OBJF_READNOW) || readnow_symbol_files)
899 {
900 if (from_tty || info_verbose)
901 {
902 printf_filtered ("expanding to full symbols...");
903 wrap_here ("");
904 gdb_flush (gdb_stdout);
905 }
906
907 for (psymtab = objfile->psymtabs;
908 psymtab != NULL;
909 psymtab = psymtab->next)
910 {
911 psymtab_to_symtab (psymtab);
912 }
913 }
914
915 if (from_tty || info_verbose)
916 {
917 if (post_add_symbol_hook)
918 post_add_symbol_hook ();
919 else
920 {
921 printf_filtered ("done.\n");
922 gdb_flush (gdb_stdout);
923 }
924 }
925
926 new_symfile_objfile (objfile, mainline, from_tty);
927
928 if (target_new_objfile_hook)
929 target_new_objfile_hook (objfile);
930
931 return (objfile);
932 }
933
934 /* This is the symbol-file command. Read the file, analyze its
935 symbols, and add a struct symtab to a symtab list. The syntax of
936 the command is rather bizarre--(1) buildargv implements various
937 quoting conventions which are undocumented and have little or
938 nothing in common with the way things are quoted (or not quoted)
939 elsewhere in GDB, (2) options are used, which are not generally
940 used in GDB (perhaps "set mapped on", "set readnow on" would be
941 better), (3) the order of options matters, which is contrary to GNU
942 conventions (because it is confusing and inconvenient). */
943 /* Note: ezannoni 2000-04-17. This function used to have support for
944 rombug (see remote-os9k.c). It consisted of a call to target_link()
945 (target.c) to get the address of the text segment from the target,
946 and pass that to symbol_file_add(). This is no longer supported. */
947
948 void
949 symbol_file_command (args, from_tty)
950 char *args;
951 int from_tty;
952 {
953 char **argv;
954 char *name = NULL;
955 struct cleanup *cleanups;
956 int flags = OBJF_USERLOADED;
957
958 dont_repeat ();
959
960 if (args == NULL)
961 {
962 if ((have_full_symbols () || have_partial_symbols ())
963 && from_tty
964 && !query ("Discard symbol table from `%s'? ",
965 symfile_objfile->name))
966 error ("Not confirmed.");
967 free_all_objfiles ();
968
969 /* solib descriptors may have handles to objfiles. Since their
970 storage has just been released, we'd better wipe the solib
971 descriptors as well.
972 */
973 #if defined(SOLIB_RESTART)
974 SOLIB_RESTART ();
975 #endif
976
977 symfile_objfile = NULL;
978 if (from_tty)
979 printf_unfiltered ("No symbol file now.\n");
980 #ifdef HPUXHPPA
981 RESET_HP_UX_GLOBALS ();
982 #endif
983 }
984 else
985 {
986 if ((argv = buildargv (args)) == NULL)
987 {
988 nomem (0);
989 }
990 cleanups = make_cleanup_freeargv (argv);
991 while (*argv != NULL)
992 {
993 if (STREQ (*argv, "-mapped"))
994 flags |= OBJF_MAPPED;
995 else
996 if (STREQ (*argv, "-readnow"))
997 flags |= OBJF_READNOW;
998 else
999 if (**argv == '-')
1000 error ("unknown option `%s'", *argv);
1001 else
1002 {
1003 name = *argv;
1004 symbol_file_add (name, from_tty, NULL, 1, flags);
1005 #ifdef HPUXHPPA
1006 RESET_HP_UX_GLOBALS ();
1007 #endif
1008 /* Getting new symbols may change our opinion about
1009 what is frameless. */
1010 reinit_frame_cache ();
1011
1012 set_initial_language ();
1013 }
1014 argv++;
1015 }
1016
1017 if (name == NULL)
1018 {
1019 error ("no symbol file name was specified");
1020 }
1021 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1022 do_cleanups (cleanups);
1023 }
1024 }
1025
1026 /* Set the initial language.
1027
1028 A better solution would be to record the language in the psymtab when reading
1029 partial symbols, and then use it (if known) to set the language. This would
1030 be a win for formats that encode the language in an easily discoverable place,
1031 such as DWARF. For stabs, we can jump through hoops looking for specially
1032 named symbols or try to intuit the language from the specific type of stabs
1033 we find, but we can't do that until later when we read in full symbols.
1034 FIXME. */
1035
1036 static void
1037 set_initial_language ()
1038 {
1039 struct partial_symtab *pst;
1040 enum language lang = language_unknown;
1041
1042 pst = find_main_psymtab ();
1043 if (pst != NULL)
1044 {
1045 if (pst->filename != NULL)
1046 {
1047 lang = deduce_language_from_filename (pst->filename);
1048 }
1049 if (lang == language_unknown)
1050 {
1051 /* Make C the default language */
1052 lang = language_c;
1053 }
1054 set_language (lang);
1055 expected_language = current_language; /* Don't warn the user */
1056 }
1057 }
1058
1059 /* Open file specified by NAME and hand it off to BFD for preliminary
1060 analysis. Result is a newly initialized bfd *, which includes a newly
1061 malloc'd` copy of NAME (tilde-expanded and made absolute).
1062 In case of trouble, error() is called. */
1063
1064 bfd *
1065 symfile_bfd_open (name)
1066 char *name;
1067 {
1068 bfd *sym_bfd;
1069 int desc;
1070 char *absolute_name;
1071
1072
1073
1074 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1075
1076 /* Look down path for it, allocate 2nd new malloc'd copy. */
1077 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1078 #if defined(__GO32__) || defined(_WIN32)
1079 if (desc < 0)
1080 {
1081 char *exename = alloca (strlen (name) + 5);
1082 strcat (strcpy (exename, name), ".exe");
1083 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1084 0, &absolute_name);
1085 }
1086 #endif
1087 if (desc < 0)
1088 {
1089 make_cleanup (free, name);
1090 perror_with_name (name);
1091 }
1092 free (name); /* Free 1st new malloc'd copy */
1093 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1094 /* It'll be freed in free_objfile(). */
1095
1096 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1097 if (!sym_bfd)
1098 {
1099 close (desc);
1100 make_cleanup (free, name);
1101 error ("\"%s\": can't open to read symbols: %s.", name,
1102 bfd_errmsg (bfd_get_error ()));
1103 }
1104 sym_bfd->cacheable = true;
1105
1106 if (!bfd_check_format (sym_bfd, bfd_object))
1107 {
1108 /* FIXME: should be checking for errors from bfd_close (for one thing,
1109 on error it does not free all the storage associated with the
1110 bfd). */
1111 bfd_close (sym_bfd); /* This also closes desc */
1112 make_cleanup (free, name);
1113 error ("\"%s\": can't read symbols: %s.", name,
1114 bfd_errmsg (bfd_get_error ()));
1115 }
1116 return (sym_bfd);
1117 }
1118
1119 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1120 startup by the _initialize routine in each object file format reader,
1121 to register information about each format the the reader is prepared
1122 to handle. */
1123
1124 void
1125 add_symtab_fns (sf)
1126 struct sym_fns *sf;
1127 {
1128 sf->next = symtab_fns;
1129 symtab_fns = sf;
1130 }
1131
1132
1133 /* Initialize to read symbols from the symbol file sym_bfd. It either
1134 returns or calls error(). The result is an initialized struct sym_fns
1135 in the objfile structure, that contains cached information about the
1136 symbol file. */
1137
1138 static void
1139 find_sym_fns (objfile)
1140 struct objfile *objfile;
1141 {
1142 struct sym_fns *sf;
1143 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1144 char *our_target = bfd_get_target (objfile->obfd);
1145
1146 /* Special kludge for apollo. See dstread.c. */
1147 if (STREQN (our_target, "apollo", 6))
1148 our_flavour = (enum bfd_flavour) -2;
1149
1150 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1151 {
1152 if (our_flavour == sf->sym_flavour)
1153 {
1154 objfile->sf = sf;
1155 return;
1156 }
1157 }
1158 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1159 bfd_get_target (objfile->obfd));
1160 }
1161 \f
1162 /* This function runs the load command of our current target. */
1163
1164 static void
1165 load_command (arg, from_tty)
1166 char *arg;
1167 int from_tty;
1168 {
1169 if (arg == NULL)
1170 arg = get_exec_file (1);
1171 target_load (arg, from_tty);
1172 }
1173
1174 /* This version of "load" should be usable for any target. Currently
1175 it is just used for remote targets, not inftarg.c or core files,
1176 on the theory that only in that case is it useful.
