2005-02-24 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
64 void (*deprecated_show_load_progress) (const char *section,
65 unsigned long section_sent,
66 unsigned long section_size,
67 unsigned long total_sent,
68 unsigned long total_size);
69 void (*deprecated_pre_add_symbol_hook) (const char *);
70 void (*deprecated_post_add_symbol_hook) (void);
71 void (*deprecated_target_new_objfile_hook) (struct objfile *);
72
73 static void clear_symtab_users_cleanup (void *ignore);
74
75 /* Global variables owned by this file */
76 int readnow_symbol_files; /* Read full symbols immediately */
77
78 /* External variables and functions referenced. */
79
80 extern void report_transfer_performance (unsigned long, time_t, time_t);
81
82 /* Functions this file defines */
83
84 #if 0
85 static int simple_read_overlay_region_table (void);
86 static void simple_free_overlay_region_table (void);
87 #endif
88
89 static void set_initial_language (void);
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static void find_sym_fns (struct objfile *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 void _initialize_symfile (void);
148
149 /* List of all available sym_fns. On gdb startup, each object file reader
150 calls add_symtab_fns() to register information on each format it is
151 prepared to read. */
152
153 static struct sym_fns *symtab_fns = NULL;
154
155 /* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158 #ifdef SYMBOL_RELOADING_DEFAULT
159 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160 #else
161 int symbol_reloading = 0;
162 #endif
163 static void
164 show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170 }
171
172
173 /* If non-zero, shared library symbols will be added automatically
174 when the inferior is created, new libraries are loaded, or when
175 attaching to the inferior. This is almost always what users will
176 want to have happen; but for very large programs, the startup time
177 will be excessive, and so if this is a problem, the user can clear
178 this flag and then add the shared library symbols as needed. Note
179 that there is a potential for confusion, since if the shared
180 library symbols are not loaded, commands like "info fun" will *not*
181 report all the functions that are actually present. */
182
183 int auto_solib_add = 1;
184
185 /* For systems that support it, a threshold size in megabytes. If
186 automatically adding a new library's symbol table to those already
187 known to the debugger would cause the total shared library symbol
188 size to exceed this threshhold, then the shlib's symbols are not
189 added. The threshold is ignored if the user explicitly asks for a
190 shlib to be added, such as when using the "sharedlibrary"
191 command. */
192
193 int auto_solib_limit;
194 \f
195
196 /* This compares two partial symbols by names, using strcmp_iw_ordered
197 for the comparison. */
198
199 static int
200 compare_psymbols (const void *s1p, const void *s2p)
201 {
202 struct partial_symbol *const *s1 = s1p;
203 struct partial_symbol *const *s2 = s2p;
204
205 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
206 SYMBOL_SEARCH_NAME (*s2));
207 }
208
209 void
210 sort_pst_symbols (struct partial_symtab *pst)
211 {
212 /* Sort the global list; don't sort the static list */
213
214 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
215 pst->n_global_syms, sizeof (struct partial_symbol *),
216 compare_psymbols);
217 }
218
219 /* Make a null terminated copy of the string at PTR with SIZE characters in
220 the obstack pointed to by OBSTACKP . Returns the address of the copy.
221 Note that the string at PTR does not have to be null terminated, I.E. it
222 may be part of a larger string and we are only saving a substring. */
223
224 char *
225 obsavestring (const char *ptr, int size, struct obstack *obstackp)
226 {
227 char *p = (char *) obstack_alloc (obstackp, size + 1);
228 /* Open-coded memcpy--saves function call time. These strings are usually
229 short. FIXME: Is this really still true with a compiler that can
230 inline memcpy? */
231 {
232 const char *p1 = ptr;
233 char *p2 = p;
234 const char *end = ptr + size;
235 while (p1 != end)
236 *p2++ = *p1++;
237 }
238 p[size] = 0;
239 return p;
240 }
241
242 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
243 in the obstack pointed to by OBSTACKP. */
244
245 char *
246 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
247 const char *s3)
248 {
249 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
250 char *val = (char *) obstack_alloc (obstackp, len);
251 strcpy (val, s1);
252 strcat (val, s2);
253 strcat (val, s3);
254 return val;
255 }
256
257 /* True if we are nested inside psymtab_to_symtab. */
258
259 int currently_reading_symtab = 0;
260
261 static void
262 decrement_reading_symtab (void *dummy)
263 {
264 currently_reading_symtab--;
265 }
266
267 /* Get the symbol table that corresponds to a partial_symtab.
268 This is fast after the first time you do it. In fact, there
269 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
270 case inline. */
271
272 struct symtab *
273 psymtab_to_symtab (struct partial_symtab *pst)
274 {
275 /* If it's been looked up before, return it. */
276 if (pst->symtab)
277 return pst->symtab;
278
279 /* If it has not yet been read in, read it. */
280 if (!pst->readin)
281 {
282 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
283 currently_reading_symtab++;
284 (*pst->read_symtab) (pst);
285 do_cleanups (back_to);
286 }
287
288 return pst->symtab;
289 }
290
291 /* Remember the lowest-addressed loadable section we've seen.
292 This function is called via bfd_map_over_sections.
293
294 In case of equal vmas, the section with the largest size becomes the
295 lowest-addressed loadable section.
296
297 If the vmas and sizes are equal, the last section is considered the
298 lowest-addressed loadable section. */
299
300 void
301 find_lowest_section (bfd *abfd, asection *sect, void *obj)
302 {
303 asection **lowest = (asection **) obj;
304
305 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
306 return;
307 if (!*lowest)
308 *lowest = sect; /* First loadable section */
309 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
310 *lowest = sect; /* A lower loadable section */
311 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
312 && (bfd_section_size (abfd, (*lowest))
313 <= bfd_section_size (abfd, sect)))
314 *lowest = sect;
315 }
316
317 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
318
319 struct section_addr_info *
320 alloc_section_addr_info (size_t num_sections)
321 {
322 struct section_addr_info *sap;
323 size_t size;
324
325 size = (sizeof (struct section_addr_info)
326 + sizeof (struct other_sections) * (num_sections - 1));
327 sap = (struct section_addr_info *) xmalloc (size);
328 memset (sap, 0, size);
329 sap->num_sections = num_sections;
330
331 return sap;
332 }
333
334
335 /* Return a freshly allocated copy of ADDRS. The section names, if
336 any, are also freshly allocated copies of those in ADDRS. */
337 struct section_addr_info *
338 copy_section_addr_info (struct section_addr_info *addrs)
339 {
340 struct section_addr_info *copy
341 = alloc_section_addr_info (addrs->num_sections);
342 int i;
343
344 copy->num_sections = addrs->num_sections;
345 for (i = 0; i < addrs->num_sections; i++)
346 {
347 copy->other[i].addr = addrs->other[i].addr;
348 if (addrs->other[i].name)
349 copy->other[i].name = xstrdup (addrs->other[i].name);
350 else
351 copy->other[i].name = NULL;
352 copy->other[i].sectindex = addrs->other[i].sectindex;
353 }
354
355 return copy;
356 }
357
358
359
360 /* Build (allocate and populate) a section_addr_info struct from
361 an existing section table. */
362
363 extern struct section_addr_info *
364 build_section_addr_info_from_section_table (const struct section_table *start,
365 const struct section_table *end)
366 {
367 struct section_addr_info *sap;
368 const struct section_table *stp;
369 int oidx;
370
371 sap = alloc_section_addr_info (end - start);
372
373 for (stp = start, oidx = 0; stp != end; stp++)
374 {
375 if (bfd_get_section_flags (stp->bfd,
376 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
377 && oidx < end - start)
378 {
379 sap->other[oidx].addr = stp->addr;
380 sap->other[oidx].name
381 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
382 sap->other[oidx].sectindex = stp->the_bfd_section->index;
383 oidx++;
384 }
385 }
386
387 return sap;
388 }
389
390
391 /* Free all memory allocated by build_section_addr_info_from_section_table. */
392
393 extern void
394 free_section_addr_info (struct section_addr_info *sap)
395 {
396 int idx;
397
398 for (idx = 0; idx < sap->num_sections; idx++)
399 if (sap->other[idx].name)
400 xfree (sap->other[idx].name);
401 xfree (sap);
402 }
403
404
405 /* Initialize OBJFILE's sect_index_* members. */
406 static void
407 init_objfile_sect_indices (struct objfile *objfile)
408 {
409 asection *sect;
410 int i;
411
412 sect = bfd_get_section_by_name (objfile->obfd, ".text");
413 if (sect)
414 objfile->sect_index_text = sect->index;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".data");
417 if (sect)
418 objfile->sect_index_data = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
421 if (sect)
422 objfile->sect_index_bss = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
425 if (sect)
426 objfile->sect_index_rodata = sect->index;
427
428 /* This is where things get really weird... We MUST have valid
429 indices for the various sect_index_* members or gdb will abort.
430 So if for example, there is no ".text" section, we have to
431 accomodate that. Except when explicitly adding symbol files at
432 some address, section_offsets contains nothing but zeros, so it
433 doesn't matter which slot in section_offsets the individual
434 sect_index_* members index into. So if they are all zero, it is
435 safe to just point all the currently uninitialized indices to the
436 first slot. */
437
438 for (i = 0; i < objfile->num_sections; i++)
439 {
440 if (ANOFFSET (objfile->section_offsets, i) != 0)
441 {
442 break;
443 }
444 }
445 if (i == objfile->num_sections)
446 {
447 if (objfile->sect_index_text == -1)
448 objfile->sect_index_text = 0;
449 if (objfile->sect_index_data == -1)
450 objfile->sect_index_data = 0;
451 if (objfile->sect_index_bss == -1)
452 objfile->sect_index_bss = 0;
453 if (objfile->sect_index_rodata == -1)
454 objfile->sect_index_rodata = 0;
455 }
456 }
457
458
459 /* Parse the user's idea of an offset for dynamic linking, into our idea
460 of how to represent it for fast symbol reading. This is the default
461 version of the sym_fns.sym_offsets function for symbol readers that
462 don't need to do anything special. It allocates a section_offsets table
463 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
464
465 void
466 default_symfile_offsets (struct objfile *objfile,
467 struct section_addr_info *addrs)
468 {
469 int i;
470
471 objfile->num_sections = bfd_count_sections (objfile->obfd);
472 objfile->section_offsets = (struct section_offsets *)
473 obstack_alloc (&objfile->objfile_obstack,
474 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
475 memset (objfile->section_offsets, 0,
476 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
477
478 /* Now calculate offsets for section that were specified by the
479 caller. */
480 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
481 {
482 struct other_sections *osp ;
483
484 osp = &addrs->other[i] ;
485 if (osp->addr == 0)
486 continue;
487
488 /* Record all sections in offsets */
489 /* The section_offsets in the objfile are here filled in using
490 the BFD index. */
491 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
492 }
493
494 /* Remember the bfd indexes for the .text, .data, .bss and
495 .rodata sections. */
496 init_objfile_sect_indices (objfile);
497 }
498
499
500 /* Process a symbol file, as either the main file or as a dynamically
501 loaded file.
502
503 OBJFILE is where the symbols are to be read from.
504
505 ADDRS is the list of section load addresses. If the user has given
506 an 'add-symbol-file' command, then this is the list of offsets and
507 addresses he or she provided as arguments to the command; or, if
508 we're handling a shared library, these are the actual addresses the
509 sections are loaded at, according to the inferior's dynamic linker
510 (as gleaned by GDB's shared library code). We convert each address
511 into an offset from the section VMA's as it appears in the object
512 file, and then call the file's sym_offsets function to convert this
513 into a format-specific offset table --- a `struct section_offsets'.
514 If ADDRS is non-zero, OFFSETS must be zero.
515
516 OFFSETS is a table of section offsets already in the right
517 format-specific representation. NUM_OFFSETS is the number of
518 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
519 assume this is the proper table the call to sym_offsets described
520 above would produce. Instead of calling sym_offsets, we just dump
521 it right into objfile->section_offsets. (When we're re-reading
522 symbols from an objfile, we don't have the original load address
523 list any more; all we have is the section offset table.) If
524 OFFSETS is non-zero, ADDRS must be zero.
525
526 MAINLINE is nonzero if this is the main symbol file, or zero if
527 it's an extra symbol file such as dynamically loaded code.
528
529 VERBO is nonzero if the caller has printed a verbose message about
530 the symbol reading (and complaints can be more terse about it). */
531
532 void
533 syms_from_objfile (struct objfile *objfile,
534 struct section_addr_info *addrs,
535 struct section_offsets *offsets,
536 int num_offsets,
537 int mainline,
538 int verbo)
539 {
540 struct section_addr_info *local_addr = NULL;
541 struct cleanup *old_chain;
542
543 gdb_assert (! (addrs && offsets));
544
545 init_entry_point_info (objfile);
546 find_sym_fns (objfile);
547
548 if (objfile->sf == NULL)
549 return; /* No symbols. */
550
551 /* Make sure that partially constructed symbol tables will be cleaned up
552 if an error occurs during symbol reading. */
553 old_chain = make_cleanup_free_objfile (objfile);
554
555 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
556 list. We now establish the convention that an addr of zero means
557 no load address was specified. */
558 if (! addrs && ! offsets)
559 {
560 local_addr
561 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
562 make_cleanup (xfree, local_addr);
563 addrs = local_addr;
564 }
565
566 /* Now either addrs or offsets is non-zero. */
567
568 if (mainline)
569 {
570 /* We will modify the main symbol table, make sure that all its users
571 will be cleaned up if an error occurs during symbol reading. */
572 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
573
574 /* Since no error yet, throw away the old symbol table. */
575
576 if (symfile_objfile != NULL)
577 {
578 free_objfile (symfile_objfile);
579 symfile_objfile = NULL;
580 }
581
582 /* Currently we keep symbols from the add-symbol-file command.
583 If the user wants to get rid of them, they should do "symbol-file"
584 without arguments first. Not sure this is the best behavior
585 (PR 2207). */
586
587 (*objfile->sf->sym_new_init) (objfile);
588 }
589
590 /* Convert addr into an offset rather than an absolute address.
591 We find the lowest address of a loaded segment in the objfile,
592 and assume that <addr> is where that got loaded.
