63dd4b3ee008952dda2eed5dbe9b6d2d38df5cf3
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63 #ifndef O_BINARY
64 #define O_BINARY 0
65 #endif
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75 void (*deprecated_target_new_objfile_hook) (struct objfile *);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void set_initial_language (void);
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 static void add_shared_symbol_files_command (char *, int);
102
103 static void reread_separate_symbols (struct objfile *objfile);
104
105 static void cashier_psymtab (struct partial_symtab *);
106
107 bfd *symfile_bfd_open (char *);
108
109 int get_section_index (struct objfile *, char *);
110
111 static void find_sym_fns (struct objfile *);
112
113 static void decrement_reading_symtab (void *);
114
115 static void overlay_invalidate_all (void);
116
117 static int overlay_is_mapped (struct obj_section *);
118
119 void list_overlays_command (char *, int);
120
121 void map_overlay_command (char *, int);
122
123 void unmap_overlay_command (char *, int);
124
125 static void overlay_auto_command (char *, int);
126
127 static void overlay_manual_command (char *, int);
128
129 static void overlay_off_command (char *, int);
130
131 static void overlay_load_command (char *, int);
132
133 static void overlay_command (char *, int);
134
135 static void simple_free_overlay_table (void);
136
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138
139 static int simple_read_overlay_table (void);
140
141 static int simple_overlay_update_1 (struct obj_section *);
142
143 static void add_filename_language (char *ext, enum language lang);
144
145 static void info_ext_lang_command (char *args, int from_tty);
146
147 static char *find_separate_debug_file (struct objfile *objfile);
148
149 static void init_filename_language_table (void);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
460 }
461
462 /* The arguments to place_section. */
463
464 struct place_section_arg
465 {
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468 };
469
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473 void
474 place_section (bfd *abfd, asection *sect, void *obj)
475 {
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479
480 /* We are only interested in loadable sections. */
481 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
482 return;
483
484 /* If the user specified an offset, honor it. */
485 if (offsets[sect->index] != 0)
486 return;
487
488 /* Otherwise, let's try to find a place for the section. */
489 do {
490 asection *cur_sec;
491 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
492
493 start_addr = (arg->lowest + align - 1) & -align;
494 done = 1;
495
496 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
497 {
498 int indx = cur_sec->index;
499 CORE_ADDR cur_offset;
500
501 /* We don't need to compare against ourself. */
502 if (cur_sec == sect)
503 continue;
504
505 /* We can only conflict with loadable sections. */
506 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
507 continue;
508
509 /* We do not expect this to happen; just ignore sections in a
510 relocatable file with an assigned VMA. */
511 if (bfd_section_vma (abfd, cur_sec) != 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 continue;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537
538 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
539 }
540
541 /* Parse the user's idea of an offset for dynamic linking, into our idea
542 of how to represent it for fast symbol reading. This is the default
543 version of the sym_fns.sym_offsets function for symbol readers that
544 don't need to do anything special. It allocates a section_offsets table
545 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
546
547 void
548 default_symfile_offsets (struct objfile *objfile,
549 struct section_addr_info *addrs)
550 {
551 int i;
552
553 objfile->num_sections = bfd_count_sections (objfile->obfd);
554 objfile->section_offsets = (struct section_offsets *)
555 obstack_alloc (&objfile->objfile_obstack,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557 memset (objfile->section_offsets, 0,
558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559
560 /* Now calculate offsets for section that were specified by the
561 caller. */
562 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
563 {
564 struct other_sections *osp ;
565
566 osp = &addrs->other[i] ;
567 if (osp->addr == 0)
568 continue;
569
570 /* Record all sections in offsets */
571 /* The section_offsets in the objfile are here filled in using
572 the BFD index. */
573 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
574 }
575
576 /* For relocatable files, all loadable sections will start at zero.
577 The zero is meaningless, so try to pick arbitrary addresses such
578 that no loadable sections overlap. This algorithm is quadratic,
579 but the number of sections in a single object file is generally
580 small. */
581 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
582 {
583 struct place_section_arg arg;
584 arg.offsets = objfile->section_offsets;
585 arg.lowest = 0;
586 bfd_map_over_sections (objfile->obfd, place_section, &arg);
587 }
588
589 /* Remember the bfd indexes for the .text, .data, .bss and
590 .rodata sections. */
591 init_objfile_sect_indices (objfile);
592 }
593
594
595 /* Process a symbol file, as either the main file or as a dynamically
596 loaded file.
597
598 OBJFILE is where the symbols are to be read from.
599
600 ADDRS is the list of section load addresses. If the user has given
601 an 'add-symbol-file' command, then this is the list of offsets and
602 addresses he or she provided as arguments to the command; or, if
603 we're handling a shared library, these are the actual addresses the
604 sections are loaded at, according to the inferior's dynamic linker
605 (as gleaned by GDB's shared library code). We convert each address
606 into an offset from the section VMA's as it appears in the object
607 file, and then call the file's sym_offsets function to convert this
608 into a format-specific offset table --- a `struct section_offsets'.
609 If ADDRS is non-zero, OFFSETS must be zero.
610
611 OFFSETS is a table of section offsets already in the right
612 format-specific representation. NUM_OFFSETS is the number of
613 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
614 assume this is the proper table the call to sym_offsets described
615 above would produce. Instead of calling sym_offsets, we just dump
616 it right into objfile->section_offsets. (When we're re-reading
617 symbols from an objfile, we don't have the original load address
618 list any more; all we have is the section offset table.) If
619 OFFSETS is non-zero, ADDRS must be zero.
620
621 MAINLINE is nonzero if this is the main symbol file, or zero if
622 it's an extra symbol file such as dynamically loaded code.
623
624 VERBO is nonzero if the caller has printed a verbose message about
625 the symbol reading (and complaints can be more terse about it). */
626
627 void
628 syms_from_objfile (struct objfile *objfile,
629 struct section_addr_info *addrs,
630 struct section_offsets *offsets,
631 int num_offsets,
632 int mainline,
633 int verbo)
634 {
635 struct section_addr_info *local_addr = NULL;
636 struct cleanup *old_chain;
637
638 gdb_assert (! (addrs && offsets));
639
640 init_entry_point_info (objfile);
641 find_sym_fns (objfile);
642
643 if (objfile->sf == NULL)
644 return; /* No symbols. */
645
646 /* Make sure that partially constructed symbol tables will be cleaned up
647 if an error occurs during symbol reading. */
648 old_chain = make_cleanup_free_objfile (objfile);
649
650 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
651 list. We now establish the convention that an addr of zero means
652 no load address was specified. */
653 if (! addrs && ! offsets)
654 {
655 local_addr
656 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
657 make_cleanup (xfree, local_addr);
658 addrs = local_addr;
659 }
660
661 /* Now either addrs or offsets is non-zero. */
662
663 if (mainline)
664 {
665 /* We will modify the main symbol table, make sure that all its users
666 will be cleaned up if an error occurs during symbol reading. */
667 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
668
669 /* Since no error yet, throw away the old symbol table. */
670
671 if (symfile_objfile != NULL)
672 {
673 free_objfile (symfile_objfile);
674 symfile_objfile = NULL;
675 }
676
677 /* Currently we keep symbols from the add-symbol-file command.
678 If the user wants to get rid of them, they should do "symbol-file"
679 without arguments first. Not sure this is the best behavior
680 (PR 2207). */
681
682 (*objfile->sf->sym_new_init) (objfile);
683 }
684
685 /* Convert addr into an offset rather than an absolute address.
686 We find the lowest address of a loaded segment in the objfile,
687 and assume that <addr> is where that got loaded.
688
689 We no longer warn if the lowest section is not a text segment (as
690 happens for the PA64 port. */
691 if (!mainline && addrs && addrs->other[0].name)
692 {
693 asection *lower_sect;
694 asection *sect;
695 CORE_ADDR lower_offset;
696 int i;
697
698 /* Find lowest loadable section to be used as starting point for
699 continguous sections. FIXME!! won't work without call to find
700 .text first, but this assumes text is lowest section. */
701 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
702 if (lower_sect == NULL)
703 bfd_map_over_sections (objfile->obfd, find_lowest_section,
704 &lower_sect);
705 if (lower_sect == NULL)
706 warning (_("no loadable sections found in added symbol-file %s"),
707 objfile->name);
708 else
709 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
710 warning (_("Lowest section in %s is %s at %s"),
711 objfile->name,
712 bfd_section_name (objfile->obfd, lower_sect),
713 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
714 if (lower_sect != NULL)
715 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
716 else
717 lower_offset = 0;
718
719 /* Calculate offsets for the loadable sections.
720 FIXME! Sections must be in order of increasing loadable section
721 so that contiguous sections can use the lower-offset!!!
722
723 Adjust offsets if the segments are not contiguous.
724 If the section is contiguous, its offset should be set to
725 the offset of the highest loadable section lower than it
726 (the loadable section directly below it in memory).
727 this_offset = lower_offset = lower_addr - lower_orig_addr */
728
729 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
730 {
731 if (addrs->other[i].addr != 0)
732 {
733 sect = bfd_get_section_by_name (objfile->obfd,
734 addrs->other[i].name);
735 if (sect)
736 {
737 addrs->other[i].addr
738 -= bfd_section_vma (objfile->obfd, sect);
739 lower_offset = addrs->other[i].addr;
740 /* This is the index used by BFD. */
741 addrs->other[i].sectindex = sect->index ;
742 }
743 else
744 {
745 warning (_("section %s not found in %s"),
746 addrs->other[i].name,
747 objfile->name);
748 addrs->other[i].addr = 0;
749 }
750 }
751 else
752 addrs->other[i].addr = lower_offset;
753 }
754 }
755
756 /* Initialize symbol reading routines for this objfile, allow complaints to
757 appear for this new file, and record how verbose to be, then do the
758 initial symbol reading for this file. */
759
760 (*objfile->sf->sym_init) (objfile);
761 clear_complaints (&symfile_complaints, 1, verbo);
762
763 if (addrs)
764 (*objfile->sf->sym_offsets) (objfile, addrs);
765 else
766 {
767 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
768
769 /* Just copy in the offset table directly as given to us. */
770 objfile->num_sections = num_offsets;
771 objfile->section_offsets
772 = ((struct section_offsets *)
773 obstack_alloc (&objfile->objfile_obstack, size));
774 memcpy (objfile->section_offsets, offsets, size);
775
776 init_objfile_sect_indices (objfile);
777 }
778
779 #ifndef DEPRECATED_IBM6000_TARGET
780 /* This is a SVR4/SunOS specific hack, I think. In any event, it
781 screws RS/6000. sym_offsets should be doing this sort of thing,
782 because it knows the mapping between bfd sections and
783 section_offsets. */
784 /* This is a hack. As far as I can tell, section offsets are not
785 target dependent. They are all set to addr with a couple of
786 exceptions. The exceptions are sysvr4 shared libraries, whose
787 offsets are kept in solib structures anyway and rs6000 xcoff
788 which handles shared libraries in a completely unique way.
789
790 Section offsets are built similarly, except that they are built
791 by adding addr in all cases because there is no clear mapping
792 from section_offsets into actual sections. Note that solib.c
793 has a different algorithm for finding section offsets.
794
795 These should probably all be collapsed into some target
796 independent form of shared library support. FIXME. */
797
798 if (addrs)
799 {
800 struct obj_section *s;
801
802 /* Map section offsets in "addr" back to the object's
803 sections by comparing the section names with bfd's
804 section names. Then adjust the section address by
805 the offset. */ /* for gdb/13815 */
806
807 ALL_OBJFILE_OSECTIONS (objfile, s)
808 {
809 CORE_ADDR s_addr = 0;
810 int i;
811
812 for (i = 0;
813 !s_addr && i < addrs->num_sections && addrs->other[i].name;
814 i++)
815 if (strcmp (bfd_section_name (s->objfile->obfd,
816 s->the_bfd_section),
817 addrs->other[i].name) == 0)
818 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
819
820 s->addr -= s->offset;
821 s->addr += s_addr;
822 s->endaddr -= s->offset;
823 s->endaddr += s_addr;
824 s->offset += s_addr;
825 }
826 }
827 #endif /* not DEPRECATED_IBM6000_TARGET */
828
829 (*objfile->sf->sym_read) (objfile, mainline);
830
831 /* Don't allow char * to have a typename (else would get caddr_t).
832 Ditto void *. FIXME: Check whether this is now done by all the
833 symbol readers themselves (many of them now do), and if so remove
834 it from here. */
835
836 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
837 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
838
839 /* Mark the objfile has having had initial symbol read attempted. Note
840 that this does not mean we found any symbols... */
841
842 objfile->flags |= OBJF_SYMS;
843
844 /* Discard cleanups as symbol reading was successful. */
845
846 discard_cleanups (old_chain);
847 }
848
849 /* Perform required actions after either reading in the initial
850 symbols for a new objfile, or mapping in the symbols from a reusable
851 objfile. */
852
853 void
854 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
855 {
856
857 /* If this is the main symbol file we have to clean up all users of the
858 old main symbol file. Otherwise it is sufficient to fixup all the
859 breakpoints that may have been redefined by this symbol file. */
860 if (mainline)
861 {
862 /* OK, make it the "real" symbol file. */
863 symfile_objfile = objfile;
864
865 clear_symtab_users ();
866 }
867 else
868 {
869 breakpoint_re_set ();
870 }
871
872 /* We're done reading the symbol file; finish off complaints. */
873 clear_complaints (&symfile_complaints, 0, verbo);
874 }
875
876 /* Process a symbol file, as either the main file or as a dynamically
877 loaded file.