1177
1178 Avoiding xmodem and the like seems like a win (a) because we don't have
1179 to worry about finding it, and (b) On VMS, fork() is very slow and so
1180 we don't want to run a subprocess. On the other hand, I'm not sure how
1181 performance compares. */
1182
1183 static int download_write_size = 512;
1184 static int validate_download = 0;
1185
1186 void
1187 generic_load (char *args, int from_tty)
1188 {
1189 asection *s;
1190 bfd *loadfile_bfd;
1191 time_t start_time, end_time; /* Start and end times of download */
1192 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1193 unsigned long write_count = 0; /* Number of writes needed. */
1194 unsigned long load_offset; /* offset to add to vma for each section */
1195 char *filename;
1196 struct cleanup *old_cleanups;
1197 char *offptr;
1198 CORE_ADDR total_size = 0;
1199 CORE_ADDR total_sent = 0;
1200
1201 /* Parse the input argument - the user can specify a load offset as
1202 a second argument. */
1203 filename = xmalloc (strlen (args) + 1);
1204 old_cleanups = make_cleanup (free, filename);
1205 strcpy (filename, args);
1206 offptr = strchr (filename, ' ');
1207 if (offptr != NULL)
1208 {
1209 char *endptr;
1210 load_offset = strtoul (offptr, &endptr, 0);
1211 if (offptr == endptr)
1212 error ("Invalid download offset:%s\n", offptr);
1213 *offptr = '\0';
1214 }
1215 else
1216 load_offset = 0;
1217
1218 /* Open the file for loading. */
1219 loadfile_bfd = bfd_openr (filename, gnutarget);
1220 if (loadfile_bfd == NULL)
1221 {
1222 perror_with_name (filename);
1223 return;
1224 }
1225
1226 /* FIXME: should be checking for errors from bfd_close (for one thing,
1227 on error it does not free all the storage associated with the
1228 bfd). */
1229 make_cleanup_bfd_close (loadfile_bfd);
1230
1231 if (!bfd_check_format (loadfile_bfd, bfd_object))
1232 {
1233 error ("\"%s\" is not an object file: %s", filename,
1234 bfd_errmsg (bfd_get_error ()));
1235 }
1236
1237 for (s = loadfile_bfd->sections; s; s = s->next)
1238 if (s->flags & SEC_LOAD)
1239 total_size += bfd_get_section_size_before_reloc (s);
1240
1241 start_time = time (NULL);
1242
1243 for (s = loadfile_bfd->sections; s; s = s->next)
1244 {
1245 if (s->flags & SEC_LOAD)
1246 {
1247 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1248 if (size > 0)
1249 {
1250 char *buffer;
1251 struct cleanup *old_chain;
1252 CORE_ADDR lma = s->lma + load_offset;
1253 CORE_ADDR block_size;
1254 int err;
1255 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1256 CORE_ADDR sent;
1257
1258 if (download_write_size > 0 && size > download_write_size)
1259 block_size = download_write_size;
1260 else
1261 block_size = size;
1262
1263 buffer = xmalloc (size);
1264 old_chain = make_cleanup (free, buffer);
1265
1266 /* Is this really necessary? I guess it gives the user something
1267 to look at during a long download. */
1268 #ifdef UI_OUT
1269 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1270 sect_name, paddr_nz (size), paddr_nz (lma));
1271 #else
1272 fprintf_unfiltered (gdb_stdout,
1273 "Loading section %s, size 0x%s lma 0x%s\n",
1274 sect_name, paddr_nz (size), paddr_nz (lma));
1275 #endif
1276
1277 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1278
1279 sent = 0;
1280 do
1281 {
1282 CORE_ADDR len;
1283 CORE_ADDR this_transfer = size - sent;
1284 if (this_transfer >= block_size)
1285 this_transfer = block_size;
1286 len = target_write_memory_partial (lma, buffer,
1287 this_transfer, &err);
1288 if (err)
1289 break;
1290 if (validate_download)
1291 {
1292 /* Broken memories and broken monitors manifest
1293 themselves here when bring new computers to
1294 life. This doubles already slow downloads. */
1295 /* NOTE: cagney/1999-10-18: A more efficient
1296 implementation might add a verify_memory()
1297 method to the target vector and then use
1298 that. remote.c could implement that method
1299 using the ``qCRC'' packet. */
1300 char *check = xmalloc (len);
1301 struct cleanup *verify_cleanups = make_cleanup (free, check);
1302 if (target_read_memory (lma, check, len) != 0)
1303 error ("Download verify read failed at 0x%s",
1304 paddr (lma));
1305 if (memcmp (buffer, check, len) != 0)
1306 error ("Download verify compare failed at 0x%s",
1307 paddr (lma));
1308 do_cleanups (verify_cleanups);
1309 }
1310 data_count += len;
1311 lma += len;
1312 buffer += len;
1313 write_count += 1;
1314 sent += len;
1315 total_sent += len;
1316 if (quit_flag
1317 || (ui_load_progress_hook != NULL
1318 && ui_load_progress_hook (sect_name, sent)))
1319 error ("Canceled the download");
1320
1321 if (show_load_progress != NULL)
1322 show_load_progress (sect_name, sent, size, total_sent, total_size);
1323 }
1324 while (sent < size);
1325
1326 if (err != 0)
1327 error ("Memory access error while loading section %s.", sect_name);
1328
1329 do_cleanups (old_chain);
1330 }
1331 }
1332 }
1333
1334 end_time = time (NULL);
1335 {
1336 CORE_ADDR entry;
1337 entry = bfd_get_start_address (loadfile_bfd);
1338 #ifdef UI_OUT
1339 ui_out_text (uiout, "Start address ");
1340 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1341 ui_out_text (uiout, ", load size ");
1342 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1343 ui_out_text (uiout, "\n");
1344
1345 #else
1346 fprintf_unfiltered (gdb_stdout,
1347 "Start address 0x%s , load size %ld\n",
1348 paddr_nz (entry), data_count);
1349 #endif
1350 /* We were doing this in remote-mips.c, I suspect it is right
1351 for other targets too. */
1352 write_pc (entry);
1353 }
1354
1355 /* FIXME: are we supposed to call symbol_file_add or not? According to
1356 a comment from remote-mips.c (where a call to symbol_file_add was
1357 commented out), making the call confuses GDB if more than one file is
1358 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1359 does. */
1360
1361 print_transfer_performance (gdb_stdout, data_count, write_count,
1362 end_time - start_time);
1363
1364 do_cleanups (old_cleanups);
1365 }
1366
1367 /* Report how fast the transfer went. */
1368
1369 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1370 replaced by print_transfer_performance (with a very different
1371 function signature). */
1372
1373 void
1374 report_transfer_performance (data_count, start_time, end_time)
1375 unsigned long data_count;
1376 time_t start_time, end_time;
1377 {
1378 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1379 }
1380
1381 void
1382 print_transfer_performance (struct ui_file *stream,
1383 unsigned long data_count,
1384 unsigned long write_count,
1385 unsigned long time_count)
1386 {
1387 #ifdef UI_OUT
1388 ui_out_text (uiout, "Transfer rate: ");
1389 if (time_count > 0)
1390 {
1391 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1392 (data_count * 8) / time_count);
1393 ui_out_text (uiout, " bits/sec");
1394 }
1395 else
1396 {
1397 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1398 ui_out_text (uiout, " bits in <1 sec");
1399 }
1400 if (write_count > 0)
1401 {
1402 ui_out_text (uiout, ", ");
1403 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1404 ui_out_text (uiout, " bytes/write");
1405 }
1406 ui_out_text (uiout, ".\n");
1407 #else
1408 fprintf_unfiltered (stream, "Transfer rate: ");
1409 if (time_count > 0)
1410 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1411 else
1412 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1413 if (write_count > 0)
1414 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1415 fprintf_unfiltered (stream, ".\n");
1416 #endif
1417 }
1418
1419 /* This function allows the addition of incrementally linked object files.
1420 It does not modify any state in the target, only in the debugger. */
1421 /* Note: ezannoni 2000-04-13 This function/command used to have a
1422 special case syntax for the rombug target (Rombug is the boot
1423 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1424 rombug case, the user doesn't need to supply a text address,
1425 instead a call to target_link() (in target.c) would supply the
1426 value to use. We are now discontinuing this type of ad hoc syntax. */
1427
1428 /* ARGSUSED */
1429 static void
1430 add_symbol_file_command (args, from_tty)
1431 char *args;
1432 int from_tty;
1433 {
1434 char *filename = NULL;
1435 int flags = OBJF_USERLOADED;
1436 char *arg;
1437 int expecting_option = 0;
1438 int section_index = 0;
1439 int argcnt = 0;
1440 int sec_num = 0;
1441 int i;
1442 int expecting_sec_name = 0;
1443 int expecting_sec_addr = 0;
1444
1445 struct
1446 {
1447 char *name;
1448 char *value;
1449 } sect_opts[SECT_OFF_MAX];
1450
1451 struct section_addr_info section_addrs;
1452 struct cleanup *my_cleanups;
1453
1454 dont_repeat ();
1455
1456 if (args == NULL)
1457 error ("add-symbol-file takes a file name and an address");
1458
1459 /* Make a copy of the string that we can safely write into. */
1460 args = xstrdup (args);
1461
1462 /* Ensure section_addrs is initialized */
1463 memset (&section_addrs, 0, sizeof (section_addrs));
1464
1465 while (*args != '\000')
1466 {
1467 /* Any leading spaces? */
1468 while (isspace (*args))
1469 args++;
1470
1471 /* Point arg to the beginning of the argument. */
1472 arg = args;
1473
1474 /* Move args pointer over the argument. */
1475 while ((*args != '\000') && !isspace (*args))
1476 args++;
1477
1478 /* If there are more arguments, terminate arg and
1479 proceed past it. */
1480 if (*args != '\000')
1481 *args++ = '\000';
1482
1483 /* Now process the argument. */
1484 if (argcnt == 0)
1485 {
1486 /* The first argument is the file name. */
1487 filename = tilde_expand (arg);
1488 my_cleanups = make_cleanup (free, filename);
1489 }
1490 else
1491 if (argcnt == 1)
1492 {
1493 /* The second argument is always the text address at which
1494 to load the program. */
1495 sect_opts[section_index].name = ".text";
1496 sect_opts[section_index].value = arg;
1497 section_index++;
1498 }
1499 else
1500 {
1501 /* It's an option (starting with '-') or it's an argument
1502 to an option */
1503
1504 if (*arg == '-')
1505 {
1506 if (strcmp (arg, "-mapped") == 0)
1507 flags |= OBJF_MAPPED;
1508 else
1509 if (strcmp (arg, "-readnow") == 0)
1510 flags |= OBJF_READNOW;
1511 else
1512 if (strcmp (arg, "-s") == 0)
1513 {
1514 if (section_index >= SECT_OFF_MAX)
1515 error ("Too many sections specified.");
1516 expecting_sec_name = 1;
1517 expecting_sec_addr = 1;
1518 }
1519 }
1520 else
1521 {
1522 if (expecting_sec_name)
1523 {
1524 sect_opts[section_index].name = arg;
1525 expecting_sec_name = 0;
1526 }
1527 else
1528 if (expecting_sec_addr)
1529 {
1530 sect_opts[section_index].value = arg;
1531 expecting_sec_addr = 0;
1532 section_index++;
1533 }
1534 else
1535 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1536 }
1537 }
1538 argcnt++;
1539 }
1540
1541 /* Print the prompt for the query below. And save the arguments into
1542 a sect_addr_info structure to be passed around to other
1543 functions. We have to split this up into separate print
1544 statements because local_hex_string returns a local static
1545 string. */
1546
1547 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1548 for (i = 0; i < section_index; i++)
1549 {
1550 CORE_ADDR addr;
1551 char *val = sect_opts[i].value;
1552 char *sec = sect_opts[i].name;
1553
1554 val = sect_opts[i].value;
1555 if (val[0] == '0' && val[1] == 'x')
1556 addr = strtoul (val+2, NULL, 16);
1557 else
1558 addr = strtoul (val, NULL, 10);
1559
1560 /* Here we store the section offsets in the order they were
1561 entered on the command line. */
1562 section_addrs.other[sec_num].name = sec;
1563 section_addrs.other[sec_num].addr = addr;
1564 printf_filtered ("\t%s_addr = %s\n",
1565 sec,
1566 local_hex_string ((unsigned long)addr));
1567 sec_num++;
1568
1569 /* The object's sections are initialized when a
1570 call is made to build_objfile_section_table (objfile).
