Use a single, consistent representation for an empty minimal
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include <readline/readline.h>
48 #include "gdb_assert.h"
49
50 #include <sys/types.h>
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_stat.h"
54 #include <ctype.h>
55 #include <time.h>
56
57 #ifndef O_BINARY
58 #define O_BINARY 0
59 #endif
60
61 #ifdef HPUXHPPA
62
63 /* Some HP-UX related globals to clear when a new "main"
64 symbol file is loaded. HP-specific. */
65
66 extern int hp_som_som_object_present;
67 extern int hp_cxx_exception_support_initialized;
68 #define RESET_HP_UX_GLOBALS() do {\
69 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
70 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
71 } while (0)
72 #endif
73
74 int (*ui_load_progress_hook) (const char *section, unsigned long num);
75 void (*show_load_progress) (const char *section,
76 unsigned long section_sent,
77 unsigned long section_size,
78 unsigned long total_sent,
79 unsigned long total_size);
80 void (*pre_add_symbol_hook) (char *);
81 void (*post_add_symbol_hook) (void);
82 void (*target_new_objfile_hook) (struct objfile *);
83
84 static void clear_symtab_users_cleanup (void *ignore);
85
86 /* Global variables owned by this file */
87 int readnow_symbol_files; /* Read full symbols immediately */
88
89 /* External variables and functions referenced. */
90
91 extern void report_transfer_performance (unsigned long, time_t, time_t);
92
93 /* Functions this file defines */
94
95 #if 0
96 static int simple_read_overlay_region_table (void);
97 static void simple_free_overlay_region_table (void);
98 #endif
99
100 static void set_initial_language (void);
101
102 static void load_command (char *, int);
103
104 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
105
106 static void add_symbol_file_command (char *, int);
107
108 static void add_shared_symbol_files_command (char *, int);
109
110 static void reread_separate_symbols (struct objfile *objfile);
111
112 static void cashier_psymtab (struct partial_symtab *);
113
114 bfd *symfile_bfd_open (char *);
115
116 int get_section_index (struct objfile *, char *);
117
118 static void find_sym_fns (struct objfile *);
119
120 static void decrement_reading_symtab (void *);
121
122 static void overlay_invalidate_all (void);
123
124 static int overlay_is_mapped (struct obj_section *);
125
126 void list_overlays_command (char *, int);
127
128 void map_overlay_command (char *, int);
129
130 void unmap_overlay_command (char *, int);
131
132 static void overlay_auto_command (char *, int);
133
134 static void overlay_manual_command (char *, int);
135
136 static void overlay_off_command (char *, int);
137
138 static void overlay_load_command (char *, int);
139
140 static void overlay_command (char *, int);
141
142 static void simple_free_overlay_table (void);
143
144 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
145
146 static int simple_read_overlay_table (void);
147
148 static int simple_overlay_update_1 (struct obj_section *);
149
150 static void add_filename_language (char *ext, enum language lang);
151
152 static void set_ext_lang_command (char *args, int from_tty);
153
154 static void info_ext_lang_command (char *args, int from_tty);
155
156 static char *find_separate_debug_file (struct objfile *objfile);
157
158 static void init_filename_language_table (void);
159
160 void _initialize_symfile (void);
161
162 /* List of all available sym_fns. On gdb startup, each object file reader
163 calls add_symtab_fns() to register information on each format it is
164 prepared to read. */
165
166 static struct sym_fns *symtab_fns = NULL;
167
168 /* Flag for whether user will be reloading symbols multiple times.
169 Defaults to ON for VxWorks, otherwise OFF. */
170
171 #ifdef SYMBOL_RELOADING_DEFAULT
172 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
173 #else
174 int symbol_reloading = 0;
175 #endif
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* Since this function is called from within qsort, in an ANSI environment
201 it must conform to the prototype for qsort, which specifies that the
202 comparison function takes two "void *" pointers. */
203
204 static int
205 compare_symbols (const void *s1p, const void *s2p)
206 {
207 register struct symbol **s1, **s2;
208
209 s1 = (struct symbol **) s1p;
210 s2 = (struct symbol **) s2p;
211 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
212 }
213
214 /*
215
216 LOCAL FUNCTION
217
218 compare_psymbols -- compare two partial symbols by name
219
220 DESCRIPTION
221
222 Given pointers to pointers to two partial symbol table entries,
223 compare them by name and return -N, 0, or +N (ala strcmp).
224 Typically used by sorting routines like qsort().
225
226 NOTES
227
228 Does direct compare of first two characters before punting
229 and passing to strcmp for longer compares. Note that the
230 original version had a bug whereby two null strings or two
231 identically named one character strings would return the
232 comparison of memory following the null byte.
233
234 */
235
236 static int
237 compare_psymbols (const void *s1p, const void *s2p)
238 {
239 register struct partial_symbol **s1, **s2;
240 register char *st1, *st2;
241
242 s1 = (struct partial_symbol **) s1p;
243 s2 = (struct partial_symbol **) s2p;
244 st1 = SYMBOL_SOURCE_NAME (*s1);
245 st2 = SYMBOL_SOURCE_NAME (*s2);
246
247
248 if ((st1[0] - st2[0]) || !st1[0])
249 {
250 return (st1[0] - st2[0]);
251 }
252 else if ((st1[1] - st2[1]) || !st1[1])
253 {
254 return (st1[1] - st2[1]);
255 }
256 else
257 {
258 return (strcmp (st1, st2));
259 }
260 }
261
262 void
263 sort_pst_symbols (struct partial_symtab *pst)
264 {
265 /* Sort the global list; don't sort the static list */
266
267 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
268 pst->n_global_syms, sizeof (struct partial_symbol *),
269 compare_psymbols);
270 }
271
272 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
273
274 void
275 sort_block_syms (register struct block *b)
276 {
277 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
278 sizeof (struct symbol *), compare_symbols);
279 }
280
281 /* Call sort_symtab_syms to sort alphabetically
282 the symbols of each block of one symtab. */
283
284 void
285 sort_symtab_syms (register struct symtab *s)
286 {
287 register struct blockvector *bv;
288 int nbl;
289 int i;
290 register struct block *b;
291
292 if (s == 0)
293 return;
294 bv = BLOCKVECTOR (s);
295 nbl = BLOCKVECTOR_NBLOCKS (bv);
296 for (i = 0; i < nbl; i++)
297 {
298 b = BLOCKVECTOR_BLOCK (bv, i);
299 if (BLOCK_SHOULD_SORT (b))
300 sort_block_syms (b);
301 }
302 }
303
304 /* Make a null terminated copy of the string at PTR with SIZE characters in
305 the obstack pointed to by OBSTACKP . Returns the address of the copy.
306 Note that the string at PTR does not have to be null terminated, I.E. it
307 may be part of a larger string and we are only saving a substring. */
308
309 char *
310 obsavestring (const char *ptr, int size, struct obstack *obstackp)
311 {
312 register char *p = (char *) obstack_alloc (obstackp, size + 1);
313 /* Open-coded memcpy--saves function call time. These strings are usually
314 short. FIXME: Is this really still true with a compiler that can
315 inline memcpy? */
316 {
317 register const char *p1 = ptr;
318 register char *p2 = p;
319 const char *end = ptr + size;
320 while (p1 != end)
321 *p2++ = *p1++;
322 }
323 p[size] = 0;
324 return p;
325 }
326
327 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
328 in the obstack pointed to by OBSTACKP. */
329
330 char *
331 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
332 const char *s3)
333 {
334 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
335 register char *val = (char *) obstack_alloc (obstackp, len);
336 strcpy (val, s1);
337 strcat (val, s2);
338 strcat (val, s3);
339 return val;
340 }
341
342 /* True if we are nested inside psymtab_to_symtab. */
343
344 int currently_reading_symtab = 0;
345
346 static void
347 decrement_reading_symtab (void *dummy)
348 {
349 currently_reading_symtab--;
350 }
351
352 /* Get the symbol table that corresponds to a partial_symtab.
353 This is fast after the first time you do it. In fact, there
354 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
355 case inline. */
356
357 struct symtab *
358 psymtab_to_symtab (register struct partial_symtab *pst)
359 {
360 /* If it's been looked up before, return it. */
361 if (pst->symtab)
362 return pst->symtab;
363
364 /* If it has not yet been read in, read it. */
365 if (!pst->readin)
366 {
367 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
368 currently_reading_symtab++;
369 (*pst->read_symtab) (pst);
370 do_cleanups (back_to);
371 }
372
373 return pst->symtab;
374 }
375
376 /* Initialize entry point information for this objfile. */
377
378 void
379 init_entry_point_info (struct objfile *objfile)
380 {
381 /* Save startup file's range of PC addresses to help blockframe.c
382 decide where the bottom of the stack is. */
383
384 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
385 {
386 /* Executable file -- record its entry point so we'll recognize
387 the startup file because it contains the entry point. */
388 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
389 }
390 else
391 {
392 /* Examination of non-executable.o files. Short-circuit this stuff. */
393 objfile->ei.entry_point = INVALID_ENTRY_POINT;
394 }
395 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
396 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
397 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
398 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
399 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
400 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
401 }
402
403 /* Get current entry point address. */
404
405 CORE_ADDR
406 entry_point_address (void)
407 {
408 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
409 }
410
411 /* Remember the lowest-addressed loadable section we've seen.
412 This function is called via bfd_map_over_sections.
413
414 In case of equal vmas, the section with the largest size becomes the
415 lowest-addressed loadable section.
