2003-11-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include <readline/readline.h>
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206 static int
207 compare_symbols (const void *s1p, const void *s2p)
208 {
209 struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
214 }
215
216 /* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
218
219 static int
220 compare_psymbols (const void *s1p, const void *s2p)
221 {
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
227 }
228
229 void
230 sort_pst_symbols (struct partial_symtab *pst)
231 {
232 /* Sort the global list; don't sort the static list */
233
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
236 compare_psymbols);
237 }
238
239 /* Make a null terminated copy of the string at PTR with SIZE characters in
240 the obstack pointed to by OBSTACKP . Returns the address of the copy.
241 Note that the string at PTR does not have to be null terminated, I.E. it
242 may be part of a larger string and we are only saving a substring. */
243
244 char *
245 obsavestring (const char *ptr, int size, struct obstack *obstackp)
246 {
247 char *p = (char *) obstack_alloc (obstackp, size + 1);
248 /* Open-coded memcpy--saves function call time. These strings are usually
249 short. FIXME: Is this really still true with a compiler that can
250 inline memcpy? */
251 {
252 const char *p1 = ptr;
253 char *p2 = p;
254 const char *end = ptr + size;
255 while (p1 != end)
256 *p2++ = *p1++;
257 }
258 p[size] = 0;
259 return p;
260 }
261
262 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
263 in the obstack pointed to by OBSTACKP. */
264
265 char *
266 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
267 const char *s3)
268 {
269 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
270 char *val = (char *) obstack_alloc (obstackp, len);
271 strcpy (val, s1);
272 strcat (val, s2);
273 strcat (val, s3);
274 return val;
275 }
276
277 /* True if we are nested inside psymtab_to_symtab. */
278
279 int currently_reading_symtab = 0;
280
281 static void
282 decrement_reading_symtab (void *dummy)
283 {
284 currently_reading_symtab--;
285 }
286
287 /* Get the symbol table that corresponds to a partial_symtab.
288 This is fast after the first time you do it. In fact, there
289 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
290 case inline. */
291
292 struct symtab *
293 psymtab_to_symtab (struct partial_symtab *pst)
294 {
295 /* If it's been looked up before, return it. */
296 if (pst->symtab)
297 return pst->symtab;
298
299 /* If it has not yet been read in, read it. */
300 if (!pst->readin)
301 {
302 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
303 currently_reading_symtab++;
304 (*pst->read_symtab) (pst);
305 do_cleanups (back_to);
306 }
307
308 return pst->symtab;
309 }
310
311 /* Initialize entry point information for this objfile. */
312
313 void
314 init_entry_point_info (struct objfile *objfile)
315 {
316 /* Save startup file's range of PC addresses to help blockframe.c
317 decide where the bottom of the stack is. */
318
319 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
320 {
321 /* Executable file -- record its entry point so we'll recognize
322 the startup file because it contains the entry point. */
323 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
324 }
325 else
326 {
327 /* Examination of non-executable.o files. Short-circuit this stuff. */
328 objfile->ei.entry_point = INVALID_ENTRY_POINT;
329 }
330 objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
331 objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
332 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
333 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
334 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
335 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
336 }
337
338 /* Get current entry point address. */
339
340 CORE_ADDR
341 entry_point_address (void)
342 {
343 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
344 }
345
346 /* Remember the lowest-addressed loadable section we've seen.
347 This function is called via bfd_map_over_sections.
348
349 In case of equal vmas, the section with the largest size becomes the
350 lowest-addressed loadable section.
351
352 If the vmas and sizes are equal, the last section is considered the
353 lowest-addressed loadable section. */
354
355 void
356 find_lowest_section (bfd *abfd, asection *sect, void *obj)
357 {
358 asection **lowest = (asection **) obj;
359
360 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
361 return;
362 if (!*lowest)
363 *lowest = sect; /* First loadable section */
364 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
365 *lowest = sect; /* A lower loadable section */
366 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
367 && (bfd_section_size (abfd, (*lowest))
368 <= bfd_section_size (abfd, sect)))
369 *lowest = sect;
370 }
371
372 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
373
374 struct section_addr_info *
375 alloc_section_addr_info (size_t num_sections)
376 {
377 struct section_addr_info *sap;
378 size_t size;
379
380 size = (sizeof (struct section_addr_info)
381 + sizeof (struct other_sections) * (num_sections - 1));
382 sap = (struct section_addr_info *) xmalloc (size);
383 memset (sap, 0, size);
384 sap->num_sections = num_sections;
385
386 return sap;
387 }
388
389 /* Build (allocate and populate) a section_addr_info struct from
390 an existing section table. */
391
392 extern struct section_addr_info *
393 build_section_addr_info_from_section_table (const struct section_table *start,
394 const struct section_table *end)
395 {
396 struct section_addr_info *sap;
397 const struct section_table *stp;
398 int oidx;
399
400 sap = alloc_section_addr_info (end - start);
401
402 for (stp = start, oidx = 0; stp != end; stp++)
403 {
404 if (bfd_get_section_flags (stp->bfd,
405 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
406 && oidx < end - start)
407 {
408 sap->other[oidx].addr = stp->addr;
409 sap->other[oidx].name
410 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
411 sap->other[oidx].sectindex = stp->the_bfd_section->index;
412 oidx++;
413 }
414 }
415
416 return sap;
417 }
418
419
420 /* Free all memory allocated by build_section_addr_info_from_section_table. */
421
422 extern void
423 free_section_addr_info (struct section_addr_info *sap)
424 {
425 int idx;
426
427 for (idx = 0; idx < sap->num_sections; idx++)
428 if (sap->other[idx].name)
429 xfree (sap->other[idx].name);
430 xfree (sap);
431 }
432
433
434 /* Initialize OBJFILE's sect_index_* members. */
435 static void
436 init_objfile_sect_indices (struct objfile *objfile)
437 {
438 asection *sect;
439 int i;
440
441 sect = bfd_get_section_by_name (objfile->obfd, ".text");
442 if (sect)
443 objfile->sect_index_text = sect->index;
444
445 sect = bfd_get_section_by_name (objfile->obfd, ".data");
446 if (sect)
447 objfile->sect_index_data = sect->index;
448
449 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
450 if (sect)
451 objfile->sect_index_bss = sect->index;
452
453 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
454 if (sect)
455 objfile->sect_index_rodata = sect->index;
456
457 /* This is where things get really weird... We MUST have valid
458 indices for the various sect_index_* members or gdb will abort.
459 So if for example, there is no ".text" section, we have to
460 accomodate that. Except when explicitly adding symbol files at
461 some address, section_offsets contains nothing but zeros, so it
462 doesn't matter which slot in section_offsets the individual
463 sect_index_* members index into. So if they are all zero, it is
464 safe to just point all the currently uninitialized indices to the
465 first slot. */
466
467 for (i = 0; i < objfile->num_sections; i++)
468 {
469 if (ANOFFSET (objfile->section_offsets, i) != 0)
470 {
471 break;
472 }
473 }
474 if (i == objfile->num_sections)
475 {
476 if (objfile->sect_index_text == -1)
477 objfile->sect_index_text = 0;
478 if (objfile->sect_index_data == -1)
479 objfile->sect_index_data = 0;
480 if (objfile->sect_index_bss == -1)
481 objfile->sect_index_bss = 0;
482 if (objfile->sect_index_rodata == -1)
483 objfile->sect_index_rodata = 0;
484 }
485 }
486
487
488 /* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
494 void
495 default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
497 {
498 int i;
499
500 objfile->num_sections = bfd_count_sections (objfile->obfd);
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack,
503 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
504 memset (objfile->section_offsets, 0,
505 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525 init_objfile_sect_indices (objfile);
526 }
527
528
529 /* Process a symbol file, as either the main file or as a dynamically
530 loaded file.
531
532 OBJFILE is where the symbols are to be read from.
533
534 ADDRS is the list of section load addresses. If the user has given
535 an 'add-symbol-file' command, then this is the list of offsets and
536 addresses he or she provided as arguments to the command; or, if
537 we're handling a shared library, these are the actual addresses the
538 sections are loaded at, according to the inferior's dynamic linker
539 (as gleaned by GDB's shared library code). We convert each address
540 into an offset from the section VMA's as it appears in the object
541 file, and then call the file's sym_offsets function to convert this
542 into a format-specific offset table --- a `struct section_offsets'.
543 If ADDRS is non-zero, OFFSETS must be zero.
544
545 OFFSETS is a table of section offsets already in the right
546 format-specific representation. NUM_OFFSETS is the number of
547 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
548 assume this is the proper table the call to sym_offsets described
549 above would produce. Instead of calling sym_offsets, we just dump
550 it right into objfile->section_offsets. (When we're re-reading
551 symbols from an objfile, we don't have the original load address
552 list any more; all we have is the section offset table.) If
553 OFFSETS is non-zero, ADDRS must be zero.
554
555 MAINLINE is nonzero if this is the main symbol file, or zero if
556 it's an extra symbol file such as dynamically loaded code.
557
558 VERBO is nonzero if the caller has printed a verbose message about
559 the symbol reading (and complaints can be more terse about it). */
560
561 void
562 syms_from_objfile (struct objfile *objfile,
563 struct section_addr_info *addrs,
564 struct section_offsets *offsets,
565 int num_offsets,
566 int mainline,
567 int verbo)
568 {
569 struct section_addr_info *local_addr = NULL;
570 struct cleanup *old_chain;
571
572 gdb_assert (! (addrs && offsets));
573
574 init_entry_point_info (objfile);
575 find_sym_fns (objfile);
576
577 if (objfile->sf == NULL)
578 return; /* No symbols. */
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
582 old_chain = make_cleanup_free_objfile (objfile);
583
584 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
585 list. We now establish the convention that an addr of zero means
586 no load address was specified. */
587 if (! addrs && ! offsets)
588 {
589 local_addr
590 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
591 make_cleanup (xfree, local_addr);
592 addrs = local_addr;
593 }
594
595 /* Now either addrs or offsets is non-zero. */
596
597 if (mainline)
598 {
599 /* We will modify the main symbol table, make sure that all its users
600 will be cleaned up if an error occurs during symbol reading. */
601 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
602
603 /* Since no error yet, throw away the old symbol table. */
604
605 if (symfile_objfile != NULL)
606 {
607 free_objfile (symfile_objfile);
608 symfile_objfile = NULL;
609 }
610
611 /* Currently we keep symbols from the add-symbol-file command.
612 If the user wants to get rid of them, they should do "symbol-file"
613 without arguments first. Not sure this is the best behavior
614 (PR 2207). */
615
616 (*objfile->sf->sym_new_init) (objfile);
617 }
618
619 /* Convert addr into an offset rather than an absolute address.
620 We find the lowest address of a loaded segment in the objfile,
621 and assume that <addr> is where that got loaded.
622
623 We no longer warn if the lowest section is not a text segment (as
624 happens for the PA64 port. */
625 if (!mainline && addrs && addrs->other[0].name)
626 {
627 asection *lower_sect;
628 asection *sect;
629 CORE_ADDR lower_offset;
630 int i;
631
632 /* Find lowest loadable section to be used as starting point for
633 continguous sections. FIXME!! won't work without call to find
634 .text first, but this assumes text is lowest section. */
635 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
636 if (lower_sect == NULL)
637 bfd_map_over_sections (objfile->obfd, find_lowest_section,
638 &lower_sect);
639 if (lower_sect == NULL)
640 warning ("no loadable sections found in added symbol-file %s",
641 objfile->name);
642 else
643 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
644 warning ("Lowest section in %s is %s at %s",
645 objfile->name,
646 bfd_section_name (objfile->obfd, lower_sect),
647 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
648 if (lower_sect != NULL)
649 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
650 else
651 lower_offset = 0;
652
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
665 if (addrs->other[i].addr != 0)
666 {
667 sect = bfd_get_section_by_name (objfile->obfd,
668 addrs->other[i].name);
669 if (sect)
670 {
671 addrs->other[i].addr
672 -= bfd_section_vma (objfile->obfd, sect);
673 lower_offset = addrs->other[i].addr;
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->index ;
676 }
677 else
678 {
679 warning ("section %s not found in %s",
680 addrs->other[i].name,
681 objfile->name);
682 addrs->other[i].addr = 0;
683 }
684 }
685 else
686 addrs->other[i].addr = lower_offset;
687 }
688 }
689
690 /* Initialize symbol reading routines for this objfile, allow complaints to
691 appear for this new file, and record how verbose to be, then do the
692 initial symbol reading for this file. */
693
694 (*objfile->sf->sym_init) (objfile);
695 clear_complaints (&symfile_complaints, 1, verbo);
696
697 if (addrs)
698 (*objfile->sf->sym_offsets) (objfile, addrs);
699 else
700 {
701 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
702
703 /* Just copy in the offset table directly as given to us. */
704 objfile->num_sections = num_offsets;
705 objfile->section_offsets
706 = ((struct section_offsets *)
707 obstack_alloc (&objfile->psymbol_obstack, size));
708 memcpy (objfile->section_offsets, offsets, size);
709
710 init_objfile_sect_indices (objfile);
711 }
712
713 #ifndef DEPRECATED_IBM6000_TARGET
714 /* This is a SVR4/SunOS specific hack, I think. In any event, it
715 screws RS/6000. sym_offsets should be doing this sort of thing,
716 because it knows the mapping between bfd sections and
717 section_offsets. */
718 /* This is a hack. As far as I can tell, section offsets are not
719 target dependent. They are all set to addr with a couple of
720 exceptions. The exceptions are sysvr4 shared libraries, whose
721 offsets are kept in solib structures anyway and rs6000 xcoff
722 which handles shared libraries in a completely unique way.