878
879 ABFD is a BFD already open on the file, as from symfile_bfd_open.
880 This BFD will be closed on error, and is always consumed by this function.
881
882 FROM_TTY says how verbose to be.
883
884 MAINLINE specifies whether this is the main symbol file, or whether
885 it's an extra symbol file such as dynamically loaded code.
886
887 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
888 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
889 non-zero.
890
891 Upon success, returns a pointer to the objfile that was added.
892 Upon failure, jumps back to command level (never returns). */
893 static struct objfile *
894 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
895 struct section_addr_info *addrs,
896 struct section_offsets *offsets,
897 int num_offsets,
898 int mainline, int flags)
899 {
900 struct objfile *objfile;
901 struct partial_symtab *psymtab;
902 char *debugfile;
903 struct section_addr_info *orig_addrs = NULL;
904 struct cleanup *my_cleanups;
905 const char *name = bfd_get_filename (abfd);
906
907 my_cleanups = make_cleanup_bfd_close (abfd);
908
909 /* Give user a chance to burp if we'd be
910 interactively wiping out any existing symbols. */
911
912 if ((have_full_symbols () || have_partial_symbols ())
913 && mainline
914 && from_tty
915 && !query ("Load new symbol table from \"%s\"? ", name))
916 error (_("Not confirmed."));
917
918 objfile = allocate_objfile (abfd, flags);
919 discard_cleanups (my_cleanups);
920
921 if (addrs)
922 {
923 orig_addrs = copy_section_addr_info (addrs);
924 make_cleanup_free_section_addr_info (orig_addrs);
925 }
926
927 /* We either created a new mapped symbol table, mapped an existing
928 symbol table file which has not had initial symbol reading
929 performed, or need to read an unmapped symbol table. */
930 if (from_tty || info_verbose)
931 {
932 if (deprecated_pre_add_symbol_hook)
933 deprecated_pre_add_symbol_hook (name);
934 else
935 {
936 printf_unfiltered (_("Reading symbols from %s..."), name);
937 wrap_here ("");
938 gdb_flush (gdb_stdout);
939 }
940 }
941 syms_from_objfile (objfile, addrs, offsets, num_offsets,
942 mainline, from_tty);
943
944 /* We now have at least a partial symbol table. Check to see if the
945 user requested that all symbols be read on initial access via either
946 the gdb startup command line or on a per symbol file basis. Expand
947 all partial symbol tables for this objfile if so. */
948
949 if ((flags & OBJF_READNOW) || readnow_symbol_files)
950 {
951 if (from_tty || info_verbose)
952 {
953 printf_unfiltered (_("expanding to full symbols..."));
954 wrap_here ("");
955 gdb_flush (gdb_stdout);
956 }
957
958 for (psymtab = objfile->psymtabs;
959 psymtab != NULL;
960 psymtab = psymtab->next)
961 {
962 psymtab_to_symtab (psymtab);
963 }
964 }
965
966 debugfile = find_separate_debug_file (objfile);
967 if (debugfile)
968 {
969 if (addrs != NULL)
970 {
971 objfile->separate_debug_objfile
972 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
973 }
974 else
975 {
976 objfile->separate_debug_objfile
977 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
978 }
979 objfile->separate_debug_objfile->separate_debug_objfile_backlink
980 = objfile;
981
982 /* Put the separate debug object before the normal one, this is so that
983 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
984 put_objfile_before (objfile->separate_debug_objfile, objfile);
985
986 xfree (debugfile);
987 }
988
989 if (!have_partial_symbols () && !have_full_symbols ())
990 {
991 wrap_here ("");
992 printf_filtered (_("(no debugging symbols found)"));
993 if (from_tty || info_verbose)
994 printf_filtered ("...");
995 else
996 printf_filtered ("\n");
997 wrap_here ("");
998 }
999
1000 if (from_tty || info_verbose)
1001 {
1002 if (deprecated_post_add_symbol_hook)
1003 deprecated_post_add_symbol_hook ();
1004 else
1005 {
1006 printf_unfiltered (_("done.\n"));
1007 }
1008 }
1009
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
1015 do_cleanups (my_cleanups);
1016
1017 if (objfile->sf == NULL)
1018 return objfile; /* No symbols. */
1019
1020 new_symfile_objfile (objfile, mainline, from_tty);
1021
1022 if (deprecated_target_new_objfile_hook)
1023 deprecated_target_new_objfile_hook (objfile);
1024
1025 bfd_cache_close_all ();
1026 return (objfile);
1027 }
1028
1029
1030 /* Process the symbol file ABFD, as either the main file or as a
1031 dynamically loaded file.
1032
1033 See symbol_file_add_with_addrs_or_offsets's comments for
1034 details. */
1035 struct objfile *
1036 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1037 struct section_addr_info *addrs,
1038 int mainline, int flags)
1039 {
1040 return symbol_file_add_with_addrs_or_offsets (abfd,
1041 from_tty, addrs, 0, 0,
1042 mainline, flags);
1043 }
1044
1045
1046 /* Process a symbol file, as either the main file or as a dynamically
1047 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1048 for details. */
1049 struct objfile *
1050 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1051 int mainline, int flags)
1052 {
1053 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1054 addrs, mainline, flags);
1055 }
1056
1057
1058 /* Call symbol_file_add() with default values and update whatever is
1059 affected by the loading of a new main().
1060 Used when the file is supplied in the gdb command line
1061 and by some targets with special loading requirements.
1062 The auxiliary function, symbol_file_add_main_1(), has the flags
1063 argument for the switches that can only be specified in the symbol_file
1064 command itself. */
1065
1066 void
1067 symbol_file_add_main (char *args, int from_tty)
1068 {
1069 symbol_file_add_main_1 (args, from_tty, 0);
1070 }
1071
1072 static void
1073 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1074 {
1075 symbol_file_add (args, from_tty, NULL, 1, flags);
1076
1077 /* Getting new symbols may change our opinion about
1078 what is frameless. */
1079 reinit_frame_cache ();
1080
1081 set_initial_language ();
1082 }
1083
1084 void
1085 symbol_file_clear (int from_tty)
1086 {
1087 if ((have_full_symbols () || have_partial_symbols ())
1088 && from_tty
1089 && (symfile_objfile
1090 ? !query (_("Discard symbol table from `%s'? "),
1091 symfile_objfile->name)
1092 : !query (_("Discard symbol table? "))))
1093 error (_("Not confirmed."));
1094 free_all_objfiles ();
1095
1096 /* solib descriptors may have handles to objfiles. Since their
1097 storage has just been released, we'd better wipe the solib
1098 descriptors as well.
1099 */
1100 #if defined(SOLIB_RESTART)
1101 SOLIB_RESTART ();
1102 #endif
1103
1104 symfile_objfile = NULL;
1105 if (from_tty)
1106 printf_unfiltered (_("No symbol file now.\n"));
1107 }
1108
1109 static char *
1110 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1111 {
1112 asection *sect;
1113 bfd_size_type debuglink_size;
1114 unsigned long crc32;
1115 char *contents;
1116 int crc_offset;
1117 unsigned char *p;
1118
1119 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1120
1121 if (sect == NULL)
1122 return NULL;
1123
1124 debuglink_size = bfd_section_size (objfile->obfd, sect);
1125
1126 contents = xmalloc (debuglink_size);
1127 bfd_get_section_contents (objfile->obfd, sect, contents,
1128 (file_ptr)0, (bfd_size_type)debuglink_size);
1129
1130 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1131 crc_offset = strlen (contents) + 1;
1132 crc_offset = (crc_offset + 3) & ~3;
1133
1134 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1135
1136 *crc32_out = crc32;
1137 return contents;
1138 }
1139
1140 static int
1141 separate_debug_file_exists (const char *name, unsigned long crc)
1142 {
1143 unsigned long file_crc = 0;
1144 int fd;
1145 gdb_byte buffer[8*1024];
1146 int count;
1147
1148 fd = open (name, O_RDONLY | O_BINARY);
1149 if (fd < 0)
1150 return 0;
1151
1152 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1153 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1154
1155 close (fd);
1156
1157 return crc == file_crc;
1158 }
1159
1160 static char *debug_file_directory = NULL;
1161 static void
1162 show_debug_file_directory (struct ui_file *file, int from_tty,
1163 struct cmd_list_element *c, const char *value)
1164 {
1165 fprintf_filtered (file, _("\
1166 The directory where separate debug symbols are searched for is \"%s\".\n"),
1167 value);
1168 }
1169
1170 #if ! defined (DEBUG_SUBDIRECTORY)
1171 #define DEBUG_SUBDIRECTORY ".debug"
1172 #endif
1173
1174 static char *
1175 find_separate_debug_file (struct objfile *objfile)
1176 {
1177 asection *sect;
1178 char *basename;
1179 char *dir;
1180 char *debugfile;
1181 char *name_copy;
1182 bfd_size_type debuglink_size;
1183 unsigned long crc32;
1184 int i;
1185
1186 basename = get_debug_link_info (objfile, &crc32);
1187
1188 if (basename == NULL)
1189 return NULL;
1190
1191 dir = xstrdup (objfile->name);
1192
1193 /* Strip off the final filename part, leaving the directory name,
1194 followed by a slash. Objfile names should always be absolute and
1195 tilde-expanded, so there should always be a slash in there
1196 somewhere. */
1197 for (i = strlen(dir) - 1; i >= 0; i--)
1198 {
1199 if (IS_DIR_SEPARATOR (dir[i]))
1200 break;
1201 }
1202 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1203 dir[i+1] = '\0';
1204
1205 debugfile = alloca (strlen (debug_file_directory) + 1
1206 + strlen (dir)
1207 + strlen (DEBUG_SUBDIRECTORY)
1208 + strlen ("/")
1209 + strlen (basename)
1210 + 1);
1211
1212 /* First try in the same directory as the original file. */
1213 strcpy (debugfile, dir);
1214 strcat (debugfile, basename);
1215
1216 if (separate_debug_file_exists (debugfile, crc32))
1217 {
1218 xfree (basename);
1219 xfree (dir);
1220 return xstrdup (debugfile);
1221 }
1222
1223 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1224 strcpy (debugfile, dir);
1225 strcat (debugfile, DEBUG_SUBDIRECTORY);
1226 strcat (debugfile, "/");
1227 strcat (debugfile, basename);
1228
1229 if (separate_debug_file_exists (debugfile, crc32))
1230 {
1231 xfree (basename);
1232 xfree (dir);
1233 return xstrdup (debugfile);
1234 }
1235
1236 /* Then try in the global debugfile directory. */
1237 strcpy (debugfile, debug_file_directory);
1238 strcat (debugfile, "/");
1239 strcat (debugfile, dir);
1240 strcat (debugfile, basename);
1241
1242 if (separate_debug_file_exists (debugfile, crc32))
1243 {
1244 xfree (basename);
1245 xfree (dir);
1246 return xstrdup (debugfile);
1247 }
1248
1249 xfree (basename);
1250 xfree (dir);
1251 return NULL;
1252 }
1253
1254
1255 /* This is the symbol-file command. Read the file, analyze its
1256 symbols, and add a struct symtab to a symtab list. The syntax of
1257 the command is rather bizarre:
1258
1259 1. The function buildargv implements various quoting conventions
1260 which are undocumented and have little or nothing in common with
1261 the way things are quoted (or not quoted) elsewhere in GDB.
1262
1263 2. Options are used, which are not generally used in GDB (perhaps
1264 "set mapped on", "set readnow on" would be better)
1265
1266 3. The order of options matters, which is contrary to GNU
1267 conventions (because it is confusing and inconvenient). */
1268
1269 void
1270 symbol_file_command (char *args, int from_tty)
1271 {
1272 dont_repeat ();
1273
1274 if (args == NULL)
1275 {
1276 symbol_file_clear (from_tty);
1277 }
1278 else
1279 {
1280 char **argv = buildargv (args);
1281 int flags = OBJF_USERLOADED;
1282 struct cleanup *cleanups;
1283 char *name = NULL;
1284
1285 if (argv == NULL)
1286 nomem (0);
1287
1288 cleanups = make_cleanup_freeargv (argv);
1289 while (*argv != NULL)
1290 {
1291 if (strcmp (*argv, "-readnow") == 0)
1292 flags |= OBJF_READNOW;
1293 else if (**argv == '-')
1294 error (_("unknown option `%s'"), *argv);
1295 else
1296 {
1297 symbol_file_add_main_1 (*argv, from_tty, flags);
1298 name = *argv;
1299 }
1300
1301 argv++;
1302 }
1303
1304 if (name == NULL)
1305 error (_("no symbol file name was specified"));
1306
1307 do_cleanups (cleanups);
1308 }
1309 }
1310
1311 /* Set the initial language.