593
594 We no longer warn if the lowest section is not a text segment (as
595 happens for the PA64 port. */
596 if (!mainline && addrs && addrs->other[0].name)
597 {
598 asection *lower_sect;
599 asection *sect;
600 CORE_ADDR lower_offset;
601 int i;
602
603 /* Find lowest loadable section to be used as starting point for
604 continguous sections. FIXME!! won't work without call to find
605 .text first, but this assumes text is lowest section. */
606 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
607 if (lower_sect == NULL)
608 bfd_map_over_sections (objfile->obfd, find_lowest_section,
609 &lower_sect);
610 if (lower_sect == NULL)
611 warning (_("no loadable sections found in added symbol-file %s"),
612 objfile->name);
613 else
614 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
615 warning (_("Lowest section in %s is %s at %s"),
616 objfile->name,
617 bfd_section_name (objfile->obfd, lower_sect),
618 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
619 if (lower_sect != NULL)
620 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
621 else
622 lower_offset = 0;
623
624 /* Calculate offsets for the loadable sections.
625 FIXME! Sections must be in order of increasing loadable section
626 so that contiguous sections can use the lower-offset!!!
627
628 Adjust offsets if the segments are not contiguous.
629 If the section is contiguous, its offset should be set to
630 the offset of the highest loadable section lower than it
631 (the loadable section directly below it in memory).
632 this_offset = lower_offset = lower_addr - lower_orig_addr */
633
634 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
635 {
636 if (addrs->other[i].addr != 0)
637 {
638 sect = bfd_get_section_by_name (objfile->obfd,
639 addrs->other[i].name);
640 if (sect)
641 {
642 addrs->other[i].addr
643 -= bfd_section_vma (objfile->obfd, sect);
644 lower_offset = addrs->other[i].addr;
645 /* This is the index used by BFD. */
646 addrs->other[i].sectindex = sect->index ;
647 }
648 else
649 {
650 warning (_("section %s not found in %s"),
651 addrs->other[i].name,
652 objfile->name);
653 addrs->other[i].addr = 0;
654 }
655 }
656 else
657 addrs->other[i].addr = lower_offset;
658 }
659 }
660
661 /* Initialize symbol reading routines for this objfile, allow complaints to
662 appear for this new file, and record how verbose to be, then do the
663 initial symbol reading for this file. */
664
665 (*objfile->sf->sym_init) (objfile);
666 clear_complaints (&symfile_complaints, 1, verbo);
667
668 if (addrs)
669 (*objfile->sf->sym_offsets) (objfile, addrs);
670 else
671 {
672 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
673
674 /* Just copy in the offset table directly as given to us. */
675 objfile->num_sections = num_offsets;
676 objfile->section_offsets
677 = ((struct section_offsets *)
678 obstack_alloc (&objfile->objfile_obstack, size));
679 memcpy (objfile->section_offsets, offsets, size);
680
681 init_objfile_sect_indices (objfile);
682 }
683
684 #ifndef DEPRECATED_IBM6000_TARGET
685 /* This is a SVR4/SunOS specific hack, I think. In any event, it
686 screws RS/6000. sym_offsets should be doing this sort of thing,
687 because it knows the mapping between bfd sections and
688 section_offsets. */
689 /* This is a hack. As far as I can tell, section offsets are not
690 target dependent. They are all set to addr with a couple of
691 exceptions. The exceptions are sysvr4 shared libraries, whose
692 offsets are kept in solib structures anyway and rs6000 xcoff
693 which handles shared libraries in a completely unique way.
694
695 Section offsets are built similarly, except that they are built
696 by adding addr in all cases because there is no clear mapping
697 from section_offsets into actual sections. Note that solib.c
698 has a different algorithm for finding section offsets.
699
700 These should probably all be collapsed into some target
701 independent form of shared library support. FIXME. */
702
703 if (addrs)
704 {
705 struct obj_section *s;
706
707 /* Map section offsets in "addr" back to the object's
708 sections by comparing the section names with bfd's
709 section names. Then adjust the section address by
710 the offset. */ /* for gdb/13815 */
711
712 ALL_OBJFILE_OSECTIONS (objfile, s)
713 {
714 CORE_ADDR s_addr = 0;
715 int i;
716
717 for (i = 0;
718 !s_addr && i < addrs->num_sections && addrs->other[i].name;
719 i++)
720 if (strcmp (bfd_section_name (s->objfile->obfd,
721 s->the_bfd_section),
722 addrs->other[i].name) == 0)
723 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
724
725 s->addr -= s->offset;
726 s->addr += s_addr;
727 s->endaddr -= s->offset;
728 s->endaddr += s_addr;
729 s->offset += s_addr;
730 }
731 }
732 #endif /* not DEPRECATED_IBM6000_TARGET */
733
734 (*objfile->sf->sym_read) (objfile, mainline);
735
736 /* Don't allow char * to have a typename (else would get caddr_t).
737 Ditto void *. FIXME: Check whether this is now done by all the
738 symbol readers themselves (many of them now do), and if so remove
739 it from here. */
740
741 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
742 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
743
744 /* Mark the objfile has having had initial symbol read attempted. Note
745 that this does not mean we found any symbols... */
746
747 objfile->flags |= OBJF_SYMS;
748
749 /* Discard cleanups as symbol reading was successful. */
750
751 discard_cleanups (old_chain);
752 }
753
754 /* Perform required actions after either reading in the initial
755 symbols for a new objfile, or mapping in the symbols from a reusable
756 objfile. */
757
758 void
759 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
760 {
761
762 /* If this is the main symbol file we have to clean up all users of the
763 old main symbol file. Otherwise it is sufficient to fixup all the
764 breakpoints that may have been redefined by this symbol file. */
765 if (mainline)
766 {
767 /* OK, make it the "real" symbol file. */
768 symfile_objfile = objfile;
769
770 clear_symtab_users ();
771 }
772 else
773 {
774 breakpoint_re_set ();
775 }
776
777 /* We're done reading the symbol file; finish off complaints. */
778 clear_complaints (&symfile_complaints, 0, verbo);
779 }
780
781 /* Process a symbol file, as either the main file or as a dynamically
782 loaded file.
783
784 ABFD is a BFD already open on the file, as from symfile_bfd_open.
785 This BFD will be closed on error, and is always consumed by this function.
786
787 FROM_TTY says how verbose to be.
788
789 MAINLINE specifies whether this is the main symbol file, or whether
790 it's an extra symbol file such as dynamically loaded code.
791
792 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
793 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
794 non-zero.
795
796 Upon success, returns a pointer to the objfile that was added.
797 Upon failure, jumps back to command level (never returns). */
798 static struct objfile *
799 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
800 struct section_addr_info *addrs,
801 struct section_offsets *offsets,
802 int num_offsets,
803 int mainline, int flags)
804 {
805 struct objfile *objfile;
806 struct partial_symtab *psymtab;
807 char *debugfile;
808 struct section_addr_info *orig_addrs = NULL;
809 struct cleanup *my_cleanups;
810 const char *name = bfd_get_filename (abfd);
811
812 my_cleanups = make_cleanup_bfd_close (abfd);
813
814 /* Give user a chance to burp if we'd be
815 interactively wiping out any existing symbols. */
816
817 if ((have_full_symbols () || have_partial_symbols ())
818 && mainline
819 && from_tty
820 && !query ("Load new symbol table from \"%s\"? ", name))
821 error (_("Not confirmed."));
822
823 objfile = allocate_objfile (abfd, flags);
824 discard_cleanups (my_cleanups);
825
826 if (addrs)
827 {
828 orig_addrs = copy_section_addr_info (addrs);
829 make_cleanup_free_section_addr_info (orig_addrs);
830 }
831
832 /* We either created a new mapped symbol table, mapped an existing
833 symbol table file which has not had initial symbol reading
834 performed, or need to read an unmapped symbol table. */
835 if (from_tty || info_verbose)
836 {
837 if (deprecated_pre_add_symbol_hook)
838 deprecated_pre_add_symbol_hook (name);
839 else
840 {
841 printf_unfiltered (_("Reading symbols from %s..."), name);
842 wrap_here ("");
843 gdb_flush (gdb_stdout);
844 }
845 }
846 syms_from_objfile (objfile, addrs, offsets, num_offsets,
847 mainline, from_tty);
848
849 /* We now have at least a partial symbol table. Check to see if the
850 user requested that all symbols be read on initial access via either
851 the gdb startup command line or on a per symbol file basis. Expand
852 all partial symbol tables for this objfile if so. */
853
854 if ((flags & OBJF_READNOW) || readnow_symbol_files)
855 {
856 if (from_tty || info_verbose)
857 {
858 printf_unfiltered (_("expanding to full symbols..."));
859 wrap_here ("");
860 gdb_flush (gdb_stdout);
861 }
862
863 for (psymtab = objfile->psymtabs;
864 psymtab != NULL;
865 psymtab = psymtab->next)
866 {
867 psymtab_to_symtab (psymtab);
868 }
869 }
870
871 debugfile = find_separate_debug_file (objfile);
872 if (debugfile)
873 {
874 if (addrs != NULL)
875 {
876 objfile->separate_debug_objfile
877 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
878 }
879 else
880 {
881 objfile->separate_debug_objfile
882 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
883 }
884 objfile->separate_debug_objfile->separate_debug_objfile_backlink
885 = objfile;
886
887 /* Put the separate debug object before the normal one, this is so that
888 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
889 put_objfile_before (objfile->separate_debug_objfile, objfile);
890
891 xfree (debugfile);
892 }
893
894 if (!have_partial_symbols () && !have_full_symbols ())
895 {
896 wrap_here ("");
897 printf_filtered (_("(no debugging symbols found)"));
898 if (from_tty || info_verbose)
899 printf_filtered ("...");
900 else
901 printf_filtered ("\n");
902 wrap_here ("");
903 }
904
905 if (from_tty || info_verbose)
906 {
907 if (deprecated_post_add_symbol_hook)
908 deprecated_post_add_symbol_hook ();
909 else
910 {
911 printf_unfiltered (_("done.\n"));
912 }
913 }
914
915 /* We print some messages regardless of whether 'from_tty ||
916 info_verbose' is true, so make sure they go out at the right
917 time. */
918 gdb_flush (gdb_stdout);
919
920 do_cleanups (my_cleanups);
921
922 if (objfile->sf == NULL)
923 return objfile; /* No symbols. */
924
925 new_symfile_objfile (objfile, mainline, from_tty);
926
927 if (deprecated_target_new_objfile_hook)
928 deprecated_target_new_objfile_hook (objfile);
929
930 bfd_cache_close_all ();
931 return (objfile);
932 }
933
934
935 /* Process the symbol file ABFD, as either the main file or as a
936 dynamically loaded file.
937
938 See symbol_file_add_with_addrs_or_offsets's comments for
939 details. */
940 struct objfile *
941 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
942 struct section_addr_info *addrs,
943 int mainline, int flags)
944 {
945 return symbol_file_add_with_addrs_or_offsets (abfd,
946 from_tty, addrs, 0, 0,
947 mainline, flags);
948 }
949
950
951 /* Process a symbol file, as either the main file or as a dynamically
952 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
953 for details. */
954 struct objfile *
955 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
956 int mainline, int flags)
957 {
958 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
959 addrs, mainline, flags);
960 }
961
962
963 /* Call symbol_file_add() with default values and update whatever is
964 affected by the loading of a new main().
965 Used when the file is supplied in the gdb command line
966 and by some targets with special loading requirements.
967 The auxiliary function, symbol_file_add_main_1(), has the flags
968 argument for the switches that can only be specified in the symbol_file
969 command itself. */
970
971 void
972 symbol_file_add_main (char *args, int from_tty)
973 {
974 symbol_file_add_main_1 (args, from_tty, 0);
975 }
976
977 static void
978 symbol_file_add_main_1 (char *args, int from_tty, int flags)
979 {
980 symbol_file_add (args, from_tty, NULL, 1, flags);
981
982 /* Getting new symbols may change our opinion about
983 what is frameless. */
984 reinit_frame_cache ();
985
986 set_initial_language ();
987 }
988
989 void
990 symbol_file_clear (int from_tty)
991 {
992 if ((have_full_symbols () || have_partial_symbols ())
993 && from_tty
994 && !query ("Discard symbol table from `%s'? ",
995 symfile_objfile->name))
996 error (_("Not confirmed."));
997 free_all_objfiles ();
998
999 /* solib descriptors may have handles to objfiles. Since their
1000 storage has just been released, we'd better wipe the solib
1001 descriptors as well.
