6e09cbd1a8ed78e237d3b5ffa1e85cf8d7874095
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
91 static void add_symbol_file_command (char *, int);
92
93 bfd *symfile_bfd_open (char *);
94
95 int get_section_index (struct objfile *, char *);
96
97 static const struct sym_fns *find_sym_fns (bfd *);
98
99 static void decrement_reading_symtab (void *);
100
101 static void overlay_invalidate_all (void);
102
103 void list_overlays_command (char *, int);
104
105 void map_overlay_command (char *, int);
106
107 void unmap_overlay_command (char *, int);
108
109 static void overlay_auto_command (char *, int);
110
111 static void overlay_manual_command (char *, int);
112
113 static void overlay_off_command (char *, int);
114
115 static void overlay_load_command (char *, int);
116
117 static void overlay_command (char *, int);
118
119 static void simple_free_overlay_table (void);
120
121 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
122 enum bfd_endian);
123
124 static int simple_read_overlay_table (void);
125
126 static int simple_overlay_update_1 (struct obj_section *);
127
128 static void add_filename_language (char *ext, enum language lang);
129
130 static void info_ext_lang_command (char *args, int from_tty);
131
132 static void init_filename_language_table (void);
133
134 static void symfile_find_segment_sections (struct objfile *objfile);
135
136 void _initialize_symfile (void);
137
138 /* List of all available sym_fns. On gdb startup, each object file reader
139 calls add_symtab_fns() to register information on each format it is
140 prepared to read. */
141
142 typedef const struct sym_fns *sym_fns_ptr;
143 DEF_VEC_P (sym_fns_ptr);
144
145 static VEC (sym_fns_ptr) *symtab_fns = NULL;
146
147 /* If non-zero, shared library symbols will be added automatically
148 when the inferior is created, new libraries are loaded, or when
149 attaching to the inferior. This is almost always what users will
150 want to have happen; but for very large programs, the startup time
151 will be excessive, and so if this is a problem, the user can clear
152 this flag and then add the shared library symbols as needed. Note
153 that there is a potential for confusion, since if the shared
154 library symbols are not loaded, commands like "info fun" will *not*
155 report all the functions that are actually present. */
156
157 int auto_solib_add = 1;
158 \f
159
160 /* Make a null terminated copy of the string at PTR with SIZE characters in
161 the obstack pointed to by OBSTACKP . Returns the address of the copy.
162 Note that the string at PTR does not have to be null terminated, I.e. it
163 may be part of a larger string and we are only saving a substring. */
164
165 char *
166 obsavestring (const char *ptr, int size, struct obstack *obstackp)
167 {
168 char *p = (char *) obstack_alloc (obstackp, size + 1);
169 /* Open-coded memcpy--saves function call time. These strings are usually
170 short. FIXME: Is this really still true with a compiler that can
171 inline memcpy? */
172 {
173 const char *p1 = ptr;
174 char *p2 = p;
175 const char *end = ptr + size;
176
177 while (p1 != end)
178 *p2++ = *p1++;
179 }
180 p[size] = 0;
181 return p;
182 }
183
184 /* Concatenate NULL terminated variable argument list of `const char *'
185 strings; return the new string. Space is found in the OBSTACKP.
186 Argument list must be terminated by a sentinel expression `(char *)
187 NULL'. */
188
189 char *
190 obconcat (struct obstack *obstackp, ...)
191 {
192 va_list ap;
193
194 va_start (ap, obstackp);
195 for (;;)
196 {
197 const char *s = va_arg (ap, const char *);
198
199 if (s == NULL)
200 break;
201
202 obstack_grow_str (obstackp, s);
203 }
204 va_end (ap);
205 obstack_1grow (obstackp, 0);
206
207 return obstack_finish (obstackp);
208 }
209
210 /* True if we are reading a symbol table. */
211
212 int currently_reading_symtab = 0;
213
214 static void
215 decrement_reading_symtab (void *dummy)
216 {
217 currently_reading_symtab--;
218 }
219
220 /* Increment currently_reading_symtab and return a cleanup that can be
221 used to decrement it. */
222 struct cleanup *
223 increment_reading_symtab (void)
224 {
225 ++currently_reading_symtab;
226 return make_cleanup (decrement_reading_symtab, NULL);
227 }
228
229 /* Remember the lowest-addressed loadable section we've seen.
230 This function is called via bfd_map_over_sections.
231
232 In case of equal vmas, the section with the largest size becomes the
233 lowest-addressed loadable section.
234
235 If the vmas and sizes are equal, the last section is considered the
236 lowest-addressed loadable section. */
237
238 void
239 find_lowest_section (bfd *abfd, asection *sect, void *obj)
240 {
241 asection **lowest = (asection **) obj;
242
243 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
244 return;
245 if (!*lowest)
246 *lowest = sect; /* First loadable section */
247 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
248 *lowest = sect; /* A lower loadable section */
249 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
250 && (bfd_section_size (abfd, (*lowest))
251 <= bfd_section_size (abfd, sect)))
252 *lowest = sect;
253 }
254
255 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
256
257 struct section_addr_info *
258 alloc_section_addr_info (size_t num_sections)
259 {
260 struct section_addr_info *sap;
261 size_t size;
262
263 size = (sizeof (struct section_addr_info)
264 + sizeof (struct other_sections) * (num_sections - 1));
265 sap = (struct section_addr_info *) xmalloc (size);
266 memset (sap, 0, size);
267 sap->num_sections = num_sections;
268
269 return sap;
270 }
271
272 /* Build (allocate and populate) a section_addr_info struct from
273 an existing section table. */
274
275 extern struct section_addr_info *
276 build_section_addr_info_from_section_table (const struct target_section *start,
277 const struct target_section *end)
278 {
279 struct section_addr_info *sap;
280 const struct target_section *stp;
281 int oidx;
282
283 sap = alloc_section_addr_info (end - start);
284
285 for (stp = start, oidx = 0; stp != end; stp++)
286 {
287 if (bfd_get_section_flags (stp->bfd,
288 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
289 && oidx < end - start)
290 {
291 sap->other[oidx].addr = stp->addr;
292 sap->other[oidx].name
293 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
294 sap->other[oidx].sectindex = stp->the_bfd_section->index;
295 oidx++;
296 }
297 }
298
299 return sap;
300 }
301
302 /* Create a section_addr_info from section offsets in ABFD. */
303
304 static struct section_addr_info *
305 build_section_addr_info_from_bfd (bfd *abfd)
306 {
307 struct section_addr_info *sap;
308 int i;
309 struct bfd_section *sec;
310
311 sap = alloc_section_addr_info (bfd_count_sections (abfd));
312 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
313 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
314 {
315 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
316 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
317 sap->other[i].sectindex = sec->index;
318 i++;
319 }
320 return sap;
321 }
322
323 /* Create a section_addr_info from section offsets in OBJFILE. */
324
325 struct section_addr_info *
326 build_section_addr_info_from_objfile (const struct objfile *objfile)
327 {
328 struct section_addr_info *sap;
329 int i;
330
331 /* Before reread_symbols gets rewritten it is not safe to call:
332 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
333 */
334 sap = build_section_addr_info_from_bfd (objfile->obfd);
335 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
336 {
337 int sectindex = sap->other[i].sectindex;
338
339 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
340 }
341 return sap;
342 }
343
344 /* Free all memory allocated by build_section_addr_info_from_section_table. */
345
346 extern void
347 free_section_addr_info (struct section_addr_info *sap)
348 {
349 int idx;
350
351 for (idx = 0; idx < sap->num_sections; idx++)
352 if (sap->other[idx].name)
353 xfree (sap->other[idx].name);
354 xfree (sap);
355 }
356
357
358 /* Initialize OBJFILE's sect_index_* members. */
359 static void
360 init_objfile_sect_indices (struct objfile *objfile)
361 {
362 asection *sect;
363 int i;
364
365 sect = bfd_get_section_by_name (objfile->obfd, ".text");
366 if (sect)
367 objfile->sect_index_text = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".data");
370 if (sect)
371 objfile->sect_index_data = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
374 if (sect)
375 objfile->sect_index_bss = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
378 if (sect)
379 objfile->sect_index_rodata = sect->index;
380
381 /* This is where things get really weird... We MUST have valid
382 indices for the various sect_index_* members or gdb will abort.
383 So if for example, there is no ".text" section, we have to
384 accomodate that. First, check for a file with the standard
385 one or two segments. */
386
387 symfile_find_segment_sections (objfile);
388
389 /* Except when explicitly adding symbol files at some address,
390 section_offsets contains nothing but zeros, so it doesn't matter
391 which slot in section_offsets the individual sect_index_* members
392 index into. So if they are all zero, it is safe to just point
393 all the currently uninitialized indices to the first slot. But
394 beware: if this is the main executable, it may be relocated
395 later, e.g. by the remote qOffsets packet, and then this will
396 be wrong! That's why we try segments first. */
397
398 for (i = 0; i < objfile->num_sections; i++)
399 {
400 if (ANOFFSET (objfile->section_offsets, i) != 0)
401 {
402 break;
403 }
404 }
405 if (i == objfile->num_sections)
406 {
407 if (objfile->sect_index_text == -1)
408 objfile->sect_index_text = 0;
409 if (objfile->sect_index_data == -1)
410 objfile->sect_index_data = 0;
411 if (objfile->sect_index_bss == -1)
412 objfile->sect_index_bss = 0;
413 if (objfile->sect_index_rodata == -1)
414 objfile->sect_index_rodata = 0;
415 }
416 }
417
418 /* The arguments to place_section. */
419
420 struct place_section_arg
421 {
422 struct section_offsets *offsets;
423 CORE_ADDR lowest;
424 };
425
426 /* Find a unique offset to use for loadable section SECT if
427 the user did not provide an offset. */
428
429 static void
430 place_section (bfd *abfd, asection *sect, void *obj)
431 {
432 struct place_section_arg *arg = obj;
433 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
434 int done;
435 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
436
437 /* We are only interested in allocated sections. */
438 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
439 return;
440
441 /* If the user specified an offset, honor it. */
442 if (offsets[sect->index] != 0)
443 return;
444
445 /* Otherwise, let's try to find a place for the section. */
446 start_addr = (arg->lowest + align - 1) & -align;
447
448 do {
449 asection *cur_sec;
450
451 done = 1;
452
453 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
454 {
455 int indx = cur_sec->index;
456
457 /* We don't need to compare against ourself. */
458 if (cur_sec == sect)
459 continue;
460
461 /* We can only conflict with allocated sections. */
462 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
463 continue;
464
465 /* If the section offset is 0, either the section has not been placed
466 yet, or it was the lowest section placed (in which case LOWEST
467 will be past its end). */
468 if (offsets[indx] == 0)
469 continue;
470
471 /* If this section would overlap us, then we must move up. */
472 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
473 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
474 {
475 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
476 start_addr = (start_addr + align - 1) & -align;
477 done = 0;
478 break;
479 }
480
481 /* Otherwise, we appear to be OK. So far. */
482 }
483 }
484 while (!done);
485
486 offsets[sect->index] = start_addr;
487 arg->lowest = start_addr + bfd_get_section_size (sect);
488 }
489
490 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
491 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
492 entries. */
493
494 void
495 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
496 int num_sections,
497 struct section_addr_info *addrs)
498 {
499 int i;
500
501 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
502
503 /* Now calculate offsets for section that were specified by the caller. */
504 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
505 {
506 struct other_sections *osp;
507
508 osp = &addrs->other[i];
509 if (osp->sectindex == -1)
510 continue;
511
512 /* Record all sections in offsets. */
513 /* The section_offsets in the objfile are here filled in using
514 the BFD index. */
515 section_offsets->offsets[osp->sectindex] = osp->addr;
516 }
517 }
518
519 /* Transform section name S for a name comparison. prelink can split section
520 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
521 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
522 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
523 (`.sbss') section has invalid (increased) virtual address. */
524
525 static const char *
526 addr_section_name (const char *s)
527 {
528 if (strcmp (s, ".dynbss") == 0)
529 return ".bss";
530 if (strcmp (s, ".sdynbss") == 0)
531 return ".sbss";
532
533 return s;
534 }
535
536 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
537 their (name, sectindex) pair. sectindex makes the sort by name stable. */
538
539 static int
540 addrs_section_compar (const void *ap, const void *bp)
541 {
542 const struct other_sections *a = *((struct other_sections **) ap);
543 const struct other_sections *b = *((struct other_sections **) bp);
544 int retval;
545
546 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
547 if (retval)
548 return retval;
549
550 return a->sectindex - b->sectindex;
551 }
552
553 /* Provide sorted array of pointers to sections of ADDRS. The array is
554 terminated by NULL. Caller is responsible to call xfree for it. */
555
556 static struct other_sections **
557 addrs_section_sort (struct section_addr_info *addrs)
558 {
559 struct other_sections **array;
560 int i;
561
562 /* `+ 1' for the NULL terminator. */
563 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
564 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565 array[i] = &addrs->other[i];
566 array[i] = NULL;
567
568 qsort (array, i, sizeof (*array), addrs_section_compar);
569
570 return array;
571 }
572
573 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
574 also SECTINDEXes specific to ABFD there. This function can be used to
575 rebase ADDRS to start referencing different BFD than before. */
576
577 void
578 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
579 {
580 asection *lower_sect;
581 CORE_ADDR lower_offset;
582 int i;
583 struct cleanup *my_cleanup;
584 struct section_addr_info *abfd_addrs;
585 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
586 struct other_sections **addrs_to_abfd_addrs;
587
588 /* Find lowest loadable section to be used as starting point for
589 continguous sections. */
590 lower_sect = NULL;
591 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
592 if (lower_sect == NULL)
593 {
594 warning (_("no loadable sections found in added symbol-file %s"),
595 bfd_get_filename (abfd));
596 lower_offset = 0;
597 }
598 else
599 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
600
601 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
602 in ABFD. Section names are not unique - there can be multiple sections of
603 the same name. Also the sections of the same name do not have to be
604 adjacent to each other. Some sections may be present only in one of the
605 files. Even sections present in both files do not have to be in the same
606 order.