723
724 Section offsets are built similarly, except that they are built
725 by adding addr in all cases because there is no clear mapping
726 from section_offsets into actual sections. Note that solib.c
727 has a different algorithm for finding section offsets.
728
729 These should probably all be collapsed into some target
730 independent form of shared library support. FIXME. */
731
732 if (addrs)
733 {
734 struct obj_section *s;
735
736 /* Map section offsets in "addr" back to the object's
737 sections by comparing the section names with bfd's
738 section names. Then adjust the section address by
739 the offset. */ /* for gdb/13815 */
740
741 ALL_OBJFILE_OSECTIONS (objfile, s)
742 {
743 CORE_ADDR s_addr = 0;
744 int i;
745
746 for (i = 0;
747 !s_addr && i < addrs->num_sections && addrs->other[i].name;
748 i++)
749 if (strcmp (bfd_section_name (s->objfile->obfd,
750 s->the_bfd_section),
751 addrs->other[i].name) == 0)
752 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
753
754 s->addr -= s->offset;
755 s->addr += s_addr;
756 s->endaddr -= s->offset;
757 s->endaddr += s_addr;
758 s->offset += s_addr;
759 }
760 }
761 #endif /* not DEPRECATED_IBM6000_TARGET */
762
763 (*objfile->sf->sym_read) (objfile, mainline);
764
765 /* Don't allow char * to have a typename (else would get caddr_t).
766 Ditto void *. FIXME: Check whether this is now done by all the
767 symbol readers themselves (many of them now do), and if so remove
768 it from here. */
769
770 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
771 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
772
773 /* Mark the objfile has having had initial symbol read attempted. Note
774 that this does not mean we found any symbols... */
775
776 objfile->flags |= OBJF_SYMS;
777
778 /* Discard cleanups as symbol reading was successful. */
779
780 discard_cleanups (old_chain);
781 }
782
783 /* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
786
787 void
788 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
789 {
790
791 /* If this is the main symbol file we have to clean up all users of the
792 old main symbol file. Otherwise it is sufficient to fixup all the
793 breakpoints that may have been redefined by this symbol file. */
794 if (mainline)
795 {
796 /* OK, make it the "real" symbol file. */
797 symfile_objfile = objfile;
798
799 clear_symtab_users ();
800 }
801 else
802 {
803 breakpoint_re_set ();
804 }
805
806 /* We're done reading the symbol file; finish off complaints. */
807 clear_complaints (&symfile_complaints, 0, verbo);
808 }
809
810 /* Process a symbol file, as either the main file or as a dynamically
811 loaded file.
812
813 NAME is the file name (which will be tilde-expanded and made
814 absolute herein) (but we don't free or modify NAME itself).
815
816 FROM_TTY says how verbose to be.
817
818 MAINLINE specifies whether this is the main symbol file, or whether
819 it's an extra symbol file such as dynamically loaded code.
820
821 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
822 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
823 non-zero.
824
825 Upon success, returns a pointer to the objfile that was added.
826 Upon failure, jumps back to command level (never returns). */
827 static struct objfile *
828 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
829 struct section_addr_info *addrs,
830 struct section_offsets *offsets,
831 int num_offsets,
832 int mainline, int flags)
833 {
834 struct objfile *objfile;
835 struct partial_symtab *psymtab;
836 char *debugfile;
837 bfd *abfd;
838 struct section_addr_info *orig_addrs;
839 struct cleanup *my_cleanups;
840
841 /* Open a bfd for the file, and give user a chance to burp if we'd be
842 interactively wiping out any existing symbols. */
843
844 abfd = symfile_bfd_open (name);
845
846 if ((have_full_symbols () || have_partial_symbols ())
847 && mainline
848 && from_tty
849 && !query ("Load new symbol table from \"%s\"? ", name))
850 error ("Not confirmed.");
851
852 objfile = allocate_objfile (abfd, flags);
853
854 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
855 my_cleanups = make_cleanup (xfree, orig_addrs);
856 if (addrs)
857 {
858 int i;
859 orig_addrs->num_sections = addrs->num_sections;
860 for (i = 0; i < addrs->num_sections; i++)
861 orig_addrs->other[i] = addrs->other[i];
862 }
863
864 /* If the objfile uses a mapped symbol file, and we have a psymtab for
865 it, then skip reading any symbols at this time. */
866
867 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
868 {
869 /* We mapped in an existing symbol table file that already has had
870 initial symbol reading performed, so we can skip that part. Notify
871 the user that instead of reading the symbols, they have been mapped.
872 */
873 if (from_tty || info_verbose)
874 {
875 printf_unfiltered ("Mapped symbols for %s...", name);
876 wrap_here ("");
877 gdb_flush (gdb_stdout);
878 }
879 init_entry_point_info (objfile);
880 find_sym_fns (objfile);
881 }
882 else
883 {
884 /* We either created a new mapped symbol table, mapped an existing
885 symbol table file which has not had initial symbol reading
886 performed, or need to read an unmapped symbol table. */
887 if (from_tty || info_verbose)
888 {
889 if (pre_add_symbol_hook)
890 pre_add_symbol_hook (name);
891 else
892 {
893 printf_unfiltered ("Reading symbols from %s...", name);
894 wrap_here ("");
895 gdb_flush (gdb_stdout);
896 }
897 }
898 syms_from_objfile (objfile, addrs, offsets, num_offsets,
899 mainline, from_tty);
900 }
901
902 /* We now have at least a partial symbol table. Check to see if the
903 user requested that all symbols be read on initial access via either
904 the gdb startup command line or on a per symbol file basis. Expand
905 all partial symbol tables for this objfile if so. */
906
907 if ((flags & OBJF_READNOW) || readnow_symbol_files)
908 {
909 if (from_tty || info_verbose)
910 {
911 printf_unfiltered ("expanding to full symbols...");
912 wrap_here ("");
913 gdb_flush (gdb_stdout);
914 }
915
916 for (psymtab = objfile->psymtabs;
917 psymtab != NULL;
918 psymtab = psymtab->next)
919 {
920 psymtab_to_symtab (psymtab);
921 }
922 }
923
924 debugfile = find_separate_debug_file (objfile);
925 if (debugfile)
926 {
927 if (addrs != NULL)
928 {
929 objfile->separate_debug_objfile
930 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
931 }
932 else
933 {
934 objfile->separate_debug_objfile
935 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
936 }
937 objfile->separate_debug_objfile->separate_debug_objfile_backlink
938 = objfile;
939
940 /* Put the separate debug object before the normal one, this is so that
941 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
942 put_objfile_before (objfile->separate_debug_objfile, objfile);
943
944 xfree (debugfile);
945 }
946
947 if (!have_partial_symbols () && !have_full_symbols ())
948 {
949 wrap_here ("");
950 printf_unfiltered ("(no debugging symbols found)...");
951 wrap_here ("");
952 }
953
954 if (from_tty || info_verbose)
955 {
956 if (post_add_symbol_hook)
957 post_add_symbol_hook ();
958 else
959 {
960 printf_unfiltered ("done.\n");
961 }
962 }
963
964 /* We print some messages regardless of whether 'from_tty ||
965 info_verbose' is true, so make sure they go out at the right
966 time. */
967 gdb_flush (gdb_stdout);
968
969 do_cleanups (my_cleanups);
970
971 if (objfile->sf == NULL)
972 return objfile; /* No symbols. */
973
974 new_symfile_objfile (objfile, mainline, from_tty);
975
976 if (target_new_objfile_hook)
977 target_new_objfile_hook (objfile);
978
979 return (objfile);
980 }
981
982
983 /* Process a symbol file, as either the main file or as a dynamically
984 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
985 for details. */
986 struct objfile *
987 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
988 int mainline, int flags)
989 {
990 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
991 mainline, flags);
992 }
993
994
995 /* Call symbol_file_add() with default values and update whatever is
996 affected by the loading of a new main().
997 Used when the file is supplied in the gdb command line
998 and by some targets with special loading requirements.
999 The auxiliary function, symbol_file_add_main_1(), has the flags
1000 argument for the switches that can only be specified in the symbol_file
1001 command itself. */
1002
1003 void
1004 symbol_file_add_main (char *args, int from_tty)
1005 {
1006 symbol_file_add_main_1 (args, from_tty, 0);
1007 }
1008
1009 static void
1010 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1011 {
1012 symbol_file_add (args, from_tty, NULL, 1, flags);
1013
1014 #ifdef HPUXHPPA
1015 RESET_HP_UX_GLOBALS ();
1016 #endif
1017
1018 /* Getting new symbols may change our opinion about
1019 what is frameless. */
1020 reinit_frame_cache ();
1021
1022 set_initial_language ();
1023 }
1024
1025 void
1026 symbol_file_clear (int from_tty)
1027 {
1028 if ((have_full_symbols () || have_partial_symbols ())
1029 && from_tty
1030 && !query ("Discard symbol table from `%s'? ",
1031 symfile_objfile->name))
1032 error ("Not confirmed.");
1033 free_all_objfiles ();
1034
1035 /* solib descriptors may have handles to objfiles. Since their
1036 storage has just been released, we'd better wipe the solib
1037 descriptors as well.
1038 */
1039 #if defined(SOLIB_RESTART)
1040 SOLIB_RESTART ();
1041 #endif
1042
1043 symfile_objfile = NULL;
1044 if (from_tty)
1045 printf_unfiltered ("No symbol file now.\n");
1046 #ifdef HPUXHPPA
1047 RESET_HP_UX_GLOBALS ();
1048 #endif
1049 }
1050
1051 static char *
1052 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1053 {
1054 asection *sect;
1055 bfd_size_type debuglink_size;
1056 unsigned long crc32;
1057 char *contents;
1058 int crc_offset;
1059 unsigned char *p;
1060
1061 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1062
1063 if (sect == NULL)
1064 return NULL;
1065
1066 debuglink_size = bfd_section_size (objfile->obfd, sect);
1067
1068 contents = xmalloc (debuglink_size);
1069 bfd_get_section_contents (objfile->obfd, sect, contents,
1070 (file_ptr)0, (bfd_size_type)debuglink_size);
1071
1072 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1073 crc_offset = strlen (contents) + 1;
1074 crc_offset = (crc_offset + 3) & ~3;
1075
1076 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1077
1078 *crc32_out = crc32;
1079 return contents;
1080 }
1081
1082 static int
1083 separate_debug_file_exists (const char *name, unsigned long crc)
1084 {
1085 unsigned long file_crc = 0;
1086 int fd;
1087 char buffer[8*1024];
1088 int count;
1089
1090 fd = open (name, O_RDONLY | O_BINARY);
1091 if (fd < 0)
1092 return 0;
1093
1094 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1095 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1096
1097 close (fd);
1098
1099 return crc == file_crc;
1100 }
1101
1102 static char *debug_file_directory = NULL;
1103
1104 #if ! defined (DEBUG_SUBDIRECTORY)
1105 #define DEBUG_SUBDIRECTORY ".debug"
1106 #endif
1107
1108 static char *
1109 find_separate_debug_file (struct objfile *objfile)
1110 {
1111 asection *sect;
1112 char *basename;
1113 char *dir;
1114 char *debugfile;
1115 char *name_copy;
1116 bfd_size_type debuglink_size;
1117 unsigned long crc32;
1118 int i;
1119
1120 basename = get_debug_link_info (objfile, &crc32);
1121
1122 if (basename == NULL)
1123 return NULL;
1124
1125 dir = xstrdup (objfile->name);
1126
1127 /* Strip off the final filename part, leaving the directory name,
1128 followed by a slash. Objfile names should always be absolute and
1129 tilde-expanded, so there should always be a slash in there
1130 somewhere. */
1131 for (i = strlen(dir) - 1; i >= 0; i--)
1132 {
1133 if (IS_DIR_SEPARATOR (dir[i]))
1134 break;
1135 }
1136 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1137 dir[i+1] = '\0';
1138
1139 debugfile = alloca (strlen (debug_file_directory) + 1
1140 + strlen (dir)
1141 + strlen (DEBUG_SUBDIRECTORY)
1142 + strlen ("/")
1143 + strlen (basename)
1144 + 1);
1145
1146 /* First try in the same directory as the original file. */
1147 strcpy (debugfile, dir);
1148 strcat (debugfile, basename);
1149
1150 if (separate_debug_file_exists (debugfile, crc32))
1151 {
1152 xfree (basename);
1153 xfree (dir);
1154 return xstrdup (debugfile);
1155 }
1156
1157 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1158 strcpy (debugfile, dir);
1159 strcat (debugfile, DEBUG_SUBDIRECTORY);
1160 strcat (debugfile, "/");
1161 strcat (debugfile, basename);
1162
1163 if (separate_debug_file_exists (debugfile, crc32))
1164 {
1165 xfree (basename);
1166 xfree (dir);
1167 return xstrdup (debugfile);
1168 }
1169
1170 /* Then try in the global debugfile directory. */
1171 strcpy (debugfile, debug_file_directory);
1172 strcat (debugfile, "/");
1173 strcat (debugfile, dir);
1174 strcat (debugfile, basename);
1175
1176 if (separate_debug_file_exists (debugfile, crc32))
1177 {
1178 xfree (basename);
1179 xfree (dir);
1180 return xstrdup (debugfile);
1181 }
1182
1183 xfree (basename);
1184 xfree (dir);
1185 return NULL;
1186 }
1187
1188
1189 /* This is the symbol-file command. Read the file, analyze its
1190 symbols, and add a struct symtab to a symtab list. The syntax of
1191 the command is rather bizarre--(1) buildargv implements various
1192 quoting conventions which are undocumented and have little or
1193 nothing in common with the way things are quoted (or not quoted)
1194 elsewhere in GDB, (2) options are used, which are not generally
1195 used in GDB (perhaps "set mapped on", "set readnow on" would be
1196 better), (3) the order of options matters, which is contrary to GNU
1197 conventions (because it is confusing and inconvenient). */
1198 /* Note: ezannoni 2000-04-17. This function used to have support for
1199 rombug (see remote-os9k.c). It consisted of a call to target_link()
1200 (target.c) to get the address of the text segment from the target,
1201 and pass that to symbol_file_add(). This is no longer supported. */
1202
1203 void
1204 symbol_file_command (char *args, int from_tty)
1205 {
1206 char **argv;
1207 char *name = NULL;
1208 struct cleanup *cleanups;
1209 int flags = OBJF_USERLOADED;
1210
1211 dont_repeat ();
1212
1213 if (args == NULL)
1214 {
1215 symbol_file_clear (from_tty);
1216 }
1217 else
1218 {
1219 if ((argv = buildargv (args)) == NULL)
1220 {
1221 nomem (0);
1222 }
1223 cleanups = make_cleanup_freeargv (argv);
1224 while (*argv != NULL)
1225 {
1226 if (strcmp (*argv, "-mapped") == 0)
1227 flags |= OBJF_MAPPED;
1228 else
1229 if (STREQ (*argv, "-readnow"))
1230 flags |= OBJF_READNOW;
1231 else
1232 if (**argv == '-')
1233 error ("unknown option `%s'", *argv);
1234 else
1235 {
1236 name = *argv;
1237
1238 symbol_file_add_main_1 (name, from_tty, flags);
1239 }
1240 argv++;
1241 }
1242
1243 if (name == NULL)
1244 {
1245 error ("no symbol file name was specified");
1246 }
1247 do_cleanups (cleanups);
1248 }
1249 }
1250
1251 /* Set the initial language.