1002 */
1003 #if defined(SOLIB_RESTART)
1004 SOLIB_RESTART ();
1005 #endif
1006
1007 symfile_objfile = NULL;
1008 if (from_tty)
1009 printf_unfiltered (_("No symbol file now.\n"));
1010 }
1011
1012 static char *
1013 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1014 {
1015 asection *sect;
1016 bfd_size_type debuglink_size;
1017 unsigned long crc32;
1018 char *contents;
1019 int crc_offset;
1020 unsigned char *p;
1021
1022 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1023
1024 if (sect == NULL)
1025 return NULL;
1026
1027 debuglink_size = bfd_section_size (objfile->obfd, sect);
1028
1029 contents = xmalloc (debuglink_size);
1030 bfd_get_section_contents (objfile->obfd, sect, contents,
1031 (file_ptr)0, (bfd_size_type)debuglink_size);
1032
1033 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1034 crc_offset = strlen (contents) + 1;
1035 crc_offset = (crc_offset + 3) & ~3;
1036
1037 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1038
1039 *crc32_out = crc32;
1040 return contents;
1041 }
1042
1043 static int
1044 separate_debug_file_exists (const char *name, unsigned long crc)
1045 {
1046 unsigned long file_crc = 0;
1047 int fd;
1048 char buffer[8*1024];
1049 int count;
1050
1051 fd = open (name, O_RDONLY | O_BINARY);
1052 if (fd < 0)
1053 return 0;
1054
1055 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1056 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1057
1058 close (fd);
1059
1060 return crc == file_crc;
1061 }
1062
1063 static char *debug_file_directory = NULL;
1064 static void
1065 show_debug_file_directory (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067 {
1068 fprintf_filtered (file, _("\
1069 The directory where separate debug symbols are searched for is \"%s\".\n"),
1070 value);
1071 }
1072
1073 #if ! defined (DEBUG_SUBDIRECTORY)
1074 #define DEBUG_SUBDIRECTORY ".debug"
1075 #endif
1076
1077 static char *
1078 find_separate_debug_file (struct objfile *objfile)
1079 {
1080 asection *sect;
1081 char *basename;
1082 char *dir;
1083 char *debugfile;
1084 char *name_copy;
1085 bfd_size_type debuglink_size;
1086 unsigned long crc32;
1087 int i;
1088
1089 basename = get_debug_link_info (objfile, &crc32);
1090
1091 if (basename == NULL)
1092 return NULL;
1093
1094 dir = xstrdup (objfile->name);
1095
1096 /* Strip off the final filename part, leaving the directory name,
1097 followed by a slash. Objfile names should always be absolute and
1098 tilde-expanded, so there should always be a slash in there
1099 somewhere. */
1100 for (i = strlen(dir) - 1; i >= 0; i--)
1101 {
1102 if (IS_DIR_SEPARATOR (dir[i]))
1103 break;
1104 }
1105 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1106 dir[i+1] = '\0';
1107
1108 debugfile = alloca (strlen (debug_file_directory) + 1
1109 + strlen (dir)
1110 + strlen (DEBUG_SUBDIRECTORY)
1111 + strlen ("/")
1112 + strlen (basename)
1113 + 1);
1114
1115 /* First try in the same directory as the original file. */
1116 strcpy (debugfile, dir);
1117 strcat (debugfile, basename);
1118
1119 if (separate_debug_file_exists (debugfile, crc32))
1120 {
1121 xfree (basename);
1122 xfree (dir);
1123 return xstrdup (debugfile);
1124 }
1125
1126 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1127 strcpy (debugfile, dir);
1128 strcat (debugfile, DEBUG_SUBDIRECTORY);
1129 strcat (debugfile, "/");
1130 strcat (debugfile, basename);
1131
1132 if (separate_debug_file_exists (debugfile, crc32))
1133 {
1134 xfree (basename);
1135 xfree (dir);
1136 return xstrdup (debugfile);
1137 }
1138
1139 /* Then try in the global debugfile directory. */
1140 strcpy (debugfile, debug_file_directory);
1141 strcat (debugfile, "/");
1142 strcat (debugfile, dir);
1143 strcat (debugfile, basename);
1144
1145 if (separate_debug_file_exists (debugfile, crc32))
1146 {
1147 xfree (basename);
1148 xfree (dir);
1149 return xstrdup (debugfile);
1150 }
1151
1152 xfree (basename);
1153 xfree (dir);
1154 return NULL;
1155 }
1156
1157
1158 /* This is the symbol-file command. Read the file, analyze its
1159 symbols, and add a struct symtab to a symtab list. The syntax of
1160 the command is rather bizarre--(1) buildargv implements various
1161 quoting conventions which are undocumented and have little or
1162 nothing in common with the way things are quoted (or not quoted)
1163 elsewhere in GDB, (2) options are used, which are not generally
1164 used in GDB (perhaps "set mapped on", "set readnow on" would be
1165 better), (3) the order of options matters, which is contrary to GNU
1166 conventions (because it is confusing and inconvenient). */
1167 /* Note: ezannoni 2000-04-17. This function used to have support for
1168 rombug (see remote-os9k.c). It consisted of a call to target_link()
1169 (target.c) to get the address of the text segment from the target,
1170 and pass that to symbol_file_add(). This is no longer supported. */
1171
1172 void
1173 symbol_file_command (char *args, int from_tty)
1174 {
1175 char **argv;
1176 char *name = NULL;
1177 struct cleanup *cleanups;
1178 int flags = OBJF_USERLOADED;
1179
1180 dont_repeat ();
1181
1182 if (args == NULL)
1183 {
1184 symbol_file_clear (from_tty);
1185 }
1186 else
1187 {
1188 if ((argv = buildargv (args)) == NULL)
1189 {
1190 nomem (0);
1191 }
1192 cleanups = make_cleanup_freeargv (argv);
1193 while (*argv != NULL)
1194 {
1195 if (strcmp (*argv, "-readnow") == 0)
1196 flags |= OBJF_READNOW;
1197 else if (**argv == '-')
1198 error (_("unknown option `%s'"), *argv);
1199 else
1200 {
1201 name = *argv;
1202
1203 symbol_file_add_main_1 (name, from_tty, flags);
1204 }
1205 argv++;
1206 }
1207
1208 if (name == NULL)
1209 {
1210 error (_("no symbol file name was specified"));
1211 }
1212 do_cleanups (cleanups);
1213 }
1214 }
1215
1216 /* Set the initial language.
1217
1218 A better solution would be to record the language in the psymtab when reading
1219 partial symbols, and then use it (if known) to set the language. This would
1220 be a win for formats that encode the language in an easily discoverable place,
1221 such as DWARF. For stabs, we can jump through hoops looking for specially
1222 named symbols or try to intuit the language from the specific type of stabs
1223 we find, but we can't do that until later when we read in full symbols.
1224 FIXME. */
1225
1226 static void
1227 set_initial_language (void)
1228 {
1229 struct partial_symtab *pst;
1230 enum language lang = language_unknown;
1231
1232 pst = find_main_psymtab ();
1233 if (pst != NULL)
1234 {
1235 if (pst->filename != NULL)
1236 {
1237 lang = deduce_language_from_filename (pst->filename);
1238 }
1239 if (lang == language_unknown)
1240 {
1241 /* Make C the default language */
1242 lang = language_c;
1243 }
1244 set_language (lang);
1245 expected_language = current_language; /* Don't warn the user */
1246 }
1247 }
1248
1249 /* Open file specified by NAME and hand it off to BFD for preliminary
1250 analysis. Result is a newly initialized bfd *, which includes a newly
1251 malloc'd` copy of NAME (tilde-expanded and made absolute).
1252 In case of trouble, error() is called. */
1253
1254 bfd *
1255 symfile_bfd_open (char *name)
1256 {
1257 bfd *sym_bfd;
1258 int desc;
1259 char *absolute_name;
1260
1261
1262
1263 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1264
1265 /* Look down path for it, allocate 2nd new malloc'd copy. */
1266 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1267 0, &absolute_name);
1268 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1269 if (desc < 0)
1270 {
1271 char *exename = alloca (strlen (name) + 5);
1272 strcat (strcpy (exename, name), ".exe");
1273 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1274 O_RDONLY | O_BINARY, 0, &absolute_name);
1275 }
1276 #endif
1277 if (desc < 0)
1278 {
1279 make_cleanup (xfree, name);
1280 perror_with_name (name);
1281 }
1282 xfree (name); /* Free 1st new malloc'd copy */
1283 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1284 /* It'll be freed in free_objfile(). */
1285
1286 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1287 if (!sym_bfd)
1288 {
1289 close (desc);
1290 make_cleanup (xfree, name);
1291 error (_("\"%s\": can't open to read symbols: %s."), name,
1292 bfd_errmsg (bfd_get_error ()));
1293 }
1294 bfd_set_cacheable (sym_bfd, 1);
1295
1296 if (!bfd_check_format (sym_bfd, bfd_object))
1297 {
1298 /* FIXME: should be checking for errors from bfd_close (for one thing,
1299 on error it does not free all the storage associated with the
1300 bfd). */
1301 bfd_close (sym_bfd); /* This also closes desc */
1302 make_cleanup (xfree, name);
1303 error (_("\"%s\": can't read symbols: %s."), name,
1304 bfd_errmsg (bfd_get_error ()));
1305 }
1306 return (sym_bfd);
1307 }
1308
1309 /* Return the section index for the given section name. Return -1 if
1310 the section was not found. */
1311 int
1312 get_section_index (struct objfile *objfile, char *section_name)
1313 {
1314 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1315 if (sect)
1316 return sect->index;
1317 else
1318 return -1;
1319 }
1320
1321 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1322 startup by the _initialize routine in each object file format reader,
1323 to register information about each format the the reader is prepared
1324 to handle. */
1325
1326 void
1327 add_symtab_fns (struct sym_fns *sf)
1328 {
1329 sf->next = symtab_fns;
1330 symtab_fns = sf;
1331 }
1332
1333
1334 /* Initialize to read symbols from the symbol file sym_bfd. It either
1335 returns or calls error(). The result is an initialized struct sym_fns
1336 in the objfile structure, that contains cached information about the
1337 symbol file. */
1338
1339 static void
1340 find_sym_fns (struct objfile *objfile)
1341 {
1342 struct sym_fns *sf;
1343 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1344 char *our_target = bfd_get_target (objfile->obfd);
1345
1346 if (our_flavour == bfd_target_srec_flavour
1347 || our_flavour == bfd_target_ihex_flavour
1348 || our_flavour == bfd_target_tekhex_flavour)
1349 return; /* No symbols. */
1350
1351 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1352 {
1353 if (our_flavour == sf->sym_flavour)
1354 {
1355 objfile->sf = sf;
1356 return;
1357 }
1358 }
1359 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1360 bfd_get_target (objfile->obfd));
1361 }
1362 \f
1363 /* This function runs the load command of our current target. */
1364
1365 static void
1366 load_command (char *arg, int from_tty)
1367 {
1368 if (arg == NULL)
1369 arg = get_exec_file (1);
1370 target_load (arg, from_tty);
1371
1372 /* After re-loading the executable, we don't really know which
1373 overlays are mapped any more. */
1374 overlay_cache_invalid = 1;
1375 }
1376
1377 /* This version of "load" should be usable for any target. Currently
1378 it is just used for remote targets, not inftarg.c or core files,
1379 on the theory that only in that case is it useful.
1380
1381 Avoiding xmodem and the like seems like a win (a) because we don't have
1382 to worry about finding it, and (b) On VMS, fork() is very slow and so
1383 we don't want to run a subprocess. On the other hand, I'm not sure how
1384 performance compares. */
1385
1386 static int download_write_size = 512;
1387 static void
1388 show_download_write_size (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390 {
1391 fprintf_filtered (file, _("\
1392 The write size used when downloading a program is %s.\n"),
1393 value);
1394 }
1395 static int validate_download = 0;
1396
1397 /* Callback service function for generic_load (bfd_map_over_sections). */
1398
1399 static void
1400 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1401 {
1402 bfd_size_type *sum = data;
1403
1404 *sum += bfd_get_section_size (asec);
1405 }
1406
1407 /* Opaque data for load_section_callback. */
1408 struct load_section_data {
1409 unsigned long load_offset;
1410 unsigned long write_count;
1411 unsigned long data_count;
1412 bfd_size_type total_size;
1413 };
1414
1415 /* Callback service function for generic_load (bfd_map_over_sections). */
1416
1417 static void
1418 load_section_callback (bfd *abfd, asection *asec, void *data)
1419 {
1420 struct load_section_data *args = data;
1421
1422 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1423 {
1424 bfd_size_type size = bfd_get_section_size (asec);
1425 if (size > 0)
1426 {
1427 char *buffer;
1428 struct cleanup *old_chain;
1429 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1430 bfd_size_type block_size;
1431 int err;
1432 const char *sect_name = bfd_get_section_name (abfd, asec);
1433 bfd_size_type sent;
1434
1435 if (download_write_size > 0 && size > download_write_size)
1436 block_size = download_write_size;
1437 else
1438 block_size = size;
1439
1440 buffer = xmalloc (size);
1441 old_chain = make_cleanup (xfree, buffer);
1442
1443 /* Is this really necessary? I guess it gives the user something
1444 to look at during a long download. */
1445 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1446 sect_name, paddr_nz (size), paddr_nz (lma));
1447
1448 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1449
1450 sent = 0;
1451 do
1452 {
1453 int len;
1454 bfd_size_type this_transfer = size - sent;
1455
1456 if (this_transfer >= block_size)
1457 this_transfer = block_size;
1458 len = target_write_memory_partial (lma, buffer,
1459 this_transfer, &err);
1460 if (err)
1461 break;
1462 if (validate_download)
1463 {
1464 /* Broken memories and broken monitors manifest
1465 themselves here when bring new computers to
1466 life. This doubles already slow downloads. */
1467 /* NOTE: cagney/1999-10-18: A more efficient
1468 implementation might add a verify_memory()
1469 method to the target vector and then use
1470 that. remote.c could implement that method
1471 using the ``qCRC'' packet. */
1472 char *check = xmalloc (len);
1473 struct cleanup *verify_cleanups =
1474 make_cleanup (xfree, check);
1475
1476 if (target_read_memory (lma, check, len) != 0)
1477 error (_("Download verify read failed at 0x%s"),
1478 paddr (lma));
1479 if (memcmp (buffer, check, len) != 0)
1480 error (_("Download verify compare failed at 0x%s"),
1481 paddr (lma));
1482 do_cleanups (verify_cleanups);
1483 }
1484 args->data_count += len;
1485 lma += len;
1486 buffer += len;
1487 args->write_count += 1;
1488 sent += len;
1489 if (quit_flag
1490 || (deprecated_ui_load_progress_hook != NULL
1491 && deprecated_ui_load_progress_hook (sect_name, sent)))
1492 error (_("Canceled the download"));
1493
1494 if (deprecated_show_load_progress != NULL)
1495 deprecated_show_load_progress (sect_name, sent, size,
1496 args->data_count,
1497 args->total_size);
1498 }
1499 while (sent < size);
1500
1501 if (err != 0)
1502 error (_("Memory access error while loading section %s."), sect_name);
1503
1504 do_cleanups (old_chain);
1505 }
1506 }
1507 }
1508
1509 void
1510 generic_load (char *args, int from_tty)
1511 {
1512 asection *s;
1513 bfd *loadfile_bfd;
1514 time_t start_time, end_time; /* Start and end times of download */
1515 char *filename;
1516 struct cleanup *old_cleanups;
1517 char *offptr;
1518 struct load_section_data cbdata;
1519 CORE_ADDR entry;
1520
1521 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1522 cbdata.write_count = 0; /* Number of writes needed. */
1523 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1524 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1525
1526 /* Parse the input argument - the user can specify a load offset as
1527 a second argument. */
1528 filename = xmalloc (strlen (args) + 1);
1529 old_cleanups = make_cleanup (xfree, filename);
1530 strcpy (filename, args);
1531 offptr = strchr (filename, ' ');
1532 if (offptr != NULL)
1533 {
1534 char *endptr;
1535
1536 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1537 if (offptr == endptr)
1538 error (_("Invalid download offset:%s."), offptr);
1539 *offptr = '\0';
1540 }
1541 else
1542 cbdata.load_offset = 0;
1543
1544 /* Open the file for loading. */
1545 loadfile_bfd = bfd_openr (filename, gnutarget);
1546 if (loadfile_bfd == NULL)
1547 {
1548 perror_with_name (filename);
1549 return;
1550 }
1551
1552 /* FIXME: should be checking for errors from bfd_close (for one thing,
1553 on error it does not free all the storage associated with the
1554 bfd). */
1555 make_cleanup_bfd_close (loadfile_bfd);
1556
1557 if (!bfd_check_format (loadfile_bfd, bfd_object))
1558 {
1559 error (_("\"%s\" is not an object file: %s"), filename,
1560 bfd_errmsg (bfd_get_error ()));
1561 }
1562
1563 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1564 (void *) &cbdata.total_size);
1565
1566 start_time = time (NULL);
1567
1568 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1569
1570 end_time = time (NULL);
1571
1572 entry = bfd_get_start_address (loadfile_bfd);
1573 ui_out_text (uiout, "Start address ");
1574 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1575 ui_out_text (uiout, ", load size ");
1576 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1577 ui_out_text (uiout, "\n");
1578 /* We were doing this in remote-mips.c, I suspect it is right
1579 for other targets too. */
1580 write_pc (entry);
1581
1582 /* FIXME: are we supposed to call symbol_file_add or not? According
1583 to a comment from remote-mips.c (where a call to symbol_file_add
1584 was commented out), making the call confuses GDB if more than one
1585 file is loaded in. Some targets do (e.g., remote-vx.c) but
1586 others don't (or didn't - perhaps they have all been deleted). */
1587
1588 print_transfer_performance (gdb_stdout, cbdata.data_count,
1589 cbdata.write_count, end_time - start_time);
1590
1591 do_cleanups (old_cleanups);
1592 }
1593
1594 /* Report how fast the transfer went. */
1595
1596 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1597 replaced by print_transfer_performance (with a very different
1598 function signature). */
1599
1600 void
1601 report_transfer_performance (unsigned long data_count, time_t start_time,
1602 time_t end_time)
1603 {
1604 print_transfer_performance (gdb_stdout, data_count,
1605 end_time - start_time, 0);
1606 }
1607
1608 void
1609 print_transfer_performance (struct ui_file *stream,
1610 unsigned long data_count,
1611 unsigned long write_count,
1612 unsigned long time_count)
1613 {
1614 ui_out_text (uiout, "Transfer rate: ");
1615 if (time_count > 0)
1616 {
1617 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1618 (data_count * 8) / time_count);
1619 ui_out_text (uiout, " bits/sec");
1620 }
1621 else
1622 {
1623 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1624 ui_out_text (uiout, " bits in <1 sec");
1625 }
1626 if (write_count > 0)
1627 {
1628 ui_out_text (uiout, ", ");
1629 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1630 ui_out_text (uiout, " bytes/write");
1631 }
1632 ui_out_text (uiout, ".\n");
1633 }
1634
1635 /* This function allows the addition of incrementally linked object files.