1571 This happens in reread_symbols.
1572 At this point, we don't know what file type this is,
1573 so we can't determine what section names are valid. */
1574 }
1575
1576 if (from_tty && (!query ("%s", "")))
1577 error ("Not confirmed.");
1578
1579 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1580
1581 /* Getting new symbols may change our opinion about what is
1582 frameless. */
1583 reinit_frame_cache ();
1584 do_cleanups (my_cleanups);
1585 }
1586 \f
1587 static void
1588 add_shared_symbol_files_command (args, from_tty)
1589 char *args;
1590 int from_tty;
1591 {
1592 #ifdef ADD_SHARED_SYMBOL_FILES
1593 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1594 #else
1595 error ("This command is not available in this configuration of GDB.");
1596 #endif
1597 }
1598 \f
1599 /* Re-read symbols if a symbol-file has changed. */
1600 void
1601 reread_symbols ()
1602 {
1603 struct objfile *objfile;
1604 long new_modtime;
1605 int reread_one = 0;
1606 struct stat new_statbuf;
1607 int res;
1608
1609 /* With the addition of shared libraries, this should be modified,
1610 the load time should be saved in the partial symbol tables, since
1611 different tables may come from different source files. FIXME.
1612 This routine should then walk down each partial symbol table
1613 and see if the symbol table that it originates from has been changed */
1614
1615 for (objfile = object_files; objfile; objfile = objfile->next)
1616 {
1617 if (objfile->obfd)
1618 {
1619 #ifdef IBM6000_TARGET
1620 /* If this object is from a shared library, then you should
1621 stat on the library name, not member name. */
1622
1623 if (objfile->obfd->my_archive)
1624 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1625 else
1626 #endif
1627 res = stat (objfile->name, &new_statbuf);
1628 if (res != 0)
1629 {
1630 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1631 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1632 objfile->name);
1633 continue;
1634 }
1635 new_modtime = new_statbuf.st_mtime;
1636 if (new_modtime != objfile->mtime)
1637 {
1638 struct cleanup *old_cleanups;
1639 struct section_offsets *offsets;
1640 int num_offsets;
1641 char *obfd_filename;
1642
1643 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1644 objfile->name);
1645
1646 /* There are various functions like symbol_file_add,
1647 symfile_bfd_open, syms_from_objfile, etc., which might
1648 appear to do what we want. But they have various other
1649 effects which we *don't* want. So we just do stuff
1650 ourselves. We don't worry about mapped files (for one thing,
1651 any mapped file will be out of date). */
1652
1653 /* If we get an error, blow away this objfile (not sure if
1654 that is the correct response for things like shared
1655 libraries). */
1656 old_cleanups = make_cleanup_free_objfile (objfile);
1657 /* We need to do this whenever any symbols go away. */
1658 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1659
1660 /* Clean up any state BFD has sitting around. We don't need
1661 to close the descriptor but BFD lacks a way of closing the
1662 BFD without closing the descriptor. */
1663 obfd_filename = bfd_get_filename (objfile->obfd);
1664 if (!bfd_close (objfile->obfd))
1665 error ("Can't close BFD for %s: %s", objfile->name,
1666 bfd_errmsg (bfd_get_error ()));
1667 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1668 if (objfile->obfd == NULL)
1669 error ("Can't open %s to read symbols.", objfile->name);
1670 /* bfd_openr sets cacheable to true, which is what we want. */
1671 if (!bfd_check_format (objfile->obfd, bfd_object))
1672 error ("Can't read symbols from %s: %s.", objfile->name,
1673 bfd_errmsg (bfd_get_error ()));
1674
1675 /* Save the offsets, we will nuke them with the rest of the
1676 psymbol_obstack. */
1677 num_offsets = objfile->num_sections;
1678 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1679 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1680
1681 /* Nuke all the state that we will re-read. Much of the following
1682 code which sets things to NULL really is necessary to tell
1683 other parts of GDB that there is nothing currently there. */
1684
1685 /* FIXME: Do we have to free a whole linked list, or is this
1686 enough? */
1687 if (objfile->global_psymbols.list)
1688 mfree (objfile->md, objfile->global_psymbols.list);
1689 memset (&objfile->global_psymbols, 0,
1690 sizeof (objfile->global_psymbols));
1691 if (objfile->static_psymbols.list)
1692 mfree (objfile->md, objfile->static_psymbols.list);
1693 memset (&objfile->static_psymbols, 0,
1694 sizeof (objfile->static_psymbols));
1695
1696 /* Free the obstacks for non-reusable objfiles */
1697 free_bcache (&objfile->psymbol_cache);
1698 obstack_free (&objfile->psymbol_obstack, 0);
1699 obstack_free (&objfile->symbol_obstack, 0);
1700 obstack_free (&objfile->type_obstack, 0);
1701 objfile->sections = NULL;
1702 objfile->symtabs = NULL;
1703 objfile->psymtabs = NULL;
1704 objfile->free_psymtabs = NULL;
1705 objfile->msymbols = NULL;
1706 objfile->minimal_symbol_count = 0;
1707 memset (&objfile->msymbol_hash, 0,
1708 sizeof (objfile->msymbol_hash));
1709 memset (&objfile->msymbol_demangled_hash, 0,
1710 sizeof (objfile->msymbol_demangled_hash));
1711 objfile->fundamental_types = NULL;
1712 if (objfile->sf != NULL)
1713 {
1714 (*objfile->sf->sym_finish) (objfile);
1715 }
1716
1717 /* We never make this a mapped file. */
1718 objfile->md = NULL;
1719 /* obstack_specify_allocation also initializes the obstack so
1720 it is empty. */
1721 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1722 xmalloc, free);
1723 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1724 xmalloc, free);
1725 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1726 xmalloc, free);
1727 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1728 xmalloc, free);
1729 if (build_objfile_section_table (objfile))
1730 {
1731 error ("Can't find the file sections in `%s': %s",
1732 objfile->name, bfd_errmsg (bfd_get_error ()));
1733 }
1734
1735 /* We use the same section offsets as from last time. I'm not
1736 sure whether that is always correct for shared libraries. */
1737 objfile->section_offsets = (struct section_offsets *)
1738 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1739 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1740 objfile->num_sections = num_offsets;
1741
1742 /* What the hell is sym_new_init for, anyway? The concept of
1743 distinguishing between the main file and additional files
1744 in this way seems rather dubious. */
1745 if (objfile == symfile_objfile)
1746 {
1747 (*objfile->sf->sym_new_init) (objfile);
1748 #ifdef HPUXHPPA
1749 RESET_HP_UX_GLOBALS ();
1750 #endif
1751 }
1752
1753 (*objfile->sf->sym_init) (objfile);
1754 clear_complaints (1, 1);
1755 /* The "mainline" parameter is a hideous hack; I think leaving it
1756 zero is OK since dbxread.c also does what it needs to do if
1757 objfile->global_psymbols.size is 0. */
1758 (*objfile->sf->sym_read) (objfile, 0);
1759 if (!have_partial_symbols () && !have_full_symbols ())
1760 {
1761 wrap_here ("");
1762 printf_filtered ("(no debugging symbols found)\n");
1763 wrap_here ("");
1764 }
1765 objfile->flags |= OBJF_SYMS;
1766
1767 /* We're done reading the symbol file; finish off complaints. */
1768 clear_complaints (0, 1);
1769
1770 /* Getting new symbols may change our opinion about what is
1771 frameless. */
1772
1773 reinit_frame_cache ();
1774
1775 /* Discard cleanups as symbol reading was successful. */
1776 discard_cleanups (old_cleanups);
1777
1778 /* If the mtime has changed between the time we set new_modtime
1779 and now, we *want* this to be out of date, so don't call stat
1780 again now. */
1781 objfile->mtime = new_modtime;
1782 reread_one = 1;
1783
1784 /* Call this after reading in a new symbol table to give target
1785 dependant code a crack at the new symbols. For instance, this
1786 could be used to update the values of target-specific symbols GDB
1787 needs to keep track of (such as _sigtramp, or whatever). */
1788
1789 TARGET_SYMFILE_POSTREAD (objfile);
1790 }
1791 }
1792 }
1793
1794 if (reread_one)
1795 clear_symtab_users ();
1796 }
1797 \f
1798
1799
1800 typedef struct
1801 {
1802 char *ext;
1803 enum language lang;
1804 }
1805 filename_language;
1806
1807 static filename_language *filename_language_table;
1808 static int fl_table_size, fl_table_next;
1809
1810 static void
1811 add_filename_language (ext, lang)
1812 char *ext;
1813 enum language lang;
1814 {
1815 if (fl_table_next >= fl_table_size)
1816 {
1817 fl_table_size += 10;
1818 filename_language_table = realloc (filename_language_table,
1819 fl_table_size);
1820 }
1821
1822 filename_language_table[fl_table_next].ext = strsave (ext);
1823 filename_language_table[fl_table_next].lang = lang;
1824 fl_table_next++;
1825 }
1826
1827 static char *ext_args;
1828
1829 static void
1830 set_ext_lang_command (args, from_tty)
1831 char *args;
1832 int from_tty;
1833 {
1834 int i;
1835 char *cp = ext_args;
1836 enum language lang;
1837
1838 /* First arg is filename extension, starting with '.' */
1839 if (*cp != '.')