1252
1253 A better solution would be to record the language in the psymtab when reading
1254 partial symbols, and then use it (if known) to set the language. This would
1255 be a win for formats that encode the language in an easily discoverable place,
1256 such as DWARF. For stabs, we can jump through hoops looking for specially
1257 named symbols or try to intuit the language from the specific type of stabs
1258 we find, but we can't do that until later when we read in full symbols.
1259 FIXME. */
1260
1261 static void
1262 set_initial_language (void)
1263 {
1264 struct partial_symtab *pst;
1265 enum language lang = language_unknown;
1266
1267 pst = find_main_psymtab ();
1268 if (pst != NULL)
1269 {
1270 if (pst->filename != NULL)
1271 {
1272 lang = deduce_language_from_filename (pst->filename);
1273 }
1274 if (lang == language_unknown)
1275 {
1276 /* Make C the default language */
1277 lang = language_c;
1278 }
1279 set_language (lang);
1280 expected_language = current_language; /* Don't warn the user */
1281 }
1282 }
1283
1284 /* Open file specified by NAME and hand it off to BFD for preliminary
1285 analysis. Result is a newly initialized bfd *, which includes a newly
1286 malloc'd` copy of NAME (tilde-expanded and made absolute).
1287 In case of trouble, error() is called. */
1288
1289 bfd *
1290 symfile_bfd_open (char *name)
1291 {
1292 bfd *sym_bfd;
1293 int desc;
1294 char *absolute_name;
1295
1296
1297
1298 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1299
1300 /* Look down path for it, allocate 2nd new malloc'd copy. */
1301 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1302 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1303 if (desc < 0)
1304 {
1305 char *exename = alloca (strlen (name) + 5);
1306 strcat (strcpy (exename, name), ".exe");
1307 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1308 0, &absolute_name);
1309 }
1310 #endif
1311 if (desc < 0)
1312 {
1313 make_cleanup (xfree, name);
1314 perror_with_name (name);
1315 }
1316 xfree (name); /* Free 1st new malloc'd copy */
1317 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1318 /* It'll be freed in free_objfile(). */
1319
1320 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1321 if (!sym_bfd)
1322 {
1323 close (desc);
1324 make_cleanup (xfree, name);
1325 error ("\"%s\": can't open to read symbols: %s.", name,
1326 bfd_errmsg (bfd_get_error ()));
1327 }
1328 sym_bfd->cacheable = 1;
1329
1330 if (!bfd_check_format (sym_bfd, bfd_object))
1331 {
1332 /* FIXME: should be checking for errors from bfd_close (for one thing,
1333 on error it does not free all the storage associated with the
1334 bfd). */
1335 bfd_close (sym_bfd); /* This also closes desc */
1336 make_cleanup (xfree, name);
1337 error ("\"%s\": can't read symbols: %s.", name,
1338 bfd_errmsg (bfd_get_error ()));
1339 }
1340 return (sym_bfd);
1341 }
1342
1343 /* Return the section index for the given section name. Return -1 if
1344 the section was not found. */
1345 int
1346 get_section_index (struct objfile *objfile, char *section_name)
1347 {
1348 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1349 if (sect)
1350 return sect->index;
1351 else
1352 return -1;
1353 }
1354
1355 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1356 startup by the _initialize routine in each object file format reader,
1357 to register information about each format the the reader is prepared
1358 to handle. */
1359
1360 void
1361 add_symtab_fns (struct sym_fns *sf)
1362 {
1363 sf->next = symtab_fns;
1364 symtab_fns = sf;
1365 }
1366
1367
1368 /* Initialize to read symbols from the symbol file sym_bfd. It either
1369 returns or calls error(). The result is an initialized struct sym_fns
1370 in the objfile structure, that contains cached information about the
1371 symbol file. */
1372
1373 static void
1374 find_sym_fns (struct objfile *objfile)
1375 {
1376 struct sym_fns *sf;
1377 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1378 char *our_target = bfd_get_target (objfile->obfd);
1379
1380 if (our_flavour == bfd_target_srec_flavour
1381 || our_flavour == bfd_target_ihex_flavour
1382 || our_flavour == bfd_target_tekhex_flavour)
1383 return; /* No symbols. */
1384
1385 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1386 {
1387 if (our_flavour == sf->sym_flavour)
1388 {
1389 objfile->sf = sf;
1390 return;
1391 }
1392 }
1393 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1394 bfd_get_target (objfile->obfd));
1395 }
1396 \f
1397 /* This function runs the load command of our current target. */
1398
1399 static void
1400 load_command (char *arg, int from_tty)
1401 {
1402 if (arg == NULL)
1403 arg = get_exec_file (1);
1404 target_load (arg, from_tty);
1405
1406 /* After re-loading the executable, we don't really know which
1407 overlays are mapped any more. */
1408 overlay_cache_invalid = 1;
1409 }
1410
1411 /* This version of "load" should be usable for any target. Currently
1412 it is just used for remote targets, not inftarg.c or core files,
1413 on the theory that only in that case is it useful.
1414
1415 Avoiding xmodem and the like seems like a win (a) because we don't have
1416 to worry about finding it, and (b) On VMS, fork() is very slow and so
1417 we don't want to run a subprocess. On the other hand, I'm not sure how
1418 performance compares. */
1419
1420 static int download_write_size = 512;
1421 static int validate_download = 0;
1422
1423 /* Callback service function for generic_load (bfd_map_over_sections). */
1424
1425 static void
1426 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1427 {
1428 bfd_size_type *sum = data;
1429
1430 *sum += bfd_get_section_size_before_reloc (asec);
1431 }
1432
1433 /* Opaque data for load_section_callback. */
1434 struct load_section_data {
1435 unsigned long load_offset;
1436 unsigned long write_count;
1437 unsigned long data_count;
1438 bfd_size_type total_size;
1439 };
1440
1441 /* Callback service function for generic_load (bfd_map_over_sections). */
1442
1443 static void
1444 load_section_callback (bfd *abfd, asection *asec, void *data)
1445 {
1446 struct load_section_data *args = data;
1447
1448 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1449 {
1450 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1451 if (size > 0)
1452 {
1453 char *buffer;
1454 struct cleanup *old_chain;
1455 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1456 bfd_size_type block_size;
1457 int err;
1458 const char *sect_name = bfd_get_section_name (abfd, asec);
1459 bfd_size_type sent;
1460
1461 if (download_write_size > 0 && size > download_write_size)
1462 block_size = download_write_size;
1463 else
1464 block_size = size;
1465
1466 buffer = xmalloc (size);
1467 old_chain = make_cleanup (xfree, buffer);
1468
1469 /* Is this really necessary? I guess it gives the user something
1470 to look at during a long download. */
1471 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1472 sect_name, paddr_nz (size), paddr_nz (lma));
1473
1474 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1475
1476 sent = 0;
1477 do
1478 {
1479 int len;
1480 bfd_size_type this_transfer = size - sent;
1481
1482 if (this_transfer >= block_size)
1483 this_transfer = block_size;
1484 len = target_write_memory_partial (lma, buffer,
1485 this_transfer, &err);
1486 if (err)
1487 break;
1488 if (validate_download)
1489 {
1490 /* Broken memories and broken monitors manifest
1491 themselves here when bring new computers to
1492 life. This doubles already slow downloads. */
1493 /* NOTE: cagney/1999-10-18: A more efficient
1494 implementation might add a verify_memory()
1495 method to the target vector and then use
1496 that. remote.c could implement that method
1497 using the ``qCRC'' packet. */
1498 char *check = xmalloc (len);
1499 struct cleanup *verify_cleanups =
1500 make_cleanup (xfree, check);
1501
1502 if (target_read_memory (lma, check, len) != 0)
1503 error ("Download verify read failed at 0x%s",
1504 paddr (lma));
1505 if (memcmp (buffer, check, len) != 0)
1506 error ("Download verify compare failed at 0x%s",
1507 paddr (lma));
1508 do_cleanups (verify_cleanups);
1509 }
1510 args->data_count += len;
1511 lma += len;
1512 buffer += len;
1513 args->write_count += 1;
1514 sent += len;
1515 if (quit_flag
1516 || (ui_load_progress_hook != NULL
1517 && ui_load_progress_hook (sect_name, sent)))
1518 error ("Canceled the download");
1519
1520 if (show_load_progress != NULL)
1521 show_load_progress (sect_name, sent, size,
1522 args->data_count, args->total_size);
1523 }
1524 while (sent < size);
1525
1526 if (err != 0)
1527 error ("Memory access error while loading section %s.", sect_name);
1528
1529 do_cleanups (old_chain);
1530 }
1531 }
1532 }
1533
1534 void
1535 generic_load (char *args, int from_tty)
1536 {
1537 asection *s;
1538 bfd *loadfile_bfd;
1539 time_t start_time, end_time; /* Start and end times of download */
1540 char *filename;
1541 struct cleanup *old_cleanups;
1542 char *offptr;
1543 struct load_section_data cbdata;
1544 CORE_ADDR entry;
1545
1546 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1547 cbdata.write_count = 0; /* Number of writes needed. */
1548 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1549 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1550
1551 /* Parse the input argument - the user can specify a load offset as
1552 a second argument. */
1553 filename = xmalloc (strlen (args) + 1);
1554 old_cleanups = make_cleanup (xfree, filename);
1555 strcpy (filename, args);
1556 offptr = strchr (filename, ' ');
1557 if (offptr != NULL)
1558 {
1559 char *endptr;
1560
1561 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1562 if (offptr == endptr)
1563 error ("Invalid download offset:%s\n", offptr);
1564 *offptr = '\0';
1565 }
1566 else
1567 cbdata.load_offset = 0;
1568
1569 /* Open the file for loading. */
1570 loadfile_bfd = bfd_openr (filename, gnutarget);
1571 if (loadfile_bfd == NULL)
1572 {
1573 perror_with_name (filename);
1574 return;
1575 }
1576
1577 /* FIXME: should be checking for errors from bfd_close (for one thing,
1578 on error it does not free all the storage associated with the
1579 bfd). */
1580 make_cleanup_bfd_close (loadfile_bfd);
1581
1582 if (!bfd_check_format (loadfile_bfd, bfd_object))
1583 {
1584 error ("\"%s\" is not an object file: %s", filename,
1585 bfd_errmsg (bfd_get_error ()));
1586 }
1587
1588 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1589 (void *) &cbdata.total_size);
1590
1591 start_time = time (NULL);
1592
1593 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1594
1595 end_time = time (NULL);
1596
1597 entry = bfd_get_start_address (loadfile_bfd);
1598 ui_out_text (uiout, "Start address ");
1599 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1600 ui_out_text (uiout, ", load size ");
1601 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1602 ui_out_text (uiout, "\n");
1603 /* We were doing this in remote-mips.c, I suspect it is right
1604 for other targets too. */
1605 write_pc (entry);
1606
1607 /* FIXME: are we supposed to call symbol_file_add or not? According
1608 to a comment from remote-mips.c (where a call to symbol_file_add
1609 was commented out), making the call confuses GDB if more than one
1610 file is loaded in. Some targets do (e.g., remote-vx.c) but
1611 others don't (or didn't - perhaphs they have all been deleted). */
1612
1613 print_transfer_performance (gdb_stdout, cbdata.data_count,
1614 cbdata.write_count, end_time - start_time);
1615
1616 do_cleanups (old_cleanups);
1617 }
1618
1619 /* Report how fast the transfer went. */
1620
1621 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1622 replaced by print_transfer_performance (with a very different
1623 function signature). */
1624
1625 void
1626 report_transfer_performance (unsigned long data_count, time_t start_time,
1627 time_t end_time)
1628 {
1629 print_transfer_performance (gdb_stdout, data_count,
1630 end_time - start_time, 0);
1631 }
1632
1633 void
1634 print_transfer_performance (struct ui_file *stream,
1635 unsigned long data_count,
1636 unsigned long write_count,
1637 unsigned long time_count)
1638 {
1639 ui_out_text (uiout, "Transfer rate: ");
1640 if (time_count > 0)
1641 {
1642 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1643 (data_count * 8) / time_count);
1644 ui_out_text (uiout, " bits/sec");
1645 }
1646 else
1647 {
1648 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1649 ui_out_text (uiout, " bits in <1 sec");
1650 }
1651 if (write_count > 0)
1652 {
1653 ui_out_text (uiout, ", ");
1654 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1655 ui_out_text (uiout, " bytes/write");
1656 }
1657 ui_out_text (uiout, ".\n");
1658 }
1659
1660 /* This function allows the addition of incrementally linked object files.
