New option "set print symbol-loading".
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include <string.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef struct
134 {
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140 } registered_sym_fns;
141
142 DEF_VEC_O (registered_sym_fns);
143
144 static VEC (registered_sym_fns) *symtab_fns = NULL;
145
146 /* Values for "set print symbol-loading". */
147
148 const char print_symbol_loading_off[] = "off";
149 const char print_symbol_loading_brief[] = "brief";
150 const char print_symbol_loading_full[] = "full";
151 static const char *print_symbol_loading_enums[] =
152 {
153 print_symbol_loading_off,
154 print_symbol_loading_brief,
155 print_symbol_loading_full,
156 NULL
157 };
158 static const char *print_symbol_loading = print_symbol_loading_full;
159
160 /* If non-zero, shared library symbols will be added automatically
161 when the inferior is created, new libraries are loaded, or when
162 attaching to the inferior. This is almost always what users will
163 want to have happen; but for very large programs, the startup time
164 will be excessive, and so if this is a problem, the user can clear
165 this flag and then add the shared library symbols as needed. Note
166 that there is a potential for confusion, since if the shared
167 library symbols are not loaded, commands like "info fun" will *not*
168 report all the functions that are actually present. */
169
170 int auto_solib_add = 1;
171 \f
172
173 /* Return non-zero if symbol-loading messages should be printed.
174 FROM_TTY is the standard from_tty argument to gdb commands.
175 If EXEC is non-zero the messages are for the executable.
176 Otherwise, messages are for shared libraries.
177 If FULL is non-zero then the caller is printing a detailed message.
178 E.g., the message includes the shared library name.
179 Otherwise, the caller is printing a brief "summary" message. */
180
181 int
182 print_symbol_loading_p (int from_tty, int exec, int full)
183 {
184 if (!from_tty && !info_verbose)
185 return 0;
186
187 if (exec)
188 {
189 /* We don't check FULL for executables, there are few such
190 messages, therefore brief == full. */
191 return print_symbol_loading != print_symbol_loading_off;
192 }
193 if (full)
194 return print_symbol_loading == print_symbol_loading_full;
195 return print_symbol_loading == print_symbol_loading_brief;
196 }
197
198 /* True if we are reading a symbol table. */
199
200 int currently_reading_symtab = 0;
201
202 static void
203 decrement_reading_symtab (void *dummy)
204 {
205 currently_reading_symtab--;
206 gdb_assert (currently_reading_symtab >= 0);
207 }
208
209 /* Increment currently_reading_symtab and return a cleanup that can be
210 used to decrement it. */
211
212 struct cleanup *
213 increment_reading_symtab (void)
214 {
215 ++currently_reading_symtab;
216 gdb_assert (currently_reading_symtab > 0);
217 return make_cleanup (decrement_reading_symtab, NULL);
218 }
219
220 /* Remember the lowest-addressed loadable section we've seen.
221 This function is called via bfd_map_over_sections.
222
223 In case of equal vmas, the section with the largest size becomes the
224 lowest-addressed loadable section.
225
226 If the vmas and sizes are equal, the last section is considered the
227 lowest-addressed loadable section. */
228
229 void
230 find_lowest_section (bfd *abfd, asection *sect, void *obj)
231 {
232 asection **lowest = (asection **) obj;
233
234 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
235 return;
236 if (!*lowest)
237 *lowest = sect; /* First loadable section */
238 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
239 *lowest = sect; /* A lower loadable section */
240 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
241 && (bfd_section_size (abfd, (*lowest))
242 <= bfd_section_size (abfd, sect)))
243 *lowest = sect;
244 }
245
246 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
247 new object's 'num_sections' field is set to 0; it must be updated
248 by the caller. */
249
250 struct section_addr_info *
251 alloc_section_addr_info (size_t num_sections)
252 {
253 struct section_addr_info *sap;
254 size_t size;
255
256 size = (sizeof (struct section_addr_info)
257 + sizeof (struct other_sections) * (num_sections - 1));
258 sap = (struct section_addr_info *) xmalloc (size);
259 memset (sap, 0, size);
260
261 return sap;
262 }
263
264 /* Build (allocate and populate) a section_addr_info struct from
265 an existing section table. */
266
267 extern struct section_addr_info *
268 build_section_addr_info_from_section_table (const struct target_section *start,
269 const struct target_section *end)
270 {
271 struct section_addr_info *sap;
272 const struct target_section *stp;
273 int oidx;
274
275 sap = alloc_section_addr_info (end - start);
276
277 for (stp = start, oidx = 0; stp != end; stp++)
278 {
279 struct bfd_section *asect = stp->the_bfd_section;
280 bfd *abfd = asect->owner;
281
282 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
283 && oidx < end - start)
284 {
285 sap->other[oidx].addr = stp->addr;
286 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
287 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
288 oidx++;
289 }
290 }
291
292 sap->num_sections = oidx;
293
294 return sap;
295 }
296
297 /* Create a section_addr_info from section offsets in ABFD. */
298
299 static struct section_addr_info *
300 build_section_addr_info_from_bfd (bfd *abfd)
301 {
302 struct section_addr_info *sap;
303 int i;
304 struct bfd_section *sec;
305
306 sap = alloc_section_addr_info (bfd_count_sections (abfd));
307 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
308 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
309 {
310 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
311 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
312 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
313 i++;
314 }
315
316 sap->num_sections = i;
317
318 return sap;
319 }
320
321 /* Create a section_addr_info from section offsets in OBJFILE. */
322
323 struct section_addr_info *
324 build_section_addr_info_from_objfile (const struct objfile *objfile)
325 {
326 struct section_addr_info *sap;
327 int i;
328
329 /* Before reread_symbols gets rewritten it is not safe to call:
330 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
331 */
332 sap = build_section_addr_info_from_bfd (objfile->obfd);
333 for (i = 0; i < sap->num_sections; i++)
334 {
335 int sectindex = sap->other[i].sectindex;
336
337 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
338 }
339 return sap;
340 }
341
342 /* Free all memory allocated by build_section_addr_info_from_section_table. */
343
344 extern void
345 free_section_addr_info (struct section_addr_info *sap)
346 {
347 int idx;
348
349 for (idx = 0; idx < sap->num_sections; idx++)
350 xfree (sap->other[idx].name);
351 xfree (sap);
352 }
353
354 /* Initialize OBJFILE's sect_index_* members. */
355
356 static void
357 init_objfile_sect_indices (struct objfile *objfile)
358 {
359 asection *sect;
360 int i;
361
362 sect = bfd_get_section_by_name (objfile->obfd, ".text");
363 if (sect)
364 objfile->sect_index_text = sect->index;
365
366 sect = bfd_get_section_by_name (objfile->obfd, ".data");
367 if (sect)
368 objfile->sect_index_data = sect->index;
369
370 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
371 if (sect)
372 objfile->sect_index_bss = sect->index;
373
374 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
375 if (sect)
376 objfile->sect_index_rodata = sect->index;
377
378 /* This is where things get really weird... We MUST have valid
379 indices for the various sect_index_* members or gdb will abort.
380 So if for example, there is no ".text" section, we have to
381 accomodate that. First, check for a file with the standard
382 one or two segments. */
383
384 symfile_find_segment_sections (objfile);
385
386 /* Except when explicitly adding symbol files at some address,
387 section_offsets contains nothing but zeros, so it doesn't matter
388 which slot in section_offsets the individual sect_index_* members
389 index into. So if they are all zero, it is safe to just point
390 all the currently uninitialized indices to the first slot. But
391 beware: if this is the main executable, it may be relocated
392 later, e.g. by the remote qOffsets packet, and then this will
393 be wrong! That's why we try segments first. */
394
395 for (i = 0; i < objfile->num_sections; i++)
396 {
397 if (ANOFFSET (objfile->section_offsets, i) != 0)
398 {
399 break;
400 }
401 }
402 if (i == objfile->num_sections)
403 {
404 if (objfile->sect_index_text == -1)
405 objfile->sect_index_text = 0;
406 if (objfile->sect_index_data == -1)
407 objfile->sect_index_data = 0;
408 if (objfile->sect_index_bss == -1)
409 objfile->sect_index_bss = 0;
410 if (objfile->sect_index_rodata == -1)
411 objfile->sect_index_rodata = 0;
412 }
413 }
414
415 /* The arguments to place_section. */
416
417 struct place_section_arg
418 {
419 struct section_offsets *offsets;
420 CORE_ADDR lowest;
421 };
422
423 /* Find a unique offset to use for loadable section SECT if
424 the user did not provide an offset. */
425
426 static void
427 place_section (bfd *abfd, asection *sect, void *obj)
428 {
429 struct place_section_arg *arg = obj;
430 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
431 int done;
432 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
433
434 /* We are only interested in allocated sections. */
435 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
436 return;
437
438 /* If the user specified an offset, honor it. */
439 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
440 return;
441
442 /* Otherwise, let's try to find a place for the section. */
443 start_addr = (arg->lowest + align - 1) & -align;
444
445 do {
446 asection *cur_sec;
447
448 done = 1;
449
450 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
451 {
452 int indx = cur_sec->index;
453
454 /* We don't need to compare against ourself. */
455 if (cur_sec == sect)
456 continue;
457
458 /* We can only conflict with allocated sections. */
459 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
460 continue;
461
462 /* If the section offset is 0, either the section has not been placed
463 yet, or it was the lowest section placed (in which case LOWEST
464 will be past its end). */
465 if (offsets[indx] == 0)
466 continue;
467
468 /* If this section would overlap us, then we must move up. */
469 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
470 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
471 {
472 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
473 start_addr = (start_addr + align - 1) & -align;
474 done = 0;
475 break;
476 }
477
478 /* Otherwise, we appear to be OK. So far. */
479 }
480 }
481 while (!done);
482
483 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
484 arg->lowest = start_addr + bfd_get_section_size (sect);
485 }
486
487 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
488 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
489 entries. */
490
491 void
492 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
493 int num_sections,
494 const struct section_addr_info *addrs)
495 {
496 int i;
497
498 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
499
500 /* Now calculate offsets for section that were specified by the caller. */
501 for (i = 0; i < addrs->num_sections; i++)
502 {
503 const struct other_sections *osp;
504
505 osp = &addrs->other[i];
506 if (osp->sectindex == -1)
507 continue;
508
509 /* Record all sections in offsets. */
510 /* The section_offsets in the objfile are here filled in using
511 the BFD index. */
512 section_offsets->offsets[osp->sectindex] = osp->addr;
513 }
514 }
515
516 /* Transform section name S for a name comparison. prelink can split section
517 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
518 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
519 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
520 (`.sbss') section has invalid (increased) virtual address. */
521
522 static const char *
523 addr_section_name (const char *s)
524 {
525 if (strcmp (s, ".dynbss") == 0)
526 return ".bss";
527 if (strcmp (s, ".sdynbss") == 0)
528 return ".sbss";
529
530 return s;
531 }
532
533 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
534 their (name, sectindex) pair. sectindex makes the sort by name stable. */
535
536 static int
537 addrs_section_compar (const void *ap, const void *bp)
538 {
539 const struct other_sections *a = *((struct other_sections **) ap);
540 const struct other_sections *b = *((struct other_sections **) bp);
541 int retval;
542
543 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
544 if (retval)
545 return retval;
546
547 return a->sectindex - b->sectindex;
548 }
549
550 /* Provide sorted array of pointers to sections of ADDRS. The array is
551 terminated by NULL. Caller is responsible to call xfree for it. */
552
553 static struct other_sections **
554 addrs_section_sort (struct section_addr_info *addrs)
555 {
556 struct other_sections **array;
557 int i;
558
559 /* `+ 1' for the NULL terminator. */
560 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
561 for (i = 0; i < addrs->num_sections; i++)
562 array[i] = &addrs->other[i];
563 array[i] = NULL;
564
565 qsort (array, i, sizeof (*array), addrs_section_compar);
566
567 return array;
568 }
569
570 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
571 also SECTINDEXes specific to ABFD there. This function can be used to
572 rebase ADDRS to start referencing different BFD than before. */
573
574 void
575 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
576 {
577 asection *lower_sect;
578 CORE_ADDR lower_offset;
579 int i;
580 struct cleanup *my_cleanup;
581 struct section_addr_info *abfd_addrs;
582 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
583 struct other_sections **addrs_to_abfd_addrs;
584
585 /* Find lowest loadable section to be used as starting point for
586 continguous sections. */
587 lower_sect = NULL;
588 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
589 if (lower_sect == NULL)
590 {
591 warning (_("no loadable sections found in added symbol-file %s"),
592 bfd_get_filename (abfd));
593 lower_offset = 0;
594 }
595 else
596 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
597
598 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
599 in ABFD. Section names are not unique - there can be multiple sections of
600 the same name. Also the sections of the same name do not have to be
601 adjacent to each other. Some sections may be present only in one of the
602 files. Even sections present in both files do not have to be in the same
603 order.
604
605 Use stable sort by name for the sections in both files. Then linearly
606 scan both lists matching as most of the entries as possible. */
607
608 addrs_sorted = addrs_section_sort (addrs);
609 my_cleanup = make_cleanup (xfree, addrs_sorted);
610
611 abfd_addrs = build_section_addr_info_from_bfd (abfd);
612 make_cleanup_free_section_addr_info (abfd_addrs);
613 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
614 make_cleanup (xfree, abfd_addrs_sorted);
615
616 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
617 ABFD_ADDRS_SORTED. */
618
619 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
620 * addrs->num_sections);
621 make_cleanup (xfree, addrs_to_abfd_addrs);
622
623 while (*addrs_sorted)
624 {
625 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
626
627 while (*abfd_addrs_sorted
628 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
629 sect_name) < 0)
630 abfd_addrs_sorted++;
631
632 if (*abfd_addrs_sorted
633 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
634 sect_name) == 0)
635 {
636 int index_in_addrs;
637
638 /* Make the found item directly addressable from ADDRS. */
639 index_in_addrs = *addrs_sorted - addrs->other;
640 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
641 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
642
643 /* Never use the same ABFD entry twice. */
644 abfd_addrs_sorted++;
645 }
646
647 addrs_sorted++;
648 }
649
650 /* Calculate offsets for the loadable sections.
651 FIXME! Sections must be in order of increasing loadable section
652 so that contiguous sections can use the lower-offset!!!
653
654 Adjust offsets if the segments are not contiguous.
655 If the section is contiguous, its offset should be set to
656 the offset of the highest loadable section lower than it
657 (the loadable section directly below it in memory).
658 this_offset = lower_offset = lower_addr - lower_orig_addr */
659
660 for (i = 0; i < addrs->num_sections; i++)
661 {
662 struct other_sections *sect = addrs_to_abfd_addrs[i];
663
664 if (sect)
665 {
666 /* This is the index used by BFD. */
667 addrs->other[i].sectindex = sect->sectindex;
668
669 if (addrs->other[i].addr != 0)
670 {
671 addrs->other[i].addr -= sect->addr;
672 lower_offset = addrs->other[i].addr;
673 }
674 else
675 addrs->other[i].addr = lower_offset;
676 }
677 else
678 {
679 /* addr_section_name transformation is not used for SECT_NAME. */
680 const char *sect_name = addrs->other[i].name;
681
682 /* This section does not exist in ABFD, which is normally
683 unexpected and we want to issue a warning.