1312
1313 FIXME: A better solution would be to record the language in the
1314 psymtab when reading partial symbols, and then use it (if known) to
1315 set the language. This would be a win for formats that encode the
1316 language in an easily discoverable place, such as DWARF. For
1317 stabs, we can jump through hoops looking for specially named
1318 symbols or try to intuit the language from the specific type of
1319 stabs we find, but we can't do that until later when we read in
1320 full symbols. */
1321
1322 static void
1323 set_initial_language (void)
1324 {
1325 struct partial_symtab *pst;
1326 enum language lang = language_unknown;
1327
1328 pst = find_main_psymtab ();
1329 if (pst != NULL)
1330 {
1331 if (pst->filename != NULL)
1332 lang = deduce_language_from_filename (pst->filename);
1333
1334 if (lang == language_unknown)
1335 {
1336 /* Make C the default language */
1337 lang = language_c;
1338 }
1339
1340 set_language (lang);
1341 expected_language = current_language; /* Don't warn the user. */
1342 }
1343 }
1344
1345 /* Open the file specified by NAME and hand it off to BFD for
1346 preliminary analysis. Return a newly initialized bfd *, which
1347 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1348 absolute). In case of trouble, error() is called. */
1349
1350 bfd *
1351 symfile_bfd_open (char *name)
1352 {
1353 bfd *sym_bfd;
1354 int desc;
1355 char *absolute_name;
1356
1357 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1358
1359 /* Look down path for it, allocate 2nd new malloc'd copy. */
1360 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1361 O_RDONLY | O_BINARY, 0, &absolute_name);
1362 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1363 if (desc < 0)
1364 {
1365 char *exename = alloca (strlen (name) + 5);
1366 strcat (strcpy (exename, name), ".exe");
1367 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1368 O_RDONLY | O_BINARY, 0, &absolute_name);
1369 }
1370 #endif
1371 if (desc < 0)
1372 {
1373 make_cleanup (xfree, name);
1374 perror_with_name (name);
1375 }
1376
1377 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1378 bfd. It'll be freed in free_objfile(). */
1379 xfree (name);
1380 name = absolute_name;
1381
1382 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1383 if (!sym_bfd)
1384 {
1385 close (desc);
1386 make_cleanup (xfree, name);
1387 error (_("\"%s\": can't open to read symbols: %s."), name,
1388 bfd_errmsg (bfd_get_error ()));
1389 }
1390 bfd_set_cacheable (sym_bfd, 1);
1391
1392 if (!bfd_check_format (sym_bfd, bfd_object))
1393 {
1394 /* FIXME: should be checking for errors from bfd_close (for one
1395 thing, on error it does not free all the storage associated
1396 with the bfd). */
1397 bfd_close (sym_bfd); /* This also closes desc. */
1398 make_cleanup (xfree, name);
1399 error (_("\"%s\": can't read symbols: %s."), name,
1400 bfd_errmsg (bfd_get_error ()));
1401 }
1402
1403 return sym_bfd;
1404 }
1405
1406 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1407 the section was not found. */
1408
1409 int
1410 get_section_index (struct objfile *objfile, char *section_name)
1411 {
1412 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1413
1414 if (sect)
1415 return sect->index;
1416 else
1417 return -1;
1418 }
1419
1420 /* Link SF into the global symtab_fns list. Called on startup by the
1421 _initialize routine in each object file format reader, to register
1422 information about each format the the reader is prepared to
1423 handle. */
1424
1425 void
1426 add_symtab_fns (struct sym_fns *sf)
1427 {
1428 sf->next = symtab_fns;
1429 symtab_fns = sf;
1430 }
1431
1432 /* Initialize OBJFILE to read symbols from its associated BFD. It
1433 either returns or calls error(). The result is an initialized
1434 struct sym_fns in the objfile structure, that contains cached
1435 information about the symbol file. */
1436
1437 static void
1438 find_sym_fns (struct objfile *objfile)
1439 {
1440 struct sym_fns *sf;
1441 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1442 char *our_target = bfd_get_target (objfile->obfd);
1443
1444 if (our_flavour == bfd_target_srec_flavour
1445 || our_flavour == bfd_target_ihex_flavour
1446 || our_flavour == bfd_target_tekhex_flavour)
1447 return; /* No symbols. */
1448
1449 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1450 {
1451 if (our_flavour == sf->sym_flavour)
1452 {
1453 objfile->sf = sf;
1454 return;
1455 }
1456 }
1457
1458 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1459 bfd_get_target (objfile->obfd));
1460 }
1461 \f
1462
1463 /* This function runs the load command of our current target. */
1464
1465 static void
1466 load_command (char *arg, int from_tty)
1467 {
1468 if (arg == NULL)
1469 arg = get_exec_file (1);
1470 target_load (arg, from_tty);
1471
1472 /* After re-loading the executable, we don't really know which
1473 overlays are mapped any more. */
1474 overlay_cache_invalid = 1;
1475 }
1476
1477 /* This version of "load" should be usable for any target. Currently
1478 it is just used for remote targets, not inftarg.c or core files,
1479 on the theory that only in that case is it useful.
1480
1481 Avoiding xmodem and the like seems like a win (a) because we don't have
1482 to worry about finding it, and (b) On VMS, fork() is very slow and so
1483 we don't want to run a subprocess. On the other hand, I'm not sure how
1484 performance compares. */
1485
1486 static int download_write_size = 512;
1487 static void
1488 show_download_write_size (struct ui_file *file, int from_tty,
1489 struct cmd_list_element *c, const char *value)
1490 {
1491 fprintf_filtered (file, _("\
1492 The write size used when downloading a program is %s.\n"),
1493 value);
1494 }
1495 static int validate_download = 0;
1496
1497 /* Callback service function for generic_load (bfd_map_over_sections). */
1498
1499 static void
1500 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1501 {
1502 bfd_size_type *sum = data;
1503
1504 *sum += bfd_get_section_size (asec);
1505 }
1506
1507 /* Opaque data for load_section_callback. */
1508 struct load_section_data {
1509 unsigned long load_offset;
1510 unsigned long write_count;
1511 unsigned long data_count;
1512 bfd_size_type total_size;
1513 };
1514
1515 /* Callback service function for generic_load (bfd_map_over_sections). */
1516
1517 static void
1518 load_section_callback (bfd *abfd, asection *asec, void *data)
1519 {
1520 struct load_section_data *args = data;
1521
1522 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1523 {
1524 bfd_size_type size = bfd_get_section_size (asec);
1525 if (size > 0)
1526 {
1527 gdb_byte *buffer;
1528 struct cleanup *old_chain;
1529 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1530 bfd_size_type block_size;
1531 int err;
1532 const char *sect_name = bfd_get_section_name (abfd, asec);
1533 bfd_size_type sent;
1534
1535 if (download_write_size > 0 && size > download_write_size)
1536 block_size = download_write_size;
1537 else
1538 block_size = size;
1539
1540 buffer = xmalloc (size);
1541 old_chain = make_cleanup (xfree, buffer);
1542
1543 /* Is this really necessary? I guess it gives the user something
1544 to look at during a long download. */
1545 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1546 sect_name, paddr_nz (size), paddr_nz (lma));
1547
1548 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1549
1550 sent = 0;
1551 do
1552 {
1553 int len;
1554 bfd_size_type this_transfer = size - sent;
1555
1556 if (this_transfer >= block_size)
1557 this_transfer = block_size;
1558 len = target_write_memory_partial (lma, buffer,
1559 this_transfer, &err);
1560 if (err)
1561 break;
1562 if (validate_download)
1563 {
1564 /* Broken memories and broken monitors manifest
1565 themselves here when bring new computers to
1566 life. This doubles already slow downloads. */
1567 /* NOTE: cagney/1999-10-18: A more efficient
1568 implementation might add a verify_memory()
1569 method to the target vector and then use
1570 that. remote.c could implement that method
1571 using the ``qCRC'' packet. */
1572 gdb_byte *check = xmalloc (len);
1573 struct cleanup *verify_cleanups =
1574 make_cleanup (xfree, check);
1575
1576 if (target_read_memory (lma, check, len) != 0)
1577 error (_("Download verify read failed at 0x%s"),
1578 paddr (lma));
1579 if (memcmp (buffer, check, len) != 0)
1580 error (_("Download verify compare failed at 0x%s"),
1581 paddr (lma));
1582 do_cleanups (verify_cleanups);
1583 }
1584 args->data_count += len;
1585 lma += len;
1586 buffer += len;
1587 args->write_count += 1;
1588 sent += len;
1589 if (quit_flag
1590 || (deprecated_ui_load_progress_hook != NULL
1591 && deprecated_ui_load_progress_hook (sect_name, sent)))
1592 error (_("Canceled the download"));
1593
1594 if (deprecated_show_load_progress != NULL)
1595 deprecated_show_load_progress (sect_name, sent, size,
1596 args->data_count,
1597 args->total_size);
1598 }
1599 while (sent < size);
1600
1601 if (err != 0)
1602 error (_("Memory access error while loading section %s."), sect_name);
1603
1604 do_cleanups (old_chain);
1605 }
1606 }
1607 }
1608
1609 void
1610 generic_load (char *args, int from_tty)
1611 {
1612 asection *s;
1613 bfd *loadfile_bfd;
1614 struct timeval start_time, end_time;
1615 char *filename;
1616 struct cleanup *old_cleanups;
1617 char *offptr;
1618 struct load_section_data cbdata;
1619 CORE_ADDR entry;
1620
1621 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1622 cbdata.write_count = 0; /* Number of writes needed. */
1623 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1624 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1625
1626 /* Parse the input argument - the user can specify a load offset as
1627 a second argument. */
1628 filename = xmalloc (strlen (args) + 1);
1629 old_cleanups = make_cleanup (xfree, filename);
1630 strcpy (filename, args);
1631 offptr = strchr (filename, ' ');
1632 if (offptr != NULL)
1633 {
1634 char *endptr;
1635
1636 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1637 if (offptr == endptr)
1638 error (_("Invalid download offset:%s."), offptr);
1639 *offptr = '\0';
1640 }
1641 else
1642 cbdata.load_offset = 0;
1643
1644 /* Open the file for loading. */
1645 loadfile_bfd = bfd_openr (filename, gnutarget);
1646 if (loadfile_bfd == NULL)
1647 {
1648 perror_with_name (filename);
1649 return;
1650 }
1651
1652 /* FIXME: should be checking for errors from bfd_close (for one thing,
1653 on error it does not free all the storage associated with the
1654 bfd). */
1655 make_cleanup_bfd_close (loadfile_bfd);
1656
1657 if (!bfd_check_format (loadfile_bfd, bfd_object))
1658 {
1659 error (_("\"%s\" is not an object file: %s"), filename,
1660 bfd_errmsg (bfd_get_error ()));
1661 }
1662
1663 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1664 (void *) &cbdata.total_size);
1665
1666 gettimeofday (&start_time, NULL);
1667
1668 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1669
1670 gettimeofday (&end_time, NULL);
1671
1672 entry = bfd_get_start_address (loadfile_bfd);
1673 ui_out_text (uiout, "Start address ");
1674 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1675 ui_out_text (uiout, ", load size ");
1676 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1677 ui_out_text (uiout, "\n");
1678 /* We were doing this in remote-mips.c, I suspect it is right
1679 for other targets too. */
1680 write_pc (entry);
1681
1682 /* FIXME: are we supposed to call symbol_file_add or not? According
1683 to a comment from remote-mips.c (where a call to symbol_file_add
1684 was commented out), making the call confuses GDB if more than one
1685 file is loaded in. Some targets do (e.g., remote-vx.c) but
1686 others don't (or didn't - perhaps they have all been deleted). */
1687
1688 print_transfer_performance (gdb_stdout, cbdata.data_count,
1689 cbdata.write_count, &start_time, &end_time);
1690
1691 do_cleanups (old_cleanups);
1692 }
1693
1694 /* Report how fast the transfer went. */
1695
1696 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1697 replaced by print_transfer_performance (with a very different
1698 function signature). */
1699
1700 void
1701 report_transfer_performance (unsigned long data_count, time_t start_time,
1702 time_t end_time)
1703 {
1704 struct timeval start, end;
1705
1706 start.tv_sec = start_time;
1707 start.tv_usec = 0;
1708 end.tv_sec = end_time;
1709 end.tv_usec = 0;
1710
1711 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1712 }
1713
1714 void
1715 print_transfer_performance (struct ui_file *stream,
1716 unsigned long data_count,
1717 unsigned long write_count,
1718 const struct timeval *start_time,
1719 const struct timeval *end_time)
1720 {
1721 unsigned long time_count;
1722
1723 /* Compute the elapsed time in milliseconds, as a tradeoff between
1724 accuracy and overflow. */
1725 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1726 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1727
1728 ui_out_text (uiout, "Transfer rate: ");
1729 if (time_count > 0)
1730 {
1731 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1732 1000 * (data_count * 8) / time_count);
1733 ui_out_text (uiout, " bits/sec");
1734 }
1735 else
1736 {
1737 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1738 ui_out_text (uiout, " bits in <1 sec");
1739 }
1740 if (write_count > 0)
1741 {
1742 ui_out_text (uiout, ", ");
1743 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1744 ui_out_text (uiout, " bytes/write");
1745 }
1746 ui_out_text (uiout, ".\n");
1747 }
1748
1749 /* This function allows the addition of incrementally linked object files.