607
608 Use stable sort by name for the sections in both files. Then linearly
609 scan both lists matching as most of the entries as possible. */
610
611 addrs_sorted = addrs_section_sort (addrs);
612 my_cleanup = make_cleanup (xfree, addrs_sorted);
613
614 abfd_addrs = build_section_addr_info_from_bfd (abfd);
615 make_cleanup_free_section_addr_info (abfd_addrs);
616 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
617 make_cleanup (xfree, abfd_addrs_sorted);
618
619 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
620 ABFD_ADDRS_SORTED. */
621
622 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
623 * addrs->num_sections);
624 make_cleanup (xfree, addrs_to_abfd_addrs);
625
626 while (*addrs_sorted)
627 {
628 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
629
630 while (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) < 0)
633 abfd_addrs_sorted++;
634
635 if (*abfd_addrs_sorted
636 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
637 sect_name) == 0)
638 {
639 int index_in_addrs;
640
641 /* Make the found item directly addressable from ADDRS. */
642 index_in_addrs = *addrs_sorted - addrs->other;
643 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
644 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
645
646 /* Never use the same ABFD entry twice. */
647 abfd_addrs_sorted++;
648 }
649
650 addrs_sorted++;
651 }
652
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
665 struct other_sections *sect = addrs_to_abfd_addrs[i];
666
667 if (sect)
668 {
669 /* This is the index used by BFD. */
670 addrs->other[i].sectindex = sect->sectindex;
671
672 if (addrs->other[i].addr != 0)
673 {
674 addrs->other[i].addr -= sect->addr;
675 lower_offset = addrs->other[i].addr;
676 }
677 else
678 addrs->other[i].addr = lower_offset;
679 }
680 else
681 {
682 /* addr_section_name transformation is not used for SECT_NAME. */
683 const char *sect_name = addrs->other[i].name;
684
685 /* This section does not exist in ABFD, which is normally
686 unexpected and we want to issue a warning.
687
688 However, the ELF prelinker does create a few sections which are
689 marked in the main executable as loadable (they are loaded in
690 memory from the DYNAMIC segment) and yet are not present in
691 separate debug info files. This is fine, and should not cause
692 a warning. Shared libraries contain just the section
693 ".gnu.liblist" but it is not marked as loadable there. There is
694 no other way to identify them than by their name as the sections
695 created by prelink have no special flags.
696
697 For the sections `.bss' and `.sbss' see addr_section_name. */
698
699 if (!(strcmp (sect_name, ".gnu.liblist") == 0
700 || strcmp (sect_name, ".gnu.conflict") == 0
701 || (strcmp (sect_name, ".bss") == 0
702 && i > 0
703 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
704 && addrs_to_abfd_addrs[i - 1] != NULL)
705 || (strcmp (sect_name, ".sbss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)))
709 warning (_("section %s not found in %s"), sect_name,
710 bfd_get_filename (abfd));
711
712 addrs->other[i].addr = 0;
713 addrs->other[i].sectindex = -1;
714 }
715 }
716
717 do_cleanups (my_cleanup);
718 }
719
720 /* Parse the user's idea of an offset for dynamic linking, into our idea
721 of how to represent it for fast symbol reading. This is the default
722 version of the sym_fns.sym_offsets function for symbol readers that
723 don't need to do anything special. It allocates a section_offsets table
724 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
725
726 void
727 default_symfile_offsets (struct objfile *objfile,
728 struct section_addr_info *addrs)
729 {
730 objfile->num_sections = bfd_count_sections (objfile->obfd);
731 objfile->section_offsets = (struct section_offsets *)
732 obstack_alloc (&objfile->objfile_obstack,
733 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
734 relative_addr_info_to_section_offsets (objfile->section_offsets,
735 objfile->num_sections, addrs);
736
737 /* For relocatable files, all loadable sections will start at zero.
738 The zero is meaningless, so try to pick arbitrary addresses such
739 that no loadable sections overlap. This algorithm is quadratic,
740 but the number of sections in a single object file is generally
741 small. */
742 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
743 {
744 struct place_section_arg arg;
745 bfd *abfd = objfile->obfd;
746 asection *cur_sec;
747
748 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
749 /* We do not expect this to happen; just skip this step if the
750 relocatable file has a section with an assigned VMA. */
751 if (bfd_section_vma (abfd, cur_sec) != 0)
752 break;
753
754 if (cur_sec == NULL)
755 {
756 CORE_ADDR *offsets = objfile->section_offsets->offsets;
757
758 /* Pick non-overlapping offsets for sections the user did not
759 place explicitly. */
760 arg.offsets = objfile->section_offsets;
761 arg.lowest = 0;
762 bfd_map_over_sections (objfile->obfd, place_section, &arg);
763
764 /* Correctly filling in the section offsets is not quite
765 enough. Relocatable files have two properties that
766 (most) shared objects do not:
767
768 - Their debug information will contain relocations. Some
769 shared libraries do also, but many do not, so this can not
770 be assumed.
771
772 - If there are multiple code sections they will be loaded
773 at different relative addresses in memory than they are
774 in the objfile, since all sections in the file will start
775 at address zero.
776
777 Because GDB has very limited ability to map from an
778 address in debug info to the correct code section,
779 it relies on adding SECT_OFF_TEXT to things which might be
780 code. If we clear all the section offsets, and set the
781 section VMAs instead, then symfile_relocate_debug_section
782 will return meaningful debug information pointing at the
783 correct sections.
784
785 GDB has too many different data structures for section
786 addresses - a bfd, objfile, and so_list all have section
787 tables, as does exec_ops. Some of these could probably
788 be eliminated. */
789
790 for (cur_sec = abfd->sections; cur_sec != NULL;
791 cur_sec = cur_sec->next)
792 {
793 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
794 continue;
795
796 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
797 exec_set_section_address (bfd_get_filename (abfd),
798 cur_sec->index,
799 offsets[cur_sec->index]);
800 offsets[cur_sec->index] = 0;
801 }
802 }
803 }
804
805 /* Remember the bfd indexes for the .text, .data, .bss and
806 .rodata sections. */
807 init_objfile_sect_indices (objfile);
808 }
809
810
811 /* Divide the file into segments, which are individual relocatable units.
812 This is the default version of the sym_fns.sym_segments function for
813 symbol readers that do not have an explicit representation of segments.
814 It assumes that object files do not have segments, and fully linked
815 files have a single segment. */
816
817 struct symfile_segment_data *
818 default_symfile_segments (bfd *abfd)
819 {
820 int num_sections, i;
821 asection *sect;
822 struct symfile_segment_data *data;
823 CORE_ADDR low, high;
824
825 /* Relocatable files contain enough information to position each
826 loadable section independently; they should not be relocated
827 in segments. */
828 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
829 return NULL;
830
831 /* Make sure there is at least one loadable section in the file. */
832 for (sect = abfd->sections; sect != NULL; sect = sect->next)
833 {
834 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
835 continue;
836
837 break;
838 }
839 if (sect == NULL)
840 return NULL;
841
842 low = bfd_get_section_vma (abfd, sect);
843 high = low + bfd_get_section_size (sect);
844
845 data = XZALLOC (struct symfile_segment_data);
846 data->num_segments = 1;
847 data->segment_bases = XCALLOC (1, CORE_ADDR);
848 data->segment_sizes = XCALLOC (1, CORE_ADDR);
849
850 num_sections = bfd_count_sections (abfd);
851 data->segment_info = XCALLOC (num_sections, int);
852
853 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
854 {
855 CORE_ADDR vma;
856
857 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
858 continue;
859
860 vma = bfd_get_section_vma (abfd, sect);
861 if (vma < low)
862 low = vma;
863 if (vma + bfd_get_section_size (sect) > high)
864 high = vma + bfd_get_section_size (sect);
865
866 data->segment_info[i] = 1;
867 }
868
869 data->segment_bases[0] = low;
870 data->segment_sizes[0] = high - low;
871
872 return data;
873 }
874
875 /* This is a convenience function to call sym_read for OBJFILE and
876 possibly force the partial symbols to be read. */
877
878 static void
879 read_symbols (struct objfile *objfile, int add_flags)
880 {
881 (*objfile->sf->sym_read) (objfile, add_flags);
882 if (!objfile_has_partial_symbols (objfile))
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 symbol_file_add_separate (abfd, add_flags, objfile);
889
890 do_cleanups (cleanup);
891 }
892 if ((add_flags & SYMFILE_NO_READ) == 0)
893 require_partial_symbols (objfile, 0);
894 }
895
896 /* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
899 OBJFILE is where the symbols are to be read from.
900
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926 void
927 syms_from_objfile (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
931 int add_flags)
932 {
933 struct section_addr_info *local_addr = NULL;
934 struct cleanup *old_chain;
935 const int mainline = add_flags & SYMFILE_MAINLINE;
936
937 gdb_assert (! (addrs && offsets));
938
939 init_entry_point_info (objfile);
940 objfile->sf = find_sym_fns (objfile->obfd);
941
942 if (objfile->sf == NULL)
943 return; /* No symbols. */
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup_free_objfile (objfile);
948
949 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
950 list. We now establish the convention that an addr of zero means
951 no load address was specified. */
952 if (! addrs && ! offsets)
953 {
954 local_addr
955 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
956 make_cleanup (xfree, local_addr);
957 addrs = local_addr;
958 }
959
960 /* Now either addrs or offsets is non-zero. */
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs && addrs->other[0].name)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 if (addrs)
1001 (*objfile->sf->sym_offsets) (objfile, addrs);
1002 else
1003 {
1004 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1005
1006 /* Just copy in the offset table directly as given to us. */
1007 objfile->num_sections = num_offsets;
1008 objfile->section_offsets
1009 = ((struct section_offsets *)
1010 obstack_alloc (&objfile->objfile_obstack, size));
1011 memcpy (objfile->section_offsets, offsets, size);
1012
1013 init_objfile_sect_indices (objfile);
1014 }
1015
1016 read_symbols (objfile, add_flags);
1017
1018 /* Discard cleanups as symbol reading was successful. */
1019
1020 discard_cleanups (old_chain);
1021 xfree (local_addr);
1022 }
1023
1024 /* Perform required actions after either reading in the initial
1025 symbols for a new objfile, or mapping in the symbols from a reusable
1026 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1027
1028 void
1029 new_symfile_objfile (struct objfile *objfile, int add_flags)
1030 {
1031 /* If this is the main symbol file we have to clean up all users of the
1032 old main symbol file. Otherwise it is sufficient to fixup all the
1033 breakpoints that may have been redefined by this symbol file. */
1034 if (add_flags & SYMFILE_MAINLINE)
1035 {
1036 /* OK, make it the "real" symbol file. */
1037 symfile_objfile = objfile;
1038
1039 clear_symtab_users (add_flags);
1040 }
1041 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1042 {
1043 breakpoint_re_set ();
1044 }
1045
1046 /* We're done reading the symbol file; finish off complaints. */
1047 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1048 }
1049
1050 /* Process a symbol file, as either the main file or as a dynamically
1051 loaded file.
1052
1053 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1054 A new reference is acquired by this function.
1055
1056 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1057 extra, such as dynamically loaded code, and what to do with breakpoins.
1058
1059 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1060 syms_from_objfile, above.
1061 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1062
1063 PARENT is the original objfile if ABFD is a separate debug info file.
1064 Otherwise PARENT is NULL.
1065
1066 Upon success, returns a pointer to the objfile that was added.
1067 Upon failure, jumps back to command level (never returns). */
1068
1069 static struct objfile *
1070 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1071 int add_flags,
1072 struct section_addr_info *addrs,
1073 struct section_offsets *offsets,
1074 int num_offsets,
1075 int flags, struct objfile *parent)
1076 {
1077 struct objfile *objfile;
1078 const char *name = bfd_get_filename (abfd);
1079 const int from_tty = add_flags & SYMFILE_VERBOSE;
1080 const int mainline = add_flags & SYMFILE_MAINLINE;
1081 const int should_print = ((from_tty || info_verbose)
1082 && (readnow_symbol_files
1083 || (add_flags & SYMFILE_NO_READ) == 0));
1084
1085 if (readnow_symbol_files)
1086 {
1087 flags |= OBJF_READNOW;
1088 add_flags &= ~SYMFILE_NO_READ;
1089 }
1090
1091 /* Give user a chance to burp if we'd be
1092 interactively wiping out any existing symbols. */
1093
1094 if ((have_full_symbols () || have_partial_symbols ())
1095 && mainline
1096 && from_tty
1097 && !query (_("Load new symbol table from \"%s\"? "), name))
1098 error (_("Not confirmed."));
1099
1100 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1101
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
1107 performed, or need to read an unmapped symbol table. */
1108 if (should_print)
1109 {
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
1112 else
1113 {
1114 printf_unfiltered (_("Reading symbols from %s..."), name);
1115 wrap_here ("");
1116 gdb_flush (gdb_stdout);
1117 }
1118 }
1119 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1120 add_flags);
1121
1122 /* We now have at least a partial symbol table. Check to see if the
1123 user requested that all symbols be read on initial access via either
1124 the gdb startup command line or on a per symbol file basis. Expand
1125 all partial symbol tables for this objfile if so. */
1126
1127 if ((flags & OBJF_READNOW))
1128 {
1129 if (should_print)
1130 {
1131 printf_unfiltered (_("expanding to full symbols..."));
1132 wrap_here ("");
1133 gdb_flush (gdb_stdout);
1134 }
1135
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1138 }
1139
1140 if (should_print && !objfile_has_symbols (objfile))
1141 {
1142 wrap_here ("");
1143 printf_unfiltered (_("(no debugging symbols found)..."));
1144 wrap_here ("");
1145 }
1146
1147 if (should_print)
1148 {
1149 if (deprecated_post_add_symbol_hook)
1150 deprecated_post_add_symbol_hook ();
1151 else
1152 printf_unfiltered (_("done.\n"));
1153 }
1154
1155 /* We print some messages regardless of whether 'from_tty ||
1156 info_verbose' is true, so make sure they go out at the right
1157 time. */
1158 gdb_flush (gdb_stdout);
1159
1160 if (objfile->sf == NULL)
1161 {
1162 observer_notify_new_objfile (objfile);
1163 return objfile; /* No symbols. */
1164 }
1165
1166 new_symfile_objfile (objfile, add_flags);
1167
1168 observer_notify_new_objfile (objfile);
1169
1170 bfd_cache_close_all ();
1171 return (objfile);
1172 }
1173
1174 /* Add BFD as a separate debug file for OBJFILE. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1178 {
1179 struct objfile *new_objfile;
1180 struct section_addr_info *sap;
1181 struct cleanup *my_cleanup;
1182
1183 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1184 because sections of BFD may not match sections of OBJFILE and because
1185 vma may have been modified by tools such as prelink. */
1186 sap = build_section_addr_info_from_objfile (objfile);
1187 my_cleanup = make_cleanup_free_section_addr_info (sap);
1188
1189 new_objfile = symbol_file_add_with_addrs_or_offsets
1190 (bfd, symfile_flags,
1191 sap, NULL, 0,
1192 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1193 | OBJF_USERLOADED),
1194 objfile);
1195
1196 do_cleanups (my_cleanup);
1197 }
1198
1199 /* Process the symbol file ABFD, as either the main file or as a
1200 dynamically loaded file.