684
685 However, the ELF prelinker does create a few sections which are
686 marked in the main executable as loadable (they are loaded in
687 memory from the DYNAMIC segment) and yet are not present in
688 separate debug info files. This is fine, and should not cause
689 a warning. Shared libraries contain just the section
690 ".gnu.liblist" but it is not marked as loadable there. There is
691 no other way to identify them than by their name as the sections
692 created by prelink have no special flags.
693
694 For the sections `.bss' and `.sbss' see addr_section_name. */
695
696 if (!(strcmp (sect_name, ".gnu.liblist") == 0
697 || strcmp (sect_name, ".gnu.conflict") == 0
698 || (strcmp (sect_name, ".bss") == 0
699 && i > 0
700 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
701 && addrs_to_abfd_addrs[i - 1] != NULL)
702 || (strcmp (sect_name, ".sbss") == 0
703 && i > 0
704 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
705 && addrs_to_abfd_addrs[i - 1] != NULL)))
706 warning (_("section %s not found in %s"), sect_name,
707 bfd_get_filename (abfd));
708
709 addrs->other[i].addr = 0;
710 addrs->other[i].sectindex = -1;
711 }
712 }
713
714 do_cleanups (my_cleanup);
715 }
716
717 /* Parse the user's idea of an offset for dynamic linking, into our idea
718 of how to represent it for fast symbol reading. This is the default
719 version of the sym_fns.sym_offsets function for symbol readers that
720 don't need to do anything special. It allocates a section_offsets table
721 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
722
723 void
724 default_symfile_offsets (struct objfile *objfile,
725 const struct section_addr_info *addrs)
726 {
727 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
728 objfile->section_offsets = (struct section_offsets *)
729 obstack_alloc (&objfile->objfile_obstack,
730 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
731 relative_addr_info_to_section_offsets (objfile->section_offsets,
732 objfile->num_sections, addrs);
733
734 /* For relocatable files, all loadable sections will start at zero.
735 The zero is meaningless, so try to pick arbitrary addresses such
736 that no loadable sections overlap. This algorithm is quadratic,
737 but the number of sections in a single object file is generally
738 small. */
739 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
740 {
741 struct place_section_arg arg;
742 bfd *abfd = objfile->obfd;
743 asection *cur_sec;
744
745 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
746 /* We do not expect this to happen; just skip this step if the
747 relocatable file has a section with an assigned VMA. */
748 if (bfd_section_vma (abfd, cur_sec) != 0)
749 break;
750
751 if (cur_sec == NULL)
752 {
753 CORE_ADDR *offsets = objfile->section_offsets->offsets;
754
755 /* Pick non-overlapping offsets for sections the user did not
756 place explicitly. */
757 arg.offsets = objfile->section_offsets;
758 arg.lowest = 0;
759 bfd_map_over_sections (objfile->obfd, place_section, &arg);
760
761 /* Correctly filling in the section offsets is not quite
762 enough. Relocatable files have two properties that
763 (most) shared objects do not:
764
765 - Their debug information will contain relocations. Some
766 shared libraries do also, but many do not, so this can not
767 be assumed.
768
769 - If there are multiple code sections they will be loaded
770 at different relative addresses in memory than they are
771 in the objfile, since all sections in the file will start
772 at address zero.
773
774 Because GDB has very limited ability to map from an
775 address in debug info to the correct code section,
776 it relies on adding SECT_OFF_TEXT to things which might be
777 code. If we clear all the section offsets, and set the
778 section VMAs instead, then symfile_relocate_debug_section
779 will return meaningful debug information pointing at the
780 correct sections.
781
782 GDB has too many different data structures for section
783 addresses - a bfd, objfile, and so_list all have section
784 tables, as does exec_ops. Some of these could probably
785 be eliminated. */
786
787 for (cur_sec = abfd->sections; cur_sec != NULL;
788 cur_sec = cur_sec->next)
789 {
790 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
791 continue;
792
793 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
794 exec_set_section_address (bfd_get_filename (abfd),
795 cur_sec->index,
796 offsets[cur_sec->index]);
797 offsets[cur_sec->index] = 0;
798 }
799 }
800 }
801
802 /* Remember the bfd indexes for the .text, .data, .bss and
803 .rodata sections. */
804 init_objfile_sect_indices (objfile);
805 }
806
807 /* Divide the file into segments, which are individual relocatable units.
808 This is the default version of the sym_fns.sym_segments function for
809 symbol readers that do not have an explicit representation of segments.
810 It assumes that object files do not have segments, and fully linked
811 files have a single segment. */
812
813 struct symfile_segment_data *
814 default_symfile_segments (bfd *abfd)
815 {
816 int num_sections, i;
817 asection *sect;
818 struct symfile_segment_data *data;
819 CORE_ADDR low, high;
820
821 /* Relocatable files contain enough information to position each
822 loadable section independently; they should not be relocated
823 in segments. */
824 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
825 return NULL;
826
827 /* Make sure there is at least one loadable section in the file. */
828 for (sect = abfd->sections; sect != NULL; sect = sect->next)
829 {
830 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
831 continue;
832
833 break;
834 }
835 if (sect == NULL)
836 return NULL;
837
838 low = bfd_get_section_vma (abfd, sect);
839 high = low + bfd_get_section_size (sect);
840
841 data = XCNEW (struct symfile_segment_data);
842 data->num_segments = 1;
843 data->segment_bases = XCNEW (CORE_ADDR);
844 data->segment_sizes = XCNEW (CORE_ADDR);
845
846 num_sections = bfd_count_sections (abfd);
847 data->segment_info = XCNEWVEC (int, num_sections);
848
849 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
850 {
851 CORE_ADDR vma;
852
853 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
854 continue;
855
856 vma = bfd_get_section_vma (abfd, sect);
857 if (vma < low)
858 low = vma;
859 if (vma + bfd_get_section_size (sect) > high)
860 high = vma + bfd_get_section_size (sect);
861
862 data->segment_info[i] = 1;
863 }
864
865 data->segment_bases[0] = low;
866 data->segment_sizes[0] = high - low;
867
868 return data;
869 }
870
871 /* This is a convenience function to call sym_read for OBJFILE and
872 possibly force the partial symbols to be read. */
873
874 static void
875 read_symbols (struct objfile *objfile, int add_flags)
876 {
877 (*objfile->sf->sym_read) (objfile, add_flags);
878 objfile->per_bfd->minsyms_read = 1;
879
880 /* find_separate_debug_file_in_section should be called only if there is
881 single binary with no existing separate debug info file. */
882 if (!objfile_has_partial_symbols (objfile)
883 && objfile->separate_debug_objfile == NULL
884 && objfile->separate_debug_objfile_backlink == NULL)
885 {
886 bfd *abfd = find_separate_debug_file_in_section (objfile);
887 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
888
889 if (abfd != NULL)
890 {
891 /* find_separate_debug_file_in_section uses the same filename for the
892 virtual section-as-bfd like the bfd filename containing the
893 section. Therefore use also non-canonical name form for the same
894 file containing the section. */
895 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
896 objfile);
897 }
898
899 do_cleanups (cleanup);
900 }
901 if ((add_flags & SYMFILE_NO_READ) == 0)
902 require_partial_symbols (objfile, 0);
903 }
904
905 /* Initialize entry point information for this objfile. */
906
907 static void
908 init_entry_point_info (struct objfile *objfile)
909 {
910 struct entry_info *ei = &objfile->per_bfd->ei;
911
912 if (ei->initialized)
913 return;
914 ei->initialized = 1;
915
916 /* Save startup file's range of PC addresses to help blockframe.c
917 decide where the bottom of the stack is. */
918
919 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
920 {
921 /* Executable file -- record its entry point so we'll recognize
922 the startup file because it contains the entry point. */
923 ei->entry_point = bfd_get_start_address (objfile->obfd);
924 ei->entry_point_p = 1;
925 }
926 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
927 && bfd_get_start_address (objfile->obfd) != 0)
928 {
929 /* Some shared libraries may have entry points set and be
930 runnable. There's no clear way to indicate this, so just check
931 for values other than zero. */
932 ei->entry_point = bfd_get_start_address (objfile->obfd);
933 ei->entry_point_p = 1;
934 }
935 else
936 {
937 /* Examination of non-executable.o files. Short-circuit this stuff. */
938 ei->entry_point_p = 0;
939 }
940
941 if (ei->entry_point_p)
942 {
943 struct obj_section *osect;
944 CORE_ADDR entry_point = ei->entry_point;
945 int found;
946
947 /* Make certain that the address points at real code, and not a
948 function descriptor. */
949 entry_point
950 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
951 entry_point,
952 &current_target);
953
954 /* Remove any ISA markers, so that this matches entries in the
955 symbol table. */
956 ei->entry_point
957 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
958
959 found = 0;
960 ALL_OBJFILE_OSECTIONS (objfile, osect)
961 {
962 struct bfd_section *sect = osect->the_bfd_section;
963
964 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
965 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
966 + bfd_get_section_size (sect)))
967 {
968 ei->the_bfd_section_index
969 = gdb_bfd_section_index (objfile->obfd, sect);
970 found = 1;
971 break;
972 }
973 }
974
975 if (!found)
976 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
977 }
978 }
979
980 /* Process a symbol file, as either the main file or as a dynamically
981 loaded file.
982
983 This function does not set the OBJFILE's entry-point info.
984
985 OBJFILE is where the symbols are to be read from.
986
987 ADDRS is the list of section load addresses. If the user has given
988 an 'add-symbol-file' command, then this is the list of offsets and
989 addresses he or she provided as arguments to the command; or, if
990 we're handling a shared library, these are the actual addresses the
991 sections are loaded at, according to the inferior's dynamic linker
992 (as gleaned by GDB's shared library code). We convert each address
993 into an offset from the section VMA's as it appears in the object
994 file, and then call the file's sym_offsets function to convert this
995 into a format-specific offset table --- a `struct section_offsets'.
996
997 ADD_FLAGS encodes verbosity level, whether this is main symbol or
998 an extra symbol file such as dynamically loaded code, and wether
999 breakpoint reset should be deferred. */
1000
1001 static void
1002 syms_from_objfile_1 (struct objfile *objfile,
1003 struct section_addr_info *addrs,
1004 int add_flags)
1005 {
1006 struct section_addr_info *local_addr = NULL;
1007 struct cleanup *old_chain;
1008 const int mainline = add_flags & SYMFILE_MAINLINE;
1009
1010 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1011
1012 if (objfile->sf == NULL)
1013 {
1014 /* No symbols to load, but we still need to make sure
1015 that the section_offsets table is allocated. */
1016 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1017 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1018
1019 objfile->num_sections = num_sections;
1020 objfile->section_offsets
1021 = obstack_alloc (&objfile->objfile_obstack, size);
1022 memset (objfile->section_offsets, 0, size);
1023 return;
1024 }
1025
1026 /* Make sure that partially constructed symbol tables will be cleaned up
1027 if an error occurs during symbol reading. */
1028 old_chain = make_cleanup_free_objfile (objfile);
1029
1030 /* If ADDRS is NULL, put together a dummy address list.
1031 We now establish the convention that an addr of zero means
1032 no load address was specified. */
1033 if (! addrs)
1034 {
1035 local_addr = alloc_section_addr_info (1);
1036 make_cleanup (xfree, local_addr);
1037 addrs = local_addr;
1038 }
1039
1040 if (mainline)
1041 {
1042 /* We will modify the main symbol table, make sure that all its users
1043 will be cleaned up if an error occurs during symbol reading. */
1044 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1045
1046 /* Since no error yet, throw away the old symbol table. */
1047
1048 if (symfile_objfile != NULL)
1049 {
1050 free_objfile (symfile_objfile);
1051 gdb_assert (symfile_objfile == NULL);
1052 }
1053
1054 /* Currently we keep symbols from the add-symbol-file command.
1055 If the user wants to get rid of them, they should do "symbol-file"
1056 without arguments first. Not sure this is the best behavior
1057 (PR 2207). */
1058
1059 (*objfile->sf->sym_new_init) (objfile);
1060 }
1061
1062 /* Convert addr into an offset rather than an absolute address.
1063 We find the lowest address of a loaded segment in the objfile,
1064 and assume that <addr> is where that got loaded.
1065
1066 We no longer warn if the lowest section is not a text segment (as
1067 happens for the PA64 port. */
1068 if (addrs->num_sections > 0)
1069 addr_info_make_relative (addrs, objfile->obfd);
1070
1071 /* Initialize symbol reading routines for this objfile, allow complaints to
1072 appear for this new file, and record how verbose to be, then do the
1073 initial symbol reading for this file. */
1074
1075 (*objfile->sf->sym_init) (objfile);
1076 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1077
1078 (*objfile->sf->sym_offsets) (objfile, addrs);
1079
1080 read_symbols (objfile, add_flags);
1081
1082 /* Discard cleanups as symbol reading was successful. */
1083
1084 discard_cleanups (old_chain);
1085 xfree (local_addr);
1086 }
1087
1088 /* Same as syms_from_objfile_1, but also initializes the objfile
1089 entry-point info. */
1090
1091 static void
1092 syms_from_objfile (struct objfile *objfile,
1093 struct section_addr_info *addrs,
1094 int add_flags)
1095 {
1096 syms_from_objfile_1 (objfile, addrs, add_flags);
1097 init_entry_point_info (objfile);
1098 }
1099
1100 /* Perform required actions after either reading in the initial
1101 symbols for a new objfile, or mapping in the symbols from a reusable
1102 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1103
1104 void
1105 new_symfile_objfile (struct objfile *objfile, int add_flags)
1106 {
1107 /* If this is the main symbol file we have to clean up all users of the
1108 old main symbol file. Otherwise it is sufficient to fixup all the
1109 breakpoints that may have been redefined by this symbol file. */
1110 if (add_flags & SYMFILE_MAINLINE)
1111 {
1112 /* OK, make it the "real" symbol file. */
1113 symfile_objfile = objfile;
1114
1115 clear_symtab_users (add_flags);
1116 }
1117 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1118 {
1119 breakpoint_re_set ();
1120 }
1121
1122 /* We're done reading the symbol file; finish off complaints. */
1123 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1124 }
1125
1126 /* Process a symbol file, as either the main file or as a dynamically
1127 loaded file.
1128
1129 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1130 A new reference is acquired by this function.
1131
1132 For NAME description see allocate_objfile's definition.
1133
1134 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1135 extra, such as dynamically loaded code, and what to do with breakpoins.