1840 error ("'%s': Filename extension must begin with '.'", ext_args);
1841
1842 /* Find end of first arg. */
1843 while (*cp && !isspace (*cp))
1844 cp++;
1845
1846 if (*cp == '\0')
1847 error ("'%s': two arguments required -- filename extension and language",
1848 ext_args);
1849
1850 /* Null-terminate first arg */
1851 *cp++ = '\0';
1852
1853 /* Find beginning of second arg, which should be a source language. */
1854 while (*cp && isspace (*cp))
1855 cp++;
1856
1857 if (*cp == '\0')
1858 error ("'%s': two arguments required -- filename extension and language",
1859 ext_args);
1860
1861 /* Lookup the language from among those we know. */
1862 lang = language_enum (cp);
1863
1864 /* Now lookup the filename extension: do we already know it? */
1865 for (i = 0; i < fl_table_next; i++)
1866 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1867 break;
1868
1869 if (i >= fl_table_next)
1870 {
1871 /* new file extension */
1872 add_filename_language (ext_args, lang);
1873 }
1874 else
1875 {
1876 /* redefining a previously known filename extension */
1877
1878 /* if (from_tty) */
1879 /* query ("Really make files of type %s '%s'?", */
1880 /* ext_args, language_str (lang)); */
1881
1882 free (filename_language_table[i].ext);
1883 filename_language_table[i].ext = strsave (ext_args);
1884 filename_language_table[i].lang = lang;
1885 }
1886 }
1887
1888 static void
1889 info_ext_lang_command (args, from_tty)
1890 char *args;
1891 int from_tty;
1892 {
1893 int i;
1894
1895 printf_filtered ("Filename extensions and the languages they represent:");
1896 printf_filtered ("\n\n");
1897 for (i = 0; i < fl_table_next; i++)
1898 printf_filtered ("\t%s\t- %s\n",
1899 filename_language_table[i].ext,
1900 language_str (filename_language_table[i].lang));
1901 }
1902
1903 static void
1904 init_filename_language_table ()
1905 {
1906 if (fl_table_size == 0) /* protect against repetition */
1907 {
1908 fl_table_size = 20;
1909 fl_table_next = 0;
1910 filename_language_table =
1911 xmalloc (fl_table_size * sizeof (*filename_language_table));
1912 add_filename_language (".c", language_c);
1913 add_filename_language (".C", language_cplus);
1914 add_filename_language (".cc", language_cplus);
1915 add_filename_language (".cp", language_cplus);
1916 add_filename_language (".cpp", language_cplus);
1917 add_filename_language (".cxx", language_cplus);
1918 add_filename_language (".c++", language_cplus);
1919 add_filename_language (".java", language_java);
1920 add_filename_language (".class", language_java);
1921 add_filename_language (".ch", language_chill);
1922 add_filename_language (".c186", language_chill);
1923 add_filename_language (".c286", language_chill);
1924 add_filename_language (".f", language_fortran);
1925 add_filename_language (".F", language_fortran);
1926 add_filename_language (".s", language_asm);
1927 add_filename_language (".S", language_asm);
1928 add_filename_language (".pas", language_pascal);
1929 add_filename_language (".p", language_pascal);
1930 add_filename_language (".pp", language_pascal);
1931 }
1932 }
1933
1934 enum language
1935 deduce_language_from_filename (filename)
1936 char *filename;
1937 {
1938 int i;
1939 char *cp;
1940
1941 if (filename != NULL)
1942 if ((cp = strrchr (filename, '.')) != NULL)
1943 for (i = 0; i < fl_table_next; i++)
1944 if (strcmp (cp, filename_language_table[i].ext) == 0)
1945 return filename_language_table[i].lang;
1946
1947 return language_unknown;
1948 }
1949 \f
1950 /* allocate_symtab:
1951
1952 Allocate and partly initialize a new symbol table. Return a pointer
1953 to it. error() if no space.
1954
1955 Caller must set these fields:
1956 LINETABLE(symtab)
1957 symtab->blockvector
1958 symtab->dirname
1959 symtab->free_code
1960 symtab->free_ptr
1961 possibly free_named_symtabs (symtab->filename);
1962 */
1963
1964 struct symtab *
1965 allocate_symtab (filename, objfile)
1966 char *filename;
1967 struct objfile *objfile;
1968 {
1969 register struct symtab *symtab;
1970
1971 symtab = (struct symtab *)
1972 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1973 memset (symtab, 0, sizeof (*symtab));
1974 symtab->filename = obsavestring (filename, strlen (filename),
1975 &objfile->symbol_obstack);
1976 symtab->fullname = NULL;
1977 symtab->language = deduce_language_from_filename (filename);
1978 symtab->debugformat = obsavestring ("unknown", 7,
1979 &objfile->symbol_obstack);
1980
1981 /* Hook it to the objfile it comes from */
1982
1983 symtab->objfile = objfile;
1984 symtab->next = objfile->symtabs;
1985 objfile->symtabs = symtab;
1986
1987 /* FIXME: This should go away. It is only defined for the Z8000,
1988 and the Z8000 definition of this macro doesn't have anything to
1989 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1990 here for convenience. */
1991 #ifdef INIT_EXTRA_SYMTAB_INFO
1992 INIT_EXTRA_SYMTAB_INFO (symtab);
1993 #endif
1994
1995 return (symtab);
1996 }
1997
1998 struct partial_symtab *
1999 allocate_psymtab (filename, objfile)
2000 char *filename;
2001 struct objfile *objfile;
2002 {
2003 struct partial_symtab *psymtab;
2004
2005 if (objfile->free_psymtabs)
2006 {
2007 psymtab = objfile->free_psymtabs;
2008 objfile->free_psymtabs = psymtab->next;
2009 }
2010 else
2011 psymtab = (struct partial_symtab *)
2012 obstack_alloc (&objfile->psymbol_obstack,
2013 sizeof (struct partial_symtab));
2014
2015 memset (psymtab, 0, sizeof (struct partial_symtab));
2016 psymtab->filename = obsavestring (filename, strlen (filename),
2017 &objfile->psymbol_obstack);
2018 psymtab->symtab = NULL;
2019
2020 /* Prepend it to the psymtab list for the objfile it belongs to.
2021 Psymtabs are searched in most recent inserted -> least recent
2022 inserted order. */
2023
2024 psymtab->objfile = objfile;
2025 psymtab->next = objfile->psymtabs;
2026 objfile->psymtabs = psymtab;
2027 #if 0
2028 {
2029 struct partial_symtab **prev_pst;
2030 psymtab->objfile = objfile;
2031 psymtab->next = NULL;
2032 prev_pst = &(objfile->psymtabs);
2033 while ((*prev_pst) != NULL)
2034 prev_pst = &((*prev_pst)->next);
2035 (*prev_pst) = psymtab;
2036 }
2037 #endif
2038
2039 return (psymtab);
2040 }
2041
2042 void
2043 discard_psymtab (pst)
2044 struct partial_symtab *pst;
2045 {
2046 struct partial_symtab **prev_pst;
2047
2048 /* From dbxread.c:
2049 Empty psymtabs happen as a result of header files which don't
2050 have any symbols in them. There can be a lot of them. But this
2051 check is wrong, in that a psymtab with N_SLINE entries but
2052 nothing else is not empty, but we don't realize that. Fixing
2053 that without slowing things down might be tricky. */
2054
2055 /* First, snip it out of the psymtab chain */
2056
2057 prev_pst = &(pst->objfile->psymtabs);
2058 while ((*prev_pst) != pst)
2059 prev_pst = &((*prev_pst)->next);
2060 (*prev_pst) = pst->next;
2061
2062 /* Next, put it on a free list for recycling */
2063
2064 pst->next = pst->objfile->free_psymtabs;
2065 pst->objfile->free_psymtabs = pst;
2066 }
2067 \f
2068
2069 /* Reset all data structures in gdb which may contain references to symbol
2070 table data. */
2071
2072 void
2073 clear_symtab_users ()
2074 {
2075 /* Someday, we should do better than this, by only blowing away
2076 the things that really need to be blown. */
2077 clear_value_history ();
2078 clear_displays ();
2079 clear_internalvars ();
2080 breakpoint_re_set ();
2081 set_default_breakpoint (0, 0, 0, 0);
2082 current_source_symtab = 0;
2083 current_source_line = 0;
2084 clear_pc_function_cache ();
2085 if (target_new_objfile_hook)
2086 target_new_objfile_hook (NULL);
2087 }
2088
2089 static void
2090 clear_symtab_users_cleanup (void *ignore)
2091 {
2092 clear_symtab_users ();
2093 }
2094
2095 /* clear_symtab_users_once:
2096
2097 This function is run after symbol reading, or from a cleanup.
2098 If an old symbol table was obsoleted, the old symbol table
2099 has been blown away, but the other GDB data structures that may
2100 reference it have not yet been cleared or re-directed. (The old
2101 symtab was zapped, and the cleanup queued, in free_named_symtab()
2102 below.)