1636 It does not modify any state in the target, only in the debugger. */
1637 /* Note: ezannoni 2000-04-13 This function/command used to have a
1638 special case syntax for the rombug target (Rombug is the boot
1639 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1640 rombug case, the user doesn't need to supply a text address,
1641 instead a call to target_link() (in target.c) would supply the
1642 value to use. We are now discontinuing this type of ad hoc syntax. */
1643
1644 static void
1645 add_symbol_file_command (char *args, int from_tty)
1646 {
1647 char *filename = NULL;
1648 int flags = OBJF_USERLOADED;
1649 char *arg;
1650 int expecting_option = 0;
1651 int section_index = 0;
1652 int argcnt = 0;
1653 int sec_num = 0;
1654 int i;
1655 int expecting_sec_name = 0;
1656 int expecting_sec_addr = 0;
1657
1658 struct sect_opt
1659 {
1660 char *name;
1661 char *value;
1662 };
1663
1664 struct section_addr_info *section_addrs;
1665 struct sect_opt *sect_opts = NULL;
1666 size_t num_sect_opts = 0;
1667 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1668
1669 num_sect_opts = 16;
1670 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1671 * sizeof (struct sect_opt));
1672
1673 dont_repeat ();
1674
1675 if (args == NULL)
1676 error (_("add-symbol-file takes a file name and an address"));
1677
1678 /* Make a copy of the string that we can safely write into. */
1679 args = xstrdup (args);
1680
1681 while (*args != '\000')
1682 {
1683 /* Any leading spaces? */
1684 while (isspace (*args))
1685 args++;
1686
1687 /* Point arg to the beginning of the argument. */
1688 arg = args;
1689
1690 /* Move args pointer over the argument. */
1691 while ((*args != '\000') && !isspace (*args))
1692 args++;
1693
1694 /* If there are more arguments, terminate arg and
1695 proceed past it. */
1696 if (*args != '\000')
1697 *args++ = '\000';
1698
1699 /* Now process the argument. */
1700 if (argcnt == 0)
1701 {
1702 /* The first argument is the file name. */
1703 filename = tilde_expand (arg);
1704 make_cleanup (xfree, filename);
1705 }
1706 else
1707 if (argcnt == 1)
1708 {
1709 /* The second argument is always the text address at which
1710 to load the program. */
1711 sect_opts[section_index].name = ".text";
1712 sect_opts[section_index].value = arg;
1713 if (++section_index > num_sect_opts)
1714 {
1715 num_sect_opts *= 2;
1716 sect_opts = ((struct sect_opt *)
1717 xrealloc (sect_opts,
1718 num_sect_opts
1719 * sizeof (struct sect_opt)));
1720 }
1721 }
1722 else
1723 {
1724 /* It's an option (starting with '-') or it's an argument
1725 to an option */
1726
1727 if (*arg == '-')
1728 {
1729 if (strcmp (arg, "-readnow") == 0)
1730 flags |= OBJF_READNOW;
1731 else if (strcmp (arg, "-s") == 0)
1732 {
1733 expecting_sec_name = 1;
1734 expecting_sec_addr = 1;
1735 }
1736 }
1737 else
1738 {
1739 if (expecting_sec_name)
1740 {
1741 sect_opts[section_index].name = arg;
1742 expecting_sec_name = 0;
1743 }
1744 else
1745 if (expecting_sec_addr)
1746 {
1747 sect_opts[section_index].value = arg;
1748 expecting_sec_addr = 0;
1749 if (++section_index > num_sect_opts)
1750 {
1751 num_sect_opts *= 2;
1752 sect_opts = ((struct sect_opt *)
1753 xrealloc (sect_opts,
1754 num_sect_opts
1755 * sizeof (struct sect_opt)));
1756 }
1757 }
1758 else
1759 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1760 }
1761 }
1762 argcnt++;
1763 }
1764
1765 /* Print the prompt for the query below. And save the arguments into
1766 a sect_addr_info structure to be passed around to other
1767 functions. We have to split this up into separate print
1768 statements because hex_string returns a local static
1769 string. */
1770
1771 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1772 section_addrs = alloc_section_addr_info (section_index);
1773 make_cleanup (xfree, section_addrs);
1774 for (i = 0; i < section_index; i++)
1775 {
1776 CORE_ADDR addr;
1777 char *val = sect_opts[i].value;
1778 char *sec = sect_opts[i].name;
1779
1780 addr = parse_and_eval_address (val);
1781
1782 /* Here we store the section offsets in the order they were
1783 entered on the command line. */
1784 section_addrs->other[sec_num].name = sec;
1785 section_addrs->other[sec_num].addr = addr;
1786 printf_unfiltered ("\t%s_addr = %s\n",
1787 sec, hex_string ((unsigned long)addr));
1788 sec_num++;
1789
1790 /* The object's sections are initialized when a
1791 call is made to build_objfile_section_table (objfile).
1792 This happens in reread_symbols.
1793 At this point, we don't know what file type this is,
1794 so we can't determine what section names are valid. */
1795 }
1796
1797 if (from_tty && (!query ("%s", "")))
1798 error (_("Not confirmed."));
1799
1800 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1801
1802 /* Getting new symbols may change our opinion about what is
1803 frameless. */
1804 reinit_frame_cache ();
1805 do_cleanups (my_cleanups);
1806 }
1807 \f
1808 static void
1809 add_shared_symbol_files_command (char *args, int from_tty)
1810 {
1811 #ifdef ADD_SHARED_SYMBOL_FILES
1812 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1813 #else
1814 error (_("This command is not available in this configuration of GDB."));
1815 #endif
1816 }
1817 \f
1818 /* Re-read symbols if a symbol-file has changed. */
1819 void
1820 reread_symbols (void)
1821 {
1822 struct objfile *objfile;
1823 long new_modtime;
1824 int reread_one = 0;
1825 struct stat new_statbuf;
1826 int res;
1827
1828 /* With the addition of shared libraries, this should be modified,
1829 the load time should be saved in the partial symbol tables, since
1830 different tables may come from different source files. FIXME.
1831 This routine should then walk down each partial symbol table
1832 and see if the symbol table that it originates from has been changed */
1833
1834 for (objfile = object_files; objfile; objfile = objfile->next)
1835 {
1836 if (objfile->obfd)
1837 {
1838 #ifdef DEPRECATED_IBM6000_TARGET
1839 /* If this object is from a shared library, then you should
1840 stat on the library name, not member name. */
1841
1842 if (objfile->obfd->my_archive)
1843 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1844 else
1845 #endif
1846 res = stat (objfile->name, &new_statbuf);
1847 if (res != 0)
1848 {
1849 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1850 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1851 objfile->name);
1852 continue;
1853 }
1854 new_modtime = new_statbuf.st_mtime;
1855 if (new_modtime != objfile->mtime)
1856 {
1857 struct cleanup *old_cleanups;
1858 struct section_offsets *offsets;
1859 int num_offsets;
1860 char *obfd_filename;
1861
1862 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1863 objfile->name);
1864
1865 /* There are various functions like symbol_file_add,
1866 symfile_bfd_open, syms_from_objfile, etc., which might
1867 appear to do what we want. But they have various other
1868 effects which we *don't* want. So we just do stuff
1869 ourselves. We don't worry about mapped files (for one thing,
1870 any mapped file will be out of date). */
1871
1872 /* If we get an error, blow away this objfile (not sure if
1873 that is the correct response for things like shared
1874 libraries). */
1875 old_cleanups = make_cleanup_free_objfile (objfile);
1876 /* We need to do this whenever any symbols go away. */
1877 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1878
1879 /* Clean up any state BFD has sitting around. We don't need
1880 to close the descriptor but BFD lacks a way of closing the
1881 BFD without closing the descriptor. */
1882 obfd_filename = bfd_get_filename (objfile->obfd);
1883 if (!bfd_close (objfile->obfd))
1884 error (_("Can't close BFD for %s: %s"), objfile->name,
1885 bfd_errmsg (bfd_get_error ()));
1886 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1887 if (objfile->obfd == NULL)
1888 error (_("Can't open %s to read symbols."), objfile->name);
1889 /* bfd_openr sets cacheable to true, which is what we want. */
1890 if (!bfd_check_format (objfile->obfd, bfd_object))
1891 error (_("Can't read symbols from %s: %s."), objfile->name,
1892 bfd_errmsg (bfd_get_error ()));
1893
1894 /* Save the offsets, we will nuke them with the rest of the
1895 objfile_obstack. */
1896 num_offsets = objfile->num_sections;
1897 offsets = ((struct section_offsets *)
1898 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1899 memcpy (offsets, objfile->section_offsets,
1900 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1901
1902 /* Nuke all the state that we will re-read. Much of the following
1903 code which sets things to NULL really is necessary to tell
1904 other parts of GDB that there is nothing currently there. */
1905
1906 /* FIXME: Do we have to free a whole linked list, or is this
1907 enough? */
1908 if (objfile->global_psymbols.list)
1909 xfree (objfile->global_psymbols.list);
1910 memset (&objfile->global_psymbols, 0,
1911 sizeof (objfile->global_psymbols));
1912 if (objfile->static_psymbols.list)
1913 xfree (objfile->static_psymbols.list);
1914 memset (&objfile->static_psymbols, 0,
1915 sizeof (objfile->static_psymbols));
1916
1917 /* Free the obstacks for non-reusable objfiles */
1918 bcache_xfree (objfile->psymbol_cache);
1919 objfile->psymbol_cache = bcache_xmalloc ();
1920 bcache_xfree (objfile->macro_cache);
1921 objfile->macro_cache = bcache_xmalloc ();
1922 if (objfile->demangled_names_hash != NULL)
1923 {
1924 htab_delete (objfile->demangled_names_hash);
1925 objfile->demangled_names_hash = NULL;
1926 }
1927 obstack_free (&objfile->objfile_obstack, 0);
1928 objfile->sections = NULL;
1929 objfile->symtabs = NULL;
1930 objfile->psymtabs = NULL;
1931 objfile->free_psymtabs = NULL;
1932 objfile->cp_namespace_symtab = NULL;
1933 objfile->msymbols = NULL;
1934 objfile->deprecated_sym_private = NULL;
1935 objfile->minimal_symbol_count = 0;
1936 memset (&objfile->msymbol_hash, 0,
1937 sizeof (objfile->msymbol_hash));
1938 memset (&objfile->msymbol_demangled_hash, 0,
1939 sizeof (objfile->msymbol_demangled_hash));
1940 objfile->fundamental_types = NULL;
1941 clear_objfile_data (objfile);
1942 if (objfile->sf != NULL)
1943 {
1944 (*objfile->sf->sym_finish) (objfile);
1945 }
1946
1947 /* We never make this a mapped file. */
1948 objfile->md = NULL;
1949 objfile->psymbol_cache = bcache_xmalloc ();
1950 objfile->macro_cache = bcache_xmalloc ();
1951 /* obstack_init also initializes the obstack so it is
1952 empty. We could use obstack_specify_allocation but
1953 gdb_obstack.h specifies the alloc/dealloc
1954 functions. */
1955 obstack_init (&objfile->objfile_obstack);
1956 if (build_objfile_section_table (objfile))
1957 {
1958 error (_("Can't find the file sections in `%s': %s"),
1959 objfile->name, bfd_errmsg (bfd_get_error ()));
1960 }
1961 terminate_minimal_symbol_table (objfile);
1962
1963 /* We use the same section offsets as from last time. I'm not
1964 sure whether that is always correct for shared libraries. */
1965 objfile->section_offsets = (struct section_offsets *)
1966 obstack_alloc (&objfile->objfile_obstack,
1967 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1968 memcpy (objfile->section_offsets, offsets,
1969 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1970 objfile->num_sections = num_offsets;
1971
1972 /* What the hell is sym_new_init for, anyway? The concept of
1973 distinguishing between the main file and additional files
1974 in this way seems rather dubious. */
1975 if (objfile == symfile_objfile)
1976 {
1977 (*objfile->sf->sym_new_init) (objfile);
1978 }
1979
1980 (*objfile->sf->sym_init) (objfile);
1981 clear_complaints (&symfile_complaints, 1, 1);
1982 /* The "mainline" parameter is a hideous hack; I think leaving it
1983 zero is OK since dbxread.c also does what it needs to do if
1984 objfile->global_psymbols.size is 0. */
1985 (*objfile->sf->sym_read) (objfile, 0);
1986 if (!have_partial_symbols () && !have_full_symbols ())
1987 {
1988 wrap_here ("");
1989 printf_unfiltered (_("(no debugging symbols found)\n"));
1990 wrap_here ("");
1991 }
1992 objfile->flags |= OBJF_SYMS;
1993
1994 /* We're done reading the symbol file; finish off complaints. */
1995 clear_complaints (&symfile_complaints, 0, 1);
1996
1997 /* Getting new symbols may change our opinion about what is
1998 frameless. */
1999
2000 reinit_frame_cache ();
2001
2002 /* Discard cleanups as symbol reading was successful. */
2003 discard_cleanups (old_cleanups);
2004
2005 /* If the mtime has changed between the time we set new_modtime
2006 and now, we *want* this to be out of date, so don't call stat
2007 again now. */
2008 objfile->mtime = new_modtime;
2009 reread_one = 1;
2010 reread_separate_symbols (objfile);
2011 }
2012 }
2013 }
2014
2015 if (reread_one)
2016 clear_symtab_users ();
2017 }
2018
2019
2020 /* Handle separate debug info for OBJFILE, which has just been
2021 re-read:
2022 - If we had separate debug info before, but now we don't, get rid
2023 of the separated objfile.