1136
1137 ADDRS is as described for syms_from_objfile_1, above.
1138 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1139
1140 PARENT is the original objfile if ABFD is a separate debug info file.
1141 Otherwise PARENT is NULL.
1142
1143 Upon success, returns a pointer to the objfile that was added.
1144 Upon failure, jumps back to command level (never returns). */
1145
1146 static struct objfile *
1147 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1148 struct section_addr_info *addrs,
1149 int flags, struct objfile *parent)
1150 {
1151 struct objfile *objfile;
1152 const int from_tty = add_flags & SYMFILE_VERBOSE;
1153 const int mainline = add_flags & SYMFILE_MAINLINE;
1154 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1155 && (readnow_symbol_files
1156 || (add_flags & SYMFILE_NO_READ) == 0));
1157
1158 if (readnow_symbol_files)
1159 {
1160 flags |= OBJF_READNOW;
1161 add_flags &= ~SYMFILE_NO_READ;
1162 }
1163
1164 /* Give user a chance to burp if we'd be
1165 interactively wiping out any existing symbols. */
1166
1167 if ((have_full_symbols () || have_partial_symbols ())
1168 && mainline
1169 && from_tty
1170 && !query (_("Load new symbol table from \"%s\"? "), name))
1171 error (_("Not confirmed."));
1172
1173 objfile = allocate_objfile (abfd, name,
1174 flags | (mainline ? OBJF_MAINLINE : 0));
1175
1176 if (parent)
1177 add_separate_debug_objfile (objfile, parent);
1178
1179 /* We either created a new mapped symbol table, mapped an existing
1180 symbol table file which has not had initial symbol reading
1181 performed, or need to read an unmapped symbol table. */
1182 if (should_print)
1183 {
1184 if (deprecated_pre_add_symbol_hook)
1185 deprecated_pre_add_symbol_hook (name);
1186 else
1187 {
1188 printf_unfiltered (_("Reading symbols from %s..."), name);
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192 }
1193 syms_from_objfile (objfile, addrs, add_flags);
1194
1195 /* We now have at least a partial symbol table. Check to see if the
1196 user requested that all symbols be read on initial access via either
1197 the gdb startup command line or on a per symbol file basis. Expand
1198 all partial symbol tables for this objfile if so. */
1199
1200 if ((flags & OBJF_READNOW))
1201 {
1202 if (should_print)
1203 {
1204 printf_unfiltered (_("expanding to full symbols..."));
1205 wrap_here ("");
1206 gdb_flush (gdb_stdout);
1207 }
1208
1209 if (objfile->sf)
1210 objfile->sf->qf->expand_all_symtabs (objfile);
1211 }
1212
1213 if (should_print && !objfile_has_symbols (objfile))
1214 {
1215 wrap_here ("");
1216 printf_unfiltered (_("(no debugging symbols found)..."));
1217 wrap_here ("");
1218 }
1219
1220 if (should_print)
1221 {
1222 if (deprecated_post_add_symbol_hook)
1223 deprecated_post_add_symbol_hook ();
1224 else
1225 printf_unfiltered (_("done.\n"));
1226 }
1227
1228 /* We print some messages regardless of whether 'from_tty ||
1229 info_verbose' is true, so make sure they go out at the right
1230 time. */
1231 gdb_flush (gdb_stdout);
1232
1233 if (objfile->sf == NULL)
1234 {
1235 observer_notify_new_objfile (objfile);
1236 return objfile; /* No symbols. */
1237 }
1238
1239 new_symfile_objfile (objfile, add_flags);
1240
1241 observer_notify_new_objfile (objfile);
1242
1243 bfd_cache_close_all ();
1244 return (objfile);
1245 }
1246
1247 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1248 see allocate_objfile's definition. */
1249
1250 void
1251 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1252 struct objfile *objfile)
1253 {
1254 struct objfile *new_objfile;
1255 struct section_addr_info *sap;
1256 struct cleanup *my_cleanup;
1257
1258 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1259 because sections of BFD may not match sections of OBJFILE and because
1260 vma may have been modified by tools such as prelink. */
1261 sap = build_section_addr_info_from_objfile (objfile);
1262 my_cleanup = make_cleanup_free_section_addr_info (sap);
1263
1264 new_objfile = symbol_file_add_with_addrs
1265 (bfd, name, symfile_flags, sap,
1266 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1267 | OBJF_USERLOADED),
1268 objfile);
1269
1270 do_cleanups (my_cleanup);
1271 }
1272
1273 /* Process the symbol file ABFD, as either the main file or as a
1274 dynamically loaded file.
1275 See symbol_file_add_with_addrs's comments for details. */
1276
1277 struct objfile *
1278 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1279 struct section_addr_info *addrs,
1280 int flags, struct objfile *parent)
1281 {
1282 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1283 parent);
1284 }
1285
1286 /* Process a symbol file, as either the main file or as a dynamically
1287 loaded file. See symbol_file_add_with_addrs's comments for details. */
1288
1289 struct objfile *
1290 symbol_file_add (const char *name, int add_flags,
1291 struct section_addr_info *addrs, int flags)
1292 {
1293 bfd *bfd = symfile_bfd_open (name);
1294 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1295 struct objfile *objf;
1296
1297 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1298 do_cleanups (cleanup);
1299 return objf;
1300 }
1301
1302 /* Call symbol_file_add() with default values and update whatever is
1303 affected by the loading of a new main().
1304 Used when the file is supplied in the gdb command line
1305 and by some targets with special loading requirements.
1306 The auxiliary function, symbol_file_add_main_1(), has the flags
1307 argument for the switches that can only be specified in the symbol_file
1308 command itself. */
1309
1310 void
1311 symbol_file_add_main (const char *args, int from_tty)
1312 {
1313 symbol_file_add_main_1 (args, from_tty, 0);
1314 }
1315
1316 static void
1317 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1318 {
1319 const int add_flags = (current_inferior ()->symfile_flags
1320 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1321
1322 symbol_file_add (args, add_flags, NULL, flags);
1323
1324 /* Getting new symbols may change our opinion about
1325 what is frameless. */
1326 reinit_frame_cache ();
1327
1328 if ((flags & SYMFILE_NO_READ) == 0)
1329 set_initial_language ();
1330 }
1331
1332 void
1333 symbol_file_clear (int from_tty)
1334 {
1335 if ((have_full_symbols () || have_partial_symbols ())
1336 && from_tty
1337 && (symfile_objfile
1338 ? !query (_("Discard symbol table from `%s'? "),
1339 objfile_name (symfile_objfile))
1340 : !query (_("Discard symbol table? "))))
1341 error (_("Not confirmed."));
1342
1343 /* solib descriptors may have handles to objfiles. Wipe them before their
1344 objfiles get stale by free_all_objfiles. */
1345 no_shared_libraries (NULL, from_tty);
1346
1347 free_all_objfiles ();
1348
1349 gdb_assert (symfile_objfile == NULL);
1350 if (from_tty)
1351 printf_unfiltered (_("No symbol file now.\n"));
1352 }
1353
1354 static int
1355 separate_debug_file_exists (const char *name, unsigned long crc,
1356 struct objfile *parent_objfile)
1357 {
1358 unsigned long file_crc;
1359 int file_crc_p;
1360 bfd *abfd;
1361 struct stat parent_stat, abfd_stat;
1362 int verified_as_different;
1363
1364 /* Find a separate debug info file as if symbols would be present in
1365 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1366 section can contain just the basename of PARENT_OBJFILE without any
1367 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1368 the separate debug infos with the same basename can exist. */
1369
1370 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1371 return 0;
1372
1373 abfd = gdb_bfd_open_maybe_remote (name);
1374
1375 if (!abfd)
1376 return 0;
1377
1378 /* Verify symlinks were not the cause of filename_cmp name difference above.
1379
1380 Some operating systems, e.g. Windows, do not provide a meaningful
1381 st_ino; they always set it to zero. (Windows does provide a
1382 meaningful st_dev.) Do not indicate a duplicate library in that
1383 case. While there is no guarantee that a system that provides
1384 meaningful inode numbers will never set st_ino to zero, this is
1385 merely an optimization, so we do not need to worry about false
1386 negatives. */
1387
1388 if (bfd_stat (abfd, &abfd_stat) == 0
1389 && abfd_stat.st_ino != 0
1390 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1391 {
1392 if (abfd_stat.st_dev == parent_stat.st_dev
1393 && abfd_stat.st_ino == parent_stat.st_ino)
1394 {
1395 gdb_bfd_unref (abfd);
1396 return 0;
1397 }
1398 verified_as_different = 1;
1399 }
1400 else
1401 verified_as_different = 0;
1402
1403 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1404
1405 gdb_bfd_unref (abfd);
1406
1407 if (!file_crc_p)
1408 return 0;
1409
1410 if (crc != file_crc)
1411 {
1412 unsigned long parent_crc;
1413
1414 /* If one (or both) the files are accessed for example the via "remote:"
1415 gdbserver way it does not support the bfd_stat operation. Verify
1416 whether those two files are not the same manually. */
1417
1418 if (!verified_as_different)
1419 {
1420 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1421 return 0;
1422 }
1423
1424 if (verified_as_different || parent_crc != file_crc)
1425 warning (_("the debug information found in \"%s\""
1426 " does not match \"%s\" (CRC mismatch).\n"),
1427 name, objfile_name (parent_objfile));
1428
1429 return 0;
1430 }
1431
1432 return 1;
1433 }
1434
1435 char *debug_file_directory = NULL;
1436 static void
1437 show_debug_file_directory (struct ui_file *file, int from_tty,
1438 struct cmd_list_element *c, const char *value)
1439 {
1440 fprintf_filtered (file,
1441 _("The directory where separate debug "
1442 "symbols are searched for is \"%s\".\n"),
1443 value);
1444 }
1445
1446 #if ! defined (DEBUG_SUBDIRECTORY)
1447 #define DEBUG_SUBDIRECTORY ".debug"
1448 #endif
1449
1450 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1451 where the original file resides (may not be the same as
1452 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1453 looking for. CANON_DIR is the "realpath" form of DIR.
1454 DIR must contain a trailing '/'.
1455 Returns the path of the file with separate debug info, of NULL. */
1456
1457 static char *
1458 find_separate_debug_file (const char *dir,
1459 const char *canon_dir,
1460 const char *debuglink,
1461 unsigned long crc32, struct objfile *objfile)
1462 {
1463 char *debugdir;
1464 char *debugfile;
1465 int i;
1466 VEC (char_ptr) *debugdir_vec;
1467 struct cleanup *back_to;
1468 int ix;
1469
1470 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1471 i = strlen (dir);
1472 if (canon_dir != NULL && strlen (canon_dir) > i)
1473 i = strlen (canon_dir);
1474
1475 debugfile = xmalloc (strlen (debug_file_directory) + 1
1476 + i
1477 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen ("/")
1479 + strlen (debuglink)
1480 + 1);
1481
1482 /* First try in the same directory as the original file. */
1483 strcpy (debugfile, dir);
1484 strcat (debugfile, debuglink);
1485
1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1487 return debugfile;
1488
1489 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, DEBUG_SUBDIRECTORY);
1492 strcat (debugfile, "/");
1493 strcat (debugfile, debuglink);
1494
1495 if (separate_debug_file_exists (debugfile, crc32, objfile))
1496 return debugfile;
1497
1498 /* Then try in the global debugfile directories.
1499
1500 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1501 cause "/..." lookups. */
1502
1503 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1504 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1505
1506 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 {
1508 strcpy (debugfile, debugdir);
1509 strcat (debugfile, "/");
1510 strcat (debugfile, dir);
1511 strcat (debugfile, debuglink);
1512
1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
1514 {
1515 do_cleanups (back_to);
1516 return debugfile;
1517 }
1518
1519 /* If the file is in the sysroot, try using its base path in the
1520 global debugfile directory. */
1521 if (canon_dir != NULL
1522 && filename_ncmp (canon_dir, gdb_sysroot,
1523 strlen (gdb_sysroot)) == 0
1524 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1525 {
1526 strcpy (debugfile, debugdir);
1527 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1528 strcat (debugfile, "/");
1529 strcat (debugfile, debuglink);
1530
1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
1532 {
1533 do_cleanups (back_to);
1534 return debugfile;
1535 }
1536 }
1537 }
1538
1539 do_cleanups (back_to);
1540 xfree (debugfile);
1541 return NULL;
1542 }
1543
1544 /* Modify PATH to contain only "[/]directory/" part of PATH.
1545 If there were no directory separators in PATH, PATH will be empty
1546 string on return. */
1547
1548 static void
1549 terminate_after_last_dir_separator (char *path)
1550 {
1551 int i;
1552
1553 /* Strip off the final filename part, leaving the directory name,
1554 followed by a slash. The directory can be relative or absolute. */
1555 for (i = strlen(path) - 1; i >= 0; i--)
1556 if (IS_DIR_SEPARATOR (path[i]))
1557 break;
1558
1559 /* If I is -1 then no directory is present there and DIR will be "". */
1560 path[i + 1] = '\0';
1561 }
1562
1563 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1564 Returns pathname, or NULL. */
1565
1566 char *
1567 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1568 {
1569 char *debuglink;
1570 char *dir, *canon_dir;
1571 char *debugfile;
1572 unsigned long crc32;
1573 struct cleanup *cleanups;
1574
1575 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1576
1577 if (debuglink == NULL)
1578 {
1579 /* There's no separate debug info, hence there's no way we could
1580 load it => no warning. */
1581 return NULL;
1582 }
1583
1584 cleanups = make_cleanup (xfree, debuglink);
1585 dir = xstrdup (objfile_name (objfile));
1586 make_cleanup (xfree, dir);
1587 terminate_after_last_dir_separator (dir);
1588 canon_dir = lrealpath (dir);
1589
1590 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1591 crc32, objfile);
1592 xfree (canon_dir);
1593
1594 if (debugfile == NULL)
1595 {
1596 #ifdef HAVE_LSTAT
1597 /* For PR gdb/9538, try again with realpath (if different from the
1598 original). */
1599
1600 struct stat st_buf;
1601
1602 if (lstat (objfile_name (objfile), &st_buf) == 0
1603 && S_ISLNK (st_buf.st_mode))
1604 {
1605 char *symlink_dir;
1606
1607 symlink_dir = lrealpath (objfile_name (objfile));
1608 if (symlink_dir != NULL)
1609 {
1610 make_cleanup (xfree, symlink_dir);
1611 terminate_after_last_dir_separator (symlink_dir);
1612 if (strcmp (dir, symlink_dir) != 0)
1613 {
1614 /* Different directory, so try using it. */
1615 debugfile = find_separate_debug_file (symlink_dir,
1616 symlink_dir,
1617 debuglink,
1618 crc32,
1619 objfile);
1620 }
1621 }
1622 }
1623 #endif /* HAVE_LSTAT */
1624 }
1625
1626 do_cleanups (cleanups);
1627 return debugfile;
1628 }
1629
1630 /* This is the symbol-file command. Read the file, analyze its
1631 symbols, and add a struct symtab to a symtab list. The syntax of
1632 the command is rather bizarre:
1633
1634 1. The function buildargv implements various quoting conventions
1635 which are undocumented and have little or nothing in common with
1636 the way things are quoted (or not quoted) elsewhere in GDB.
1637
1638 2. Options are used, which are not generally used in GDB (perhaps
1639 "set mapped on", "set readnow on" would be better)
1640
1641 3. The order of options matters, which is contrary to GNU
1642 conventions (because it is confusing and inconvenient). */
1643
1644 void
1645 symbol_file_command (char *args, int from_tty)
1646 {
1647 dont_repeat ();
1648
1649 if (args == NULL)
1650 {
1651 symbol_file_clear (from_tty);
1652 }
1653 else
1654 {
1655 char **argv = gdb_buildargv (args);
1656 int flags = OBJF_USERLOADED;
1657 struct cleanup *cleanups;
1658 char *name = NULL;
1659
1660 cleanups = make_cleanup_freeargv (argv);
1661 while (*argv != NULL)
1662 {
1663 if (strcmp (*argv, "-readnow") == 0)
1664 flags |= OBJF_READNOW;
1665 else if (**argv == '-')
1666 error (_("unknown option `%s'"), *argv);
1667 else
1668 {
1669 symbol_file_add_main_1 (*argv, from_tty, flags);
1670 name = *argv;
1671 }
1672
1673 argv++;
1674 }
1675
1676 if (name == NULL)
1677 error (_("no symbol file name was specified"));
1678
1679 do_cleanups (cleanups);
1680 }
1681 }
1682
1683 /* Set the initial language.