1661 It does not modify any state in the target, only in the debugger. */
1662 /* Note: ezannoni 2000-04-13 This function/command used to have a
1663 special case syntax for the rombug target (Rombug is the boot
1664 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1665 rombug case, the user doesn't need to supply a text address,
1666 instead a call to target_link() (in target.c) would supply the
1667 value to use. We are now discontinuing this type of ad hoc syntax. */
1668
1669 static void
1670 add_symbol_file_command (char *args, int from_tty)
1671 {
1672 char *filename = NULL;
1673 int flags = OBJF_USERLOADED;
1674 char *arg;
1675 int expecting_option = 0;
1676 int section_index = 0;
1677 int argcnt = 0;
1678 int sec_num = 0;
1679 int i;
1680 int expecting_sec_name = 0;
1681 int expecting_sec_addr = 0;
1682
1683 struct sect_opt
1684 {
1685 char *name;
1686 char *value;
1687 };
1688
1689 struct section_addr_info *section_addrs;
1690 struct sect_opt *sect_opts = NULL;
1691 size_t num_sect_opts = 0;
1692 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1693
1694 num_sect_opts = 16;
1695 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1696 * sizeof (struct sect_opt));
1697
1698 dont_repeat ();
1699
1700 if (args == NULL)
1701 error ("add-symbol-file takes a file name and an address");
1702
1703 /* Make a copy of the string that we can safely write into. */
1704 args = xstrdup (args);
1705
1706 while (*args != '\000')
1707 {
1708 /* Any leading spaces? */
1709 while (isspace (*args))
1710 args++;
1711
1712 /* Point arg to the beginning of the argument. */
1713 arg = args;
1714
1715 /* Move args pointer over the argument. */
1716 while ((*args != '\000') && !isspace (*args))
1717 args++;
1718
1719 /* If there are more arguments, terminate arg and
1720 proceed past it. */
1721 if (*args != '\000')
1722 *args++ = '\000';
1723
1724 /* Now process the argument. */
1725 if (argcnt == 0)
1726 {
1727 /* The first argument is the file name. */
1728 filename = tilde_expand (arg);
1729 make_cleanup (xfree, filename);
1730 }
1731 else
1732 if (argcnt == 1)
1733 {
1734 /* The second argument is always the text address at which
1735 to load the program. */
1736 sect_opts[section_index].name = ".text";
1737 sect_opts[section_index].value = arg;
1738 if (++section_index > num_sect_opts)
1739 {
1740 num_sect_opts *= 2;
1741 sect_opts = ((struct sect_opt *)
1742 xrealloc (sect_opts,
1743 num_sect_opts
1744 * sizeof (struct sect_opt)));
1745 }
1746 }
1747 else
1748 {
1749 /* It's an option (starting with '-') or it's an argument
1750 to an option */
1751
1752 if (*arg == '-')
1753 {
1754 if (strcmp (arg, "-mapped") == 0)
1755 flags |= OBJF_MAPPED;
1756 else
1757 if (strcmp (arg, "-readnow") == 0)
1758 flags |= OBJF_READNOW;
1759 else
1760 if (strcmp (arg, "-s") == 0)
1761 {
1762 expecting_sec_name = 1;
1763 expecting_sec_addr = 1;
1764 }
1765 }
1766 else
1767 {
1768 if (expecting_sec_name)
1769 {
1770 sect_opts[section_index].name = arg;
1771 expecting_sec_name = 0;
1772 }
1773 else
1774 if (expecting_sec_addr)
1775 {
1776 sect_opts[section_index].value = arg;
1777 expecting_sec_addr = 0;
1778 if (++section_index > num_sect_opts)
1779 {
1780 num_sect_opts *= 2;
1781 sect_opts = ((struct sect_opt *)
1782 xrealloc (sect_opts,
1783 num_sect_opts
1784 * sizeof (struct sect_opt)));
1785 }
1786 }
1787 else
1788 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1789 }
1790 }
1791 argcnt++;
1792 }
1793
1794 /* Print the prompt for the query below. And save the arguments into
1795 a sect_addr_info structure to be passed around to other
1796 functions. We have to split this up into separate print
1797 statements because local_hex_string returns a local static
1798 string. */
1799
1800 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1801 section_addrs = alloc_section_addr_info (section_index);
1802 make_cleanup (xfree, section_addrs);
1803 for (i = 0; i < section_index; i++)
1804 {
1805 CORE_ADDR addr;
1806 char *val = sect_opts[i].value;
1807 char *sec = sect_opts[i].name;
1808
1809 addr = parse_and_eval_address (val);
1810
1811 /* Here we store the section offsets in the order they were
1812 entered on the command line. */
1813 section_addrs->other[sec_num].name = sec;
1814 section_addrs->other[sec_num].addr = addr;
1815 printf_unfiltered ("\t%s_addr = %s\n",
1816 sec,
1817 local_hex_string ((unsigned long)addr));
1818 sec_num++;
1819
1820 /* The object's sections are initialized when a
1821 call is made to build_objfile_section_table (objfile).
1822 This happens in reread_symbols.
1823 At this point, we don't know what file type this is,
1824 so we can't determine what section names are valid. */
1825 }
1826
1827 if (from_tty && (!query ("%s", "")))
1828 error ("Not confirmed.");
1829
1830 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1831
1832 /* Getting new symbols may change our opinion about what is
1833 frameless. */
1834 reinit_frame_cache ();
1835 do_cleanups (my_cleanups);
1836 }
1837 \f
1838 static void
1839 add_shared_symbol_files_command (char *args, int from_tty)
1840 {
1841 #ifdef ADD_SHARED_SYMBOL_FILES
1842 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1843 #else
1844 error ("This command is not available in this configuration of GDB.");
1845 #endif
1846 }
1847 \f
1848 /* Re-read symbols if a symbol-file has changed. */
1849 void
1850 reread_symbols (void)
1851 {
1852 struct objfile *objfile;
1853 long new_modtime;
1854 int reread_one = 0;
1855 struct stat new_statbuf;
1856 int res;
1857
1858 /* With the addition of shared libraries, this should be modified,
1859 the load time should be saved in the partial symbol tables, since
1860 different tables may come from different source files. FIXME.
1861 This routine should then walk down each partial symbol table
1862 and see if the symbol table that it originates from has been changed */
1863
1864 for (objfile = object_files; objfile; objfile = objfile->next)
1865 {
1866 if (objfile->obfd)
1867 {
1868 #ifdef DEPRECATED_IBM6000_TARGET
1869 /* If this object is from a shared library, then you should
1870 stat on the library name, not member name. */
1871
1872 if (objfile->obfd->my_archive)
1873 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1874 else
1875 #endif
1876 res = stat (objfile->name, &new_statbuf);
1877 if (res != 0)
1878 {
1879 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1880 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1881 objfile->name);
1882 continue;
1883 }
1884 new_modtime = new_statbuf.st_mtime;
1885 if (new_modtime != objfile->mtime)
1886 {
1887 struct cleanup *old_cleanups;
1888 struct section_offsets *offsets;
1889 int num_offsets;
1890 char *obfd_filename;
1891
1892 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1893 objfile->name);
1894
1895 /* There are various functions like symbol_file_add,
1896 symfile_bfd_open, syms_from_objfile, etc., which might
1897 appear to do what we want. But they have various other
1898 effects which we *don't* want. So we just do stuff
1899 ourselves. We don't worry about mapped files (for one thing,
1900 any mapped file will be out of date). */
1901
1902 /* If we get an error, blow away this objfile (not sure if
1903 that is the correct response for things like shared
1904 libraries). */
1905 old_cleanups = make_cleanup_free_objfile (objfile);
1906 /* We need to do this whenever any symbols go away. */
1907 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1908
1909 /* Clean up any state BFD has sitting around. We don't need
1910 to close the descriptor but BFD lacks a way of closing the
1911 BFD without closing the descriptor. */
1912 obfd_filename = bfd_get_filename (objfile->obfd);
1913 if (!bfd_close (objfile->obfd))
1914 error ("Can't close BFD for %s: %s", objfile->name,
1915 bfd_errmsg (bfd_get_error ()));
1916 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1917 if (objfile->obfd == NULL)
1918 error ("Can't open %s to read symbols.", objfile->name);
1919 /* bfd_openr sets cacheable to true, which is what we want. */
1920 if (!bfd_check_format (objfile->obfd, bfd_object))
1921 error ("Can't read symbols from %s: %s.", objfile->name,
1922 bfd_errmsg (bfd_get_error ()));
1923
1924 /* Save the offsets, we will nuke them with the rest of the
1925 psymbol_obstack. */
1926 num_offsets = objfile->num_sections;
1927 offsets = ((struct section_offsets *)
1928 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1929 memcpy (offsets, objfile->section_offsets,
1930 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1931
1932 /* Nuke all the state that we will re-read. Much of the following
1933 code which sets things to NULL really is necessary to tell
1934 other parts of GDB that there is nothing currently there. */
1935
1936 /* FIXME: Do we have to free a whole linked list, or is this
1937 enough? */
1938 if (objfile->global_psymbols.list)
1939 xmfree (objfile->md, objfile->global_psymbols.list);
1940 memset (&objfile->global_psymbols, 0,
1941 sizeof (objfile->global_psymbols));
1942 if (objfile->static_psymbols.list)
1943 xmfree (objfile->md, objfile->static_psymbols.list);
1944 memset (&objfile->static_psymbols, 0,
1945 sizeof (objfile->static_psymbols));
1946
1947 /* Free the obstacks for non-reusable objfiles */
1948 bcache_xfree (objfile->psymbol_cache);
1949 objfile->psymbol_cache = bcache_xmalloc ();
1950 bcache_xfree (objfile->macro_cache);
1951 objfile->macro_cache = bcache_xmalloc ();
1952 if (objfile->demangled_names_hash != NULL)
1953 {
1954 htab_delete (objfile->demangled_names_hash);
1955 objfile->demangled_names_hash = NULL;
1956 }
1957 obstack_free (&objfile->psymbol_obstack, 0);
1958 obstack_free (&objfile->symbol_obstack, 0);
1959 obstack_free (&objfile->type_obstack, 0);
1960 objfile->sections = NULL;
1961 objfile->symtabs = NULL;
1962 objfile->psymtabs = NULL;
1963 objfile->free_psymtabs = NULL;
1964 objfile->msymbols = NULL;
1965 objfile->sym_private = NULL;
1966 objfile->minimal_symbol_count = 0;
1967 memset (&objfile->msymbol_hash, 0,
1968 sizeof (objfile->msymbol_hash));
1969 memset (&objfile->msymbol_demangled_hash, 0,
1970 sizeof (objfile->msymbol_demangled_hash));
1971 objfile->fundamental_types = NULL;
1972 clear_objfile_data (objfile);
1973 if (objfile->sf != NULL)
1974 {
1975 (*objfile->sf->sym_finish) (objfile);
1976 }
1977
1978 /* We never make this a mapped file. */
1979 objfile->md = NULL;
1980 /* obstack_specify_allocation also initializes the obstack so
1981 it is empty. */
1982 objfile->psymbol_cache = bcache_xmalloc ();
1983 objfile->macro_cache = bcache_xmalloc ();
1984 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1985 xmalloc, xfree);
1986 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1987 xmalloc, xfree);
1988 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1989 xmalloc, xfree);
1990 if (build_objfile_section_table (objfile))
1991 {
1992 error ("Can't find the file sections in `%s': %s",
1993 objfile->name, bfd_errmsg (bfd_get_error ()));
1994 }
1995 terminate_minimal_symbol_table (objfile);
1996
1997 /* We use the same section offsets as from last time. I'm not
1998 sure whether that is always correct for shared libraries. */
1999 objfile->section_offsets = (struct section_offsets *)
2000 obstack_alloc (&objfile->psymbol_obstack,
2001 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2002 memcpy (objfile->section_offsets, offsets,
2003 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2004 objfile->num_sections = num_offsets;
2005
2006 /* What the hell is sym_new_init for, anyway? The concept of
2007 distinguishing between the main file and additional files
2008 in this way seems rather dubious. */
2009 if (objfile == symfile_objfile)
2010 {
2011 (*objfile->sf->sym_new_init) (objfile);
2012 #ifdef HPUXHPPA
2013 RESET_HP_UX_GLOBALS ();
2014 #endif
2015 }
2016
2017 (*objfile->sf->sym_init) (objfile);
2018 clear_complaints (&symfile_complaints, 1, 1);
2019 /* The "mainline" parameter is a hideous hack; I think leaving it
2020 zero is OK since dbxread.c also does what it needs to do if
2021 objfile->global_psymbols.size is 0. */
2022 (*objfile->sf->sym_read) (objfile, 0);
2023 if (!have_partial_symbols () && !have_full_symbols ())
2024 {
2025 wrap_here ("");
2026 printf_unfiltered ("(no debugging symbols found)\n");
2027 wrap_here ("");
2028 }
2029 objfile->flags |= OBJF_SYMS;
2030
2031 /* We're done reading the symbol file; finish off complaints. */
2032 clear_complaints (&symfile_complaints, 0, 1);
2033
2034 /* Getting new symbols may change our opinion about what is
2035 frameless. */
2036
2037 reinit_frame_cache ();
2038
2039 /* Discard cleanups as symbol reading was successful. */
2040 discard_cleanups (old_cleanups);
2041
2042 /* If the mtime has changed between the time we set new_modtime
2043 and now, we *want* this to be out of date, so don't call stat
2044 again now. */
2045 objfile->mtime = new_modtime;
2046 reread_one = 1;
2047 reread_separate_symbols (objfile);
2048 }
2049 }
2050 }
2051
2052 if (reread_one)
2053 clear_symtab_users ();
2054 }
2055
2056
2057 /* Handle separate debug info for OBJFILE, which has just been
2058 re-read:
2059 - If we had separate debug info before, but now we don't, get rid
2060 of the separated objfile.