1201
1202 See symbol_file_add_with_addrs_or_offsets's comments for
1203 details. */
1204 struct objfile *
1205 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1206 struct section_addr_info *addrs,
1207 int flags, struct objfile *parent)
1208 {
1209 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1210 flags, parent);
1211 }
1212
1213
1214 /* Process a symbol file, as either the main file or as a dynamically
1215 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1216 for details. */
1217 struct objfile *
1218 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1219 int flags)
1220 {
1221 bfd *bfd = symfile_bfd_open (name);
1222 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1223 struct objfile *objf;
1224
1225 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1226 do_cleanups (cleanup);
1227 return objf;
1228 }
1229
1230
1231 /* Call symbol_file_add() with default values and update whatever is
1232 affected by the loading of a new main().
1233 Used when the file is supplied in the gdb command line
1234 and by some targets with special loading requirements.
1235 The auxiliary function, symbol_file_add_main_1(), has the flags
1236 argument for the switches that can only be specified in the symbol_file
1237 command itself. */
1238
1239 void
1240 symbol_file_add_main (char *args, int from_tty)
1241 {
1242 symbol_file_add_main_1 (args, from_tty, 0);
1243 }
1244
1245 static void
1246 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1247 {
1248 const int add_flags = (current_inferior ()->symfile_flags
1249 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1250
1251 symbol_file_add (args, add_flags, NULL, flags);
1252
1253 /* Getting new symbols may change our opinion about
1254 what is frameless. */
1255 reinit_frame_cache ();
1256
1257 if ((flags & SYMFILE_NO_READ) == 0)
1258 set_initial_language ();
1259 }
1260
1261 void
1262 symbol_file_clear (int from_tty)
1263 {
1264 if ((have_full_symbols () || have_partial_symbols ())
1265 && from_tty
1266 && (symfile_objfile
1267 ? !query (_("Discard symbol table from `%s'? "),
1268 symfile_objfile->name)
1269 : !query (_("Discard symbol table? "))))
1270 error (_("Not confirmed."));
1271
1272 /* solib descriptors may have handles to objfiles. Wipe them before their
1273 objfiles get stale by free_all_objfiles. */
1274 no_shared_libraries (NULL, from_tty);
1275
1276 free_all_objfiles ();
1277
1278 gdb_assert (symfile_objfile == NULL);
1279 if (from_tty)
1280 printf_unfiltered (_("No symbol file now.\n"));
1281 }
1282
1283 static char *
1284 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1285 {
1286 asection *sect;
1287 bfd_size_type debuglink_size;
1288 unsigned long crc32;
1289 char *contents;
1290 int crc_offset;
1291
1292 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1293
1294 if (sect == NULL)
1295 return NULL;
1296
1297 debuglink_size = bfd_section_size (objfile->obfd, sect);
1298
1299 contents = xmalloc (debuglink_size);
1300 bfd_get_section_contents (objfile->obfd, sect, contents,
1301 (file_ptr)0, (bfd_size_type)debuglink_size);
1302
1303 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1304 crc_offset = strlen (contents) + 1;
1305 crc_offset = (crc_offset + 3) & ~3;
1306
1307 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1308
1309 *crc32_out = crc32;
1310 return contents;
1311 }
1312
1313 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1314 return 1. Otherwise print a warning and return 0. ABFD seek position is
1315 not preserved. */
1316
1317 static int
1318 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1319 {
1320 unsigned long file_crc = 0;
1321
1322 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1323 {
1324 warning (_("Problem reading \"%s\" for CRC: %s"),
1325 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1326 return 0;
1327 }
1328
1329 for (;;)
1330 {
1331 gdb_byte buffer[8 * 1024];
1332 bfd_size_type count;
1333
1334 count = bfd_bread (buffer, sizeof (buffer), abfd);
1335 if (count == (bfd_size_type) -1)
1336 {
1337 warning (_("Problem reading \"%s\" for CRC: %s"),
1338 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1339 return 0;
1340 }
1341 if (count == 0)
1342 break;
1343 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1344 }
1345
1346 *file_crc_return = file_crc;
1347 return 1;
1348 }
1349
1350 static int
1351 separate_debug_file_exists (const char *name, unsigned long crc,
1352 struct objfile *parent_objfile)
1353 {
1354 unsigned long file_crc;
1355 int file_crc_p;
1356 bfd *abfd;
1357 struct stat parent_stat, abfd_stat;
1358 int verified_as_different;
1359
1360 /* Find a separate debug info file as if symbols would be present in
1361 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1362 section can contain just the basename of PARENT_OBJFILE without any
1363 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1364 the separate debug infos with the same basename can exist. */
1365
1366 if (filename_cmp (name, parent_objfile->name) == 0)
1367 return 0;
1368
1369 abfd = gdb_bfd_open_maybe_remote (name);
1370
1371 if (!abfd)
1372 return 0;
1373
1374 /* Verify symlinks were not the cause of filename_cmp name difference above.
1375
1376 Some operating systems, e.g. Windows, do not provide a meaningful
1377 st_ino; they always set it to zero. (Windows does provide a
1378 meaningful st_dev.) Do not indicate a duplicate library in that
1379 case. While there is no guarantee that a system that provides
1380 meaningful inode numbers will never set st_ino to zero, this is
1381 merely an optimization, so we do not need to worry about false
1382 negatives. */
1383
1384 if (bfd_stat (abfd, &abfd_stat) == 0
1385 && abfd_stat.st_ino != 0
1386 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1387 {
1388 if (abfd_stat.st_dev == parent_stat.st_dev
1389 && abfd_stat.st_ino == parent_stat.st_ino)
1390 {
1391 gdb_bfd_unref (abfd);
1392 return 0;
1393 }
1394 verified_as_different = 1;
1395 }
1396 else
1397 verified_as_different = 0;
1398
1399 file_crc_p = get_file_crc (abfd, &file_crc);
1400
1401 gdb_bfd_unref (abfd);
1402
1403 if (!file_crc_p)
1404 return 0;
1405
1406 if (crc != file_crc)
1407 {
1408 /* If one (or both) the files are accessed for example the via "remote:"
1409 gdbserver way it does not support the bfd_stat operation. Verify
1410 whether those two files are not the same manually. */
1411
1412 if (!verified_as_different && !parent_objfile->crc32_p)
1413 {
1414 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1415 &parent_objfile->crc32);
1416 if (!parent_objfile->crc32_p)
1417 return 0;
1418 }
1419
1420 if (verified_as_different || parent_objfile->crc32 != file_crc)
1421 warning (_("the debug information found in \"%s\""
1422 " does not match \"%s\" (CRC mismatch).\n"),
1423 name, parent_objfile->name);
1424
1425 return 0;
1426 }
1427
1428 return 1;
1429 }
1430
1431 char *debug_file_directory = NULL;
1432 static void
1433 show_debug_file_directory (struct ui_file *file, int from_tty,
1434 struct cmd_list_element *c, const char *value)
1435 {
1436 fprintf_filtered (file,
1437 _("The directory where separate debug "
1438 "symbols are searched for is \"%s\".\n"),
1439 value);
1440 }
1441
1442 #if ! defined (DEBUG_SUBDIRECTORY)
1443 #define DEBUG_SUBDIRECTORY ".debug"
1444 #endif
1445
1446 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1447 where the original file resides (may not be the same as
1448 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1449 looking for. Returns the name of the debuginfo, of NULL. */
1450
1451 static char *
1452 find_separate_debug_file (const char *dir,
1453 const char *canon_dir,
1454 const char *debuglink,
1455 unsigned long crc32, struct objfile *objfile)
1456 {
1457 char *debugdir;
1458 char *debugfile;
1459 int i;
1460 VEC (char_ptr) *debugdir_vec;
1461 struct cleanup *back_to;
1462 int ix;
1463
1464 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1465 i = strlen (dir);
1466 if (canon_dir != NULL && strlen (canon_dir) > i)
1467 i = strlen (canon_dir);
1468
1469 debugfile = xmalloc (strlen (debug_file_directory) + 1
1470 + i
1471 + strlen (DEBUG_SUBDIRECTORY)
1472 + strlen ("/")
1473 + strlen (debuglink)
1474 + 1);
1475
1476 /* First try in the same directory as the original file. */
1477 strcpy (debugfile, dir);
1478 strcat (debugfile, debuglink);
1479
1480 if (separate_debug_file_exists (debugfile, crc32, objfile))
1481 return debugfile;
1482
1483 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1484 strcpy (debugfile, dir);
1485 strcat (debugfile, DEBUG_SUBDIRECTORY);
1486 strcat (debugfile, "/");
1487 strcat (debugfile, debuglink);
1488
1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
1490 return debugfile;
1491
1492 /* Then try in the global debugfile directories.
1493
1494 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1495 cause "/..." lookups. */
1496
1497 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1498 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1499
1500 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1501 {
1502 strcpy (debugfile, debugdir);
1503 strcat (debugfile, "/");
1504 strcat (debugfile, dir);
1505 strcat (debugfile, debuglink);
1506
1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1508 return debugfile;
1509
1510 /* If the file is in the sysroot, try using its base path in the
1511 global debugfile directory. */
1512 if (canon_dir != NULL
1513 && filename_ncmp (canon_dir, gdb_sysroot,
1514 strlen (gdb_sysroot)) == 0
1515 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1516 {
1517 strcpy (debugfile, debugdir);
1518 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1519 strcat (debugfile, "/");
1520 strcat (debugfile, debuglink);
1521
1522 if (separate_debug_file_exists (debugfile, crc32, objfile))
1523 return debugfile;
1524 }
1525 }
1526
1527 do_cleanups (back_to);
1528 xfree (debugfile);
1529 return NULL;
1530 }
1531
1532 /* Modify PATH to contain only "directory/" part of PATH.
1533 If there were no directory separators in PATH, PATH will be empty
1534 string on return. */
1535
1536 static void
1537 terminate_after_last_dir_separator (char *path)
1538 {
1539 int i;
1540
1541 /* Strip off the final filename part, leaving the directory name,
1542 followed by a slash. The directory can be relative or absolute. */
1543 for (i = strlen(path) - 1; i >= 0; i--)
1544 if (IS_DIR_SEPARATOR (path[i]))
1545 break;
1546
1547 /* If I is -1 then no directory is present there and DIR will be "". */
1548 path[i + 1] = '\0';
1549 }
1550
1551 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1552 Returns pathname, or NULL. */
1553
1554 char *
1555 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1556 {
1557 char *debuglink;
1558 char *dir, *canon_dir;
1559 char *debugfile;
1560 unsigned long crc32;
1561 struct cleanup *cleanups;
1562
1563 debuglink = get_debug_link_info (objfile, &crc32);
1564
1565 if (debuglink == NULL)
1566 {
1567 /* There's no separate debug info, hence there's no way we could
1568 load it => no warning. */
1569 return NULL;
1570 }
1571
1572 cleanups = make_cleanup (xfree, debuglink);
1573 dir = xstrdup (objfile->name);
1574 make_cleanup (xfree, dir);
1575 terminate_after_last_dir_separator (dir);
1576 canon_dir = lrealpath (dir);
1577
1578 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1579 crc32, objfile);
1580 xfree (canon_dir);
1581
1582 if (debugfile == NULL)
1583 {
1584 #ifdef HAVE_LSTAT
1585 /* For PR gdb/9538, try again with realpath (if different from the
1586 original). */
1587
1588 struct stat st_buf;
1589
1590 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1591 {
1592 char *symlink_dir;
1593
1594 symlink_dir = lrealpath (objfile->name);
1595 if (symlink_dir != NULL)
1596 {
1597 make_cleanup (xfree, symlink_dir);
1598 terminate_after_last_dir_separator (symlink_dir);
1599 if (strcmp (dir, symlink_dir) != 0)
1600 {
1601 /* Different directory, so try using it. */
1602 debugfile = find_separate_debug_file (symlink_dir,
1603 symlink_dir,
1604 debuglink,
1605 crc32,
1606 objfile);
1607 }
1608 }
1609 }
1610 #endif /* HAVE_LSTAT */
1611 }
1612
1613 do_cleanups (cleanups);
1614 return debugfile;
1615 }
1616
1617
1618 /* This is the symbol-file command. Read the file, analyze its
1619 symbols, and add a struct symtab to a symtab list. The syntax of
1620 the command is rather bizarre:
1621
1622 1. The function buildargv implements various quoting conventions
1623 which are undocumented and have little or nothing in common with
1624 the way things are quoted (or not quoted) elsewhere in GDB.
1625
1626 2. Options are used, which are not generally used in GDB (perhaps
1627 "set mapped on", "set readnow on" would be better)
1628
1629 3. The order of options matters, which is contrary to GNU
1630 conventions (because it is confusing and inconvenient). */
1631
1632 void
1633 symbol_file_command (char *args, int from_tty)
1634 {
1635 dont_repeat ();
1636
1637 if (args == NULL)
1638 {
1639 symbol_file_clear (from_tty);
1640 }
1641 else
1642 {
1643 char **argv = gdb_buildargv (args);
1644 int flags = OBJF_USERLOADED;
1645 struct cleanup *cleanups;
1646 char *name = NULL;
1647
1648 cleanups = make_cleanup_freeargv (argv);
1649 while (*argv != NULL)
1650 {
1651 if (strcmp (*argv, "-readnow") == 0)
1652 flags |= OBJF_READNOW;
1653 else if (**argv == '-')
1654 error (_("unknown option `%s'"), *argv);
1655 else
1656 {
1657 symbol_file_add_main_1 (*argv, from_tty, flags);
1658 name = *argv;
1659 }
1660
1661 argv++;
1662 }
1663
1664 if (name == NULL)
1665 error (_("no symbol file name was specified"));
1666
1667 do_cleanups (cleanups);
1668 }
1669 }
1670
1671 /* Set the initial language.