416
417 If the vmas and sizes are equal, the last section is considered the
418 lowest-addressed loadable section. */
419
420 void
421 find_lowest_section (bfd *abfd, asection *sect, void *obj)
422 {
423 asection **lowest = (asection **) obj;
424
425 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
426 return;
427 if (!*lowest)
428 *lowest = sect; /* First loadable section */
429 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
430 *lowest = sect; /* A lower loadable section */
431 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
432 && (bfd_section_size (abfd, (*lowest))
433 <= bfd_section_size (abfd, sect)))
434 *lowest = sect;
435 }
436
437
438 /* Build (allocate and populate) a section_addr_info struct from
439 an existing section table. */
440
441 extern struct section_addr_info *
442 build_section_addr_info_from_section_table (const struct section_table *start,
443 const struct section_table *end)
444 {
445 struct section_addr_info *sap;
446 const struct section_table *stp;
447 int oidx;
448
449 sap = xmalloc (sizeof (struct section_addr_info));
450 memset (sap, 0, sizeof (struct section_addr_info));
451
452 for (stp = start, oidx = 0; stp != end; stp++)
453 {
454 if (bfd_get_section_flags (stp->bfd,
455 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
456 && oidx < MAX_SECTIONS)
457 {
458 sap->other[oidx].addr = stp->addr;
459 sap->other[oidx].name
460 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
461 sap->other[oidx].sectindex = stp->the_bfd_section->index;
462 oidx++;
463 }
464 }
465
466 return sap;
467 }
468
469
470 /* Free all memory allocated by build_section_addr_info_from_section_table. */
471
472 extern void
473 free_section_addr_info (struct section_addr_info *sap)
474 {
475 int idx;
476
477 for (idx = 0; idx < MAX_SECTIONS; idx++)
478 if (sap->other[idx].name)
479 xfree (sap->other[idx].name);
480 xfree (sap);
481 }
482
483
484 /* Initialize OBJFILE's sect_index_* members. */
485 static void
486 init_objfile_sect_indices (struct objfile *objfile)
487 {
488 asection *sect;
489 int i;
490
491 sect = bfd_get_section_by_name (objfile->obfd, ".text");
492 if (sect)
493 objfile->sect_index_text = sect->index;
494
495 sect = bfd_get_section_by_name (objfile->obfd, ".data");
496 if (sect)
497 objfile->sect_index_data = sect->index;
498
499 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
500 if (sect)
501 objfile->sect_index_bss = sect->index;
502
503 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
504 if (sect)
505 objfile->sect_index_rodata = sect->index;
506
507 /* This is where things get really weird... We MUST have valid
508 indices for the various sect_index_* members or gdb will abort.
509 So if for example, there is no ".text" section, we have to
510 accomodate that. Except when explicitly adding symbol files at
511 some address, section_offsets contains nothing but zeros, so it
512 doesn't matter which slot in section_offsets the individual
513 sect_index_* members index into. So if they are all zero, it is
514 safe to just point all the currently uninitialized indices to the
515 first slot. */
516
517 for (i = 0; i < objfile->num_sections; i++)
518 {
519 if (ANOFFSET (objfile->section_offsets, i) != 0)
520 {
521 break;
522 }
523 }
524 if (i == objfile->num_sections)
525 {
526 if (objfile->sect_index_text == -1)
527 objfile->sect_index_text = 0;
528 if (objfile->sect_index_data == -1)
529 objfile->sect_index_data = 0;
530 if (objfile->sect_index_bss == -1)
531 objfile->sect_index_bss = 0;
532 if (objfile->sect_index_rodata == -1)
533 objfile->sect_index_rodata = 0;
534 }
535 }
536
537
538 /* Parse the user's idea of an offset for dynamic linking, into our idea
539 of how to represent it for fast symbol reading. This is the default
540 version of the sym_fns.sym_offsets function for symbol readers that
541 don't need to do anything special. It allocates a section_offsets table
542 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
543
544 void
545 default_symfile_offsets (struct objfile *objfile,
546 struct section_addr_info *addrs)
547 {
548 int i;
549
550 objfile->num_sections = SECT_OFF_MAX;
551 objfile->section_offsets = (struct section_offsets *)
552 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
553 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
554
555 /* Now calculate offsets for section that were specified by the
556 caller. */
557 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
558 {
559 struct other_sections *osp ;
560
561 osp = &addrs->other[i] ;
562 if (osp->addr == 0)
563 continue;
564
565 /* Record all sections in offsets */
566 /* The section_offsets in the objfile are here filled in using
567 the BFD index. */
568 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
569 }
570
571 /* Remember the bfd indexes for the .text, .data, .bss and
572 .rodata sections. */
573 init_objfile_sect_indices (objfile);
574 }
575
576
577 /* Process a symbol file, as either the main file or as a dynamically
578 loaded file.
579
580 OBJFILE is where the symbols are to be read from.
581
582 ADDRS is the list of section load addresses. If the user has given
583 an 'add-symbol-file' command, then this is the list of offsets and
584 addresses he or she provided as arguments to the command; or, if
585 we're handling a shared library, these are the actual addresses the
586 sections are loaded at, according to the inferior's dynamic linker
587 (as gleaned by GDB's shared library code). We convert each address
588 into an offset from the section VMA's as it appears in the object
589 file, and then call the file's sym_offsets function to convert this
590 into a format-specific offset table --- a `struct section_offsets'.
591 If ADDRS is non-zero, OFFSETS must be zero.
592
593 OFFSETS is a table of section offsets already in the right
594 format-specific representation. NUM_OFFSETS is the number of
595 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
596 assume this is the proper table the call to sym_offsets described
597 above would produce. Instead of calling sym_offsets, we just dump
598 it right into objfile->section_offsets. (When we're re-reading
599 symbols from an objfile, we don't have the original load address
600 list any more; all we have is the section offset table.) If
601 OFFSETS is non-zero, ADDRS must be zero.
602
603 MAINLINE is nonzero if this is the main symbol file, or zero if
604 it's an extra symbol file such as dynamically loaded code.
605
606 VERBO is nonzero if the caller has printed a verbose message about
607 the symbol reading (and complaints can be more terse about it). */
608
609 void
610 syms_from_objfile (struct objfile *objfile,
611 struct section_addr_info *addrs,
612 struct section_offsets *offsets,
613 int num_offsets,
614 int mainline,
615 int verbo)
616 {
617 asection *lower_sect;
618 asection *sect;
619 CORE_ADDR lower_offset;
620 struct section_addr_info local_addr;
621 struct cleanup *old_chain;
622 int i;
623
624 gdb_assert (! (addrs && offsets));
625
626 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
627 list. We now establish the convention that an addr of zero means
628 no load address was specified. */
629 if (! addrs && ! offsets)
630 {
631 memset (&local_addr, 0, sizeof (local_addr));
632 addrs = &local_addr;
633 }
634
635 /* Now either addrs or offsets is non-zero. */
636
637 init_entry_point_info (objfile);
638 find_sym_fns (objfile);
639
640 if (objfile->sf == NULL)
641 return; /* No symbols. */
642
643 /* Make sure that partially constructed symbol tables will be cleaned up
644 if an error occurs during symbol reading. */
645 old_chain = make_cleanup_free_objfile (objfile);
646
647 if (mainline)
648 {
649 /* We will modify the main symbol table, make sure that all its users
650 will be cleaned up if an error occurs during symbol reading. */
651 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
652
653 /* Since no error yet, throw away the old symbol table. */
654
655 if (symfile_objfile != NULL)
656 {
657 free_objfile (symfile_objfile);
658 symfile_objfile = NULL;
659 }
660
661 /* Currently we keep symbols from the add-symbol-file command.
662 If the user wants to get rid of them, they should do "symbol-file"
663 without arguments first. Not sure this is the best behavior
664 (PR 2207). */
665
666 (*objfile->sf->sym_new_init) (objfile);
667 }
668
669 /* Convert addr into an offset rather than an absolute address.
670 We find the lowest address of a loaded segment in the objfile,
671 and assume that <addr> is where that got loaded.
672
673 We no longer warn if the lowest section is not a text segment (as
674 happens for the PA64 port. */
675 if (!mainline)
676 {
677 /* Find lowest loadable section to be used as starting point for
678 continguous sections. FIXME!! won't work without call to find
679 .text first, but this assumes text is lowest section. */
680 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
681 if (lower_sect == NULL)
682 bfd_map_over_sections (objfile->obfd, find_lowest_section,
683 &lower_sect);
684 if (lower_sect == NULL)
685 warning ("no loadable sections found in added symbol-file %s",
686 objfile->name);
687 else
688 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
689 warning ("Lowest section in %s is %s at %s",
690 objfile->name,
691 bfd_section_name (objfile->obfd, lower_sect),
692 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
693 if (lower_sect != NULL)
694 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
695 else
696 lower_offset = 0;
697
698 /* Calculate offsets for the loadable sections.
699 FIXME! Sections must be in order of increasing loadable section
700 so that contiguous sections can use the lower-offset!!!
701
702 Adjust offsets if the segments are not contiguous.
703 If the section is contiguous, its offset should be set to
704 the offset of the highest loadable section lower than it
705 (the loadable section directly below it in memory).