2024 - If we didn't have separated debug info before, but now we do,
2025 read in the new separated debug info file.
2026 - If the debug link points to a different file, toss the old one
2027 and read the new one.
2028 This function does *not* handle the case where objfile is still
2029 using the same separate debug info file, but that file's timestamp
2030 has changed. That case should be handled by the loop in
2031 reread_symbols already. */
2032 static void
2033 reread_separate_symbols (struct objfile *objfile)
2034 {
2035 char *debug_file;
2036 unsigned long crc32;
2037
2038 /* Does the updated objfile's debug info live in a
2039 separate file? */
2040 debug_file = find_separate_debug_file (objfile);
2041
2042 if (objfile->separate_debug_objfile)
2043 {
2044 /* There are two cases where we need to get rid of
2045 the old separated debug info objfile:
2046 - if the new primary objfile doesn't have
2047 separated debug info, or
2048 - if the new primary objfile has separate debug
2049 info, but it's under a different filename.
2050
2051 If the old and new objfiles both have separate
2052 debug info, under the same filename, then we're
2053 okay --- if the separated file's contents have
2054 changed, we will have caught that when we
2055 visited it in this function's outermost
2056 loop. */
2057 if (! debug_file
2058 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2059 free_objfile (objfile->separate_debug_objfile);
2060 }
2061
2062 /* If the new objfile has separate debug info, and we
2063 haven't loaded it already, do so now. */
2064 if (debug_file
2065 && ! objfile->separate_debug_objfile)
2066 {
2067 /* Use the same section offset table as objfile itself.
2068 Preserve the flags from objfile that make sense. */
2069 objfile->separate_debug_objfile
2070 = (symbol_file_add_with_addrs_or_offsets
2071 (symfile_bfd_open (debug_file),
2072 info_verbose, /* from_tty: Don't override the default. */
2073 0, /* No addr table. */
2074 objfile->section_offsets, objfile->num_sections,
2075 0, /* Not mainline. See comments about this above. */
2076 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2077 | OBJF_USERLOADED)));
2078 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2079 = objfile;
2080 }
2081 }
2082
2083
2084 \f
2085
2086
2087 typedef struct
2088 {
2089 char *ext;
2090 enum language lang;
2091 }
2092 filename_language;
2093
2094 static filename_language *filename_language_table;
2095 static int fl_table_size, fl_table_next;
2096
2097 static void
2098 add_filename_language (char *ext, enum language lang)
2099 {
2100 if (fl_table_next >= fl_table_size)
2101 {
2102 fl_table_size += 10;
2103 filename_language_table =
2104 xrealloc (filename_language_table,
2105 fl_table_size * sizeof (*filename_language_table));
2106 }
2107
2108 filename_language_table[fl_table_next].ext = xstrdup (ext);
2109 filename_language_table[fl_table_next].lang = lang;
2110 fl_table_next++;
2111 }
2112
2113 static char *ext_args;
2114 static void
2115 show_ext_args (struct ui_file *file, int from_tty,
2116 struct cmd_list_element *c, const char *value)
2117 {
2118 fprintf_filtered (file, _("\
2119 Mapping between filename extension and source language is \"%s\".\n"),
2120 value);
2121 }
2122
2123 static void
2124 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2125 {
2126 int i;
2127 char *cp = ext_args;
2128 enum language lang;
2129
2130 /* First arg is filename extension, starting with '.' */
2131 if (*cp != '.')
2132 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2133
2134 /* Find end of first arg. */
2135 while (*cp && !isspace (*cp))
2136 cp++;
2137
2138 if (*cp == '\0')
2139 error (_("'%s': two arguments required -- filename extension and language"),
2140 ext_args);
2141
2142 /* Null-terminate first arg */
2143 *cp++ = '\0';
2144
2145 /* Find beginning of second arg, which should be a source language. */
2146 while (*cp && isspace (*cp))
2147 cp++;
2148
2149 if (*cp == '\0')
2150 error (_("'%s': two arguments required -- filename extension and language"),
2151 ext_args);
2152
2153 /* Lookup the language from among those we know. */
2154 lang = language_enum (cp);
2155
2156 /* Now lookup the filename extension: do we already know it? */
2157 for (i = 0; i < fl_table_next; i++)
2158 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2159 break;
2160
2161 if (i >= fl_table_next)
2162 {
2163 /* new file extension */
2164 add_filename_language (ext_args, lang);
2165 }
2166 else
2167 {
2168 /* redefining a previously known filename extension */
2169
2170 /* if (from_tty) */
2171 /* query ("Really make files of type %s '%s'?", */
2172 /* ext_args, language_str (lang)); */
2173
2174 xfree (filename_language_table[i].ext);
2175 filename_language_table[i].ext = xstrdup (ext_args);
2176 filename_language_table[i].lang = lang;
2177 }
2178 }
2179
2180 static void
2181 info_ext_lang_command (char *args, int from_tty)
2182 {
2183 int i;
2184
2185 printf_filtered (_("Filename extensions and the languages they represent:"));
2186 printf_filtered ("\n\n");
2187 for (i = 0; i < fl_table_next; i++)
2188 printf_filtered ("\t%s\t- %s\n",
2189 filename_language_table[i].ext,
2190 language_str (filename_language_table[i].lang));
2191 }
2192
2193 static void
2194 init_filename_language_table (void)
2195 {
2196 if (fl_table_size == 0) /* protect against repetition */
2197 {
2198 fl_table_size = 20;
2199 fl_table_next = 0;
2200 filename_language_table =
2201 xmalloc (fl_table_size * sizeof (*filename_language_table));
2202 add_filename_language (".c", language_c);
2203 add_filename_language (".C", language_cplus);
2204 add_filename_language (".cc", language_cplus);
2205 add_filename_language (".cp", language_cplus);
2206 add_filename_language (".cpp", language_cplus);
2207 add_filename_language (".cxx", language_cplus);
2208 add_filename_language (".c++", language_cplus);
2209 add_filename_language (".java", language_java);
2210 add_filename_language (".class", language_java);
2211 add_filename_language (".m", language_objc);
2212 add_filename_language (".f", language_fortran);
2213 add_filename_language (".F", language_fortran);
2214 add_filename_language (".s", language_asm);
2215 add_filename_language (".S", language_asm);
2216 add_filename_language (".pas", language_pascal);
2217 add_filename_language (".p", language_pascal);
2218 add_filename_language (".pp", language_pascal);
2219 add_filename_language (".adb", language_ada);
2220 add_filename_language (".ads", language_ada);
2221 add_filename_language (".a", language_ada);
2222 add_filename_language (".ada", language_ada);
2223 }
2224 }
2225
2226 enum language
2227 deduce_language_from_filename (char *filename)
2228 {
2229 int i;
2230 char *cp;
2231
2232 if (filename != NULL)
2233 if ((cp = strrchr (filename, '.')) != NULL)
2234 for (i = 0; i < fl_table_next; i++)
2235 if (strcmp (cp, filename_language_table[i].ext) == 0)
2236 return filename_language_table[i].lang;
2237
2238 return language_unknown;
2239 }
2240 \f
2241 /* allocate_symtab:
2242
2243 Allocate and partly initialize a new symbol table. Return a pointer
2244 to it. error() if no space.
2245
2246 Caller must set these fields:
2247 LINETABLE(symtab)
2248 symtab->blockvector
2249 symtab->dirname
2250 symtab->free_code
2251 symtab->free_ptr
2252 possibly free_named_symtabs (symtab->filename);
2253 */
2254
2255 struct symtab *
2256 allocate_symtab (char *filename, struct objfile *objfile)
2257 {
2258 struct symtab *symtab;
2259
2260 symtab = (struct symtab *)
2261 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2262 memset (symtab, 0, sizeof (*symtab));
2263 symtab->filename = obsavestring (filename, strlen (filename),
2264 &objfile->objfile_obstack);
2265 symtab->fullname = NULL;
2266 symtab->language = deduce_language_from_filename (filename);
2267 symtab->debugformat = obsavestring ("unknown", 7,
2268 &objfile->objfile_obstack);
2269
2270 /* Hook it to the objfile it comes from */
2271
2272 symtab->objfile = objfile;
2273 symtab->next = objfile->symtabs;
2274 objfile->symtabs = symtab;
2275
2276 /* FIXME: This should go away. It is only defined for the Z8000,
2277 and the Z8000 definition of this macro doesn't have anything to
2278 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2279 here for convenience. */
2280 #ifdef INIT_EXTRA_SYMTAB_INFO
2281 INIT_EXTRA_SYMTAB_INFO (symtab);
2282 #endif
2283
2284 return (symtab);
2285 }
2286
2287 struct partial_symtab *
2288 allocate_psymtab (char *filename, struct objfile *objfile)
2289 {
2290 struct partial_symtab *psymtab;
2291
2292 if (objfile->free_psymtabs)
2293 {
2294 psymtab = objfile->free_psymtabs;
2295 objfile->free_psymtabs = psymtab->next;
2296 }
2297 else
2298 psymtab = (struct partial_symtab *)
2299 obstack_alloc (&objfile->objfile_obstack,
2300 sizeof (struct partial_symtab));
2301
2302 memset (psymtab, 0, sizeof (struct partial_symtab));
2303 psymtab->filename = obsavestring (filename, strlen (filename),
2304 &objfile->objfile_obstack);
2305 psymtab->symtab = NULL;
2306
2307 /* Prepend it to the psymtab list for the objfile it belongs to.
2308 Psymtabs are searched in most recent inserted -> least recent
2309 inserted order. */
2310
2311 psymtab->objfile = objfile;
2312 psymtab->next = objfile->psymtabs;
2313 objfile->psymtabs = psymtab;
2314 #if 0
2315 {
2316 struct partial_symtab **prev_pst;
2317 psymtab->objfile = objfile;
2318 psymtab->next = NULL;
2319 prev_pst = &(objfile->psymtabs);
2320 while ((*prev_pst) != NULL)
2321 prev_pst = &((*prev_pst)->next);
2322 (*prev_pst) = psymtab;
2323 }
2324 #endif
2325
2326 return (psymtab);
2327 }
2328
2329 void
2330 discard_psymtab (struct partial_symtab *pst)
2331 {
2332 struct partial_symtab **prev_pst;
2333
2334 /* From dbxread.c:
2335 Empty psymtabs happen as a result of header files which don't
2336 have any symbols in them. There can be a lot of them. But this
2337 check is wrong, in that a psymtab with N_SLINE entries but
2338 nothing else is not empty, but we don't realize that. Fixing
2339 that without slowing things down might be tricky. */
2340
2341 /* First, snip it out of the psymtab chain */
2342
2343 prev_pst = &(pst->objfile->psymtabs);
2344 while ((*prev_pst) != pst)
2345 prev_pst = &((*prev_pst)->next);
2346 (*prev_pst) = pst->next;
2347
2348 /* Next, put it on a free list for recycling */
2349
2350 pst->next = pst->objfile->free_psymtabs;
2351 pst->objfile->free_psymtabs = pst;
2352 }
2353 \f
2354
2355 /* Reset all data structures in gdb which may contain references to symbol
2356 table data. */
2357
2358 void
2359 clear_symtab_users (void)
2360 {
2361 /* Someday, we should do better than this, by only blowing away
2362 the things that really need to be blown. */
2363 clear_value_history ();
2364 clear_displays ();
2365 clear_internalvars ();
2366 breakpoint_re_set ();
2367 set_default_breakpoint (0, 0, 0, 0);
2368 clear_current_source_symtab_and_line ();
2369 clear_pc_function_cache ();
2370 if (deprecated_target_new_objfile_hook)
2371 deprecated_target_new_objfile_hook (NULL);
2372 }
2373
2374 static void
2375 clear_symtab_users_cleanup (void *ignore)
2376 {
2377 clear_symtab_users ();
2378 }
2379
2380 /* clear_symtab_users_once:
2381
2382 This function is run after symbol reading, or from a cleanup.
2383 If an old symbol table was obsoleted, the old symbol table
2384 has been blown away, but the other GDB data structures that may
2385 reference it have not yet been cleared or re-directed. (The old
2386 symtab was zapped, and the cleanup queued, in free_named_symtab()
2387 below.)
