* Makefile.in (symfile.o): Update.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. First, check for a file with the standard
434 one or two segments. */
435
436 symfile_find_segment_sections (objfile);
437
438 /* Except when explicitly adding symbol files at some address,
439 section_offsets contains nothing but zeros, so it doesn't matter
440 which slot in section_offsets the individual sect_index_* members
441 index into. So if they are all zero, it is safe to just point
442 all the currently uninitialized indices to the first slot. But
443 beware: if this is the main executable, it may be relocated
444 later, e.g. by the remote qOffsets packet, and then this will
445 be wrong! That's why we try segments first. */
446
447 for (i = 0; i < objfile->num_sections; i++)
448 {
449 if (ANOFFSET (objfile->section_offsets, i) != 0)
450 {
451 break;
452 }
453 }
454 if (i == objfile->num_sections)
455 {
456 if (objfile->sect_index_text == -1)
457 objfile->sect_index_text = 0;
458 if (objfile->sect_index_data == -1)
459 objfile->sect_index_data = 0;
460 if (objfile->sect_index_bss == -1)
461 objfile->sect_index_bss = 0;
462 if (objfile->sect_index_rodata == -1)
463 objfile->sect_index_rodata = 0;
464 }
465 }
466
467 /* The arguments to place_section. */
468
469 struct place_section_arg
470 {
471 struct section_offsets *offsets;
472 CORE_ADDR lowest;
473 };
474
475 /* Find a unique offset to use for loadable section SECT if
476 the user did not provide an offset. */
477
478 void
479 place_section (bfd *abfd, asection *sect, void *obj)
480 {
481 struct place_section_arg *arg = obj;
482 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
483 int done;
484 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
485
486 /* We are only interested in allocated sections. */
487 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
488 return;
489
490 /* If the user specified an offset, honor it. */
491 if (offsets[sect->index] != 0)
492 return;
493
494 /* Otherwise, let's try to find a place for the section. */
495 start_addr = (arg->lowest + align - 1) & -align;
496
497 do {
498 asection *cur_sec;
499
500 done = 1;
501
502 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
503 {
504 int indx = cur_sec->index;
505 CORE_ADDR cur_offset;
506
507 /* We don't need to compare against ourself. */
508 if (cur_sec == sect)
509 continue;
510
511 /* We can only conflict with allocated sections. */
512 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
528 break;
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538
539 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
540 }
541
542 /* Parse the user's idea of an offset for dynamic linking, into our idea
543 of how to represent it for fast symbol reading. This is the default
544 version of the sym_fns.sym_offsets function for symbol readers that
545 don't need to do anything special. It allocates a section_offsets table
546 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
547
548 void
549 default_symfile_offsets (struct objfile *objfile,
550 struct section_addr_info *addrs)
551 {
552 int i;
553
554 objfile->num_sections = bfd_count_sections (objfile->obfd);
555 objfile->section_offsets = (struct section_offsets *)
556 obstack_alloc (&objfile->objfile_obstack,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558 memset (objfile->section_offsets, 0,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560
561 /* Now calculate offsets for section that were specified by the
562 caller. */
563 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
564 {
565 struct other_sections *osp ;
566
567 osp = &addrs->other[i] ;
568 if (osp->addr == 0)
569 continue;
570
571 /* Record all sections in offsets */
572 /* The section_offsets in the objfile are here filled in using
573 the BFD index. */
574 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
575 }
576
577 /* For relocatable files, all loadable sections will start at zero.
578 The zero is meaningless, so try to pick arbitrary addresses such
579 that no loadable sections overlap. This algorithm is quadratic,
580 but the number of sections in a single object file is generally
581 small. */
582 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
583 {
584 struct place_section_arg arg;
585 bfd *abfd = objfile->obfd;
586 asection *cur_sec;
587 CORE_ADDR lowest = 0;
588
589 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
590 /* We do not expect this to happen; just skip this step if the
591 relocatable file has a section with an assigned VMA. */
592 if (bfd_section_vma (abfd, cur_sec) != 0)
593 break;
594
595 if (cur_sec == NULL)
596 {
597 CORE_ADDR *offsets = objfile->section_offsets->offsets;
598
599 /* Pick non-overlapping offsets for sections the user did not
600 place explicitly. */
601 arg.offsets = objfile->section_offsets;
602 arg.lowest = 0;
603 bfd_map_over_sections (objfile->obfd, place_section, &arg);
604
605 /* Correctly filling in the section offsets is not quite
606 enough. Relocatable files have two properties that
607 (most) shared objects do not:
608
609 - Their debug information will contain relocations. Some
610 shared libraries do also, but many do not, so this can not
611 be assumed.
612
613 - If there are multiple code sections they will be loaded
614 at different relative addresses in memory than they are
615 in the objfile, since all sections in the file will start
616 at address zero.
617
618 Because GDB has very limited ability to map from an
619 address in debug info to the correct code section,
620 it relies on adding SECT_OFF_TEXT to things which might be
621 code. If we clear all the section offsets, and set the
622 section VMAs instead, then symfile_relocate_debug_section
623 will return meaningful debug information pointing at the
624 correct sections.
625
626 GDB has too many different data structures for section
627 addresses - a bfd, objfile, and so_list all have section
628 tables, as does exec_ops. Some of these could probably
629 be eliminated. */
630
631 for (cur_sec = abfd->sections; cur_sec != NULL;
632 cur_sec = cur_sec->next)
633 {
634 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
635 continue;
636
637 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
638 offsets[cur_sec->index] = 0;
639 }
640 }
641 }
642
643 /* Remember the bfd indexes for the .text, .data, .bss and
644 .rodata sections. */
645 init_objfile_sect_indices (objfile);
646 }
647
648
649 /* Divide the file into segments, which are individual relocatable units.
650 This is the default version of the sym_fns.sym_segments function for
651 symbol readers that do not have an explicit representation of segments.
652 It assumes that object files do not have segments, and fully linked
653 files have a single segment. */
654
655 struct symfile_segment_data *
656 default_symfile_segments (bfd *abfd)
657 {
658 int num_sections, i;
659 asection *sect;
660 struct symfile_segment_data *data;
661 CORE_ADDR low, high;
662
663 /* Relocatable files contain enough information to position each
664 loadable section independently; they should not be relocated
665 in segments. */
666 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
667 return NULL;
668
669 /* Make sure there is at least one loadable section in the file. */
670 for (sect = abfd->sections; sect != NULL; sect = sect->next)
671 {
672 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
673 continue;
674
675 break;
676 }
677 if (sect == NULL)
678 return NULL;
679
680 low = bfd_get_section_vma (abfd, sect);
681 high = low + bfd_get_section_size (sect);
682
683 data = XZALLOC (struct symfile_segment_data);
684 data->num_segments = 1;
685 data->segment_bases = XCALLOC (1, CORE_ADDR);
686 data->segment_sizes = XCALLOC (1, CORE_ADDR);
687
688 num_sections = bfd_count_sections (abfd);
689 data->segment_info = XCALLOC (num_sections, int);
690
691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
692 {
693 CORE_ADDR vma;
694
695 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
696 continue;
697
698 vma = bfd_get_section_vma (abfd, sect);
699 if (vma < low)
700 low = vma;
701 if (vma + bfd_get_section_size (sect) > high)
702 high = vma + bfd_get_section_size (sect);
703
704 data->segment_info[i] = 1;
705 }
706
707 data->segment_bases[0] = low;
708 data->segment_sizes[0] = high - low;
709
710 return data;
711 }
712
713 /* Process a symbol file, as either the main file or as a dynamically
714 loaded file.
715
716 OBJFILE is where the symbols are to be read from.
717
718 ADDRS is the list of section load addresses. If the user has given
719 an 'add-symbol-file' command, then this is the list of offsets and
720 addresses he or she provided as arguments to the command; or, if
721 we're handling a shared library, these are the actual addresses the
722 sections are loaded at, according to the inferior's dynamic linker
723 (as gleaned by GDB's shared library code). We convert each address
724 into an offset from the section VMA's as it appears in the object
725 file, and then call the file's sym_offsets function to convert this
726 into a format-specific offset table --- a `struct section_offsets'.
727 If ADDRS is non-zero, OFFSETS must be zero.
728
729 OFFSETS is a table of section offsets already in the right
730 format-specific representation. NUM_OFFSETS is the number of
731 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
732 assume this is the proper table the call to sym_offsets described
733 above would produce. Instead of calling sym_offsets, we just dump
734 it right into objfile->section_offsets. (When we're re-reading
735 symbols from an objfile, we don't have the original load address
736 list any more; all we have is the section offset table.) If
737 OFFSETS is non-zero, ADDRS must be zero.
738
739 MAINLINE is nonzero if this is the main symbol file, or zero if
740 it's an extra symbol file such as dynamically loaded code.
741
742 VERBO is nonzero if the caller has printed a verbose message about
743 the symbol reading (and complaints can be more terse about it). */
744
745 void
746 syms_from_objfile (struct objfile *objfile,
747 struct section_addr_info *addrs,
748 struct section_offsets *offsets,
749 int num_offsets,
750 int mainline,
751 int verbo)
752 {
753 struct section_addr_info *local_addr = NULL;
754 struct cleanup *old_chain;
755
756 gdb_assert (! (addrs && offsets));
757
758 init_entry_point_info (objfile);
759 objfile->sf = find_sym_fns (objfile->obfd);
760
761 if (objfile->sf == NULL)
762 return; /* No symbols. */
763
764 /* Make sure that partially constructed symbol tables will be cleaned up
765 if an error occurs during symbol reading. */
766 old_chain = make_cleanup_free_objfile (objfile);
767
768 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
769 list. We now establish the convention that an addr of zero means
770 no load address was specified. */
771 if (! addrs && ! offsets)
772 {
773 local_addr
774 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
775 make_cleanup (xfree, local_addr);
776 addrs = local_addr;
777 }
778
779 /* Now either addrs or offsets is non-zero. */
780
781 if (mainline)
782 {
783 /* We will modify the main symbol table, make sure that all its users
784 will be cleaned up if an error occurs during symbol reading. */
785 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
786
787 /* Since no error yet, throw away the old symbol table. */
788
789 if (symfile_objfile != NULL)
790 {
791 free_objfile (symfile_objfile);
792 symfile_objfile = NULL;
793 }
794
795 /* Currently we keep symbols from the add-symbol-file command.
796 If the user wants to get rid of them, they should do "symbol-file"
797 without arguments first. Not sure this is the best behavior
798 (PR 2207). */
799
800 (*objfile->sf->sym_new_init) (objfile);
801 }
802
803 /* Convert addr into an offset rather than an absolute address.
804 We find the lowest address of a loaded segment in the objfile,
805 and assume that <addr> is where that got loaded.
806
807 We no longer warn if the lowest section is not a text segment (as
808 happens for the PA64 port. */
809 if (!mainline && addrs && addrs->other[0].name)
810 {
811 asection *lower_sect;
812 asection *sect;
813 CORE_ADDR lower_offset;
814 int i;
815
816 /* Find lowest loadable section to be used as starting point for
817 continguous sections. FIXME!! won't work without call to find
818 .text first, but this assumes text is lowest section. */
819 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
820 if (lower_sect == NULL)
821 bfd_map_over_sections (objfile->obfd, find_lowest_section,
822 &lower_sect);
823 if (lower_sect == NULL)
824 warning (_("no loadable sections found in added symbol-file %s"),
825 objfile->name);
826 else
827 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
828 warning (_("Lowest section in %s is %s at %s"),
829 objfile->name,
830 bfd_section_name (objfile->obfd, lower_sect),
831 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
832 if (lower_sect != NULL)
833 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
834 else
835 lower_offset = 0;
836
837 /* Calculate offsets for the loadable sections.
838 FIXME! Sections must be in order of increasing loadable section
839 so that contiguous sections can use the lower-offset!!!
840
841 Adjust offsets if the segments are not contiguous.
842 If the section is contiguous, its offset should be set to
843 the offset of the highest loadable section lower than it
844 (the loadable section directly below it in memory).
845 this_offset = lower_offset = lower_addr - lower_orig_addr */
846
847 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
848 {
849 if (addrs->other[i].addr != 0)
850 {
851 sect = bfd_get_section_by_name (objfile->obfd,
852 addrs->other[i].name);
853 if (sect)
854 {
855 addrs->other[i].addr
856 -= bfd_section_vma (objfile->obfd, sect);
857 lower_offset = addrs->other[i].addr;
858 /* This is the index used by BFD. */
859 addrs->other[i].sectindex = sect->index ;
860 }
861 else
862 {
863 warning (_("section %s not found in %s"),
864 addrs->other[i].name,
865 objfile->name);
866 addrs->other[i].addr = 0;
867 }
868 }
869 else
870 addrs->other[i].addr = lower_offset;
871 }
872 }
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
878 (*objfile->sf->sym_init) (objfile);
879 clear_complaints (&symfile_complaints, 1, verbo);
880
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
891 obstack_alloc (&objfile->objfile_obstack, size));
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
896
897 #ifndef DEPRECATED_IBM6000_TARGET
898 /* This is a SVR4/SunOS specific hack, I think. In any event, it
899 screws RS/6000. sym_offsets should be doing this sort of thing,
900 because it knows the mapping between bfd sections and
901 section_offsets. */
902 /* This is a hack. As far as I can tell, section offsets are not
903 target dependent. They are all set to addr with a couple of
904 exceptions. The exceptions are sysvr4 shared libraries, whose
905 offsets are kept in solib structures anyway and rs6000 xcoff
906 which handles shared libraries in a completely unique way.
907
908 Section offsets are built similarly, except that they are built
909 by adding addr in all cases because there is no clear mapping
910 from section_offsets into actual sections. Note that solib.c
911 has a different algorithm for finding section offsets.
912
913 These should probably all be collapsed into some target
914 independent form of shared library support. FIXME. */
915
916 if (addrs)
917 {
918 struct obj_section *s;
919
920 /* Map section offsets in "addr" back to the object's
921 sections by comparing the section names with bfd's
922 section names. Then adjust the section address by
923 the offset. */ /* for gdb/13815 */
924
925 ALL_OBJFILE_OSECTIONS (objfile, s)
926 {
927 CORE_ADDR s_addr = 0;
928 int i;
929
930 for (i = 0;
931 !s_addr && i < addrs->num_sections && addrs->other[i].name;
932 i++)
933 if (strcmp (bfd_section_name (s->objfile->obfd,
934 s->the_bfd_section),
935 addrs->other[i].name) == 0)
936 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
937
938 s->addr -= s->offset;
939 s->addr += s_addr;
940 s->endaddr -= s->offset;
941 s->endaddr += s_addr;
942 s->offset += s_addr;
943 }
944 }
945 #endif /* not DEPRECATED_IBM6000_TARGET */
946
947 (*objfile->sf->sym_read) (objfile, mainline);
948
949 /* Don't allow char * to have a typename (else would get caddr_t).