2061 - If we didn't have separated debug info before, but now we do,
2062 read in the new separated debug info file.
2063 - If the debug link points to a different file, toss the old one
2064 and read the new one.
2065 This function does *not* handle the case where objfile is still
2066 using the same separate debug info file, but that file's timestamp
2067 has changed. That case should be handled by the loop in
2068 reread_symbols already. */
2069 static void
2070 reread_separate_symbols (struct objfile *objfile)
2071 {
2072 char *debug_file;
2073 unsigned long crc32;
2074
2075 /* Does the updated objfile's debug info live in a
2076 separate file? */
2077 debug_file = find_separate_debug_file (objfile);
2078
2079 if (objfile->separate_debug_objfile)
2080 {
2081 /* There are two cases where we need to get rid of
2082 the old separated debug info objfile:
2083 - if the new primary objfile doesn't have
2084 separated debug info, or
2085 - if the new primary objfile has separate debug
2086 info, but it's under a different filename.
2087
2088 If the old and new objfiles both have separate
2089 debug info, under the same filename, then we're
2090 okay --- if the separated file's contents have
2091 changed, we will have caught that when we
2092 visited it in this function's outermost
2093 loop. */
2094 if (! debug_file
2095 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2096 free_objfile (objfile->separate_debug_objfile);
2097 }
2098
2099 /* If the new objfile has separate debug info, and we
2100 haven't loaded it already, do so now. */
2101 if (debug_file
2102 && ! objfile->separate_debug_objfile)
2103 {
2104 /* Use the same section offset table as objfile itself.
2105 Preserve the flags from objfile that make sense. */
2106 objfile->separate_debug_objfile
2107 = (symbol_file_add_with_addrs_or_offsets
2108 (debug_file,
2109 info_verbose, /* from_tty: Don't override the default. */
2110 0, /* No addr table. */
2111 objfile->section_offsets, objfile->num_sections,
2112 0, /* Not mainline. See comments about this above. */
2113 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2114 | OBJF_SHARED | OBJF_READNOW
2115 | OBJF_USERLOADED)));
2116 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2117 = objfile;
2118 }
2119 }
2120
2121
2122 \f
2123
2124
2125 typedef struct
2126 {
2127 char *ext;
2128 enum language lang;
2129 }
2130 filename_language;
2131
2132 static filename_language *filename_language_table;
2133 static int fl_table_size, fl_table_next;
2134
2135 static void
2136 add_filename_language (char *ext, enum language lang)
2137 {
2138 if (fl_table_next >= fl_table_size)
2139 {
2140 fl_table_size += 10;
2141 filename_language_table =
2142 xrealloc (filename_language_table,
2143 fl_table_size * sizeof (*filename_language_table));
2144 }
2145
2146 filename_language_table[fl_table_next].ext = xstrdup (ext);
2147 filename_language_table[fl_table_next].lang = lang;
2148 fl_table_next++;
2149 }
2150
2151 static char *ext_args;
2152
2153 static void
2154 set_ext_lang_command (char *args, int from_tty)
2155 {
2156 int i;
2157 char *cp = ext_args;
2158 enum language lang;
2159
2160 /* First arg is filename extension, starting with '.' */
2161 if (*cp != '.')
2162 error ("'%s': Filename extension must begin with '.'", ext_args);
2163
2164 /* Find end of first arg. */
2165 while (*cp && !isspace (*cp))
2166 cp++;
2167
2168 if (*cp == '\0')
2169 error ("'%s': two arguments required -- filename extension and language",
2170 ext_args);
2171
2172 /* Null-terminate first arg */
2173 *cp++ = '\0';
2174
2175 /* Find beginning of second arg, which should be a source language. */
2176 while (*cp && isspace (*cp))
2177 cp++;
2178
2179 if (*cp == '\0')
2180 error ("'%s': two arguments required -- filename extension and language",
2181 ext_args);
2182
2183 /* Lookup the language from among those we know. */
2184 lang = language_enum (cp);
2185
2186 /* Now lookup the filename extension: do we already know it? */
2187 for (i = 0; i < fl_table_next; i++)
2188 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2189 break;
2190
2191 if (i >= fl_table_next)
2192 {
2193 /* new file extension */
2194 add_filename_language (ext_args, lang);
2195 }
2196 else
2197 {
2198 /* redefining a previously known filename extension */
2199
2200 /* if (from_tty) */
2201 /* query ("Really make files of type %s '%s'?", */
2202 /* ext_args, language_str (lang)); */
2203
2204 xfree (filename_language_table[i].ext);
2205 filename_language_table[i].ext = xstrdup (ext_args);
2206 filename_language_table[i].lang = lang;
2207 }
2208 }
2209
2210 static void
2211 info_ext_lang_command (char *args, int from_tty)
2212 {
2213 int i;
2214
2215 printf_filtered ("Filename extensions and the languages they represent:");
2216 printf_filtered ("\n\n");
2217 for (i = 0; i < fl_table_next; i++)
2218 printf_filtered ("\t%s\t- %s\n",
2219 filename_language_table[i].ext,
2220 language_str (filename_language_table[i].lang));
2221 }
2222
2223 static void
2224 init_filename_language_table (void)
2225 {
2226 if (fl_table_size == 0) /* protect against repetition */
2227 {
2228 fl_table_size = 20;
2229 fl_table_next = 0;
2230 filename_language_table =
2231 xmalloc (fl_table_size * sizeof (*filename_language_table));
2232 add_filename_language (".c", language_c);
2233 add_filename_language (".C", language_cplus);
2234 add_filename_language (".cc", language_cplus);
2235 add_filename_language (".cp", language_cplus);
2236 add_filename_language (".cpp", language_cplus);
2237 add_filename_language (".cxx", language_cplus);
2238 add_filename_language (".c++", language_cplus);
2239 add_filename_language (".java", language_java);
2240 add_filename_language (".class", language_java);
2241 add_filename_language (".m", language_objc);
2242 add_filename_language (".f", language_fortran);
2243 add_filename_language (".F", language_fortran);
2244 add_filename_language (".s", language_asm);
2245 add_filename_language (".S", language_asm);
2246 add_filename_language (".pas", language_pascal);
2247 add_filename_language (".p", language_pascal);
2248 add_filename_language (".pp", language_pascal);
2249 }
2250 }
2251
2252 enum language
2253 deduce_language_from_filename (char *filename)
2254 {
2255 int i;
2256 char *cp;
2257
2258 if (filename != NULL)
2259 if ((cp = strrchr (filename, '.')) != NULL)
2260 for (i = 0; i < fl_table_next; i++)
2261 if (strcmp (cp, filename_language_table[i].ext) == 0)
2262 return filename_language_table[i].lang;
2263
2264 return language_unknown;
2265 }
2266 \f
2267 /* allocate_symtab:
2268
2269 Allocate and partly initialize a new symbol table. Return a pointer
2270 to it. error() if no space.
2271
2272 Caller must set these fields:
2273 LINETABLE(symtab)
2274 symtab->blockvector
2275 symtab->dirname
2276 symtab->free_code
2277 symtab->free_ptr
2278 possibly free_named_symtabs (symtab->filename);
2279 */
2280
2281 struct symtab *
2282 allocate_symtab (char *filename, struct objfile *objfile)
2283 {
2284 struct symtab *symtab;
2285
2286 symtab = (struct symtab *)
2287 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2288 memset (symtab, 0, sizeof (*symtab));
2289 symtab->filename = obsavestring (filename, strlen (filename),
2290 &objfile->symbol_obstack);
2291 symtab->fullname = NULL;
2292 symtab->language = deduce_language_from_filename (filename);
2293 symtab->debugformat = obsavestring ("unknown", 7,
2294 &objfile->symbol_obstack);
2295
2296 /* Hook it to the objfile it comes from */
2297
2298 symtab->objfile = objfile;
2299 symtab->next = objfile->symtabs;
2300 objfile->symtabs = symtab;
2301
2302 /* FIXME: This should go away. It is only defined for the Z8000,
2303 and the Z8000 definition of this macro doesn't have anything to
2304 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2305 here for convenience. */
2306 #ifdef INIT_EXTRA_SYMTAB_INFO
2307 INIT_EXTRA_SYMTAB_INFO (symtab);
2308 #endif
2309
2310 return (symtab);
2311 }
2312
2313 struct partial_symtab *
2314 allocate_psymtab (char *filename, struct objfile *objfile)
2315 {
2316 struct partial_symtab *psymtab;
2317
2318 if (objfile->free_psymtabs)
2319 {
2320 psymtab = objfile->free_psymtabs;
2321 objfile->free_psymtabs = psymtab->next;
2322 }
2323 else
2324 psymtab = (struct partial_symtab *)
2325 obstack_alloc (&objfile->psymbol_obstack,
2326 sizeof (struct partial_symtab));
2327
2328 memset (psymtab, 0, sizeof (struct partial_symtab));
2329 psymtab->filename = obsavestring (filename, strlen (filename),
2330 &objfile->psymbol_obstack);
2331 psymtab->symtab = NULL;
2332
2333 /* Prepend it to the psymtab list for the objfile it belongs to.
2334 Psymtabs are searched in most recent inserted -> least recent
2335 inserted order. */
2336
2337 psymtab->objfile = objfile;
2338 psymtab->next = objfile->psymtabs;
2339 objfile->psymtabs = psymtab;
2340 #if 0
2341 {
2342 struct partial_symtab **prev_pst;
2343 psymtab->objfile = objfile;
2344 psymtab->next = NULL;
2345 prev_pst = &(objfile->psymtabs);
2346 while ((*prev_pst) != NULL)
2347 prev_pst = &((*prev_pst)->next);
2348 (*prev_pst) = psymtab;
2349 }
2350 #endif
2351
2352 return (psymtab);
2353 }
2354
2355 void
2356 discard_psymtab (struct partial_symtab *pst)
2357 {
2358 struct partial_symtab **prev_pst;
2359
2360 /* From dbxread.c:
2361 Empty psymtabs happen as a result of header files which don't
2362 have any symbols in them. There can be a lot of them. But this
2363 check is wrong, in that a psymtab with N_SLINE entries but
2364 nothing else is not empty, but we don't realize that. Fixing
2365 that without slowing things down might be tricky. */
2366
2367 /* First, snip it out of the psymtab chain */
2368
2369 prev_pst = &(pst->objfile->psymtabs);
2370 while ((*prev_pst) != pst)
2371 prev_pst = &((*prev_pst)->next);
2372 (*prev_pst) = pst->next;
2373
2374 /* Next, put it on a free list for recycling */
2375
2376 pst->next = pst->objfile->free_psymtabs;
2377 pst->objfile->free_psymtabs = pst;
2378 }
2379 \f
2380
2381 /* Reset all data structures in gdb which may contain references to symbol
2382 table data. */
2383
2384 void
2385 clear_symtab_users (void)
2386 {
2387 /* Someday, we should do better than this, by only blowing away
2388 the things that really need to be blown. */
2389 clear_value_history ();
2390 clear_displays ();
2391 clear_internalvars ();
2392 breakpoint_re_set ();
2393 set_default_breakpoint (0, 0, 0, 0);
2394 clear_current_source_symtab_and_line ();
2395 clear_pc_function_cache ();
2396 if (target_new_objfile_hook)
2397 target_new_objfile_hook (NULL);
2398 }
2399
2400 static void
2401 clear_symtab_users_cleanup (void *ignore)
2402 {
2403 clear_symtab_users ();
2404 }
2405
2406 /* clear_symtab_users_once:
2407
2408 This function is run after symbol reading, or from a cleanup.
2409 If an old symbol table was obsoleted, the old symbol table
2410 has been blown away, but the other GDB data structures that may
2411 reference it have not yet been cleared or re-directed. (The old
2412 symtab was zapped, and the cleanup queued, in free_named_symtab()
2413 below.)
2414
2415 This function can be queued N times as a cleanup, or called
2416 directly; it will do all the work the first time, and then will be a
2417 no-op until the next time it is queued. This works by bumping a
2418 counter at queueing time. Much later when the cleanup is run, or at
2419 the end of symbol processing (in case the cleanup is discarded), if
2420 the queued count is greater than the "done-count", we do the work
2421 and set the done-count to the queued count. If the queued count is
2422 less than or equal to the done-count, we just ignore the call. This
2423 is needed because reading a single .o file will often replace many
2424 symtabs (one per .h file, for example), and we don't want to reset
2425 the breakpoints N times in the user's face.