2388
2389 This function can be queued N times as a cleanup, or called
2390 directly; it will do all the work the first time, and then will be a
2391 no-op until the next time it is queued. This works by bumping a
2392 counter at queueing time. Much later when the cleanup is run, or at
2393 the end of symbol processing (in case the cleanup is discarded), if
2394 the queued count is greater than the "done-count", we do the work
2395 and set the done-count to the queued count. If the queued count is
2396 less than or equal to the done-count, we just ignore the call. This
2397 is needed because reading a single .o file will often replace many
2398 symtabs (one per .h file, for example), and we don't want to reset
2399 the breakpoints N times in the user's face.
2400
2401 The reason we both queue a cleanup, and call it directly after symbol
2402 reading, is because the cleanup protects us in case of errors, but is
2403 discarded if symbol reading is successful. */
2404
2405 #if 0
2406 /* FIXME: As free_named_symtabs is currently a big noop this function
2407 is no longer needed. */
2408 static void clear_symtab_users_once (void);
2409
2410 static int clear_symtab_users_queued;
2411 static int clear_symtab_users_done;
2412
2413 static void
2414 clear_symtab_users_once (void)
2415 {
2416 /* Enforce once-per-`do_cleanups'-semantics */
2417 if (clear_symtab_users_queued <= clear_symtab_users_done)
2418 return;
2419 clear_symtab_users_done = clear_symtab_users_queued;
2420
2421 clear_symtab_users ();
2422 }
2423 #endif
2424
2425 /* Delete the specified psymtab, and any others that reference it. */
2426
2427 static void
2428 cashier_psymtab (struct partial_symtab *pst)
2429 {
2430 struct partial_symtab *ps, *pprev = NULL;
2431 int i;
2432
2433 /* Find its previous psymtab in the chain */
2434 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2435 {
2436 if (ps == pst)
2437 break;
2438 pprev = ps;
2439 }
2440
2441 if (ps)
2442 {
2443 /* Unhook it from the chain. */
2444 if (ps == pst->objfile->psymtabs)
2445 pst->objfile->psymtabs = ps->next;
2446 else
2447 pprev->next = ps->next;
2448
2449 /* FIXME, we can't conveniently deallocate the entries in the
2450 partial_symbol lists (global_psymbols/static_psymbols) that
2451 this psymtab points to. These just take up space until all
2452 the psymtabs are reclaimed. Ditto the dependencies list and
2453 filename, which are all in the objfile_obstack. */
2454
2455 /* We need to cashier any psymtab that has this one as a dependency... */
2456 again:
2457 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2458 {
2459 for (i = 0; i < ps->number_of_dependencies; i++)
2460 {
2461 if (ps->dependencies[i] == pst)
2462 {
2463 cashier_psymtab (ps);
2464 goto again; /* Must restart, chain has been munged. */
2465 }
2466 }
2467 }
2468 }
2469 }
2470
2471 /* If a symtab or psymtab for filename NAME is found, free it along
2472 with any dependent breakpoints, displays, etc.
2473 Used when loading new versions of object modules with the "add-file"
2474 command. This is only called on the top-level symtab or psymtab's name;
2475 it is not called for subsidiary files such as .h files.
2476
2477 Return value is 1 if we blew away the environment, 0 if not.
2478 FIXME. The return value appears to never be used.
2479
2480 FIXME. I think this is not the best way to do this. We should
2481 work on being gentler to the environment while still cleaning up
2482 all stray pointers into the freed symtab. */
2483
2484 int
2485 free_named_symtabs (char *name)
2486 {
2487 #if 0
2488 /* FIXME: With the new method of each objfile having it's own
2489 psymtab list, this function needs serious rethinking. In particular,
2490 why was it ever necessary to toss psymtabs with specific compilation
2491 unit filenames, as opposed to all psymtabs from a particular symbol
2492 file? -- fnf
2493 Well, the answer is that some systems permit reloading of particular
2494 compilation units. We want to blow away any old info about these
2495 compilation units, regardless of which objfiles they arrived in. --gnu. */
2496
2497 struct symtab *s;
2498 struct symtab *prev;
2499 struct partial_symtab *ps;
2500 struct blockvector *bv;
2501 int blewit = 0;
2502
2503 /* We only wack things if the symbol-reload switch is set. */
2504 if (!symbol_reloading)
2505 return 0;
2506
2507 /* Some symbol formats have trouble providing file names... */
2508 if (name == 0 || *name == '\0')
2509 return 0;
2510
2511 /* Look for a psymtab with the specified name. */
2512
2513 again2:
2514 for (ps = partial_symtab_list; ps; ps = ps->next)
2515 {
2516 if (strcmp (name, ps->filename) == 0)
2517 {
2518 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2519 goto again2; /* Must restart, chain has been munged */
2520 }
2521 }
2522
2523 /* Look for a symtab with the specified name. */
2524
2525 for (s = symtab_list; s; s = s->next)
2526 {
2527 if (strcmp (name, s->filename) == 0)
2528 break;
2529 prev = s;
2530 }
2531
2532 if (s)
2533 {
2534 if (s == symtab_list)
2535 symtab_list = s->next;
2536 else
2537 prev->next = s->next;
2538
2539 /* For now, queue a delete for all breakpoints, displays, etc., whether
2540 or not they depend on the symtab being freed. This should be
2541 changed so that only those data structures affected are deleted. */
2542
2543 /* But don't delete anything if the symtab is empty.
2544 This test is necessary due to a bug in "dbxread.c" that
2545 causes empty symtabs to be created for N_SO symbols that
2546 contain the pathname of the object file. (This problem
2547 has been fixed in GDB 3.9x). */
2548
2549 bv = BLOCKVECTOR (s);
2550 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2551 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2552 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2553 {
2554 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2555 name);
2556 clear_symtab_users_queued++;
2557 make_cleanup (clear_symtab_users_once, 0);
2558 blewit = 1;
2559 }
2560 else
2561 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2562 name);
2563
2564 free_symtab (s);
2565 }
2566 else
2567 {
2568 /* It is still possible that some breakpoints will be affected
2569 even though no symtab was found, since the file might have
2570 been compiled without debugging, and hence not be associated
2571 with a symtab. In order to handle this correctly, we would need
2572 to keep a list of text address ranges for undebuggable files.
2573 For now, we do nothing, since this is a fairly obscure case. */
2574 ;
2575 }
2576
2577 /* FIXME, what about the minimal symbol table? */
2578 return blewit;
2579 #else
2580 return (0);
2581 #endif
2582 }
2583 \f
2584 /* Allocate and partially fill a partial symtab. It will be
2585 completely filled at the end of the symbol list.
2586
2587 FILENAME is the name of the symbol-file we are reading from. */
2588
2589 struct partial_symtab *
2590 start_psymtab_common (struct objfile *objfile,
2591 struct section_offsets *section_offsets, char *filename,
2592 CORE_ADDR textlow, struct partial_symbol **global_syms,
2593 struct partial_symbol **static_syms)
2594 {
2595 struct partial_symtab *psymtab;
2596
2597 psymtab = allocate_psymtab (filename, objfile);
2598 psymtab->section_offsets = section_offsets;
2599 psymtab->textlow = textlow;
2600 psymtab->texthigh = psymtab->textlow; /* default */
2601 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2602 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2603 return (psymtab);
2604 }
2605 \f
2606 /* Add a symbol with a long value to a psymtab.
2607 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2608 Return the partial symbol that has been added. */
2609
2610 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2611 symbol is so that callers can get access to the symbol's demangled
2612 name, which they don't have any cheap way to determine otherwise.
2613 (Currenly, dwarf2read.c is the only file who uses that information,
2614 though it's possible that other readers might in the future.)
2615 Elena wasn't thrilled about that, and I don't blame her, but we
2616 couldn't come up with a better way to get that information. If
2617 it's needed in other situations, we could consider breaking up
2618 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2619 cache. */
2620
2621 const struct partial_symbol *
2622 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2623 enum address_class class,
2624 struct psymbol_allocation_list *list, long val, /* Value as a long */
2625 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2626 enum language language, struct objfile *objfile)
2627 {
2628 struct partial_symbol *psym;
2629 char *buf = alloca (namelength + 1);
2630 /* psymbol is static so that there will be no uninitialized gaps in the
2631 structure which might contain random data, causing cache misses in
2632 bcache. */
2633 static struct partial_symbol psymbol;
2634
2635 /* Create local copy of the partial symbol */
2636 memcpy (buf, name, namelength);
2637 buf[namelength] = '\0';
2638 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2639 if (val != 0)
2640 {
2641 SYMBOL_VALUE (&psymbol) = val;
2642 }
2643 else
2644 {
2645 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2646 }
2647 SYMBOL_SECTION (&psymbol) = 0;
2648 SYMBOL_LANGUAGE (&psymbol) = language;
2649 PSYMBOL_DOMAIN (&psymbol) = domain;
2650 PSYMBOL_CLASS (&psymbol) = class;
2651
2652 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2653
2654 /* Stash the partial symbol away in the cache */
2655 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2656 objfile->psymbol_cache);
2657
2658 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2659 if (list->next >= list->list + list->size)
2660 {
2661 extend_psymbol_list (list, objfile);
2662 }
2663 *list->next++ = psym;
2664 OBJSTAT (objfile, n_psyms++);
2665
2666 return psym;
2667 }
2668
2669 /* Add a symbol with a long value to a psymtab. This differs from
2670 * add_psymbol_to_list above in taking both a mangled and a demangled
2671 * name. */
2672
2673 void
2674 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2675 int dem_namelength, domain_enum domain,
2676 enum address_class class,
2677 struct psymbol_allocation_list *list, long val, /* Value as a long */
2678 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2679 enum language language,
2680 struct objfile *objfile)
2681 {
2682 struct partial_symbol *psym;
2683 char *buf = alloca (namelength + 1);
2684 /* psymbol is static so that there will be no uninitialized gaps in the
2685 structure which might contain random data, causing cache misses in
2686 bcache. */
2687 static struct partial_symbol psymbol;
2688
2689 /* Create local copy of the partial symbol */
2690
2691 memcpy (buf, name, namelength);
2692 buf[namelength] = '\0';
2693 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2694 objfile->psymbol_cache);
2695
2696 buf = alloca (dem_namelength + 1);
2697 memcpy (buf, dem_name, dem_namelength);
2698 buf[dem_namelength] = '\0';
2699
2700 switch (language)
2701 {
2702 case language_c:
2703 case language_cplus:
2704 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2705 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2706 break;
2707 /* FIXME What should be done for the default case? Ignoring for now. */
2708 }
2709
2710 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2711 if (val != 0)
2712 {
2713 SYMBOL_VALUE (&psymbol) = val;
2714 }
2715 else
2716 {
2717 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2718 }
2719 SYMBOL_SECTION (&psymbol) = 0;
2720 SYMBOL_LANGUAGE (&psymbol) = language;
2721 PSYMBOL_DOMAIN (&psymbol) = domain;
2722 PSYMBOL_CLASS (&psymbol) = class;
2723 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2724
2725 /* Stash the partial symbol away in the cache */
2726 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2727 objfile->psymbol_cache);
2728
2729 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2730 if (list->next >= list->list + list->size)
2731 {
2732 extend_psymbol_list (list, objfile);
2733 }
2734 *list->next++ = psym;
2735 OBJSTAT (objfile, n_psyms++);
2736 }
2737
2738 /* Initialize storage for partial symbols. */
2739
2740 void
2741 init_psymbol_list (struct objfile *objfile, int total_symbols)
2742 {
2743 /* Free any previously allocated psymbol lists. */
2744
2745 if (objfile->global_psymbols.list)
2746 {
2747 xfree (objfile->global_psymbols.list);
2748 }
2749 if (objfile->static_psymbols.list)
2750 {
2751 xfree (objfile->static_psymbols.list);
2752 }
2753
2754 /* Current best guess is that approximately a twentieth
2755 of the total symbols (in a debugging file) are global or static
2756 oriented symbols */
2757
2758 objfile->global_psymbols.size = total_symbols / 10;
2759 objfile->static_psymbols.size = total_symbols / 10;
2760
2761 if (objfile->global_psymbols.size > 0)
2762 {
2763 objfile->global_psymbols.next =
2764 objfile->global_psymbols.list = (struct partial_symbol **)
2765 xmalloc ((objfile->global_psymbols.size
2766 * sizeof (struct partial_symbol *)));
2767 }
2768 if (objfile->static_psymbols.size > 0)
2769 {
2770 objfile->static_psymbols.next =
2771 objfile->static_psymbols.list = (struct partial_symbol **)
2772 xmalloc ((objfile->static_psymbols.size
2773 * sizeof (struct partial_symbol *)));
2774 }
2775 }
2776
2777 /* OVERLAYS:
2778 The following code implements an abstraction for debugging overlay sections.
2779
2780 The target model is as follows:
2781 1) The gnu linker will permit multiple sections to be mapped into the
2782 same VMA, each with its own unique LMA (or load address).
2783 2) It is assumed that some runtime mechanism exists for mapping the
2784 sections, one by one, from the load address into the VMA address.
2785 3) This code provides a mechanism for gdb to keep track of which
2786 sections should be considered to be mapped from the VMA to the LMA.
2787 This information is used for symbol lookup, and memory read/write.
2788 For instance, if a section has been mapped then its contents
2789 should be read from the VMA, otherwise from the LMA.
2790
2791 Two levels of debugger support for overlays are available. One is
2792 "manual", in which the debugger relies on the user to tell it which
2793 overlays are currently mapped. This level of support is
2794 implemented entirely in the core debugger, and the information about
2795 whether a section is mapped is kept in the objfile->obj_section table.
2796
2797 The second level of support is "automatic", and is only available if
2798 the target-specific code provides functionality to read the target's
2799 overlay mapping table, and translate its contents for the debugger
2800 (by updating the mapped state information in the obj_section tables).