950 Ditto void *. FIXME: Check whether this is now done by all the
951 symbol readers themselves (many of them now do), and if so remove
952 it from here. */
953
954 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
955 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
956
957 /* Mark the objfile has having had initial symbol read attempted. Note
958 that this does not mean we found any symbols... */
959
960 objfile->flags |= OBJF_SYMS;
961
962 /* Discard cleanups as symbol reading was successful. */
963
964 discard_cleanups (old_chain);
965 }
966
967 /* Perform required actions after either reading in the initial
968 symbols for a new objfile, or mapping in the symbols from a reusable
969 objfile. */
970
971 void
972 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
973 {
974
975 /* If this is the main symbol file we have to clean up all users of the
976 old main symbol file. Otherwise it is sufficient to fixup all the
977 breakpoints that may have been redefined by this symbol file. */
978 if (mainline)
979 {
980 /* OK, make it the "real" symbol file. */
981 symfile_objfile = objfile;
982
983 clear_symtab_users ();
984 }
985 else
986 {
987 breakpoint_re_set ();
988 }
989
990 /* We're done reading the symbol file; finish off complaints. */
991 clear_complaints (&symfile_complaints, 0, verbo);
992 }
993
994 /* Process a symbol file, as either the main file or as a dynamically
995 loaded file.
996
997 ABFD is a BFD already open on the file, as from symfile_bfd_open.
998 This BFD will be closed on error, and is always consumed by this function.
999
1000 FROM_TTY says how verbose to be.
1001
1002 MAINLINE specifies whether this is the main symbol file, or whether
1003 it's an extra symbol file such as dynamically loaded code.
1004
1005 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1006 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1007 non-zero.
1008
1009 Upon success, returns a pointer to the objfile that was added.
1010 Upon failure, jumps back to command level (never returns). */
1011 static struct objfile *
1012 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1013 struct section_addr_info *addrs,
1014 struct section_offsets *offsets,
1015 int num_offsets,
1016 int mainline, int flags)
1017 {
1018 struct objfile *objfile;
1019 struct partial_symtab *psymtab;
1020 char *debugfile = NULL;
1021 struct section_addr_info *orig_addrs = NULL;
1022 struct cleanup *my_cleanups;
1023 const char *name = bfd_get_filename (abfd);
1024
1025 my_cleanups = make_cleanup_bfd_close (abfd);
1026
1027 /* Give user a chance to burp if we'd be
1028 interactively wiping out any existing symbols. */
1029
1030 if ((have_full_symbols () || have_partial_symbols ())
1031 && mainline
1032 && from_tty
1033 && !query ("Load new symbol table from \"%s\"? ", name))
1034 error (_("Not confirmed."));
1035
1036 objfile = allocate_objfile (abfd, flags);
1037 discard_cleanups (my_cleanups);
1038
1039 if (addrs)
1040 {
1041 orig_addrs = copy_section_addr_info (addrs);
1042 make_cleanup_free_section_addr_info (orig_addrs);
1043 }
1044
1045 /* We either created a new mapped symbol table, mapped an existing
1046 symbol table file which has not had initial symbol reading
1047 performed, or need to read an unmapped symbol table. */
1048 if (from_tty || info_verbose)
1049 {
1050 if (deprecated_pre_add_symbol_hook)
1051 deprecated_pre_add_symbol_hook (name);
1052 else
1053 {
1054 printf_unfiltered (_("Reading symbols from %s..."), name);
1055 wrap_here ("");
1056 gdb_flush (gdb_stdout);
1057 }
1058 }
1059 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1060 mainline, from_tty);
1061
1062 /* We now have at least a partial symbol table. Check to see if the
1063 user requested that all symbols be read on initial access via either
1064 the gdb startup command line or on a per symbol file basis. Expand
1065 all partial symbol tables for this objfile if so. */
1066
1067 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1068 {
1069 if (from_tty || info_verbose)
1070 {
1071 printf_unfiltered (_("expanding to full symbols..."));
1072 wrap_here ("");
1073 gdb_flush (gdb_stdout);
1074 }
1075
1076 for (psymtab = objfile->psymtabs;
1077 psymtab != NULL;
1078 psymtab = psymtab->next)
1079 {
1080 psymtab_to_symtab (psymtab);
1081 }
1082 }
1083
1084 /* If the file has its own symbol tables it has no separate debug info.
1085 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1086 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1087 if (objfile->psymtabs == NULL)
1088 debugfile = find_separate_debug_file (objfile);
1089 if (debugfile)
1090 {
1091 if (addrs != NULL)
1092 {
1093 objfile->separate_debug_objfile
1094 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1095 }
1096 else
1097 {
1098 objfile->separate_debug_objfile
1099 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1100 }
1101 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1102 = objfile;
1103
1104 /* Put the separate debug object before the normal one, this is so that
1105 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1106 put_objfile_before (objfile->separate_debug_objfile, objfile);
1107
1108 xfree (debugfile);
1109 }
1110
1111 if (!have_partial_symbols () && !have_full_symbols ())
1112 {
1113 wrap_here ("");
1114 printf_filtered (_("(no debugging symbols found)"));
1115 if (from_tty || info_verbose)
1116 printf_filtered ("...");
1117 else
1118 printf_filtered ("\n");
1119 wrap_here ("");
1120 }
1121
1122 if (from_tty || info_verbose)
1123 {
1124 if (deprecated_post_add_symbol_hook)
1125 deprecated_post_add_symbol_hook ();
1126 else
1127 {
1128 printf_unfiltered (_("done.\n"));
1129 }
1130 }
1131
1132 /* We print some messages regardless of whether 'from_tty ||
1133 info_verbose' is true, so make sure they go out at the right
1134 time. */
1135 gdb_flush (gdb_stdout);
1136
1137 do_cleanups (my_cleanups);
1138
1139 if (objfile->sf == NULL)
1140 return objfile; /* No symbols. */
1141
1142 new_symfile_objfile (objfile, mainline, from_tty);
1143
1144 observer_notify_new_objfile (objfile);
1145
1146 bfd_cache_close_all ();
1147 return (objfile);
1148 }
1149
1150
1151 /* Process the symbol file ABFD, as either the main file or as a
1152 dynamically loaded file.
1153
1154 See symbol_file_add_with_addrs_or_offsets's comments for
1155 details. */
1156 struct objfile *
1157 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1158 struct section_addr_info *addrs,
1159 int mainline, int flags)
1160 {
1161 return symbol_file_add_with_addrs_or_offsets (abfd,
1162 from_tty, addrs, 0, 0,
1163 mainline, flags);
1164 }
1165
1166
1167 /* Process a symbol file, as either the main file or as a dynamically
1168 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1169 for details. */
1170 struct objfile *
1171 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1172 int mainline, int flags)
1173 {
1174 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1175 addrs, mainline, flags);
1176 }
1177
1178
1179 /* Call symbol_file_add() with default values and update whatever is
1180 affected by the loading of a new main().
1181 Used when the file is supplied in the gdb command line
1182 and by some targets with special loading requirements.
1183 The auxiliary function, symbol_file_add_main_1(), has the flags
1184 argument for the switches that can only be specified in the symbol_file
1185 command itself. */
1186
1187 void
1188 symbol_file_add_main (char *args, int from_tty)
1189 {
1190 symbol_file_add_main_1 (args, from_tty, 0);
1191 }
1192
1193 static void
1194 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1195 {
1196 symbol_file_add (args, from_tty, NULL, 1, flags);
1197
1198 /* Getting new symbols may change our opinion about
1199 what is frameless. */
1200 reinit_frame_cache ();
1201
1202 set_initial_language ();
1203 }
1204
1205 void
1206 symbol_file_clear (int from_tty)
1207 {
1208 if ((have_full_symbols () || have_partial_symbols ())
1209 && from_tty
1210 && (symfile_objfile
1211 ? !query (_("Discard symbol table from `%s'? "),
1212 symfile_objfile->name)
1213 : !query (_("Discard symbol table? "))))
1214 error (_("Not confirmed."));
1215 free_all_objfiles ();
1216
1217 /* solib descriptors may have handles to objfiles. Since their
1218 storage has just been released, we'd better wipe the solib
1219 descriptors as well.
1220 */
1221 no_shared_libraries (NULL, from_tty);
1222
1223 symfile_objfile = NULL;
1224 if (from_tty)
1225 printf_unfiltered (_("No symbol file now.\n"));
1226 }
1227
1228 struct build_id
1229 {
1230 size_t size;
1231 gdb_byte data[1];
1232 };
1233
1234 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1235
1236 static struct build_id *
1237 build_id_bfd_get (bfd *abfd)
1238 {
1239 struct build_id *retval;
1240
1241 if (!bfd_check_format (abfd, bfd_object)
1242 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1243 || elf_tdata (abfd)->build_id == NULL)
1244 return NULL;
1245
1246 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1247 retval->size = elf_tdata (abfd)->build_id_size;
1248 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1249
1250 return retval;
1251 }
1252
1253 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1254
1255 static int
1256 build_id_verify (const char *filename, struct build_id *check)
1257 {
1258 bfd *abfd;
1259 struct build_id *found = NULL;
1260 int retval = 0;
1261
1262 /* We expect to be silent on the non-existing files. */
1263 abfd = bfd_openr (filename, gnutarget);
1264 if (abfd == NULL)
1265 return 0;
1266
1267 found = build_id_bfd_get (abfd);
1268
1269 if (found == NULL)
1270 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1271 else if (found->size != check->size
1272 || memcmp (found->data, check->data, found->size) != 0)
1273 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1274 else
1275 retval = 1;
1276
1277 if (!bfd_close (abfd))
1278 warning (_("cannot close \"%s\": %s"), filename,
1279 bfd_errmsg (bfd_get_error ()));
1280 return retval;
1281 }
1282
1283 static char *
1284 build_id_to_debug_filename (struct build_id *build_id)
1285 {
1286 char *link, *s, *retval = NULL;
1287 gdb_byte *data = build_id->data;
1288 size_t size = build_id->size;
1289
1290 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1291 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1292 + 2 * size + (sizeof ".debug" - 1) + 1);
1293 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1294 if (size > 0)
1295 {
1296 size--;
1297 s += sprintf (s, "%02x", (unsigned) *data++);
1298 }
1299 if (size > 0)
1300 *s++ = '/';
1301 while (size-- > 0)
1302 s += sprintf (s, "%02x", (unsigned) *data++);
1303 strcpy (s, ".debug");
1304
1305 /* lrealpath() is expensive even for the usually non-existent files. */
1306 if (access (link, F_OK) == 0)
1307 retval = lrealpath (link);
1308 xfree (link);
1309
1310 if (retval != NULL && !build_id_verify (retval, build_id))
1311 {
1312 xfree (retval);
1313 retval = NULL;
1314 }
1315
1316 return retval;
1317 }
1318
1319 static char *
1320 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1321 {
1322 asection *sect;
1323 bfd_size_type debuglink_size;
1324 unsigned long crc32;
1325 char *contents;
1326 int crc_offset;
1327 unsigned char *p;
1328
1329 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1330
1331 if (sect == NULL)
1332 return NULL;
1333
1334 debuglink_size = bfd_section_size (objfile->obfd, sect);
1335
1336 contents = xmalloc (debuglink_size);
1337 bfd_get_section_contents (objfile->obfd, sect, contents,
1338 (file_ptr)0, (bfd_size_type)debuglink_size);
1339
1340 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1341 crc_offset = strlen (contents) + 1;
1342 crc_offset = (crc_offset + 3) & ~3;
1343
1344 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1345
1346 *crc32_out = crc32;
1347 return contents;
1348 }
1349
1350 static int
1351 separate_debug_file_exists (const char *name, unsigned long crc)
1352 {
1353 unsigned long file_crc = 0;
1354 int fd;
1355 gdb_byte buffer[8*1024];
1356 int count;
1357
1358 fd = open (name, O_RDONLY | O_BINARY);
1359 if (fd < 0)
1360 return 0;
1361
1362 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1363 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1364
1365 close (fd);
1366
1367 return crc == file_crc;
1368 }
1369
1370 char *debug_file_directory = NULL;
1371 static void
1372 show_debug_file_directory (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c, const char *value)
1374 {
1375 fprintf_filtered (file, _("\
1376 The directory where separate debug symbols are searched for is \"%s\".\n"),
1377 value);
1378 }
1379
1380 #if ! defined (DEBUG_SUBDIRECTORY)
1381 #define DEBUG_SUBDIRECTORY ".debug"
1382 #endif
1383
1384 static char *
1385 find_separate_debug_file (struct objfile *objfile)
1386 {
1387 asection *sect;
1388 char *basename;
1389 char *dir;
1390 char *debugfile;
1391 char *name_copy;
1392 char *canon_name;
1393 bfd_size_type debuglink_size;
1394 unsigned long crc32;
1395 int i;
1396 struct build_id *build_id;
1397
1398 build_id = build_id_bfd_get (objfile->obfd);
1399 if (build_id != NULL)
1400 {
1401 char *build_id_name;
1402
1403 build_id_name = build_id_to_debug_filename (build_id);
1404 free (build_id);
1405 /* Prevent looping on a stripped .debug file. */
1406 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1407 {
1408 warning (_("\"%s\": separate debug info file has no debug info"),
1409 build_id_name);
1410 xfree (build_id_name);
1411 }
1412 else if (build_id_name != NULL)
1413 return build_id_name;
1414 }
1415
1416 basename = get_debug_link_info (objfile, &crc32);
1417
1418 if (basename == NULL)
1419 return NULL;
1420
1421 dir = xstrdup (objfile->name);
1422
1423 /* Strip off the final filename part, leaving the directory name,
1424 followed by a slash. Objfile names should always be absolute and
1425 tilde-expanded, so there should always be a slash in there
1426 somewhere. */
1427 for (i = strlen(dir) - 1; i >= 0; i--)
1428 {
1429 if (IS_DIR_SEPARATOR (dir[i]))
1430 break;
1431 }
1432 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1433 dir[i+1] = '\0';
1434
1435 debugfile = alloca (strlen (debug_file_directory) + 1
1436 + strlen (dir)
1437 + strlen (DEBUG_SUBDIRECTORY)
1438 + strlen ("/")
1439 + strlen (basename)
1440 + 1);
1441
1442 /* First try in the same directory as the original file. */
1443 strcpy (debugfile, dir);
1444 strcat (debugfile, basename);
1445
1446 if (separate_debug_file_exists (debugfile, crc32))
1447 {
1448 xfree (basename);
1449 xfree (dir);
1450 return xstrdup (debugfile);
1451 }
1452
1453 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1454 strcpy (debugfile, dir);
1455 strcat (debugfile, DEBUG_SUBDIRECTORY);
1456 strcat (debugfile, "/");
1457 strcat (debugfile, basename);
1458
1459 if (separate_debug_file_exists (debugfile, crc32))
1460 {
1461 xfree (basename);
1462 xfree (dir);
1463 return xstrdup (debugfile);
1464 }
1465
1466 /* Then try in the global debugfile directory. */
1467 strcpy (debugfile, debug_file_directory);
1468 strcat (debugfile, "/");
1469 strcat (debugfile, dir);
1470 strcat (debugfile, basename);
1471
1472 if (separate_debug_file_exists (debugfile, crc32))
1473 {
1474 xfree (basename);
1475 xfree (dir);
1476 return xstrdup (debugfile);
1477 }
1478
1479 /* If the file is in the sysroot, try using its base path in the
1480 global debugfile directory. */
1481 canon_name = lrealpath (dir);
1482 if (canon_name
1483 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1484 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1485 {
1486 strcpy (debugfile, debug_file_directory);
1487 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1488 strcat (debugfile, "/");
1489 strcat (debugfile, basename);
1490
1491 if (separate_debug_file_exists (debugfile, crc32))
1492 {
1493 xfree (canon_name);
1494 xfree (basename);
1495 xfree (dir);
1496 return xstrdup (debugfile);
1497 }
1498 }
1499
1500 if (canon_name)
1501 xfree (canon_name);
1502
1503 xfree (basename);
1504 xfree (dir);
1505 return NULL;
1506 }
1507
1508
1509 /* This is the symbol-file command. Read the file, analyze its
1510 symbols, and add a struct symtab to a symtab list. The syntax of
1511 the command is rather bizarre:
1512
1513 1. The function buildargv implements various quoting conventions
1514 which are undocumented and have little or nothing in common with
1515 the way things are quoted (or not quoted) elsewhere in GDB.