1750 It does not modify any state in the target, only in the debugger. */
1751 /* Note: ezannoni 2000-04-13 This function/command used to have a
1752 special case syntax for the rombug target (Rombug is the boot
1753 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1754 rombug case, the user doesn't need to supply a text address,
1755 instead a call to target_link() (in target.c) would supply the
1756 value to use. We are now discontinuing this type of ad hoc syntax. */
1757
1758 static void
1759 add_symbol_file_command (char *args, int from_tty)
1760 {
1761 char *filename = NULL;
1762 int flags = OBJF_USERLOADED;
1763 char *arg;
1764 int expecting_option = 0;
1765 int section_index = 0;
1766 int argcnt = 0;
1767 int sec_num = 0;
1768 int i;
1769 int expecting_sec_name = 0;
1770 int expecting_sec_addr = 0;
1771
1772 struct sect_opt
1773 {
1774 char *name;
1775 char *value;
1776 };
1777
1778 struct section_addr_info *section_addrs;
1779 struct sect_opt *sect_opts = NULL;
1780 size_t num_sect_opts = 0;
1781 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1782
1783 num_sect_opts = 16;
1784 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1785 * sizeof (struct sect_opt));
1786
1787 dont_repeat ();
1788
1789 if (args == NULL)
1790 error (_("add-symbol-file takes a file name and an address"));
1791
1792 /* Make a copy of the string that we can safely write into. */
1793 args = xstrdup (args);
1794
1795 while (*args != '\000')
1796 {
1797 /* Any leading spaces? */
1798 while (isspace (*args))
1799 args++;
1800
1801 /* Point arg to the beginning of the argument. */
1802 arg = args;
1803
1804 /* Move args pointer over the argument. */
1805 while ((*args != '\000') && !isspace (*args))
1806 args++;
1807
1808 /* If there are more arguments, terminate arg and
1809 proceed past it. */
1810 if (*args != '\000')
1811 *args++ = '\000';
1812
1813 /* Now process the argument. */
1814 if (argcnt == 0)
1815 {
1816 /* The first argument is the file name. */
1817 filename = tilde_expand (arg);
1818 make_cleanup (xfree, filename);
1819 }
1820 else
1821 if (argcnt == 1)
1822 {
1823 /* The second argument is always the text address at which
1824 to load the program. */
1825 sect_opts[section_index].name = ".text";
1826 sect_opts[section_index].value = arg;
1827 if (++section_index > num_sect_opts)
1828 {
1829 num_sect_opts *= 2;
1830 sect_opts = ((struct sect_opt *)
1831 xrealloc (sect_opts,
1832 num_sect_opts
1833 * sizeof (struct sect_opt)));
1834 }
1835 }
1836 else
1837 {
1838 /* It's an option (starting with '-') or it's an argument
1839 to an option */
1840
1841 if (*arg == '-')
1842 {
1843 if (strcmp (arg, "-readnow") == 0)
1844 flags |= OBJF_READNOW;
1845 else if (strcmp (arg, "-s") == 0)
1846 {
1847 expecting_sec_name = 1;
1848 expecting_sec_addr = 1;
1849 }
1850 }
1851 else
1852 {
1853 if (expecting_sec_name)
1854 {
1855 sect_opts[section_index].name = arg;
1856 expecting_sec_name = 0;
1857 }
1858 else
1859 if (expecting_sec_addr)
1860 {
1861 sect_opts[section_index].value = arg;
1862 expecting_sec_addr = 0;
1863 if (++section_index > num_sect_opts)
1864 {
1865 num_sect_opts *= 2;
1866 sect_opts = ((struct sect_opt *)
1867 xrealloc (sect_opts,
1868 num_sect_opts
1869 * sizeof (struct sect_opt)));
1870 }
1871 }
1872 else
1873 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1874 }
1875 }
1876 argcnt++;
1877 }
1878
1879 /* Print the prompt for the query below. And save the arguments into
1880 a sect_addr_info structure to be passed around to other
1881 functions. We have to split this up into separate print
1882 statements because hex_string returns a local static
1883 string. */
1884
1885 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1886 section_addrs = alloc_section_addr_info (section_index);
1887 make_cleanup (xfree, section_addrs);
1888 for (i = 0; i < section_index; i++)
1889 {
1890 CORE_ADDR addr;
1891 char *val = sect_opts[i].value;
1892 char *sec = sect_opts[i].name;
1893
1894 addr = parse_and_eval_address (val);
1895
1896 /* Here we store the section offsets in the order they were
1897 entered on the command line. */
1898 section_addrs->other[sec_num].name = sec;
1899 section_addrs->other[sec_num].addr = addr;
1900 printf_unfiltered ("\t%s_addr = %s\n",
1901 sec, hex_string ((unsigned long)addr));
1902 sec_num++;
1903
1904 /* The object's sections are initialized when a
1905 call is made to build_objfile_section_table (objfile).
1906 This happens in reread_symbols.
1907 At this point, we don't know what file type this is,
1908 so we can't determine what section names are valid. */
1909 }
1910
1911 if (from_tty && (!query ("%s", "")))
1912 error (_("Not confirmed."));
1913
1914 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1915
1916 /* Getting new symbols may change our opinion about what is
1917 frameless. */
1918 reinit_frame_cache ();
1919 do_cleanups (my_cleanups);
1920 }
1921 \f
1922 static void
1923 add_shared_symbol_files_command (char *args, int from_tty)
1924 {
1925 #ifdef ADD_SHARED_SYMBOL_FILES
1926 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1927 #else
1928 error (_("This command is not available in this configuration of GDB."));
1929 #endif
1930 }
1931 \f
1932 /* Re-read symbols if a symbol-file has changed. */
1933 void
1934 reread_symbols (void)
1935 {
1936 struct objfile *objfile;
1937 long new_modtime;
1938 int reread_one = 0;
1939 struct stat new_statbuf;
1940 int res;
1941
1942 /* With the addition of shared libraries, this should be modified,
1943 the load time should be saved in the partial symbol tables, since
1944 different tables may come from different source files. FIXME.
1945 This routine should then walk down each partial symbol table
1946 and see if the symbol table that it originates from has been changed */
1947
1948 for (objfile = object_files; objfile; objfile = objfile->next)
1949 {
1950 if (objfile->obfd)
1951 {
1952 #ifdef DEPRECATED_IBM6000_TARGET
1953 /* If this object is from a shared library, then you should
1954 stat on the library name, not member name. */
1955
1956 if (objfile->obfd->my_archive)
1957 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1958 else
1959 #endif
1960 res = stat (objfile->name, &new_statbuf);
1961 if (res != 0)
1962 {
1963 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1964 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1965 objfile->name);
1966 continue;
1967 }
1968 new_modtime = new_statbuf.st_mtime;
1969 if (new_modtime != objfile->mtime)
1970 {
1971 struct cleanup *old_cleanups;
1972 struct section_offsets *offsets;
1973 int num_offsets;
1974 char *obfd_filename;
1975
1976 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1977 objfile->name);
1978
1979 /* There are various functions like symbol_file_add,
1980 symfile_bfd_open, syms_from_objfile, etc., which might
1981 appear to do what we want. But they have various other
1982 effects which we *don't* want. So we just do stuff
1983 ourselves. We don't worry about mapped files (for one thing,
1984 any mapped file will be out of date). */
1985
1986 /* If we get an error, blow away this objfile (not sure if
1987 that is the correct response for things like shared
1988 libraries). */
1989 old_cleanups = make_cleanup_free_objfile (objfile);
1990 /* We need to do this whenever any symbols go away. */
1991 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1992
1993 /* Clean up any state BFD has sitting around. We don't need
1994 to close the descriptor but BFD lacks a way of closing the
1995 BFD without closing the descriptor. */
1996 obfd_filename = bfd_get_filename (objfile->obfd);
1997 if (!bfd_close (objfile->obfd))
1998 error (_("Can't close BFD for %s: %s"), objfile->name,
1999 bfd_errmsg (bfd_get_error ()));
2000 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2001 if (objfile->obfd == NULL)
2002 error (_("Can't open %s to read symbols."), objfile->name);
2003 /* bfd_openr sets cacheable to true, which is what we want. */
2004 if (!bfd_check_format (objfile->obfd, bfd_object))
2005 error (_("Can't read symbols from %s: %s."), objfile->name,
2006 bfd_errmsg (bfd_get_error ()));
2007
2008 /* Save the offsets, we will nuke them with the rest of the
2009 objfile_obstack. */
2010 num_offsets = objfile->num_sections;
2011 offsets = ((struct section_offsets *)
2012 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2013 memcpy (offsets, objfile->section_offsets,
2014 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2015
2016 /* Nuke all the state that we will re-read. Much of the following
2017 code which sets things to NULL really is necessary to tell
2018 other parts of GDB that there is nothing currently there. */
2019
2020 /* FIXME: Do we have to free a whole linked list, or is this
2021 enough? */
2022 if (objfile->global_psymbols.list)
2023 xfree (objfile->global_psymbols.list);
2024 memset (&objfile->global_psymbols, 0,
2025 sizeof (objfile->global_psymbols));
2026 if (objfile->static_psymbols.list)
2027 xfree (objfile->static_psymbols.list);
2028 memset (&objfile->static_psymbols, 0,
2029 sizeof (objfile->static_psymbols));
2030
2031 /* Free the obstacks for non-reusable objfiles */
2032 bcache_xfree (objfile->psymbol_cache);
2033 objfile->psymbol_cache = bcache_xmalloc ();
2034 bcache_xfree (objfile->macro_cache);
2035 objfile->macro_cache = bcache_xmalloc ();
2036 if (objfile->demangled_names_hash != NULL)
2037 {
2038 htab_delete (objfile->demangled_names_hash);
2039 objfile->demangled_names_hash = NULL;
2040 }
2041 obstack_free (&objfile->objfile_obstack, 0);
2042 objfile->sections = NULL;
2043 objfile->symtabs = NULL;
2044 objfile->psymtabs = NULL;
2045 objfile->free_psymtabs = NULL;
2046 objfile->cp_namespace_symtab = NULL;
2047 objfile->msymbols = NULL;
2048 objfile->deprecated_sym_private = NULL;
2049 objfile->minimal_symbol_count = 0;
2050 memset (&objfile->msymbol_hash, 0,
2051 sizeof (objfile->msymbol_hash));
2052 memset (&objfile->msymbol_demangled_hash, 0,
2053 sizeof (objfile->msymbol_demangled_hash));
2054 objfile->fundamental_types = NULL;
2055 clear_objfile_data (objfile);
2056 if (objfile->sf != NULL)
2057 {
2058 (*objfile->sf->sym_finish) (objfile);
2059 }
2060
2061 /* We never make this a mapped file. */
2062 objfile->md = NULL;
2063 objfile->psymbol_cache = bcache_xmalloc ();
2064 objfile->macro_cache = bcache_xmalloc ();
2065 /* obstack_init also initializes the obstack so it is
2066 empty. We could use obstack_specify_allocation but
2067 gdb_obstack.h specifies the alloc/dealloc
2068 functions. */
2069 obstack_init (&objfile->objfile_obstack);
2070 if (build_objfile_section_table (objfile))
2071 {
2072 error (_("Can't find the file sections in `%s': %s"),
2073 objfile->name, bfd_errmsg (bfd_get_error ()));
2074 }
2075 terminate_minimal_symbol_table (objfile);
2076
2077 /* We use the same section offsets as from last time. I'm not
2078 sure whether that is always correct for shared libraries. */
2079 objfile->section_offsets = (struct section_offsets *)
2080 obstack_alloc (&objfile->objfile_obstack,
2081 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2082 memcpy (objfile->section_offsets, offsets,
2083 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2084 objfile->num_sections = num_offsets;
2085
2086 /* What the hell is sym_new_init for, anyway? The concept of
2087 distinguishing between the main file and additional files
2088 in this way seems rather dubious. */
2089 if (objfile == symfile_objfile)
2090 {
2091 (*objfile->sf->sym_new_init) (objfile);
2092 }
2093
2094 (*objfile->sf->sym_init) (objfile);
2095 clear_complaints (&symfile_complaints, 1, 1);
2096 /* The "mainline" parameter is a hideous hack; I think leaving it
2097 zero is OK since dbxread.c also does what it needs to do if
2098 objfile->global_psymbols.size is 0. */
2099 (*objfile->sf->sym_read) (objfile, 0);
2100 if (!have_partial_symbols () && !have_full_symbols ())
2101 {
2102 wrap_here ("");
2103 printf_unfiltered (_("(no debugging symbols found)\n"));
2104 wrap_here ("");
2105 }
2106 objfile->flags |= OBJF_SYMS;
2107
2108 /* We're done reading the symbol file; finish off complaints. */
2109 clear_complaints (&symfile_complaints, 0, 1);
2110
2111 /* Getting new symbols may change our opinion about what is
2112 frameless. */
2113
2114 reinit_frame_cache ();
2115
2116 /* Discard cleanups as symbol reading was successful. */
2117 discard_cleanups (old_cleanups);
2118
2119 /* If the mtime has changed between the time we set new_modtime
2120 and now, we *want* this to be out of date, so don't call stat
2121 again now. */
2122 objfile->mtime = new_modtime;
2123 reread_one = 1;
2124 reread_separate_symbols (objfile);
2125 }
2126 }
2127 }
2128
2129 if (reread_one)
2130 {
2131 clear_symtab_users ();
2132 /* At least one objfile has changed, so we can consider that
2133 the executable we're debugging has changed too. */
2134 observer_notify_executable_changed (NULL);
2135 }
2136
2137 }
2138
2139
2140 /* Handle separate debug info for OBJFILE, which has just been
2141 re-read:
2142 - If we had separate debug info before, but now we don't, get rid
2143 of the separated objfile.
2144 - If we didn't have separated debug info before, but now we do,
2145 read in the new separated debug info file.
2146 - If the debug link points to a different file, toss the old one
2147 and read the new one.