2103
2104 This function can be queued N times as a cleanup, or called
2105 directly; it will do all the work the first time, and then will be a
2106 no-op until the next time it is queued. This works by bumping a
2107 counter at queueing time. Much later when the cleanup is run, or at
2108 the end of symbol processing (in case the cleanup is discarded), if
2109 the queued count is greater than the "done-count", we do the work
2110 and set the done-count to the queued count. If the queued count is
2111 less than or equal to the done-count, we just ignore the call. This
2112 is needed because reading a single .o file will often replace many
2113 symtabs (one per .h file, for example), and we don't want to reset
2114 the breakpoints N times in the user's face.
2115
2116 The reason we both queue a cleanup, and call it directly after symbol
2117 reading, is because the cleanup protects us in case of errors, but is
2118 discarded if symbol reading is successful. */
2119
2120 #if 0
2121 /* FIXME: As free_named_symtabs is currently a big noop this function
2122 is no longer needed. */
2123 static void clear_symtab_users_once (void);
2124
2125 static int clear_symtab_users_queued;
2126 static int clear_symtab_users_done;
2127
2128 static void
2129 clear_symtab_users_once ()
2130 {
2131 /* Enforce once-per-`do_cleanups'-semantics */
2132 if (clear_symtab_users_queued <= clear_symtab_users_done)
2133 return;
2134 clear_symtab_users_done = clear_symtab_users_queued;
2135
2136 clear_symtab_users ();
2137 }
2138 #endif
2139
2140 /* Delete the specified psymtab, and any others that reference it. */
2141
2142 static void
2143 cashier_psymtab (pst)
2144 struct partial_symtab *pst;
2145 {
2146 struct partial_symtab *ps, *pprev = NULL;
2147 int i;
2148
2149 /* Find its previous psymtab in the chain */
2150 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2151 {
2152 if (ps == pst)
2153 break;
2154 pprev = ps;
2155 }
2156
2157 if (ps)
2158 {
2159 /* Unhook it from the chain. */
2160 if (ps == pst->objfile->psymtabs)
2161 pst->objfile->psymtabs = ps->next;
2162 else
2163 pprev->next = ps->next;
2164
2165 /* FIXME, we can't conveniently deallocate the entries in the
2166 partial_symbol lists (global_psymbols/static_psymbols) that
2167 this psymtab points to. These just take up space until all
2168 the psymtabs are reclaimed. Ditto the dependencies list and
2169 filename, which are all in the psymbol_obstack. */
2170
2171 /* We need to cashier any psymtab that has this one as a dependency... */
2172 again:
2173 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2174 {
2175 for (i = 0; i < ps->number_of_dependencies; i++)
2176 {
2177 if (ps->dependencies[i] == pst)
2178 {
2179 cashier_psymtab (ps);
2180 goto again; /* Must restart, chain has been munged. */
2181 }
2182 }
2183 }
2184 }
2185 }
2186
2187 /* If a symtab or psymtab for filename NAME is found, free it along
2188 with any dependent breakpoints, displays, etc.
2189 Used when loading new versions of object modules with the "add-file"
2190 command. This is only called on the top-level symtab or psymtab's name;
2191 it is not called for subsidiary files such as .h files.
2192
2193 Return value is 1 if we blew away the environment, 0 if not.
2194 FIXME. The return valu appears to never be used.
2195
2196 FIXME. I think this is not the best way to do this. We should
2197 work on being gentler to the environment while still cleaning up
2198 all stray pointers into the freed symtab. */
2199
2200 int
2201 free_named_symtabs (name)
2202 char *name;
2203 {
2204 #if 0
2205 /* FIXME: With the new method of each objfile having it's own
2206 psymtab list, this function needs serious rethinking. In particular,
2207 why was it ever necessary to toss psymtabs with specific compilation
2208 unit filenames, as opposed to all psymtabs from a particular symbol
2209 file? -- fnf
2210 Well, the answer is that some systems permit reloading of particular
2211 compilation units. We want to blow away any old info about these
2212 compilation units, regardless of which objfiles they arrived in. --gnu. */
2213
2214 register struct symtab *s;
2215 register struct symtab *prev;
2216 register struct partial_symtab *ps;
2217 struct blockvector *bv;
2218 int blewit = 0;
2219
2220 /* We only wack things if the symbol-reload switch is set. */
2221 if (!symbol_reloading)
2222 return 0;
2223
2224 /* Some symbol formats have trouble providing file names... */
2225 if (name == 0 || *name == '\0')
2226 return 0;
2227
2228 /* Look for a psymtab with the specified name. */
2229
2230 again2:
2231 for (ps = partial_symtab_list; ps; ps = ps->next)
2232 {
2233 if (STREQ (name, ps->filename))
2234 {
2235 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2236 goto again2; /* Must restart, chain has been munged */
2237 }
2238 }
2239
2240 /* Look for a symtab with the specified name. */
2241
2242 for (s = symtab_list; s; s = s->next)
2243 {
2244 if (STREQ (name, s->filename))
2245 break;
2246 prev = s;
2247 }
2248
2249 if (s)
2250 {
2251 if (s == symtab_list)
2252 symtab_list = s->next;
2253 else
2254 prev->next = s->next;
2255
2256 /* For now, queue a delete for all breakpoints, displays, etc., whether
2257 or not they depend on the symtab being freed. This should be
2258 changed so that only those data structures affected are deleted. */
2259
2260 /* But don't delete anything if the symtab is empty.
2261 This test is necessary due to a bug in "dbxread.c" that
2262 causes empty symtabs to be created for N_SO symbols that
2263 contain the pathname of the object file. (This problem
2264 has been fixed in GDB 3.9x). */
2265
2266 bv = BLOCKVECTOR (s);
2267 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2268 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2269 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2270 {
2271 complain (&oldsyms_complaint, name);
2272
2273 clear_symtab_users_queued++;
2274 make_cleanup (clear_symtab_users_once, 0);
2275 blewit = 1;
2276 }
2277 else
2278 {
2279 complain (&empty_symtab_complaint, name);
2280 }
2281
2282 free_symtab (s);
2283 }
2284 else
2285 {
2286 /* It is still possible that some breakpoints will be affected
2287 even though no symtab was found, since the file might have
2288 been compiled without debugging, and hence not be associated
2289 with a symtab. In order to handle this correctly, we would need
2290 to keep a list of text address ranges for undebuggable files.
2291 For now, we do nothing, since this is a fairly obscure case. */
2292 ;
2293 }
2294
2295 /* FIXME, what about the minimal symbol table? */
2296 return blewit;
2297 #else
2298 return (0);
2299 #endif
2300 }
2301 \f
2302 /* Allocate and partially fill a partial symtab. It will be
2303 completely filled at the end of the symbol list.
2304
2305 FILENAME is the name of the symbol-file we are reading from. */
2306
2307 struct partial_symtab *
2308 start_psymtab_common (objfile, section_offsets,
2309 filename, textlow, global_syms, static_syms)
2310 struct objfile *objfile;
2311 struct section_offsets *section_offsets;
2312 char *filename;
2313 CORE_ADDR textlow;
2314 struct partial_symbol **global_syms;
2315 struct partial_symbol **static_syms;
2316 {
2317 struct partial_symtab *psymtab;
2318
2319 psymtab = allocate_psymtab (filename, objfile);
2320 psymtab->section_offsets = section_offsets;
2321 psymtab->textlow = textlow;
2322 psymtab->texthigh = psymtab->textlow; /* default */
2323 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2324 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2325 return (psymtab);
2326 }
2327 \f
2328 /* Add a symbol with a long value to a psymtab.