1516
1517 2. Options are used, which are not generally used in GDB (perhaps
1518 "set mapped on", "set readnow on" would be better)
1519
1520 3. The order of options matters, which is contrary to GNU
1521 conventions (because it is confusing and inconvenient). */
1522
1523 void
1524 symbol_file_command (char *args, int from_tty)
1525 {
1526 dont_repeat ();
1527
1528 if (args == NULL)
1529 {
1530 symbol_file_clear (from_tty);
1531 }
1532 else
1533 {
1534 char **argv = buildargv (args);
1535 int flags = OBJF_USERLOADED;
1536 struct cleanup *cleanups;
1537 char *name = NULL;
1538
1539 if (argv == NULL)
1540 nomem (0);
1541
1542 cleanups = make_cleanup_freeargv (argv);
1543 while (*argv != NULL)
1544 {
1545 if (strcmp (*argv, "-readnow") == 0)
1546 flags |= OBJF_READNOW;
1547 else if (**argv == '-')
1548 error (_("unknown option `%s'"), *argv);
1549 else
1550 {
1551 symbol_file_add_main_1 (*argv, from_tty, flags);
1552 name = *argv;
1553 }
1554
1555 argv++;
1556 }
1557
1558 if (name == NULL)
1559 error (_("no symbol file name was specified"));
1560
1561 do_cleanups (cleanups);
1562 }
1563 }
1564
1565 /* Set the initial language.
1566
1567 FIXME: A better solution would be to record the language in the
1568 psymtab when reading partial symbols, and then use it (if known) to
1569 set the language. This would be a win for formats that encode the
1570 language in an easily discoverable place, such as DWARF. For
1571 stabs, we can jump through hoops looking for specially named
1572 symbols or try to intuit the language from the specific type of
1573 stabs we find, but we can't do that until later when we read in
1574 full symbols. */
1575
1576 void
1577 set_initial_language (void)
1578 {
1579 struct partial_symtab *pst;
1580 enum language lang = language_unknown;
1581
1582 pst = find_main_psymtab ();
1583 if (pst != NULL)
1584 {
1585 if (pst->filename != NULL)
1586 lang = deduce_language_from_filename (pst->filename);
1587
1588 if (lang == language_unknown)
1589 {
1590 /* Make C the default language */
1591 lang = language_c;
1592 }
1593
1594 set_language (lang);
1595 expected_language = current_language; /* Don't warn the user. */
1596 }
1597 }
1598
1599 /* Open the file specified by NAME and hand it off to BFD for
1600 preliminary analysis. Return a newly initialized bfd *, which
1601 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1602 absolute). In case of trouble, error() is called. */
1603
1604 bfd *
1605 symfile_bfd_open (char *name)
1606 {
1607 bfd *sym_bfd;
1608 int desc;
1609 char *absolute_name;
1610
1611 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1612
1613 /* Look down path for it, allocate 2nd new malloc'd copy. */
1614 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1615 O_RDONLY | O_BINARY, 0, &absolute_name);
1616 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1617 if (desc < 0)
1618 {
1619 char *exename = alloca (strlen (name) + 5);
1620 strcat (strcpy (exename, name), ".exe");
1621 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1622 O_RDONLY | O_BINARY, 0, &absolute_name);
1623 }
1624 #endif
1625 if (desc < 0)
1626 {
1627 make_cleanup (xfree, name);
1628 perror_with_name (name);
1629 }
1630
1631 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1632 bfd. It'll be freed in free_objfile(). */
1633 xfree (name);
1634 name = absolute_name;
1635
1636 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1637 if (!sym_bfd)
1638 {
1639 close (desc);
1640 make_cleanup (xfree, name);
1641 error (_("\"%s\": can't open to read symbols: %s."), name,
1642 bfd_errmsg (bfd_get_error ()));
1643 }
1644 bfd_set_cacheable (sym_bfd, 1);
1645
1646 if (!bfd_check_format (sym_bfd, bfd_object))
1647 {
1648 /* FIXME: should be checking for errors from bfd_close (for one
1649 thing, on error it does not free all the storage associated
1650 with the bfd). */
1651 bfd_close (sym_bfd); /* This also closes desc. */
1652 make_cleanup (xfree, name);
1653 error (_("\"%s\": can't read symbols: %s."), name,
1654 bfd_errmsg (bfd_get_error ()));
1655 }
1656
1657 return sym_bfd;
1658 }
1659
1660 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1661 the section was not found. */
1662
1663 int
1664 get_section_index (struct objfile *objfile, char *section_name)
1665 {
1666 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1667
1668 if (sect)
1669 return sect->index;
1670 else
1671 return -1;
1672 }
1673
1674 /* Link SF into the global symtab_fns list. Called on startup by the
1675 _initialize routine in each object file format reader, to register
1676 information about each format the the reader is prepared to
1677 handle. */
1678
1679 void
1680 add_symtab_fns (struct sym_fns *sf)
1681 {
1682 sf->next = symtab_fns;
1683 symtab_fns = sf;
1684 }
1685
1686 /* Initialize OBJFILE to read symbols from its associated BFD. It
1687 either returns or calls error(). The result is an initialized
1688 struct sym_fns in the objfile structure, that contains cached
1689 information about the symbol file. */
1690
1691 static struct sym_fns *
1692 find_sym_fns (bfd *abfd)
1693 {
1694 struct sym_fns *sf;
1695 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1696
1697 if (our_flavour == bfd_target_srec_flavour
1698 || our_flavour == bfd_target_ihex_flavour
1699 || our_flavour == bfd_target_tekhex_flavour)
1700 return NULL; /* No symbols. */
1701
1702 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1703 if (our_flavour == sf->sym_flavour)
1704 return sf;
1705
1706 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1707 bfd_get_target (abfd));
1708 }
1709 \f
1710
1711 /* This function runs the load command of our current target. */
1712
1713 static void
1714 load_command (char *arg, int from_tty)
1715 {
1716 if (arg == NULL)
1717 {
1718 char *parg;
1719 int count = 0;
1720
1721 parg = arg = get_exec_file (1);
1722
1723 /* Count how many \ " ' tab space there are in the name. */
1724 while ((parg = strpbrk (parg, "\\\"'\t ")))
1725 {
1726 parg++;
1727 count++;
1728 }
1729
1730 if (count)
1731 {
1732 /* We need to quote this string so buildargv can pull it apart. */
1733 char *temp = xmalloc (strlen (arg) + count + 1 );
1734 char *ptemp = temp;
1735 char *prev;
1736
1737 make_cleanup (xfree, temp);
1738
1739 prev = parg = arg;
1740 while ((parg = strpbrk (parg, "\\\"'\t ")))
1741 {
1742 strncpy (ptemp, prev, parg - prev);
1743 ptemp += parg - prev;
1744 prev = parg++;
1745 *ptemp++ = '\\';
1746 }
1747 strcpy (ptemp, prev);
1748
1749 arg = temp;
1750 }
1751 }
1752
1753 /* The user might be reloading because the binary has changed. Take
1754 this opportunity to check. */
1755 reopen_exec_file ();
1756 reread_symbols ();
1757
1758 target_load (arg, from_tty);
1759
1760 /* After re-loading the executable, we don't really know which
1761 overlays are mapped any more. */
1762 overlay_cache_invalid = 1;
1763 }
1764
1765 /* This version of "load" should be usable for any target. Currently
1766 it is just used for remote targets, not inftarg.c or core files,
1767 on the theory that only in that case is it useful.
1768
1769 Avoiding xmodem and the like seems like a win (a) because we don't have
1770 to worry about finding it, and (b) On VMS, fork() is very slow and so
1771 we don't want to run a subprocess. On the other hand, I'm not sure how
1772 performance compares. */
1773
1774 static int validate_download = 0;
1775
1776 /* Callback service function for generic_load (bfd_map_over_sections). */
1777
1778 static void
1779 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1780 {
1781 bfd_size_type *sum = data;
1782
1783 *sum += bfd_get_section_size (asec);
1784 }
1785
1786 /* Opaque data for load_section_callback. */
1787 struct load_section_data {
1788 unsigned long load_offset;
1789 struct load_progress_data *progress_data;
1790 VEC(memory_write_request_s) *requests;
1791 };
1792
1793 /* Opaque data for load_progress. */
1794 struct load_progress_data {
1795 /* Cumulative data. */
1796 unsigned long write_count;
1797 unsigned long data_count;
1798 bfd_size_type total_size;
1799 };
1800
1801 /* Opaque data for load_progress for a single section. */
1802 struct load_progress_section_data {
1803 struct load_progress_data *cumulative;
1804
1805 /* Per-section data. */
1806 const char *section_name;
1807 ULONGEST section_sent;
1808 ULONGEST section_size;
1809 CORE_ADDR lma;
1810 gdb_byte *buffer;
1811 };
1812
1813 /* Target write callback routine for progress reporting. */
1814
1815 static void
1816 load_progress (ULONGEST bytes, void *untyped_arg)
1817 {
1818 struct load_progress_section_data *args = untyped_arg;
1819 struct load_progress_data *totals;
1820
1821 if (args == NULL)
1822 /* Writing padding data. No easy way to get at the cumulative
1823 stats, so just ignore this. */
1824 return;
1825
1826 totals = args->cumulative;
1827
1828 if (bytes == 0 && args->section_sent == 0)
1829 {
1830 /* The write is just starting. Let the user know we've started
1831 this section. */
1832 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1833 args->section_name, paddr_nz (args->section_size),
1834 paddr_nz (args->lma));
1835 return;
1836 }
1837
1838 if (validate_download)
1839 {
1840 /* Broken memories and broken monitors manifest themselves here
1841 when bring new computers to life. This doubles already slow
1842 downloads. */
1843 /* NOTE: cagney/1999-10-18: A more efficient implementation
1844 might add a verify_memory() method to the target vector and
1845 then use that. remote.c could implement that method using
1846 the ``qCRC'' packet. */
1847 gdb_byte *check = xmalloc (bytes);
1848 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1849
1850 if (target_read_memory (args->lma, check, bytes) != 0)
1851 error (_("Download verify read failed at 0x%s"),
1852 paddr (args->lma));
1853 if (memcmp (args->buffer, check, bytes) != 0)
1854 error (_("Download verify compare failed at 0x%s"),
1855 paddr (args->lma));
1856 do_cleanups (verify_cleanups);
1857 }
1858 totals->data_count += bytes;
1859 args->lma += bytes;
1860 args->buffer += bytes;
1861 totals->write_count += 1;
1862 args->section_sent += bytes;
1863 if (quit_flag
1864 || (deprecated_ui_load_progress_hook != NULL
1865 && deprecated_ui_load_progress_hook (args->section_name,
1866 args->section_sent)))
1867 error (_("Canceled the download"));
1868
1869 if (deprecated_show_load_progress != NULL)
1870 deprecated_show_load_progress (args->section_name,
1871 args->section_sent,
1872 args->section_size,
1873 totals->data_count,
1874 totals->total_size);
1875 }
1876
1877 /* Callback service function for generic_load (bfd_map_over_sections). */
1878
1879 static void
1880 load_section_callback (bfd *abfd, asection *asec, void *data)
1881 {
1882 struct memory_write_request *new_request;
1883 struct load_section_data *args = data;
1884 struct load_progress_section_data *section_data;
1885 bfd_size_type size = bfd_get_section_size (asec);
1886 gdb_byte *buffer;
1887 const char *sect_name = bfd_get_section_name (abfd, asec);
1888
1889 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1890 return;
1891
1892 if (size == 0)
1893 return;
1894
1895 new_request = VEC_safe_push (memory_write_request_s,
1896 args->requests, NULL);
1897 memset (new_request, 0, sizeof (struct memory_write_request));
1898 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1899 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1900 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1901 new_request->data = xmalloc (size);
1902 new_request->baton = section_data;
1903
1904 buffer = new_request->data;
1905
1906 section_data->cumulative = args->progress_data;
1907 section_data->section_name = sect_name;
1908 section_data->section_size = size;
1909 section_data->lma = new_request->begin;
1910 section_data->buffer = buffer;
1911
1912 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1913 }
1914
1915 /* Clean up an entire memory request vector, including load
1916 data and progress records. */
1917
1918 static void
1919 clear_memory_write_data (void *arg)
1920 {
1921 VEC(memory_write_request_s) **vec_p = arg;
1922 VEC(memory_write_request_s) *vec = *vec_p;
1923 int i;
1924 struct memory_write_request *mr;
1925
1926 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1927 {
1928 xfree (mr->data);
1929 xfree (mr->baton);
1930 }
1931 VEC_free (memory_write_request_s, vec);
1932 }
1933
1934 void
1935 generic_load (char *args, int from_tty)
1936 {
1937 bfd *loadfile_bfd;
1938 struct timeval start_time, end_time;
1939 char *filename;
1940 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1941 struct load_section_data cbdata;
1942 struct load_progress_data total_progress;
1943
1944 CORE_ADDR entry;
1945 char **argv;
1946
1947 memset (&cbdata, 0, sizeof (cbdata));
1948 memset (&total_progress, 0, sizeof (total_progress));
1949 cbdata.progress_data = &total_progress;
1950
1951 make_cleanup (clear_memory_write_data, &cbdata.requests);
1952
1953 argv = buildargv (args);
1954
1955 if (argv == NULL)
1956 nomem(0);
1957
1958 make_cleanup_freeargv (argv);
1959
1960 filename = tilde_expand (argv[0]);
1961 make_cleanup (xfree, filename);
1962
1963 if (argv[1] != NULL)
1964 {
1965 char *endptr;
1966
1967 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1968
1969 /* If the last word was not a valid number then
1970 treat it as a file name with spaces in. */
1971 if (argv[1] == endptr)
1972 error (_("Invalid download offset:%s."), argv[1]);
1973
1974 if (argv[2] != NULL)
1975 error (_("Too many parameters."));
1976 }
1977
1978 /* Open the file for loading. */
1979 loadfile_bfd = bfd_openr (filename, gnutarget);
1980 if (loadfile_bfd == NULL)
1981 {
1982 perror_with_name (filename);
1983 return;
1984 }
1985
1986 /* FIXME: should be checking for errors from bfd_close (for one thing,
1987 on error it does not free all the storage associated with the
1988 bfd). */
1989 make_cleanup_bfd_close (loadfile_bfd);
1990
1991 if (!bfd_check_format (loadfile_bfd, bfd_object))
1992 {
1993 error (_("\"%s\" is not an object file: %s"), filename,
1994 bfd_errmsg (bfd_get_error ()));
1995 }
1996
1997 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1998 (void *) &total_progress.total_size);
1999
2000 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2001
2002 gettimeofday (&start_time, NULL);
2003
2004 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2005 load_progress) != 0)
2006 error (_("Load failed"));
2007
2008 gettimeofday (&end_time, NULL);
2009
2010 entry = bfd_get_start_address (loadfile_bfd);
2011 ui_out_text (uiout, "Start address ");
2012 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2013 ui_out_text (uiout, ", load size ");
2014 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2015 ui_out_text (uiout, "\n");
2016 /* We were doing this in remote-mips.c, I suspect it is right
2017 for other targets too. */
2018 write_pc (entry);
2019
2020 /* FIXME: are we supposed to call symbol_file_add or not? According
2021 to a comment from remote-mips.c (where a call to symbol_file_add
2022 was commented out), making the call confuses GDB if more than one
2023 file is loaded in. Some targets do (e.g., remote-vx.c) but
2024 others don't (or didn't - perhaps they have all been deleted). */
2025
2026 print_transfer_performance (gdb_stdout, total_progress.data_count,