706 this_offset = lower_offset = lower_addr - lower_orig_addr */
707
708 /* Calculate offsets for sections. */
709 if (addrs)
710 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
711 {
712 if (addrs->other[i].addr != 0)
713 {
714 sect = bfd_get_section_by_name (objfile->obfd,
715 addrs->other[i].name);
716 if (sect)
717 {
718 addrs->other[i].addr
719 -= bfd_section_vma (objfile->obfd, sect);
720 lower_offset = addrs->other[i].addr;
721 /* This is the index used by BFD. */
722 addrs->other[i].sectindex = sect->index ;
723 }
724 else
725 {
726 warning ("section %s not found in %s",
727 addrs->other[i].name,
728 objfile->name);
729 addrs->other[i].addr = 0;
730 }
731 }
732 else
733 addrs->other[i].addr = lower_offset;
734 }
735 }
736
737 /* Initialize symbol reading routines for this objfile, allow complaints to
738 appear for this new file, and record how verbose to be, then do the
739 initial symbol reading for this file. */
740
741 (*objfile->sf->sym_init) (objfile);
742 clear_complaints (&symfile_complaints, 1, verbo);
743
744 if (addrs)
745 (*objfile->sf->sym_offsets) (objfile, addrs);
746 else
747 {
748 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
749
750 /* Just copy in the offset table directly as given to us. */
751 objfile->num_sections = num_offsets;
752 objfile->section_offsets
753 = ((struct section_offsets *)
754 obstack_alloc (&objfile->psymbol_obstack, size));
755 memcpy (objfile->section_offsets, offsets, size);
756
757 init_objfile_sect_indices (objfile);
758 }
759
760 #ifndef IBM6000_TARGET
761 /* This is a SVR4/SunOS specific hack, I think. In any event, it
762 screws RS/6000. sym_offsets should be doing this sort of thing,
763 because it knows the mapping between bfd sections and
764 section_offsets. */
765 /* This is a hack. As far as I can tell, section offsets are not
766 target dependent. They are all set to addr with a couple of
767 exceptions. The exceptions are sysvr4 shared libraries, whose
768 offsets are kept in solib structures anyway and rs6000 xcoff
769 which handles shared libraries in a completely unique way.
770
771 Section offsets are built similarly, except that they are built
772 by adding addr in all cases because there is no clear mapping
773 from section_offsets into actual sections. Note that solib.c
774 has a different algorithm for finding section offsets.
775
776 These should probably all be collapsed into some target
777 independent form of shared library support. FIXME. */
778
779 if (addrs)
780 {
781 struct obj_section *s;
782
783 /* Map section offsets in "addr" back to the object's
784 sections by comparing the section names with bfd's
785 section names. Then adjust the section address by
786 the offset. */ /* for gdb/13815 */
787
788 ALL_OBJFILE_OSECTIONS (objfile, s)
789 {
790 CORE_ADDR s_addr = 0;
791 int i;
792
793 for (i = 0;
794 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
795 i++)
796 if (strcmp (bfd_section_name (s->objfile->obfd,
797 s->the_bfd_section),
798 addrs->other[i].name) == 0)
799 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
800
801 s->addr -= s->offset;
802 s->addr += s_addr;
803 s->endaddr -= s->offset;
804 s->endaddr += s_addr;
805 s->offset += s_addr;
806 }
807 }
808 #endif /* not IBM6000_TARGET */
809
810 (*objfile->sf->sym_read) (objfile, mainline);
811
812 /* Don't allow char * to have a typename (else would get caddr_t).
813 Ditto void *. FIXME: Check whether this is now done by all the
814 symbol readers themselves (many of them now do), and if so remove
815 it from here. */
816
817 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
818 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
819
820 /* Mark the objfile has having had initial symbol read attempted. Note
821 that this does not mean we found any symbols... */
822
823 objfile->flags |= OBJF_SYMS;
824
825 /* Discard cleanups as symbol reading was successful. */
826
827 discard_cleanups (old_chain);
828
829 /* Call this after reading in a new symbol table to give target
830 dependent code a crack at the new symbols. For instance, this
831 could be used to update the values of target-specific symbols GDB
832 needs to keep track of (such as _sigtramp, or whatever). */
833
834 TARGET_SYMFILE_POSTREAD (objfile);
835 }
836
837 /* Perform required actions after either reading in the initial
838 symbols for a new objfile, or mapping in the symbols from a reusable
839 objfile. */
840
841 void
842 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
843 {
844
845 /* If this is the main symbol file we have to clean up all users of the
846 old main symbol file. Otherwise it is sufficient to fixup all the
847 breakpoints that may have been redefined by this symbol file. */
848 if (mainline)
849 {
850 /* OK, make it the "real" symbol file. */
851 symfile_objfile = objfile;
852
853 clear_symtab_users ();
854 }
855 else
856 {
857 breakpoint_re_set ();
858 }
859
860 /* We're done reading the symbol file; finish off complaints. */
861 clear_complaints (&symfile_complaints, 0, verbo);
862 }
863
864 /* Process a symbol file, as either the main file or as a dynamically
865 loaded file.
866
867 NAME is the file name (which will be tilde-expanded and made
868 absolute herein) (but we don't free or modify NAME itself).
869
870 FROM_TTY says how verbose to be.
871
872 MAINLINE specifies whether this is the main symbol file, or whether
873 it's an extra symbol file such as dynamically loaded code.
874
875 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
876 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
877 non-zero.
878
879 Upon success, returns a pointer to the objfile that was added.
880 Upon failure, jumps back to command level (never returns). */
881 static struct objfile *
882 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
883 struct section_addr_info *addrs,
884 struct section_offsets *offsets,
885 int num_offsets,
886 int mainline, int flags)
887 {
888 struct objfile *objfile;
889 struct partial_symtab *psymtab;
890 char *debugfile;
891 bfd *abfd;
892 struct section_addr_info orig_addrs;
893
894 if (addrs)
895 orig_addrs = *addrs;
896
897 /* Open a bfd for the file, and give user a chance to burp if we'd be
898 interactively wiping out any existing symbols. */
899
900 abfd = symfile_bfd_open (name);
901
902 if ((have_full_symbols () || have_partial_symbols ())
903 && mainline
904 && from_tty
905 && !query ("Load new symbol table from \"%s\"? ", name))
906 error ("Not confirmed.");
907
908 objfile = allocate_objfile (abfd, flags);
909
910 /* If the objfile uses a mapped symbol file, and we have a psymtab for
911 it, then skip reading any symbols at this time. */
912
913 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
914 {
915 /* We mapped in an existing symbol table file that already has had
916 initial symbol reading performed, so we can skip that part. Notify
917 the user that instead of reading the symbols, they have been mapped.
918 */
919 if (from_tty || info_verbose)
920 {
921 printf_filtered ("Mapped symbols for %s...", name);
922 wrap_here ("");
923 gdb_flush (gdb_stdout);
924 }
925 init_entry_point_info (objfile);
926 find_sym_fns (objfile);
927 }
928 else
929 {
930 /* We either created a new mapped symbol table, mapped an existing
931 symbol table file which has not had initial symbol reading
932 performed, or need to read an unmapped symbol table. */
933 if (from_tty || info_verbose)
934 {
935 if (pre_add_symbol_hook)
936 pre_add_symbol_hook (name);
937 else
938 {
939 printf_filtered ("Reading symbols from %s...", name);
940 wrap_here ("");
941 gdb_flush (gdb_stdout);
942 }
943 }
944 syms_from_objfile (objfile, addrs, offsets, num_offsets,
945 mainline, from_tty);
946 }
947
948 /* We now have at least a partial symbol table. Check to see if the
949 user requested that all symbols be read on initial access via either
950 the gdb startup command line or on a per symbol file basis. Expand
951 all partial symbol tables for this objfile if so. */
952
953 if ((flags & OBJF_READNOW) || readnow_symbol_files)
954 {
955 if (from_tty || info_verbose)
956 {
957 printf_filtered ("expanding to full symbols...");
958 wrap_here ("");
959 gdb_flush (gdb_stdout);
960 }
961
962 for (psymtab = objfile->psymtabs;
963 psymtab != NULL;
964 psymtab = psymtab->next)
965 {
966 psymtab_to_symtab (psymtab);
967 }
968 }
969
970 debugfile = find_separate_debug_file (objfile);
971 if (debugfile)
972 {
973 if (addrs != NULL)
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
977 }
978 else
979 {
980 objfile->separate_debug_objfile
981 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
982 }
983 objfile->separate_debug_objfile->separate_debug_objfile_backlink
984 = objfile;
985
986 /* Put the separate debug object before the normal one, this is so that
987 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
988 put_objfile_before (objfile->separate_debug_objfile, objfile);
989
990 xfree (debugfile);
991 }
992
993 if (!have_partial_symbols () && !have_full_symbols ())
994 {
995 wrap_here ("");
996 printf_filtered ("(no debugging symbols found)...");
997 wrap_here ("");
998 }
999
1000 if (from_tty || info_verbose)
1001 {
1002 if (post_add_symbol_hook)
1003 post_add_symbol_hook ();
1004 else
1005 {
1006 printf_filtered ("done.\n");
1007 }
1008 }
1009
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
1020 if (target_new_objfile_hook)
1021 target_new_objfile_hook (objfile);
1022
1023 return (objfile);
1024 }
1025
1026
1027 /* Process a symbol file, as either the main file or as a dynamically
1028 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1029 for details. */
1030 struct objfile *
1031 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1032 int mainline, int flags)
1033 {
1034 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
1035 mainline, flags);
1036 }
1037
1038
1039 /* Call symbol_file_add() with default values and update whatever is
1040 affected by the loading of a new main().
1041 Used when the file is supplied in the gdb command line
1042 and by some targets with special loading requirements.