2801
2802 The interface is as follows:
2803 User commands:
2804 overlay map <name> -- tell gdb to consider this section mapped
2805 overlay unmap <name> -- tell gdb to consider this section unmapped
2806 overlay list -- list the sections that GDB thinks are mapped
2807 overlay read-target -- get the target's state of what's mapped
2808 overlay off/manual/auto -- set overlay debugging state
2809 Functional interface:
2810 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2811 section, return that section.
2812 find_pc_overlay(pc): find any overlay section that contains
2813 the pc, either in its VMA or its LMA
2814 overlay_is_mapped(sect): true if overlay is marked as mapped
2815 section_is_overlay(sect): true if section's VMA != LMA
2816 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2817 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2818 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2819 overlay_mapped_address(...): map an address from section's LMA to VMA
2820 overlay_unmapped_address(...): map an address from section's VMA to LMA
2821 symbol_overlayed_address(...): Return a "current" address for symbol:
2822 either in VMA or LMA depending on whether
2823 the symbol's section is currently mapped
2824 */
2825
2826 /* Overlay debugging state: */
2827
2828 enum overlay_debugging_state overlay_debugging = ovly_off;
2829 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2830
2831 /* Target vector for refreshing overlay mapped state */
2832 static void simple_overlay_update (struct obj_section *);
2833 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2834
2835 /* Function: section_is_overlay (SECTION)
2836 Returns true if SECTION has VMA not equal to LMA, ie.
2837 SECTION is loaded at an address different from where it will "run". */
2838
2839 int
2840 section_is_overlay (asection *section)
2841 {
2842 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2843
2844 if (overlay_debugging)
2845 if (section && section->lma != 0 &&
2846 section->vma != section->lma)
2847 return 1;
2848
2849 return 0;
2850 }
2851
2852 /* Function: overlay_invalidate_all (void)
2853 Invalidate the mapped state of all overlay sections (mark it as stale). */
2854
2855 static void
2856 overlay_invalidate_all (void)
2857 {
2858 struct objfile *objfile;
2859 struct obj_section *sect;
2860
2861 ALL_OBJSECTIONS (objfile, sect)
2862 if (section_is_overlay (sect->the_bfd_section))
2863 sect->ovly_mapped = -1;
2864 }
2865
2866 /* Function: overlay_is_mapped (SECTION)
2867 Returns true if section is an overlay, and is currently mapped.
2868 Private: public access is thru function section_is_mapped.
2869
2870 Access to the ovly_mapped flag is restricted to this function, so
2871 that we can do automatic update. If the global flag
2872 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2873 overlay_invalidate_all. If the mapped state of the particular
2874 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2875
2876 static int
2877 overlay_is_mapped (struct obj_section *osect)
2878 {
2879 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2880 return 0;
2881
2882 switch (overlay_debugging)
2883 {
2884 default:
2885 case ovly_off:
2886 return 0; /* overlay debugging off */
2887 case ovly_auto: /* overlay debugging automatic */
2888 /* Unles there is a target_overlay_update function,
2889 there's really nothing useful to do here (can't really go auto) */
2890 if (target_overlay_update)
2891 {
2892 if (overlay_cache_invalid)
2893 {
2894 overlay_invalidate_all ();
2895 overlay_cache_invalid = 0;
2896 }
2897 if (osect->ovly_mapped == -1)
2898 (*target_overlay_update) (osect);
2899 }
2900 /* fall thru to manual case */
2901 case ovly_on: /* overlay debugging manual */
2902 return osect->ovly_mapped == 1;
2903 }
2904 }
2905
2906 /* Function: section_is_mapped
2907 Returns true if section is an overlay, and is currently mapped. */
2908
2909 int
2910 section_is_mapped (asection *section)
2911 {
2912 struct objfile *objfile;
2913 struct obj_section *osect;
2914
2915 if (overlay_debugging)
2916 if (section && section_is_overlay (section))
2917 ALL_OBJSECTIONS (objfile, osect)
2918 if (osect->the_bfd_section == section)
2919 return overlay_is_mapped (osect);
2920
2921 return 0;
2922 }
2923
2924 /* Function: pc_in_unmapped_range
2925 If PC falls into the lma range of SECTION, return true, else false. */
2926
2927 CORE_ADDR
2928 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2929 {
2930 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2931
2932 int size;
2933
2934 if (overlay_debugging)
2935 if (section && section_is_overlay (section))
2936 {
2937 size = bfd_get_section_size (section);
2938 if (section->lma <= pc && pc < section->lma + size)
2939 return 1;
2940 }
2941 return 0;
2942 }
2943
2944 /* Function: pc_in_mapped_range
2945 If PC falls into the vma range of SECTION, return true, else false. */
2946
2947 CORE_ADDR
2948 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2949 {
2950 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2951
2952 int size;
2953
2954 if (overlay_debugging)
2955 if (section && section_is_overlay (section))
2956 {
2957 size = bfd_get_section_size (section);
2958 if (section->vma <= pc && pc < section->vma + size)
2959 return 1;
2960 }
2961 return 0;
2962 }
2963
2964
2965 /* Return true if the mapped ranges of sections A and B overlap, false
2966 otherwise. */
2967 static int
2968 sections_overlap (asection *a, asection *b)
2969 {
2970 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2971
2972 CORE_ADDR a_start = a->vma;
2973 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
2974 CORE_ADDR b_start = b->vma;
2975 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
2976
2977 return (a_start < b_end && b_start < a_end);
2978 }
2979
2980 /* Function: overlay_unmapped_address (PC, SECTION)
2981 Returns the address corresponding to PC in the unmapped (load) range.
2982 May be the same as PC. */
2983
2984 CORE_ADDR
2985 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2986 {
2987 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2988
2989 if (overlay_debugging)
2990 if (section && section_is_overlay (section) &&
2991 pc_in_mapped_range (pc, section))
2992 return pc + section->lma - section->vma;
2993
2994 return pc;
2995 }
2996
2997 /* Function: overlay_mapped_address (PC, SECTION)
2998 Returns the address corresponding to PC in the mapped (runtime) range.
2999 May be the same as PC. */
3000
3001 CORE_ADDR
3002 overlay_mapped_address (CORE_ADDR pc, asection *section)
3003 {
3004 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3005
3006 if (overlay_debugging)
3007 if (section && section_is_overlay (section) &&
3008 pc_in_unmapped_range (pc, section))
3009 return pc + section->vma - section->lma;
3010
3011 return pc;
3012 }
3013
3014
3015 /* Function: symbol_overlayed_address
3016 Return one of two addresses (relative to the VMA or to the LMA),
3017 depending on whether the section is mapped or not. */
3018
3019 CORE_ADDR
3020 symbol_overlayed_address (CORE_ADDR address, asection *section)
3021 {
3022 if (overlay_debugging)
3023 {
3024 /* If the symbol has no section, just return its regular address. */
3025 if (section == 0)
3026 return address;
3027 /* If the symbol's section is not an overlay, just return its address */
3028 if (!section_is_overlay (section))
3029 return address;
3030 /* If the symbol's section is mapped, just return its address */
3031 if (section_is_mapped (section))
3032 return address;
3033 /*
3034 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3035 * then return its LOADED address rather than its vma address!!
3036 */
3037 return overlay_unmapped_address (address, section);
3038 }
3039 return address;
3040 }
3041
3042 /* Function: find_pc_overlay (PC)
3043 Return the best-match overlay section for PC:
3044 If PC matches a mapped overlay section's VMA, return that section.
3045 Else if PC matches an unmapped section's VMA, return that section.
3046 Else if PC matches an unmapped section's LMA, return that section. */
3047
3048 asection *
3049 find_pc_overlay (CORE_ADDR pc)
3050 {
3051 struct objfile *objfile;
3052 struct obj_section *osect, *best_match = NULL;
3053
3054 if (overlay_debugging)
3055 ALL_OBJSECTIONS (objfile, osect)
3056 if (section_is_overlay (osect->the_bfd_section))
3057 {
3058 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3059 {
3060 if (overlay_is_mapped (osect))
3061 return osect->the_bfd_section;
3062 else
3063 best_match = osect;
3064 }
3065 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3066 best_match = osect;
3067 }
3068 return best_match ? best_match->the_bfd_section : NULL;
3069 }
3070
3071 /* Function: find_pc_mapped_section (PC)
3072 If PC falls into the VMA address range of an overlay section that is
3073 currently marked as MAPPED, return that section. Else return NULL. */
3074
3075 asection *
3076 find_pc_mapped_section (CORE_ADDR pc)
3077 {
3078 struct objfile *objfile;
3079 struct obj_section *osect;
3080
3081 if (overlay_debugging)
3082 ALL_OBJSECTIONS (objfile, osect)
3083 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3084 overlay_is_mapped (osect))
3085 return osect->the_bfd_section;
3086
3087 return NULL;
3088 }
3089
3090 /* Function: list_overlays_command
3091 Print a list of mapped sections and their PC ranges */
3092
3093 void
3094 list_overlays_command (char *args, int from_tty)
3095 {
3096 int nmapped = 0;
3097 struct objfile *objfile;
3098 struct obj_section *osect;
3099
3100 if (overlay_debugging)
3101 ALL_OBJSECTIONS (objfile, osect)
3102 if (overlay_is_mapped (osect))
3103 {
3104 const char *name;
3105 bfd_vma lma, vma;
3106 int size;
3107
3108 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3109 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3110 size = bfd_get_section_size (osect->the_bfd_section);
3111 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3112
3113 printf_filtered ("Section %s, loaded at ", name);
3114 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3115 puts_filtered (" - ");
3116 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3117 printf_filtered (", mapped at ");
3118 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3119 puts_filtered (" - ");
3120 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3121 puts_filtered ("\n");
3122
3123 nmapped++;
3124 }
3125 if (nmapped == 0)
3126 printf_filtered (_("No sections are mapped.\n"));
3127 }
3128
3129 /* Function: map_overlay_command
3130 Mark the named section as mapped (ie. residing at its VMA address). */
3131
3132 void
3133 map_overlay_command (char *args, int from_tty)
3134 {
3135 struct objfile *objfile, *objfile2;
3136 struct obj_section *sec, *sec2;
3137 asection *bfdsec;
3138
3139 if (!overlay_debugging)
3140 error (_("\
3141 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3142 the 'overlay manual' command."));
3143
3144 if (args == 0 || *args == 0)
3145 error (_("Argument required: name of an overlay section"));
3146
3147 /* First, find a section matching the user supplied argument */
3148 ALL_OBJSECTIONS (objfile, sec)
3149 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3150 {
3151 /* Now, check to see if the section is an overlay. */
3152 bfdsec = sec->the_bfd_section;
3153 if (!section_is_overlay (bfdsec))
3154 continue; /* not an overlay section */
3155
3156 /* Mark the overlay as "mapped" */
3157 sec->ovly_mapped = 1;
3158
3159 /* Next, make a pass and unmap any sections that are
3160 overlapped by this new section: */
3161 ALL_OBJSECTIONS (objfile2, sec2)
3162 if (sec2->ovly_mapped
3163 && sec != sec2
3164 && sec->the_bfd_section != sec2->the_bfd_section
3165 && sections_overlap (sec->the_bfd_section,
3166 sec2->the_bfd_section))
3167 {
3168 if (info_verbose)
3169 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3170 bfd_section_name (objfile->obfd,
3171 sec2->the_bfd_section));
3172 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3173 }
3174 return;
3175 }
3176 error (_("No overlay section called %s"), args);
3177 }
3178
3179 /* Function: unmap_overlay_command
3180 Mark the overlay section as unmapped
3181 (ie. resident in its LMA address range, rather than the VMA range). */
3182
3183 void
3184 unmap_overlay_command (char *args, int from_tty)
3185 {
3186 struct objfile *objfile;
3187 struct obj_section *sec;
3188
3189 if (!overlay_debugging)
3190 error (_("\
3191 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3192 the 'overlay manual' command."));
3193
3194 if (args == 0 || *args == 0)
3195 error (_("Argument required: name of an overlay section"));
3196
3197 /* First, find a section matching the user supplied argument */
3198 ALL_OBJSECTIONS (objfile, sec)
3199 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3200 {
3201 if (!sec->ovly_mapped)
3202 error (_("Section %s is not mapped"), args);
3203 sec->ovly_mapped = 0;
3204 return;
3205 }
3206 error (_("No overlay section called %s"), args);
3207 }
3208
3209 /* Function: overlay_auto_command
3210 A utility command to turn on overlay debugging.
3211 Possibly this should be done via a set/show command. */
3212
3213 static void
3214 overlay_auto_command (char *args, int from_tty)
3215 {
3216 overlay_debugging = ovly_auto;
3217 enable_overlay_breakpoints ();
3218 if (info_verbose)
3219 printf_unfiltered (_("Automatic overlay debugging enabled."));
3220 }
3221
3222 /* Function: overlay_manual_command
3223 A utility command to turn on overlay debugging.
3224 Possibly this should be done via a set/show command. */
3225
3226 static void
3227 overlay_manual_command (char *args, int from_tty)
3228 {
3229 overlay_debugging = ovly_on;
3230 disable_overlay_breakpoints ();
3231 if (info_verbose)
3232 printf_unfiltered (_("Overlay debugging enabled."));
3233 }
3234
3235 /* Function: overlay_off_command
3236 A utility command to turn on overlay debugging.
3237 Possibly this should be done via a set/show command. */
3238
3239 static void
3240 overlay_off_command (char *args, int from_tty)
3241 {
3242 overlay_debugging = ovly_off;
3243 disable_overlay_breakpoints ();
3244 if (info_verbose)
3245 printf_unfiltered (_("Overlay debugging disabled."));
3246 }
3247
3248 static void
3249 overlay_load_command (char *args, int from_tty)
3250 {
3251 if (target_overlay_update)
3252 (*target_overlay_update) (NULL);
3253 else
3254 error (_("This target does not know how to read its overlay state."));
3255 }
3256
3257 /* Function: overlay_command
3258 A place-holder for a mis-typed command */
3259
3260 /* Command list chain containing all defined "overlay" subcommands. */
3261 struct cmd_list_element *overlaylist;
3262
3263 static void
3264 overlay_command (char *args, int from_tty)
3265 {
3266 printf_unfiltered
3267 ("\"overlay\" must be followed by the name of an overlay command.\n");
3268 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3269 }
3270
3271
3272 /* Target Overlays for the "Simplest" overlay manager:
3273
3274 This is GDB's default target overlay layer. It works with the
3275 minimal overlay manager supplied as an example by Cygnus. The
3276 entry point is via a function pointer "target_overlay_update",
3277 so targets that use a different runtime overlay manager can
3278 substitute their own overlay_update function and take over the
3279 function pointer.