2329 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2330
2331 void
2332 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2333 language, objfile)
2334 char *name;
2335 int namelength;
2336 namespace_enum namespace;
2337 enum address_class class;
2338 struct psymbol_allocation_list *list;
2339 long val; /* Value as a long */
2340 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2341 enum language language;
2342 struct objfile *objfile;
2343 {
2344 register struct partial_symbol *psym;
2345 char *buf = alloca (namelength + 1);
2346 /* psymbol is static so that there will be no uninitialized gaps in the
2347 structure which might contain random data, causing cache misses in
2348 bcache. */
2349 static struct partial_symbol psymbol;
2350
2351 /* Create local copy of the partial symbol */
2352 memcpy (buf, name, namelength);
2353 buf[namelength] = '\0';
2354 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2355 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2356 if (val != 0)
2357 {
2358 SYMBOL_VALUE (&psymbol) = val;
2359 }
2360 else
2361 {
2362 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2363 }
2364 SYMBOL_SECTION (&psymbol) = 0;
2365 SYMBOL_LANGUAGE (&psymbol) = language;
2366 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2367 PSYMBOL_CLASS (&psymbol) = class;
2368 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2369
2370 /* Stash the partial symbol away in the cache */
2371 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2372
2373 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2374 if (list->next >= list->list + list->size)
2375 {
2376 extend_psymbol_list (list, objfile);
2377 }
2378 *list->next++ = psym;
2379 OBJSTAT (objfile, n_psyms++);
2380 }
2381
2382 /* Add a symbol with a long value to a psymtab. This differs from
2383 * add_psymbol_to_list above in taking both a mangled and a demangled
2384 * name. */
2385
2386 void
2387 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2388 namespace, class, list, val, coreaddr, language, objfile)
2389 char *name;
2390 int namelength;
2391 char *dem_name;
2392 int dem_namelength;
2393 namespace_enum namespace;
2394 enum address_class class;
2395 struct psymbol_allocation_list *list;
2396 long val; /* Value as a long */
2397 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2398 enum language language;
2399 struct objfile *objfile;
2400 {
2401 register struct partial_symbol *psym;
2402 char *buf = alloca (namelength + 1);
2403 /* psymbol is static so that there will be no uninitialized gaps in the
2404 structure which might contain random data, causing cache misses in
2405 bcache. */
2406 static struct partial_symbol psymbol;
2407
2408 /* Create local copy of the partial symbol */
2409
2410 memcpy (buf, name, namelength);
2411 buf[namelength] = '\0';
2412 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2413
2414 buf = alloca (dem_namelength + 1);
2415 memcpy (buf, dem_name, dem_namelength);
2416 buf[dem_namelength] = '\0';
2417
2418 switch (language)
2419 {
2420 case language_c:
2421 case language_cplus:
2422 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2423 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2424 break;
2425 case language_chill:
2426 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2427 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2428
2429 /* FIXME What should be done for the default case? Ignoring for now. */
2430 }
2431
2432 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2433 if (val != 0)
2434 {
2435 SYMBOL_VALUE (&psymbol) = val;
2436 }
2437 else
2438 {
2439 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2440 }
2441 SYMBOL_SECTION (&psymbol) = 0;
2442 SYMBOL_LANGUAGE (&psymbol) = language;
2443 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2444 PSYMBOL_CLASS (&psymbol) = class;
2445 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2446
2447 /* Stash the partial symbol away in the cache */
2448 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2449
2450 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2451 if (list->next >= list->list + list->size)
2452 {
2453 extend_psymbol_list (list, objfile);
2454 }
2455 *list->next++ = psym;
2456 OBJSTAT (objfile, n_psyms++);
2457 }
2458
2459 /* Initialize storage for partial symbols. */
2460
2461 void
2462 init_psymbol_list (objfile, total_symbols)
2463 struct objfile *objfile;
2464 int total_symbols;
2465 {
2466 /* Free any previously allocated psymbol lists. */
2467
2468 if (objfile->global_psymbols.list)
2469 {
2470 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2471 }
2472 if (objfile->static_psymbols.list)
2473 {
2474 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2475 }
2476
2477 /* Current best guess is that approximately a twentieth
2478 of the total symbols (in a debugging file) are global or static
2479 oriented symbols */
2480
2481 objfile->global_psymbols.size = total_symbols / 10;
2482 objfile->static_psymbols.size = total_symbols / 10;
2483
2484 if (objfile->global_psymbols.size > 0)
2485 {
2486 objfile->global_psymbols.next =
2487 objfile->global_psymbols.list = (struct partial_symbol **)
2488 xmmalloc (objfile->md, (objfile->global_psymbols.size
2489 * sizeof (struct partial_symbol *)));
2490 }
2491 if (objfile->static_psymbols.size > 0)
2492 {
2493 objfile->static_psymbols.next =
2494 objfile->static_psymbols.list = (struct partial_symbol **)
2495 xmmalloc (objfile->md, (objfile->static_psymbols.size
2496 * sizeof (struct partial_symbol *)));
2497 }
2498 }
2499
2500 /* OVERLAYS:
2501 The following code implements an abstraction for debugging overlay sections.
2502
2503 The target model is as follows:
2504 1) The gnu linker will permit multiple sections to be mapped into the
2505 same VMA, each with its own unique LMA (or load address).
2506 2) It is assumed that some runtime mechanism exists for mapping the
2507 sections, one by one, from the load address into the VMA address.
2508 3) This code provides a mechanism for gdb to keep track of which
2509 sections should be considered to be mapped from the VMA to the LMA.
2510 This information is used for symbol lookup, and memory read/write.
2511 For instance, if a section has been mapped then its contents
2512 should be read from the VMA, otherwise from the LMA.
2513
2514 Two levels of debugger support for overlays are available. One is
2515 "manual", in which the debugger relies on the user to tell it which
2516 overlays are currently mapped. This level of support is
2517 implemented entirely in the core debugger, and the information about
2518 whether a section is mapped is kept in the objfile->obj_section table.
2519
2520 The second level of support is "automatic", and is only available if
2521 the target-specific code provides functionality to read the target's
2522 overlay mapping table, and translate its contents for the debugger
2523 (by updating the mapped state information in the obj_section tables).
2524
2525 The interface is as follows:
2526 User commands:
2527 overlay map <name> -- tell gdb to consider this section mapped
2528 overlay unmap <name> -- tell gdb to consider this section unmapped
2529 overlay list -- list the sections that GDB thinks are mapped
2530 overlay read-target -- get the target's state of what's mapped
2531 overlay off/manual/auto -- set overlay debugging state
2532 Functional interface:
2533 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2534 section, return that section.
2535 find_pc_overlay(pc): find any overlay section that contains
2536 the pc, either in its VMA or its LMA
2537 overlay_is_mapped(sect): true if overlay is marked as mapped
2538 section_is_overlay(sect): true if section's VMA != LMA
2539 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2540 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2541 overlay_mapped_address(...): map an address from section's LMA to VMA
2542 overlay_unmapped_address(...): map an address from section's VMA to LMA
2543 symbol_overlayed_address(...): Return a "current" address for symbol:
2544 either in VMA or LMA depending on whether
2545 the symbol's section is currently mapped
2546 */
2547
2548 /* Overlay debugging state: */
2549
2550 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2551 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2552
2553 /* Target vector for refreshing overlay mapped state */
2554 static void simple_overlay_update (struct obj_section *);
2555 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2556
2557 /* Function: section_is_overlay (SECTION)
2558 Returns true if SECTION has VMA not equal to LMA, ie.
2559 SECTION is loaded at an address different from where it will "run". */
2560
2561 int
2562 section_is_overlay (section)
2563 asection *section;
2564 {
2565 if (overlay_debugging)
2566 if (section && section->lma != 0 &&
2567 section->vma != section->lma)
2568 return 1;
2569
2570 return 0;
2571 }
2572
2573 /* Function: overlay_invalidate_all (void)
2574 Invalidate the mapped state of all overlay sections (mark it as stale). */
2575
2576 static void
2577 overlay_invalidate_all ()
2578 {
2579 struct objfile *objfile;
2580 struct obj_section *sect;
2581
2582 ALL_OBJSECTIONS (objfile, sect)
2583 if (section_is_overlay (sect->the_bfd_section))
2584 sect->ovly_mapped = -1;
2585 }
2586
2587 /* Function: overlay_is_mapped (SECTION)
2588 Returns true if section is an overlay, and is currently mapped.
2589 Private: public access is thru function section_is_mapped.
2590
2591 Access to the ovly_mapped flag is restricted to this function, so
2592 that we can do automatic update. If the global flag
2593 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2594 overlay_invalidate_all. If the mapped state of the particular
2595 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2596
2597 static int
2598 overlay_is_mapped (osect)
2599 struct obj_section *osect;
2600 {
2601 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2602 return 0;
2603
2604 switch (overlay_debugging)
2605 {
2606 default:
2607 case 0:
2608 return 0; /* overlay debugging off */
2609 case -1: /* overlay debugging automatic */
2610 /* Unles there is a target_overlay_update function,
2611 there's really nothing useful to do here (can't really go auto) */
2612 if (target_overlay_update)
2613 {
2614 if (overlay_cache_invalid)
2615 {
2616 overlay_invalidate_all ();
2617 overlay_cache_invalid = 0;
2618 }
2619 if (osect->ovly_mapped == -1)
2620 (*target_overlay_update) (osect);
2621 }
2622 /* fall thru to manual case */
2623 case 1: /* overlay debugging manual */
2624 return osect->ovly_mapped == 1;
2625 }
2626 }
2627
2628 /* Function: section_is_mapped
2629 Returns true if section is an overlay, and is currently mapped. */
2630
2631 int
2632 section_is_mapped (section)
2633 asection *section;
2634 {
2635 struct objfile *objfile;
2636 struct obj_section *osect;
2637
2638 if (overlay_debugging)
2639 if (section && section_is_overlay (section))
2640 ALL_OBJSECTIONS (objfile, osect)
2641 if (osect->the_bfd_section == section)
2642 return overlay_is_mapped (osect);
2643
2644 return 0;
2645 }
2646
2647 /* Function: pc_in_unmapped_range
2648 If PC falls into the lma range of SECTION, return true, else false. */
2649
2650 CORE_ADDR
2651 pc_in_unmapped_range (pc, section)
2652 CORE_ADDR pc;
2653 asection *section;
2654 {
2655 int size;
2656
2657 if (overlay_debugging)
2658 if (section && section_is_overlay (section))
2659 {
2660 size = bfd_get_section_size_before_reloc (section);
2661 if (section->lma <= pc && pc < section->lma + size)
2662 return 1;
2663 }
2664 return 0;
2665 }
2666
2667 /* Function: pc_in_mapped_range
2668 If PC falls into the vma range of SECTION, return true, else false. */
2669
2670 CORE_ADDR
2671 pc_in_mapped_range (pc, section)
2672 CORE_ADDR pc;
2673 asection *section;
2674 {
2675 int size;
2676
2677 if (overlay_debugging)
2678 if (section && section_is_overlay (section))
2679 {
2680 size = bfd_get_section_size_before_reloc (section);
2681 if (section->vma <= pc && pc < section->vma + size)
2682 return 1;
2683 }
2684 return 0;
2685 }
2686
2687 /* Function: overlay_unmapped_address (PC, SECTION)
2688 Returns the address corresponding to PC in the unmapped (load) range.
2689 May be the same as PC. */
2690
2691 CORE_ADDR
2692 overlay_unmapped_address (pc, section)
2693 CORE_ADDR pc;
2694 asection *section;
2695 {
2696 if (overlay_debugging)
2697 if (section && section_is_overlay (section) &&
2698 pc_in_mapped_range (pc, section))
2699 return pc + section->lma - section->vma;
2700
2701 return pc;
2702 }
2703
2704 /* Function: overlay_mapped_address (PC, SECTION)
2705 Returns the address corresponding to PC in the mapped (runtime) range.
2706 May be the same as PC. */
2707
2708 CORE_ADDR
2709 overlay_mapped_address (pc, section)
2710 CORE_ADDR pc;
2711 asection *section;
2712 {
2713 if (overlay_debugging)
2714 if (section && section_is_overlay (section) &&
2715 pc_in_unmapped_range (pc, section))
2716 return pc + section->vma - section->lma;
2717
2718 return pc;
2719 }
2720
2721
2722 /* Function: symbol_overlayed_address
2723 Return one of two addresses (relative to the VMA or to the LMA),
2724 depending on whether the section is mapped or not. */
2725
2726 CORE_ADDR
2727 symbol_overlayed_address (address, section)
2728 CORE_ADDR address;
2729 asection *section;
2730 {
2731 if (overlay_debugging)
2732 {
2733 /* If the symbol has no section, just return its regular address. */
2734 if (section == 0)
2735 return address;
2736 /* If the symbol's section is not an overlay, just return its address */
2737 if (!section_is_overlay (section))
2738 return address;
2739 /* If the symbol's section is mapped, just return its address */
2740 if (section_is_mapped (section))
2741 return address;
2742 /*
2743 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2744 * then return its LOADED address rather than its vma address!!