1043 The auxiliary function, symbol_file_add_main_1(), has the flags
1044 argument for the switches that can only be specified in the symbol_file
1045 command itself. */
1046
1047 void
1048 symbol_file_add_main (char *args, int from_tty)
1049 {
1050 symbol_file_add_main_1 (args, from_tty, 0);
1051 }
1052
1053 static void
1054 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1055 {
1056 symbol_file_add (args, from_tty, NULL, 1, flags);
1057
1058 #ifdef HPUXHPPA
1059 RESET_HP_UX_GLOBALS ();
1060 #endif
1061
1062 /* Getting new symbols may change our opinion about
1063 what is frameless. */
1064 reinit_frame_cache ();
1065
1066 set_initial_language ();
1067 }
1068
1069 void
1070 symbol_file_clear (int from_tty)
1071 {
1072 if ((have_full_symbols () || have_partial_symbols ())
1073 && from_tty
1074 && !query ("Discard symbol table from `%s'? ",
1075 symfile_objfile->name))
1076 error ("Not confirmed.");
1077 free_all_objfiles ();
1078
1079 /* solib descriptors may have handles to objfiles. Since their
1080 storage has just been released, we'd better wipe the solib
1081 descriptors as well.
1082 */
1083 #if defined(SOLIB_RESTART)
1084 SOLIB_RESTART ();
1085 #endif
1086
1087 symfile_objfile = NULL;
1088 if (from_tty)
1089 printf_unfiltered ("No symbol file now.\n");
1090 #ifdef HPUXHPPA
1091 RESET_HP_UX_GLOBALS ();
1092 #endif
1093 }
1094
1095 static char *
1096 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1097 {
1098 asection *sect;
1099 bfd_size_type debuglink_size;
1100 unsigned long crc32;
1101 char *contents;
1102 int crc_offset;
1103 unsigned char *p;
1104
1105 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1106
1107 if (sect == NULL)
1108 return NULL;
1109
1110 debuglink_size = bfd_section_size (objfile->obfd, sect);
1111
1112 contents = xmalloc (debuglink_size);
1113 bfd_get_section_contents (objfile->obfd, sect, contents,
1114 (file_ptr)0, (bfd_size_type)debuglink_size);
1115
1116 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1117 crc_offset = strlen (contents) + 1;
1118 crc_offset = (crc_offset + 3) & ~3;
1119
1120 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1121
1122 *crc32_out = crc32;
1123 return contents;
1124 }
1125
1126 static int
1127 separate_debug_file_exists (const char *name, unsigned long crc)
1128 {
1129 unsigned long file_crc = 0;
1130 int fd;
1131 char buffer[8*1024];
1132 int count;
1133
1134 fd = open (name, O_RDONLY | O_BINARY);
1135 if (fd < 0)
1136 return 0;
1137
1138 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1139 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1140
1141 close (fd);
1142
1143 return crc == file_crc;
1144 }
1145
1146 static char *debug_file_directory = NULL;
1147
1148 #if ! defined (DEBUG_SUBDIRECTORY)
1149 #define DEBUG_SUBDIRECTORY ".debug"
1150 #endif
1151
1152 static char *
1153 find_separate_debug_file (struct objfile *objfile)
1154 {
1155 asection *sect;
1156 char *basename;
1157 char *dir;
1158 char *debugfile;
1159 char *name_copy;
1160 bfd_size_type debuglink_size;
1161 unsigned long crc32;
1162 int i;
1163
1164 basename = get_debug_link_info (objfile, &crc32);
1165
1166 if (basename == NULL)
1167 return NULL;
1168
1169 dir = xstrdup (objfile->name);
1170
1171 /* Strip off the final filename part, leaving the directory name,
1172 followed by a slash. Objfile names should always be absolute and
1173 tilde-expanded, so there should always be a slash in there
1174 somewhere. */
1175 for (i = strlen(dir) - 1; i >= 0; i--)
1176 {
1177 if (IS_DIR_SEPARATOR (dir[i]))
1178 break;
1179 }
1180 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1181 dir[i+1] = '\0';
1182
1183 debugfile = alloca (strlen (debug_file_directory) + 1
1184 + strlen (dir)
1185 + strlen (DEBUG_SUBDIRECTORY)
1186 + strlen ("/")
1187 + strlen (basename)
1188 + 1);
1189
1190 /* First try in the same directory as the original file. */
1191 strcpy (debugfile, dir);
1192 strcat (debugfile, basename);
1193
1194 if (separate_debug_file_exists (debugfile, crc32))
1195 {
1196 xfree (basename);
1197 xfree (dir);
1198 return xstrdup (debugfile);
1199 }
1200
1201 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1202 strcpy (debugfile, dir);
1203 strcat (debugfile, DEBUG_SUBDIRECTORY);
1204 strcat (debugfile, "/");
1205 strcat (debugfile, basename);
1206
1207 if (separate_debug_file_exists (debugfile, crc32))
1208 {
1209 xfree (basename);
1210 xfree (dir);
1211 return xstrdup (debugfile);
1212 }
1213
1214 /* Then try in the global debugfile directory. */
1215 strcpy (debugfile, debug_file_directory);
1216 strcat (debugfile, "/");
1217 strcat (debugfile, dir);
1218 strcat (debugfile, basename);
1219
1220 if (separate_debug_file_exists (debugfile, crc32))
1221 {
1222 xfree (basename);
1223 xfree (dir);
1224 return xstrdup (debugfile);
1225 }
1226
1227 xfree (basename);
1228 xfree (dir);
1229 return NULL;
1230 }
1231
1232
1233 /* This is the symbol-file command. Read the file, analyze its
1234 symbols, and add a struct symtab to a symtab list. The syntax of
1235 the command is rather bizarre--(1) buildargv implements various
1236 quoting conventions which are undocumented and have little or
1237 nothing in common with the way things are quoted (or not quoted)
1238 elsewhere in GDB, (2) options are used, which are not generally
1239 used in GDB (perhaps "set mapped on", "set readnow on" would be
1240 better), (3) the order of options matters, which is contrary to GNU
1241 conventions (because it is confusing and inconvenient). */
1242 /* Note: ezannoni 2000-04-17. This function used to have support for
1243 rombug (see remote-os9k.c). It consisted of a call to target_link()
1244 (target.c) to get the address of the text segment from the target,
1245 and pass that to symbol_file_add(). This is no longer supported. */
1246
1247 void
1248 symbol_file_command (char *args, int from_tty)
1249 {
1250 char **argv;
1251 char *name = NULL;
1252 struct cleanup *cleanups;
1253 int flags = OBJF_USERLOADED;
1254
1255 dont_repeat ();
1256
1257 if (args == NULL)
1258 {
1259 symbol_file_clear (from_tty);
1260 }
1261 else
1262 {
1263 if ((argv = buildargv (args)) == NULL)
1264 {
1265 nomem (0);
1266 }
1267 cleanups = make_cleanup_freeargv (argv);
1268 while (*argv != NULL)
1269 {
1270 if (STREQ (*argv, "-mapped"))
1271 flags |= OBJF_MAPPED;
1272 else
1273 if (STREQ (*argv, "-readnow"))
1274 flags |= OBJF_READNOW;
1275 else
1276 if (**argv == '-')
1277 error ("unknown option `%s'", *argv);
1278 else
1279 {
1280 name = *argv;
1281
1282 symbol_file_add_main_1 (name, from_tty, flags);
1283 }
1284 argv++;
1285 }
1286
1287 if (name == NULL)
1288 {
1289 error ("no symbol file name was specified");
1290 }
1291 do_cleanups (cleanups);
1292 }
1293 }
1294
1295 /* Set the initial language.
1296
1297 A better solution would be to record the language in the psymtab when reading
1298 partial symbols, and then use it (if known) to set the language. This would
1299 be a win for formats that encode the language in an easily discoverable place,
1300 such as DWARF. For stabs, we can jump through hoops looking for specially
1301 named symbols or try to intuit the language from the specific type of stabs
1302 we find, but we can't do that until later when we read in full symbols.
1303 FIXME. */
1304
1305 static void
1306 set_initial_language (void)
1307 {
1308 struct partial_symtab *pst;
1309 enum language lang = language_unknown;
1310
1311 pst = find_main_psymtab ();
1312 if (pst != NULL)
1313 {
1314 if (pst->filename != NULL)
1315 {
1316 lang = deduce_language_from_filename (pst->filename);
1317 }
1318 if (lang == language_unknown)
1319 {
1320 /* Make C the default language */
1321 lang = language_c;
1322 }
1323 set_language (lang);
1324 expected_language = current_language; /* Don't warn the user */
1325 }
1326 }
1327
1328 /* Open file specified by NAME and hand it off to BFD for preliminary
1329 analysis. Result is a newly initialized bfd *, which includes a newly
1330 malloc'd` copy of NAME (tilde-expanded and made absolute).