1672
1673 FIXME: A better solution would be to record the language in the
1674 psymtab when reading partial symbols, and then use it (if known) to
1675 set the language. This would be a win for formats that encode the
1676 language in an easily discoverable place, such as DWARF. For
1677 stabs, we can jump through hoops looking for specially named
1678 symbols or try to intuit the language from the specific type of
1679 stabs we find, but we can't do that until later when we read in
1680 full symbols. */
1681
1682 void
1683 set_initial_language (void)
1684 {
1685 enum language lang = language_unknown;
1686
1687 if (language_of_main != language_unknown)
1688 lang = language_of_main;
1689 else
1690 {
1691 const char *filename;
1692
1693 filename = find_main_filename ();
1694 if (filename != NULL)
1695 lang = deduce_language_from_filename (filename);
1696 }
1697
1698 if (lang == language_unknown)
1699 {
1700 /* Make C the default language */
1701 lang = language_c;
1702 }
1703
1704 set_language (lang);
1705 expected_language = current_language; /* Don't warn the user. */
1706 }
1707
1708 /* If NAME is a remote name open the file using remote protocol, otherwise
1709 open it normally. Returns a new reference to the BFD. On error,
1710 returns NULL with the BFD error set. */
1711
1712 bfd *
1713 gdb_bfd_open_maybe_remote (const char *name)
1714 {
1715 bfd *result;
1716
1717 if (remote_filename_p (name))
1718 result = remote_bfd_open (name, gnutarget);
1719 else
1720 result = gdb_bfd_open (name, gnutarget, -1);
1721
1722 return result;
1723 }
1724
1725
1726 /* Open the file specified by NAME and hand it off to BFD for
1727 preliminary analysis. Return a newly initialized bfd *, which
1728 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1729 absolute). In case of trouble, error() is called. */
1730
1731 bfd *
1732 symfile_bfd_open (char *name)
1733 {
1734 bfd *sym_bfd;
1735 int desc;
1736 char *absolute_name;
1737
1738 if (remote_filename_p (name))
1739 {
1740 sym_bfd = remote_bfd_open (name, gnutarget);
1741 if (!sym_bfd)
1742 error (_("`%s': can't open to read symbols: %s."), name,
1743 bfd_errmsg (bfd_get_error ()));
1744
1745 if (!bfd_check_format (sym_bfd, bfd_object))
1746 {
1747 make_cleanup_bfd_unref (sym_bfd);
1748 error (_("`%s': can't read symbols: %s."), name,
1749 bfd_errmsg (bfd_get_error ()));
1750 }
1751
1752 return sym_bfd;
1753 }
1754
1755 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1756
1757 /* Look down path for it, allocate 2nd new malloc'd copy. */
1758 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1759 O_RDONLY | O_BINARY, &absolute_name);
1760 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1761 if (desc < 0)
1762 {
1763 char *exename = alloca (strlen (name) + 5);
1764
1765 strcat (strcpy (exename, name), ".exe");
1766 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1767 O_RDONLY | O_BINARY, &absolute_name);
1768 }
1769 #endif
1770 if (desc < 0)
1771 {
1772 make_cleanup (xfree, name);
1773 perror_with_name (name);
1774 }
1775
1776 xfree (name);
1777 name = absolute_name;
1778 make_cleanup (xfree, name);
1779
1780 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1781 if (!sym_bfd)
1782 {
1783 make_cleanup (xfree, name);
1784 error (_("`%s': can't open to read symbols: %s."), name,
1785 bfd_errmsg (bfd_get_error ()));
1786 }
1787 bfd_set_cacheable (sym_bfd, 1);
1788
1789 if (!bfd_check_format (sym_bfd, bfd_object))
1790 {
1791 make_cleanup_bfd_unref (sym_bfd);
1792 error (_("`%s': can't read symbols: %s."), name,
1793 bfd_errmsg (bfd_get_error ()));
1794 }
1795
1796 return sym_bfd;
1797 }
1798
1799 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1800 the section was not found. */
1801
1802 int
1803 get_section_index (struct objfile *objfile, char *section_name)
1804 {
1805 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1806
1807 if (sect)
1808 return sect->index;
1809 else
1810 return -1;
1811 }
1812
1813 /* Link SF into the global symtab_fns list. Called on startup by the
1814 _initialize routine in each object file format reader, to register
1815 information about each format the reader is prepared to handle. */
1816
1817 void
1818 add_symtab_fns (const struct sym_fns *sf)
1819 {
1820 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1821 }
1822
1823 /* Initialize OBJFILE to read symbols from its associated BFD. It
1824 either returns or calls error(). The result is an initialized
1825 struct sym_fns in the objfile structure, that contains cached
1826 information about the symbol file. */
1827
1828 static const struct sym_fns *
1829 find_sym_fns (bfd *abfd)
1830 {
1831 const struct sym_fns *sf;
1832 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1833 int i;
1834
1835 if (our_flavour == bfd_target_srec_flavour
1836 || our_flavour == bfd_target_ihex_flavour
1837 || our_flavour == bfd_target_tekhex_flavour)
1838 return NULL; /* No symbols. */
1839
1840 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1841 if (our_flavour == sf->sym_flavour)
1842 return sf;
1843
1844 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1845 bfd_get_target (abfd));
1846 }
1847 \f
1848
1849 /* This function runs the load command of our current target. */
1850
1851 static void
1852 load_command (char *arg, int from_tty)
1853 {
1854 dont_repeat ();
1855
1856 /* The user might be reloading because the binary has changed. Take
1857 this opportunity to check. */
1858 reopen_exec_file ();
1859 reread_symbols ();
1860
1861 if (arg == NULL)
1862 {
1863 char *parg;
1864 int count = 0;
1865
1866 parg = arg = get_exec_file (1);
1867
1868 /* Count how many \ " ' tab space there are in the name. */
1869 while ((parg = strpbrk (parg, "\\\"'\t ")))
1870 {
1871 parg++;
1872 count++;
1873 }
1874
1875 if (count)
1876 {
1877 /* We need to quote this string so buildargv can pull it apart. */
1878 char *temp = xmalloc (strlen (arg) + count + 1 );
1879 char *ptemp = temp;
1880 char *prev;
1881
1882 make_cleanup (xfree, temp);
1883
1884 prev = parg = arg;
1885 while ((parg = strpbrk (parg, "\\\"'\t ")))
1886 {
1887 strncpy (ptemp, prev, parg - prev);
1888 ptemp += parg - prev;
1889 prev = parg++;
1890 *ptemp++ = '\\';
1891 }
1892 strcpy (ptemp, prev);
1893
1894 arg = temp;
1895 }
1896 }
1897
1898 target_load (arg, from_tty);
1899
1900 /* After re-loading the executable, we don't really know which
1901 overlays are mapped any more. */
1902 overlay_cache_invalid = 1;
1903 }
1904
1905 /* This version of "load" should be usable for any target. Currently
1906 it is just used for remote targets, not inftarg.c or core files,
1907 on the theory that only in that case is it useful.
1908
1909 Avoiding xmodem and the like seems like a win (a) because we don't have
1910 to worry about finding it, and (b) On VMS, fork() is very slow and so
1911 we don't want to run a subprocess. On the other hand, I'm not sure how
1912 performance compares. */
1913
1914 static int validate_download = 0;
1915
1916 /* Callback service function for generic_load (bfd_map_over_sections). */
1917
1918 static void
1919 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1920 {
1921 bfd_size_type *sum = data;
1922
1923 *sum += bfd_get_section_size (asec);
1924 }
1925
1926 /* Opaque data for load_section_callback. */
1927 struct load_section_data {
1928 unsigned long load_offset;
1929 struct load_progress_data *progress_data;
1930 VEC(memory_write_request_s) *requests;
1931 };
1932
1933 /* Opaque data for load_progress. */
1934 struct load_progress_data {
1935 /* Cumulative data. */
1936 unsigned long write_count;
1937 unsigned long data_count;
1938 bfd_size_type total_size;
1939 };
1940
1941 /* Opaque data for load_progress for a single section. */
1942 struct load_progress_section_data {
1943 struct load_progress_data *cumulative;
1944
1945 /* Per-section data. */
1946 const char *section_name;
1947 ULONGEST section_sent;
1948 ULONGEST section_size;
1949 CORE_ADDR lma;
1950 gdb_byte *buffer;
1951 };
1952
1953 /* Target write callback routine for progress reporting. */
1954
1955 static void
1956 load_progress (ULONGEST bytes, void *untyped_arg)
1957 {
1958 struct load_progress_section_data *args = untyped_arg;
1959 struct load_progress_data *totals;
1960
1961 if (args == NULL)
1962 /* Writing padding data. No easy way to get at the cumulative
1963 stats, so just ignore this. */
1964 return;
1965
1966 totals = args->cumulative;
1967
1968 if (bytes == 0 && args->section_sent == 0)
1969 {
1970 /* The write is just starting. Let the user know we've started
1971 this section. */
1972 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1973 args->section_name, hex_string (args->section_size),
1974 paddress (target_gdbarch (), args->lma));
1975 return;
1976 }
1977
1978 if (validate_download)
1979 {
1980 /* Broken memories and broken monitors manifest themselves here
1981 when bring new computers to life. This doubles already slow
1982 downloads. */
1983 /* NOTE: cagney/1999-10-18: A more efficient implementation
1984 might add a verify_memory() method to the target vector and
1985 then use that. remote.c could implement that method using
1986 the ``qCRC'' packet. */
1987 gdb_byte *check = xmalloc (bytes);
1988 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1989
1990 if (target_read_memory (args->lma, check, bytes) != 0)
1991 error (_("Download verify read failed at %s"),
1992 paddress (target_gdbarch (), args->lma));
1993 if (memcmp (args->buffer, check, bytes) != 0)
1994 error (_("Download verify compare failed at %s"),
1995 paddress (target_gdbarch (), args->lma));
1996 do_cleanups (verify_cleanups);
1997 }
1998 totals->data_count += bytes;
1999 args->lma += bytes;
2000 args->buffer += bytes;
2001 totals->write_count += 1;
2002 args->section_sent += bytes;
2003 if (check_quit_flag ()
2004 || (deprecated_ui_load_progress_hook != NULL
2005 && deprecated_ui_load_progress_hook (args->section_name,
2006 args->section_sent)))
2007 error (_("Canceled the download"));
2008
2009 if (deprecated_show_load_progress != NULL)
2010 deprecated_show_load_progress (args->section_name,
2011 args->section_sent,
2012 args->section_size,
2013 totals->data_count,
2014 totals->total_size);
2015 }
2016
2017 /* Callback service function for generic_load (bfd_map_over_sections). */
2018
2019 static void
2020 load_section_callback (bfd *abfd, asection *asec, void *data)
2021 {
2022 struct memory_write_request *new_request;
2023 struct load_section_data *args = data;
2024 struct load_progress_section_data *section_data;
2025 bfd_size_type size = bfd_get_section_size (asec);
2026 gdb_byte *buffer;
2027 const char *sect_name = bfd_get_section_name (abfd, asec);
2028
2029 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2030 return;
2031
2032 if (size == 0)
2033 return;
2034
2035 new_request = VEC_safe_push (memory_write_request_s,
2036 args->requests, NULL);
2037 memset (new_request, 0, sizeof (struct memory_write_request));
2038 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2039 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2040 new_request->end = new_request->begin + size; /* FIXME Should size
2041 be in instead? */
2042 new_request->data = xmalloc (size);
2043 new_request->baton = section_data;
2044
2045 buffer = new_request->data;
2046
2047 section_data->cumulative = args->progress_data;
2048 section_data->section_name = sect_name;
2049 section_data->section_size = size;
2050 section_data->lma = new_request->begin;
2051 section_data->buffer = buffer;
2052
2053 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2054 }
2055
2056 /* Clean up an entire memory request vector, including load
2057 data and progress records. */
2058
2059 static void
2060 clear_memory_write_data (void *arg)
2061 {
2062 VEC(memory_write_request_s) **vec_p = arg;
2063 VEC(memory_write_request_s) *vec = *vec_p;
2064 int i;
2065 struct memory_write_request *mr;
2066
2067 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2068 {
2069 xfree (mr->data);
2070 xfree (mr->baton);
2071 }
2072 VEC_free (memory_write_request_s, vec);
2073 }
2074
2075 void
2076 generic_load (char *args, int from_tty)
2077 {
2078 bfd *loadfile_bfd;
2079 struct timeval start_time, end_time;
2080 char *filename;
2081 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2082 struct load_section_data cbdata;
2083 struct load_progress_data total_progress;
2084 struct ui_out *uiout = current_uiout;
2085
2086 CORE_ADDR entry;
2087 char **argv;
2088
2089 memset (&cbdata, 0, sizeof (cbdata));
2090 memset (&total_progress, 0, sizeof (total_progress));
2091 cbdata.progress_data = &total_progress;
2092
2093 make_cleanup (clear_memory_write_data, &cbdata.requests);
2094
2095 if (args == NULL)
2096 error_no_arg (_("file to load"));
2097
2098 argv = gdb_buildargv (args);
2099 make_cleanup_freeargv (argv);
2100
2101 filename = tilde_expand (argv[0]);
2102 make_cleanup (xfree, filename);
2103
2104 if (argv[1] != NULL)
2105 {
2106 char *endptr;
2107
2108 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2109
2110 /* If the last word was not a valid number then
2111 treat it as a file name with spaces in. */
2112 if (argv[1] == endptr)
2113 error (_("Invalid download offset:%s."), argv[1]);
2114
2115 if (argv[2] != NULL)
2116 error (_("Too many parameters."));
2117 }
2118
2119 /* Open the file for loading. */
2120 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2121 if (loadfile_bfd == NULL)
2122 {
2123 perror_with_name (filename);
2124 return;
2125 }
2126
2127 make_cleanup_bfd_unref (loadfile_bfd);
2128
2129 if (!bfd_check_format (loadfile_bfd, bfd_object))
2130 {
2131 error (_("\"%s\" is not an object file: %s"), filename,
2132 bfd_errmsg (bfd_get_error ()));
2133 }
2134
2135 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2136 (void *) &total_progress.total_size);
2137
2138 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2139
2140 gettimeofday (&start_time, NULL);
2141
2142 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2143 load_progress) != 0)
2144 error (_("Load failed"));
2145
2146 gettimeofday (&end_time, NULL);
2147
2148 entry = bfd_get_start_address (loadfile_bfd);
2149 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2150 ui_out_text (uiout, "Start address ");
2151 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2152 ui_out_text (uiout, ", load size ");
2153 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2154 ui_out_text (uiout, "\n");
2155 /* We were doing this in remote-mips.c, I suspect it is right
2156 for other targets too. */
2157 regcache_write_pc (get_current_regcache (), entry);
2158
2159 /* Reset breakpoints, now that we have changed the load image. For
2160 instance, breakpoints may have been set (or reset, by
2161 post_create_inferior) while connected to the target but before we
2162 loaded the program. In that case, the prologue analyzer could
2163 have read instructions from the target to find the right
2164 breakpoint locations. Loading has changed the contents of that
2165 memory. */
2166
2167 breakpoint_re_set ();
2168
2169 /* FIXME: are we supposed to call symbol_file_add or not? According
2170 to a comment from remote-mips.c (where a call to symbol_file_add
2171 was commented out), making the call confuses GDB if more than one
2172 file is loaded in. Some targets do (e.g., remote-vx.c) but
2173 others don't (or didn't - perhaps they have all been deleted). */
2174
2175 print_transfer_performance (gdb_stdout, total_progress.data_count,
2176 total_progress.write_count,
2177 &start_time, &end_time);
2178
2179 do_cleanups (old_cleanups);
2180 }
2181
2182 /* Report how fast the transfer went. */
2183
2184 void
2185 print_transfer_performance (struct ui_file *stream,
2186 unsigned long data_count,
2187 unsigned long write_count,
2188 const struct timeval *start_time,
2189 const struct timeval *end_time)
2190 {
2191 ULONGEST time_count;
2192 struct ui_out *uiout = current_uiout;
2193
2194 /* Compute the elapsed time in milliseconds, as a tradeoff between
2195 accuracy and overflow. */
2196 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2197 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2198
2199 ui_out_text (uiout, "Transfer rate: ");
2200 if (time_count > 0)
2201 {
2202 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2203
2204 if (ui_out_is_mi_like_p (uiout))
2205 {
2206 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2207 ui_out_text (uiout, " bits/sec");
2208 }
2209 else if (rate < 1024)
2210 {
2211 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2212 ui_out_text (uiout, " bytes/sec");
2213 }
2214 else
2215 {
2216 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2217 ui_out_text (uiout, " KB/sec");
2218 }
2219 }
2220 else
2221 {
2222 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2223 ui_out_text (uiout, " bits in <1 sec");
2224 }
2225 if (write_count > 0)
2226 {
2227 ui_out_text (uiout, ", ");
2228 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2229 ui_out_text (uiout, " bytes/write");
2230 }
2231 ui_out_text (uiout, ".\n");
2232 }
2233
2234 /* This function allows the addition of incrementally linked object files.