2426
2427 The reason we both queue a cleanup, and call it directly after symbol
2428 reading, is because the cleanup protects us in case of errors, but is
2429 discarded if symbol reading is successful. */
2430
2431 #if 0
2432 /* FIXME: As free_named_symtabs is currently a big noop this function
2433 is no longer needed. */
2434 static void clear_symtab_users_once (void);
2435
2436 static int clear_symtab_users_queued;
2437 static int clear_symtab_users_done;
2438
2439 static void
2440 clear_symtab_users_once (void)
2441 {
2442 /* Enforce once-per-`do_cleanups'-semantics */
2443 if (clear_symtab_users_queued <= clear_symtab_users_done)
2444 return;
2445 clear_symtab_users_done = clear_symtab_users_queued;
2446
2447 clear_symtab_users ();
2448 }
2449 #endif
2450
2451 /* Delete the specified psymtab, and any others that reference it. */
2452
2453 static void
2454 cashier_psymtab (struct partial_symtab *pst)
2455 {
2456 struct partial_symtab *ps, *pprev = NULL;
2457 int i;
2458
2459 /* Find its previous psymtab in the chain */
2460 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2461 {
2462 if (ps == pst)
2463 break;
2464 pprev = ps;
2465 }
2466
2467 if (ps)
2468 {
2469 /* Unhook it from the chain. */
2470 if (ps == pst->objfile->psymtabs)
2471 pst->objfile->psymtabs = ps->next;
2472 else
2473 pprev->next = ps->next;
2474
2475 /* FIXME, we can't conveniently deallocate the entries in the
2476 partial_symbol lists (global_psymbols/static_psymbols) that
2477 this psymtab points to. These just take up space until all
2478 the psymtabs are reclaimed. Ditto the dependencies list and
2479 filename, which are all in the psymbol_obstack. */
2480
2481 /* We need to cashier any psymtab that has this one as a dependency... */
2482 again:
2483 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2484 {
2485 for (i = 0; i < ps->number_of_dependencies; i++)
2486 {
2487 if (ps->dependencies[i] == pst)
2488 {
2489 cashier_psymtab (ps);
2490 goto again; /* Must restart, chain has been munged. */
2491 }
2492 }
2493 }
2494 }
2495 }
2496
2497 /* If a symtab or psymtab for filename NAME is found, free it along
2498 with any dependent breakpoints, displays, etc.
2499 Used when loading new versions of object modules with the "add-file"
2500 command. This is only called on the top-level symtab or psymtab's name;
2501 it is not called for subsidiary files such as .h files.
2502
2503 Return value is 1 if we blew away the environment, 0 if not.
2504 FIXME. The return value appears to never be used.
2505
2506 FIXME. I think this is not the best way to do this. We should
2507 work on being gentler to the environment while still cleaning up
2508 all stray pointers into the freed symtab. */
2509
2510 int
2511 free_named_symtabs (char *name)
2512 {
2513 #if 0
2514 /* FIXME: With the new method of each objfile having it's own
2515 psymtab list, this function needs serious rethinking. In particular,
2516 why was it ever necessary to toss psymtabs with specific compilation
2517 unit filenames, as opposed to all psymtabs from a particular symbol
2518 file? -- fnf
2519 Well, the answer is that some systems permit reloading of particular
2520 compilation units. We want to blow away any old info about these
2521 compilation units, regardless of which objfiles they arrived in. --gnu. */
2522
2523 struct symtab *s;
2524 struct symtab *prev;
2525 struct partial_symtab *ps;
2526 struct blockvector *bv;
2527 int blewit = 0;
2528
2529 /* We only wack things if the symbol-reload switch is set. */
2530 if (!symbol_reloading)
2531 return 0;
2532
2533 /* Some symbol formats have trouble providing file names... */
2534 if (name == 0 || *name == '\0')
2535 return 0;
2536
2537 /* Look for a psymtab with the specified name. */
2538
2539 again2:
2540 for (ps = partial_symtab_list; ps; ps = ps->next)
2541 {
2542 if (strcmp (name, ps->filename) == 0)
2543 {
2544 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2545 goto again2; /* Must restart, chain has been munged */
2546 }
2547 }
2548
2549 /* Look for a symtab with the specified name. */
2550
2551 for (s = symtab_list; s; s = s->next)
2552 {
2553 if (strcmp (name, s->filename) == 0)
2554 break;
2555 prev = s;
2556 }
2557
2558 if (s)
2559 {
2560 if (s == symtab_list)
2561 symtab_list = s->next;
2562 else
2563 prev->next = s->next;
2564
2565 /* For now, queue a delete for all breakpoints, displays, etc., whether
2566 or not they depend on the symtab being freed. This should be
2567 changed so that only those data structures affected are deleted. */
2568
2569 /* But don't delete anything if the symtab is empty.
2570 This test is necessary due to a bug in "dbxread.c" that
2571 causes empty symtabs to be created for N_SO symbols that
2572 contain the pathname of the object file. (This problem
2573 has been fixed in GDB 3.9x). */
2574
2575 bv = BLOCKVECTOR (s);
2576 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2577 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2578 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2579 {
2580 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2581 name);
2582 clear_symtab_users_queued++;
2583 make_cleanup (clear_symtab_users_once, 0);
2584 blewit = 1;
2585 }
2586 else
2587 {
2588 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2589 name);
2590 }
2591
2592 free_symtab (s);
2593 }
2594 else
2595 {
2596 /* It is still possible that some breakpoints will be affected
2597 even though no symtab was found, since the file might have
2598 been compiled without debugging, and hence not be associated
2599 with a symtab. In order to handle this correctly, we would need
2600 to keep a list of text address ranges for undebuggable files.
2601 For now, we do nothing, since this is a fairly obscure case. */
2602 ;
2603 }
2604
2605 /* FIXME, what about the minimal symbol table? */
2606 return blewit;
2607 #else
2608 return (0);
2609 #endif
2610 }
2611 \f
2612 /* Allocate and partially fill a partial symtab. It will be
2613 completely filled at the end of the symbol list.
2614
2615 FILENAME is the name of the symbol-file we are reading from. */
2616
2617 struct partial_symtab *
2618 start_psymtab_common (struct objfile *objfile,
2619 struct section_offsets *section_offsets, char *filename,
2620 CORE_ADDR textlow, struct partial_symbol **global_syms,
2621 struct partial_symbol **static_syms)
2622 {
2623 struct partial_symtab *psymtab;
2624
2625 psymtab = allocate_psymtab (filename, objfile);
2626 psymtab->section_offsets = section_offsets;
2627 psymtab->textlow = textlow;
2628 psymtab->texthigh = psymtab->textlow; /* default */
2629 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2630 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2631 return (psymtab);
2632 }
2633 \f
2634 /* Add a symbol with a long value to a psymtab.
2635 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2636 Return the partial symbol that has been added. */
2637
2638 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2639 symbol is so that callers can get access to the symbol's demangled
2640 name, which they don't have any cheap way to determine otherwise.
2641 (Currenly, dwarf2read.c is the only file who uses that information,
2642 though it's possible that other readers might in the future.)
2643 Elena wasn't thrilled about that, and I don't blame her, but we
2644 couldn't come up with a better way to get that information. If
2645 it's needed in other situations, we could consider breaking up
2646 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2647 cache. */
2648
2649 const struct partial_symbol *
2650 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2651 enum address_class class,
2652 struct psymbol_allocation_list *list, long val, /* Value as a long */
2653 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2654 enum language language, struct objfile *objfile)
2655 {
2656 struct partial_symbol *psym;
2657 char *buf = alloca (namelength + 1);
2658 /* psymbol is static so that there will be no uninitialized gaps in the
2659 structure which might contain random data, causing cache misses in
2660 bcache. */
2661 static struct partial_symbol psymbol;
2662
2663 /* Create local copy of the partial symbol */
2664 memcpy (buf, name, namelength);
2665 buf[namelength] = '\0';
2666 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2667 if (val != 0)
2668 {
2669 SYMBOL_VALUE (&psymbol) = val;
2670 }
2671 else
2672 {
2673 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2674 }
2675 SYMBOL_SECTION (&psymbol) = 0;
2676 SYMBOL_LANGUAGE (&psymbol) = language;
2677 PSYMBOL_DOMAIN (&psymbol) = domain;
2678 PSYMBOL_CLASS (&psymbol) = class;
2679
2680 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2681
2682 /* Stash the partial symbol away in the cache */
2683 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2684
2685 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2686 if (list->next >= list->list + list->size)
2687 {
2688 extend_psymbol_list (list, objfile);
2689 }
2690 *list->next++ = psym;
2691 OBJSTAT (objfile, n_psyms++);
2692
2693 return psym;
2694 }
2695
2696 /* Add a symbol with a long value to a psymtab. This differs from
2697 * add_psymbol_to_list above in taking both a mangled and a demangled
2698 * name. */
2699
2700 void
2701 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2702 int dem_namelength, domain_enum domain,
2703 enum address_class class,
2704 struct psymbol_allocation_list *list, long val, /* Value as a long */
2705 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2706 enum language language,
2707 struct objfile *objfile)
2708 {
2709 struct partial_symbol *psym;
2710 char *buf = alloca (namelength + 1);
2711 /* psymbol is static so that there will be no uninitialized gaps in the
2712 structure which might contain random data, causing cache misses in
2713 bcache. */
2714 static struct partial_symbol psymbol;
2715
2716 /* Create local copy of the partial symbol */
2717
2718 memcpy (buf, name, namelength);
2719 buf[namelength] = '\0';
2720 DEPRECATED_SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2721
2722 buf = alloca (dem_namelength + 1);
2723 memcpy (buf, dem_name, dem_namelength);
2724 buf[dem_namelength] = '\0';
2725
2726 switch (language)
2727 {
2728 case language_c:
2729 case language_cplus:
2730 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2731 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2732 break;
2733 /* FIXME What should be done for the default case? Ignoring for now. */
2734 }
2735
2736 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2737 if (val != 0)
2738 {
2739 SYMBOL_VALUE (&psymbol) = val;
2740 }
2741 else
2742 {
2743 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2744 }
2745 SYMBOL_SECTION (&psymbol) = 0;
2746 SYMBOL_LANGUAGE (&psymbol) = language;
2747 PSYMBOL_DOMAIN (&psymbol) = domain;
2748 PSYMBOL_CLASS (&psymbol) = class;
2749 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2750
2751 /* Stash the partial symbol away in the cache */
2752 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2753
2754 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2755 if (list->next >= list->list + list->size)
2756 {
2757 extend_psymbol_list (list, objfile);
2758 }
2759 *list->next++ = psym;
2760 OBJSTAT (objfile, n_psyms++);
2761 }
2762
2763 /* Initialize storage for partial symbols. */
2764
2765 void
2766 init_psymbol_list (struct objfile *objfile, int total_symbols)
2767 {
2768 /* Free any previously allocated psymbol lists. */
2769
2770 if (objfile->global_psymbols.list)
2771 {
2772 xmfree (objfile->md, objfile->global_psymbols.list);
2773 }
2774 if (objfile->static_psymbols.list)
2775 {
2776 xmfree (objfile->md, objfile->static_psymbols.list);
2777 }
2778
2779 /* Current best guess is that approximately a twentieth
2780 of the total symbols (in a debugging file) are global or static
2781 oriented symbols */
2782
2783 objfile->global_psymbols.size = total_symbols / 10;
2784 objfile->static_psymbols.size = total_symbols / 10;
2785
2786 if (objfile->global_psymbols.size > 0)
2787 {
2788 objfile->global_psymbols.next =
2789 objfile->global_psymbols.list = (struct partial_symbol **)
2790 xmmalloc (objfile->md, (objfile->global_psymbols.size
2791 * sizeof (struct partial_symbol *)));
2792 }
2793 if (objfile->static_psymbols.size > 0)
2794 {
2795 objfile->static_psymbols.next =
2796 objfile->static_psymbols.list = (struct partial_symbol **)
2797 xmmalloc (objfile->md, (objfile->static_psymbols.size
2798 * sizeof (struct partial_symbol *)));
2799 }
2800 }
2801
2802 /* OVERLAYS:
2803 The following code implements an abstraction for debugging overlay sections.
2804
2805 The target model is as follows:
2806 1) The gnu linker will permit multiple sections to be mapped into the
2807 same VMA, each with its own unique LMA (or load address).
2808 2) It is assumed that some runtime mechanism exists for mapping the
2809 sections, one by one, from the load address into the VMA address.
2810 3) This code provides a mechanism for gdb to keep track of which
2811 sections should be considered to be mapped from the VMA to the LMA.
2812 This information is used for symbol lookup, and memory read/write.
2813 For instance, if a section has been mapped then its contents
2814 should be read from the VMA, otherwise from the LMA.
2815
2816 Two levels of debugger support for overlays are available. One is
2817 "manual", in which the debugger relies on the user to tell it which
2818 overlays are currently mapped. This level of support is
2819 implemented entirely in the core debugger, and the information about
2820 whether a section is mapped is kept in the objfile->obj_section table.
2821
2822 The second level of support is "automatic", and is only available if
2823 the target-specific code provides functionality to read the target's
2824 overlay mapping table, and translate its contents for the debugger
2825 (by updating the mapped state information in the obj_section tables).
2826
2827 The interface is as follows:
2828 User commands:
2829 overlay map <name> -- tell gdb to consider this section mapped
2830 overlay unmap <name> -- tell gdb to consider this section unmapped
2831 overlay list -- list the sections that GDB thinks are mapped
2832 overlay read-target -- get the target's state of what's mapped
2833 overlay off/manual/auto -- set overlay debugging state
2834 Functional interface:
2835 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2836 section, return that section.