2027 total_progress.write_count,
2028 &start_time, &end_time);
2029
2030 do_cleanups (old_cleanups);
2031 }
2032
2033 /* Report how fast the transfer went. */
2034
2035 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2036 replaced by print_transfer_performance (with a very different
2037 function signature). */
2038
2039 void
2040 report_transfer_performance (unsigned long data_count, time_t start_time,
2041 time_t end_time)
2042 {
2043 struct timeval start, end;
2044
2045 start.tv_sec = start_time;
2046 start.tv_usec = 0;
2047 end.tv_sec = end_time;
2048 end.tv_usec = 0;
2049
2050 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2051 }
2052
2053 void
2054 print_transfer_performance (struct ui_file *stream,
2055 unsigned long data_count,
2056 unsigned long write_count,
2057 const struct timeval *start_time,
2058 const struct timeval *end_time)
2059 {
2060 ULONGEST time_count;
2061
2062 /* Compute the elapsed time in milliseconds, as a tradeoff between
2063 accuracy and overflow. */
2064 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2065 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2066
2067 ui_out_text (uiout, "Transfer rate: ");
2068 if (time_count > 0)
2069 {
2070 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2071
2072 if (ui_out_is_mi_like_p (uiout))
2073 {
2074 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2075 ui_out_text (uiout, " bits/sec");
2076 }
2077 else if (rate < 1024)
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2080 ui_out_text (uiout, " bytes/sec");
2081 }
2082 else
2083 {
2084 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2085 ui_out_text (uiout, " KB/sec");
2086 }
2087 }
2088 else
2089 {
2090 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2091 ui_out_text (uiout, " bits in <1 sec");
2092 }
2093 if (write_count > 0)
2094 {
2095 ui_out_text (uiout, ", ");
2096 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2097 ui_out_text (uiout, " bytes/write");
2098 }
2099 ui_out_text (uiout, ".\n");
2100 }
2101
2102 /* This function allows the addition of incrementally linked object files.
2103 It does not modify any state in the target, only in the debugger. */
2104 /* Note: ezannoni 2000-04-13 This function/command used to have a
2105 special case syntax for the rombug target (Rombug is the boot
2106 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2107 rombug case, the user doesn't need to supply a text address,
2108 instead a call to target_link() (in target.c) would supply the
2109 value to use. We are now discontinuing this type of ad hoc syntax. */
2110
2111 static void
2112 add_symbol_file_command (char *args, int from_tty)
2113 {
2114 char *filename = NULL;
2115 int flags = OBJF_USERLOADED;
2116 char *arg;
2117 int expecting_option = 0;
2118 int section_index = 0;
2119 int argcnt = 0;
2120 int sec_num = 0;
2121 int i;
2122 int expecting_sec_name = 0;
2123 int expecting_sec_addr = 0;
2124 char **argv;
2125
2126 struct sect_opt
2127 {
2128 char *name;
2129 char *value;
2130 };
2131
2132 struct section_addr_info *section_addrs;
2133 struct sect_opt *sect_opts = NULL;
2134 size_t num_sect_opts = 0;
2135 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2136
2137 num_sect_opts = 16;
2138 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2139 * sizeof (struct sect_opt));
2140
2141 dont_repeat ();
2142
2143 if (args == NULL)
2144 error (_("add-symbol-file takes a file name and an address"));
2145
2146 argv = buildargv (args);
2147 make_cleanup_freeargv (argv);
2148
2149 if (argv == NULL)
2150 nomem (0);
2151
2152 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2153 {
2154 /* Process the argument. */
2155 if (argcnt == 0)
2156 {
2157 /* The first argument is the file name. */
2158 filename = tilde_expand (arg);
2159 make_cleanup (xfree, filename);
2160 }
2161 else
2162 if (argcnt == 1)
2163 {
2164 /* The second argument is always the text address at which
2165 to load the program. */
2166 sect_opts[section_index].name = ".text";
2167 sect_opts[section_index].value = arg;
2168 if (++section_index >= num_sect_opts)
2169 {
2170 num_sect_opts *= 2;
2171 sect_opts = ((struct sect_opt *)
2172 xrealloc (sect_opts,
2173 num_sect_opts
2174 * sizeof (struct sect_opt)));
2175 }
2176 }
2177 else
2178 {
2179 /* It's an option (starting with '-') or it's an argument
2180 to an option */
2181
2182 if (*arg == '-')
2183 {
2184 if (strcmp (arg, "-readnow") == 0)
2185 flags |= OBJF_READNOW;
2186 else if (strcmp (arg, "-s") == 0)
2187 {
2188 expecting_sec_name = 1;
2189 expecting_sec_addr = 1;
2190 }
2191 }
2192 else
2193 {
2194 if (expecting_sec_name)
2195 {
2196 sect_opts[section_index].name = arg;
2197 expecting_sec_name = 0;
2198 }
2199 else
2200 if (expecting_sec_addr)
2201 {
2202 sect_opts[section_index].value = arg;
2203 expecting_sec_addr = 0;
2204 if (++section_index >= num_sect_opts)
2205 {
2206 num_sect_opts *= 2;
2207 sect_opts = ((struct sect_opt *)
2208 xrealloc (sect_opts,
2209 num_sect_opts
2210 * sizeof (struct sect_opt)));
2211 }
2212 }
2213 else
2214 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2215 }
2216 }
2217 }
2218
2219 /* This command takes at least two arguments. The first one is a
2220 filename, and the second is the address where this file has been
2221 loaded. Abort now if this address hasn't been provided by the
2222 user. */
2223 if (section_index < 1)
2224 error (_("The address where %s has been loaded is missing"), filename);
2225
2226 /* Print the prompt for the query below. And save the arguments into
2227 a sect_addr_info structure to be passed around to other
2228 functions. We have to split this up into separate print
2229 statements because hex_string returns a local static
2230 string. */
2231
2232 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2233 section_addrs = alloc_section_addr_info (section_index);
2234 make_cleanup (xfree, section_addrs);
2235 for (i = 0; i < section_index; i++)
2236 {
2237 CORE_ADDR addr;
2238 char *val = sect_opts[i].value;
2239 char *sec = sect_opts[i].name;
2240
2241 addr = parse_and_eval_address (val);
2242
2243 /* Here we store the section offsets in the order they were
2244 entered on the command line. */
2245 section_addrs->other[sec_num].name = sec;
2246 section_addrs->other[sec_num].addr = addr;
2247 printf_unfiltered ("\t%s_addr = %s\n",
2248 sec, hex_string ((unsigned long)addr));
2249 sec_num++;
2250
2251 /* The object's sections are initialized when a
2252 call is made to build_objfile_section_table (objfile).
2253 This happens in reread_symbols.
2254 At this point, we don't know what file type this is,
2255 so we can't determine what section names are valid. */
2256 }
2257
2258 if (from_tty && (!query ("%s", "")))
2259 error (_("Not confirmed."));
2260
2261 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2262
2263 /* Getting new symbols may change our opinion about what is
2264 frameless. */
2265 reinit_frame_cache ();
2266 do_cleanups (my_cleanups);
2267 }
2268 \f
2269 static void
2270 add_shared_symbol_files_command (char *args, int from_tty)
2271 {
2272 #ifdef ADD_SHARED_SYMBOL_FILES
2273 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2274 #else
2275 error (_("This command is not available in this configuration of GDB."));
2276 #endif
2277 }
2278 \f
2279 /* Re-read symbols if a symbol-file has changed. */
2280 void
2281 reread_symbols (void)
2282 {
2283 struct objfile *objfile;
2284 long new_modtime;
2285 int reread_one = 0;
2286 struct stat new_statbuf;
2287 int res;
2288
2289 /* With the addition of shared libraries, this should be modified,
2290 the load time should be saved in the partial symbol tables, since
2291 different tables may come from different source files. FIXME.
2292 This routine should then walk down each partial symbol table
2293 and see if the symbol table that it originates from has been changed */
2294
2295 for (objfile = object_files; objfile; objfile = objfile->next)
2296 {
2297 if (objfile->obfd)
2298 {
2299 #ifdef DEPRECATED_IBM6000_TARGET
2300 /* If this object is from a shared library, then you should
2301 stat on the library name, not member name. */
2302
2303 if (objfile->obfd->my_archive)
2304 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2305 else
2306 #endif
2307 res = stat (objfile->name, &new_statbuf);
2308 if (res != 0)
2309 {
2310 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2311 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2312 objfile->name);
2313 continue;
2314 }
2315 new_modtime = new_statbuf.st_mtime;
2316 if (new_modtime != objfile->mtime)
2317 {
2318 struct cleanup *old_cleanups;
2319 struct section_offsets *offsets;
2320 int num_offsets;
2321 char *obfd_filename;
2322
2323 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2324 objfile->name);
2325
2326 /* There are various functions like symbol_file_add,
2327 symfile_bfd_open, syms_from_objfile, etc., which might
2328 appear to do what we want. But they have various other
2329 effects which we *don't* want. So we just do stuff
2330 ourselves. We don't worry about mapped files (for one thing,
2331 any mapped file will be out of date). */
2332
2333 /* If we get an error, blow away this objfile (not sure if
2334 that is the correct response for things like shared
2335 libraries). */
2336 old_cleanups = make_cleanup_free_objfile (objfile);
2337 /* We need to do this whenever any symbols go away. */
2338 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2339
2340 /* Clean up any state BFD has sitting around. We don't need
2341 to close the descriptor but BFD lacks a way of closing the
2342 BFD without closing the descriptor. */
2343 obfd_filename = bfd_get_filename (objfile->obfd);
2344 if (!bfd_close (objfile->obfd))
2345 error (_("Can't close BFD for %s: %s"), objfile->name,
2346 bfd_errmsg (bfd_get_error ()));
2347 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2348 if (objfile->obfd == NULL)
2349 error (_("Can't open %s to read symbols."), objfile->name);
2350 /* bfd_openr sets cacheable to true, which is what we want. */
2351 if (!bfd_check_format (objfile->obfd, bfd_object))
2352 error (_("Can't read symbols from %s: %s."), objfile->name,
2353 bfd_errmsg (bfd_get_error ()));
2354
2355 /* Save the offsets, we will nuke them with the rest of the
2356 objfile_obstack. */
2357 num_offsets = objfile->num_sections;
2358 offsets = ((struct section_offsets *)
2359 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2360 memcpy (offsets, objfile->section_offsets,
2361 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2362
2363 /* Remove any references to this objfile in the global
2364 value lists. */
2365 preserve_values (objfile);
2366
2367 /* Nuke all the state that we will re-read. Much of the following
2368 code which sets things to NULL really is necessary to tell
2369 other parts of GDB that there is nothing currently there. */
2370
2371 /* FIXME: Do we have to free a whole linked list, or is this
2372 enough? */
2373 if (objfile->global_psymbols.list)
2374 xfree (objfile->global_psymbols.list);
2375 memset (&objfile->global_psymbols, 0,
2376 sizeof (objfile->global_psymbols));
2377 if (objfile->static_psymbols.list)
2378 xfree (objfile->static_psymbols.list);
2379 memset (&objfile->static_psymbols, 0,
2380 sizeof (objfile->static_psymbols));
2381
2382 /* Free the obstacks for non-reusable objfiles */
2383 bcache_xfree (objfile->psymbol_cache);
2384 objfile->psymbol_cache = bcache_xmalloc ();
2385 bcache_xfree (objfile->macro_cache);
2386 objfile->macro_cache = bcache_xmalloc ();
2387 if (objfile->demangled_names_hash != NULL)
2388 {
2389 htab_delete (objfile->demangled_names_hash);
2390 objfile->demangled_names_hash = NULL;
2391 }
2392 obstack_free (&objfile->objfile_obstack, 0);
2393 objfile->sections = NULL;
2394 objfile->symtabs = NULL;
2395 objfile->psymtabs = NULL;
2396 objfile->free_psymtabs = NULL;
2397 objfile->cp_namespace_symtab = NULL;
2398 objfile->msymbols = NULL;
2399 objfile->deprecated_sym_private = NULL;
2400 objfile->minimal_symbol_count = 0;
2401 memset (&objfile->msymbol_hash, 0,
2402 sizeof (objfile->msymbol_hash));
2403 memset (&objfile->msymbol_demangled_hash, 0,
2404 sizeof (objfile->msymbol_demangled_hash));
2405 clear_objfile_data (objfile);
2406 if (objfile->sf != NULL)
2407 {
2408 (*objfile->sf->sym_finish) (objfile);
2409 }
2410
2411 /* We never make this a mapped file. */
2412 objfile->md = NULL;
2413 objfile->psymbol_cache = bcache_xmalloc ();
2414 objfile->macro_cache = bcache_xmalloc ();
2415 /* obstack_init also initializes the obstack so it is
2416 empty. We could use obstack_specify_allocation but
2417 gdb_obstack.h specifies the alloc/dealloc
2418 functions. */
2419 obstack_init (&objfile->objfile_obstack);
2420 if (build_objfile_section_table (objfile))
2421 {
2422 error (_("Can't find the file sections in `%s': %s"),
2423 objfile->name, bfd_errmsg (bfd_get_error ()));
2424 }
2425 terminate_minimal_symbol_table (objfile);
2426
2427 /* We use the same section offsets as from last time. I'm not
2428 sure whether that is always correct for shared libraries. */
2429 objfile->section_offsets = (struct section_offsets *)
2430 obstack_alloc (&objfile->objfile_obstack,
2431 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2432 memcpy (objfile->section_offsets, offsets,
2433 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2434 objfile->num_sections = num_offsets;
2435
2436 /* What the hell is sym_new_init for, anyway? The concept of
2437 distinguishing between the main file and additional files
2438 in this way seems rather dubious. */
2439 if (objfile == symfile_objfile)
2440 {
2441 (*objfile->sf->sym_new_init) (objfile);
2442 }
2443
2444 (*objfile->sf->sym_init) (objfile);
2445 clear_complaints (&symfile_complaints, 1, 1);
2446 /* The "mainline" parameter is a hideous hack; I think leaving it
2447 zero is OK since dbxread.c also does what it needs to do if
2448 objfile->global_psymbols.size is 0. */
2449 (*objfile->sf->sym_read) (objfile, 0);
2450 if (!have_partial_symbols () && !have_full_symbols ())
2451 {
2452 wrap_here ("");
2453 printf_unfiltered (_("(no debugging symbols found)\n"));
2454 wrap_here ("");
2455 }
2456 objfile->flags |= OBJF_SYMS;
2457
2458 /* We're done reading the symbol file; finish off complaints. */
2459 clear_complaints (&symfile_complaints, 0, 1);
2460
2461 /* Getting new symbols may change our opinion about what is
2462 frameless. */
2463
2464 reinit_frame_cache ();
2465
2466 /* Discard cleanups as symbol reading was successful. */
2467 discard_cleanups (old_cleanups);
2468
2469 /* If the mtime has changed between the time we set new_modtime
2470 and now, we *want* this to be out of date, so don't call stat
2471 again now. */
2472 objfile->mtime = new_modtime;
2473 reread_one = 1;
2474 reread_separate_symbols (objfile);
2475 }
2476 }
2477 }
2478
2479 if (reread_one)
2480 {
2481 clear_symtab_users ();
2482 /* At least one objfile has changed, so we can consider that
2483 the executable we're debugging has changed too. */
2484 observer_notify_executable_changed (NULL);
2485 }
2486
2487 }
2488
2489
2490 /* Handle separate debug info for OBJFILE, which has just been
2491 re-read:
2492 - If we had separate debug info before, but now we don't, get rid
2493 of the separated objfile.