1684
1685 FIXME: A better solution would be to record the language in the
1686 psymtab when reading partial symbols, and then use it (if known) to
1687 set the language. This would be a win for formats that encode the
1688 language in an easily discoverable place, such as DWARF. For
1689 stabs, we can jump through hoops looking for specially named
1690 symbols or try to intuit the language from the specific type of
1691 stabs we find, but we can't do that until later when we read in
1692 full symbols. */
1693
1694 void
1695 set_initial_language (void)
1696 {
1697 enum language lang = main_language ();
1698
1699 if (lang == language_unknown)
1700 {
1701 char *name = main_name ();
1702 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1703
1704 if (sym != NULL)
1705 lang = SYMBOL_LANGUAGE (sym);
1706 }
1707
1708 if (lang == language_unknown)
1709 {
1710 /* Make C the default language */
1711 lang = language_c;
1712 }
1713
1714 set_language (lang);
1715 expected_language = current_language; /* Don't warn the user. */
1716 }
1717
1718 /* If NAME is a remote name open the file using remote protocol, otherwise
1719 open it normally. Returns a new reference to the BFD. On error,
1720 returns NULL with the BFD error set. */
1721
1722 bfd *
1723 gdb_bfd_open_maybe_remote (const char *name)
1724 {
1725 bfd *result;
1726
1727 if (remote_filename_p (name))
1728 result = remote_bfd_open (name, gnutarget);
1729 else
1730 result = gdb_bfd_open (name, gnutarget, -1);
1731
1732 return result;
1733 }
1734
1735 /* Open the file specified by NAME and hand it off to BFD for
1736 preliminary analysis. Return a newly initialized bfd *, which
1737 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1738 absolute). In case of trouble, error() is called. */
1739
1740 bfd *
1741 symfile_bfd_open (const char *cname)
1742 {
1743 bfd *sym_bfd;
1744 int desc;
1745 char *name, *absolute_name;
1746 struct cleanup *back_to;
1747
1748 if (remote_filename_p (cname))
1749 {
1750 sym_bfd = remote_bfd_open (cname, gnutarget);
1751 if (!sym_bfd)
1752 error (_("`%s': can't open to read symbols: %s."), cname,
1753 bfd_errmsg (bfd_get_error ()));
1754
1755 if (!bfd_check_format (sym_bfd, bfd_object))
1756 {
1757 make_cleanup_bfd_unref (sym_bfd);
1758 error (_("`%s': can't read symbols: %s."), cname,
1759 bfd_errmsg (bfd_get_error ()));
1760 }
1761
1762 return sym_bfd;
1763 }
1764
1765 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1766
1767 /* Look down path for it, allocate 2nd new malloc'd copy. */
1768 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1769 O_RDONLY | O_BINARY, &absolute_name);
1770 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1771 if (desc < 0)
1772 {
1773 char *exename = alloca (strlen (name) + 5);
1774
1775 strcat (strcpy (exename, name), ".exe");
1776 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1777 exename, O_RDONLY | O_BINARY, &absolute_name);
1778 }
1779 #endif
1780 if (desc < 0)
1781 {
1782 make_cleanup (xfree, name);
1783 perror_with_name (name);
1784 }
1785
1786 xfree (name);
1787 name = absolute_name;
1788 back_to = make_cleanup (xfree, name);
1789
1790 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1791 if (!sym_bfd)
1792 error (_("`%s': can't open to read symbols: %s."), name,
1793 bfd_errmsg (bfd_get_error ()));
1794 bfd_set_cacheable (sym_bfd, 1);
1795
1796 if (!bfd_check_format (sym_bfd, bfd_object))
1797 {
1798 make_cleanup_bfd_unref (sym_bfd);
1799 error (_("`%s': can't read symbols: %s."), name,
1800 bfd_errmsg (bfd_get_error ()));
1801 }
1802
1803 do_cleanups (back_to);
1804
1805 return sym_bfd;
1806 }
1807
1808 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1809 the section was not found. */
1810
1811 int
1812 get_section_index (struct objfile *objfile, char *section_name)
1813 {
1814 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1815
1816 if (sect)
1817 return sect->index;
1818 else
1819 return -1;
1820 }
1821
1822 /* Link SF into the global symtab_fns list.
1823 FLAVOUR is the file format that SF handles.
1824 Called on startup by the _initialize routine in each object file format
1825 reader, to register information about each format the reader is prepared
1826 to handle. */
1827
1828 void
1829 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1830 {
1831 registered_sym_fns fns = { flavour, sf };
1832
1833 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1834 }
1835
1836 /* Initialize OBJFILE to read symbols from its associated BFD. It
1837 either returns or calls error(). The result is an initialized
1838 struct sym_fns in the objfile structure, that contains cached
1839 information about the symbol file. */
1840
1841 static const struct sym_fns *
1842 find_sym_fns (bfd *abfd)
1843 {
1844 registered_sym_fns *rsf;
1845 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1846 int i;
1847
1848 if (our_flavour == bfd_target_srec_flavour
1849 || our_flavour == bfd_target_ihex_flavour
1850 || our_flavour == bfd_target_tekhex_flavour)
1851 return NULL; /* No symbols. */
1852
1853 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1854 if (our_flavour == rsf->sym_flavour)
1855 return rsf->sym_fns;
1856
1857 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1858 bfd_get_target (abfd));
1859 }
1860 \f
1861
1862 /* This function runs the load command of our current target. */
1863
1864 static void
1865 load_command (char *arg, int from_tty)
1866 {
1867 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1868
1869 dont_repeat ();
1870
1871 /* The user might be reloading because the binary has changed. Take
1872 this opportunity to check. */
1873 reopen_exec_file ();
1874 reread_symbols ();
1875
1876 if (arg == NULL)
1877 {
1878 char *parg;
1879 int count = 0;
1880
1881 parg = arg = get_exec_file (1);
1882
1883 /* Count how many \ " ' tab space there are in the name. */
1884 while ((parg = strpbrk (parg, "\\\"'\t ")))
1885 {
1886 parg++;
1887 count++;
1888 }
1889
1890 if (count)
1891 {
1892 /* We need to quote this string so buildargv can pull it apart. */
1893 char *temp = xmalloc (strlen (arg) + count + 1 );
1894 char *ptemp = temp;
1895 char *prev;
1896
1897 make_cleanup (xfree, temp);
1898
1899 prev = parg = arg;
1900 while ((parg = strpbrk (parg, "\\\"'\t ")))
1901 {
1902 strncpy (ptemp, prev, parg - prev);
1903 ptemp += parg - prev;
1904 prev = parg++;
1905 *ptemp++ = '\\';
1906 }
1907 strcpy (ptemp, prev);
1908
1909 arg = temp;
1910 }
1911 }
1912
1913 target_load (arg, from_tty);
1914
1915 /* After re-loading the executable, we don't really know which
1916 overlays are mapped any more. */
1917 overlay_cache_invalid = 1;
1918
1919 do_cleanups (cleanup);
1920 }
1921
1922 /* This version of "load" should be usable for any target. Currently
1923 it is just used for remote targets, not inftarg.c or core files,
1924 on the theory that only in that case is it useful.
1925
1926 Avoiding xmodem and the like seems like a win (a) because we don't have
1927 to worry about finding it, and (b) On VMS, fork() is very slow and so
1928 we don't want to run a subprocess. On the other hand, I'm not sure how
1929 performance compares. */
1930
1931 static int validate_download = 0;
1932
1933 /* Callback service function for generic_load (bfd_map_over_sections). */
1934
1935 static void
1936 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1937 {
1938 bfd_size_type *sum = data;
1939
1940 *sum += bfd_get_section_size (asec);
1941 }
1942
1943 /* Opaque data for load_section_callback. */
1944 struct load_section_data {
1945 CORE_ADDR load_offset;
1946 struct load_progress_data *progress_data;
1947 VEC(memory_write_request_s) *requests;
1948 };
1949
1950 /* Opaque data for load_progress. */
1951 struct load_progress_data {
1952 /* Cumulative data. */
1953 unsigned long write_count;
1954 unsigned long data_count;
1955 bfd_size_type total_size;
1956 };
1957
1958 /* Opaque data for load_progress for a single section. */
1959 struct load_progress_section_data {
1960 struct load_progress_data *cumulative;
1961
1962 /* Per-section data. */
1963 const char *section_name;
1964 ULONGEST section_sent;
1965 ULONGEST section_size;
1966 CORE_ADDR lma;
1967 gdb_byte *buffer;
1968 };
1969
1970 /* Target write callback routine for progress reporting. */
1971
1972 static void
1973 load_progress (ULONGEST bytes, void *untyped_arg)
1974 {
1975 struct load_progress_section_data *args = untyped_arg;
1976 struct load_progress_data *totals;
1977
1978 if (args == NULL)
1979 /* Writing padding data. No easy way to get at the cumulative
1980 stats, so just ignore this. */
1981 return;
1982
1983 totals = args->cumulative;
1984
1985 if (bytes == 0 && args->section_sent == 0)
1986 {
1987 /* The write is just starting. Let the user know we've started
1988 this section. */
1989 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1990 args->section_name, hex_string (args->section_size),
1991 paddress (target_gdbarch (), args->lma));
1992 return;
1993 }
1994
1995 if (validate_download)
1996 {
1997 /* Broken memories and broken monitors manifest themselves here
1998 when bring new computers to life. This doubles already slow
1999 downloads. */
2000 /* NOTE: cagney/1999-10-18: A more efficient implementation
2001 might add a verify_memory() method to the target vector and
2002 then use that. remote.c could implement that method using
2003 the ``qCRC'' packet. */
2004 gdb_byte *check = xmalloc (bytes);
2005 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2006
2007 if (target_read_memory (args->lma, check, bytes) != 0)
2008 error (_("Download verify read failed at %s"),
2009 paddress (target_gdbarch (), args->lma));
2010 if (memcmp (args->buffer, check, bytes) != 0)
2011 error (_("Download verify compare failed at %s"),
2012 paddress (target_gdbarch (), args->lma));
2013 do_cleanups (verify_cleanups);
2014 }
2015 totals->data_count += bytes;
2016 args->lma += bytes;
2017 args->buffer += bytes;
2018 totals->write_count += 1;
2019 args->section_sent += bytes;
2020 if (check_quit_flag ()
2021 || (deprecated_ui_load_progress_hook != NULL
2022 && deprecated_ui_load_progress_hook (args->section_name,
2023 args->section_sent)))
2024 error (_("Canceled the download"));
2025
2026 if (deprecated_show_load_progress != NULL)
2027 deprecated_show_load_progress (args->section_name,
2028 args->section_sent,
2029 args->section_size,
2030 totals->data_count,
2031 totals->total_size);
2032 }
2033
2034 /* Callback service function for generic_load (bfd_map_over_sections). */
2035
2036 static void
2037 load_section_callback (bfd *abfd, asection *asec, void *data)
2038 {
2039 struct memory_write_request *new_request;
2040 struct load_section_data *args = data;
2041 struct load_progress_section_data *section_data;
2042 bfd_size_type size = bfd_get_section_size (asec);
2043 gdb_byte *buffer;
2044 const char *sect_name = bfd_get_section_name (abfd, asec);
2045
2046 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2047 return;
2048
2049 if (size == 0)
2050 return;
2051
2052 new_request = VEC_safe_push (memory_write_request_s,
2053 args->requests, NULL);
2054 memset (new_request, 0, sizeof (struct memory_write_request));
2055 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2056 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2057 new_request->end = new_request->begin + size; /* FIXME Should size
2058 be in instead? */
2059 new_request->data = xmalloc (size);
2060 new_request->baton = section_data;
2061
2062 buffer = new_request->data;
2063
2064 section_data->cumulative = args->progress_data;
2065 section_data->section_name = sect_name;
2066 section_data->section_size = size;
2067 section_data->lma = new_request->begin;
2068 section_data->buffer = buffer;
2069
2070 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2071 }
2072
2073 /* Clean up an entire memory request vector, including load
2074 data and progress records. */
2075
2076 static void
2077 clear_memory_write_data (void *arg)
2078 {
2079 VEC(memory_write_request_s) **vec_p = arg;
2080 VEC(memory_write_request_s) *vec = *vec_p;
2081 int i;
2082 struct memory_write_request *mr;
2083
2084 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2085 {
2086 xfree (mr->data);
2087 xfree (mr->baton);
2088 }
2089 VEC_free (memory_write_request_s, vec);
2090 }
2091
2092 void
2093 generic_load (char *args, int from_tty)
2094 {
2095 bfd *loadfile_bfd;
2096 struct timeval start_time, end_time;
2097 char *filename;
2098 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2099 struct load_section_data cbdata;
2100 struct load_progress_data total_progress;
2101 struct ui_out *uiout = current_uiout;
2102
2103 CORE_ADDR entry;
2104 char **argv;
2105
2106 memset (&cbdata, 0, sizeof (cbdata));
2107 memset (&total_progress, 0, sizeof (total_progress));
2108 cbdata.progress_data = &total_progress;
2109
2110 make_cleanup (clear_memory_write_data, &cbdata.requests);
2111
2112 if (args == NULL)
2113 error_no_arg (_("file to load"));
2114
2115 argv = gdb_buildargv (args);
2116 make_cleanup_freeargv (argv);
2117
2118 filename = tilde_expand (argv[0]);
2119 make_cleanup (xfree, filename);
2120
2121 if (argv[1] != NULL)
2122 {
2123 const char *endptr;
2124
2125 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2126
2127 /* If the last word was not a valid number then
2128 treat it as a file name with spaces in. */
2129 if (argv[1] == endptr)
2130 error (_("Invalid download offset:%s."), argv[1]);
2131
2132 if (argv[2] != NULL)
2133 error (_("Too many parameters."));
2134 }
2135
2136 /* Open the file for loading. */
2137 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2138 if (loadfile_bfd == NULL)
2139 {
2140 perror_with_name (filename);
2141 return;
2142 }
2143
2144 make_cleanup_bfd_unref (loadfile_bfd);
2145
2146 if (!bfd_check_format (loadfile_bfd, bfd_object))
2147 {
2148 error (_("\"%s\" is not an object file: %s"), filename,
2149 bfd_errmsg (bfd_get_error ()));
2150 }
2151
2152 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2153 (void *) &total_progress.total_size);
2154
2155 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2156
2157 gettimeofday (&start_time, NULL);
2158
2159 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2160 load_progress) != 0)
2161 error (_("Load failed"));
2162
2163 gettimeofday (&end_time, NULL);
2164
2165 entry = bfd_get_start_address (loadfile_bfd);
2166 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2167 ui_out_text (uiout, "Start address ");
2168 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2169 ui_out_text (uiout, ", load size ");
2170 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2171 ui_out_text (uiout, "\n");
2172 /* We were doing this in remote-mips.c, I suspect it is right
2173 for other targets too. */
2174 regcache_write_pc (get_current_regcache (), entry);
2175
2176 /* Reset breakpoints, now that we have changed the load image. For
2177 instance, breakpoints may have been set (or reset, by
2178 post_create_inferior) while connected to the target but before we
2179 loaded the program. In that case, the prologue analyzer could
2180 have read instructions from the target to find the right
2181 breakpoint locations. Loading has changed the contents of that
2182 memory. */
2183
2184 breakpoint_re_set ();
2185
2186 /* FIXME: are we supposed to call symbol_file_add or not? According
2187 to a comment from remote-mips.c (where a call to symbol_file_add
2188 was commented out), making the call confuses GDB if more than one
2189 file is loaded in. Some targets do (e.g., remote-vx.c) but
2190 others don't (or didn't - perhaps they have all been deleted). */
2191
2192 print_transfer_performance (gdb_stdout, total_progress.data_count,
2193 total_progress.write_count,
2194 &start_time, &end_time);
2195
2196 do_cleanups (old_cleanups);
2197 }
2198
2199 /* Report how fast the transfer went. */
2200
2201 void
2202 print_transfer_performance (struct ui_file *stream,
2203 unsigned long data_count,
2204 unsigned long write_count,
2205 const struct timeval *start_time,
2206 const struct timeval *end_time)
2207 {
2208 ULONGEST time_count;
2209 struct ui_out *uiout = current_uiout;
2210
2211 /* Compute the elapsed time in milliseconds, as a tradeoff between
2212 accuracy and overflow. */
2213 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2214 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2215
2216 ui_out_text (uiout, "Transfer rate: ");
2217 if (time_count > 0)
2218 {
2219 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2220
2221 if (ui_out_is_mi_like_p (uiout))
2222 {
2223 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2224 ui_out_text (uiout, " bits/sec");
2225 }
2226 else if (rate < 1024)
2227 {
2228 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2229 ui_out_text (uiout, " bytes/sec");
2230 }
2231 else
2232 {
2233 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2234 ui_out_text (uiout, " KB/sec");
2235 }
2236 }
2237 else
2238 {
2239 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2240 ui_out_text (uiout, " bits in <1 sec");
2241 }
2242 if (write_count > 0)
2243 {
2244 ui_out_text (uiout, ", ");
2245 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2246 ui_out_text (uiout, " bytes/write");
2247 }
2248 ui_out_text (uiout, ".\n");
2249 }
2250
2251 /* This function allows the addition of incrementally linked object files.