1331 In case of trouble, error() is called. */
1332
1333 bfd *
1334 symfile_bfd_open (char *name)
1335 {
1336 bfd *sym_bfd;
1337 int desc;
1338 char *absolute_name;
1339
1340
1341
1342 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1343
1344 /* Look down path for it, allocate 2nd new malloc'd copy. */
1345 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1346 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1347 if (desc < 0)
1348 {
1349 char *exename = alloca (strlen (name) + 5);
1350 strcat (strcpy (exename, name), ".exe");
1351 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1352 0, &absolute_name);
1353 }
1354 #endif
1355 if (desc < 0)
1356 {
1357 make_cleanup (xfree, name);
1358 perror_with_name (name);
1359 }
1360 xfree (name); /* Free 1st new malloc'd copy */
1361 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1362 /* It'll be freed in free_objfile(). */
1363
1364 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1365 if (!sym_bfd)
1366 {
1367 close (desc);
1368 make_cleanup (xfree, name);
1369 error ("\"%s\": can't open to read symbols: %s.", name,
1370 bfd_errmsg (bfd_get_error ()));
1371 }
1372 sym_bfd->cacheable = 1;
1373
1374 if (!bfd_check_format (sym_bfd, bfd_object))
1375 {
1376 /* FIXME: should be checking for errors from bfd_close (for one thing,
1377 on error it does not free all the storage associated with the
1378 bfd). */
1379 bfd_close (sym_bfd); /* This also closes desc */
1380 make_cleanup (xfree, name);
1381 error ("\"%s\": can't read symbols: %s.", name,
1382 bfd_errmsg (bfd_get_error ()));
1383 }
1384 return (sym_bfd);
1385 }
1386
1387 /* Return the section index for the given section name. Return -1 if
1388 the section was not found. */
1389 int
1390 get_section_index (struct objfile *objfile, char *section_name)
1391 {
1392 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1393 if (sect)
1394 return sect->index;
1395 else
1396 return -1;
1397 }
1398
1399 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1400 startup by the _initialize routine in each object file format reader,
1401 to register information about each format the the reader is prepared
1402 to handle. */
1403
1404 void
1405 add_symtab_fns (struct sym_fns *sf)
1406 {
1407 sf->next = symtab_fns;
1408 symtab_fns = sf;
1409 }
1410
1411
1412 /* Initialize to read symbols from the symbol file sym_bfd. It either
1413 returns or calls error(). The result is an initialized struct sym_fns
1414 in the objfile structure, that contains cached information about the
1415 symbol file. */
1416
1417 static void
1418 find_sym_fns (struct objfile *objfile)
1419 {
1420 struct sym_fns *sf;
1421 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1422 char *our_target = bfd_get_target (objfile->obfd);
1423
1424 if (our_flavour == bfd_target_srec_flavour
1425 || our_flavour == bfd_target_ihex_flavour
1426 || our_flavour == bfd_target_tekhex_flavour)
1427 return; /* No symbols. */
1428
1429 /* Special kludge for apollo. See dstread.c. */
1430 if (STREQN (our_target, "apollo", 6))
1431 our_flavour = (enum bfd_flavour) -2;
1432
1433 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1434 {
1435 if (our_flavour == sf->sym_flavour)
1436 {
1437 objfile->sf = sf;
1438 return;
1439 }
1440 }
1441 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1442 bfd_get_target (objfile->obfd));
1443 }
1444 \f
1445 /* This function runs the load command of our current target. */
1446
1447 static void
1448 load_command (char *arg, int from_tty)
1449 {
1450 if (arg == NULL)
1451 arg = get_exec_file (1);
1452 target_load (arg, from_tty);
1453
1454 /* After re-loading the executable, we don't really know which
1455 overlays are mapped any more. */
1456 overlay_cache_invalid = 1;
1457 }
1458
1459 /* This version of "load" should be usable for any target. Currently
1460 it is just used for remote targets, not inftarg.c or core files,
1461 on the theory that only in that case is it useful.
1462
1463 Avoiding xmodem and the like seems like a win (a) because we don't have
1464 to worry about finding it, and (b) On VMS, fork() is very slow and so
1465 we don't want to run a subprocess. On the other hand, I'm not sure how
1466 performance compares. */
1467
1468 static int download_write_size = 512;
1469 static int validate_download = 0;
1470
1471 /* Callback service function for generic_load (bfd_map_over_sections). */
1472
1473 static void
1474 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1475 {
1476 bfd_size_type *sum = data;
1477
1478 *sum += bfd_get_section_size_before_reloc (asec);
1479 }
1480
1481 /* Opaque data for load_section_callback. */
1482 struct load_section_data {
1483 unsigned long load_offset;
1484 unsigned long write_count;
1485 unsigned long data_count;
1486 bfd_size_type total_size;
1487 };
1488
1489 /* Callback service function for generic_load (bfd_map_over_sections). */
1490
1491 static void
1492 load_section_callback (bfd *abfd, asection *asec, void *data)
1493 {
1494 struct load_section_data *args = data;
1495
1496 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1497 {
1498 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1499 if (size > 0)
1500 {
1501 char *buffer;
1502 struct cleanup *old_chain;
1503 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1504 bfd_size_type block_size;
1505 int err;
1506 const char *sect_name = bfd_get_section_name (abfd, asec);
1507 bfd_size_type sent;
1508
1509 if (download_write_size > 0 && size > download_write_size)
1510 block_size = download_write_size;
1511 else
1512 block_size = size;
1513
1514 buffer = xmalloc (size);
1515 old_chain = make_cleanup (xfree, buffer);
1516
1517 /* Is this really necessary? I guess it gives the user something
1518 to look at during a long download. */
1519 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1520 sect_name, paddr_nz (size), paddr_nz (lma));
1521
1522 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1523
1524 sent = 0;
1525 do
1526 {
1527 int len;
1528 bfd_size_type this_transfer = size - sent;
1529
1530 if (this_transfer >= block_size)
1531 this_transfer = block_size;
1532 len = target_write_memory_partial (lma, buffer,
1533 this_transfer, &err);
1534 if (err)
1535 break;
1536 if (validate_download)
1537 {
1538 /* Broken memories and broken monitors manifest
1539 themselves here when bring new computers to
1540 life. This doubles already slow downloads. */
1541 /* NOTE: cagney/1999-10-18: A more efficient
1542 implementation might add a verify_memory()
1543 method to the target vector and then use
1544 that. remote.c could implement that method
1545 using the ``qCRC'' packet. */
1546 char *check = xmalloc (len);
1547 struct cleanup *verify_cleanups =
1548 make_cleanup (xfree, check);
1549
1550 if (target_read_memory (lma, check, len) != 0)
1551 error ("Download verify read failed at 0x%s",
1552 paddr (lma));
1553 if (memcmp (buffer, check, len) != 0)
1554 error ("Download verify compare failed at 0x%s",
1555 paddr (lma));
1556 do_cleanups (verify_cleanups);
1557 }
1558 args->data_count += len;
1559 lma += len;
1560 buffer += len;
1561 args->write_count += 1;
1562 sent += len;
1563 if (quit_flag
1564 || (ui_load_progress_hook != NULL
1565 && ui_load_progress_hook (sect_name, sent)))
1566 error ("Canceled the download");
1567
1568 if (show_load_progress != NULL)
1569 show_load_progress (sect_name, sent, size,
1570 args->data_count, args->total_size);
1571 }
1572 while (sent < size);
1573
1574 if (err != 0)
1575 error ("Memory access error while loading section %s.", sect_name);
1576
1577 do_cleanups (old_chain);
1578 }
1579 }
1580 }
1581
1582 void
1583 generic_load (char *args, int from_tty)
1584 {
1585 asection *s;
1586 bfd *loadfile_bfd;
1587 time_t start_time, end_time; /* Start and end times of download */
1588 char *filename;
1589 struct cleanup *old_cleanups;
1590 char *offptr;
1591 struct load_section_data cbdata;
1592 CORE_ADDR entry;
1593
1594 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1595 cbdata.write_count = 0; /* Number of writes needed. */
1596 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1597 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1598
1599 /* Parse the input argument - the user can specify a load offset as
1600 a second argument. */
1601 filename = xmalloc (strlen (args) + 1);
1602 old_cleanups = make_cleanup (xfree, filename);
1603 strcpy (filename, args);
1604 offptr = strchr (filename, ' ');
1605 if (offptr != NULL)
1606 {
1607 char *endptr;
1608
1609 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1610 if (offptr == endptr)
1611 error ("Invalid download offset:%s\n", offptr);
1612 *offptr = '\0';
1613 }
1614 else
1615 cbdata.load_offset = 0;
1616
1617 /* Open the file for loading. */
1618 loadfile_bfd = bfd_openr (filename, gnutarget);
1619 if (loadfile_bfd == NULL)
1620 {
1621 perror_with_name (filename);
1622 return;
1623 }
1624
1625 /* FIXME: should be checking for errors from bfd_close (for one thing,
1626 on error it does not free all the storage associated with the
1627 bfd). */
1628 make_cleanup_bfd_close (loadfile_bfd);
1629
1630 if (!bfd_check_format (loadfile_bfd, bfd_object))
1631 {
1632 error ("\"%s\" is not an object file: %s", filename,
1633 bfd_errmsg (bfd_get_error ()));
1634 }
1635
1636 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1637 (void *) &cbdata.total_size);
1638
1639 start_time = time (NULL);
1640
1641 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1642
1643 end_time = time (NULL);
1644
1645 entry = bfd_get_start_address (loadfile_bfd);
1646 ui_out_text (uiout, "Start address ");
1647 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1648 ui_out_text (uiout, ", load size ");
1649 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1650 ui_out_text (uiout, "\n");
1651 /* We were doing this in remote-mips.c, I suspect it is right
1652 for other targets too. */
1653 write_pc (entry);
1654
1655 /* FIXME: are we supposed to call symbol_file_add or not? According
1656 to a comment from remote-mips.c (where a call to symbol_file_add
1657 was commented out), making the call confuses GDB if more than one
1658 file is loaded in. Some targets do (e.g., remote-vx.c) but
1659 others don't (or didn't - perhaphs they have all been deleted). */
1660
1661 print_transfer_performance (gdb_stdout, cbdata.data_count,
1662 cbdata.write_count, end_time - start_time);
1663
1664 do_cleanups (old_cleanups);
1665 }
1666
1667 /* Report how fast the transfer went. */
1668
1669 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1670 replaced by print_transfer_performance (with a very different
1671 function signature). */
1672
1673 void
1674 report_transfer_performance (unsigned long data_count, time_t start_time,
1675 time_t end_time)
1676 {
1677 print_transfer_performance (gdb_stdout, data_count,
1678 end_time - start_time, 0);
1679 }
1680
1681 void
1682 print_transfer_performance (struct ui_file *stream,
1683 unsigned long data_count,
1684 unsigned long write_count,
1685 unsigned long time_count)
1686 {
1687 ui_out_text (uiout, "Transfer rate: ");
1688 if (time_count > 0)
1689 {
1690 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1691 (data_count * 8) / time_count);
1692 ui_out_text (uiout, " bits/sec");
1693 }
1694 else
1695 {
1696 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1697 ui_out_text (uiout, " bits in <1 sec");
1698 }
1699 if (write_count > 0)
1700 {
1701 ui_out_text (uiout, ", ");
1702 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1703 ui_out_text (uiout, " bytes/write");
1704 }
1705 ui_out_text (uiout, ".\n");
1706 }
1707
1708 /* This function allows the addition of incrementally linked object files.