2494 - If we didn't have separated debug info before, but now we do,
2495 read in the new separated debug info file.
2496 - If the debug link points to a different file, toss the old one
2497 and read the new one.
2498 This function does *not* handle the case where objfile is still
2499 using the same separate debug info file, but that file's timestamp
2500 has changed. That case should be handled by the loop in
2501 reread_symbols already. */
2502 static void
2503 reread_separate_symbols (struct objfile *objfile)
2504 {
2505 char *debug_file;
2506 unsigned long crc32;
2507
2508 /* Does the updated objfile's debug info live in a
2509 separate file? */
2510 debug_file = find_separate_debug_file (objfile);
2511
2512 if (objfile->separate_debug_objfile)
2513 {
2514 /* There are two cases where we need to get rid of
2515 the old separated debug info objfile:
2516 - if the new primary objfile doesn't have
2517 separated debug info, or
2518 - if the new primary objfile has separate debug
2519 info, but it's under a different filename.
2520
2521 If the old and new objfiles both have separate
2522 debug info, under the same filename, then we're
2523 okay --- if the separated file's contents have
2524 changed, we will have caught that when we
2525 visited it in this function's outermost
2526 loop. */
2527 if (! debug_file
2528 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2529 free_objfile (objfile->separate_debug_objfile);
2530 }
2531
2532 /* If the new objfile has separate debug info, and we
2533 haven't loaded it already, do so now. */
2534 if (debug_file
2535 && ! objfile->separate_debug_objfile)
2536 {
2537 /* Use the same section offset table as objfile itself.
2538 Preserve the flags from objfile that make sense. */
2539 objfile->separate_debug_objfile
2540 = (symbol_file_add_with_addrs_or_offsets
2541 (symfile_bfd_open (debug_file),
2542 info_verbose, /* from_tty: Don't override the default. */
2543 0, /* No addr table. */
2544 objfile->section_offsets, objfile->num_sections,
2545 0, /* Not mainline. See comments about this above. */
2546 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2547 | OBJF_USERLOADED)));
2548 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2549 = objfile;
2550 }
2551 if (debug_file)
2552 xfree (debug_file);
2553 }
2554
2555
2556 \f
2557
2558
2559 typedef struct
2560 {
2561 char *ext;
2562 enum language lang;
2563 }
2564 filename_language;
2565
2566 static filename_language *filename_language_table;
2567 static int fl_table_size, fl_table_next;
2568
2569 static void
2570 add_filename_language (char *ext, enum language lang)
2571 {
2572 if (fl_table_next >= fl_table_size)
2573 {
2574 fl_table_size += 10;
2575 filename_language_table =
2576 xrealloc (filename_language_table,
2577 fl_table_size * sizeof (*filename_language_table));
2578 }
2579
2580 filename_language_table[fl_table_next].ext = xstrdup (ext);
2581 filename_language_table[fl_table_next].lang = lang;
2582 fl_table_next++;
2583 }
2584
2585 static char *ext_args;
2586 static void
2587 show_ext_args (struct ui_file *file, int from_tty,
2588 struct cmd_list_element *c, const char *value)
2589 {
2590 fprintf_filtered (file, _("\
2591 Mapping between filename extension and source language is \"%s\".\n"),
2592 value);
2593 }
2594
2595 static void
2596 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2597 {
2598 int i;
2599 char *cp = ext_args;
2600 enum language lang;
2601
2602 /* First arg is filename extension, starting with '.' */
2603 if (*cp != '.')
2604 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2605
2606 /* Find end of first arg. */
2607 while (*cp && !isspace (*cp))
2608 cp++;
2609
2610 if (*cp == '\0')
2611 error (_("'%s': two arguments required -- filename extension and language"),
2612 ext_args);
2613
2614 /* Null-terminate first arg */
2615 *cp++ = '\0';
2616
2617 /* Find beginning of second arg, which should be a source language. */
2618 while (*cp && isspace (*cp))
2619 cp++;
2620
2621 if (*cp == '\0')
2622 error (_("'%s': two arguments required -- filename extension and language"),
2623 ext_args);
2624
2625 /* Lookup the language from among those we know. */
2626 lang = language_enum (cp);
2627
2628 /* Now lookup the filename extension: do we already know it? */
2629 for (i = 0; i < fl_table_next; i++)
2630 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2631 break;
2632
2633 if (i >= fl_table_next)
2634 {
2635 /* new file extension */
2636 add_filename_language (ext_args, lang);
2637 }
2638 else
2639 {
2640 /* redefining a previously known filename extension */
2641
2642 /* if (from_tty) */
2643 /* query ("Really make files of type %s '%s'?", */
2644 /* ext_args, language_str (lang)); */
2645
2646 xfree (filename_language_table[i].ext);
2647 filename_language_table[i].ext = xstrdup (ext_args);
2648 filename_language_table[i].lang = lang;
2649 }
2650 }
2651
2652 static void
2653 info_ext_lang_command (char *args, int from_tty)
2654 {
2655 int i;
2656
2657 printf_filtered (_("Filename extensions and the languages they represent:"));
2658 printf_filtered ("\n\n");
2659 for (i = 0; i < fl_table_next; i++)
2660 printf_filtered ("\t%s\t- %s\n",
2661 filename_language_table[i].ext,
2662 language_str (filename_language_table[i].lang));
2663 }
2664
2665 static void
2666 init_filename_language_table (void)
2667 {
2668 if (fl_table_size == 0) /* protect against repetition */
2669 {
2670 fl_table_size = 20;
2671 fl_table_next = 0;
2672 filename_language_table =
2673 xmalloc (fl_table_size * sizeof (*filename_language_table));
2674 add_filename_language (".c", language_c);
2675 add_filename_language (".C", language_cplus);
2676 add_filename_language (".cc", language_cplus);
2677 add_filename_language (".cp", language_cplus);
2678 add_filename_language (".cpp", language_cplus);
2679 add_filename_language (".cxx", language_cplus);
2680 add_filename_language (".c++", language_cplus);
2681 add_filename_language (".java", language_java);
2682 add_filename_language (".class", language_java);
2683 add_filename_language (".m", language_objc);
2684 add_filename_language (".f", language_fortran);
2685 add_filename_language (".F", language_fortran);
2686 add_filename_language (".s", language_asm);
2687 add_filename_language (".sx", language_asm);
2688 add_filename_language (".S", language_asm);
2689 add_filename_language (".pas", language_pascal);
2690 add_filename_language (".p", language_pascal);
2691 add_filename_language (".pp", language_pascal);
2692 add_filename_language (".adb", language_ada);
2693 add_filename_language (".ads", language_ada);
2694 add_filename_language (".a", language_ada);
2695 add_filename_language (".ada", language_ada);
2696 }
2697 }
2698
2699 enum language
2700 deduce_language_from_filename (char *filename)
2701 {
2702 int i;
2703 char *cp;
2704
2705 if (filename != NULL)
2706 if ((cp = strrchr (filename, '.')) != NULL)
2707 for (i = 0; i < fl_table_next; i++)
2708 if (strcmp (cp, filename_language_table[i].ext) == 0)
2709 return filename_language_table[i].lang;
2710
2711 return language_unknown;
2712 }
2713 \f
2714 /* allocate_symtab:
2715
2716 Allocate and partly initialize a new symbol table. Return a pointer
2717 to it. error() if no space.
2718
2719 Caller must set these fields:
2720 LINETABLE(symtab)
2721 symtab->blockvector
2722 symtab->dirname
2723 symtab->free_code
2724 symtab->free_ptr
2725 possibly free_named_symtabs (symtab->filename);
2726 */
2727
2728 struct symtab *
2729 allocate_symtab (char *filename, struct objfile *objfile)
2730 {
2731 struct symtab *symtab;
2732
2733 symtab = (struct symtab *)
2734 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2735 memset (symtab, 0, sizeof (*symtab));
2736 symtab->filename = obsavestring (filename, strlen (filename),
2737 &objfile->objfile_obstack);
2738 symtab->fullname = NULL;
2739 symtab->language = deduce_language_from_filename (filename);
2740 symtab->debugformat = obsavestring ("unknown", 7,
2741 &objfile->objfile_obstack);
2742
2743 /* Hook it to the objfile it comes from */
2744
2745 symtab->objfile = objfile;
2746 symtab->next = objfile->symtabs;
2747 objfile->symtabs = symtab;
2748
2749 return (symtab);
2750 }
2751
2752 struct partial_symtab *
2753 allocate_psymtab (char *filename, struct objfile *objfile)
2754 {
2755 struct partial_symtab *psymtab;
2756
2757 if (objfile->free_psymtabs)
2758 {
2759 psymtab = objfile->free_psymtabs;
2760 objfile->free_psymtabs = psymtab->next;
2761 }
2762 else
2763 psymtab = (struct partial_symtab *)
2764 obstack_alloc (&objfile->objfile_obstack,
2765 sizeof (struct partial_symtab));
2766
2767 memset (psymtab, 0, sizeof (struct partial_symtab));
2768 psymtab->filename = obsavestring (filename, strlen (filename),
2769 &objfile->objfile_obstack);
2770 psymtab->symtab = NULL;
2771
2772 /* Prepend it to the psymtab list for the objfile it belongs to.
2773 Psymtabs are searched in most recent inserted -> least recent
2774 inserted order. */
2775
2776 psymtab->objfile = objfile;
2777 psymtab->next = objfile->psymtabs;
2778 objfile->psymtabs = psymtab;
2779 #if 0
2780 {
2781 struct partial_symtab **prev_pst;
2782 psymtab->objfile = objfile;
2783 psymtab->next = NULL;
2784 prev_pst = &(objfile->psymtabs);
2785 while ((*prev_pst) != NULL)
2786 prev_pst = &((*prev_pst)->next);
2787 (*prev_pst) = psymtab;
2788 }
2789 #endif
2790
2791 return (psymtab);
2792 }
2793
2794 void
2795 discard_psymtab (struct partial_symtab *pst)
2796 {
2797 struct partial_symtab **prev_pst;
2798
2799 /* From dbxread.c:
2800 Empty psymtabs happen as a result of header files which don't
2801 have any symbols in them. There can be a lot of them. But this
2802 check is wrong, in that a psymtab with N_SLINE entries but
2803 nothing else is not empty, but we don't realize that. Fixing
2804 that without slowing things down might be tricky. */
2805
2806 /* First, snip it out of the psymtab chain */
2807
2808 prev_pst = &(pst->objfile->psymtabs);
2809 while ((*prev_pst) != pst)
2810 prev_pst = &((*prev_pst)->next);
2811 (*prev_pst) = pst->next;
2812
2813 /* Next, put it on a free list for recycling */
2814
2815 pst->next = pst->objfile->free_psymtabs;
2816 pst->objfile->free_psymtabs = pst;
2817 }
2818 \f
2819
2820 /* Reset all data structures in gdb which may contain references to symbol
2821 table data. */
2822
2823 void
2824 clear_symtab_users (void)
2825 {
2826 /* Someday, we should do better than this, by only blowing away
2827 the things that really need to be blown. */
2828
2829 /* Clear the "current" symtab first, because it is no longer valid.
2830 breakpoint_re_set may try to access the current symtab. */
2831 clear_current_source_symtab_and_line ();
2832
2833 clear_displays ();
2834 breakpoint_re_set ();
2835 set_default_breakpoint (0, 0, 0, 0);
2836 clear_pc_function_cache ();
2837 observer_notify_new_objfile (NULL);
2838
2839 /* Clear globals which might have pointed into a removed objfile.