2837 find_pc_overlay(pc): find any overlay section that contains
2838 the pc, either in its VMA or its LMA
2839 overlay_is_mapped(sect): true if overlay is marked as mapped
2840 section_is_overlay(sect): true if section's VMA != LMA
2841 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2842 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2843 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2844 overlay_mapped_address(...): map an address from section's LMA to VMA
2845 overlay_unmapped_address(...): map an address from section's VMA to LMA
2846 symbol_overlayed_address(...): Return a "current" address for symbol:
2847 either in VMA or LMA depending on whether
2848 the symbol's section is currently mapped
2849 */
2850
2851 /* Overlay debugging state: */
2852
2853 enum overlay_debugging_state overlay_debugging = ovly_off;
2854 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2855
2856 /* Target vector for refreshing overlay mapped state */
2857 static void simple_overlay_update (struct obj_section *);
2858 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2859
2860 /* Function: section_is_overlay (SECTION)
2861 Returns true if SECTION has VMA not equal to LMA, ie.
2862 SECTION is loaded at an address different from where it will "run". */
2863
2864 int
2865 section_is_overlay (asection *section)
2866 {
2867 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2868
2869 if (overlay_debugging)
2870 if (section && section->lma != 0 &&
2871 section->vma != section->lma)
2872 return 1;
2873
2874 return 0;
2875 }
2876
2877 /* Function: overlay_invalidate_all (void)
2878 Invalidate the mapped state of all overlay sections (mark it as stale). */
2879
2880 static void
2881 overlay_invalidate_all (void)
2882 {
2883 struct objfile *objfile;
2884 struct obj_section *sect;
2885
2886 ALL_OBJSECTIONS (objfile, sect)
2887 if (section_is_overlay (sect->the_bfd_section))
2888 sect->ovly_mapped = -1;
2889 }
2890
2891 /* Function: overlay_is_mapped (SECTION)
2892 Returns true if section is an overlay, and is currently mapped.
2893 Private: public access is thru function section_is_mapped.
2894
2895 Access to the ovly_mapped flag is restricted to this function, so
2896 that we can do automatic update. If the global flag
2897 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2898 overlay_invalidate_all. If the mapped state of the particular
2899 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2900
2901 static int
2902 overlay_is_mapped (struct obj_section *osect)
2903 {
2904 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2905 return 0;
2906
2907 switch (overlay_debugging)
2908 {
2909 default:
2910 case ovly_off:
2911 return 0; /* overlay debugging off */
2912 case ovly_auto: /* overlay debugging automatic */
2913 /* Unles there is a target_overlay_update function,
2914 there's really nothing useful to do here (can't really go auto) */
2915 if (target_overlay_update)
2916 {
2917 if (overlay_cache_invalid)
2918 {
2919 overlay_invalidate_all ();
2920 overlay_cache_invalid = 0;
2921 }
2922 if (osect->ovly_mapped == -1)
2923 (*target_overlay_update) (osect);
2924 }
2925 /* fall thru to manual case */
2926 case ovly_on: /* overlay debugging manual */
2927 return osect->ovly_mapped == 1;
2928 }
2929 }
2930
2931 /* Function: section_is_mapped
2932 Returns true if section is an overlay, and is currently mapped. */
2933
2934 int
2935 section_is_mapped (asection *section)
2936 {
2937 struct objfile *objfile;
2938 struct obj_section *osect;
2939
2940 if (overlay_debugging)
2941 if (section && section_is_overlay (section))
2942 ALL_OBJSECTIONS (objfile, osect)
2943 if (osect->the_bfd_section == section)
2944 return overlay_is_mapped (osect);
2945
2946 return 0;
2947 }
2948
2949 /* Function: pc_in_unmapped_range
2950 If PC falls into the lma range of SECTION, return true, else false. */
2951
2952 CORE_ADDR
2953 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2954 {
2955 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2956
2957 int size;
2958
2959 if (overlay_debugging)
2960 if (section && section_is_overlay (section))
2961 {
2962 size = bfd_get_section_size_before_reloc (section);
2963 if (section->lma <= pc && pc < section->lma + size)
2964 return 1;
2965 }
2966 return 0;
2967 }
2968
2969 /* Function: pc_in_mapped_range
2970 If PC falls into the vma range of SECTION, return true, else false. */
2971
2972 CORE_ADDR
2973 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2974 {
2975 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2976
2977 int size;
2978
2979 if (overlay_debugging)
2980 if (section && section_is_overlay (section))
2981 {
2982 size = bfd_get_section_size_before_reloc (section);
2983 if (section->vma <= pc && pc < section->vma + size)
2984 return 1;
2985 }
2986 return 0;
2987 }
2988
2989
2990 /* Return true if the mapped ranges of sections A and B overlap, false
2991 otherwise. */
2992 static int
2993 sections_overlap (asection *a, asection *b)
2994 {
2995 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2996
2997 CORE_ADDR a_start = a->vma;
2998 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2999 CORE_ADDR b_start = b->vma;
3000 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3001
3002 return (a_start < b_end && b_start < a_end);
3003 }
3004
3005 /* Function: overlay_unmapped_address (PC, SECTION)
3006 Returns the address corresponding to PC in the unmapped (load) range.
3007 May be the same as PC. */
3008
3009 CORE_ADDR
3010 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3011 {
3012 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3013
3014 if (overlay_debugging)
3015 if (section && section_is_overlay (section) &&
3016 pc_in_mapped_range (pc, section))
3017 return pc + section->lma - section->vma;
3018
3019 return pc;
3020 }
3021
3022 /* Function: overlay_mapped_address (PC, SECTION)
3023 Returns the address corresponding to PC in the mapped (runtime) range.
3024 May be the same as PC. */
3025
3026 CORE_ADDR
3027 overlay_mapped_address (CORE_ADDR pc, asection *section)
3028 {
3029 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3030
3031 if (overlay_debugging)
3032 if (section && section_is_overlay (section) &&
3033 pc_in_unmapped_range (pc, section))
3034 return pc + section->vma - section->lma;
3035
3036 return pc;
3037 }
3038
3039
3040 /* Function: symbol_overlayed_address
3041 Return one of two addresses (relative to the VMA or to the LMA),
3042 depending on whether the section is mapped or not. */
3043
3044 CORE_ADDR
3045 symbol_overlayed_address (CORE_ADDR address, asection *section)
3046 {
3047 if (overlay_debugging)
3048 {
3049 /* If the symbol has no section, just return its regular address. */
3050 if (section == 0)
3051 return address;
3052 /* If the symbol's section is not an overlay, just return its address */
3053 if (!section_is_overlay (section))
3054 return address;
3055 /* If the symbol's section is mapped, just return its address */
3056 if (section_is_mapped (section))
3057 return address;
3058 /*
3059 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3060 * then return its LOADED address rather than its vma address!!
3061 */
3062 return overlay_unmapped_address (address, section);
3063 }
3064 return address;
3065 }
3066
3067 /* Function: find_pc_overlay (PC)
3068 Return the best-match overlay section for PC:
3069 If PC matches a mapped overlay section's VMA, return that section.
3070 Else if PC matches an unmapped section's VMA, return that section.
3071 Else if PC matches an unmapped section's LMA, return that section. */
3072
3073 asection *
3074 find_pc_overlay (CORE_ADDR pc)
3075 {
3076 struct objfile *objfile;
3077 struct obj_section *osect, *best_match = NULL;
3078
3079 if (overlay_debugging)
3080 ALL_OBJSECTIONS (objfile, osect)
3081 if (section_is_overlay (osect->the_bfd_section))
3082 {
3083 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3084 {
3085 if (overlay_is_mapped (osect))
3086 return osect->the_bfd_section;
3087 else
3088 best_match = osect;
3089 }
3090 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3091 best_match = osect;
3092 }
3093 return best_match ? best_match->the_bfd_section : NULL;
3094 }
3095
3096 /* Function: find_pc_mapped_section (PC)
3097 If PC falls into the VMA address range of an overlay section that is
3098 currently marked as MAPPED, return that section. Else return NULL. */
3099
3100 asection *
3101 find_pc_mapped_section (CORE_ADDR pc)
3102 {
3103 struct objfile *objfile;
3104 struct obj_section *osect;
3105
3106 if (overlay_debugging)
3107 ALL_OBJSECTIONS (objfile, osect)
3108 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3109 overlay_is_mapped (osect))
3110 return osect->the_bfd_section;
3111
3112 return NULL;
3113 }
3114
3115 /* Function: list_overlays_command
3116 Print a list of mapped sections and their PC ranges */
3117
3118 void
3119 list_overlays_command (char *args, int from_tty)
3120 {
3121 int nmapped = 0;
3122 struct objfile *objfile;
3123 struct obj_section *osect;
3124
3125 if (overlay_debugging)
3126 ALL_OBJSECTIONS (objfile, osect)
3127 if (overlay_is_mapped (osect))
3128 {
3129 const char *name;
3130 bfd_vma lma, vma;
3131 int size;
3132
3133 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3134 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3135 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3136 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3137
3138 printf_filtered ("Section %s, loaded at ", name);
3139 print_address_numeric (lma, 1, gdb_stdout);
3140 puts_filtered (" - ");
3141 print_address_numeric (lma + size, 1, gdb_stdout);
3142 printf_filtered (", mapped at ");
3143 print_address_numeric (vma, 1, gdb_stdout);
3144 puts_filtered (" - ");
3145 print_address_numeric (vma + size, 1, gdb_stdout);
3146 puts_filtered ("\n");
3147
3148 nmapped++;
3149 }
3150 if (nmapped == 0)
3151 printf_filtered ("No sections are mapped.\n");
3152 }
3153
3154 /* Function: map_overlay_command
3155 Mark the named section as mapped (ie. residing at its VMA address). */
3156
3157 void
3158 map_overlay_command (char *args, int from_tty)
3159 {
3160 struct objfile *objfile, *objfile2;
3161 struct obj_section *sec, *sec2;
3162 asection *bfdsec;
3163
3164 if (!overlay_debugging)
3165 error ("\
3166 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3167 the 'overlay manual' command.");
3168
3169 if (args == 0 || *args == 0)
3170 error ("Argument required: name of an overlay section");
3171
3172 /* First, find a section matching the user supplied argument */
3173 ALL_OBJSECTIONS (objfile, sec)
3174 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3175 {
3176 /* Now, check to see if the section is an overlay. */
3177 bfdsec = sec->the_bfd_section;
3178 if (!section_is_overlay (bfdsec))
3179 continue; /* not an overlay section */
3180
3181 /* Mark the overlay as "mapped" */
3182 sec->ovly_mapped = 1;
3183
3184 /* Next, make a pass and unmap any sections that are
3185 overlapped by this new section: */
3186 ALL_OBJSECTIONS (objfile2, sec2)
3187 if (sec2->ovly_mapped
3188 && sec != sec2
3189 && sec->the_bfd_section != sec2->the_bfd_section
3190 && sections_overlap (sec->the_bfd_section,
3191 sec2->the_bfd_section))
3192 {
3193 if (info_verbose)
3194 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3195 bfd_section_name (objfile->obfd,
3196 sec2->the_bfd_section));
3197 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3198 }
3199 return;
3200 }
3201 error ("No overlay section called %s", args);
3202 }
3203
3204 /* Function: unmap_overlay_command
3205 Mark the overlay section as unmapped
3206 (ie. resident in its LMA address range, rather than the VMA range). */
3207
3208 void
3209 unmap_overlay_command (char *args, int from_tty)
3210 {
3211 struct objfile *objfile;
3212 struct obj_section *sec;
3213
3214 if (!overlay_debugging)
3215 error ("\
3216 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3217 the 'overlay manual' command.");
3218
3219 if (args == 0 || *args == 0)
3220 error ("Argument required: name of an overlay section");
3221
3222 /* First, find a section matching the user supplied argument */
3223 ALL_OBJSECTIONS (objfile, sec)
3224 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3225 {
3226 if (!sec->ovly_mapped)
3227 error ("Section %s is not mapped", args);
3228 sec->ovly_mapped = 0;
3229 return;
3230 }
3231 error ("No overlay section called %s", args);
3232 }
3233
3234 /* Function: overlay_auto_command
3235 A utility command to turn on overlay debugging.
3236 Possibly this should be done via a set/show command. */
3237
3238 static void
3239 overlay_auto_command (char *args, int from_tty)
3240 {
3241 overlay_debugging = ovly_auto;
3242 enable_overlay_breakpoints ();
3243 if (info_verbose)
3244 printf_unfiltered ("Automatic overlay debugging enabled.");
3245 }
3246
3247 /* Function: overlay_manual_command
3248 A utility command to turn on overlay debugging.
3249 Possibly this should be done via a set/show command. */
3250
3251 static void
3252 overlay_manual_command (char *args, int from_tty)
3253 {
3254 overlay_debugging = ovly_on;
3255 disable_overlay_breakpoints ();
3256 if (info_verbose)
3257 printf_unfiltered ("Overlay debugging enabled.");
3258 }
3259
3260 /* Function: overlay_off_command
3261 A utility command to turn on overlay debugging.
3262 Possibly this should be done via a set/show command. */
3263
3264 static void
3265 overlay_off_command (char *args, int from_tty)
3266 {
3267 overlay_debugging = ovly_off;
3268 disable_overlay_breakpoints ();
3269 if (info_verbose)
3270 printf_unfiltered ("Overlay debugging disabled.");
3271 }
3272
3273 static void
3274 overlay_load_command (char *args, int from_tty)
3275 {
3276 if (target_overlay_update)
3277 (*target_overlay_update) (NULL);
3278 else
3279 error ("This target does not know how to read its overlay state.");
3280 }
3281
3282 /* Function: overlay_command
3283 A place-holder for a mis-typed command */
3284
3285 /* Command list chain containing all defined "overlay" subcommands. */
3286 struct cmd_list_element *overlaylist;
3287
3288 static void
3289 overlay_command (char *args, int from_tty)
3290 {
3291 printf_unfiltered
3292 ("\"overlay\" must be followed by the name of an overlay command.\n");
3293 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3294 }
3295
3296
3297 /* Target Overlays for the "Simplest" overlay manager:
3298
3299 This is GDB's default target overlay layer. It works with the
3300 minimal overlay manager supplied as an example by Cygnus. The
3301 entry point is via a function pointer "target_overlay_update",
3302 so targets that use a different runtime overlay manager can
3303 substitute their own overlay_update function and take over the
3304 function pointer.