2235 It does not modify any state in the target, only in the debugger. */
2236 /* Note: ezannoni 2000-04-13 This function/command used to have a
2237 special case syntax for the rombug target (Rombug is the boot
2238 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2239 rombug case, the user doesn't need to supply a text address,
2240 instead a call to target_link() (in target.c) would supply the
2241 value to use. We are now discontinuing this type of ad hoc syntax. */
2242
2243 static void
2244 add_symbol_file_command (char *args, int from_tty)
2245 {
2246 struct gdbarch *gdbarch = get_current_arch ();
2247 char *filename = NULL;
2248 int flags = OBJF_USERLOADED;
2249 char *arg;
2250 int section_index = 0;
2251 int argcnt = 0;
2252 int sec_num = 0;
2253 int i;
2254 int expecting_sec_name = 0;
2255 int expecting_sec_addr = 0;
2256 char **argv;
2257
2258 struct sect_opt
2259 {
2260 char *name;
2261 char *value;
2262 };
2263
2264 struct section_addr_info *section_addrs;
2265 struct sect_opt *sect_opts = NULL;
2266 size_t num_sect_opts = 0;
2267 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2268
2269 num_sect_opts = 16;
2270 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2271 * sizeof (struct sect_opt));
2272
2273 dont_repeat ();
2274
2275 if (args == NULL)
2276 error (_("add-symbol-file takes a file name and an address"));
2277
2278 argv = gdb_buildargv (args);
2279 make_cleanup_freeargv (argv);
2280
2281 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2282 {
2283 /* Process the argument. */
2284 if (argcnt == 0)
2285 {
2286 /* The first argument is the file name. */
2287 filename = tilde_expand (arg);
2288 make_cleanup (xfree, filename);
2289 }
2290 else
2291 if (argcnt == 1)
2292 {
2293 /* The second argument is always the text address at which
2294 to load the program. */
2295 sect_opts[section_index].name = ".text";
2296 sect_opts[section_index].value = arg;
2297 if (++section_index >= num_sect_opts)
2298 {
2299 num_sect_opts *= 2;
2300 sect_opts = ((struct sect_opt *)
2301 xrealloc (sect_opts,
2302 num_sect_opts
2303 * sizeof (struct sect_opt)));
2304 }
2305 }
2306 else
2307 {
2308 /* It's an option (starting with '-') or it's an argument
2309 to an option. */
2310
2311 if (*arg == '-')
2312 {
2313 if (strcmp (arg, "-readnow") == 0)
2314 flags |= OBJF_READNOW;
2315 else if (strcmp (arg, "-s") == 0)
2316 {
2317 expecting_sec_name = 1;
2318 expecting_sec_addr = 1;
2319 }
2320 }
2321 else
2322 {
2323 if (expecting_sec_name)
2324 {
2325 sect_opts[section_index].name = arg;
2326 expecting_sec_name = 0;
2327 }
2328 else
2329 if (expecting_sec_addr)
2330 {
2331 sect_opts[section_index].value = arg;
2332 expecting_sec_addr = 0;
2333 if (++section_index >= num_sect_opts)
2334 {
2335 num_sect_opts *= 2;
2336 sect_opts = ((struct sect_opt *)
2337 xrealloc (sect_opts,
2338 num_sect_opts
2339 * sizeof (struct sect_opt)));
2340 }
2341 }
2342 else
2343 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2344 " [-readnow] [-s <secname> <addr>]*"));
2345 }
2346 }
2347 }
2348
2349 /* This command takes at least two arguments. The first one is a
2350 filename, and the second is the address where this file has been
2351 loaded. Abort now if this address hasn't been provided by the
2352 user. */
2353 if (section_index < 1)
2354 error (_("The address where %s has been loaded is missing"), filename);
2355
2356 /* Print the prompt for the query below. And save the arguments into
2357 a sect_addr_info structure to be passed around to other
2358 functions. We have to split this up into separate print
2359 statements because hex_string returns a local static
2360 string. */
2361
2362 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2363 section_addrs = alloc_section_addr_info (section_index);
2364 make_cleanup (xfree, section_addrs);
2365 for (i = 0; i < section_index; i++)
2366 {
2367 CORE_ADDR addr;
2368 char *val = sect_opts[i].value;
2369 char *sec = sect_opts[i].name;
2370
2371 addr = parse_and_eval_address (val);
2372
2373 /* Here we store the section offsets in the order they were
2374 entered on the command line. */
2375 section_addrs->other[sec_num].name = sec;
2376 section_addrs->other[sec_num].addr = addr;
2377 printf_unfiltered ("\t%s_addr = %s\n", sec,
2378 paddress (gdbarch, addr));
2379 sec_num++;
2380
2381 /* The object's sections are initialized when a
2382 call is made to build_objfile_section_table (objfile).
2383 This happens in reread_symbols.
2384 At this point, we don't know what file type this is,
2385 so we can't determine what section names are valid. */
2386 }
2387
2388 if (from_tty && (!query ("%s", "")))
2389 error (_("Not confirmed."));
2390
2391 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2392 section_addrs, flags);
2393
2394 /* Getting new symbols may change our opinion about what is
2395 frameless. */
2396 reinit_frame_cache ();
2397 do_cleanups (my_cleanups);
2398 }
2399 \f
2400
2401 typedef struct objfile *objfilep;
2402
2403 DEF_VEC_P (objfilep);
2404
2405 /* Re-read symbols if a symbol-file has changed. */
2406 void
2407 reread_symbols (void)
2408 {
2409 struct objfile *objfile;
2410 long new_modtime;
2411 struct stat new_statbuf;
2412 int res;
2413 VEC (objfilep) *new_objfiles = NULL;
2414 struct cleanup *all_cleanups;
2415
2416 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2417
2418 /* With the addition of shared libraries, this should be modified,
2419 the load time should be saved in the partial symbol tables, since
2420 different tables may come from different source files. FIXME.
2421 This routine should then walk down each partial symbol table
2422 and see if the symbol table that it originates from has been changed. */
2423
2424 for (objfile = object_files; objfile; objfile = objfile->next)
2425 {
2426 /* solib-sunos.c creates one objfile with obfd. */
2427 if (objfile->obfd == NULL)
2428 continue;
2429
2430 /* Separate debug objfiles are handled in the main objfile. */
2431 if (objfile->separate_debug_objfile_backlink)
2432 continue;
2433
2434 /* If this object is from an archive (what you usually create with
2435 `ar', often called a `static library' on most systems, though
2436 a `shared library' on AIX is also an archive), then you should
2437 stat on the archive name, not member name. */
2438 if (objfile->obfd->my_archive)
2439 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2440 else
2441 res = stat (objfile->name, &new_statbuf);
2442 if (res != 0)
2443 {
2444 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2445 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2446 objfile->name);
2447 continue;
2448 }
2449 new_modtime = new_statbuf.st_mtime;
2450 if (new_modtime != objfile->mtime)
2451 {
2452 struct cleanup *old_cleanups;
2453 struct section_offsets *offsets;
2454 int num_offsets;
2455 char *obfd_filename;
2456
2457 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2458 objfile->name);
2459
2460 /* There are various functions like symbol_file_add,
2461 symfile_bfd_open, syms_from_objfile, etc., which might
2462 appear to do what we want. But they have various other
2463 effects which we *don't* want. So we just do stuff
2464 ourselves. We don't worry about mapped files (for one thing,
2465 any mapped file will be out of date). */
2466
2467 /* If we get an error, blow away this objfile (not sure if
2468 that is the correct response for things like shared
2469 libraries). */
2470 old_cleanups = make_cleanup_free_objfile (objfile);
2471 /* We need to do this whenever any symbols go away. */
2472 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2473
2474 if (exec_bfd != NULL
2475 && filename_cmp (bfd_get_filename (objfile->obfd),
2476 bfd_get_filename (exec_bfd)) == 0)
2477 {
2478 /* Reload EXEC_BFD without asking anything. */
2479
2480 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2481 }
2482
2483 /* Keep the calls order approx. the same as in free_objfile. */
2484
2485 /* Free the separate debug objfiles. It will be
2486 automatically recreated by sym_read. */
2487 free_objfile_separate_debug (objfile);
2488
2489 /* Remove any references to this objfile in the global
2490 value lists. */
2491 preserve_values (objfile);
2492
2493 /* Nuke all the state that we will re-read. Much of the following
2494 code which sets things to NULL really is necessary to tell
2495 other parts of GDB that there is nothing currently there.