1709 It does not modify any state in the target, only in the debugger. */
1710 /* Note: ezannoni 2000-04-13 This function/command used to have a
1711 special case syntax for the rombug target (Rombug is the boot
1712 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1713 rombug case, the user doesn't need to supply a text address,
1714 instead a call to target_link() (in target.c) would supply the
1715 value to use. We are now discontinuing this type of ad hoc syntax. */
1716
1717 /* ARGSUSED */
1718 static void
1719 add_symbol_file_command (char *args, int from_tty)
1720 {
1721 char *filename = NULL;
1722 int flags = OBJF_USERLOADED;
1723 char *arg;
1724 int expecting_option = 0;
1725 int section_index = 0;
1726 int argcnt = 0;
1727 int sec_num = 0;
1728 int i;
1729 int expecting_sec_name = 0;
1730 int expecting_sec_addr = 0;
1731
1732 struct
1733 {
1734 char *name;
1735 char *value;
1736 } sect_opts[SECT_OFF_MAX];
1737
1738 struct section_addr_info section_addrs;
1739 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1740
1741 dont_repeat ();
1742
1743 if (args == NULL)
1744 error ("add-symbol-file takes a file name and an address");
1745
1746 /* Make a copy of the string that we can safely write into. */
1747 args = xstrdup (args);
1748
1749 /* Ensure section_addrs is initialized */
1750 memset (&section_addrs, 0, sizeof (section_addrs));
1751
1752 while (*args != '\000')
1753 {
1754 /* Any leading spaces? */
1755 while (isspace (*args))
1756 args++;
1757
1758 /* Point arg to the beginning of the argument. */
1759 arg = args;
1760
1761 /* Move args pointer over the argument. */
1762 while ((*args != '\000') && !isspace (*args))
1763 args++;
1764
1765 /* If there are more arguments, terminate arg and
1766 proceed past it. */
1767 if (*args != '\000')
1768 *args++ = '\000';
1769
1770 /* Now process the argument. */
1771 if (argcnt == 0)
1772 {
1773 /* The first argument is the file name. */
1774 filename = tilde_expand (arg);
1775 make_cleanup (xfree, filename);
1776 }
1777 else
1778 if (argcnt == 1)
1779 {
1780 /* The second argument is always the text address at which
1781 to load the program. */
1782 sect_opts[section_index].name = ".text";
1783 sect_opts[section_index].value = arg;
1784 section_index++;
1785 }
1786 else
1787 {
1788 /* It's an option (starting with '-') or it's an argument
1789 to an option */
1790
1791 if (*arg == '-')
1792 {
1793 if (strcmp (arg, "-mapped") == 0)
1794 flags |= OBJF_MAPPED;
1795 else
1796 if (strcmp (arg, "-readnow") == 0)
1797 flags |= OBJF_READNOW;
1798 else
1799 if (strcmp (arg, "-s") == 0)
1800 {
1801 if (section_index >= SECT_OFF_MAX)
1802 error ("Too many sections specified.");
1803 expecting_sec_name = 1;
1804 expecting_sec_addr = 1;
1805 }
1806 }
1807 else
1808 {
1809 if (expecting_sec_name)
1810 {
1811 sect_opts[section_index].name = arg;
1812 expecting_sec_name = 0;
1813 }
1814 else
1815 if (expecting_sec_addr)
1816 {
1817 sect_opts[section_index].value = arg;
1818 expecting_sec_addr = 0;
1819 section_index++;
1820 }
1821 else
1822 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1823 }
1824 }
1825 argcnt++;
1826 }
1827
1828 /* Print the prompt for the query below. And save the arguments into
1829 a sect_addr_info structure to be passed around to other
1830 functions. We have to split this up into separate print
1831 statements because local_hex_string returns a local static
1832 string. */
1833
1834 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1835 for (i = 0; i < section_index; i++)
1836 {
1837 CORE_ADDR addr;
1838 char *val = sect_opts[i].value;
1839 char *sec = sect_opts[i].name;
1840
1841 val = sect_opts[i].value;
1842 if (val[0] == '0' && val[1] == 'x')
1843 addr = strtoul (val+2, NULL, 16);
1844 else
1845 addr = strtoul (val, NULL, 10);
1846
1847 /* Here we store the section offsets in the order they were
1848 entered on the command line. */
1849 section_addrs.other[sec_num].name = sec;
1850 section_addrs.other[sec_num].addr = addr;
1851 printf_filtered ("\t%s_addr = %s\n",
1852 sec,
1853 local_hex_string ((unsigned long)addr));
1854 sec_num++;
1855
1856 /* The object's sections are initialized when a
1857 call is made to build_objfile_section_table (objfile).
1858 This happens in reread_symbols.
1859 At this point, we don't know what file type this is,
1860 so we can't determine what section names are valid. */
1861 }
1862
1863 if (from_tty && (!query ("%s", "")))
1864 error ("Not confirmed.");
1865
1866 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1867
1868 /* Getting new symbols may change our opinion about what is
1869 frameless. */
1870 reinit_frame_cache ();
1871 do_cleanups (my_cleanups);
1872 }
1873 \f
1874 static void
1875 add_shared_symbol_files_command (char *args, int from_tty)
1876 {
1877 #ifdef ADD_SHARED_SYMBOL_FILES
1878 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1879 #else
1880 error ("This command is not available in this configuration of GDB.");
1881 #endif
1882 }
1883 \f
1884 /* Re-read symbols if a symbol-file has changed. */
1885 void
1886 reread_symbols (void)
1887 {
1888 struct objfile *objfile;
1889 long new_modtime;
1890 int reread_one = 0;
1891 struct stat new_statbuf;
1892 int res;
1893
1894 /* With the addition of shared libraries, this should be modified,
1895 the load time should be saved in the partial symbol tables, since
1896 different tables may come from different source files. FIXME.
1897 This routine should then walk down each partial symbol table
1898 and see if the symbol table that it originates from has been changed */
1899
1900 for (objfile = object_files; objfile; objfile = objfile->next)
1901 {
1902 if (objfile->obfd)
1903 {
1904 #ifdef IBM6000_TARGET
1905 /* If this object is from a shared library, then you should
1906 stat on the library name, not member name. */
1907
1908 if (objfile->obfd->my_archive)
1909 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1910 else
1911 #endif
1912 res = stat (objfile->name, &new_statbuf);
1913 if (res != 0)
1914 {
1915 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1916 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1917 objfile->name);
1918 continue;
1919 }
1920 new_modtime = new_statbuf.st_mtime;
1921 if (new_modtime != objfile->mtime)
1922 {
1923 struct cleanup *old_cleanups;
1924 struct section_offsets *offsets;
1925 int num_offsets;
1926 char *obfd_filename;
1927
1928 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1929 objfile->name);
1930
1931 /* There are various functions like symbol_file_add,
1932 symfile_bfd_open, syms_from_objfile, etc., which might
1933 appear to do what we want. But they have various other
1934 effects which we *don't* want. So we just do stuff
1935 ourselves. We don't worry about mapped files (for one thing,
1936 any mapped file will be out of date). */
1937
1938 /* If we get an error, blow away this objfile (not sure if
1939 that is the correct response for things like shared
1940 libraries). */
1941 old_cleanups = make_cleanup_free_objfile (objfile);
1942 /* We need to do this whenever any symbols go away. */
1943 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1944
1945 /* Clean up any state BFD has sitting around. We don't need
1946 to close the descriptor but BFD lacks a way of closing the
1947 BFD without closing the descriptor. */
1948 obfd_filename = bfd_get_filename (objfile->obfd);
1949 if (!bfd_close (objfile->obfd))
1950 error ("Can't close BFD for %s: %s", objfile->name,
1951 bfd_errmsg (bfd_get_error ()));
1952 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1953 if (objfile->obfd == NULL)
1954 error ("Can't open %s to read symbols.", objfile->name);
1955 /* bfd_openr sets cacheable to true, which is what we want. */
1956 if (!bfd_check_format (objfile->obfd, bfd_object))
1957 error ("Can't read symbols from %s: %s.", objfile->name,
1958 bfd_errmsg (bfd_get_error ()));
1959
1960 /* Save the offsets, we will nuke them with the rest of the
1961 psymbol_obstack. */
1962 num_offsets = objfile->num_sections;