2148 This function does *not* handle the case where objfile is still
2149 using the same separate debug info file, but that file's timestamp
2150 has changed. That case should be handled by the loop in
2151 reread_symbols already. */
2152 static void
2153 reread_separate_symbols (struct objfile *objfile)
2154 {
2155 char *debug_file;
2156 unsigned long crc32;
2157
2158 /* Does the updated objfile's debug info live in a
2159 separate file? */
2160 debug_file = find_separate_debug_file (objfile);
2161
2162 if (objfile->separate_debug_objfile)
2163 {
2164 /* There are two cases where we need to get rid of
2165 the old separated debug info objfile:
2166 - if the new primary objfile doesn't have
2167 separated debug info, or
2168 - if the new primary objfile has separate debug
2169 info, but it's under a different filename.
2170
2171 If the old and new objfiles both have separate
2172 debug info, under the same filename, then we're
2173 okay --- if the separated file's contents have
2174 changed, we will have caught that when we
2175 visited it in this function's outermost
2176 loop. */
2177 if (! debug_file
2178 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2179 free_objfile (objfile->separate_debug_objfile);
2180 }
2181
2182 /* If the new objfile has separate debug info, and we
2183 haven't loaded it already, do so now. */
2184 if (debug_file
2185 && ! objfile->separate_debug_objfile)
2186 {
2187 /* Use the same section offset table as objfile itself.
2188 Preserve the flags from objfile that make sense. */
2189 objfile->separate_debug_objfile
2190 = (symbol_file_add_with_addrs_or_offsets
2191 (symfile_bfd_open (debug_file),
2192 info_verbose, /* from_tty: Don't override the default. */
2193 0, /* No addr table. */
2194 objfile->section_offsets, objfile->num_sections,
2195 0, /* Not mainline. See comments about this above. */
2196 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2197 | OBJF_USERLOADED)));
2198 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2199 = objfile;
2200 }
2201 }
2202
2203
2204 \f
2205
2206
2207 typedef struct
2208 {
2209 char *ext;
2210 enum language lang;
2211 }
2212 filename_language;
2213
2214 static filename_language *filename_language_table;
2215 static int fl_table_size, fl_table_next;
2216
2217 static void
2218 add_filename_language (char *ext, enum language lang)
2219 {
2220 if (fl_table_next >= fl_table_size)
2221 {
2222 fl_table_size += 10;
2223 filename_language_table =
2224 xrealloc (filename_language_table,
2225 fl_table_size * sizeof (*filename_language_table));
2226 }
2227
2228 filename_language_table[fl_table_next].ext = xstrdup (ext);
2229 filename_language_table[fl_table_next].lang = lang;
2230 fl_table_next++;
2231 }
2232
2233 static char *ext_args;
2234 static void
2235 show_ext_args (struct ui_file *file, int from_tty,
2236 struct cmd_list_element *c, const char *value)
2237 {
2238 fprintf_filtered (file, _("\
2239 Mapping between filename extension and source language is \"%s\".\n"),
2240 value);
2241 }
2242
2243 static void
2244 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2245 {
2246 int i;
2247 char *cp = ext_args;
2248 enum language lang;
2249
2250 /* First arg is filename extension, starting with '.' */
2251 if (*cp != '.')
2252 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2253
2254 /* Find end of first arg. */
2255 while (*cp && !isspace (*cp))
2256 cp++;
2257
2258 if (*cp == '\0')
2259 error (_("'%s': two arguments required -- filename extension and language"),
2260 ext_args);
2261
2262 /* Null-terminate first arg */
2263 *cp++ = '\0';
2264
2265 /* Find beginning of second arg, which should be a source language. */
2266 while (*cp && isspace (*cp))
2267 cp++;
2268
2269 if (*cp == '\0')
2270 error (_("'%s': two arguments required -- filename extension and language"),
2271 ext_args);
2272
2273 /* Lookup the language from among those we know. */
2274 lang = language_enum (cp);
2275
2276 /* Now lookup the filename extension: do we already know it? */
2277 for (i = 0; i < fl_table_next; i++)
2278 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2279 break;
2280
2281 if (i >= fl_table_next)
2282 {
2283 /* new file extension */
2284 add_filename_language (ext_args, lang);
2285 }
2286 else
2287 {
2288 /* redefining a previously known filename extension */
2289
2290 /* if (from_tty) */
2291 /* query ("Really make files of type %s '%s'?", */
2292 /* ext_args, language_str (lang)); */
2293
2294 xfree (filename_language_table[i].ext);
2295 filename_language_table[i].ext = xstrdup (ext_args);
2296 filename_language_table[i].lang = lang;
2297 }
2298 }
2299
2300 static void
2301 info_ext_lang_command (char *args, int from_tty)
2302 {
2303 int i;
2304
2305 printf_filtered (_("Filename extensions and the languages they represent:"));
2306 printf_filtered ("\n\n");
2307 for (i = 0; i < fl_table_next; i++)
2308 printf_filtered ("\t%s\t- %s\n",
2309 filename_language_table[i].ext,
2310 language_str (filename_language_table[i].lang));
2311 }
2312
2313 static void
2314 init_filename_language_table (void)
2315 {
2316 if (fl_table_size == 0) /* protect against repetition */
2317 {
2318 fl_table_size = 20;
2319 fl_table_next = 0;
2320 filename_language_table =
2321 xmalloc (fl_table_size * sizeof (*filename_language_table));
2322 add_filename_language (".c", language_c);
2323 add_filename_language (".C", language_cplus);
2324 add_filename_language (".cc", language_cplus);
2325 add_filename_language (".cp", language_cplus);
2326 add_filename_language (".cpp", language_cplus);
2327 add_filename_language (".cxx", language_cplus);
2328 add_filename_language (".c++", language_cplus);
2329 add_filename_language (".java", language_java);
2330 add_filename_language (".class", language_java);
2331 add_filename_language (".m", language_objc);
2332 add_filename_language (".f", language_fortran);
2333 add_filename_language (".F", language_fortran);
2334 add_filename_language (".s", language_asm);
2335 add_filename_language (".S", language_asm);
2336 add_filename_language (".pas", language_pascal);
2337 add_filename_language (".p", language_pascal);
2338 add_filename_language (".pp", language_pascal);
2339 add_filename_language (".adb", language_ada);
2340 add_filename_language (".ads", language_ada);
2341 add_filename_language (".a", language_ada);
2342 add_filename_language (".ada", language_ada);
2343 }
2344 }
2345
2346 enum language
2347 deduce_language_from_filename (char *filename)
2348 {
2349 int i;
2350 char *cp;
2351
2352 if (filename != NULL)
2353 if ((cp = strrchr (filename, '.')) != NULL)
2354 for (i = 0; i < fl_table_next; i++)
2355 if (strcmp (cp, filename_language_table[i].ext) == 0)
2356 return filename_language_table[i].lang;
2357
2358 return language_unknown;
2359 }
2360 \f
2361 /* allocate_symtab:
2362
2363 Allocate and partly initialize a new symbol table. Return a pointer
2364 to it. error() if no space.
2365
2366 Caller must set these fields:
2367 LINETABLE(symtab)
2368 symtab->blockvector
2369 symtab->dirname
2370 symtab->free_code
2371 symtab->free_ptr
2372 possibly free_named_symtabs (symtab->filename);
2373 */
2374
2375 struct symtab *
2376 allocate_symtab (char *filename, struct objfile *objfile)
2377 {
2378 struct symtab *symtab;
2379
2380 symtab = (struct symtab *)
2381 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2382 memset (symtab, 0, sizeof (*symtab));
2383 symtab->filename = obsavestring (filename, strlen (filename),
2384 &objfile->objfile_obstack);
2385 symtab->fullname = NULL;
2386 symtab->language = deduce_language_from_filename (filename);
2387 symtab->debugformat = obsavestring ("unknown", 7,
2388 &objfile->objfile_obstack);
2389
2390 /* Hook it to the objfile it comes from */
2391
2392 symtab->objfile = objfile;
2393 symtab->next = objfile->symtabs;
2394 objfile->symtabs = symtab;
2395
2396 /* FIXME: This should go away. It is only defined for the Z8000,
2397 and the Z8000 definition of this macro doesn't have anything to
2398 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2399 here for convenience. */
2400 #ifdef INIT_EXTRA_SYMTAB_INFO
2401 INIT_EXTRA_SYMTAB_INFO (symtab);
2402 #endif
2403
2404 return (symtab);
2405 }
2406
2407 struct partial_symtab *
2408 allocate_psymtab (char *filename, struct objfile *objfile)
2409 {
2410 struct partial_symtab *psymtab;
2411
2412 if (objfile->free_psymtabs)
2413 {
2414 psymtab = objfile->free_psymtabs;
2415 objfile->free_psymtabs = psymtab->next;
2416 }
2417 else
2418 psymtab = (struct partial_symtab *)
2419 obstack_alloc (&objfile->objfile_obstack,
2420 sizeof (struct partial_symtab));
2421
2422 memset (psymtab, 0, sizeof (struct partial_symtab));
2423 psymtab->filename = obsavestring (filename, strlen (filename),
2424 &objfile->objfile_obstack);
2425 psymtab->symtab = NULL;
2426
2427 /* Prepend it to the psymtab list for the objfile it belongs to.
2428 Psymtabs are searched in most recent inserted -> least recent
2429 inserted order. */
2430
2431 psymtab->objfile = objfile;
2432 psymtab->next = objfile->psymtabs;
2433 objfile->psymtabs = psymtab;
2434 #if 0
2435 {
2436 struct partial_symtab **prev_pst;
2437 psymtab->objfile = objfile;
2438 psymtab->next = NULL;
2439 prev_pst = &(objfile->psymtabs);
2440 while ((*prev_pst) != NULL)
2441 prev_pst = &((*prev_pst)->next);
2442 (*prev_pst) = psymtab;
2443 }
2444 #endif
2445
2446 return (psymtab);
2447 }
2448
2449 void
2450 discard_psymtab (struct partial_symtab *pst)
2451 {
2452 struct partial_symtab **prev_pst;
2453
2454 /* From dbxread.c:
2455 Empty psymtabs happen as a result of header files which don't
2456 have any symbols in them. There can be a lot of them. But this
2457 check is wrong, in that a psymtab with N_SLINE entries but
2458 nothing else is not empty, but we don't realize that. Fixing
2459 that without slowing things down might be tricky. */
2460
2461 /* First, snip it out of the psymtab chain */
2462
2463 prev_pst = &(pst->objfile->psymtabs);
2464 while ((*prev_pst) != pst)
2465 prev_pst = &((*prev_pst)->next);
2466 (*prev_pst) = pst->next;
2467
2468 /* Next, put it on a free list for recycling */
2469
2470 pst->next = pst->objfile->free_psymtabs;
2471 pst->objfile->free_psymtabs = pst;
2472 }
2473 \f
2474
2475 /* Reset all data structures in gdb which may contain references to symbol
2476 table data. */
2477
2478 void
2479 clear_symtab_users (void)
2480 {
2481 /* Someday, we should do better than this, by only blowing away
2482 the things that really need to be blown. */
2483
2484 /* Clear the "current" symtab first, because it is no longer valid.
2485 breakpoint_re_set may try to access the current symtab. */
2486 clear_current_source_symtab_and_line ();
2487
2488 clear_value_history ();
2489 clear_displays ();
2490 clear_internalvars ();
2491 breakpoint_re_set ();
2492 set_default_breakpoint (0, 0, 0, 0);
2493 clear_pc_function_cache ();
2494 if (deprecated_target_new_objfile_hook)
2495 deprecated_target_new_objfile_hook (NULL);
2496 }
2497
2498 static void
2499 clear_symtab_users_cleanup (void *ignore)
2500 {
2501 clear_symtab_users ();
2502 }
2503
2504 /* clear_symtab_users_once:
2505
2506 This function is run after symbol reading, or from a cleanup.
2507 If an old symbol table was obsoleted, the old symbol table
2508 has been blown away, but the other GDB data structures that may
2509 reference it have not yet been cleared or re-directed. (The old
2510 symtab was zapped, and the cleanup queued, in free_named_symtab()
2511 below.)
2512
2513 This function can be queued N times as a cleanup, or called
2514 directly; it will do all the work the first time, and then will be a
2515 no-op until the next time it is queued. This works by bumping a
2516 counter at queueing time. Much later when the cleanup is run, or at
2517 the end of symbol processing (in case the cleanup is discarded), if
2518 the queued count is greater than the "done-count", we do the work
2519 and set the done-count to the queued count. If the queued count is
2520 less than or equal to the done-count, we just ignore the call. This
2521 is needed because reading a single .o file will often replace many
2522 symtabs (one per .h file, for example), and we don't want to reset
2523 the breakpoints N times in the user's face.