2496
2497 Try to keep the freeing order compatible with free_objfile. */
2498
2499 if (objfile->sf != NULL)
2500 {
2501 (*objfile->sf->sym_finish) (objfile);
2502 }
2503
2504 clear_objfile_data (objfile);
2505
2506 /* Clean up any state BFD has sitting around. */
2507 {
2508 struct bfd *obfd = objfile->obfd;
2509
2510 obfd_filename = bfd_get_filename (objfile->obfd);
2511 /* Open the new BFD before freeing the old one, so that
2512 the filename remains live. */
2513 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2514 if (objfile->obfd == NULL)
2515 {
2516 /* We have to make a cleanup and error here, rather
2517 than erroring later, because once we unref OBFD,
2518 OBFD_FILENAME will be freed. */
2519 make_cleanup_bfd_unref (obfd);
2520 error (_("Can't open %s to read symbols."), obfd_filename);
2521 }
2522 gdb_bfd_unref (obfd);
2523 }
2524
2525 objfile->name = bfd_get_filename (objfile->obfd);
2526 /* bfd_openr sets cacheable to true, which is what we want. */
2527 if (!bfd_check_format (objfile->obfd, bfd_object))
2528 error (_("Can't read symbols from %s: %s."), objfile->name,
2529 bfd_errmsg (bfd_get_error ()));
2530
2531 /* Save the offsets, we will nuke them with the rest of the
2532 objfile_obstack. */
2533 num_offsets = objfile->num_sections;
2534 offsets = ((struct section_offsets *)
2535 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2536 memcpy (offsets, objfile->section_offsets,
2537 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2538
2539 /* FIXME: Do we have to free a whole linked list, or is this
2540 enough? */
2541 if (objfile->global_psymbols.list)
2542 xfree (objfile->global_psymbols.list);
2543 memset (&objfile->global_psymbols, 0,
2544 sizeof (objfile->global_psymbols));
2545 if (objfile->static_psymbols.list)
2546 xfree (objfile->static_psymbols.list);
2547 memset (&objfile->static_psymbols, 0,
2548 sizeof (objfile->static_psymbols));
2549
2550 /* Free the obstacks for non-reusable objfiles. */
2551 psymbol_bcache_free (objfile->psymbol_cache);
2552 objfile->psymbol_cache = psymbol_bcache_init ();
2553 if (objfile->demangled_names_hash != NULL)
2554 {
2555 htab_delete (objfile->demangled_names_hash);
2556 objfile->demangled_names_hash = NULL;
2557 }
2558 obstack_free (&objfile->objfile_obstack, 0);
2559 objfile->sections = NULL;
2560 objfile->symtabs = NULL;
2561 objfile->psymtabs = NULL;
2562 objfile->psymtabs_addrmap = NULL;
2563 objfile->free_psymtabs = NULL;
2564 objfile->template_symbols = NULL;
2565 objfile->msymbols = NULL;
2566 objfile->minimal_symbol_count = 0;
2567 memset (&objfile->msymbol_hash, 0,
2568 sizeof (objfile->msymbol_hash));
2569 memset (&objfile->msymbol_demangled_hash, 0,
2570 sizeof (objfile->msymbol_demangled_hash));
2571
2572 set_objfile_per_bfd (objfile);
2573
2574 /* obstack_init also initializes the obstack so it is
2575 empty. We could use obstack_specify_allocation but
2576 gdb_obstack.h specifies the alloc/dealloc functions. */
2577 obstack_init (&objfile->objfile_obstack);
2578 build_objfile_section_table (objfile);
2579 terminate_minimal_symbol_table (objfile);
2580
2581 /* We use the same section offsets as from last time. I'm not
2582 sure whether that is always correct for shared libraries. */
2583 objfile->section_offsets = (struct section_offsets *)
2584 obstack_alloc (&objfile->objfile_obstack,
2585 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2586 memcpy (objfile->section_offsets, offsets,
2587 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2588 objfile->num_sections = num_offsets;
2589
2590 /* What the hell is sym_new_init for, anyway? The concept of
2591 distinguishing between the main file and additional files
2592 in this way seems rather dubious. */
2593 if (objfile == symfile_objfile)
2594 {
2595 (*objfile->sf->sym_new_init) (objfile);
2596 }
2597
2598 (*objfile->sf->sym_init) (objfile);
2599 clear_complaints (&symfile_complaints, 1, 1);
2600
2601 objfile->flags &= ~OBJF_PSYMTABS_READ;
2602 read_symbols (objfile, 0);
2603
2604 if (!objfile_has_symbols (objfile))
2605 {
2606 wrap_here ("");
2607 printf_unfiltered (_("(no debugging symbols found)\n"));
2608 wrap_here ("");
2609 }
2610
2611 /* We're done reading the symbol file; finish off complaints. */
2612 clear_complaints (&symfile_complaints, 0, 1);
2613
2614 /* Getting new symbols may change our opinion about what is
2615 frameless. */
2616
2617 reinit_frame_cache ();
2618
2619 /* Discard cleanups as symbol reading was successful. */
2620 discard_cleanups (old_cleanups);
2621
2622 /* If the mtime has changed between the time we set new_modtime
2623 and now, we *want* this to be out of date, so don't call stat
2624 again now. */
2625 objfile->mtime = new_modtime;
2626 init_entry_point_info (objfile);
2627
2628 VEC_safe_push (objfilep, new_objfiles, objfile);
2629 }
2630 }
2631
2632 if (new_objfiles)
2633 {
2634 int ix;
2635
2636 /* Notify objfiles that we've modified objfile sections. */
2637 objfiles_changed ();
2638
2639 clear_symtab_users (0);
2640
2641 /* clear_objfile_data for each objfile was called before freeing it and
2642 observer_notify_new_objfile (NULL) has been called by
2643 clear_symtab_users above. Notify the new files now. */
2644 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2645 observer_notify_new_objfile (objfile);
2646
2647 /* At least one objfile has changed, so we can consider that
2648 the executable we're debugging has changed too. */
2649 observer_notify_executable_changed ();
2650 }
2651
2652 do_cleanups (all_cleanups);
2653 }
2654 \f
2655
2656
2657 typedef struct
2658 {
2659 char *ext;
2660 enum language lang;
2661 }
2662 filename_language;
2663
2664 static filename_language *filename_language_table;
2665 static int fl_table_size, fl_table_next;
2666
2667 static void
2668 add_filename_language (char *ext, enum language lang)
2669 {
2670 if (fl_table_next >= fl_table_size)
2671 {
2672 fl_table_size += 10;
2673 filename_language_table =
2674 xrealloc (filename_language_table,
2675 fl_table_size * sizeof (*filename_language_table));
2676 }
2677
2678 filename_language_table[fl_table_next].ext = xstrdup (ext);
2679 filename_language_table[fl_table_next].lang = lang;
2680 fl_table_next++;
2681 }
2682
2683 static char *ext_args;
2684 static void
2685 show_ext_args (struct ui_file *file, int from_tty,
2686 struct cmd_list_element *c, const char *value)
2687 {
2688 fprintf_filtered (file,
2689 _("Mapping between filename extension "
2690 "and source language is \"%s\".\n"),
2691 value);
2692 }
2693
2694 static void
2695 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2696 {
2697 int i;
2698 char *cp = ext_args;
2699 enum language lang;
2700
2701 /* First arg is filename extension, starting with '.' */
2702 if (*cp != '.')
2703 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2704
2705 /* Find end of first arg. */
2706 while (*cp && !isspace (*cp))
2707 cp++;
2708
2709 if (*cp == '\0')
2710 error (_("'%s': two arguments required -- "
2711 "filename extension and language"),
2712 ext_args);
2713
2714 /* Null-terminate first arg. */
2715 *cp++ = '\0';
2716
2717 /* Find beginning of second arg, which should be a source language. */
2718 while (*cp && isspace (*cp))
2719 cp++;
2720
2721 if (*cp == '\0')
2722 error (_("'%s': two arguments required -- "
2723 "filename extension and language"),
2724 ext_args);
2725
2726 /* Lookup the language from among those we know. */
2727 lang = language_enum (cp);
2728
2729 /* Now lookup the filename extension: do we already know it? */
2730 for (i = 0; i < fl_table_next; i++)
2731 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2732 break;
2733
2734 if (i >= fl_table_next)
2735 {
2736 /* New file extension. */
2737 add_filename_language (ext_args, lang);
2738 }
2739 else
2740 {
2741 /* Redefining a previously known filename extension. */
2742
2743 /* if (from_tty) */
2744 /* query ("Really make files of type %s '%s'?", */
2745 /* ext_args, language_str (lang)); */
2746
2747 xfree (filename_language_table[i].ext);
2748 filename_language_table[i].ext = xstrdup (ext_args);
2749 filename_language_table[i].lang = lang;
2750 }
2751 }
2752
2753 static void
2754 info_ext_lang_command (char *args, int from_tty)
2755 {
2756 int i;
2757
2758 printf_filtered (_("Filename extensions and the languages they represent:"));
2759 printf_filtered ("\n\n");
2760 for (i = 0; i < fl_table_next; i++)
2761 printf_filtered ("\t%s\t- %s\n",
2762 filename_language_table[i].ext,
2763 language_str (filename_language_table[i].lang));
2764 }
2765
2766 static void
2767 init_filename_language_table (void)
2768 {
2769 if (fl_table_size == 0) /* Protect against repetition. */
2770 {
2771 fl_table_size = 20;
2772 fl_table_next = 0;
2773 filename_language_table =
2774 xmalloc (fl_table_size * sizeof (*filename_language_table));
2775 add_filename_language (".c", language_c);
2776 add_filename_language (".d", language_d);
2777 add_filename_language (".C", language_cplus);
2778 add_filename_language (".cc", language_cplus);
2779 add_filename_language (".cp", language_cplus);
2780 add_filename_language (".cpp", language_cplus);
2781 add_filename_language (".cxx", language_cplus);
2782 add_filename_language (".c++", language_cplus);
2783 add_filename_language (".java", language_java);
2784 add_filename_language (".class", language_java);
2785 add_filename_language (".m", language_objc);
2786 add_filename_language (".f", language_fortran);
2787 add_filename_language (".F", language_fortran);
2788 add_filename_language (".for", language_fortran);
2789 add_filename_language (".FOR", language_fortran);
2790 add_filename_language (".ftn", language_fortran);
2791 add_filename_language (".FTN", language_fortran);
2792 add_filename_language (".fpp", language_fortran);
2793 add_filename_language (".FPP", language_fortran);
2794 add_filename_language (".f90", language_fortran);
2795 add_filename_language (".F90", language_fortran);
2796 add_filename_language (".f95", language_fortran);
2797 add_filename_language (".F95", language_fortran);
2798 add_filename_language (".f03", language_fortran);
2799 add_filename_language (".F03", language_fortran);
2800 add_filename_language (".f08", language_fortran);
2801 add_filename_language (".F08", language_fortran);
2802 add_filename_language (".s", language_asm);
2803 add_filename_language (".sx", language_asm);
2804 add_filename_language (".S", language_asm);
2805 add_filename_language (".pas", language_pascal);
2806 add_filename_language (".p", language_pascal);
2807 add_filename_language (".pp", language_pascal);
2808 add_filename_language (".adb", language_ada);
2809 add_filename_language (".ads", language_ada);
2810 add_filename_language (".a", language_ada);
2811 add_filename_language (".ada", language_ada);
2812 add_filename_language (".dg", language_ada);
2813 }
2814 }
2815
2816 enum language
2817 deduce_language_from_filename (const char *filename)
2818 {
2819 int i;
2820 char *cp;
2821
2822 if (filename != NULL)
2823 if ((cp = strrchr (filename, '.')) != NULL)
2824 for (i = 0; i < fl_table_next; i++)
2825 if (strcmp (cp, filename_language_table[i].ext) == 0)
2826 return filename_language_table[i].lang;
2827
2828 return language_unknown;
2829 }
2830 \f
2831 /* allocate_symtab:
2832
2833 Allocate and partly initialize a new symbol table. Return a pointer
2834 to it. error() if no space.
2835
2836 Caller must set these fields:
2837 LINETABLE(symtab)
2838 symtab->blockvector
2839 symtab->dirname
2840 symtab->free_code
2841 symtab->free_ptr
2842 */
2843
2844 struct symtab *
2845 allocate_symtab (const char *filename, struct objfile *objfile)
2846 {
2847 struct symtab *symtab;
2848
2849 symtab = (struct symtab *)
2850 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2851 memset (symtab, 0, sizeof (*symtab));
2852 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2853 objfile->per_bfd->filename_cache);
2854 symtab->fullname = NULL;
2855 symtab->language = deduce_language_from_filename (filename);
2856 symtab->debugformat = "unknown";
2857
2858 /* Hook it to the objfile it comes from. */
2859
2860 symtab->objfile = objfile;
2861 symtab->next = objfile->symtabs;
2862 objfile->symtabs = symtab;
2863
2864 if (symtab_create_debug)
2865 {
2866 /* Be a bit clever with debugging messages, and don't print objfile
2867 every time, only when it changes. */
2868 static char *last_objfile_name = NULL;
2869
2870 if (last_objfile_name == NULL
2871 || strcmp (last_objfile_name, objfile->name) != 0)
2872 {
2873 xfree (last_objfile_name);
2874 last_objfile_name = xstrdup (objfile->name);
2875 fprintf_unfiltered (gdb_stdlog,
2876 "Creating one or more symtabs for objfile %s ...\n",
2877 last_objfile_name);
2878 }
2879 fprintf_unfiltered (gdb_stdlog,
2880 "Created symtab %s for module %s.\n",
2881 host_address_to_string (symtab), filename);
2882 }
2883
2884 return (symtab);
2885 }
2886 \f
2887
2888 /* Reset all data structures in gdb which may contain references to symbol
2889 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2890
2891 void
2892 clear_symtab_users (int add_flags)
2893 {
2894 /* Someday, we should do better than this, by only blowing away
2895 the things that really need to be blown. */
2896
2897 /* Clear the "current" symtab first, because it is no longer valid.
2898 breakpoint_re_set may try to access the current symtab. */
2899 clear_current_source_symtab_and_line ();
2900
2901 clear_displays ();
2902 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2903 breakpoint_re_set ();
2904 clear_last_displayed_sal ();
2905 clear_pc_function_cache ();
2906 observer_notify_new_objfile (NULL);
2907
2908 /* Clear globals which might have pointed into a removed objfile.
2909 FIXME: It's not clear which of these are supposed to persist
2910 between expressions and which ought to be reset each time. */
2911 expression_context_block = NULL;
2912 innermost_block = NULL;
2913
2914 /* Varobj may refer to old symbols, perform a cleanup. */
2915 varobj_invalidate ();
2916
2917 }
2918
2919 static void
2920 clear_symtab_users_cleanup (void *ignore)
2921 {
2922 clear_symtab_users (0);
2923 }
2924 \f
2925 /* OVERLAYS:
2926 The following code implements an abstraction for debugging overlay sections.
2927
2928 The target model is as follows:
2929 1) The gnu linker will permit multiple sections to be mapped into the
2930 same VMA, each with its own unique LMA (or load address).
2931 2) It is assumed that some runtime mechanism exists for mapping the
2932 sections, one by one, from the load address into the VMA address.
2933 3) This code provides a mechanism for gdb to keep track of which
2934 sections should be considered to be mapped from the VMA to the LMA.
2935 This information is used for symbol lookup, and memory read/write.
2936 For instance, if a section has been mapped then its contents
2937 should be read from the VMA, otherwise from the LMA.
2938
2939 Two levels of debugger support for overlays are available. One is
2940 "manual", in which the debugger relies on the user to tell it which
2941 overlays are currently mapped. This level of support is
2942 implemented entirely in the core debugger, and the information about
2943 whether a section is mapped is kept in the objfile->obj_section table.
2944
2945 The second level of support is "automatic", and is only available if
2946 the target-specific code provides functionality to read the target's
2947 overlay mapping table, and translate its contents for the debugger
2948 (by updating the mapped state information in the obj_section tables).
2949
2950 The interface is as follows:
2951 User commands:
2952 overlay map <name> -- tell gdb to consider this section mapped
2953 overlay unmap <name> -- tell gdb to consider this section unmapped
2954 overlay list -- list the sections that GDB thinks are mapped
2955 overlay read-target -- get the target's state of what's mapped
2956 overlay off/manual/auto -- set overlay debugging state
2957 Functional interface:
2958 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2959 section, return that section.