2252 It does not modify any state in the target, only in the debugger. */
2253 /* Note: ezannoni 2000-04-13 This function/command used to have a
2254 special case syntax for the rombug target (Rombug is the boot
2255 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2256 rombug case, the user doesn't need to supply a text address,
2257 instead a call to target_link() (in target.c) would supply the
2258 value to use. We are now discontinuing this type of ad hoc syntax. */
2259
2260 static void
2261 add_symbol_file_command (char *args, int from_tty)
2262 {
2263 struct gdbarch *gdbarch = get_current_arch ();
2264 char *filename = NULL;
2265 int flags = OBJF_USERLOADED;
2266 char *arg;
2267 int section_index = 0;
2268 int argcnt = 0;
2269 int sec_num = 0;
2270 int i;
2271 int expecting_sec_name = 0;
2272 int expecting_sec_addr = 0;
2273 char **argv;
2274 struct objfile *objf;
2275
2276 struct sect_opt
2277 {
2278 char *name;
2279 char *value;
2280 };
2281
2282 struct section_addr_info *section_addrs;
2283 struct sect_opt *sect_opts = NULL;
2284 size_t num_sect_opts = 0;
2285 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2286
2287 num_sect_opts = 16;
2288 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2289 * sizeof (struct sect_opt));
2290
2291 dont_repeat ();
2292
2293 if (args == NULL)
2294 error (_("add-symbol-file takes a file name and an address"));
2295
2296 argv = gdb_buildargv (args);
2297 make_cleanup_freeargv (argv);
2298
2299 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2300 {
2301 /* Process the argument. */
2302 if (argcnt == 0)
2303 {
2304 /* The first argument is the file name. */
2305 filename = tilde_expand (arg);
2306 make_cleanup (xfree, filename);
2307 }
2308 else if (argcnt == 1)
2309 {
2310 /* The second argument is always the text address at which
2311 to load the program. */
2312 sect_opts[section_index].name = ".text";
2313 sect_opts[section_index].value = arg;
2314 if (++section_index >= num_sect_opts)
2315 {
2316 num_sect_opts *= 2;
2317 sect_opts = ((struct sect_opt *)
2318 xrealloc (sect_opts,
2319 num_sect_opts
2320 * sizeof (struct sect_opt)));
2321 }
2322 }
2323 else
2324 {
2325 /* It's an option (starting with '-') or it's an argument
2326 to an option. */
2327 if (expecting_sec_name)
2328 {
2329 sect_opts[section_index].name = arg;
2330 expecting_sec_name = 0;
2331 }
2332 else if (expecting_sec_addr)
2333 {
2334 sect_opts[section_index].value = arg;
2335 expecting_sec_addr = 0;
2336 if (++section_index >= num_sect_opts)
2337 {
2338 num_sect_opts *= 2;
2339 sect_opts = ((struct sect_opt *)
2340 xrealloc (sect_opts,
2341 num_sect_opts
2342 * sizeof (struct sect_opt)));
2343 }
2344 }
2345 else if (strcmp (arg, "-readnow") == 0)
2346 flags |= OBJF_READNOW;
2347 else if (strcmp (arg, "-s") == 0)
2348 {
2349 expecting_sec_name = 1;
2350 expecting_sec_addr = 1;
2351 }
2352 else
2353 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2354 " [-readnow] [-s <secname> <addr>]*"));
2355 }
2356 }
2357
2358 /* This command takes at least two arguments. The first one is a
2359 filename, and the second is the address where this file has been
2360 loaded. Abort now if this address hasn't been provided by the
2361 user. */
2362 if (section_index < 1)
2363 error (_("The address where %s has been loaded is missing"), filename);
2364
2365 /* Print the prompt for the query below. And save the arguments into
2366 a sect_addr_info structure to be passed around to other
2367 functions. We have to split this up into separate print
2368 statements because hex_string returns a local static
2369 string. */
2370
2371 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2372 section_addrs = alloc_section_addr_info (section_index);
2373 make_cleanup (xfree, section_addrs);
2374 for (i = 0; i < section_index; i++)
2375 {
2376 CORE_ADDR addr;
2377 char *val = sect_opts[i].value;
2378 char *sec = sect_opts[i].name;
2379
2380 addr = parse_and_eval_address (val);
2381
2382 /* Here we store the section offsets in the order they were
2383 entered on the command line. */
2384 section_addrs->other[sec_num].name = sec;
2385 section_addrs->other[sec_num].addr = addr;
2386 printf_unfiltered ("\t%s_addr = %s\n", sec,
2387 paddress (gdbarch, addr));
2388 sec_num++;
2389
2390 /* The object's sections are initialized when a
2391 call is made to build_objfile_section_table (objfile).
2392 This happens in reread_symbols.
2393 At this point, we don't know what file type this is,
2394 so we can't determine what section names are valid. */
2395 }
2396 section_addrs->num_sections = sec_num;
2397
2398 if (from_tty && (!query ("%s", "")))
2399 error (_("Not confirmed."));
2400
2401 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2402 section_addrs, flags);
2403
2404 add_target_sections_of_objfile (objf);
2405
2406 /* Getting new symbols may change our opinion about what is
2407 frameless. */
2408 reinit_frame_cache ();
2409 do_cleanups (my_cleanups);
2410 }
2411 \f
2412
2413 /* This function removes a symbol file that was added via add-symbol-file. */
2414
2415 static void
2416 remove_symbol_file_command (char *args, int from_tty)
2417 {
2418 char **argv;
2419 struct objfile *objf = NULL;
2420 struct cleanup *my_cleanups;
2421 struct program_space *pspace = current_program_space;
2422 struct gdbarch *gdbarch = get_current_arch ();
2423
2424 dont_repeat ();
2425
2426 if (args == NULL)
2427 error (_("remove-symbol-file: no symbol file provided"));
2428
2429 my_cleanups = make_cleanup (null_cleanup, NULL);
2430
2431 argv = gdb_buildargv (args);
2432
2433 if (strcmp (argv[0], "-a") == 0)
2434 {
2435 /* Interpret the next argument as an address. */
2436 CORE_ADDR addr;
2437
2438 if (argv[1] == NULL)
2439 error (_("Missing address argument"));
2440
2441 if (argv[2] != NULL)
2442 error (_("Junk after %s"), argv[1]);
2443
2444 addr = parse_and_eval_address (argv[1]);
2445
2446 ALL_OBJFILES (objf)
2447 {
2448 if (objf != 0
2449 && objf->flags & OBJF_USERLOADED
2450 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2451 break;
2452 }
2453 }
2454 else if (argv[0] != NULL)
2455 {
2456 /* Interpret the current argument as a file name. */
2457 char *filename;
2458
2459 if (argv[1] != NULL)
2460 error (_("Junk after %s"), argv[0]);
2461
2462 filename = tilde_expand (argv[0]);
2463 make_cleanup (xfree, filename);
2464
2465 ALL_OBJFILES (objf)
2466 {
2467 if (objf != 0
2468 && objf->flags & OBJF_USERLOADED
2469 && objf->pspace == pspace
2470 && filename_cmp (filename, objfile_name (objf)) == 0)
2471 break;
2472 }
2473 }
2474
2475 if (objf == NULL)
2476 error (_("No symbol file found"));
2477
2478 if (from_tty
2479 && !query (_("Remove symbol table from file \"%s\"? "),
2480 objfile_name (objf)))
2481 error (_("Not confirmed."));
2482
2483 free_objfile (objf);
2484 clear_symtab_users (0);
2485
2486 do_cleanups (my_cleanups);
2487 }
2488
2489 typedef struct objfile *objfilep;
2490
2491 DEF_VEC_P (objfilep);
2492
2493 /* Re-read symbols if a symbol-file has changed. */
2494
2495 void
2496 reread_symbols (void)
2497 {
2498 struct objfile *objfile;
2499 long new_modtime;
2500 struct stat new_statbuf;
2501 int res;
2502 VEC (objfilep) *new_objfiles = NULL;
2503 struct cleanup *all_cleanups;
2504
2505 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2506
2507 /* With the addition of shared libraries, this should be modified,
2508 the load time should be saved in the partial symbol tables, since
2509 different tables may come from different source files. FIXME.
2510 This routine should then walk down each partial symbol table
2511 and see if the symbol table that it originates from has been changed. */
2512
2513 for (objfile = object_files; objfile; objfile = objfile->next)
2514 {
2515 if (objfile->obfd == NULL)
2516 continue;
2517
2518 /* Separate debug objfiles are handled in the main objfile. */
2519 if (objfile->separate_debug_objfile_backlink)
2520 continue;
2521
2522 /* If this object is from an archive (what you usually create with
2523 `ar', often called a `static library' on most systems, though
2524 a `shared library' on AIX is also an archive), then you should
2525 stat on the archive name, not member name. */
2526 if (objfile->obfd->my_archive)
2527 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2528 else
2529 res = stat (objfile_name (objfile), &new_statbuf);
2530 if (res != 0)
2531 {
2532 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2533 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2534 objfile_name (objfile));
2535 continue;
2536 }
2537 new_modtime = new_statbuf.st_mtime;
2538 if (new_modtime != objfile->mtime)
2539 {
2540 struct cleanup *old_cleanups;
2541 struct section_offsets *offsets;
2542 int num_offsets;
2543 char *original_name;
2544
2545 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2546 objfile_name (objfile));
2547
2548 /* There are various functions like symbol_file_add,
2549 symfile_bfd_open, syms_from_objfile, etc., which might
2550 appear to do what we want. But they have various other
2551 effects which we *don't* want. So we just do stuff
2552 ourselves. We don't worry about mapped files (for one thing,
2553 any mapped file will be out of date). */
2554
2555 /* If we get an error, blow away this objfile (not sure if
2556 that is the correct response for things like shared
2557 libraries). */
2558 old_cleanups = make_cleanup_free_objfile (objfile);
2559 /* We need to do this whenever any symbols go away. */
2560 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2561
2562 if (exec_bfd != NULL
2563 && filename_cmp (bfd_get_filename (objfile->obfd),
2564 bfd_get_filename (exec_bfd)) == 0)
2565 {
2566 /* Reload EXEC_BFD without asking anything. */
2567
2568 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2569 }
2570
2571 /* Keep the calls order approx. the same as in free_objfile. */
2572
2573 /* Free the separate debug objfiles. It will be
2574 automatically recreated by sym_read. */
2575 free_objfile_separate_debug (objfile);
2576
2577 /* Remove any references to this objfile in the global
2578 value lists. */
2579 preserve_values (objfile);
2580
2581 /* Nuke all the state that we will re-read. Much of the following
2582 code which sets things to NULL really is necessary to tell
2583 other parts of GDB that there is nothing currently there.