2524
2525 The reason we both queue a cleanup, and call it directly after symbol
2526 reading, is because the cleanup protects us in case of errors, but is
2527 discarded if symbol reading is successful. */
2528
2529 #if 0
2530 /* FIXME: As free_named_symtabs is currently a big noop this function
2531 is no longer needed. */
2532 static void clear_symtab_users_once (void);
2533
2534 static int clear_symtab_users_queued;
2535 static int clear_symtab_users_done;
2536
2537 static void
2538 clear_symtab_users_once (void)
2539 {
2540 /* Enforce once-per-`do_cleanups'-semantics */
2541 if (clear_symtab_users_queued <= clear_symtab_users_done)
2542 return;
2543 clear_symtab_users_done = clear_symtab_users_queued;
2544
2545 clear_symtab_users ();
2546 }
2547 #endif
2548
2549 /* Delete the specified psymtab, and any others that reference it. */
2550
2551 static void
2552 cashier_psymtab (struct partial_symtab *pst)
2553 {
2554 struct partial_symtab *ps, *pprev = NULL;
2555 int i;
2556
2557 /* Find its previous psymtab in the chain */
2558 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2559 {
2560 if (ps == pst)
2561 break;
2562 pprev = ps;
2563 }
2564
2565 if (ps)
2566 {
2567 /* Unhook it from the chain. */
2568 if (ps == pst->objfile->psymtabs)
2569 pst->objfile->psymtabs = ps->next;
2570 else
2571 pprev->next = ps->next;
2572
2573 /* FIXME, we can't conveniently deallocate the entries in the
2574 partial_symbol lists (global_psymbols/static_psymbols) that
2575 this psymtab points to. These just take up space until all
2576 the psymtabs are reclaimed. Ditto the dependencies list and
2577 filename, which are all in the objfile_obstack. */
2578
2579 /* We need to cashier any psymtab that has this one as a dependency... */
2580 again:
2581 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2582 {
2583 for (i = 0; i < ps->number_of_dependencies; i++)
2584 {
2585 if (ps->dependencies[i] == pst)
2586 {
2587 cashier_psymtab (ps);
2588 goto again; /* Must restart, chain has been munged. */
2589 }
2590 }
2591 }
2592 }
2593 }
2594
2595 /* If a symtab or psymtab for filename NAME is found, free it along
2596 with any dependent breakpoints, displays, etc.
2597 Used when loading new versions of object modules with the "add-file"
2598 command. This is only called on the top-level symtab or psymtab's name;
2599 it is not called for subsidiary files such as .h files.
2600
2601 Return value is 1 if we blew away the environment, 0 if not.
2602 FIXME. The return value appears to never be used.
2603
2604 FIXME. I think this is not the best way to do this. We should
2605 work on being gentler to the environment while still cleaning up
2606 all stray pointers into the freed symtab. */
2607
2608 int
2609 free_named_symtabs (char *name)
2610 {
2611 #if 0
2612 /* FIXME: With the new method of each objfile having it's own
2613 psymtab list, this function needs serious rethinking. In particular,
2614 why was it ever necessary to toss psymtabs with specific compilation
2615 unit filenames, as opposed to all psymtabs from a particular symbol
2616 file? -- fnf
2617 Well, the answer is that some systems permit reloading of particular
2618 compilation units. We want to blow away any old info about these
2619 compilation units, regardless of which objfiles they arrived in. --gnu. */
2620
2621 struct symtab *s;
2622 struct symtab *prev;
2623 struct partial_symtab *ps;
2624 struct blockvector *bv;
2625 int blewit = 0;
2626
2627 /* We only wack things if the symbol-reload switch is set. */
2628 if (!symbol_reloading)
2629 return 0;
2630
2631 /* Some symbol formats have trouble providing file names... */
2632 if (name == 0 || *name == '\0')
2633 return 0;
2634
2635 /* Look for a psymtab with the specified name. */
2636
2637 again2:
2638 for (ps = partial_symtab_list; ps; ps = ps->next)
2639 {
2640 if (strcmp (name, ps->filename) == 0)
2641 {
2642 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2643 goto again2; /* Must restart, chain has been munged */
2644 }
2645 }
2646
2647 /* Look for a symtab with the specified name. */
2648
2649 for (s = symtab_list; s; s = s->next)
2650 {
2651 if (strcmp (name, s->filename) == 0)
2652 break;
2653 prev = s;
2654 }
2655
2656 if (s)
2657 {
2658 if (s == symtab_list)
2659 symtab_list = s->next;
2660 else
2661 prev->next = s->next;
2662
2663 /* For now, queue a delete for all breakpoints, displays, etc., whether
2664 or not they depend on the symtab being freed. This should be
2665 changed so that only those data structures affected are deleted. */
2666
2667 /* But don't delete anything if the symtab is empty.
2668 This test is necessary due to a bug in "dbxread.c" that
2669 causes empty symtabs to be created for N_SO symbols that
2670 contain the pathname of the object file. (This problem
2671 has been fixed in GDB 3.9x). */
2672
2673 bv = BLOCKVECTOR (s);
2674 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2675 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2676 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2677 {
2678 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2679 name);
2680 clear_symtab_users_queued++;
2681 make_cleanup (clear_symtab_users_once, 0);
2682 blewit = 1;
2683 }
2684 else
2685 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2686 name);
2687
2688 free_symtab (s);
2689 }
2690 else
2691 {
2692 /* It is still possible that some breakpoints will be affected
2693 even though no symtab was found, since the file might have
2694 been compiled without debugging, and hence not be associated
2695 with a symtab. In order to handle this correctly, we would need
2696 to keep a list of text address ranges for undebuggable files.
2697 For now, we do nothing, since this is a fairly obscure case. */
2698 ;
2699 }
2700
2701 /* FIXME, what about the minimal symbol table? */
2702 return blewit;
2703 #else
2704 return (0);
2705 #endif
2706 }
2707 \f
2708 /* Allocate and partially fill a partial symtab. It will be
2709 completely filled at the end of the symbol list.
2710
2711 FILENAME is the name of the symbol-file we are reading from. */
2712
2713 struct partial_symtab *
2714 start_psymtab_common (struct objfile *objfile,
2715 struct section_offsets *section_offsets, char *filename,
2716 CORE_ADDR textlow, struct partial_symbol **global_syms,
2717 struct partial_symbol **static_syms)
2718 {
2719 struct partial_symtab *psymtab;
2720
2721 psymtab = allocate_psymtab (filename, objfile);
2722 psymtab->section_offsets = section_offsets;
2723 psymtab->textlow = textlow;
2724 psymtab->texthigh = psymtab->textlow; /* default */
2725 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2726 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2727 return (psymtab);
2728 }
2729 \f
2730 /* Add a symbol with a long value to a psymtab.
2731 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2732 Return the partial symbol that has been added. */
2733
2734 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2735 symbol is so that callers can get access to the symbol's demangled
2736 name, which they don't have any cheap way to determine otherwise.
2737 (Currenly, dwarf2read.c is the only file who uses that information,
2738 though it's possible that other readers might in the future.)
2739 Elena wasn't thrilled about that, and I don't blame her, but we
2740 couldn't come up with a better way to get that information. If
2741 it's needed in other situations, we could consider breaking up
2742 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2743 cache. */
2744
2745 const struct partial_symbol *
2746 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2747 enum address_class class,
2748 struct psymbol_allocation_list *list, long val, /* Value as a long */
2749 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2750 enum language language, struct objfile *objfile)
2751 {
2752 struct partial_symbol *psym;
2753 char *buf = alloca (namelength + 1);
2754 /* psymbol is static so that there will be no uninitialized gaps in the
2755 structure which might contain random data, causing cache misses in
2756 bcache. */
2757 static struct partial_symbol psymbol;
2758
2759 /* Create local copy of the partial symbol */
2760 memcpy (buf, name, namelength);
2761 buf[namelength] = '\0';
2762 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2763 if (val != 0)
2764 {
2765 SYMBOL_VALUE (&psymbol) = val;
2766 }
2767 else
2768 {
2769 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2770 }
2771 SYMBOL_SECTION (&psymbol) = 0;
2772 SYMBOL_LANGUAGE (&psymbol) = language;
2773 PSYMBOL_DOMAIN (&psymbol) = domain;
2774 PSYMBOL_CLASS (&psymbol) = class;
2775
2776 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2777
2778 /* Stash the partial symbol away in the cache */
2779 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2780 objfile->psymbol_cache);
2781
2782 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2783 if (list->next >= list->list + list->size)
2784 {
2785 extend_psymbol_list (list, objfile);
2786 }
2787 *list->next++ = psym;
2788 OBJSTAT (objfile, n_psyms++);
2789
2790 return psym;
2791 }
2792
2793 /* Add a symbol with a long value to a psymtab. This differs from
2794 * add_psymbol_to_list above in taking both a mangled and a demangled
2795 * name. */
2796
2797 void
2798 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2799 int dem_namelength, domain_enum domain,
2800 enum address_class class,
2801 struct psymbol_allocation_list *list, long val, /* Value as a long */
2802 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2803 enum language language,
2804 struct objfile *objfile)
2805 {
2806 struct partial_symbol *psym;
2807 char *buf = alloca (namelength + 1);
2808 /* psymbol is static so that there will be no uninitialized gaps in the
2809 structure which might contain random data, causing cache misses in
2810 bcache. */
2811 static struct partial_symbol psymbol;
2812
2813 /* Create local copy of the partial symbol */
2814
2815 memcpy (buf, name, namelength);
2816 buf[namelength] = '\0';
2817 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2818 objfile->psymbol_cache);
2819
2820 buf = alloca (dem_namelength + 1);
2821 memcpy (buf, dem_name, dem_namelength);
2822 buf[dem_namelength] = '\0';
2823
2824 switch (language)
2825 {
2826 case language_c:
2827 case language_cplus:
2828 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2829 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2830 break;
2831 /* FIXME What should be done for the default case? Ignoring for now. */
2832 }
2833
2834 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2835 if (val != 0)
2836 {
2837 SYMBOL_VALUE (&psymbol) = val;
2838 }
2839 else
2840 {
2841 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2842 }
2843 SYMBOL_SECTION (&psymbol) = 0;
2844 SYMBOL_LANGUAGE (&psymbol) = language;
2845 PSYMBOL_DOMAIN (&psymbol) = domain;
2846 PSYMBOL_CLASS (&psymbol) = class;
2847 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2848
2849 /* Stash the partial symbol away in the cache */
2850 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2851 objfile->psymbol_cache);
2852
2853 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2854 if (list->next >= list->list + list->size)
2855 {
2856 extend_psymbol_list (list, objfile);
2857 }
2858 *list->next++ = psym;
2859 OBJSTAT (objfile, n_psyms++);
2860 }
2861
2862 /* Initialize storage for partial symbols. */
2863
2864 void
2865 init_psymbol_list (struct objfile *objfile, int total_symbols)
2866 {
2867 /* Free any previously allocated psymbol lists. */
2868
2869 if (objfile->global_psymbols.list)
2870 {
2871 xfree (objfile->global_psymbols.list);
2872 }
2873 if (objfile->static_psymbols.list)
2874 {
2875 xfree (objfile->static_psymbols.list);
2876 }
2877
2878 /* Current best guess is that approximately a twentieth
2879 of the total symbols (in a debugging file) are global or static
2880 oriented symbols */
2881
2882 objfile->global_psymbols.size = total_symbols / 10;
2883 objfile->static_psymbols.size = total_symbols / 10;
2884
2885 if (objfile->global_psymbols.size > 0)
2886 {
2887 objfile->global_psymbols.next =
2888 objfile->global_psymbols.list = (struct partial_symbol **)
2889 xmalloc ((objfile->global_psymbols.size
2890 * sizeof (struct partial_symbol *)));
2891 }
2892 if (objfile->static_psymbols.size > 0)
2893 {
2894 objfile->static_psymbols.next =
2895 objfile->static_psymbols.list = (struct partial_symbol **)
2896 xmalloc ((objfile->static_psymbols.size
2897 * sizeof (struct partial_symbol *)));
2898 }
2899 }
2900
2901 /* OVERLAYS:
2902 The following code implements an abstraction for debugging overlay sections.
2903
2904 The target model is as follows:
2905 1) The gnu linker will permit multiple sections to be mapped into the
2906 same VMA, each with its own unique LMA (or load address).
2907 2) It is assumed that some runtime mechanism exists for mapping the
2908 sections, one by one, from the load address into the VMA address.
2909 3) This code provides a mechanism for gdb to keep track of which
2910 sections should be considered to be mapped from the VMA to the LMA.
2911 This information is used for symbol lookup, and memory read/write.
2912 For instance, if a section has been mapped then its contents
2913 should be read from the VMA, otherwise from the LMA.
2914
2915 Two levels of debugger support for overlays are available. One is
2916 "manual", in which the debugger relies on the user to tell it which
2917 overlays are currently mapped. This level of support is
2918 implemented entirely in the core debugger, and the information about
2919 whether a section is mapped is kept in the objfile->obj_section table.
2920
2921 The second level of support is "automatic", and is only available if
2922 the target-specific code provides functionality to read the target's
2923 overlay mapping table, and translate its contents for the debugger
2924 (by updating the mapped state information in the obj_section tables).
2925
2926 The interface is as follows:
2927 User commands:
2928 overlay map <name> -- tell gdb to consider this section mapped
2929 overlay unmap <name> -- tell gdb to consider this section unmapped
2930 overlay list -- list the sections that GDB thinks are mapped
2931 overlay read-target -- get the target's state of what's mapped
2932 overlay off/manual/auto -- set overlay debugging state
2933 Functional interface:
2934 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2935 section, return that section.