1963 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1964 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1965
1966 /* Nuke all the state that we will re-read. Much of the following
1967 code which sets things to NULL really is necessary to tell
1968 other parts of GDB that there is nothing currently there. */
1969
1970 /* FIXME: Do we have to free a whole linked list, or is this
1971 enough? */
1972 if (objfile->global_psymbols.list)
1973 xmfree (objfile->md, objfile->global_psymbols.list);
1974 memset (&objfile->global_psymbols, 0,
1975 sizeof (objfile->global_psymbols));
1976 if (objfile->static_psymbols.list)
1977 xmfree (objfile->md, objfile->static_psymbols.list);
1978 memset (&objfile->static_psymbols, 0,
1979 sizeof (objfile->static_psymbols));
1980
1981 /* Free the obstacks for non-reusable objfiles */
1982 bcache_xfree (objfile->psymbol_cache);
1983 objfile->psymbol_cache = bcache_xmalloc ();
1984 bcache_xfree (objfile->macro_cache);
1985 objfile->macro_cache = bcache_xmalloc ();
1986 obstack_free (&objfile->psymbol_obstack, 0);
1987 obstack_free (&objfile->symbol_obstack, 0);
1988 obstack_free (&objfile->type_obstack, 0);
1989 objfile->sections = NULL;
1990 objfile->symtabs = NULL;
1991 objfile->psymtabs = NULL;
1992 objfile->free_psymtabs = NULL;
1993 objfile->msymbols = NULL;
1994 objfile->minimal_symbol_count = 0;
1995 memset (&objfile->msymbol_hash, 0,
1996 sizeof (objfile->msymbol_hash));
1997 memset (&objfile->msymbol_demangled_hash, 0,
1998 sizeof (objfile->msymbol_demangled_hash));
1999 objfile->fundamental_types = NULL;
2000 if (objfile->sf != NULL)
2001 {
2002 (*objfile->sf->sym_finish) (objfile);
2003 }
2004
2005 /* We never make this a mapped file. */
2006 objfile->md = NULL;
2007 /* obstack_specify_allocation also initializes the obstack so
2008 it is empty. */
2009 objfile->psymbol_cache = bcache_xmalloc ();
2010 objfile->macro_cache = bcache_xmalloc ();
2011 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
2012 xmalloc, xfree);
2013 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
2014 xmalloc, xfree);
2015 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
2016 xmalloc, xfree);
2017 if (build_objfile_section_table (objfile))
2018 {
2019 error ("Can't find the file sections in `%s': %s",
2020 objfile->name, bfd_errmsg (bfd_get_error ()));
2021 }
2022 terminate_minimal_symbol_table (objfile);
2023
2024 /* We use the same section offsets as from last time. I'm not
2025 sure whether that is always correct for shared libraries. */
2026 objfile->section_offsets = (struct section_offsets *)
2027 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
2028 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
2029 objfile->num_sections = num_offsets;
2030
2031 /* What the hell is sym_new_init for, anyway? The concept of
2032 distinguishing between the main file and additional files
2033 in this way seems rather dubious. */
2034 if (objfile == symfile_objfile)
2035 {
2036 (*objfile->sf->sym_new_init) (objfile);
2037 #ifdef HPUXHPPA
2038 RESET_HP_UX_GLOBALS ();
2039 #endif
2040 }
2041
2042 (*objfile->sf->sym_init) (objfile);
2043 clear_complaints (&symfile_complaints, 1, 1);
2044 /* The "mainline" parameter is a hideous hack; I think leaving it
2045 zero is OK since dbxread.c also does what it needs to do if
2046 objfile->global_psymbols.size is 0. */
2047 (*objfile->sf->sym_read) (objfile, 0);
2048 if (!have_partial_symbols () && !have_full_symbols ())
2049 {
2050 wrap_here ("");
2051 printf_filtered ("(no debugging symbols found)\n");
2052 wrap_here ("");
2053 }
2054 objfile->flags |= OBJF_SYMS;
2055
2056 /* We're done reading the symbol file; finish off complaints. */
2057 clear_complaints (&symfile_complaints, 0, 1);
2058
2059 /* Getting new symbols may change our opinion about what is
2060 frameless. */
2061
2062 reinit_frame_cache ();
2063
2064 /* Discard cleanups as symbol reading was successful. */
2065 discard_cleanups (old_cleanups);
2066
2067 /* If the mtime has changed between the time we set new_modtime
2068 and now, we *want* this to be out of date, so don't call stat
2069 again now. */
2070 objfile->mtime = new_modtime;
2071 reread_one = 1;
2072
2073 /* Call this after reading in a new symbol table to give target
2074 dependent code a crack at the new symbols. For instance, this
2075 could be used to update the values of target-specific symbols GDB
2076 needs to keep track of (such as _sigtramp, or whatever). */
2077
2078 TARGET_SYMFILE_POSTREAD (objfile);
2079
2080 reread_separate_symbols (objfile);
2081 }
2082 }
2083 }
2084
2085 if (reread_one)
2086 clear_symtab_users ();
2087 }
2088
2089
2090 /* Handle separate debug info for OBJFILE, which has just been
2091 re-read:
2092 - If we had separate debug info before, but now we don't, get rid
2093 of the separated objfile.
2094 - If we didn't have separated debug info before, but now we do,
2095 read in the new separated debug info file.
2096 - If the debug link points to a different file, toss the old one
2097 and read the new one.
2098 This function does *not* handle the case where objfile is still
2099 using the same separate debug info file, but that file's timestamp
2100 has changed. That case should be handled by the loop in
2101 reread_symbols already. */
2102 static void
2103 reread_separate_symbols (struct objfile *objfile)
2104 {
2105 char *debug_file;
2106 unsigned long crc32;
2107
2108 /* Does the updated objfile's debug info live in a
2109 separate file? */
2110 debug_file = find_separate_debug_file (objfile);
2111
2112 if (objfile->separate_debug_objfile)
2113 {
2114 /* There are two cases where we need to get rid of
2115 the old separated debug info objfile:
2116 - if the new primary objfile doesn't have
2117 separated debug info, or
2118 - if the new primary objfile has separate debug
2119 info, but it's under a different filename.
2120
2121 If the old and new objfiles both have separate
2122 debug info, under the same filename, then we're
2123 okay --- if the separated file's contents have
2124 changed, we will have caught that when we
2125 visited it in this function's outermost
2126 loop. */
2127 if (! debug_file
2128 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2129 free_objfile (objfile->separate_debug_objfile);
2130 }
2131
2132 /* If the new objfile has separate debug info, and we
2133 haven't loaded it already, do so now. */
2134 if (debug_file
2135 && ! objfile->separate_debug_objfile)
2136 {
2137 /* Use the same section offset table as objfile itself.
2138 Preserve the flags from objfile that make sense. */
2139 objfile->separate_debug_objfile
2140 = (symbol_file_add_with_addrs_or_offsets
2141 (debug_file,
2142 info_verbose, /* from_tty: Don't override the default. */
2143 0, /* No addr table. */
2144 objfile->section_offsets, objfile->num_sections,
2145 0, /* Not mainline. See comments about this above. */
2146 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2147 | OBJF_SHARED | OBJF_READNOW
2148 | OBJF_USERLOADED)));
2149 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2150 = objfile;
2151 }
2152 }
2153
2154
2155 \f
2156
2157
2158 typedef struct
2159 {
2160 char *ext;
2161 enum language lang;
2162 }
2163 filename_language;
2164
2165 static filename_language *filename_language_table;
2166 static int fl_table_size, fl_table_next;
2167
2168 static void
2169 add_filename_language (char *ext, enum language lang)
2170 {
2171 if (fl_table_next >= fl_table_size)
2172 {
2173 fl_table_size += 10;
2174 filename_language_table =
2175 xrealloc (filename_language_table,
2176 fl_table_size * sizeof (*filename_language_table));
2177 }
2178
2179 filename_language_table[fl_table_next].ext = xstrdup (ext);
2180 filename_language_table[fl_table_next].lang = lang;
2181 fl_table_next++;
2182 }
2183
2184 static char *ext_args;
2185
2186 static void
2187 set_ext_lang_command (char *args, int from_tty)
2188 {
2189 int i;
2190 char *cp = ext_args;
2191 enum language lang;
2192
2193 /* First arg is filename extension, starting with '.' */
2194 if (*cp != '.')