2584
2585 Try to keep the freeing order compatible with free_objfile. */
2586
2587 if (objfile->sf != NULL)
2588 {
2589 (*objfile->sf->sym_finish) (objfile);
2590 }
2591
2592 clear_objfile_data (objfile);
2593
2594 /* Clean up any state BFD has sitting around. */
2595 {
2596 struct bfd *obfd = objfile->obfd;
2597 char *obfd_filename;
2598
2599 obfd_filename = bfd_get_filename (objfile->obfd);
2600 /* Open the new BFD before freeing the old one, so that
2601 the filename remains live. */
2602 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2603 if (objfile->obfd == NULL)
2604 {
2605 /* We have to make a cleanup and error here, rather
2606 than erroring later, because once we unref OBFD,
2607 OBFD_FILENAME will be freed. */
2608 make_cleanup_bfd_unref (obfd);
2609 error (_("Can't open %s to read symbols."), obfd_filename);
2610 }
2611 gdb_bfd_unref (obfd);
2612 }
2613
2614 original_name = xstrdup (objfile->original_name);
2615 make_cleanup (xfree, original_name);
2616
2617 /* bfd_openr sets cacheable to true, which is what we want. */
2618 if (!bfd_check_format (objfile->obfd, bfd_object))
2619 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2620 bfd_errmsg (bfd_get_error ()));
2621
2622 /* Save the offsets, we will nuke them with the rest of the
2623 objfile_obstack. */
2624 num_offsets = objfile->num_sections;
2625 offsets = ((struct section_offsets *)
2626 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2627 memcpy (offsets, objfile->section_offsets,
2628 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2629
2630 /* FIXME: Do we have to free a whole linked list, or is this
2631 enough? */
2632 if (objfile->global_psymbols.list)
2633 xfree (objfile->global_psymbols.list);
2634 memset (&objfile->global_psymbols, 0,
2635 sizeof (objfile->global_psymbols));
2636 if (objfile->static_psymbols.list)
2637 xfree (objfile->static_psymbols.list);
2638 memset (&objfile->static_psymbols, 0,
2639 sizeof (objfile->static_psymbols));
2640
2641 /* Free the obstacks for non-reusable objfiles. */
2642 psymbol_bcache_free (objfile->psymbol_cache);
2643 objfile->psymbol_cache = psymbol_bcache_init ();
2644 obstack_free (&objfile->objfile_obstack, 0);
2645 objfile->sections = NULL;
2646 objfile->symtabs = NULL;
2647 objfile->psymtabs = NULL;
2648 objfile->psymtabs_addrmap = NULL;
2649 objfile->free_psymtabs = NULL;
2650 objfile->template_symbols = NULL;
2651
2652 /* obstack_init also initializes the obstack so it is
2653 empty. We could use obstack_specify_allocation but
2654 gdb_obstack.h specifies the alloc/dealloc functions. */
2655 obstack_init (&objfile->objfile_obstack);
2656
2657 /* set_objfile_per_bfd potentially allocates the per-bfd
2658 data on the objfile's obstack (if sharing data across
2659 multiple users is not possible), so it's important to
2660 do it *after* the obstack has been initialized. */
2661 set_objfile_per_bfd (objfile);
2662
2663 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2664 original_name,
2665 strlen (original_name));
2666
2667 /* Reset the sym_fns pointer. The ELF reader can change it
2668 based on whether .gdb_index is present, and we need it to
2669 start over. PR symtab/15885 */
2670 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2671
2672 build_objfile_section_table (objfile);
2673 terminate_minimal_symbol_table (objfile);
2674
2675 /* We use the same section offsets as from last time. I'm not
2676 sure whether that is always correct for shared libraries. */
2677 objfile->section_offsets = (struct section_offsets *)
2678 obstack_alloc (&objfile->objfile_obstack,
2679 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2680 memcpy (objfile->section_offsets, offsets,
2681 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2682 objfile->num_sections = num_offsets;
2683
2684 /* What the hell is sym_new_init for, anyway? The concept of
2685 distinguishing between the main file and additional files
2686 in this way seems rather dubious. */
2687 if (objfile == symfile_objfile)
2688 {
2689 (*objfile->sf->sym_new_init) (objfile);
2690 }
2691
2692 (*objfile->sf->sym_init) (objfile);
2693 clear_complaints (&symfile_complaints, 1, 1);
2694
2695 objfile->flags &= ~OBJF_PSYMTABS_READ;
2696 read_symbols (objfile, 0);
2697
2698 if (!objfile_has_symbols (objfile))
2699 {
2700 wrap_here ("");
2701 printf_unfiltered (_("(no debugging symbols found)\n"));
2702 wrap_here ("");
2703 }
2704
2705 /* We're done reading the symbol file; finish off complaints. */
2706 clear_complaints (&symfile_complaints, 0, 1);
2707
2708 /* Getting new symbols may change our opinion about what is
2709 frameless. */
2710
2711 reinit_frame_cache ();
2712
2713 /* Discard cleanups as symbol reading was successful. */
2714 discard_cleanups (old_cleanups);
2715
2716 /* If the mtime has changed between the time we set new_modtime
2717 and now, we *want* this to be out of date, so don't call stat
2718 again now. */
2719 objfile->mtime = new_modtime;
2720 init_entry_point_info (objfile);
2721
2722 VEC_safe_push (objfilep, new_objfiles, objfile);
2723 }
2724 }
2725
2726 if (new_objfiles)
2727 {
2728 int ix;
2729
2730 /* Notify objfiles that we've modified objfile sections. */
2731 objfiles_changed ();
2732
2733 clear_symtab_users (0);
2734
2735 /* clear_objfile_data for each objfile was called before freeing it and
2736 observer_notify_new_objfile (NULL) has been called by
2737 clear_symtab_users above. Notify the new files now. */
2738 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2739 observer_notify_new_objfile (objfile);
2740
2741 /* At least one objfile has changed, so we can consider that
2742 the executable we're debugging has changed too. */
2743 observer_notify_executable_changed ();
2744 }
2745
2746 do_cleanups (all_cleanups);
2747 }
2748 \f
2749
2750 typedef struct
2751 {
2752 char *ext;
2753 enum language lang;
2754 }
2755 filename_language;
2756
2757 static filename_language *filename_language_table;
2758 static int fl_table_size, fl_table_next;
2759
2760 static void
2761 add_filename_language (char *ext, enum language lang)
2762 {
2763 if (fl_table_next >= fl_table_size)
2764 {
2765 fl_table_size += 10;
2766 filename_language_table =
2767 xrealloc (filename_language_table,
2768 fl_table_size * sizeof (*filename_language_table));
2769 }
2770
2771 filename_language_table[fl_table_next].ext = xstrdup (ext);
2772 filename_language_table[fl_table_next].lang = lang;
2773 fl_table_next++;
2774 }
2775
2776 static char *ext_args;
2777 static void
2778 show_ext_args (struct ui_file *file, int from_tty,
2779 struct cmd_list_element *c, const char *value)
2780 {
2781 fprintf_filtered (file,
2782 _("Mapping between filename extension "
2783 "and source language is \"%s\".\n"),
2784 value);
2785 }
2786
2787 static void
2788 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2789 {
2790 int i;
2791 char *cp = ext_args;
2792 enum language lang;
2793
2794 /* First arg is filename extension, starting with '.' */
2795 if (*cp != '.')
2796 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2797
2798 /* Find end of first arg. */
2799 while (*cp && !isspace (*cp))
2800 cp++;
2801
2802 if (*cp == '\0')
2803 error (_("'%s': two arguments required -- "
2804 "filename extension and language"),
2805 ext_args);
2806
2807 /* Null-terminate first arg. */
2808 *cp++ = '\0';
2809
2810 /* Find beginning of second arg, which should be a source language. */
2811 cp = skip_spaces (cp);
2812
2813 if (*cp == '\0')
2814 error (_("'%s': two arguments required -- "
2815 "filename extension and language"),
2816 ext_args);
2817
2818 /* Lookup the language from among those we know. */
2819 lang = language_enum (cp);
2820
2821 /* Now lookup the filename extension: do we already know it? */
2822 for (i = 0; i < fl_table_next; i++)
2823 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2824 break;
2825
2826 if (i >= fl_table_next)
2827 {
2828 /* New file extension. */
2829 add_filename_language (ext_args, lang);
2830 }
2831 else
2832 {
2833 /* Redefining a previously known filename extension. */
2834
2835 /* if (from_tty) */
2836 /* query ("Really make files of type %s '%s'?", */
2837 /* ext_args, language_str (lang)); */
2838
2839 xfree (filename_language_table[i].ext);
2840 filename_language_table[i].ext = xstrdup (ext_args);
2841 filename_language_table[i].lang = lang;
2842 }
2843 }
2844
2845 static void
2846 info_ext_lang_command (char *args, int from_tty)
2847 {
2848 int i;
2849
2850 printf_filtered (_("Filename extensions and the languages they represent:"));
2851 printf_filtered ("\n\n");
2852 for (i = 0; i < fl_table_next; i++)
2853 printf_filtered ("\t%s\t- %s\n",
2854 filename_language_table[i].ext,
2855 language_str (filename_language_table[i].lang));
2856 }
2857
2858 static void
2859 init_filename_language_table (void)
2860 {
2861 if (fl_table_size == 0) /* Protect against repetition. */
2862 {
2863 fl_table_size = 20;
2864 fl_table_next = 0;
2865 filename_language_table =
2866 xmalloc (fl_table_size * sizeof (*filename_language_table));
2867 add_filename_language (".c", language_c);
2868 add_filename_language (".d", language_d);
2869 add_filename_language (".C", language_cplus);
2870 add_filename_language (".cc", language_cplus);
2871 add_filename_language (".cp", language_cplus);
2872 add_filename_language (".cpp", language_cplus);
2873 add_filename_language (".cxx", language_cplus);
2874 add_filename_language (".c++", language_cplus);
2875 add_filename_language (".java", language_java);
2876 add_filename_language (".class", language_java);
2877 add_filename_language (".m", language_objc);
2878 add_filename_language (".f", language_fortran);
2879 add_filename_language (".F", language_fortran);
2880 add_filename_language (".for", language_fortran);
2881 add_filename_language (".FOR", language_fortran);
2882 add_filename_language (".ftn", language_fortran);
2883 add_filename_language (".FTN", language_fortran);
2884 add_filename_language (".fpp", language_fortran);
2885 add_filename_language (".FPP", language_fortran);
2886 add_filename_language (".f90", language_fortran);
2887 add_filename_language (".F90", language_fortran);
2888 add_filename_language (".f95", language_fortran);
2889 add_filename_language (".F95", language_fortran);
2890 add_filename_language (".f03", language_fortran);
2891 add_filename_language (".F03", language_fortran);
2892 add_filename_language (".f08", language_fortran);
2893 add_filename_language (".F08", language_fortran);
2894 add_filename_language (".s", language_asm);
2895 add_filename_language (".sx", language_asm);
2896 add_filename_language (".S", language_asm);
2897 add_filename_language (".pas", language_pascal);
2898 add_filename_language (".p", language_pascal);
2899 add_filename_language (".pp", language_pascal);
2900 add_filename_language (".adb", language_ada);
2901 add_filename_language (".ads", language_ada);
2902 add_filename_language (".a", language_ada);
2903 add_filename_language (".ada", language_ada);
2904 add_filename_language (".dg", language_ada);
2905 }
2906 }
2907
2908 enum language
2909 deduce_language_from_filename (const char *filename)
2910 {
2911 int i;
2912 char *cp;
2913
2914 if (filename != NULL)
2915 if ((cp = strrchr (filename, '.')) != NULL)
2916 for (i = 0; i < fl_table_next; i++)
2917 if (strcmp (cp, filename_language_table[i].ext) == 0)
2918 return filename_language_table[i].lang;
2919
2920 return language_unknown;
2921 }
2922 \f
2923 /* allocate_symtab:
2924
2925 Allocate and partly initialize a new symbol table. Return a pointer
2926 to it. error() if no space.
2927
2928 Caller must set these fields:
2929 LINETABLE(symtab)
2930 symtab->blockvector
2931 symtab->dirname
2932 symtab->free_code
2933 symtab->free_ptr
2934 */
2935
2936 struct symtab *
2937 allocate_symtab (const char *filename, struct objfile *objfile)
2938 {
2939 struct symtab *symtab;
2940
2941 symtab = (struct symtab *)
2942 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2943 memset (symtab, 0, sizeof (*symtab));
2944 symtab->filename = bcache (filename, strlen (filename) + 1,
2945 objfile->per_bfd->filename_cache);
2946 symtab->fullname = NULL;
2947 symtab->language = deduce_language_from_filename (filename);
2948 symtab->debugformat = "unknown";
2949
2950 /* Hook it to the objfile it comes from. */
2951
2952 symtab->objfile = objfile;
2953 symtab->next = objfile->symtabs;
2954 objfile->symtabs = symtab;
2955
2956 /* This can be very verbose with lots of headers.
2957 Only print at higher debug levels. */
2958 if (symtab_create_debug >= 2)
2959 {
2960 /* Be a bit clever with debugging messages, and don't print objfile
2961 every time, only when it changes. */
2962 static char *last_objfile_name = NULL;
2963
2964 if (last_objfile_name == NULL
2965 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2966 {
2967 xfree (last_objfile_name);
2968 last_objfile_name = xstrdup (objfile_name (objfile));
2969 fprintf_unfiltered (gdb_stdlog,
2970 "Creating one or more symtabs for objfile %s ...\n",
2971 last_objfile_name);
2972 }
2973 fprintf_unfiltered (gdb_stdlog,
2974 "Created symtab %s for module %s.\n",
2975 host_address_to_string (symtab), filename);
2976 }
2977
2978 return (symtab);
2979 }
2980 \f
2981
2982 /* Reset all data structures in gdb which may contain references to symbol
2983 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2984
2985 void
2986 clear_symtab_users (int add_flags)
2987 {
2988 /* Someday, we should do better than this, by only blowing away
2989 the things that really need to be blown. */
2990
2991 /* Clear the "current" symtab first, because it is no longer valid.
2992 breakpoint_re_set may try to access the current symtab. */
2993 clear_current_source_symtab_and_line ();
2994
2995 clear_displays ();
2996 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2997 breakpoint_re_set ();
2998 clear_last_displayed_sal ();
2999 clear_pc_function_cache ();
3000 observer_notify_new_objfile (NULL);
3001
3002 /* Clear globals which might have pointed into a removed objfile.
3003 FIXME: It's not clear which of these are supposed to persist
3004 between expressions and which ought to be reset each time. */
3005 expression_context_block = NULL;
3006 innermost_block = NULL;
3007
3008 /* Varobj may refer to old symbols, perform a cleanup. */
3009 varobj_invalidate ();
3010
3011 }
3012
3013 static void
3014 clear_symtab_users_cleanup (void *ignore)
3015 {
3016 clear_symtab_users (0);
3017 }
3018 \f
3019 /* OVERLAYS:
3020 The following code implements an abstraction for debugging overlay sections.
3021
3022 The target model is as follows:
3023 1) The gnu linker will permit multiple sections to be mapped into the
3024 same VMA, each with its own unique LMA (or load address).
3025 2) It is assumed that some runtime mechanism exists for mapping the
3026 sections, one by one, from the load address into the VMA address.
3027 3) This code provides a mechanism for gdb to keep track of which
3028 sections should be considered to be mapped from the VMA to the LMA.
3029 This information is used for symbol lookup, and memory read/write.
3030 For instance, if a section has been mapped then its contents
3031 should be read from the VMA, otherwise from the LMA.
3032
3033 Two levels of debugger support for overlays are available. One is
3034 "manual", in which the debugger relies on the user to tell it which
3035 overlays are currently mapped. This level of support is
3036 implemented entirely in the core debugger, and the information about
3037 whether a section is mapped is kept in the objfile->obj_section table.
3038
3039 The second level of support is "automatic", and is only available if
3040 the target-specific code provides functionality to read the target's
3041 overlay mapping table, and translate its contents for the debugger
3042 (by updating the mapped state information in the obj_section tables).
3043
3044 The interface is as follows:
3045 User commands:
3046 overlay map <name> -- tell gdb to consider this section mapped
3047 overlay unmap <name> -- tell gdb to consider this section unmapped
3048 overlay list -- list the sections that GDB thinks are mapped
3049 overlay read-target -- get the target's state of what's mapped
3050 overlay off/manual/auto -- set overlay debugging state
3051 Functional interface:
3052 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3053 section, return that section.