2936 find_pc_overlay(pc): find any overlay section that contains
2937 the pc, either in its VMA or its LMA
2938 overlay_is_mapped(sect): true if overlay is marked as mapped
2939 section_is_overlay(sect): true if section's VMA != LMA
2940 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2941 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2942 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2943 overlay_mapped_address(...): map an address from section's LMA to VMA
2944 overlay_unmapped_address(...): map an address from section's VMA to LMA
2945 symbol_overlayed_address(...): Return a "current" address for symbol:
2946 either in VMA or LMA depending on whether
2947 the symbol's section is currently mapped
2948 */
2949
2950 /* Overlay debugging state: */
2951
2952 enum overlay_debugging_state overlay_debugging = ovly_off;
2953 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2954
2955 /* Target vector for refreshing overlay mapped state */
2956 static void simple_overlay_update (struct obj_section *);
2957 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2958
2959 /* Function: section_is_overlay (SECTION)
2960 Returns true if SECTION has VMA not equal to LMA, ie.
2961 SECTION is loaded at an address different from where it will "run". */
2962
2963 int
2964 section_is_overlay (asection *section)
2965 {
2966 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2967
2968 if (overlay_debugging)
2969 if (section && section->lma != 0 &&
2970 section->vma != section->lma)
2971 return 1;
2972
2973 return 0;
2974 }
2975
2976 /* Function: overlay_invalidate_all (void)
2977 Invalidate the mapped state of all overlay sections (mark it as stale). */
2978
2979 static void
2980 overlay_invalidate_all (void)
2981 {
2982 struct objfile *objfile;
2983 struct obj_section *sect;
2984
2985 ALL_OBJSECTIONS (objfile, sect)
2986 if (section_is_overlay (sect->the_bfd_section))
2987 sect->ovly_mapped = -1;
2988 }
2989
2990 /* Function: overlay_is_mapped (SECTION)
2991 Returns true if section is an overlay, and is currently mapped.
2992 Private: public access is thru function section_is_mapped.
2993
2994 Access to the ovly_mapped flag is restricted to this function, so
2995 that we can do automatic update. If the global flag
2996 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2997 overlay_invalidate_all. If the mapped state of the particular
2998 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2999
3000 static int
3001 overlay_is_mapped (struct obj_section *osect)
3002 {
3003 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3004 return 0;
3005
3006 switch (overlay_debugging)
3007 {
3008 default:
3009 case ovly_off:
3010 return 0; /* overlay debugging off */
3011 case ovly_auto: /* overlay debugging automatic */
3012 /* Unles there is a target_overlay_update function,
3013 there's really nothing useful to do here (can't really go auto) */
3014 if (target_overlay_update)
3015 {
3016 if (overlay_cache_invalid)
3017 {
3018 overlay_invalidate_all ();
3019 overlay_cache_invalid = 0;
3020 }
3021 if (osect->ovly_mapped == -1)
3022 (*target_overlay_update) (osect);
3023 }
3024 /* fall thru to manual case */
3025 case ovly_on: /* overlay debugging manual */
3026 return osect->ovly_mapped == 1;
3027 }
3028 }
3029
3030 /* Function: section_is_mapped
3031 Returns true if section is an overlay, and is currently mapped. */
3032
3033 int
3034 section_is_mapped (asection *section)
3035 {
3036 struct objfile *objfile;
3037 struct obj_section *osect;
3038
3039 if (overlay_debugging)
3040 if (section && section_is_overlay (section))
3041 ALL_OBJSECTIONS (objfile, osect)
3042 if (osect->the_bfd_section == section)
3043 return overlay_is_mapped (osect);
3044
3045 return 0;
3046 }
3047
3048 /* Function: pc_in_unmapped_range
3049 If PC falls into the lma range of SECTION, return true, else false. */
3050
3051 CORE_ADDR
3052 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3053 {
3054 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3055
3056 int size;
3057
3058 if (overlay_debugging)
3059 if (section && section_is_overlay (section))
3060 {
3061 size = bfd_get_section_size (section);
3062 if (section->lma <= pc && pc < section->lma + size)
3063 return 1;
3064 }
3065 return 0;
3066 }
3067
3068 /* Function: pc_in_mapped_range
3069 If PC falls into the vma range of SECTION, return true, else false. */
3070
3071 CORE_ADDR
3072 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3073 {
3074 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3075
3076 int size;
3077
3078 if (overlay_debugging)
3079 if (section && section_is_overlay (section))
3080 {
3081 size = bfd_get_section_size (section);
3082 if (section->vma <= pc && pc < section->vma + size)
3083 return 1;
3084 }
3085 return 0;
3086 }
3087
3088
3089 /* Return true if the mapped ranges of sections A and B overlap, false
3090 otherwise. */
3091 static int
3092 sections_overlap (asection *a, asection *b)
3093 {
3094 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3095
3096 CORE_ADDR a_start = a->vma;
3097 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3098 CORE_ADDR b_start = b->vma;
3099 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3100
3101 return (a_start < b_end && b_start < a_end);
3102 }
3103
3104 /* Function: overlay_unmapped_address (PC, SECTION)
3105 Returns the address corresponding to PC in the unmapped (load) range.
3106 May be the same as PC. */
3107
3108 CORE_ADDR
3109 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3110 {
3111 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3112
3113 if (overlay_debugging)
3114 if (section && section_is_overlay (section) &&
3115 pc_in_mapped_range (pc, section))
3116 return pc + section->lma - section->vma;
3117
3118 return pc;
3119 }
3120
3121 /* Function: overlay_mapped_address (PC, SECTION)
3122 Returns the address corresponding to PC in the mapped (runtime) range.
3123 May be the same as PC. */
3124
3125 CORE_ADDR
3126 overlay_mapped_address (CORE_ADDR pc, asection *section)
3127 {
3128 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3129
3130 if (overlay_debugging)
3131 if (section && section_is_overlay (section) &&
3132 pc_in_unmapped_range (pc, section))
3133 return pc + section->vma - section->lma;
3134
3135 return pc;
3136 }
3137
3138
3139 /* Function: symbol_overlayed_address
3140 Return one of two addresses (relative to the VMA or to the LMA),
3141 depending on whether the section is mapped or not. */
3142
3143 CORE_ADDR
3144 symbol_overlayed_address (CORE_ADDR address, asection *section)
3145 {
3146 if (overlay_debugging)
3147 {
3148 /* If the symbol has no section, just return its regular address. */
3149 if (section == 0)
3150 return address;
3151 /* If the symbol's section is not an overlay, just return its address */
3152 if (!section_is_overlay (section))
3153 return address;
3154 /* If the symbol's section is mapped, just return its address */
3155 if (section_is_mapped (section))
3156 return address;
3157 /*
3158 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3159 * then return its LOADED address rather than its vma address!!
3160 */
3161 return overlay_unmapped_address (address, section);
3162 }
3163 return address;
3164 }
3165
3166 /* Function: find_pc_overlay (PC)
3167 Return the best-match overlay section for PC:
3168 If PC matches a mapped overlay section's VMA, return that section.
3169 Else if PC matches an unmapped section's VMA, return that section.
3170 Else if PC matches an unmapped section's LMA, return that section. */
3171
3172 asection *
3173 find_pc_overlay (CORE_ADDR pc)
3174 {
3175 struct objfile *objfile;
3176 struct obj_section *osect, *best_match = NULL;
3177
3178 if (overlay_debugging)
3179 ALL_OBJSECTIONS (objfile, osect)
3180 if (section_is_overlay (osect->the_bfd_section))
3181 {
3182 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3183 {
3184 if (overlay_is_mapped (osect))
3185 return osect->the_bfd_section;
3186 else
3187 best_match = osect;
3188 }
3189 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3190 best_match = osect;
3191 }
3192 return best_match ? best_match->the_bfd_section : NULL;
3193 }
3194
3195 /* Function: find_pc_mapped_section (PC)
3196 If PC falls into the VMA address range of an overlay section that is
3197 currently marked as MAPPED, return that section. Else return NULL. */
3198
3199 asection *
3200 find_pc_mapped_section (CORE_ADDR pc)
3201 {
3202 struct objfile *objfile;
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
3206 ALL_OBJSECTIONS (objfile, osect)
3207 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3208 overlay_is_mapped (osect))
3209 return osect->the_bfd_section;
3210
3211 return NULL;
3212 }
3213
3214 /* Function: list_overlays_command
3215 Print a list of mapped sections and their PC ranges */
3216
3217 void
3218 list_overlays_command (char *args, int from_tty)
3219 {
3220 int nmapped = 0;
3221 struct objfile *objfile;
3222 struct obj_section *osect;
3223
3224 if (overlay_debugging)
3225 ALL_OBJSECTIONS (objfile, osect)
3226 if (overlay_is_mapped (osect))
3227 {
3228 const char *name;
3229 bfd_vma lma, vma;
3230 int size;
3231
3232 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3233 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3234 size = bfd_get_section_size (osect->the_bfd_section);
3235 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3236
3237 printf_filtered ("Section %s, loaded at ", name);
3238 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3239 puts_filtered (" - ");
3240 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3241 printf_filtered (", mapped at ");
3242 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3243 puts_filtered (" - ");
3244 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3245 puts_filtered ("\n");
3246
3247 nmapped++;
3248 }
3249 if (nmapped == 0)
3250 printf_filtered (_("No sections are mapped.\n"));
3251 }
3252
3253 /* Function: map_overlay_command
3254 Mark the named section as mapped (ie. residing at its VMA address). */
3255
3256 void
3257 map_overlay_command (char *args, int from_tty)
3258 {
3259 struct objfile *objfile, *objfile2;
3260 struct obj_section *sec, *sec2;
3261 asection *bfdsec;
3262
3263 if (!overlay_debugging)
3264 error (_("\
3265 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3266 the 'overlay manual' command."));
3267
3268 if (args == 0 || *args == 0)
3269 error (_("Argument required: name of an overlay section"));
3270
3271 /* First, find a section matching the user supplied argument */
3272 ALL_OBJSECTIONS (objfile, sec)
3273 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3274 {
3275 /* Now, check to see if the section is an overlay. */
3276 bfdsec = sec->the_bfd_section;
3277 if (!section_is_overlay (bfdsec))
3278 continue; /* not an overlay section */
3279
3280 /* Mark the overlay as "mapped" */
3281 sec->ovly_mapped = 1;
3282
3283 /* Next, make a pass and unmap any sections that are
3284 overlapped by this new section: */
3285 ALL_OBJSECTIONS (objfile2, sec2)
3286 if (sec2->ovly_mapped
3287 && sec != sec2
3288 && sec->the_bfd_section != sec2->the_bfd_section
3289 && sections_overlap (sec->the_bfd_section,
3290 sec2->the_bfd_section))
3291 {
3292 if (info_verbose)
3293 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3294 bfd_section_name (objfile->obfd,
3295 sec2->the_bfd_section));
3296 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3297 }
3298 return;
3299 }
3300 error (_("No overlay section called %s"), args);
3301 }
3302
3303 /* Function: unmap_overlay_command
3304 Mark the overlay section as unmapped
3305 (ie. resident in its LMA address range, rather than the VMA range). */
3306
3307 void
3308 unmap_overlay_command (char *args, int from_tty)
3309 {
3310 struct objfile *objfile;
3311 struct obj_section *sec;
3312
3313 if (!overlay_debugging)
3314 error (_("\
3315 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3316 the 'overlay manual' command."));
3317
3318 if (args == 0 || *args == 0)
3319 error (_("Argument required: name of an overlay section"));
3320
3321 /* First, find a section matching the user supplied argument */
3322 ALL_OBJSECTIONS (objfile, sec)
3323 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3324 {
3325 if (!sec->ovly_mapped)
3326 error (_("Section %s is not mapped"), args);
3327 sec->ovly_mapped = 0;
3328 return;
3329 }
3330 error (_("No overlay section called %s"), args);
3331 }
3332
3333 /* Function: overlay_auto_command
3334 A utility command to turn on overlay debugging.
3335 Possibly this should be done via a set/show command. */
3336
3337 static void
3338 overlay_auto_command (char *args, int from_tty)
3339 {
3340 overlay_debugging = ovly_auto;
3341 enable_overlay_breakpoints ();
3342 if (info_verbose)
3343 printf_unfiltered (_("Automatic overlay debugging enabled."));
3344 }
3345
3346 /* Function: overlay_manual_command
3347 A utility command to turn on overlay debugging.
3348 Possibly this should be done via a set/show command. */
3349
3350 static void
3351 overlay_manual_command (char *args, int from_tty)
3352 {
3353 overlay_debugging = ovly_on;
3354 disable_overlay_breakpoints ();
3355 if (info_verbose)
3356 printf_unfiltered (_("Overlay debugging enabled."));
3357 }
3358
3359 /* Function: overlay_off_command
3360 A utility command to turn on overlay debugging.
3361 Possibly this should be done via a set/show command. */
3362
3363 static void
3364 overlay_off_command (char *args, int from_tty)
3365 {
3366 overlay_debugging = ovly_off;
3367 disable_overlay_breakpoints ();
3368 if (info_verbose)
3369 printf_unfiltered (_("Overlay debugging disabled."));
3370 }
3371
3372 static void
3373 overlay_load_command (char *args, int from_tty)
3374 {
3375 if (target_overlay_update)
3376 (*target_overlay_update) (NULL);
3377 else
3378 error (_("This target does not know how to read its overlay state."));
3379 }
3380
3381 /* Function: overlay_command
3382 A place-holder for a mis-typed command */
3383
3384 /* Command list chain containing all defined "overlay" subcommands. */
3385 struct cmd_list_element *overlaylist;
3386
3387 static void
3388 overlay_command (char *args, int from_tty)
3389 {
3390 printf_unfiltered
3391 ("\"overlay\" must be followed by the name of an overlay command.\n");
3392 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3393 }
3394
3395
3396 /* Target Overlays for the "Simplest" overlay manager:
3397
3398 This is GDB's default target overlay layer. It works with the
3399 minimal overlay manager supplied as an example by Cygnus. The
3400 entry point is via a function pointer "target_overlay_update",
3401 so targets that use a different runtime overlay manager can
3402 substitute their own overlay_update function and take over the
3403 function pointer.
3404
3405 The overlay_update function pokes around in the target's data structures
3406 to see what overlays are mapped, and updates GDB's overlay mapping with
3407 this information.