2745 */
2746 return overlay_unmapped_address (address, section);
2747 }
2748 return address;
2749 }
2750
2751 /* Function: find_pc_overlay (PC)
2752 Return the best-match overlay section for PC:
2753 If PC matches a mapped overlay section's VMA, return that section.
2754 Else if PC matches an unmapped section's VMA, return that section.
2755 Else if PC matches an unmapped section's LMA, return that section. */
2756
2757 asection *
2758 find_pc_overlay (pc)
2759 CORE_ADDR pc;
2760 {
2761 struct objfile *objfile;
2762 struct obj_section *osect, *best_match = NULL;
2763
2764 if (overlay_debugging)
2765 ALL_OBJSECTIONS (objfile, osect)
2766 if (section_is_overlay (osect->the_bfd_section))
2767 {
2768 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2769 {
2770 if (overlay_is_mapped (osect))
2771 return osect->the_bfd_section;
2772 else
2773 best_match = osect;
2774 }
2775 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2776 best_match = osect;
2777 }
2778 return best_match ? best_match->the_bfd_section : NULL;
2779 }
2780
2781 /* Function: find_pc_mapped_section (PC)
2782 If PC falls into the VMA address range of an overlay section that is
2783 currently marked as MAPPED, return that section. Else return NULL. */
2784
2785 asection *
2786 find_pc_mapped_section (pc)
2787 CORE_ADDR pc;
2788 {
2789 struct objfile *objfile;
2790 struct obj_section *osect;
2791
2792 if (overlay_debugging)
2793 ALL_OBJSECTIONS (objfile, osect)
2794 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2795 overlay_is_mapped (osect))
2796 return osect->the_bfd_section;
2797
2798 return NULL;
2799 }
2800
2801 /* Function: list_overlays_command
2802 Print a list of mapped sections and their PC ranges */
2803
2804 void
2805 list_overlays_command (args, from_tty)
2806 char *args;
2807 int from_tty;
2808 {
2809 int nmapped = 0;
2810 struct objfile *objfile;
2811 struct obj_section *osect;
2812
2813 if (overlay_debugging)
2814 ALL_OBJSECTIONS (objfile, osect)
2815 if (overlay_is_mapped (osect))
2816 {
2817 const char *name;
2818 bfd_vma lma, vma;
2819 int size;
2820
2821 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2822 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2823 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2824 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2825
2826 printf_filtered ("Section %s, loaded at ", name);
2827 print_address_numeric (lma, 1, gdb_stdout);
2828 puts_filtered (" - ");
2829 print_address_numeric (lma + size, 1, gdb_stdout);
2830 printf_filtered (", mapped at ");
2831 print_address_numeric (vma, 1, gdb_stdout);
2832 puts_filtered (" - ");
2833 print_address_numeric (vma + size, 1, gdb_stdout);
2834 puts_filtered ("\n");
2835
2836 nmapped++;
2837 }
2838 if (nmapped == 0)
2839 printf_filtered ("No sections are mapped.\n");
2840 }
2841
2842 /* Function: map_overlay_command
2843 Mark the named section as mapped (ie. residing at its VMA address). */
2844
2845 void
2846 map_overlay_command (args, from_tty)
2847 char *args;
2848 int from_tty;
2849 {
2850 struct objfile *objfile, *objfile2;
2851 struct obj_section *sec, *sec2;
2852 asection *bfdsec;
2853
2854 if (!overlay_debugging)
2855 error ("\
2856 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2857 the 'overlay manual' command.");
2858
2859 if (args == 0 || *args == 0)
2860 error ("Argument required: name of an overlay section");
2861
2862 /* First, find a section matching the user supplied argument */
2863 ALL_OBJSECTIONS (objfile, sec)
2864 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2865 {
2866 /* Now, check to see if the section is an overlay. */
2867 bfdsec = sec->the_bfd_section;
2868 if (!section_is_overlay (bfdsec))
2869 continue; /* not an overlay section */
2870
2871 /* Mark the overlay as "mapped" */
2872 sec->ovly_mapped = 1;
2873
2874 /* Next, make a pass and unmap any sections that are
2875 overlapped by this new section: */
2876 ALL_OBJSECTIONS (objfile2, sec2)
2877 if (sec2->ovly_mapped &&
2878 sec != sec2 &&
2879 sec->the_bfd_section != sec2->the_bfd_section &&
2880 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2881 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2882 {
2883 if (info_verbose)
2884 printf_filtered ("Note: section %s unmapped by overlap\n",
2885 bfd_section_name (objfile->obfd,
2886 sec2->the_bfd_section));
2887 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2888 }
2889 return;
2890 }
2891 error ("No overlay section called %s", args);
2892 }
2893
2894 /* Function: unmap_overlay_command
2895 Mark the overlay section as unmapped
2896 (ie. resident in its LMA address range, rather than the VMA range). */
2897
2898 void
2899 unmap_overlay_command (args, from_tty)
2900 char *args;
2901 int from_tty;
2902 {
2903 struct objfile *objfile;
2904 struct obj_section *sec;
2905
2906 if (!overlay_debugging)
2907 error ("\
2908 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2909 the 'overlay manual' command.");
2910
2911 if (args == 0 || *args == 0)
2912 error ("Argument required: name of an overlay section");
2913
2914 /* First, find a section matching the user supplied argument */
2915 ALL_OBJSECTIONS (objfile, sec)
2916 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2917 {
2918 if (!sec->ovly_mapped)
2919 error ("Section %s is not mapped", args);
2920 sec->ovly_mapped = 0;
2921 return;
2922 }
2923 error ("No overlay section called %s", args);
2924 }
2925
2926 /* Function: overlay_auto_command
2927 A utility command to turn on overlay debugging.
2928 Possibly this should be done via a set/show command. */
2929
2930 static void
2931 overlay_auto_command (args, from_tty)
2932 char *args;
2933 int from_tty;
2934 {
2935 overlay_debugging = -1;
2936 if (info_verbose)
2937 printf_filtered ("Automatic overlay debugging enabled.");
2938 }
2939
2940 /* Function: overlay_manual_command
2941 A utility command to turn on overlay debugging.
2942 Possibly this should be done via a set/show command. */
2943
2944 static void
2945 overlay_manual_command (args, from_tty)
2946 char *args;
2947 int from_tty;
2948 {
2949 overlay_debugging = 1;
2950 if (info_verbose)
2951 printf_filtered ("Overlay debugging enabled.");
2952 }
2953
2954 /* Function: overlay_off_command
2955 A utility command to turn on overlay debugging.
2956 Possibly this should be done via a set/show command. */
2957
2958 static void
2959 overlay_off_command (args, from_tty)
2960 char *args;
2961 int from_tty;
2962 {
2963 overlay_debugging = 0;
2964 if (info_verbose)
2965 printf_filtered ("Overlay debugging disabled.");
2966 }
2967
2968 static void
2969 overlay_load_command (args, from_tty)
2970 char *args;
2971 int from_tty;
2972 {
2973 if (target_overlay_update)
2974 (*target_overlay_update) (NULL);
2975 else
2976 error ("This target does not know how to read its overlay state.");
2977 }
2978
2979 /* Function: overlay_command
2980 A place-holder for a mis-typed command */
2981
2982 /* Command list chain containing all defined "overlay" subcommands. */
2983 struct cmd_list_element *overlaylist;
2984
2985 static void
2986 overlay_command (args, from_tty)
2987 char *args;
2988 int from_tty;
2989 {
2990 printf_unfiltered
2991 ("\"overlay\" must be followed by the name of an overlay command.\n");
2992 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2993 }
2994
2995
2996 /* Target Overlays for the "Simplest" overlay manager:
2997
2998 This is GDB's default target overlay layer. It works with the
2999 minimal overlay manager supplied as an example by Cygnus. The
3000 entry point is via a function pointer "target_overlay_update",
3001 so targets that use a different runtime overlay manager can
3002 substitute their own overlay_update function and take over the
3003 function pointer.
3004
3005 The overlay_update function pokes around in the target's data structures
3006 to see what overlays are mapped, and updates GDB's overlay mapping with
3007 this information.
3008
3009 In this simple implementation, the target data structures are as follows:
3010 unsigned _novlys; /# number of overlay sections #/
3011 unsigned _ovly_table[_novlys][4] = {
3012 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3013 {..., ..., ..., ...},
3014 }
3015 unsigned _novly_regions; /# number of overlay regions #/
3016 unsigned _ovly_region_table[_novly_regions][3] = {
3017 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3018 {..., ..., ...},
3019 }
3020 These functions will attempt to update GDB's mappedness state in the
3021 symbol section table, based on the target's mappedness state.
3022
3023 To do this, we keep a cached copy of the target's _ovly_table, and
3024 attempt to detect when the cached copy is invalidated. The main
3025 entry point is "simple_overlay_update(SECT), which looks up SECT in
3026 the cached table and re-reads only the entry for that section from
3027 the target (whenever possible).