3054 find_pc_overlay(pc): find any overlay section that contains
3055 the pc, either in its VMA or its LMA
3056 section_is_mapped(sect): true if overlay is marked as mapped
3057 section_is_overlay(sect): true if section's VMA != LMA
3058 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3059 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3060 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3061 overlay_mapped_address(...): map an address from section's LMA to VMA
3062 overlay_unmapped_address(...): map an address from section's VMA to LMA
3063 symbol_overlayed_address(...): Return a "current" address for symbol:
3064 either in VMA or LMA depending on whether
3065 the symbol's section is currently mapped. */
3066
3067 /* Overlay debugging state: */
3068
3069 enum overlay_debugging_state overlay_debugging = ovly_off;
3070 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3071
3072 /* Function: section_is_overlay (SECTION)
3073 Returns true if SECTION has VMA not equal to LMA, ie.
3074 SECTION is loaded at an address different from where it will "run". */
3075
3076 int
3077 section_is_overlay (struct obj_section *section)
3078 {
3079 if (overlay_debugging && section)
3080 {
3081 bfd *abfd = section->objfile->obfd;
3082 asection *bfd_section = section->the_bfd_section;
3083
3084 if (bfd_section_lma (abfd, bfd_section) != 0
3085 && bfd_section_lma (abfd, bfd_section)
3086 != bfd_section_vma (abfd, bfd_section))
3087 return 1;
3088 }
3089
3090 return 0;
3091 }
3092
3093 /* Function: overlay_invalidate_all (void)
3094 Invalidate the mapped state of all overlay sections (mark it as stale). */
3095
3096 static void
3097 overlay_invalidate_all (void)
3098 {
3099 struct objfile *objfile;
3100 struct obj_section *sect;
3101
3102 ALL_OBJSECTIONS (objfile, sect)
3103 if (section_is_overlay (sect))
3104 sect->ovly_mapped = -1;
3105 }
3106
3107 /* Function: section_is_mapped (SECTION)
3108 Returns true if section is an overlay, and is currently mapped.
3109
3110 Access to the ovly_mapped flag is restricted to this function, so
3111 that we can do automatic update. If the global flag
3112 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3113 overlay_invalidate_all. If the mapped state of the particular
3114 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3115
3116 int
3117 section_is_mapped (struct obj_section *osect)
3118 {
3119 struct gdbarch *gdbarch;
3120
3121 if (osect == 0 || !section_is_overlay (osect))
3122 return 0;
3123
3124 switch (overlay_debugging)
3125 {
3126 default:
3127 case ovly_off:
3128 return 0; /* overlay debugging off */
3129 case ovly_auto: /* overlay debugging automatic */
3130 /* Unles there is a gdbarch_overlay_update function,
3131 there's really nothing useful to do here (can't really go auto). */
3132 gdbarch = get_objfile_arch (osect->objfile);
3133 if (gdbarch_overlay_update_p (gdbarch))
3134 {
3135 if (overlay_cache_invalid)
3136 {
3137 overlay_invalidate_all ();
3138 overlay_cache_invalid = 0;
3139 }
3140 if (osect->ovly_mapped == -1)
3141 gdbarch_overlay_update (gdbarch, osect);
3142 }
3143 /* fall thru to manual case */
3144 case ovly_on: /* overlay debugging manual */
3145 return osect->ovly_mapped == 1;
3146 }
3147 }
3148
3149 /* Function: pc_in_unmapped_range
3150 If PC falls into the lma range of SECTION, return true, else false. */
3151
3152 CORE_ADDR
3153 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3154 {
3155 if (section_is_overlay (section))
3156 {
3157 bfd *abfd = section->objfile->obfd;
3158 asection *bfd_section = section->the_bfd_section;
3159
3160 /* We assume the LMA is relocated by the same offset as the VMA. */
3161 bfd_vma size = bfd_get_section_size (bfd_section);
3162 CORE_ADDR offset = obj_section_offset (section);
3163
3164 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3165 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3166 return 1;
3167 }
3168
3169 return 0;
3170 }
3171
3172 /* Function: pc_in_mapped_range
3173 If PC falls into the vma range of SECTION, return true, else false. */
3174
3175 CORE_ADDR
3176 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3177 {
3178 if (section_is_overlay (section))
3179 {
3180 if (obj_section_addr (section) <= pc
3181 && pc < obj_section_endaddr (section))
3182 return 1;
3183 }
3184
3185 return 0;
3186 }
3187
3188 /* Return true if the mapped ranges of sections A and B overlap, false
3189 otherwise. */
3190
3191 static int
3192 sections_overlap (struct obj_section *a, struct obj_section *b)
3193 {
3194 CORE_ADDR a_start = obj_section_addr (a);
3195 CORE_ADDR a_end = obj_section_endaddr (a);
3196 CORE_ADDR b_start = obj_section_addr (b);
3197 CORE_ADDR b_end = obj_section_endaddr (b);
3198
3199 return (a_start < b_end && b_start < a_end);
3200 }
3201
3202 /* Function: overlay_unmapped_address (PC, SECTION)
3203 Returns the address corresponding to PC in the unmapped (load) range.
3204 May be the same as PC. */
3205
3206 CORE_ADDR
3207 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3208 {
3209 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3210 {
3211 bfd *abfd = section->objfile->obfd;
3212 asection *bfd_section = section->the_bfd_section;
3213
3214 return pc + bfd_section_lma (abfd, bfd_section)
3215 - bfd_section_vma (abfd, bfd_section);
3216 }
3217
3218 return pc;
3219 }
3220
3221 /* Function: overlay_mapped_address (PC, SECTION)
3222 Returns the address corresponding to PC in the mapped (runtime) range.
3223 May be the same as PC. */
3224
3225 CORE_ADDR
3226 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3227 {
3228 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3229 {
3230 bfd *abfd = section->objfile->obfd;
3231 asection *bfd_section = section->the_bfd_section;
3232
3233 return pc + bfd_section_vma (abfd, bfd_section)
3234 - bfd_section_lma (abfd, bfd_section);
3235 }
3236
3237 return pc;
3238 }
3239
3240 /* Function: symbol_overlayed_address
3241 Return one of two addresses (relative to the VMA or to the LMA),
3242 depending on whether the section is mapped or not. */
3243
3244 CORE_ADDR
3245 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3246 {
3247 if (overlay_debugging)
3248 {
3249 /* If the symbol has no section, just return its regular address. */
3250 if (section == 0)
3251 return address;
3252 /* If the symbol's section is not an overlay, just return its
3253 address. */
3254 if (!section_is_overlay (section))
3255 return address;
3256 /* If the symbol's section is mapped, just return its address. */
3257 if (section_is_mapped (section))
3258 return address;
3259 /*
3260 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3261 * then return its LOADED address rather than its vma address!!
3262 */
3263 return overlay_unmapped_address (address, section);
3264 }
3265 return address;
3266 }
3267
3268 /* Function: find_pc_overlay (PC)
3269 Return the best-match overlay section for PC:
3270 If PC matches a mapped overlay section's VMA, return that section.
3271 Else if PC matches an unmapped section's VMA, return that section.
3272 Else if PC matches an unmapped section's LMA, return that section. */
3273
3274 struct obj_section *
3275 find_pc_overlay (CORE_ADDR pc)
3276 {
3277 struct objfile *objfile;
3278 struct obj_section *osect, *best_match = NULL;
3279
3280 if (overlay_debugging)
3281 ALL_OBJSECTIONS (objfile, osect)
3282 if (section_is_overlay (osect))
3283 {
3284 if (pc_in_mapped_range (pc, osect))
3285 {
3286 if (section_is_mapped (osect))
3287 return osect;
3288 else
3289 best_match = osect;
3290 }
3291 else if (pc_in_unmapped_range (pc, osect))
3292 best_match = osect;
3293 }
3294 return best_match;
3295 }
3296
3297 /* Function: find_pc_mapped_section (PC)
3298 If PC falls into the VMA address range of an overlay section that is
3299 currently marked as MAPPED, return that section. Else return NULL. */
3300
3301 struct obj_section *
3302 find_pc_mapped_section (CORE_ADDR pc)
3303 {
3304 struct objfile *objfile;
3305 struct obj_section *osect;
3306
3307 if (overlay_debugging)
3308 ALL_OBJSECTIONS (objfile, osect)
3309 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3310 return osect;
3311
3312 return NULL;
3313 }
3314
3315 /* Function: list_overlays_command
3316 Print a list of mapped sections and their PC ranges. */
3317
3318 static void
3319 list_overlays_command (char *args, int from_tty)
3320 {
3321 int nmapped = 0;
3322 struct objfile *objfile;
3323 struct obj_section *osect;
3324
3325 if (overlay_debugging)
3326 ALL_OBJSECTIONS (objfile, osect)
3327 if (section_is_mapped (osect))
3328 {
3329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3330 const char *name;
3331 bfd_vma lma, vma;
3332 int size;
3333
3334 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3335 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3336 size = bfd_get_section_size (osect->the_bfd_section);
3337 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3338
3339 printf_filtered ("Section %s, loaded at ", name);
3340 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3341 puts_filtered (" - ");
3342 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3343 printf_filtered (", mapped at ");
3344 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3345 puts_filtered (" - ");
3346 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3347 puts_filtered ("\n");
3348
3349 nmapped++;
3350 }
3351 if (nmapped == 0)
3352 printf_filtered (_("No sections are mapped.\n"));
3353 }
3354
3355 /* Function: map_overlay_command
3356 Mark the named section as mapped (ie. residing at its VMA address). */
3357
3358 static void
3359 map_overlay_command (char *args, int from_tty)
3360 {
3361 struct objfile *objfile, *objfile2;
3362 struct obj_section *sec, *sec2;
3363
3364 if (!overlay_debugging)
3365 error (_("Overlay debugging not enabled. Use "
3366 "either the 'overlay auto' or\n"
3367 "the 'overlay manual' command."));
3368
3369 if (args == 0 || *args == 0)
3370 error (_("Argument required: name of an overlay section"));
3371
3372 /* First, find a section matching the user supplied argument. */
3373 ALL_OBJSECTIONS (objfile, sec)
3374 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3375 {
3376 /* Now, check to see if the section is an overlay. */
3377 if (!section_is_overlay (sec))
3378 continue; /* not an overlay section */
3379
3380 /* Mark the overlay as "mapped". */
3381 sec->ovly_mapped = 1;
3382
3383 /* Next, make a pass and unmap any sections that are
3384 overlapped by this new section: */
3385 ALL_OBJSECTIONS (objfile2, sec2)
3386 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3387 {
3388 if (info_verbose)
3389 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3390 bfd_section_name (objfile->obfd,
3391 sec2->the_bfd_section));
3392 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3393 }
3394 return;
3395 }
3396 error (_("No overlay section called %s"), args);
3397 }
3398
3399 /* Function: unmap_overlay_command
3400 Mark the overlay section as unmapped
3401 (ie. resident in its LMA address range, rather than the VMA range). */
3402
3403 static void
3404 unmap_overlay_command (char *args, int from_tty)
3405 {
3406 struct objfile *objfile;
3407 struct obj_section *sec;
3408
3409 if (!overlay_debugging)
3410 error (_("Overlay debugging not enabled. "
3411 "Use either the 'overlay auto' or\n"
3412 "the 'overlay manual' command."));
3413
3414 if (args == 0 || *args == 0)
3415 error (_("Argument required: name of an overlay section"));
3416
3417 /* First, find a section matching the user supplied argument. */
3418 ALL_OBJSECTIONS (objfile, sec)
3419 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3420 {
3421 if (!sec->ovly_mapped)
3422 error (_("Section %s is not mapped"), args);
3423 sec->ovly_mapped = 0;
3424 return;
3425 }
3426 error (_("No overlay section called %s"), args);
3427 }
3428
3429 /* Function: overlay_auto_command
3430 A utility command to turn on overlay debugging.
3431 Possibly this should be done via a set/show command. */
3432
3433 static void
3434 overlay_auto_command (char *args, int from_tty)
3435 {
3436 overlay_debugging = ovly_auto;
3437 enable_overlay_breakpoints ();
3438 if (info_verbose)
3439 printf_unfiltered (_("Automatic overlay debugging enabled."));
3440 }
3441
3442 /* Function: overlay_manual_command
3443 A utility command to turn on overlay debugging.
3444 Possibly this should be done via a set/show command. */
3445
3446 static void
3447 overlay_manual_command (char *args, int from_tty)
3448 {
3449 overlay_debugging = ovly_on;
3450 disable_overlay_breakpoints ();
3451 if (info_verbose)
3452 printf_unfiltered (_("Overlay debugging enabled."));
3453 }
3454
3455 /* Function: overlay_off_command
3456 A utility command to turn on overlay debugging.
3457 Possibly this should be done via a set/show command. */
3458
3459 static void
3460 overlay_off_command (char *args, int from_tty)
3461 {
3462 overlay_debugging = ovly_off;
3463 disable_overlay_breakpoints ();
3464 if (info_verbose)
3465 printf_unfiltered (_("Overlay debugging disabled."));
3466 }
3467
3468 static void
3469 overlay_load_command (char *args, int from_tty)
3470 {
3471 struct gdbarch *gdbarch = get_current_arch ();
3472
3473 if (gdbarch_overlay_update_p (gdbarch))
3474 gdbarch_overlay_update (gdbarch, NULL);
3475 else
3476 error (_("This target does not know how to read its overlay state."));
3477 }
3478
3479 /* Function: overlay_command
3480 A place-holder for a mis-typed command. */
3481
3482 /* Command list chain containing all defined "overlay" subcommands. */
3483 static struct cmd_list_element *overlaylist;
3484
3485 static void
3486 overlay_command (char *args, int from_tty)
3487 {
3488 printf_unfiltered
3489 ("\"overlay\" must be followed by the name of an overlay command.\n");
3490 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3491 }
3492
3493 /* Target Overlays for the "Simplest" overlay manager:
3494
3495 This is GDB's default target overlay layer. It works with the
3496 minimal overlay manager supplied as an example by Cygnus. The
3497 entry point is via a function pointer "gdbarch_overlay_update",
3498 so targets that use a different runtime overlay manager can
3499 substitute their own overlay_update function and take over the
3500 function pointer.
3501
3502 The overlay_update function pokes around in the target's data structures
3503 to see what overlays are mapped, and updates GDB's overlay mapping with
3504 this information.
3505
3506 In this simple implementation, the target data structures are as follows:
3507 unsigned _novlys; /# number of overlay sections #/
3508 unsigned _ovly_table[_novlys][4] = {
3509 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3510 {..., ..., ..., ...},
3511 }
3512 unsigned _novly_regions; /# number of overlay regions #/
3513 unsigned _ovly_region_table[_novly_regions][3] = {
3514 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3515 {..., ..., ...},
3516 }
3517 These functions will attempt to update GDB's mappedness state in the
3518 symbol section table, based on the target's mappedness state.
3519
3520 To do this, we keep a cached copy of the target's _ovly_table, and
3521 attempt to detect when the cached copy is invalidated. The main
3522 entry point is "simple_overlay_update(SECT), which looks up SECT in
3523 the cached table and re-reads only the entry for that section from
3524 the target (whenever possible). */
3525
3526 /* Cached, dynamically allocated copies of the target data structures: */
3527 static unsigned (*cache_ovly_table)[4] = 0;
3528 static unsigned cache_novlys = 0;
3529 static CORE_ADDR cache_ovly_table_base = 0;
3530 enum ovly_index
3531 {
3532 VMA, SIZE, LMA, MAPPED
3533 };
3534
3535 /* Throw away the cached copy of _ovly_table. */
3536
3537 static void
3538 simple_free_overlay_table (void)
3539 {
3540 if (cache_ovly_table)
3541 xfree (cache_ovly_table);
3542 cache_novlys = 0;
3543 cache_ovly_table = NULL;
3544 cache_ovly_table_base = 0;
3545 }
3546
3547 /* Read an array of ints of size SIZE from the target into a local buffer.