3305
3306 The overlay_update function pokes around in the target's data structures
3307 to see what overlays are mapped, and updates GDB's overlay mapping with
3308 this information.
3309
3310 In this simple implementation, the target data structures are as follows:
3311 unsigned _novlys; /# number of overlay sections #/
3312 unsigned _ovly_table[_novlys][4] = {
3313 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3314 {..., ..., ..., ...},
3315 }
3316 unsigned _novly_regions; /# number of overlay regions #/
3317 unsigned _ovly_region_table[_novly_regions][3] = {
3318 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3319 {..., ..., ...},
3320 }
3321 These functions will attempt to update GDB's mappedness state in the
3322 symbol section table, based on the target's mappedness state.
3323
3324 To do this, we keep a cached copy of the target's _ovly_table, and
3325 attempt to detect when the cached copy is invalidated. The main
3326 entry point is "simple_overlay_update(SECT), which looks up SECT in
3327 the cached table and re-reads only the entry for that section from
3328 the target (whenever possible).
3329 */
3330
3331 /* Cached, dynamically allocated copies of the target data structures: */
3332 static unsigned (*cache_ovly_table)[4] = 0;
3333 #if 0
3334 static unsigned (*cache_ovly_region_table)[3] = 0;
3335 #endif
3336 static unsigned cache_novlys = 0;
3337 #if 0
3338 static unsigned cache_novly_regions = 0;
3339 #endif
3340 static CORE_ADDR cache_ovly_table_base = 0;
3341 #if 0
3342 static CORE_ADDR cache_ovly_region_table_base = 0;
3343 #endif
3344 enum ovly_index
3345 {
3346 VMA, SIZE, LMA, MAPPED
3347 };
3348 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3349
3350 /* Throw away the cached copy of _ovly_table */
3351 static void
3352 simple_free_overlay_table (void)
3353 {
3354 if (cache_ovly_table)
3355 xfree (cache_ovly_table);
3356 cache_novlys = 0;
3357 cache_ovly_table = NULL;
3358 cache_ovly_table_base = 0;
3359 }
3360
3361 #if 0
3362 /* Throw away the cached copy of _ovly_region_table */
3363 static void
3364 simple_free_overlay_region_table (void)
3365 {
3366 if (cache_ovly_region_table)
3367 xfree (cache_ovly_region_table);
3368 cache_novly_regions = 0;
3369 cache_ovly_region_table = NULL;
3370 cache_ovly_region_table_base = 0;
3371 }
3372 #endif
3373
3374 /* Read an array of ints from the target into a local buffer.
3375 Convert to host order. int LEN is number of ints */
3376 static void
3377 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3378 {
3379 /* FIXME (alloca): Not safe if array is very large. */
3380 char *buf = alloca (len * TARGET_LONG_BYTES);
3381 int i;
3382
3383 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3384 for (i = 0; i < len; i++)
3385 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3386 TARGET_LONG_BYTES);
3387 }
3388
3389 /* Find and grab a copy of the target _ovly_table
3390 (and _novlys, which is needed for the table's size) */
3391 static int
3392 simple_read_overlay_table (void)
3393 {
3394 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3395
3396 simple_free_overlay_table ();
3397 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3398 if (! novlys_msym)
3399 {
3400 error ("Error reading inferior's overlay table: "
3401 "couldn't find `_novlys' variable\n"
3402 "in inferior. Use `overlay manual' mode.");
3403 return 0;
3404 }
3405
3406 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3407 if (! ovly_table_msym)
3408 {
3409 error ("Error reading inferior's overlay table: couldn't find "
3410 "`_ovly_table' array\n"
3411 "in inferior. Use `overlay manual' mode.");
3412 return 0;
3413 }
3414
3415 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3416 cache_ovly_table
3417 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3418 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3419 read_target_long_array (cache_ovly_table_base,
3420 (int *) cache_ovly_table,
3421 cache_novlys * 4);
3422
3423 return 1; /* SUCCESS */
3424 }
3425
3426 #if 0
3427 /* Find and grab a copy of the target _ovly_region_table
3428 (and _novly_regions, which is needed for the table's size) */
3429 static int
3430 simple_read_overlay_region_table (void)
3431 {
3432 struct minimal_symbol *msym;
3433
3434 simple_free_overlay_region_table ();
3435 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3436 if (msym != NULL)
3437 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3438 else
3439 return 0; /* failure */
3440 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3441 if (cache_ovly_region_table != NULL)
3442 {
3443 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3444 if (msym != NULL)
3445 {
3446 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3447 read_target_long_array (cache_ovly_region_table_base,
3448 (int *) cache_ovly_region_table,
3449 cache_novly_regions * 3);
3450 }
3451 else
3452 return 0; /* failure */
3453 }
3454 else
3455 return 0; /* failure */
3456 return 1; /* SUCCESS */
3457 }
3458 #endif
3459
3460 /* Function: simple_overlay_update_1
3461 A helper function for simple_overlay_update. Assuming a cached copy
3462 of _ovly_table exists, look through it to find an entry whose vma,
3463 lma and size match those of OSECT. Re-read the entry and make sure
3464 it still matches OSECT (else the table may no longer be valid).
3465 Set OSECT's mapped state to match the entry. Return: 1 for
3466 success, 0 for failure. */
3467
3468 static int
3469 simple_overlay_update_1 (struct obj_section *osect)
3470 {
3471 int i, size;
3472 bfd *obfd = osect->objfile->obfd;
3473 asection *bsect = osect->the_bfd_section;
3474
3475 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3476 for (i = 0; i < cache_novlys; i++)
3477 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3478 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3479 /* && cache_ovly_table[i][SIZE] == size */ )
3480 {
3481 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3482 (int *) cache_ovly_table[i], 4);
3483 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3484 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3485 /* && cache_ovly_table[i][SIZE] == size */ )
3486 {
3487 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3488 return 1;
3489 }
3490 else /* Warning! Warning! Target's ovly table has changed! */
3491 return 0;
3492 }
3493 return 0;
3494 }
3495
3496 /* Function: simple_overlay_update
3497 If OSECT is NULL, then update all sections' mapped state
3498 (after re-reading the entire target _ovly_table).
3499 If OSECT is non-NULL, then try to find a matching entry in the
3500 cached ovly_table and update only OSECT's mapped state.
3501 If a cached entry can't be found or the cache isn't valid, then
3502 re-read the entire cache, and go ahead and update all sections. */
3503
3504 static void
3505 simple_overlay_update (struct obj_section *osect)
3506 {
3507 struct objfile *objfile;
3508
3509 /* Were we given an osect to look up? NULL means do all of them. */
3510 if (osect)
3511 /* Have we got a cached copy of the target's overlay table? */
3512 if (cache_ovly_table != NULL)
3513 /* Does its cached location match what's currently in the symtab? */
3514 if (cache_ovly_table_base ==
3515 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3516 /* Then go ahead and try to look up this single section in the cache */
3517 if (simple_overlay_update_1 (osect))
3518 /* Found it! We're done. */
3519 return;
3520
3521 /* Cached table no good: need to read the entire table anew.
3522 Or else we want all the sections, in which case it's actually
3523 more efficient to read the whole table in one block anyway. */
3524
3525 if (! simple_read_overlay_table ())
3526 return;
3527
3528 /* Now may as well update all sections, even if only one was requested. */
3529 ALL_OBJSECTIONS (objfile, osect)
3530 if (section_is_overlay (osect->the_bfd_section))
3531 {
3532 int i, size;
3533 bfd *obfd = osect->objfile->obfd;
3534 asection *bsect = osect->the_bfd_section;
3535
3536 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3537 for (i = 0; i < cache_novlys; i++)
3538 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3539 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3540 /* && cache_ovly_table[i][SIZE] == size */ )
3541 { /* obj_section matches i'th entry in ovly_table */
3542 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3543 break; /* finished with inner for loop: break out */
3544 }
3545 }
3546 }
3547
3548 /* Set the output sections and output offsets for section SECTP in
3549 ABFD. The relocation code in BFD will read these offsets, so we
3550 need to be sure they're initialized. We map each section to itself,
3551 with no offset; this means that SECTP->vma will be honored. */
3552
3553 static void
3554 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3555 {
3556 sectp->output_section = sectp;
3557 sectp->output_offset = 0;
3558 }
3559
3560 /* Relocate the contents of a debug section SECTP in ABFD. The
3561 contents are stored in BUF if it is non-NULL, or returned in a
3562 malloc'd buffer otherwise.
3563
3564 For some platforms and debug info formats, shared libraries contain
3565 relocations against the debug sections (particularly for DWARF-2;
3566 one affected platform is PowerPC GNU/Linux, although it depends on
3567 the version of the linker in use). Also, ELF object files naturally
3568 have unresolved relocations for their debug sections. We need to apply
3569 the relocations in order to get the locations of symbols correct. */
3570
3571 bfd_byte *
3572 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3573 {
3574 /* We're only interested in debugging sections with relocation
3575 information. */
3576 if ((sectp->flags & SEC_RELOC) == 0)
3577 return NULL;
3578 if ((sectp->flags & SEC_DEBUGGING) == 0)
3579 return NULL;
3580
3581 /* We will handle section offsets properly elsewhere, so relocate as if
3582 all sections begin at 0. */
3583 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3584
3585 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3586 }
3587
3588 void
3589 _initialize_symfile (void)
3590 {
3591 struct cmd_list_element *c;
3592
3593 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3594 "Load symbol table from executable file FILE.\n\
3595 The `file' command can also load symbol tables, as well as setting the file\n\
3596 to execute.", &cmdlist);
3597 set_cmd_completer (c, filename_completer);
3598
3599 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3600 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3601 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3602 ADDR is the starting address of the file's text.\n\
3603 The optional arguments are section-name section-address pairs and\n\
3604 should be specified if the data and bss segments are not contiguous\n\
3605 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3606 &cmdlist);
3607 set_cmd_completer (c, filename_completer);
3608
3609 c = add_cmd ("add-shared-symbol-files", class_files,
3610 add_shared_symbol_files_command,
3611 "Load the symbols from shared objects in the dynamic linker's link map.",
3612 &cmdlist);
3613 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3614 &cmdlist);
3615
3616 c = add_cmd ("load", class_files, load_command,
3617 "Dynamically load FILE into the running program, and record its symbols\n\
3618 for access from GDB.", &cmdlist);
3619 set_cmd_completer (c, filename_completer);
3620
3621 add_show_from_set
3622 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3623 (char *) &symbol_reloading,
3624 "Set dynamic symbol table reloading multiple times in one run.",
3625 &setlist),
3626 &showlist);
3627
3628 add_prefix_cmd ("overlay", class_support, overlay_command,
3629 "Commands for debugging overlays.", &overlaylist,
3630 "overlay ", 0, &cmdlist);
3631
3632 add_com_alias ("ovly", "overlay", class_alias, 1);
3633 add_com_alias ("ov", "overlay", class_alias, 1);
3634
3635 add_cmd ("map-overlay", class_support, map_overlay_command,
3636 "Assert that an overlay section is mapped.", &overlaylist);
3637
3638 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3639 "Assert that an overlay section is unmapped.", &overlaylist);
3640
3641 add_cmd ("list-overlays", class_support, list_overlays_command,
3642 "List mappings of overlay sections.", &overlaylist);
3643
3644 add_cmd ("manual", class_support, overlay_manual_command,
3645 "Enable overlay debugging.", &overlaylist);
3646 add_cmd ("off", class_support, overlay_off_command,
3647 "Disable overlay debugging.", &overlaylist);
3648 add_cmd ("auto", class_support, overlay_auto_command,
3649 "Enable automatic overlay debugging.", &overlaylist);
3650 add_cmd ("load-target", class_support, overlay_load_command,
3651 "Read the overlay mapping state from the target.", &overlaylist);
3652
3653 /* Filename extension to source language lookup table: */
3654 init_filename_language_table ();
3655 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3656 (char *) &ext_args,
3657 "Set mapping between filename extension and source language.\n\
3658 Usage: set extension-language .foo bar",
3659 &setlist);
3660 set_cmd_cfunc (c, set_ext_lang_command);
3661
3662 add_info ("extensions", info_ext_lang_command,
3663 "All filename extensions associated with a source language.");
3664
3665 add_show_from_set
3666 (add_set_cmd ("download-write-size", class_obscure,
3667 var_integer, (char *) &download_write_size,
3668 "Set the write size used when downloading a program.\n"
3669 "Only used when downloading a program onto a remote\n"
3670 "target. Specify zero, or a negative value, to disable\n"
3671 "blocked writes. The actual size of each transfer is also\n"
3672 "limited by the size of the target packet and the memory\n"
3673 "cache.\n",
3674 &setlist),
3675 &showlist);
3676
3677 debug_file_directory = xstrdup (DEBUGDIR);
3678 c = (add_set_cmd
3679 ("debug-file-directory", class_support, var_string,
3680 (char *) &debug_file_directory,
3681 "Set the directory where separate debug symbols are searched for.\n"
3682 "Separate debug symbols are first searched for in the same\n"
3683 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3684 "' subdirectory,\n"
3685 "and lastly at the path of the directory of the binary with\n"
3686 "the global debug-file directory prepended\n",
3687 &setlist));
3688 add_show_from_set (c, &showlist);
3689 set_cmd_completer (c, filename_completer);
3690 }
This page took 0.106378 seconds and 4 git commands to generate.