3028 */
3029
3030 /* Cached, dynamically allocated copies of the target data structures: */
3031 static unsigned (*cache_ovly_table)[4] = 0;
3032 #if 0
3033 static unsigned (*cache_ovly_region_table)[3] = 0;
3034 #endif
3035 static unsigned cache_novlys = 0;
3036 #if 0
3037 static unsigned cache_novly_regions = 0;
3038 #endif
3039 static CORE_ADDR cache_ovly_table_base = 0;
3040 #if 0
3041 static CORE_ADDR cache_ovly_region_table_base = 0;
3042 #endif
3043 enum ovly_index
3044 {
3045 VMA, SIZE, LMA, MAPPED
3046 };
3047 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3048
3049 /* Throw away the cached copy of _ovly_table */
3050 static void
3051 simple_free_overlay_table ()
3052 {
3053 if (cache_ovly_table)
3054 free (cache_ovly_table);
3055 cache_novlys = 0;
3056 cache_ovly_table = NULL;
3057 cache_ovly_table_base = 0;
3058 }
3059
3060 #if 0
3061 /* Throw away the cached copy of _ovly_region_table */
3062 static void
3063 simple_free_overlay_region_table ()
3064 {
3065 if (cache_ovly_region_table)
3066 free (cache_ovly_region_table);
3067 cache_novly_regions = 0;
3068 cache_ovly_region_table = NULL;
3069 cache_ovly_region_table_base = 0;
3070 }
3071 #endif
3072
3073 /* Read an array of ints from the target into a local buffer.
3074 Convert to host order. int LEN is number of ints */
3075 static void
3076 read_target_long_array (memaddr, myaddr, len)
3077 CORE_ADDR memaddr;
3078 unsigned int *myaddr;
3079 int len;
3080 {
3081 char *buf = alloca (len * TARGET_LONG_BYTES);
3082 int i;
3083
3084 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3085 for (i = 0; i < len; i++)
3086 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3087 TARGET_LONG_BYTES);
3088 }
3089
3090 /* Find and grab a copy of the target _ovly_table
3091 (and _novlys, which is needed for the table's size) */
3092 static int
3093 simple_read_overlay_table ()
3094 {
3095 struct minimal_symbol *msym;
3096
3097 simple_free_overlay_table ();
3098 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3099 if (msym != NULL)
3100 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3101 else
3102 return 0; /* failure */
3103 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3104 if (cache_ovly_table != NULL)
3105 {
3106 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3107 if (msym != NULL)
3108 {
3109 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3110 read_target_long_array (cache_ovly_table_base,
3111 (int *) cache_ovly_table,
3112 cache_novlys * 4);
3113 }
3114 else
3115 return 0; /* failure */
3116 }
3117 else
3118 return 0; /* failure */
3119 return 1; /* SUCCESS */
3120 }
3121
3122 #if 0
3123 /* Find and grab a copy of the target _ovly_region_table
3124 (and _novly_regions, which is needed for the table's size) */
3125 static int
3126 simple_read_overlay_region_table ()
3127 {
3128 struct minimal_symbol *msym;
3129
3130 simple_free_overlay_region_table ();
3131 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3132 if (msym != NULL)
3133 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3134 else
3135 return 0; /* failure */
3136 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3137 if (cache_ovly_region_table != NULL)
3138 {
3139 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3140 if (msym != NULL)
3141 {
3142 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3143 read_target_long_array (cache_ovly_region_table_base,
3144 (int *) cache_ovly_region_table,
3145 cache_novly_regions * 3);
3146 }
3147 else
3148 return 0; /* failure */
3149 }
3150 else
3151 return 0; /* failure */
3152 return 1; /* SUCCESS */
3153 }
3154 #endif
3155
3156 /* Function: simple_overlay_update_1
3157 A helper function for simple_overlay_update. Assuming a cached copy
3158 of _ovly_table exists, look through it to find an entry whose vma,
3159 lma and size match those of OSECT. Re-read the entry and make sure
3160 it still matches OSECT (else the table may no longer be valid).
3161 Set OSECT's mapped state to match the entry. Return: 1 for
3162 success, 0 for failure. */
3163
3164 static int
3165 simple_overlay_update_1 (osect)
3166 struct obj_section *osect;
3167 {
3168 int i, size;
3169
3170 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3171 for (i = 0; i < cache_novlys; i++)
3172 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3173 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3174 cache_ovly_table[i][SIZE] == size */ )
3175 {
3176 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3177 (int *) cache_ovly_table[i], 4);
3178 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3179 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3180 cache_ovly_table[i][SIZE] == size */ )
3181 {
3182 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3183 return 1;
3184 }
3185 else /* Warning! Warning! Target's ovly table has changed! */
3186 return 0;
3187 }
3188 return 0;
3189 }
3190
3191 /* Function: simple_overlay_update
3192 If OSECT is NULL, then update all sections' mapped state
3193 (after re-reading the entire target _ovly_table).
3194 If OSECT is non-NULL, then try to find a matching entry in the
3195 cached ovly_table and update only OSECT's mapped state.
3196 If a cached entry can't be found or the cache isn't valid, then
3197 re-read the entire cache, and go ahead and update all sections. */
3198
3199 static void
3200 simple_overlay_update (osect)
3201 struct obj_section *osect;
3202 {
3203 struct objfile *objfile;
3204
3205 /* Were we given an osect to look up? NULL means do all of them. */
3206 if (osect)
3207 /* Have we got a cached copy of the target's overlay table? */
3208 if (cache_ovly_table != NULL)
3209 /* Does its cached location match what's currently in the symtab? */
3210 if (cache_ovly_table_base ==
3211 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3212 /* Then go ahead and try to look up this single section in the cache */
3213 if (simple_overlay_update_1 (osect))
3214 /* Found it! We're done. */
3215 return;
3216
3217 /* Cached table no good: need to read the entire table anew.
3218 Or else we want all the sections, in which case it's actually
3219 more efficient to read the whole table in one block anyway. */
3220
3221 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3222 {
3223 warning ("Failed to read the target overlay mapping table.");
3224 return;
3225 }
3226 /* Now may as well update all sections, even if only one was requested. */
3227 ALL_OBJSECTIONS (objfile, osect)
3228 if (section_is_overlay (osect->the_bfd_section))
3229 {
3230 int i, size;
3231
3232 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3233 for (i = 0; i < cache_novlys; i++)
3234 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3235 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3236 cache_ovly_table[i][SIZE] == size */ )
3237 { /* obj_section matches i'th entry in ovly_table */
3238 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3239 break; /* finished with inner for loop: break out */
3240 }
3241 }
3242 }
3243
3244
3245 void
3246 _initialize_symfile ()
3247 {
3248 struct cmd_list_element *c;
3249
3250 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3251 "Load symbol table from executable file FILE.\n\
3252 The `file' command can also load symbol tables, as well as setting the file\n\
3253 to execute.", &cmdlist);
3254 c->completer = filename_completer;
3255
3256 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3257 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3258 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3259 ADDR is the starting address of the file's text.\n\
3260 The optional arguments are section-name section-address pairs and\n\
3261 should be specified if the data and bss segments are not contiguous\n\
3262 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3263 &cmdlist);
3264 c->completer = filename_completer;
3265
3266 c = add_cmd ("add-shared-symbol-files", class_files,
3267 add_shared_symbol_files_command,
3268 "Load the symbols from shared objects in the dynamic linker's link map.",
3269 &cmdlist);
3270 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3271 &cmdlist);
3272
3273 c = add_cmd ("load", class_files, load_command,
3274 "Dynamically load FILE into the running program, and record its symbols\n\
3275 for access from GDB.", &cmdlist);
3276 c->completer = filename_completer;
3277
3278 add_show_from_set
3279 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3280 (char *) &symbol_reloading,
3281 "Set dynamic symbol table reloading multiple times in one run.",
3282 &setlist),
3283 &showlist);
3284
3285 add_prefix_cmd ("overlay", class_support, overlay_command,
3286 "Commands for debugging overlays.", &overlaylist,
3287 "overlay ", 0, &cmdlist);
3288
3289 add_com_alias ("ovly", "overlay", class_alias, 1);
3290 add_com_alias ("ov", "overlay", class_alias, 1);
3291
3292 add_cmd ("map-overlay", class_support, map_overlay_command,
3293 "Assert that an overlay section is mapped.", &overlaylist);
3294
3295 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3296 "Assert that an overlay section is unmapped.", &overlaylist);
3297
3298 add_cmd ("list-overlays", class_support, list_overlays_command,
3299 "List mappings of overlay sections.", &overlaylist);
3300
3301 add_cmd ("manual", class_support, overlay_manual_command,
3302 "Enable overlay debugging.", &overlaylist);
3303 add_cmd ("off", class_support, overlay_off_command,
3304 "Disable overlay debugging.", &overlaylist);
3305 add_cmd ("auto", class_support, overlay_auto_command,
3306 "Enable automatic overlay debugging.", &overlaylist);
3307 add_cmd ("load-target", class_support, overlay_load_command,
3308 "Read the overlay mapping state from the target.", &overlaylist);
3309
3310 /* Filename extension to source language lookup table: */
3311 init_filename_language_table ();
3312 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3313 (char *) &ext_args,
3314 "Set mapping between filename extension and source language.\n\
3315 Usage: set extension-language .foo bar",
3316 &setlist);
3317 c->function.cfunc = set_ext_lang_command;
3318
3319 add_info ("extensions", info_ext_lang_command,
3320 "All filename extensions associated with a source language.");
3321
3322 add_show_from_set
3323 (add_set_cmd ("download-write-size", class_obscure,
3324 var_integer, (char *) &download_write_size,
3325 "Set the write size used when downloading a program.\n"
3326 "Only used when downloading a program onto a remote\n"
3327 "target. Specify zero, or a negative value, to disable\n"
3328 "blocked writes. The actual size of each transfer is also\n"
3329 "limited by the size of the target packet and the memory\n"
3330 "cache.\n",
3331 &setlist),
3332 &showlist);
3333 }
This page took 0.12582 seconds and 4 git commands to generate.