2960 find_pc_overlay(pc): find any overlay section that contains
2961 the pc, either in its VMA or its LMA
2962 section_is_mapped(sect): true if overlay is marked as mapped
2963 section_is_overlay(sect): true if section's VMA != LMA
2964 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2965 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2966 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2967 overlay_mapped_address(...): map an address from section's LMA to VMA
2968 overlay_unmapped_address(...): map an address from section's VMA to LMA
2969 symbol_overlayed_address(...): Return a "current" address for symbol:
2970 either in VMA or LMA depending on whether
2971 the symbol's section is currently mapped. */
2972
2973 /* Overlay debugging state: */
2974
2975 enum overlay_debugging_state overlay_debugging = ovly_off;
2976 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2977
2978 /* Function: section_is_overlay (SECTION)
2979 Returns true if SECTION has VMA not equal to LMA, ie.
2980 SECTION is loaded at an address different from where it will "run". */
2981
2982 int
2983 section_is_overlay (struct obj_section *section)
2984 {
2985 if (overlay_debugging && section)
2986 {
2987 bfd *abfd = section->objfile->obfd;
2988 asection *bfd_section = section->the_bfd_section;
2989
2990 if (bfd_section_lma (abfd, bfd_section) != 0
2991 && bfd_section_lma (abfd, bfd_section)
2992 != bfd_section_vma (abfd, bfd_section))
2993 return 1;
2994 }
2995
2996 return 0;
2997 }
2998
2999 /* Function: overlay_invalidate_all (void)
3000 Invalidate the mapped state of all overlay sections (mark it as stale). */
3001
3002 static void
3003 overlay_invalidate_all (void)
3004 {
3005 struct objfile *objfile;
3006 struct obj_section *sect;
3007
3008 ALL_OBJSECTIONS (objfile, sect)
3009 if (section_is_overlay (sect))
3010 sect->ovly_mapped = -1;
3011 }
3012
3013 /* Function: section_is_mapped (SECTION)
3014 Returns true if section is an overlay, and is currently mapped.
3015
3016 Access to the ovly_mapped flag is restricted to this function, so
3017 that we can do automatic update. If the global flag
3018 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3019 overlay_invalidate_all. If the mapped state of the particular
3020 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3021
3022 int
3023 section_is_mapped (struct obj_section *osect)
3024 {
3025 struct gdbarch *gdbarch;
3026
3027 if (osect == 0 || !section_is_overlay (osect))
3028 return 0;
3029
3030 switch (overlay_debugging)
3031 {
3032 default:
3033 case ovly_off:
3034 return 0; /* overlay debugging off */
3035 case ovly_auto: /* overlay debugging automatic */
3036 /* Unles there is a gdbarch_overlay_update function,
3037 there's really nothing useful to do here (can't really go auto). */
3038 gdbarch = get_objfile_arch (osect->objfile);
3039 if (gdbarch_overlay_update_p (gdbarch))
3040 {
3041 if (overlay_cache_invalid)
3042 {
3043 overlay_invalidate_all ();
3044 overlay_cache_invalid = 0;
3045 }
3046 if (osect->ovly_mapped == -1)
3047 gdbarch_overlay_update (gdbarch, osect);
3048 }
3049 /* fall thru to manual case */
3050 case ovly_on: /* overlay debugging manual */
3051 return osect->ovly_mapped == 1;
3052 }
3053 }
3054
3055 /* Function: pc_in_unmapped_range
3056 If PC falls into the lma range of SECTION, return true, else false. */
3057
3058 CORE_ADDR
3059 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3060 {
3061 if (section_is_overlay (section))
3062 {
3063 bfd *abfd = section->objfile->obfd;
3064 asection *bfd_section = section->the_bfd_section;
3065
3066 /* We assume the LMA is relocated by the same offset as the VMA. */
3067 bfd_vma size = bfd_get_section_size (bfd_section);
3068 CORE_ADDR offset = obj_section_offset (section);
3069
3070 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3071 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3072 return 1;
3073 }
3074
3075 return 0;
3076 }
3077
3078 /* Function: pc_in_mapped_range
3079 If PC falls into the vma range of SECTION, return true, else false. */
3080
3081 CORE_ADDR
3082 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3083 {
3084 if (section_is_overlay (section))
3085 {
3086 if (obj_section_addr (section) <= pc
3087 && pc < obj_section_endaddr (section))
3088 return 1;
3089 }
3090
3091 return 0;
3092 }
3093
3094
3095 /* Return true if the mapped ranges of sections A and B overlap, false
3096 otherwise. */
3097 static int
3098 sections_overlap (struct obj_section *a, struct obj_section *b)
3099 {
3100 CORE_ADDR a_start = obj_section_addr (a);
3101 CORE_ADDR a_end = obj_section_endaddr (a);
3102 CORE_ADDR b_start = obj_section_addr (b);
3103 CORE_ADDR b_end = obj_section_endaddr (b);
3104
3105 return (a_start < b_end && b_start < a_end);
3106 }
3107
3108 /* Function: overlay_unmapped_address (PC, SECTION)
3109 Returns the address corresponding to PC in the unmapped (load) range.
3110 May be the same as PC. */
3111
3112 CORE_ADDR
3113 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3114 {
3115 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3116 {
3117 bfd *abfd = section->objfile->obfd;
3118 asection *bfd_section = section->the_bfd_section;
3119
3120 return pc + bfd_section_lma (abfd, bfd_section)
3121 - bfd_section_vma (abfd, bfd_section);
3122 }
3123
3124 return pc;
3125 }
3126
3127 /* Function: overlay_mapped_address (PC, SECTION)
3128 Returns the address corresponding to PC in the mapped (runtime) range.
3129 May be the same as PC. */
3130
3131 CORE_ADDR
3132 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3133 {
3134 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3135 {
3136 bfd *abfd = section->objfile->obfd;
3137 asection *bfd_section = section->the_bfd_section;
3138
3139 return pc + bfd_section_vma (abfd, bfd_section)
3140 - bfd_section_lma (abfd, bfd_section);
3141 }
3142
3143 return pc;
3144 }
3145
3146
3147 /* Function: symbol_overlayed_address
3148 Return one of two addresses (relative to the VMA or to the LMA),
3149 depending on whether the section is mapped or not. */
3150
3151 CORE_ADDR
3152 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3153 {
3154 if (overlay_debugging)
3155 {
3156 /* If the symbol has no section, just return its regular address. */
3157 if (section == 0)
3158 return address;
3159 /* If the symbol's section is not an overlay, just return its
3160 address. */
3161 if (!section_is_overlay (section))
3162 return address;
3163 /* If the symbol's section is mapped, just return its address. */
3164 if (section_is_mapped (section))
3165 return address;
3166 /*
3167 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3168 * then return its LOADED address rather than its vma address!!
3169 */
3170 return overlay_unmapped_address (address, section);
3171 }
3172 return address;
3173 }
3174
3175 /* Function: find_pc_overlay (PC)
3176 Return the best-match overlay section for PC:
3177 If PC matches a mapped overlay section's VMA, return that section.
3178 Else if PC matches an unmapped section's VMA, return that section.
3179 Else if PC matches an unmapped section's LMA, return that section. */
3180
3181 struct obj_section *
3182 find_pc_overlay (CORE_ADDR pc)
3183 {
3184 struct objfile *objfile;
3185 struct obj_section *osect, *best_match = NULL;
3186
3187 if (overlay_debugging)
3188 ALL_OBJSECTIONS (objfile, osect)
3189 if (section_is_overlay (osect))
3190 {
3191 if (pc_in_mapped_range (pc, osect))
3192 {
3193 if (section_is_mapped (osect))
3194 return osect;
3195 else
3196 best_match = osect;
3197 }
3198 else if (pc_in_unmapped_range (pc, osect))
3199 best_match = osect;
3200 }
3201 return best_match;
3202 }
3203
3204 /* Function: find_pc_mapped_section (PC)
3205 If PC falls into the VMA address range of an overlay section that is
3206 currently marked as MAPPED, return that section. Else return NULL. */
3207
3208 struct obj_section *
3209 find_pc_mapped_section (CORE_ADDR pc)
3210 {
3211 struct objfile *objfile;
3212 struct obj_section *osect;
3213
3214 if (overlay_debugging)
3215 ALL_OBJSECTIONS (objfile, osect)
3216 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3217 return osect;
3218
3219 return NULL;
3220 }
3221
3222 /* Function: list_overlays_command
3223 Print a list of mapped sections and their PC ranges. */
3224
3225 void
3226 list_overlays_command (char *args, int from_tty)
3227 {
3228 int nmapped = 0;
3229 struct objfile *objfile;
3230 struct obj_section *osect;
3231
3232 if (overlay_debugging)
3233 ALL_OBJSECTIONS (objfile, osect)
3234 if (section_is_mapped (osect))
3235 {
3236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3242 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3243 size = bfd_get_section_size (osect->the_bfd_section);
3244 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3245
3246 printf_filtered ("Section %s, loaded at ", name);
3247 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3248 puts_filtered (" - ");
3249 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3250 printf_filtered (", mapped at ");
3251 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3252 puts_filtered (" - ");
3253 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3254 puts_filtered ("\n");
3255
3256 nmapped++;
3257 }
3258 if (nmapped == 0)
3259 printf_filtered (_("No sections are mapped.\n"));
3260 }
3261
3262 /* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265 void
3266 map_overlay_command (char *args, int from_tty)
3267 {
3268 struct objfile *objfile, *objfile2;
3269 struct obj_section *sec, *sec2;
3270
3271 if (!overlay_debugging)
3272 error (_("Overlay debugging not enabled. Use "
3273 "either the 'overlay auto' or\n"
3274 "the 'overlay manual' command."));
3275
3276 if (args == 0 || *args == 0)
3277 error (_("Argument required: name of an overlay section"));
3278
3279 /* First, find a section matching the user supplied argument. */
3280 ALL_OBJSECTIONS (objfile, sec)
3281 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3282 {
3283 /* Now, check to see if the section is an overlay. */
3284 if (!section_is_overlay (sec))
3285 continue; /* not an overlay section */
3286
3287 /* Mark the overlay as "mapped". */
3288 sec->ovly_mapped = 1;
3289
3290 /* Next, make a pass and unmap any sections that are
3291 overlapped by this new section: */
3292 ALL_OBJSECTIONS (objfile2, sec2)
3293 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3294 {
3295 if (info_verbose)
3296 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3297 bfd_section_name (objfile->obfd,
3298 sec2->the_bfd_section));
3299 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3300 }
3301 return;
3302 }
3303 error (_("No overlay section called %s"), args);
3304 }
3305
3306 /* Function: unmap_overlay_command
3307 Mark the overlay section as unmapped
3308 (ie. resident in its LMA address range, rather than the VMA range). */
3309
3310 void
3311 unmap_overlay_command (char *args, int from_tty)
3312 {
3313 struct objfile *objfile;
3314 struct obj_section *sec;
3315
3316 if (!overlay_debugging)
3317 error (_("Overlay debugging not enabled. "
3318 "Use either the 'overlay auto' or\n"
3319 "the 'overlay manual' command."));
3320
3321 if (args == 0 || *args == 0)
3322 error (_("Argument required: name of an overlay section"));
3323
3324 /* First, find a section matching the user supplied argument. */
3325 ALL_OBJSECTIONS (objfile, sec)
3326 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3327 {
3328 if (!sec->ovly_mapped)
3329 error (_("Section %s is not mapped"), args);
3330 sec->ovly_mapped = 0;
3331 return;
3332 }
3333 error (_("No overlay section called %s"), args);
3334 }
3335
3336 /* Function: overlay_auto_command
3337 A utility command to turn on overlay debugging.
3338 Possibly this should be done via a set/show command. */
3339
3340 static void
3341 overlay_auto_command (char *args, int from_tty)
3342 {
3343 overlay_debugging = ovly_auto;
3344 enable_overlay_breakpoints ();
3345 if (info_verbose)
3346 printf_unfiltered (_("Automatic overlay debugging enabled."));
3347 }
3348
3349 /* Function: overlay_manual_command
3350 A utility command to turn on overlay debugging.
3351 Possibly this should be done via a set/show command. */
3352
3353 static void
3354 overlay_manual_command (char *args, int from_tty)
3355 {
3356 overlay_debugging = ovly_on;
3357 disable_overlay_breakpoints ();
3358 if (info_verbose)
3359 printf_unfiltered (_("Overlay debugging enabled."));
3360 }
3361
3362 /* Function: overlay_off_command
3363 A utility command to turn on overlay debugging.
3364 Possibly this should be done via a set/show command. */
3365
3366 static void
3367 overlay_off_command (char *args, int from_tty)
3368 {
3369 overlay_debugging = ovly_off;
3370 disable_overlay_breakpoints ();
3371 if (info_verbose)
3372 printf_unfiltered (_("Overlay debugging disabled."));
3373 }
3374
3375 static void
3376 overlay_load_command (char *args, int from_tty)
3377 {
3378 struct gdbarch *gdbarch = get_current_arch ();
3379
3380 if (gdbarch_overlay_update_p (gdbarch))
3381 gdbarch_overlay_update (gdbarch, NULL);
3382 else
3383 error (_("This target does not know how to read its overlay state."));
3384 }
3385
3386 /* Function: overlay_command
3387 A place-holder for a mis-typed command. */
3388
3389 /* Command list chain containing all defined "overlay" subcommands. */
3390 static struct cmd_list_element *overlaylist;
3391
3392 static void
3393 overlay_command (char *args, int from_tty)
3394 {
3395 printf_unfiltered
3396 ("\"overlay\" must be followed by the name of an overlay command.\n");
3397 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3398 }
3399
3400
3401 /* Target Overlays for the "Simplest" overlay manager:
3402
3403 This is GDB's default target overlay layer. It works with the
3404 minimal overlay manager supplied as an example by Cygnus. The
3405 entry point is via a function pointer "gdbarch_overlay_update",
3406 so targets that use a different runtime overlay manager can
3407 substitute their own overlay_update function and take over the
3408 function pointer.
3409
3410 The overlay_update function pokes around in the target's data structures
3411 to see what overlays are mapped, and updates GDB's overlay mapping with
3412 this information.
3413
3414 In this simple implementation, the target data structures are as follows:
3415 unsigned _novlys; /# number of overlay sections #/
3416 unsigned _ovly_table[_novlys][4] = {
3417 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3418 {..., ..., ..., ...},
3419 }
3420 unsigned _novly_regions; /# number of overlay regions #/
3421 unsigned _ovly_region_table[_novly_regions][3] = {
3422 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3423 {..., ..., ...},
3424 }
3425 These functions will attempt to update GDB's mappedness state in the
3426 symbol section table, based on the target's mappedness state.