2840 FIXME: It's not clear which of these are supposed to persist
2841 between expressions and which ought to be reset each time. */
2842 expression_context_block = NULL;
2843 innermost_block = NULL;
2844
2845 /* Varobj may refer to old symbols, perform a cleanup. */
2846 varobj_invalidate ();
2847
2848 }
2849
2850 static void
2851 clear_symtab_users_cleanup (void *ignore)
2852 {
2853 clear_symtab_users ();
2854 }
2855
2856 /* clear_symtab_users_once:
2857
2858 This function is run after symbol reading, or from a cleanup.
2859 If an old symbol table was obsoleted, the old symbol table
2860 has been blown away, but the other GDB data structures that may
2861 reference it have not yet been cleared or re-directed. (The old
2862 symtab was zapped, and the cleanup queued, in free_named_symtab()
2863 below.)
2864
2865 This function can be queued N times as a cleanup, or called
2866 directly; it will do all the work the first time, and then will be a
2867 no-op until the next time it is queued. This works by bumping a
2868 counter at queueing time. Much later when the cleanup is run, or at
2869 the end of symbol processing (in case the cleanup is discarded), if
2870 the queued count is greater than the "done-count", we do the work
2871 and set the done-count to the queued count. If the queued count is
2872 less than or equal to the done-count, we just ignore the call. This
2873 is needed because reading a single .o file will often replace many
2874 symtabs (one per .h file, for example), and we don't want to reset
2875 the breakpoints N times in the user's face.
2876
2877 The reason we both queue a cleanup, and call it directly after symbol
2878 reading, is because the cleanup protects us in case of errors, but is
2879 discarded if symbol reading is successful. */
2880
2881 #if 0
2882 /* FIXME: As free_named_symtabs is currently a big noop this function
2883 is no longer needed. */
2884 static void clear_symtab_users_once (void);
2885
2886 static int clear_symtab_users_queued;
2887 static int clear_symtab_users_done;
2888
2889 static void
2890 clear_symtab_users_once (void)
2891 {
2892 /* Enforce once-per-`do_cleanups'-semantics */
2893 if (clear_symtab_users_queued <= clear_symtab_users_done)
2894 return;
2895 clear_symtab_users_done = clear_symtab_users_queued;
2896
2897 clear_symtab_users ();
2898 }
2899 #endif
2900
2901 /* Delete the specified psymtab, and any others that reference it. */
2902
2903 static void
2904 cashier_psymtab (struct partial_symtab *pst)
2905 {
2906 struct partial_symtab *ps, *pprev = NULL;
2907 int i;
2908
2909 /* Find its previous psymtab in the chain */
2910 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2911 {
2912 if (ps == pst)
2913 break;
2914 pprev = ps;
2915 }
2916
2917 if (ps)
2918 {
2919 /* Unhook it from the chain. */
2920 if (ps == pst->objfile->psymtabs)
2921 pst->objfile->psymtabs = ps->next;
2922 else
2923 pprev->next = ps->next;
2924
2925 /* FIXME, we can't conveniently deallocate the entries in the
2926 partial_symbol lists (global_psymbols/static_psymbols) that
2927 this psymtab points to. These just take up space until all
2928 the psymtabs are reclaimed. Ditto the dependencies list and
2929 filename, which are all in the objfile_obstack. */
2930
2931 /* We need to cashier any psymtab that has this one as a dependency... */
2932 again:
2933 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2934 {
2935 for (i = 0; i < ps->number_of_dependencies; i++)
2936 {
2937 if (ps->dependencies[i] == pst)
2938 {
2939 cashier_psymtab (ps);
2940 goto again; /* Must restart, chain has been munged. */
2941 }
2942 }
2943 }
2944 }
2945 }
2946
2947 /* If a symtab or psymtab for filename NAME is found, free it along
2948 with any dependent breakpoints, displays, etc.
2949 Used when loading new versions of object modules with the "add-file"
2950 command. This is only called on the top-level symtab or psymtab's name;
2951 it is not called for subsidiary files such as .h files.
2952
2953 Return value is 1 if we blew away the environment, 0 if not.
2954 FIXME. The return value appears to never be used.
2955
2956 FIXME. I think this is not the best way to do this. We should
2957 work on being gentler to the environment while still cleaning up
2958 all stray pointers into the freed symtab. */
2959
2960 int
2961 free_named_symtabs (char *name)
2962 {
2963 #if 0
2964 /* FIXME: With the new method of each objfile having it's own
2965 psymtab list, this function needs serious rethinking. In particular,
2966 why was it ever necessary to toss psymtabs with specific compilation
2967 unit filenames, as opposed to all psymtabs from a particular symbol
2968 file? -- fnf
2969 Well, the answer is that some systems permit reloading of particular
2970 compilation units. We want to blow away any old info about these
2971 compilation units, regardless of which objfiles they arrived in. --gnu. */
2972
2973 struct symtab *s;
2974 struct symtab *prev;
2975 struct partial_symtab *ps;
2976 struct blockvector *bv;
2977 int blewit = 0;
2978
2979 /* We only wack things if the symbol-reload switch is set. */
2980 if (!symbol_reloading)
2981 return 0;
2982
2983 /* Some symbol formats have trouble providing file names... */
2984 if (name == 0 || *name == '\0')
2985 return 0;
2986
2987 /* Look for a psymtab with the specified name. */
2988
2989 again2:
2990 for (ps = partial_symtab_list; ps; ps = ps->next)
2991 {
2992 if (strcmp (name, ps->filename) == 0)
2993 {
2994 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2995 goto again2; /* Must restart, chain has been munged */
2996 }
2997 }
2998
2999 /* Look for a symtab with the specified name. */
3000
3001 for (s = symtab_list; s; s = s->next)
3002 {
3003 if (strcmp (name, s->filename) == 0)
3004 break;
3005 prev = s;
3006 }
3007
3008 if (s)
3009 {
3010 if (s == symtab_list)
3011 symtab_list = s->next;
3012 else
3013 prev->next = s->next;
3014
3015 /* For now, queue a delete for all breakpoints, displays, etc., whether
3016 or not they depend on the symtab being freed. This should be
3017 changed so that only those data structures affected are deleted. */
3018
3019 /* But don't delete anything if the symtab is empty.
3020 This test is necessary due to a bug in "dbxread.c" that
3021 causes empty symtabs to be created for N_SO symbols that
3022 contain the pathname of the object file. (This problem
3023 has been fixed in GDB 3.9x). */
3024
3025 bv = BLOCKVECTOR (s);
3026 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3027 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3028 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3029 {
3030 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3031 name);
3032 clear_symtab_users_queued++;
3033 make_cleanup (clear_symtab_users_once, 0);
3034 blewit = 1;
3035 }
3036 else
3037 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3038 name);
3039
3040 free_symtab (s);
3041 }
3042 else
3043 {
3044 /* It is still possible that some breakpoints will be affected
3045 even though no symtab was found, since the file might have
3046 been compiled without debugging, and hence not be associated
3047 with a symtab. In order to handle this correctly, we would need
3048 to keep a list of text address ranges for undebuggable files.
3049 For now, we do nothing, since this is a fairly obscure case. */
3050 ;
3051 }
3052
3053 /* FIXME, what about the minimal symbol table? */
3054 return blewit;
3055 #else
3056 return (0);
3057 #endif
3058 }
3059 \f
3060 /* Allocate and partially fill a partial symtab. It will be
3061 completely filled at the end of the symbol list.
3062
3063 FILENAME is the name of the symbol-file we are reading from. */
3064
3065 struct partial_symtab *
3066 start_psymtab_common (struct objfile *objfile,
3067 struct section_offsets *section_offsets, char *filename,
3068 CORE_ADDR textlow, struct partial_symbol **global_syms,
3069 struct partial_symbol **static_syms)
3070 {
3071 struct partial_symtab *psymtab;
3072
3073 psymtab = allocate_psymtab (filename, objfile);
3074 psymtab->section_offsets = section_offsets;
3075 psymtab->textlow = textlow;
3076 psymtab->texthigh = psymtab->textlow; /* default */
3077 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3078 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3079 return (psymtab);
3080 }
3081 \f
3082 /* Add a symbol with a long value to a psymtab.
3083 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3084 Return the partial symbol that has been added. */
3085
3086 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3087 symbol is so that callers can get access to the symbol's demangled
3088 name, which they don't have any cheap way to determine otherwise.
3089 (Currenly, dwarf2read.c is the only file who uses that information,
3090 though it's possible that other readers might in the future.)
3091 Elena wasn't thrilled about that, and I don't blame her, but we
3092 couldn't come up with a better way to get that information. If
3093 it's needed in other situations, we could consider breaking up
3094 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3095 cache. */
3096
3097 const struct partial_symbol *
3098 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3099 enum address_class class,
3100 struct psymbol_allocation_list *list, long val, /* Value as a long */
3101 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3102 enum language language, struct objfile *objfile)
3103 {
3104 struct partial_symbol *psym;
3105 char *buf = alloca (namelength + 1);
3106 /* psymbol is static so that there will be no uninitialized gaps in the
3107 structure which might contain random data, causing cache misses in
3108 bcache. */
3109 static struct partial_symbol psymbol;
3110
3111 /* Create local copy of the partial symbol */
3112 memcpy (buf, name, namelength);
3113 buf[namelength] = '\0';
3114 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3115 if (val != 0)
3116 {
3117 SYMBOL_VALUE (&psymbol) = val;
3118 }
3119 else
3120 {
3121 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3122 }
3123 SYMBOL_SECTION (&psymbol) = 0;
3124 SYMBOL_LANGUAGE (&psymbol) = language;
3125 PSYMBOL_DOMAIN (&psymbol) = domain;
3126 PSYMBOL_CLASS (&psymbol) = class;
3127
3128 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3129
3130 /* Stash the partial symbol away in the cache */
3131 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3132 objfile->psymbol_cache);
3133
3134 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3135 if (list->next >= list->list + list->size)
3136 {
3137 extend_psymbol_list (list, objfile);
3138 }
3139 *list->next++ = psym;
3140 OBJSTAT (objfile, n_psyms++);
3141
3142 return psym;
3143 }
3144
3145 /* Initialize storage for partial symbols. */
3146
3147 void
3148 init_psymbol_list (struct objfile *objfile, int total_symbols)
3149 {
3150 /* Free any previously allocated psymbol lists. */
3151
3152 if (objfile->global_psymbols.list)
3153 {
3154 xfree (objfile->global_psymbols.list);
3155 }
3156 if (objfile->static_psymbols.list)
3157 {
3158 xfree (objfile->static_psymbols.list);
3159 }
3160
3161 /* Current best guess is that approximately a twentieth
3162 of the total symbols (in a debugging file) are global or static
3163 oriented symbols */
3164
3165 objfile->global_psymbols.size = total_symbols / 10;
3166 objfile->static_psymbols.size = total_symbols / 10;
3167
3168 if (objfile->global_psymbols.size > 0)
3169 {
3170 objfile->global_psymbols.next =
3171 objfile->global_psymbols.list = (struct partial_symbol **)
3172 xmalloc ((objfile->global_psymbols.size
3173 * sizeof (struct partial_symbol *)));
3174 }
3175 if (objfile->static_psymbols.size > 0)
3176 {
3177 objfile->static_psymbols.next =
3178 objfile->static_psymbols.list = (struct partial_symbol **)
3179 xmalloc ((objfile->static_psymbols.size
3180 * sizeof (struct partial_symbol *)));
3181 }
3182 }
3183
3184 /* OVERLAYS:
3185 The following code implements an abstraction for debugging overlay sections.
3186
3187 The target model is as follows:
3188 1) The gnu linker will permit multiple sections to be mapped into the
3189 same VMA, each with its own unique LMA (or load address).
3190 2) It is assumed that some runtime mechanism exists for mapping the
3191 sections, one by one, from the load address into the VMA address.
3192 3) This code provides a mechanism for gdb to keep track of which
3193 sections should be considered to be mapped from the VMA to the LMA.
3194 This information is used for symbol lookup, and memory read/write.
3195 For instance, if a section has been mapped then its contents
3196 should be read from the VMA, otherwise from the LMA.
3197
3198 Two levels of debugger support for overlays are available. One is
3199 "manual", in which the debugger relies on the user to tell it which
3200 overlays are currently mapped. This level of support is
3201 implemented entirely in the core debugger, and the information about
3202 whether a section is mapped is kept in the objfile->obj_section table.
3203
3204 The second level of support is "automatic", and is only available if
3205 the target-specific code provides functionality to read the target's
3206 overlay mapping table, and translate its contents for the debugger
3207 (by updating the mapped state information in the obj_section tables).
3208
3209 The interface is as follows:
3210 User commands:
3211 overlay map <name> -- tell gdb to consider this section mapped
3212 overlay unmap <name> -- tell gdb to consider this section unmapped
3213 overlay list -- list the sections that GDB thinks are mapped
3214 overlay read-target -- get the target's state of what's mapped
3215 overlay off/manual/auto -- set overlay debugging state
3216 Functional interface:
3217 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3218 section, return that section.