3280
3281 The overlay_update function pokes around in the target's data structures
3282 to see what overlays are mapped, and updates GDB's overlay mapping with
3283 this information.
3284
3285 In this simple implementation, the target data structures are as follows:
3286 unsigned _novlys; /# number of overlay sections #/
3287 unsigned _ovly_table[_novlys][4] = {
3288 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3289 {..., ..., ..., ...},
3290 }
3291 unsigned _novly_regions; /# number of overlay regions #/
3292 unsigned _ovly_region_table[_novly_regions][3] = {
3293 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3294 {..., ..., ...},
3295 }
3296 These functions will attempt to update GDB's mappedness state in the
3297 symbol section table, based on the target's mappedness state.
3298
3299 To do this, we keep a cached copy of the target's _ovly_table, and
3300 attempt to detect when the cached copy is invalidated. The main
3301 entry point is "simple_overlay_update(SECT), which looks up SECT in
3302 the cached table and re-reads only the entry for that section from
3303 the target (whenever possible).
3304 */
3305
3306 /* Cached, dynamically allocated copies of the target data structures: */
3307 static unsigned (*cache_ovly_table)[4] = 0;
3308 #if 0
3309 static unsigned (*cache_ovly_region_table)[3] = 0;
3310 #endif
3311 static unsigned cache_novlys = 0;
3312 #if 0
3313 static unsigned cache_novly_regions = 0;
3314 #endif
3315 static CORE_ADDR cache_ovly_table_base = 0;
3316 #if 0
3317 static CORE_ADDR cache_ovly_region_table_base = 0;
3318 #endif
3319 enum ovly_index
3320 {
3321 VMA, SIZE, LMA, MAPPED
3322 };
3323 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3324
3325 /* Throw away the cached copy of _ovly_table */
3326 static void
3327 simple_free_overlay_table (void)
3328 {
3329 if (cache_ovly_table)
3330 xfree (cache_ovly_table);
3331 cache_novlys = 0;
3332 cache_ovly_table = NULL;
3333 cache_ovly_table_base = 0;
3334 }
3335
3336 #if 0
3337 /* Throw away the cached copy of _ovly_region_table */
3338 static void
3339 simple_free_overlay_region_table (void)
3340 {
3341 if (cache_ovly_region_table)
3342 xfree (cache_ovly_region_table);
3343 cache_novly_regions = 0;
3344 cache_ovly_region_table = NULL;
3345 cache_ovly_region_table_base = 0;
3346 }
3347 #endif
3348
3349 /* Read an array of ints from the target into a local buffer.
3350 Convert to host order. int LEN is number of ints */
3351 static void
3352 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3353 {
3354 /* FIXME (alloca): Not safe if array is very large. */
3355 char *buf = alloca (len * TARGET_LONG_BYTES);
3356 int i;
3357
3358 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3359 for (i = 0; i < len; i++)
3360 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3361 TARGET_LONG_BYTES);
3362 }
3363
3364 /* Find and grab a copy of the target _ovly_table
3365 (and _novlys, which is needed for the table's size) */
3366 static int
3367 simple_read_overlay_table (void)
3368 {
3369 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3370
3371 simple_free_overlay_table ();
3372 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3373 if (! novlys_msym)
3374 {
3375 error (_("Error reading inferior's overlay table: "
3376 "couldn't find `_novlys' variable\n"
3377 "in inferior. Use `overlay manual' mode."));
3378 return 0;
3379 }
3380
3381 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3382 if (! ovly_table_msym)
3383 {
3384 error (_("Error reading inferior's overlay table: couldn't find "
3385 "`_ovly_table' array\n"
3386 "in inferior. Use `overlay manual' mode."));
3387 return 0;
3388 }
3389
3390 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3391 cache_ovly_table
3392 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3393 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3394 read_target_long_array (cache_ovly_table_base,
3395 (int *) cache_ovly_table,
3396 cache_novlys * 4);
3397
3398 return 1; /* SUCCESS */
3399 }
3400
3401 #if 0
3402 /* Find and grab a copy of the target _ovly_region_table
3403 (and _novly_regions, which is needed for the table's size) */
3404 static int
3405 simple_read_overlay_region_table (void)
3406 {
3407 struct minimal_symbol *msym;
3408
3409 simple_free_overlay_region_table ();
3410 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3411 if (msym != NULL)
3412 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3413 else
3414 return 0; /* failure */
3415 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3416 if (cache_ovly_region_table != NULL)
3417 {
3418 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3419 if (msym != NULL)
3420 {
3421 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3422 read_target_long_array (cache_ovly_region_table_base,
3423 (int *) cache_ovly_region_table,
3424 cache_novly_regions * 3);
3425 }
3426 else
3427 return 0; /* failure */
3428 }
3429 else
3430 return 0; /* failure */
3431 return 1; /* SUCCESS */
3432 }
3433 #endif
3434
3435 /* Function: simple_overlay_update_1
3436 A helper function for simple_overlay_update. Assuming a cached copy
3437 of _ovly_table exists, look through it to find an entry whose vma,
3438 lma and size match those of OSECT. Re-read the entry and make sure
3439 it still matches OSECT (else the table may no longer be valid).
3440 Set OSECT's mapped state to match the entry. Return: 1 for
3441 success, 0 for failure. */
3442
3443 static int
3444 simple_overlay_update_1 (struct obj_section *osect)
3445 {
3446 int i, size;
3447 bfd *obfd = osect->objfile->obfd;
3448 asection *bsect = osect->the_bfd_section;
3449
3450 size = bfd_get_section_size (osect->the_bfd_section);
3451 for (i = 0; i < cache_novlys; i++)
3452 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3453 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3454 /* && cache_ovly_table[i][SIZE] == size */ )
3455 {
3456 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3457 (int *) cache_ovly_table[i], 4);
3458 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3459 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3460 /* && cache_ovly_table[i][SIZE] == size */ )
3461 {
3462 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3463 return 1;
3464 }
3465 else /* Warning! Warning! Target's ovly table has changed! */
3466 return 0;
3467 }
3468 return 0;
3469 }
3470
3471 /* Function: simple_overlay_update
3472 If OSECT is NULL, then update all sections' mapped state
3473 (after re-reading the entire target _ovly_table).
3474 If OSECT is non-NULL, then try to find a matching entry in the
3475 cached ovly_table and update only OSECT's mapped state.
3476 If a cached entry can't be found or the cache isn't valid, then
3477 re-read the entire cache, and go ahead and update all sections. */
3478
3479 static void
3480 simple_overlay_update (struct obj_section *osect)
3481 {
3482 struct objfile *objfile;
3483
3484 /* Were we given an osect to look up? NULL means do all of them. */
3485 if (osect)
3486 /* Have we got a cached copy of the target's overlay table? */
3487 if (cache_ovly_table != NULL)
3488 /* Does its cached location match what's currently in the symtab? */
3489 if (cache_ovly_table_base ==
3490 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3491 /* Then go ahead and try to look up this single section in the cache */
3492 if (simple_overlay_update_1 (osect))
3493 /* Found it! We're done. */
3494 return;
3495
3496 /* Cached table no good: need to read the entire table anew.
3497 Or else we want all the sections, in which case it's actually
3498 more efficient to read the whole table in one block anyway. */
3499
3500 if (! simple_read_overlay_table ())
3501 return;
3502
3503 /* Now may as well update all sections, even if only one was requested. */
3504 ALL_OBJSECTIONS (objfile, osect)
3505 if (section_is_overlay (osect->the_bfd_section))
3506 {
3507 int i, size;
3508 bfd *obfd = osect->objfile->obfd;
3509 asection *bsect = osect->the_bfd_section;
3510
3511 size = bfd_get_section_size (bsect);
3512 for (i = 0; i < cache_novlys; i++)
3513 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3514 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3515 /* && cache_ovly_table[i][SIZE] == size */ )
3516 { /* obj_section matches i'th entry in ovly_table */
3517 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3518 break; /* finished with inner for loop: break out */
3519 }
3520 }
3521 }
3522
3523 /* Set the output sections and output offsets for section SECTP in
3524 ABFD. The relocation code in BFD will read these offsets, so we
3525 need to be sure they're initialized. We map each section to itself,
3526 with no offset; this means that SECTP->vma will be honored. */
3527
3528 static void
3529 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3530 {
3531 sectp->output_section = sectp;
3532 sectp->output_offset = 0;
3533 }
3534
3535 /* Relocate the contents of a debug section SECTP in ABFD. The
3536 contents are stored in BUF if it is non-NULL, or returned in a
3537 malloc'd buffer otherwise.
3538
3539 For some platforms and debug info formats, shared libraries contain
3540 relocations against the debug sections (particularly for DWARF-2;
3541 one affected platform is PowerPC GNU/Linux, although it depends on
3542 the version of the linker in use). Also, ELF object files naturally
3543 have unresolved relocations for their debug sections. We need to apply
3544 the relocations in order to get the locations of symbols correct. */
3545
3546 bfd_byte *
3547 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3548 {
3549 /* We're only interested in debugging sections with relocation
3550 information. */
3551 if ((sectp->flags & SEC_RELOC) == 0)
3552 return NULL;
3553 if ((sectp->flags & SEC_DEBUGGING) == 0)
3554 return NULL;
3555
3556 /* We will handle section offsets properly elsewhere, so relocate as if
3557 all sections begin at 0. */
3558 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3559
3560 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3561 }
3562
3563 void
3564 _initialize_symfile (void)
3565 {
3566 struct cmd_list_element *c;
3567
3568 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3569 Load symbol table from executable file FILE.\n\
3570 The `file' command can also load symbol tables, as well as setting the file\n\
3571 to execute."), &cmdlist);
3572 set_cmd_completer (c, filename_completer);
3573
3574 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3575 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3576 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3577 ADDR is the starting address of the file's text.\n\
3578 The optional arguments are section-name section-address pairs and\n\
3579 should be specified if the data and bss segments are not contiguous\n\
3580 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3581 &cmdlist);
3582 set_cmd_completer (c, filename_completer);
3583
3584 c = add_cmd ("add-shared-symbol-files", class_files,
3585 add_shared_symbol_files_command, _("\
3586 Load the symbols from shared objects in the dynamic linker's link map."),
3587 &cmdlist);
3588 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3589 &cmdlist);
3590
3591 c = add_cmd ("load", class_files, load_command, _("\
3592 Dynamically load FILE into the running program, and record its symbols\n\
3593 for access from GDB."), &cmdlist);
3594 set_cmd_completer (c, filename_completer);
3595
3596 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3597 &symbol_reloading, _("\
3598 Set dynamic symbol table reloading multiple times in one run."), _("\
3599 Show dynamic symbol table reloading multiple times in one run."), NULL,
3600 NULL,
3601 show_symbol_reloading,
3602 &setlist, &showlist);
3603
3604 add_prefix_cmd ("overlay", class_support, overlay_command,
3605 _("Commands for debugging overlays."), &overlaylist,
3606 "overlay ", 0, &cmdlist);
3607
3608 add_com_alias ("ovly", "overlay", class_alias, 1);
3609 add_com_alias ("ov", "overlay", class_alias, 1);
3610
3611 add_cmd ("map-overlay", class_support, map_overlay_command,
3612 _("Assert that an overlay section is mapped."), &overlaylist);
3613
3614 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3615 _("Assert that an overlay section is unmapped."), &overlaylist);
3616
3617 add_cmd ("list-overlays", class_support, list_overlays_command,
3618 _("List mappings of overlay sections."), &overlaylist);
3619
3620 add_cmd ("manual", class_support, overlay_manual_command,
3621 _("Enable overlay debugging."), &overlaylist);
3622 add_cmd ("off", class_support, overlay_off_command,
3623 _("Disable overlay debugging."), &overlaylist);
3624 add_cmd ("auto", class_support, overlay_auto_command,
3625 _("Enable automatic overlay debugging."), &overlaylist);
3626 add_cmd ("load-target", class_support, overlay_load_command,
3627 _("Read the overlay mapping state from the target."), &overlaylist);
3628
3629 /* Filename extension to source language lookup table: */
3630 init_filename_language_table ();
3631 add_setshow_string_noescape_cmd ("extension-language", class_files,
3632 &ext_args, _("\
3633 Set mapping between filename extension and source language."), _("\
3634 Show mapping between filename extension and source language."), _("\
3635 Usage: set extension-language .foo bar"),
3636 set_ext_lang_command,
3637 show_ext_args,
3638 &setlist, &showlist);
3639
3640 add_info ("extensions", info_ext_lang_command,
3641 _("All filename extensions associated with a source language."));
3642
3643 add_setshow_integer_cmd ("download-write-size", class_obscure,
3644 &download_write_size, _("\
3645 Set the write size used when downloading a program."), _("\
3646 Show the write size used when downloading a program."), _("\
3647 Only used when downloading a program onto a remote\n\
3648 target. Specify zero, or a negative value, to disable\n\
3649 blocked writes. The actual size of each transfer is also\n\
3650 limited by the size of the target packet and the memory\n\
3651 cache."),
3652 NULL,
3653 show_download_write_size,
3654 &setlist, &showlist);
3655
3656 debug_file_directory = xstrdup (DEBUGDIR);
3657 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3658 &debug_file_directory, _("\
3659 Set the directory where separate debug symbols are searched for."), _("\
3660 Show the directory where separate debug symbols are searched for."), _("\
3661 Separate debug symbols are first searched for in the same\n\
3662 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3663 and lastly at the path of the directory of the binary with\n\
3664 the global debug-file directory prepended."),
3665 NULL,
3666 show_debug_file_directory,
3667 &setlist, &showlist);
3668 }
This page took 0.104829 seconds and 4 git commands to generate.