3427
3428 To do this, we keep a cached copy of the target's _ovly_table, and
3429 attempt to detect when the cached copy is invalidated. The main
3430 entry point is "simple_overlay_update(SECT), which looks up SECT in
3431 the cached table and re-reads only the entry for that section from
3432 the target (whenever possible). */
3433
3434 /* Cached, dynamically allocated copies of the target data structures: */
3435 static unsigned (*cache_ovly_table)[4] = 0;
3436 static unsigned cache_novlys = 0;
3437 static CORE_ADDR cache_ovly_table_base = 0;
3438 enum ovly_index
3439 {
3440 VMA, SIZE, LMA, MAPPED
3441 };
3442
3443 /* Throw away the cached copy of _ovly_table. */
3444 static void
3445 simple_free_overlay_table (void)
3446 {
3447 if (cache_ovly_table)
3448 xfree (cache_ovly_table);
3449 cache_novlys = 0;
3450 cache_ovly_table = NULL;
3451 cache_ovly_table_base = 0;
3452 }
3453
3454 /* Read an array of ints of size SIZE from the target into a local buffer.
3455 Convert to host order. int LEN is number of ints. */
3456 static void
3457 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3458 int len, int size, enum bfd_endian byte_order)
3459 {
3460 /* FIXME (alloca): Not safe if array is very large. */
3461 gdb_byte *buf = alloca (len * size);
3462 int i;
3463
3464 read_memory (memaddr, buf, len * size);
3465 for (i = 0; i < len; i++)
3466 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3467 }
3468
3469 /* Find and grab a copy of the target _ovly_table
3470 (and _novlys, which is needed for the table's size). */
3471 static int
3472 simple_read_overlay_table (void)
3473 {
3474 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3475 struct gdbarch *gdbarch;
3476 int word_size;
3477 enum bfd_endian byte_order;
3478
3479 simple_free_overlay_table ();
3480 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3481 if (! novlys_msym)
3482 {
3483 error (_("Error reading inferior's overlay table: "
3484 "couldn't find `_novlys' variable\n"
3485 "in inferior. Use `overlay manual' mode."));
3486 return 0;
3487 }
3488
3489 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3490 if (! ovly_table_msym)
3491 {
3492 error (_("Error reading inferior's overlay table: couldn't find "
3493 "`_ovly_table' array\n"
3494 "in inferior. Use `overlay manual' mode."));
3495 return 0;
3496 }
3497
3498 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3499 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3500 byte_order = gdbarch_byte_order (gdbarch);
3501
3502 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3503 4, byte_order);
3504 cache_ovly_table
3505 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3506 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3507 read_target_long_array (cache_ovly_table_base,
3508 (unsigned int *) cache_ovly_table,
3509 cache_novlys * 4, word_size, byte_order);
3510
3511 return 1; /* SUCCESS */
3512 }
3513
3514 /* Function: simple_overlay_update_1
3515 A helper function for simple_overlay_update. Assuming a cached copy
3516 of _ovly_table exists, look through it to find an entry whose vma,
3517 lma and size match those of OSECT. Re-read the entry and make sure
3518 it still matches OSECT (else the table may no longer be valid).
3519 Set OSECT's mapped state to match the entry. Return: 1 for
3520 success, 0 for failure. */
3521
3522 static int
3523 simple_overlay_update_1 (struct obj_section *osect)
3524 {
3525 int i, size;
3526 bfd *obfd = osect->objfile->obfd;
3527 asection *bsect = osect->the_bfd_section;
3528 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3529 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3531
3532 size = bfd_get_section_size (osect->the_bfd_section);
3533 for (i = 0; i < cache_novlys; i++)
3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3536 /* && cache_ovly_table[i][SIZE] == size */ )
3537 {
3538 read_target_long_array (cache_ovly_table_base + i * word_size,
3539 (unsigned int *) cache_ovly_table[i],
3540 4, word_size, byte_order);
3541 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3542 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3543 /* && cache_ovly_table[i][SIZE] == size */ )
3544 {
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 return 1;
3547 }
3548 else /* Warning! Warning! Target's ovly table has changed! */
3549 return 0;
3550 }
3551 return 0;
3552 }
3553
3554 /* Function: simple_overlay_update
3555 If OSECT is NULL, then update all sections' mapped state
3556 (after re-reading the entire target _ovly_table).
3557 If OSECT is non-NULL, then try to find a matching entry in the
3558 cached ovly_table and update only OSECT's mapped state.
3559 If a cached entry can't be found or the cache isn't valid, then
3560 re-read the entire cache, and go ahead and update all sections. */
3561
3562 void
3563 simple_overlay_update (struct obj_section *osect)
3564 {
3565 struct objfile *objfile;
3566
3567 /* Were we given an osect to look up? NULL means do all of them. */
3568 if (osect)
3569 /* Have we got a cached copy of the target's overlay table? */
3570 if (cache_ovly_table != NULL)
3571 {
3572 /* Does its cached location match what's currently in the
3573 symtab? */
3574 struct minimal_symbol *minsym
3575 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3576
3577 if (minsym == NULL)
3578 error (_("Error reading inferior's overlay table: couldn't "
3579 "find `_ovly_table' array\n"
3580 "in inferior. Use `overlay manual' mode."));
3581
3582 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3583 /* Then go ahead and try to look up this single section in
3584 the cache. */
3585 if (simple_overlay_update_1 (osect))
3586 /* Found it! We're done. */
3587 return;
3588 }
3589
3590 /* Cached table no good: need to read the entire table anew.
3591 Or else we want all the sections, in which case it's actually
3592 more efficient to read the whole table in one block anyway. */
3593
3594 if (! simple_read_overlay_table ())
3595 return;
3596
3597 /* Now may as well update all sections, even if only one was requested. */
3598 ALL_OBJSECTIONS (objfile, osect)
3599 if (section_is_overlay (osect))
3600 {
3601 int i, size;
3602 bfd *obfd = osect->objfile->obfd;
3603 asection *bsect = osect->the_bfd_section;
3604
3605 size = bfd_get_section_size (bsect);
3606 for (i = 0; i < cache_novlys; i++)
3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3609 /* && cache_ovly_table[i][SIZE] == size */ )
3610 { /* obj_section matches i'th entry in ovly_table. */
3611 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3612 break; /* finished with inner for loop: break out. */
3613 }
3614 }
3615 }
3616
3617 /* Set the output sections and output offsets for section SECTP in
3618 ABFD. The relocation code in BFD will read these offsets, so we
3619 need to be sure they're initialized. We map each section to itself,
3620 with no offset; this means that SECTP->vma will be honored. */
3621
3622 static void
3623 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3624 {
3625 sectp->output_section = sectp;
3626 sectp->output_offset = 0;
3627 }
3628
3629 /* Default implementation for sym_relocate. */
3630
3631
3632 bfd_byte *
3633 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3634 bfd_byte *buf)
3635 {
3636 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3637 DWO file. */
3638 bfd *abfd = sectp->owner;
3639
3640 /* We're only interested in sections with relocation
3641 information. */
3642 if ((sectp->flags & SEC_RELOC) == 0)
3643 return NULL;
3644
3645 /* We will handle section offsets properly elsewhere, so relocate as if
3646 all sections begin at 0. */
3647 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3648
3649 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3650 }
3651
3652 /* Relocate the contents of a debug section SECTP in ABFD. The
3653 contents are stored in BUF if it is non-NULL, or returned in a
3654 malloc'd buffer otherwise.
3655
3656 For some platforms and debug info formats, shared libraries contain
3657 relocations against the debug sections (particularly for DWARF-2;
3658 one affected platform is PowerPC GNU/Linux, although it depends on
3659 the version of the linker in use). Also, ELF object files naturally
3660 have unresolved relocations for their debug sections. We need to apply
3661 the relocations in order to get the locations of symbols correct.
3662 Another example that may require relocation processing, is the
3663 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3664 debug section. */
3665
3666 bfd_byte *
3667 symfile_relocate_debug_section (struct objfile *objfile,
3668 asection *sectp, bfd_byte *buf)
3669 {
3670 gdb_assert (objfile->sf->sym_relocate);
3671
3672 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3673 }
3674
3675 struct symfile_segment_data *
3676 get_symfile_segment_data (bfd *abfd)
3677 {
3678 const struct sym_fns *sf = find_sym_fns (abfd);
3679
3680 if (sf == NULL)
3681 return NULL;
3682
3683 return sf->sym_segments (abfd);
3684 }
3685
3686 void
3687 free_symfile_segment_data (struct symfile_segment_data *data)
3688 {
3689 xfree (data->segment_bases);
3690 xfree (data->segment_sizes);
3691 xfree (data->segment_info);
3692 xfree (data);
3693 }
3694
3695
3696 /* Given:
3697 - DATA, containing segment addresses from the object file ABFD, and
3698 the mapping from ABFD's sections onto the segments that own them,
3699 and
3700 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3701 segment addresses reported by the target,
3702 store the appropriate offsets for each section in OFFSETS.
3703
3704 If there are fewer entries in SEGMENT_BASES than there are segments
3705 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3706
3707 If there are more entries, then ignore the extra. The target may
3708 not be able to distinguish between an empty data segment and a
3709 missing data segment; a missing text segment is less plausible. */
3710 int
3711 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3712 struct section_offsets *offsets,
3713 int num_segment_bases,
3714 const CORE_ADDR *segment_bases)
3715 {
3716 int i;
3717 asection *sect;
3718
3719 /* It doesn't make sense to call this function unless you have some
3720 segment base addresses. */
3721 gdb_assert (num_segment_bases > 0);
3722
3723 /* If we do not have segment mappings for the object file, we
3724 can not relocate it by segments. */
3725 gdb_assert (data != NULL);
3726 gdb_assert (data->num_segments > 0);
3727
3728 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3729 {
3730 int which = data->segment_info[i];
3731
3732 gdb_assert (0 <= which && which <= data->num_segments);
3733
3734 /* Don't bother computing offsets for sections that aren't
3735 loaded as part of any segment. */
3736 if (! which)
3737 continue;
3738
3739 /* Use the last SEGMENT_BASES entry as the address of any extra
3740 segments mentioned in DATA->segment_info. */
3741 if (which > num_segment_bases)
3742 which = num_segment_bases;
3743
3744 offsets->offsets[i] = (segment_bases[which - 1]
3745 - data->segment_bases[which - 1]);
3746 }
3747
3748 return 1;
3749 }
3750
3751 static void
3752 symfile_find_segment_sections (struct objfile *objfile)
3753 {
3754 bfd *abfd = objfile->obfd;
3755 int i;
3756 asection *sect;
3757 struct symfile_segment_data *data;
3758
3759 data = get_symfile_segment_data (objfile->obfd);
3760 if (data == NULL)
3761 return;
3762
3763 if (data->num_segments != 1 && data->num_segments != 2)
3764 {
3765 free_symfile_segment_data (data);
3766 return;
3767 }
3768
3769 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3770 {
3771 int which = data->segment_info[i];
3772
3773 if (which == 1)
3774 {
3775 if (objfile->sect_index_text == -1)
3776 objfile->sect_index_text = sect->index;
3777
3778 if (objfile->sect_index_rodata == -1)
3779 objfile->sect_index_rodata = sect->index;
3780 }
3781 else if (which == 2)
3782 {
3783 if (objfile->sect_index_data == -1)
3784 objfile->sect_index_data = sect->index;
3785
3786 if (objfile->sect_index_bss == -1)
3787 objfile->sect_index_bss = sect->index;
3788 }
3789 }
3790
3791 free_symfile_segment_data (data);
3792 }
3793
3794 void
3795 _initialize_symfile (void)
3796 {
3797 struct cmd_list_element *c;
3798
3799 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3800 Load symbol table from executable file FILE.\n\
3801 The `file' command can also load symbol tables, as well as setting the file\n\
3802 to execute."), &cmdlist);
3803 set_cmd_completer (c, filename_completer);
3804
3805 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3806 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3807 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3808 ...]\nADDR is the starting address of the file's text.\n\
3809 The optional arguments are section-name section-address pairs and\n\
3810 should be specified if the data and bss segments are not contiguous\n\
3811 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3812 &cmdlist);
3813 set_cmd_completer (c, filename_completer);
3814
3815 c = add_cmd ("load", class_files, load_command, _("\
3816 Dynamically load FILE into the running program, and record its symbols\n\
3817 for access from GDB.\n\
3818 A load OFFSET may also be given."), &cmdlist);
3819 set_cmd_completer (c, filename_completer);
3820
3821 add_prefix_cmd ("overlay", class_support, overlay_command,
3822 _("Commands for debugging overlays."), &overlaylist,
3823 "overlay ", 0, &cmdlist);
3824
3825 add_com_alias ("ovly", "overlay", class_alias, 1);
3826 add_com_alias ("ov", "overlay", class_alias, 1);
3827
3828 add_cmd ("map-overlay", class_support, map_overlay_command,
3829 _("Assert that an overlay section is mapped."), &overlaylist);
3830
3831 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3832 _("Assert that an overlay section is unmapped."), &overlaylist);
3833
3834 add_cmd ("list-overlays", class_support, list_overlays_command,
3835 _("List mappings of overlay sections."), &overlaylist);
3836
3837 add_cmd ("manual", class_support, overlay_manual_command,
3838 _("Enable overlay debugging."), &overlaylist);
3839 add_cmd ("off", class_support, overlay_off_command,
3840 _("Disable overlay debugging."), &overlaylist);
3841 add_cmd ("auto", class_support, overlay_auto_command,
3842 _("Enable automatic overlay debugging."), &overlaylist);
3843 add_cmd ("load-target", class_support, overlay_load_command,
3844 _("Read the overlay mapping state from the target."), &overlaylist);
3845
3846 /* Filename extension to source language lookup table: */
3847 init_filename_language_table ();
3848 add_setshow_string_noescape_cmd ("extension-language", class_files,
3849 &ext_args, _("\
3850 Set mapping between filename extension and source language."), _("\
3851 Show mapping between filename extension and source language."), _("\
3852 Usage: set extension-language .foo bar"),
3853 set_ext_lang_command,
3854 show_ext_args,
3855 &setlist, &showlist);
3856
3857 add_info ("extensions", info_ext_lang_command,
3858 _("All filename extensions associated with a source language."));
3859
3860 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3861 &debug_file_directory, _("\
3862 Set the directories where separate debug symbols are searched for."), _("\
3863 Show the directories where separate debug symbols are searched for."), _("\
3864 Separate debug symbols are first searched for in the same\n\
3865 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3866 and lastly at the path of the directory of the binary with\n\
3867 each global debug-file-directory component prepended."),
3868 NULL,
3869 show_debug_file_directory,
3870 &setlist, &showlist);
3871 }
This page took 0.111674 seconds and 4 git commands to generate.