3548 Convert to host order. int LEN is number of ints. */
3549
3550 static void
3551 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3552 int len, int size, enum bfd_endian byte_order)
3553 {
3554 /* FIXME (alloca): Not safe if array is very large. */
3555 gdb_byte *buf = alloca (len * size);
3556 int i;
3557
3558 read_memory (memaddr, buf, len * size);
3559 for (i = 0; i < len; i++)
3560 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3561 }
3562
3563 /* Find and grab a copy of the target _ovly_table
3564 (and _novlys, which is needed for the table's size). */
3565
3566 static int
3567 simple_read_overlay_table (void)
3568 {
3569 struct bound_minimal_symbol novlys_msym;
3570 struct bound_minimal_symbol ovly_table_msym;
3571 struct gdbarch *gdbarch;
3572 int word_size;
3573 enum bfd_endian byte_order;
3574
3575 simple_free_overlay_table ();
3576 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3577 if (! novlys_msym.minsym)
3578 {
3579 error (_("Error reading inferior's overlay table: "
3580 "couldn't find `_novlys' variable\n"
3581 "in inferior. Use `overlay manual' mode."));
3582 return 0;
3583 }
3584
3585 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3586 if (! ovly_table_msym.minsym)
3587 {
3588 error (_("Error reading inferior's overlay table: couldn't find "
3589 "`_ovly_table' array\n"
3590 "in inferior. Use `overlay manual' mode."));
3591 return 0;
3592 }
3593
3594 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3595 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3596 byte_order = gdbarch_byte_order (gdbarch);
3597
3598 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3599 4, byte_order);
3600 cache_ovly_table
3601 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3602 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3603 read_target_long_array (cache_ovly_table_base,
3604 (unsigned int *) cache_ovly_table,
3605 cache_novlys * 4, word_size, byte_order);
3606
3607 return 1; /* SUCCESS */
3608 }
3609
3610 /* Function: simple_overlay_update_1
3611 A helper function for simple_overlay_update. Assuming a cached copy
3612 of _ovly_table exists, look through it to find an entry whose vma,
3613 lma and size match those of OSECT. Re-read the entry and make sure
3614 it still matches OSECT (else the table may no longer be valid).
3615 Set OSECT's mapped state to match the entry. Return: 1 for
3616 success, 0 for failure. */
3617
3618 static int
3619 simple_overlay_update_1 (struct obj_section *osect)
3620 {
3621 int i, size;
3622 bfd *obfd = osect->objfile->obfd;
3623 asection *bsect = osect->the_bfd_section;
3624 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3625 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3627
3628 size = bfd_get_section_size (osect->the_bfd_section);
3629 for (i = 0; i < cache_novlys; i++)
3630 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3631 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3632 /* && cache_ovly_table[i][SIZE] == size */ )
3633 {
3634 read_target_long_array (cache_ovly_table_base + i * word_size,
3635 (unsigned int *) cache_ovly_table[i],
3636 4, word_size, byte_order);
3637 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3638 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3639 /* && cache_ovly_table[i][SIZE] == size */ )
3640 {
3641 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3642 return 1;
3643 }
3644 else /* Warning! Warning! Target's ovly table has changed! */
3645 return 0;
3646 }
3647 return 0;
3648 }
3649
3650 /* Function: simple_overlay_update
3651 If OSECT is NULL, then update all sections' mapped state
3652 (after re-reading the entire target _ovly_table).
3653 If OSECT is non-NULL, then try to find a matching entry in the
3654 cached ovly_table and update only OSECT's mapped state.
3655 If a cached entry can't be found or the cache isn't valid, then
3656 re-read the entire cache, and go ahead and update all sections. */
3657
3658 void
3659 simple_overlay_update (struct obj_section *osect)
3660 {
3661 struct objfile *objfile;
3662
3663 /* Were we given an osect to look up? NULL means do all of them. */
3664 if (osect)
3665 /* Have we got a cached copy of the target's overlay table? */
3666 if (cache_ovly_table != NULL)
3667 {
3668 /* Does its cached location match what's currently in the
3669 symtab? */
3670 struct bound_minimal_symbol minsym
3671 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3672
3673 if (minsym.minsym == NULL)
3674 error (_("Error reading inferior's overlay table: couldn't "
3675 "find `_ovly_table' array\n"
3676 "in inferior. Use `overlay manual' mode."));
3677
3678 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3679 /* Then go ahead and try to look up this single section in
3680 the cache. */
3681 if (simple_overlay_update_1 (osect))
3682 /* Found it! We're done. */
3683 return;
3684 }
3685
3686 /* Cached table no good: need to read the entire table anew.
3687 Or else we want all the sections, in which case it's actually
3688 more efficient to read the whole table in one block anyway. */
3689
3690 if (! simple_read_overlay_table ())
3691 return;
3692
3693 /* Now may as well update all sections, even if only one was requested. */
3694 ALL_OBJSECTIONS (objfile, osect)
3695 if (section_is_overlay (osect))
3696 {
3697 int i, size;
3698 bfd *obfd = osect->objfile->obfd;
3699 asection *bsect = osect->the_bfd_section;
3700
3701 size = bfd_get_section_size (bsect);
3702 for (i = 0; i < cache_novlys; i++)
3703 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3704 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3705 /* && cache_ovly_table[i][SIZE] == size */ )
3706 { /* obj_section matches i'th entry in ovly_table. */
3707 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3708 break; /* finished with inner for loop: break out. */
3709 }
3710 }
3711 }
3712
3713 /* Set the output sections and output offsets for section SECTP in
3714 ABFD. The relocation code in BFD will read these offsets, so we
3715 need to be sure they're initialized. We map each section to itself,
3716 with no offset; this means that SECTP->vma will be honored. */
3717
3718 static void
3719 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3720 {
3721 sectp->output_section = sectp;
3722 sectp->output_offset = 0;
3723 }
3724
3725 /* Default implementation for sym_relocate. */
3726
3727 bfd_byte *
3728 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3729 bfd_byte *buf)
3730 {
3731 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3732 DWO file. */
3733 bfd *abfd = sectp->owner;
3734
3735 /* We're only interested in sections with relocation
3736 information. */
3737 if ((sectp->flags & SEC_RELOC) == 0)
3738 return NULL;
3739
3740 /* We will handle section offsets properly elsewhere, so relocate as if
3741 all sections begin at 0. */
3742 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3743
3744 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3745 }
3746
3747 /* Relocate the contents of a debug section SECTP in ABFD. The
3748 contents are stored in BUF if it is non-NULL, or returned in a
3749 malloc'd buffer otherwise.
3750
3751 For some platforms and debug info formats, shared libraries contain
3752 relocations against the debug sections (particularly for DWARF-2;
3753 one affected platform is PowerPC GNU/Linux, although it depends on
3754 the version of the linker in use). Also, ELF object files naturally
3755 have unresolved relocations for their debug sections. We need to apply
3756 the relocations in order to get the locations of symbols correct.
3757 Another example that may require relocation processing, is the
3758 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3759 debug section. */
3760
3761 bfd_byte *
3762 symfile_relocate_debug_section (struct objfile *objfile,
3763 asection *sectp, bfd_byte *buf)
3764 {
3765 gdb_assert (objfile->sf->sym_relocate);
3766
3767 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3768 }
3769
3770 struct symfile_segment_data *
3771 get_symfile_segment_data (bfd *abfd)
3772 {
3773 const struct sym_fns *sf = find_sym_fns (abfd);
3774
3775 if (sf == NULL)
3776 return NULL;
3777
3778 return sf->sym_segments (abfd);
3779 }
3780
3781 void
3782 free_symfile_segment_data (struct symfile_segment_data *data)
3783 {
3784 xfree (data->segment_bases);
3785 xfree (data->segment_sizes);
3786 xfree (data->segment_info);
3787 xfree (data);
3788 }
3789
3790 /* Given:
3791 - DATA, containing segment addresses from the object file ABFD, and
3792 the mapping from ABFD's sections onto the segments that own them,
3793 and
3794 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3795 segment addresses reported by the target,
3796 store the appropriate offsets for each section in OFFSETS.
3797
3798 If there are fewer entries in SEGMENT_BASES than there are segments
3799 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3800
3801 If there are more entries, then ignore the extra. The target may
3802 not be able to distinguish between an empty data segment and a
3803 missing data segment; a missing text segment is less plausible. */
3804
3805 int
3806 symfile_map_offsets_to_segments (bfd *abfd,
3807 const struct symfile_segment_data *data,
3808 struct section_offsets *offsets,
3809 int num_segment_bases,
3810 const CORE_ADDR *segment_bases)
3811 {
3812 int i;
3813 asection *sect;
3814
3815 /* It doesn't make sense to call this function unless you have some
3816 segment base addresses. */
3817 gdb_assert (num_segment_bases > 0);
3818
3819 /* If we do not have segment mappings for the object file, we
3820 can not relocate it by segments. */
3821 gdb_assert (data != NULL);
3822 gdb_assert (data->num_segments > 0);
3823
3824 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3825 {
3826 int which = data->segment_info[i];
3827
3828 gdb_assert (0 <= which && which <= data->num_segments);
3829
3830 /* Don't bother computing offsets for sections that aren't
3831 loaded as part of any segment. */
3832 if (! which)
3833 continue;
3834
3835 /* Use the last SEGMENT_BASES entry as the address of any extra
3836 segments mentioned in DATA->segment_info. */
3837 if (which > num_segment_bases)
3838 which = num_segment_bases;
3839
3840 offsets->offsets[i] = (segment_bases[which - 1]
3841 - data->segment_bases[which - 1]);
3842 }
3843
3844 return 1;
3845 }
3846
3847 static void
3848 symfile_find_segment_sections (struct objfile *objfile)
3849 {
3850 bfd *abfd = objfile->obfd;
3851 int i;
3852 asection *sect;
3853 struct symfile_segment_data *data;
3854
3855 data = get_symfile_segment_data (objfile->obfd);
3856 if (data == NULL)
3857 return;
3858
3859 if (data->num_segments != 1 && data->num_segments != 2)
3860 {
3861 free_symfile_segment_data (data);
3862 return;
3863 }
3864
3865 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3866 {
3867 int which = data->segment_info[i];
3868
3869 if (which == 1)
3870 {
3871 if (objfile->sect_index_text == -1)
3872 objfile->sect_index_text = sect->index;
3873
3874 if (objfile->sect_index_rodata == -1)
3875 objfile->sect_index_rodata = sect->index;
3876 }
3877 else if (which == 2)
3878 {
3879 if (objfile->sect_index_data == -1)
3880 objfile->sect_index_data = sect->index;
3881
3882 if (objfile->sect_index_bss == -1)
3883 objfile->sect_index_bss = sect->index;
3884 }
3885 }
3886
3887 free_symfile_segment_data (data);
3888 }
3889
3890 /* Listen for free_objfile events. */
3891
3892 static void
3893 symfile_free_objfile (struct objfile *objfile)
3894 {
3895 /* Remove the target sections of user-added objfiles. */
3896 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3897 remove_target_sections ((void *) objfile);
3898 }
3899
3900 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3901 Expand all symtabs that match the specified criteria.
3902 See quick_symbol_functions.expand_symtabs_matching for details. */
3903
3904 void
3905 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3906 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3907 enum search_domain kind,
3908 void *data)
3909 {
3910 struct objfile *objfile;
3911
3912 ALL_OBJFILES (objfile)
3913 {
3914 if (objfile->sf)
3915 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3916 symbol_matcher, kind,
3917 data);
3918 }
3919 }
3920
3921 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3922 Map function FUN over every file.
3923 See quick_symbol_functions.map_symbol_filenames for details. */
3924
3925 void
3926 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3927 int need_fullname)
3928 {
3929 struct objfile *objfile;
3930
3931 ALL_OBJFILES (objfile)
3932 {
3933 if (objfile->sf)
3934 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3935 need_fullname);
3936 }
3937 }
3938
3939 void
3940 _initialize_symfile (void)
3941 {
3942 struct cmd_list_element *c;
3943
3944 observer_attach_free_objfile (symfile_free_objfile);
3945
3946 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3947 Load symbol table from executable file FILE.\n\
3948 The `file' command can also load symbol tables, as well as setting the file\n\
3949 to execute."), &cmdlist);
3950 set_cmd_completer (c, filename_completer);
3951
3952 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3953 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3954 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3955 ...]\nADDR is the starting address of the file's text.\n\
3956 The optional arguments are section-name section-address pairs and\n\
3957 should be specified if the data and bss segments are not contiguous\n\
3958 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3959 &cmdlist);
3960 set_cmd_completer (c, filename_completer);
3961
3962 c = add_cmd ("remove-symbol-file", class_files,
3963 remove_symbol_file_command, _("\
3964 Remove a symbol file added via the add-symbol-file command.\n\
3965 Usage: remove-symbol-file FILENAME\n\
3966 remove-symbol-file -a ADDRESS\n\
3967 The file to remove can be identified by its filename or by an address\n\
3968 that lies within the boundaries of this symbol file in memory."),
3969 &cmdlist);
3970
3971 c = add_cmd ("load", class_files, load_command, _("\
3972 Dynamically load FILE into the running program, and record its symbols\n\
3973 for access from GDB.\n\
3974 A load OFFSET may also be given."), &cmdlist);
3975 set_cmd_completer (c, filename_completer);
3976
3977 add_prefix_cmd ("overlay", class_support, overlay_command,
3978 _("Commands for debugging overlays."), &overlaylist,
3979 "overlay ", 0, &cmdlist);
3980
3981 add_com_alias ("ovly", "overlay", class_alias, 1);
3982 add_com_alias ("ov", "overlay", class_alias, 1);
3983
3984 add_cmd ("map-overlay", class_support, map_overlay_command,
3985 _("Assert that an overlay section is mapped."), &overlaylist);
3986
3987 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3988 _("Assert that an overlay section is unmapped."), &overlaylist);
3989
3990 add_cmd ("list-overlays", class_support, list_overlays_command,
3991 _("List mappings of overlay sections."), &overlaylist);
3992
3993 add_cmd ("manual", class_support, overlay_manual_command,
3994 _("Enable overlay debugging."), &overlaylist);
3995 add_cmd ("off", class_support, overlay_off_command,
3996 _("Disable overlay debugging."), &overlaylist);
3997 add_cmd ("auto", class_support, overlay_auto_command,
3998 _("Enable automatic overlay debugging."), &overlaylist);
3999 add_cmd ("load-target", class_support, overlay_load_command,
4000 _("Read the overlay mapping state from the target."), &overlaylist);
4001
4002 /* Filename extension to source language lookup table: */
4003 init_filename_language_table ();
4004 add_setshow_string_noescape_cmd ("extension-language", class_files,
4005 &ext_args, _("\
4006 Set mapping between filename extension and source language."), _("\
4007 Show mapping between filename extension and source language."), _("\
4008 Usage: set extension-language .foo bar"),
4009 set_ext_lang_command,
4010 show_ext_args,
4011 &setlist, &showlist);
4012
4013 add_info ("extensions", info_ext_lang_command,
4014 _("All filename extensions associated with a source language."));
4015
4016 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4017 &debug_file_directory, _("\
4018 Set the directories where separate debug symbols are searched for."), _("\
4019 Show the directories where separate debug symbols are searched for."), _("\
4020 Separate debug symbols are first searched for in the same\n\
4021 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4022 and lastly at the path of the directory of the binary with\n\
4023 each global debug-file-directory component prepended."),
4024 NULL,
4025 show_debug_file_directory,
4026 &setlist, &showlist);
4027
4028 add_setshow_enum_cmd ("symbol-loading", no_class,
4029 print_symbol_loading_enums, &print_symbol_loading,
4030 _("\
4031 Set printing of symbol loading messages."), _("\
4032 Show printing of symbol loading messages."), _("\
4033 off == turn all messages off\n\
4034 brief == print messages for the executable,\n\
4035 and brief messages for shared libraries\n\
4036 full == print messages for the executable,\n\
4037 and messages for each shared library."),
4038 NULL,
4039 NULL,
4040 &setprintlist, &showprintlist);
4041 }
This page took 0.184576 seconds and 4 git commands to generate.