3408
3409 In this simple implementation, the target data structures are as follows:
3410 unsigned _novlys; /# number of overlay sections #/
3411 unsigned _ovly_table[_novlys][4] = {
3412 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3413 {..., ..., ..., ...},
3414 }
3415 unsigned _novly_regions; /# number of overlay regions #/
3416 unsigned _ovly_region_table[_novly_regions][3] = {
3417 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3418 {..., ..., ...},
3419 }
3420 These functions will attempt to update GDB's mappedness state in the
3421 symbol section table, based on the target's mappedness state.
3422
3423 To do this, we keep a cached copy of the target's _ovly_table, and
3424 attempt to detect when the cached copy is invalidated. The main
3425 entry point is "simple_overlay_update(SECT), which looks up SECT in
3426 the cached table and re-reads only the entry for that section from
3427 the target (whenever possible).
3428 */
3429
3430 /* Cached, dynamically allocated copies of the target data structures: */
3431 static unsigned (*cache_ovly_table)[4] = 0;
3432 #if 0
3433 static unsigned (*cache_ovly_region_table)[3] = 0;
3434 #endif
3435 static unsigned cache_novlys = 0;
3436 #if 0
3437 static unsigned cache_novly_regions = 0;
3438 #endif
3439 static CORE_ADDR cache_ovly_table_base = 0;
3440 #if 0
3441 static CORE_ADDR cache_ovly_region_table_base = 0;
3442 #endif
3443 enum ovly_index
3444 {
3445 VMA, SIZE, LMA, MAPPED
3446 };
3447 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3448
3449 /* Throw away the cached copy of _ovly_table */
3450 static void
3451 simple_free_overlay_table (void)
3452 {
3453 if (cache_ovly_table)
3454 xfree (cache_ovly_table);
3455 cache_novlys = 0;
3456 cache_ovly_table = NULL;
3457 cache_ovly_table_base = 0;
3458 }
3459
3460 #if 0
3461 /* Throw away the cached copy of _ovly_region_table */
3462 static void
3463 simple_free_overlay_region_table (void)
3464 {
3465 if (cache_ovly_region_table)
3466 xfree (cache_ovly_region_table);
3467 cache_novly_regions = 0;
3468 cache_ovly_region_table = NULL;
3469 cache_ovly_region_table_base = 0;
3470 }
3471 #endif
3472
3473 /* Read an array of ints from the target into a local buffer.
3474 Convert to host order. int LEN is number of ints */
3475 static void
3476 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3477 {
3478 /* FIXME (alloca): Not safe if array is very large. */
3479 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3480 int i;
3481
3482 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3483 for (i = 0; i < len; i++)
3484 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3485 TARGET_LONG_BYTES);
3486 }
3487
3488 /* Find and grab a copy of the target _ovly_table
3489 (and _novlys, which is needed for the table's size) */
3490 static int
3491 simple_read_overlay_table (void)
3492 {
3493 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3494
3495 simple_free_overlay_table ();
3496 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3497 if (! novlys_msym)
3498 {
3499 error (_("Error reading inferior's overlay table: "
3500 "couldn't find `_novlys' variable\n"
3501 "in inferior. Use `overlay manual' mode."));
3502 return 0;
3503 }
3504
3505 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3506 if (! ovly_table_msym)
3507 {
3508 error (_("Error reading inferior's overlay table: couldn't find "
3509 "`_ovly_table' array\n"
3510 "in inferior. Use `overlay manual' mode."));
3511 return 0;
3512 }
3513
3514 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3515 cache_ovly_table
3516 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3517 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3518 read_target_long_array (cache_ovly_table_base,
3519 (unsigned int *) cache_ovly_table,
3520 cache_novlys * 4);
3521
3522 return 1; /* SUCCESS */
3523 }
3524
3525 #if 0
3526 /* Find and grab a copy of the target _ovly_region_table
3527 (and _novly_regions, which is needed for the table's size) */
3528 static int
3529 simple_read_overlay_region_table (void)
3530 {
3531 struct minimal_symbol *msym;
3532
3533 simple_free_overlay_region_table ();
3534 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3535 if (msym != NULL)
3536 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3537 else
3538 return 0; /* failure */
3539 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3540 if (cache_ovly_region_table != NULL)
3541 {
3542 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3543 if (msym != NULL)
3544 {
3545 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3546 read_target_long_array (cache_ovly_region_table_base,
3547 (unsigned int *) cache_ovly_region_table,
3548 cache_novly_regions * 3);
3549 }
3550 else
3551 return 0; /* failure */
3552 }
3553 else
3554 return 0; /* failure */
3555 return 1; /* SUCCESS */
3556 }
3557 #endif
3558
3559 /* Function: simple_overlay_update_1
3560 A helper function for simple_overlay_update. Assuming a cached copy
3561 of _ovly_table exists, look through it to find an entry whose vma,
3562 lma and size match those of OSECT. Re-read the entry and make sure
3563 it still matches OSECT (else the table may no longer be valid).
3564 Set OSECT's mapped state to match the entry. Return: 1 for
3565 success, 0 for failure. */
3566
3567 static int
3568 simple_overlay_update_1 (struct obj_section *osect)
3569 {
3570 int i, size;
3571 bfd *obfd = osect->objfile->obfd;
3572 asection *bsect = osect->the_bfd_section;
3573
3574 size = bfd_get_section_size (osect->the_bfd_section);
3575 for (i = 0; i < cache_novlys; i++)
3576 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3577 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3578 /* && cache_ovly_table[i][SIZE] == size */ )
3579 {
3580 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3581 (unsigned int *) cache_ovly_table[i], 4);
3582 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3583 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3584 /* && cache_ovly_table[i][SIZE] == size */ )
3585 {
3586 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3587 return 1;
3588 }
3589 else /* Warning! Warning! Target's ovly table has changed! */
3590 return 0;
3591 }
3592 return 0;
3593 }
3594
3595 /* Function: simple_overlay_update
3596 If OSECT is NULL, then update all sections' mapped state
3597 (after re-reading the entire target _ovly_table).
3598 If OSECT is non-NULL, then try to find a matching entry in the
3599 cached ovly_table and update only OSECT's mapped state.
3600 If a cached entry can't be found or the cache isn't valid, then
3601 re-read the entire cache, and go ahead and update all sections. */
3602
3603 static void
3604 simple_overlay_update (struct obj_section *osect)
3605 {
3606 struct objfile *objfile;
3607
3608 /* Were we given an osect to look up? NULL means do all of them. */
3609 if (osect)
3610 /* Have we got a cached copy of the target's overlay table? */
3611 if (cache_ovly_table != NULL)
3612 /* Does its cached location match what's currently in the symtab? */
3613 if (cache_ovly_table_base ==
3614 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3615 /* Then go ahead and try to look up this single section in the cache */
3616 if (simple_overlay_update_1 (osect))
3617 /* Found it! We're done. */
3618 return;
3619
3620 /* Cached table no good: need to read the entire table anew.
3621 Or else we want all the sections, in which case it's actually
3622 more efficient to read the whole table in one block anyway. */
3623
3624 if (! simple_read_overlay_table ())
3625 return;
3626
3627 /* Now may as well update all sections, even if only one was requested. */
3628 ALL_OBJSECTIONS (objfile, osect)
3629 if (section_is_overlay (osect->the_bfd_section))
3630 {
3631 int i, size;
3632 bfd *obfd = osect->objfile->obfd;
3633 asection *bsect = osect->the_bfd_section;
3634
3635 size = bfd_get_section_size (bsect);
3636 for (i = 0; i < cache_novlys; i++)
3637 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3638 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3639 /* && cache_ovly_table[i][SIZE] == size */ )
3640 { /* obj_section matches i'th entry in ovly_table */
3641 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3642 break; /* finished with inner for loop: break out */
3643 }
3644 }
3645 }
3646
3647 /* Set the output sections and output offsets for section SECTP in
3648 ABFD. The relocation code in BFD will read these offsets, so we
3649 need to be sure they're initialized. We map each section to itself,
3650 with no offset; this means that SECTP->vma will be honored. */
3651
3652 static void
3653 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3654 {
3655 sectp->output_section = sectp;
3656 sectp->output_offset = 0;
3657 }
3658
3659 /* Relocate the contents of a debug section SECTP in ABFD. The
3660 contents are stored in BUF if it is non-NULL, or returned in a
3661 malloc'd buffer otherwise.
3662
3663 For some platforms and debug info formats, shared libraries contain
3664 relocations against the debug sections (particularly for DWARF-2;
3665 one affected platform is PowerPC GNU/Linux, although it depends on
3666 the version of the linker in use). Also, ELF object files naturally
3667 have unresolved relocations for their debug sections. We need to apply
3668 the relocations in order to get the locations of symbols correct. */
3669
3670 bfd_byte *
3671 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3672 {
3673 /* We're only interested in debugging sections with relocation
3674 information. */
3675 if ((sectp->flags & SEC_RELOC) == 0)
3676 return NULL;
3677 if ((sectp->flags & SEC_DEBUGGING) == 0)
3678 return NULL;
3679
3680 /* We will handle section offsets properly elsewhere, so relocate as if
3681 all sections begin at 0. */
3682 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3683
3684 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3685 }
3686
3687 void
3688 _initialize_symfile (void)
3689 {
3690 struct cmd_list_element *c;
3691
3692 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3693 Load symbol table from executable file FILE.\n\
3694 The `file' command can also load symbol tables, as well as setting the file\n\
3695 to execute."), &cmdlist);
3696 set_cmd_completer (c, filename_completer);
3697
3698 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3699 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3700 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3701 ADDR is the starting address of the file's text.\n\
3702 The optional arguments are section-name section-address pairs and\n\
3703 should be specified if the data and bss segments are not contiguous\n\
3704 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3705 &cmdlist);
3706 set_cmd_completer (c, filename_completer);
3707
3708 c = add_cmd ("add-shared-symbol-files", class_files,
3709 add_shared_symbol_files_command, _("\
3710 Load the symbols from shared objects in the dynamic linker's link map."),
3711 &cmdlist);
3712 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3713 &cmdlist);
3714
3715 c = add_cmd ("load", class_files, load_command, _("\
3716 Dynamically load FILE into the running program, and record its symbols\n\
3717 for access from GDB."), &cmdlist);
3718 set_cmd_completer (c, filename_completer);
3719
3720 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3721 &symbol_reloading, _("\
3722 Set dynamic symbol table reloading multiple times in one run."), _("\
3723 Show dynamic symbol table reloading multiple times in one run."), NULL,
3724 NULL,
3725 show_symbol_reloading,
3726 &setlist, &showlist);
3727
3728 add_prefix_cmd ("overlay", class_support, overlay_command,
3729 _("Commands for debugging overlays."), &overlaylist,
3730 "overlay ", 0, &cmdlist);
3731
3732 add_com_alias ("ovly", "overlay", class_alias, 1);
3733 add_com_alias ("ov", "overlay", class_alias, 1);
3734
3735 add_cmd ("map-overlay", class_support, map_overlay_command,
3736 _("Assert that an overlay section is mapped."), &overlaylist);
3737
3738 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3739 _("Assert that an overlay section is unmapped."), &overlaylist);
3740
3741 add_cmd ("list-overlays", class_support, list_overlays_command,
3742 _("List mappings of overlay sections."), &overlaylist);
3743
3744 add_cmd ("manual", class_support, overlay_manual_command,
3745 _("Enable overlay debugging."), &overlaylist);
3746 add_cmd ("off", class_support, overlay_off_command,
3747 _("Disable overlay debugging."), &overlaylist);
3748 add_cmd ("auto", class_support, overlay_auto_command,
3749 _("Enable automatic overlay debugging."), &overlaylist);
3750 add_cmd ("load-target", class_support, overlay_load_command,
3751 _("Read the overlay mapping state from the target."), &overlaylist);
3752
3753 /* Filename extension to source language lookup table: */
3754 init_filename_language_table ();
3755 add_setshow_string_noescape_cmd ("extension-language", class_files,
3756 &ext_args, _("\
3757 Set mapping between filename extension and source language."), _("\
3758 Show mapping between filename extension and source language."), _("\
3759 Usage: set extension-language .foo bar"),
3760 set_ext_lang_command,
3761 show_ext_args,
3762 &setlist, &showlist);
3763
3764 add_info ("extensions", info_ext_lang_command,
3765 _("All filename extensions associated with a source language."));
3766
3767 add_setshow_integer_cmd ("download-write-size", class_obscure,
3768 &download_write_size, _("\
3769 Set the write size used when downloading a program."), _("\
3770 Show the write size used when downloading a program."), _("\
3771 Only used when downloading a program onto a remote\n\
3772 target. Specify zero, or a negative value, to disable\n\
3773 blocked writes. The actual size of each transfer is also\n\
3774 limited by the size of the target packet and the memory\n\
3775 cache."),
3776 NULL,
3777 show_download_write_size,
3778 &setlist, &showlist);
3779
3780 debug_file_directory = xstrdup (DEBUGDIR);
3781 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3782 &debug_file_directory, _("\
3783 Set the directory where separate debug symbols are searched for."), _("\
3784 Show the directory where separate debug symbols are searched for."), _("\
3785 Separate debug symbols are first searched for in the same\n\
3786 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3787 and lastly at the path of the directory of the binary with\n\
3788 the global debug-file directory prepended."),
3789 NULL,
3790 show_debug_file_directory,
3791 &setlist, &showlist);
3792 }
This page took 0.108514 seconds and 4 git commands to generate.