3219 find_pc_overlay(pc): find any overlay section that contains
3220 the pc, either in its VMA or its LMA
3221 overlay_is_mapped(sect): true if overlay is marked as mapped
3222 section_is_overlay(sect): true if section's VMA != LMA
3223 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3224 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3225 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3226 overlay_mapped_address(...): map an address from section's LMA to VMA
3227 overlay_unmapped_address(...): map an address from section's VMA to LMA
3228 symbol_overlayed_address(...): Return a "current" address for symbol:
3229 either in VMA or LMA depending on whether
3230 the symbol's section is currently mapped
3231 */
3232
3233 /* Overlay debugging state: */
3234
3235 enum overlay_debugging_state overlay_debugging = ovly_off;
3236 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3237
3238 /* Function: section_is_overlay (SECTION)
3239 Returns true if SECTION has VMA not equal to LMA, ie.
3240 SECTION is loaded at an address different from where it will "run". */
3241
3242 int
3243 section_is_overlay (asection *section)
3244 {
3245 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3246
3247 if (overlay_debugging)
3248 if (section && section->lma != 0 &&
3249 section->vma != section->lma)
3250 return 1;
3251
3252 return 0;
3253 }
3254
3255 /* Function: overlay_invalidate_all (void)
3256 Invalidate the mapped state of all overlay sections (mark it as stale). */
3257
3258 static void
3259 overlay_invalidate_all (void)
3260 {
3261 struct objfile *objfile;
3262 struct obj_section *sect;
3263
3264 ALL_OBJSECTIONS (objfile, sect)
3265 if (section_is_overlay (sect->the_bfd_section))
3266 sect->ovly_mapped = -1;
3267 }
3268
3269 /* Function: overlay_is_mapped (SECTION)
3270 Returns true if section is an overlay, and is currently mapped.
3271 Private: public access is thru function section_is_mapped.
3272
3273 Access to the ovly_mapped flag is restricted to this function, so
3274 that we can do automatic update. If the global flag
3275 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3276 overlay_invalidate_all. If the mapped state of the particular
3277 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3278
3279 static int
3280 overlay_is_mapped (struct obj_section *osect)
3281 {
3282 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3283 return 0;
3284
3285 switch (overlay_debugging)
3286 {
3287 default:
3288 case ovly_off:
3289 return 0; /* overlay debugging off */
3290 case ovly_auto: /* overlay debugging automatic */
3291 /* Unles there is a gdbarch_overlay_update function,
3292 there's really nothing useful to do here (can't really go auto) */
3293 if (gdbarch_overlay_update_p (current_gdbarch))
3294 {
3295 if (overlay_cache_invalid)
3296 {
3297 overlay_invalidate_all ();
3298 overlay_cache_invalid = 0;
3299 }
3300 if (osect->ovly_mapped == -1)
3301 gdbarch_overlay_update (current_gdbarch, osect);
3302 }
3303 /* fall thru to manual case */
3304 case ovly_on: /* overlay debugging manual */
3305 return osect->ovly_mapped == 1;
3306 }
3307 }
3308
3309 /* Function: section_is_mapped
3310 Returns true if section is an overlay, and is currently mapped. */
3311
3312 int
3313 section_is_mapped (asection *section)
3314 {
3315 struct objfile *objfile;
3316 struct obj_section *osect;
3317
3318 if (overlay_debugging)
3319 if (section && section_is_overlay (section))
3320 ALL_OBJSECTIONS (objfile, osect)
3321 if (osect->the_bfd_section == section)
3322 return overlay_is_mapped (osect);
3323
3324 return 0;
3325 }
3326
3327 /* Function: pc_in_unmapped_range
3328 If PC falls into the lma range of SECTION, return true, else false. */
3329
3330 CORE_ADDR
3331 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3332 {
3333 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3334
3335 int size;
3336
3337 if (overlay_debugging)
3338 if (section && section_is_overlay (section))
3339 {
3340 size = bfd_get_section_size (section);
3341 if (section->lma <= pc && pc < section->lma + size)
3342 return 1;
3343 }
3344 return 0;
3345 }
3346
3347 /* Function: pc_in_mapped_range
3348 If PC falls into the vma range of SECTION, return true, else false. */
3349
3350 CORE_ADDR
3351 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3352 {
3353 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3354
3355 int size;
3356
3357 if (overlay_debugging)
3358 if (section && section_is_overlay (section))
3359 {
3360 size = bfd_get_section_size (section);
3361 if (section->vma <= pc && pc < section->vma + size)
3362 return 1;
3363 }
3364 return 0;
3365 }
3366
3367
3368 /* Return true if the mapped ranges of sections A and B overlap, false
3369 otherwise. */
3370 static int
3371 sections_overlap (asection *a, asection *b)
3372 {
3373 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3374
3375 CORE_ADDR a_start = a->vma;
3376 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3377 CORE_ADDR b_start = b->vma;
3378 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3379
3380 return (a_start < b_end && b_start < a_end);
3381 }
3382
3383 /* Function: overlay_unmapped_address (PC, SECTION)
3384 Returns the address corresponding to PC in the unmapped (load) range.
3385 May be the same as PC. */
3386
3387 CORE_ADDR
3388 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3389 {
3390 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3391
3392 if (overlay_debugging)
3393 if (section && section_is_overlay (section) &&
3394 pc_in_mapped_range (pc, section))
3395 return pc + section->lma - section->vma;
3396
3397 return pc;
3398 }
3399
3400 /* Function: overlay_mapped_address (PC, SECTION)
3401 Returns the address corresponding to PC in the mapped (runtime) range.
3402 May be the same as PC. */
3403
3404 CORE_ADDR
3405 overlay_mapped_address (CORE_ADDR pc, asection *section)
3406 {
3407 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3408
3409 if (overlay_debugging)
3410 if (section && section_is_overlay (section) &&
3411 pc_in_unmapped_range (pc, section))
3412 return pc + section->vma - section->lma;
3413
3414 return pc;
3415 }
3416
3417
3418 /* Function: symbol_overlayed_address
3419 Return one of two addresses (relative to the VMA or to the LMA),
3420 depending on whether the section is mapped or not. */
3421
3422 CORE_ADDR
3423 symbol_overlayed_address (CORE_ADDR address, asection *section)
3424 {
3425 if (overlay_debugging)
3426 {
3427 /* If the symbol has no section, just return its regular address. */
3428 if (section == 0)
3429 return address;
3430 /* If the symbol's section is not an overlay, just return its address */
3431 if (!section_is_overlay (section))
3432 return address;
3433 /* If the symbol's section is mapped, just return its address */
3434 if (section_is_mapped (section))
3435 return address;
3436 /*
3437 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3438 * then return its LOADED address rather than its vma address!!
3439 */
3440 return overlay_unmapped_address (address, section);
3441 }
3442 return address;
3443 }
3444
3445 /* Function: find_pc_overlay (PC)
3446 Return the best-match overlay section for PC:
3447 If PC matches a mapped overlay section's VMA, return that section.
3448 Else if PC matches an unmapped section's VMA, return that section.
3449 Else if PC matches an unmapped section's LMA, return that section. */
3450
3451 asection *
3452 find_pc_overlay (CORE_ADDR pc)
3453 {
3454 struct objfile *objfile;
3455 struct obj_section *osect, *best_match = NULL;
3456
3457 if (overlay_debugging)
3458 ALL_OBJSECTIONS (objfile, osect)
3459 if (section_is_overlay (osect->the_bfd_section))
3460 {
3461 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3462 {
3463 if (overlay_is_mapped (osect))
3464 return osect->the_bfd_section;
3465 else
3466 best_match = osect;
3467 }
3468 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3469 best_match = osect;
3470 }
3471 return best_match ? best_match->the_bfd_section : NULL;
3472 }
3473
3474 /* Function: find_pc_mapped_section (PC)
3475 If PC falls into the VMA address range of an overlay section that is
3476 currently marked as MAPPED, return that section. Else return NULL. */
3477
3478 asection *
3479 find_pc_mapped_section (CORE_ADDR pc)
3480 {
3481 struct objfile *objfile;
3482 struct obj_section *osect;
3483
3484 if (overlay_debugging)
3485 ALL_OBJSECTIONS (objfile, osect)
3486 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3487 overlay_is_mapped (osect))
3488 return osect->the_bfd_section;
3489
3490 return NULL;
3491 }
3492
3493 /* Function: list_overlays_command
3494 Print a list of mapped sections and their PC ranges */
3495
3496 void
3497 list_overlays_command (char *args, int from_tty)
3498 {
3499 int nmapped = 0;
3500 struct objfile *objfile;
3501 struct obj_section *osect;
3502
3503 if (overlay_debugging)
3504 ALL_OBJSECTIONS (objfile, osect)
3505 if (overlay_is_mapped (osect))
3506 {
3507 const char *name;
3508 bfd_vma lma, vma;
3509 int size;
3510
3511 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3512 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3513 size = bfd_get_section_size (osect->the_bfd_section);
3514 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3515
3516 printf_filtered ("Section %s, loaded at ", name);
3517 fputs_filtered (paddress (lma), gdb_stdout);
3518 puts_filtered (" - ");
3519 fputs_filtered (paddress (lma + size), gdb_stdout);
3520 printf_filtered (", mapped at ");
3521 fputs_filtered (paddress (vma), gdb_stdout);
3522 puts_filtered (" - ");
3523 fputs_filtered (paddress (vma + size), gdb_stdout);
3524 puts_filtered ("\n");
3525
3526 nmapped++;
3527 }
3528 if (nmapped == 0)
3529 printf_filtered (_("No sections are mapped.\n"));
3530 }
3531
3532 /* Function: map_overlay_command
3533 Mark the named section as mapped (ie. residing at its VMA address). */
3534
3535 void
3536 map_overlay_command (char *args, int from_tty)
3537 {
3538 struct objfile *objfile, *objfile2;
3539 struct obj_section *sec, *sec2;
3540 asection *bfdsec;
3541
3542 if (!overlay_debugging)
3543 error (_("\
3544 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3545 the 'overlay manual' command."));
3546
3547 if (args == 0 || *args == 0)
3548 error (_("Argument required: name of an overlay section"));
3549
3550 /* First, find a section matching the user supplied argument */
3551 ALL_OBJSECTIONS (objfile, sec)
3552 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3553 {
3554 /* Now, check to see if the section is an overlay. */
3555 bfdsec = sec->the_bfd_section;
3556 if (!section_is_overlay (bfdsec))
3557 continue; /* not an overlay section */
3558
3559 /* Mark the overlay as "mapped" */
3560 sec->ovly_mapped = 1;
3561
3562 /* Next, make a pass and unmap any sections that are
3563 overlapped by this new section: */
3564 ALL_OBJSECTIONS (objfile2, sec2)
3565 if (sec2->ovly_mapped
3566 && sec != sec2
3567 && sec->the_bfd_section != sec2->the_bfd_section
3568 && sections_overlap (sec->the_bfd_section,
3569 sec2->the_bfd_section))
3570 {
3571 if (info_verbose)
3572 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3573 bfd_section_name (objfile->obfd,
3574 sec2->the_bfd_section));
3575 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3576 }
3577 return;
3578 }
3579 error (_("No overlay section called %s"), args);
3580 }
3581
3582 /* Function: unmap_overlay_command
3583 Mark the overlay section as unmapped
3584 (ie. resident in its LMA address range, rather than the VMA range). */
3585
3586 void
3587 unmap_overlay_command (char *args, int from_tty)
3588 {
3589 struct objfile *objfile;
3590 struct obj_section *sec;
3591
3592 if (!overlay_debugging)
3593 error (_("\
3594 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3595 the 'overlay manual' command."));
3596
3597 if (args == 0 || *args == 0)
3598 error (_("Argument required: name of an overlay section"));
3599
3600 /* First, find a section matching the user supplied argument */
3601 ALL_OBJSECTIONS (objfile, sec)
3602 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3603 {
3604 if (!sec->ovly_mapped)
3605 error (_("Section %s is not mapped"), args);
3606 sec->ovly_mapped = 0;
3607 return;
3608 }
3609 error (_("No overlay section called %s"), args);
3610 }
3611
3612 /* Function: overlay_auto_command
3613 A utility command to turn on overlay debugging.
3614 Possibly this should be done via a set/show command. */
3615
3616 static void
3617 overlay_auto_command (char *args, int from_tty)
3618 {
3619 overlay_debugging = ovly_auto;
3620 enable_overlay_breakpoints ();
3621 if (info_verbose)
3622 printf_unfiltered (_("Automatic overlay debugging enabled."));
3623 }
3624
3625 /* Function: overlay_manual_command
3626 A utility command to turn on overlay debugging.
3627 Possibly this should be done via a set/show command. */
3628
3629 static void
3630 overlay_manual_command (char *args, int from_tty)
3631 {
3632 overlay_debugging = ovly_on;
3633 disable_overlay_breakpoints ();
3634 if (info_verbose)
3635 printf_unfiltered (_("Overlay debugging enabled."));
3636 }
3637
3638 /* Function: overlay_off_command
3639 A utility command to turn on overlay debugging.
3640 Possibly this should be done via a set/show command. */
3641
3642 static void
3643 overlay_off_command (char *args, int from_tty)
3644 {
3645 overlay_debugging = ovly_off;
3646 disable_overlay_breakpoints ();
3647 if (info_verbose)
3648 printf_unfiltered (_("Overlay debugging disabled."));
3649 }
3650
3651 static void
3652 overlay_load_command (char *args, int from_tty)
3653 {
3654 if (gdbarch_overlay_update_p (current_gdbarch))
3655 gdbarch_overlay_update (current_gdbarch, NULL);
3656 else
3657 error (_("This target does not know how to read its overlay state."));
3658 }
3659
3660 /* Function: overlay_command
3661 A place-holder for a mis-typed command */
3662
3663 /* Command list chain containing all defined "overlay" subcommands. */
3664 struct cmd_list_element *overlaylist;
3665
3666 static void
3667 overlay_command (char *args, int from_tty)
3668 {
3669 printf_unfiltered
3670 ("\"overlay\" must be followed by the name of an overlay command.\n");
3671 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3672 }
3673
3674
3675 /* Target Overlays for the "Simplest" overlay manager:
3676
3677 This is GDB's default target overlay layer. It works with the
3678 minimal overlay manager supplied as an example by Cygnus. The
3679 entry point is via a function pointer "gdbarch_overlay_update",
3680 so targets that use a different runtime overlay manager can
3681 substitute their own overlay_update function and take over the
3682 function pointer.
3683
3684 The overlay_update function pokes around in the target's data structures
3685 to see what overlays are mapped, and updates GDB's overlay mapping with
3686 this information.
3687
3688 In this simple implementation, the target data structures are as follows:
3689 unsigned _novlys; /# number of overlay sections #/
3690 unsigned _ovly_table[_novlys][4] = {
3691 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3692 {..., ..., ..., ...},
3693 }
3694 unsigned _novly_regions; /# number of overlay regions #/
3695 unsigned _ovly_region_table[_novly_regions][3] = {
3696 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3697 {..., ..., ...},
3698 }
3699 These functions will attempt to update GDB's mappedness state in the
3700 symbol section table, based on the target's mappedness state.
3701
3702 To do this, we keep a cached copy of the target's _ovly_table, and
3703 attempt to detect when the cached copy is invalidated. The main
3704 entry point is "simple_overlay_update(SECT), which looks up SECT in
3705 the cached table and re-reads only the entry for that section from
3706 the target (whenever possible).
3707 */
3708
3709 /* Cached, dynamically allocated copies of the target data structures: */
3710 static unsigned (*cache_ovly_table)[4] = 0;
3711 #if 0
3712 static unsigned (*cache_ovly_region_table)[3] = 0;
3713 #endif
3714 static unsigned cache_novlys = 0;
3715 #if 0
3716 static unsigned cache_novly_regions = 0;
3717 #endif
3718 static CORE_ADDR cache_ovly_table_base = 0;
3719 #if 0
3720 static CORE_ADDR cache_ovly_region_table_base = 0;
3721 #endif
3722 enum ovly_index
3723 {
3724 VMA, SIZE, LMA, MAPPED
3725 };
3726 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3727 / TARGET_CHAR_BIT)
3728
3729 /* Throw away the cached copy of _ovly_table */
3730 static void
3731 simple_free_overlay_table (void)
3732 {
3733 if (cache_ovly_table)
3734 xfree (cache_ovly_table);
3735 cache_novlys = 0;
3736 cache_ovly_table = NULL;
3737 cache_ovly_table_base = 0;
3738 }
3739
3740 #if 0
3741 /* Throw away the cached copy of _ovly_region_table */
3742 static void
3743 simple_free_overlay_region_table (void)
3744 {
3745 if (cache_ovly_region_table)
3746 xfree (cache_ovly_region_table);
3747 cache_novly_regions = 0;
3748 cache_ovly_region_table = NULL;
3749 cache_ovly_region_table_base = 0;
3750 }
3751 #endif
3752
3753 /* Read an array of ints from the target into a local buffer.
3754 Convert to host order. int LEN is number of ints */
3755 static void
3756 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3757 {
3758 /* FIXME (alloca): Not safe if array is very large. */
3759 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3760 int i;
3761
3762 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3763 for (i = 0; i < len; i++)
3764 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3765 TARGET_LONG_BYTES);
3766 }
3767
3768 /* Find and grab a copy of the target _ovly_table
3769 (and _novlys, which is needed for the table's size) */
3770 static int
3771 simple_read_overlay_table (void)
3772 {
3773 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3774
3775 simple_free_overlay_table ();
3776 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3777 if (! novlys_msym)
3778 {
3779 error (_("Error reading inferior's overlay table: "
3780 "couldn't find `_novlys' variable\n"
3781 "in inferior. Use `overlay manual' mode."));
3782 return 0;
3783 }
3784
3785 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3786 if (! ovly_table_msym)
3787 {
3788 error (_("Error reading inferior's overlay table: couldn't find "
3789 "`_ovly_table' array\n"
3790 "in inferior. Use `overlay manual' mode."));
3791 return 0;
3792 }
3793
3794 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3795 cache_ovly_table
3796 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3797 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3798 read_target_long_array (cache_ovly_table_base,
3799 (unsigned int *) cache_ovly_table,
3800 cache_novlys * 4);
3801
3802 return 1; /* SUCCESS */
3803 }
3804
3805 #if 0
3806 /* Find and grab a copy of the target _ovly_region_table
3807 (and _novly_regions, which is needed for the table's size) */
3808 static int
3809 simple_read_overlay_region_table (void)
3810 {
3811 struct minimal_symbol *msym;
3812
3813 simple_free_overlay_region_table ();
3814 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3815 if (msym != NULL)
3816 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3817 else
3818 return 0; /* failure */
3819 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3820 if (cache_ovly_region_table != NULL)
3821 {
3822 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3823 if (msym != NULL)
3824 {
3825 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3826 read_target_long_array (cache_ovly_region_table_base,
3827 (unsigned int *) cache_ovly_region_table,
3828 cache_novly_regions * 3);
3829 }
3830 else
3831 return 0; /* failure */
3832 }
3833 else
3834 return 0; /* failure */
3835 return 1; /* SUCCESS */
3836 }
3837 #endif
3838
3839 /* Function: simple_overlay_update_1
3840 A helper function for simple_overlay_update. Assuming a cached copy
3841 of _ovly_table exists, look through it to find an entry whose vma,
3842 lma and size match those of OSECT. Re-read the entry and make sure
3843 it still matches OSECT (else the table may no longer be valid).
3844 Set OSECT's mapped state to match the entry. Return: 1 for
3845 success, 0 for failure. */
3846
3847 static int
3848 simple_overlay_update_1 (struct obj_section *osect)
3849 {
3850 int i, size;
3851 bfd *obfd = osect->objfile->obfd;
3852 asection *bsect = osect->the_bfd_section;
3853
3854 size = bfd_get_section_size (osect->the_bfd_section);
3855 for (i = 0; i < cache_novlys; i++)
3856 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3857 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3858 /* && cache_ovly_table[i][SIZE] == size */ )
3859 {
3860 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3861 (unsigned int *) cache_ovly_table[i], 4);
3862 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3863 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3864 /* && cache_ovly_table[i][SIZE] == size */ )
3865 {
3866 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3867 return 1;
3868 }
3869 else /* Warning! Warning! Target's ovly table has changed! */
3870 return 0;
3871 }
3872 return 0;
3873 }
3874
3875 /* Function: simple_overlay_update
3876 If OSECT is NULL, then update all sections' mapped state
3877 (after re-reading the entire target _ovly_table).
3878 If OSECT is non-NULL, then try to find a matching entry in the
3879 cached ovly_table and update only OSECT's mapped state.
3880 If a cached entry can't be found or the cache isn't valid, then
3881 re-read the entire cache, and go ahead and update all sections. */
3882
3883 void
3884 simple_overlay_update (struct obj_section *osect)
3885 {
3886 struct objfile *objfile;
3887
3888 /* Were we given an osect to look up? NULL means do all of them. */
3889 if (osect)
3890 /* Have we got a cached copy of the target's overlay table? */
3891 if (cache_ovly_table != NULL)
3892 /* Does its cached location match what's currently in the symtab? */
3893 if (cache_ovly_table_base ==
3894 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3895 /* Then go ahead and try to look up this single section in the cache */
3896 if (simple_overlay_update_1 (osect))
3897 /* Found it! We're done. */
3898 return;
3899
3900 /* Cached table no good: need to read the entire table anew.
3901 Or else we want all the sections, in which case it's actually
3902 more efficient to read the whole table in one block anyway. */
3903
3904 if (! simple_read_overlay_table ())
3905 return;
3906
3907 /* Now may as well update all sections, even if only one was requested. */
3908 ALL_OBJSECTIONS (objfile, osect)
3909 if (section_is_overlay (osect->the_bfd_section))
3910 {
3911 int i, size;
3912 bfd *obfd = osect->objfile->obfd;
3913 asection *bsect = osect->the_bfd_section;
3914
3915 size = bfd_get_section_size (bsect);
3916 for (i = 0; i < cache_novlys; i++)
3917 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3918 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3919 /* && cache_ovly_table[i][SIZE] == size */ )
3920 { /* obj_section matches i'th entry in ovly_table */
3921 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3922 break; /* finished with inner for loop: break out */
3923 }
3924 }
3925 }
3926
3927 /* Set the output sections and output offsets for section SECTP in
3928 ABFD. The relocation code in BFD will read these offsets, so we
3929 need to be sure they're initialized. We map each section to itself,
3930 with no offset; this means that SECTP->vma will be honored. */
3931
3932 static void
3933 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3934 {
3935 sectp->output_section = sectp;
3936 sectp->output_offset = 0;
3937 }
3938
3939 /* Relocate the contents of a debug section SECTP in ABFD. The
3940 contents are stored in BUF if it is non-NULL, or returned in a
3941 malloc'd buffer otherwise.
3942
3943 For some platforms and debug info formats, shared libraries contain
3944 relocations against the debug sections (particularly for DWARF-2;
3945 one affected platform is PowerPC GNU/Linux, although it depends on
3946 the version of the linker in use). Also, ELF object files naturally
3947 have unresolved relocations for their debug sections. We need to apply
3948 the relocations in order to get the locations of symbols correct. */
3949
3950 bfd_byte *
3951 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3952 {
3953 /* We're only interested in debugging sections with relocation
3954 information. */
3955 if ((sectp->flags & SEC_RELOC) == 0)
3956 return NULL;
3957 if ((sectp->flags & SEC_DEBUGGING) == 0)
3958 return NULL;
3959
3960 /* We will handle section offsets properly elsewhere, so relocate as if
3961 all sections begin at 0. */
3962 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3963
3964 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3965 }
3966
3967 struct symfile_segment_data *
3968 get_symfile_segment_data (bfd *abfd)
3969 {
3970 struct sym_fns *sf = find_sym_fns (abfd);
3971
3972 if (sf == NULL)
3973 return NULL;
3974
3975 return sf->sym_segments (abfd);
3976 }
3977
3978 void
3979 free_symfile_segment_data (struct symfile_segment_data *data)
3980 {
3981 xfree (data->segment_bases);
3982 xfree (data->segment_sizes);
3983 xfree (data->segment_info);
3984 xfree (data);
3985 }
3986
3987
3988 /* Given:
3989 - DATA, containing segment addresses from the object file ABFD, and
3990 the mapping from ABFD's sections onto the segments that own them,
3991 and
3992 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3993 segment addresses reported by the target,
3994 store the appropriate offsets for each section in OFFSETS.
3995
3996 If there are fewer entries in SEGMENT_BASES than there are segments
3997 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3998
3999 If there are more, then verify that all the excess addresses are
4000 the same as the last legitimate one, and then ignore them. This
4001 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4002 only a single segment. */
4003 int
4004 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4005 struct section_offsets *offsets,
4006 int num_segment_bases,
4007 const CORE_ADDR *segment_bases)
4008 {
4009 int i;
4010 asection *sect;
4011
4012 /* It doesn't make sense to call this function unless you have some
4013 segment base addresses. */
4014 gdb_assert (segment_bases > 0);
4015
4016 /* If we do not have segment mappings for the object file, we
4017 can not relocate it by segments. */
4018 gdb_assert (data != NULL);
4019 gdb_assert (data->num_segments > 0);
4020
4021 /* Check any extra SEGMENT_BASES entries. */
4022 if (num_segment_bases > data->num_segments)
4023 for (i = data->num_segments; i < num_segment_bases; i++)
4024 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4025 return 0;
4026
4027 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4028 {
4029 int which = data->segment_info[i];
4030
4031 gdb_assert (0 <= which && which <= data->num_segments);
4032
4033 /* Don't bother computing offsets for sections that aren't
4034 loaded as part of any segment. */
4035 if (! which)
4036 continue;
4037
4038 /* Use the last SEGMENT_BASES entry as the address of any extra
4039 segments mentioned in DATA->segment_info. */
4040 if (which > num_segment_bases)
4041 which = num_segment_bases;
4042
4043 offsets->offsets[i] = (segment_bases[which - 1]
4044 - data->segment_bases[which - 1]);
4045 }
4046
4047 return 1;
4048 }
4049
4050 static void
4051 symfile_find_segment_sections (struct objfile *objfile)
4052 {
4053 bfd *abfd = objfile->obfd;
4054 int i;
4055 asection *sect;
4056 struct symfile_segment_data *data;
4057
4058 data = get_symfile_segment_data (objfile->obfd);
4059 if (data == NULL)
4060 return;
4061
4062 if (data->num_segments != 1 && data->num_segments != 2)
4063 {
4064 free_symfile_segment_data (data);
4065 return;
4066 }
4067
4068 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4069 {
4070 CORE_ADDR vma;
4071 int which = data->segment_info[i];
4072
4073 if (which == 1)
4074 {
4075 if (objfile->sect_index_text == -1)
4076 objfile->sect_index_text = sect->index;
4077
4078 if (objfile->sect_index_rodata == -1)
4079 objfile->sect_index_rodata = sect->index;
4080 }
4081 else if (which == 2)
4082 {
4083 if (objfile->sect_index_data == -1)
4084 objfile->sect_index_data = sect->index;
4085
4086 if (objfile->sect_index_bss == -1)
4087 objfile->sect_index_bss = sect->index;
4088 }
4089 }
4090
4091 free_symfile_segment_data (data);
4092 }
4093
4094 void
4095 _initialize_symfile (void)
4096 {
4097 struct cmd_list_element *c;
4098
4099 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4100 Load symbol table from executable file FILE.\n\
4101 The `file' command can also load symbol tables, as well as setting the file\n\
4102 to execute."), &cmdlist);
4103 set_cmd_completer (c, filename_completer);
4104
4105 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4106 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4107 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4108 ADDR is the starting address of the file's text.\n\
4109 The optional arguments are section-name section-address pairs and\n\
4110 should be specified if the data and bss segments are not contiguous\n\
4111 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4112 &cmdlist);
4113 set_cmd_completer (c, filename_completer);
4114
4115 c = add_cmd ("add-shared-symbol-files", class_files,
4116 add_shared_symbol_files_command, _("\
4117 Load the symbols from shared objects in the dynamic linker's link map."),
4118 &cmdlist);
4119 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4120 &cmdlist);
4121
4122 c = add_cmd ("load", class_files, load_command, _("\
4123 Dynamically load FILE into the running program, and record its symbols\n\
4124 for access from GDB.\n\
4125 A load OFFSET may also be given."), &cmdlist);
4126 set_cmd_completer (c, filename_completer);
4127
4128 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4129 &symbol_reloading, _("\
4130 Set dynamic symbol table reloading multiple times in one run."), _("\
4131 Show dynamic symbol table reloading multiple times in one run."), NULL,
4132 NULL,
4133 show_symbol_reloading,
4134 &setlist, &showlist);
4135
4136 add_prefix_cmd ("overlay", class_support, overlay_command,
4137 _("Commands for debugging overlays."), &overlaylist,
4138 "overlay ", 0, &cmdlist);
4139
4140 add_com_alias ("ovly", "overlay", class_alias, 1);
4141 add_com_alias ("ov", "overlay", class_alias, 1);
4142
4143 add_cmd ("map-overlay", class_support, map_overlay_command,
4144 _("Assert that an overlay section is mapped."), &overlaylist);
4145
4146 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4147 _("Assert that an overlay section is unmapped."), &overlaylist);
4148
4149 add_cmd ("list-overlays", class_support, list_overlays_command,
4150 _("List mappings of overlay sections."), &overlaylist);
4151
4152 add_cmd ("manual", class_support, overlay_manual_command,
4153 _("Enable overlay debugging."), &overlaylist);
4154 add_cmd ("off", class_support, overlay_off_command,
4155 _("Disable overlay debugging."), &overlaylist);
4156 add_cmd ("auto", class_support, overlay_auto_command,
4157 _("Enable automatic overlay debugging."), &overlaylist);
4158 add_cmd ("load-target", class_support, overlay_load_command,
4159 _("Read the overlay mapping state from the target."), &overlaylist);
4160
4161 /* Filename extension to source language lookup table: */
4162 init_filename_language_table ();
4163 add_setshow_string_noescape_cmd ("extension-language", class_files,
4164 &ext_args, _("\
4165 Set mapping between filename extension and source language."), _("\
4166 Show mapping between filename extension and source language."), _("\
4167 Usage: set extension-language .foo bar"),
4168 set_ext_lang_command,
4169 show_ext_args,
4170 &setlist, &showlist);
4171
4172 add_info ("extensions", info_ext_lang_command,
4173 _("All filename extensions associated with a source language."));
4174
4175 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4176 &debug_file_directory, _("\
4177 Set the directory where separate debug symbols are searched for."), _("\
4178 Show the directory where separate debug symbols are searched for."), _("\
4179 Separate debug symbols are first searched for in the same\n\
4180 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4181 and lastly at the path of the directory of the binary with\n\
4182 the global debug-file directory prepended."),
4183 NULL,
4184 show_debug_file_directory,
4185 &setlist, &showlist);
4186 }
This page took 0.130112 seconds and 4 git commands to generate.