2195 error ("'%s': Filename extension must begin with '.'", ext_args);
2196
2197 /* Find end of first arg. */
2198 while (*cp && !isspace (*cp))
2199 cp++;
2200
2201 if (*cp == '\0')
2202 error ("'%s': two arguments required -- filename extension and language",
2203 ext_args);
2204
2205 /* Null-terminate first arg */
2206 *cp++ = '\0';
2207
2208 /* Find beginning of second arg, which should be a source language. */
2209 while (*cp && isspace (*cp))
2210 cp++;
2211
2212 if (*cp == '\0')
2213 error ("'%s': two arguments required -- filename extension and language",
2214 ext_args);
2215
2216 /* Lookup the language from among those we know. */
2217 lang = language_enum (cp);
2218
2219 /* Now lookup the filename extension: do we already know it? */
2220 for (i = 0; i < fl_table_next; i++)
2221 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2222 break;
2223
2224 if (i >= fl_table_next)
2225 {
2226 /* new file extension */
2227 add_filename_language (ext_args, lang);
2228 }
2229 else
2230 {
2231 /* redefining a previously known filename extension */
2232
2233 /* if (from_tty) */
2234 /* query ("Really make files of type %s '%s'?", */
2235 /* ext_args, language_str (lang)); */
2236
2237 xfree (filename_language_table[i].ext);
2238 filename_language_table[i].ext = xstrdup (ext_args);
2239 filename_language_table[i].lang = lang;
2240 }
2241 }
2242
2243 static void
2244 info_ext_lang_command (char *args, int from_tty)
2245 {
2246 int i;
2247
2248 printf_filtered ("Filename extensions and the languages they represent:");
2249 printf_filtered ("\n\n");
2250 for (i = 0; i < fl_table_next; i++)
2251 printf_filtered ("\t%s\t- %s\n",
2252 filename_language_table[i].ext,
2253 language_str (filename_language_table[i].lang));
2254 }
2255
2256 static void
2257 init_filename_language_table (void)
2258 {
2259 if (fl_table_size == 0) /* protect against repetition */
2260 {
2261 fl_table_size = 20;
2262 fl_table_next = 0;
2263 filename_language_table =
2264 xmalloc (fl_table_size * sizeof (*filename_language_table));
2265 add_filename_language (".c", language_c);
2266 add_filename_language (".C", language_cplus);
2267 add_filename_language (".cc", language_cplus);
2268 add_filename_language (".cp", language_cplus);
2269 add_filename_language (".cpp", language_cplus);
2270 add_filename_language (".cxx", language_cplus);
2271 add_filename_language (".c++", language_cplus);
2272 add_filename_language (".java", language_java);
2273 add_filename_language (".class", language_java);
2274 add_filename_language (".m", language_objc);
2275 add_filename_language (".f", language_fortran);
2276 add_filename_language (".F", language_fortran);
2277 add_filename_language (".s", language_asm);
2278 add_filename_language (".S", language_asm);
2279 add_filename_language (".pas", language_pascal);
2280 add_filename_language (".p", language_pascal);
2281 add_filename_language (".pp", language_pascal);
2282 }
2283 }
2284
2285 enum language
2286 deduce_language_from_filename (char *filename)
2287 {
2288 int i;
2289 char *cp;
2290
2291 if (filename != NULL)
2292 if ((cp = strrchr (filename, '.')) != NULL)
2293 for (i = 0; i < fl_table_next; i++)
2294 if (strcmp (cp, filename_language_table[i].ext) == 0)
2295 return filename_language_table[i].lang;
2296
2297 return language_unknown;
2298 }
2299 \f
2300 /* allocate_symtab:
2301
2302 Allocate and partly initialize a new symbol table. Return a pointer
2303 to it. error() if no space.
2304
2305 Caller must set these fields:
2306 LINETABLE(symtab)
2307 symtab->blockvector
2308 symtab->dirname
2309 symtab->free_code
2310 symtab->free_ptr
2311 possibly free_named_symtabs (symtab->filename);
2312 */
2313
2314 struct symtab *
2315 allocate_symtab (char *filename, struct objfile *objfile)
2316 {
2317 register struct symtab *symtab;
2318
2319 symtab = (struct symtab *)
2320 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2321 memset (symtab, 0, sizeof (*symtab));
2322 symtab->filename = obsavestring (filename, strlen (filename),
2323 &objfile->symbol_obstack);
2324 symtab->fullname = NULL;
2325 symtab->language = deduce_language_from_filename (filename);
2326 symtab->debugformat = obsavestring ("unknown", 7,
2327 &objfile->symbol_obstack);
2328
2329 /* Hook it to the objfile it comes from */
2330
2331 symtab->objfile = objfile;
2332 symtab->next = objfile->symtabs;
2333 objfile->symtabs = symtab;
2334
2335 /* FIXME: This should go away. It is only defined for the Z8000,
2336 and the Z8000 definition of this macro doesn't have anything to
2337 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2338 here for convenience. */
2339 #ifdef INIT_EXTRA_SYMTAB_INFO
2340 INIT_EXTRA_SYMTAB_INFO (symtab);
2341 #endif
2342
2343 return (symtab);
2344 }
2345
2346 struct partial_symtab *
2347 allocate_psymtab (char *filename, struct objfile *objfile)
2348 {
2349 struct partial_symtab *psymtab;
2350
2351 if (objfile->free_psymtabs)
2352 {
2353 psymtab = objfile->free_psymtabs;
2354 objfile->free_psymtabs = psymtab->next;
2355 }
2356 else
2357 psymtab = (struct partial_symtab *)
2358 obstack_alloc (&objfile->psymbol_obstack,
2359 sizeof (struct partial_symtab));
2360
2361 memset (psymtab, 0, sizeof (struct partial_symtab));
2362 psymtab->filename = obsavestring (filename, strlen (filename),
2363 &objfile->psymbol_obstack);
2364 psymtab->symtab = NULL;
2365
2366 /* Prepend it to the psymtab list for the objfile it belongs to.
2367 Psymtabs are searched in most recent inserted -> least recent
2368 inserted order. */
2369
2370 psymtab->objfile = objfile;
2371 psymtab->next = objfile->psymtabs;
2372 objfile->psymtabs = psymtab;
2373 #if 0
2374 {
2375 struct partial_symtab **prev_pst;
2376 psymtab->objfile = objfile;
2377 psymtab->next = NULL;
2378 prev_pst = &(objfile->psymtabs);
2379 while ((*prev_pst) != NULL)
2380 prev_pst = &((*prev_pst)->next);
2381 (*prev_pst) = psymtab;
2382 }
2383 #endif
2384
2385 return (psymtab);
2386 }
2387
2388 void
2389 discard_psymtab (struct partial_symtab *pst)
2390 {
2391 struct partial_symtab **prev_pst;
2392
2393 /* From dbxread.c:
2394 Empty psymtabs happen as a result of header files which don't
2395 have any symbols in them. There can be a lot of them. But this
2396 check is wrong, in that a psymtab with N_SLINE entries but
2397 nothing else is not empty, but we don't realize that. Fixing
2398 that without slowing things down might be tricky. */
2399
2400 /* First, snip it out of the psymtab chain */
2401
2402 prev_pst = &(pst->objfile->psymtabs);
2403 while ((*prev_pst) != pst)
2404 prev_pst = &((*prev_pst)->next);
2405 (*prev_pst) = pst->next;
2406
2407 /* Next, put it on a free list for recycling */
2408
2409 pst->next = pst->objfile->free_psymtabs;
2410 pst->objfile->free_psymtabs = pst;
2411 }
2412 \f
2413
2414 /* Reset all data structures in gdb which may contain references to symbol
2415 table data. */
2416
2417 void
2418 clear_symtab_users (void)
2419 {
2420 /* Someday, we should do better than this, by only blowing away
2421 the things that really need to be blown. */
2422 clear_value_history ();
2423 clear_displays ();
2424 clear_internalvars ();
2425 breakpoint_re_set ();
2426 set_default_breakpoint (0, 0, 0, 0);
2427 clear_current_source_symtab_and_line ();
2428 clear_pc_function_cache ();
2429 if (target_new_objfile_hook)
2430 target_new_objfile_hook (NULL);
2431 }
2432
2433 static void
2434 clear_symtab_users_cleanup (void *ignore)
2435 {
2436 clear_symtab_users ();
2437 }
2438
2439 /* clear_symtab_users_once:
2440
2441 This function is run after symbol reading, or from a cleanup.
2442 If an old symbol table was obsoleted, the old symbol table
2443 has been blown away, but the other GDB data structures that may
2444 reference it have not yet been cleared or re-directed. (The old
2445 symtab was zapped, and the cleanup queued, in free_named_symtab()
2446 below.)
2447
2448 This function can be queued N times as a cleanup, or called
2449 directly; it will do all the work the first time, and then will be a
2450 no-op until the next time it is queued. This works by bumping a
2451 counter at queueing time. Much later when the cleanup is run, or at
2452 the end of symbol processing (in case the cleanup is discarded), if
2453 the queued count is greater than the "done-count", we do the work
2454 and set the done-count to the queued count. If the queued count is
2455 less than or equal to the done-count, we just ignore the call. This
2456 is needed because reading a single .o file will often replace many
2457 symtabs (one per .h file, for example), and we don't want to reset
2458 the breakpoints N times in the user's face.
2459
2460 The reason we both queue a cleanup, and call it directly after symbol
2461 reading, is because the cleanup protects us in case of errors, but is
2462 discarded if symbol reading is successful. */
2463
2464 #if 0
2465 /* FIXME: As free_named_symtabs is currently a big noop this function
2466 is no longer needed. */
2467 static void clear_symtab_users_once (void);
2468
2469 static int clear_symtab_users_queued;
2470 static int clear_symtab_users_done;
2471
2472 static void
2473 clear_symtab_users_once (void)
2474 {
2475 /* Enforce once-per-`do_cleanups'-semantics */
2476 if (clear_symtab_users_queued <= clear_symtab_users_done)
2477 return;
2478 clear_symtab_users_done = clear_symtab_users_queued;
2479
2480 clear_symtab_users ();
2481 }
2482 #endif
2483
2484 /* Delete the specified psymtab, and any others that reference it. */
2485
2486 static void
2487 cashier_psymtab (struct partial_symtab *pst)
2488 {
2489 struct partial_symtab *ps, *pprev = NULL;
2490 int i;
2491
2492 /* Find its previous psymtab in the chain */
2493 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2494 {
2495 if (ps == pst)
2496 break;
2497 pprev = ps;
2498 }
2499
2500 if (ps)
2501 {
2502 /* Unhook it from the chain. */
2503 if (ps == pst->objfile->psymtabs)
2504 pst->objfile->psymtabs = ps->next;
2505 else
2506 pprev->next = ps->next;
2507
2508 /* FIXME, we can't conveniently deallocate the entries in the
2509 partial_symbol lists (global_psymbols/static_psymbols) that
2510 this psymtab points to. These just take up space until all
2511 the psymtabs are reclaimed. Ditto the dependencies list and
2512 filename, which are all in the psymbol_obstack. */
2513
2514 /* We need to cashier any psymtab that has this one as a dependency... */
2515 again:
2516 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2517 {
2518 for (i = 0; i < ps->number_of_dependencies; i++)
2519 {
2520 if (ps->dependencies[i] == pst)
2521 {
2522 cashier_psymtab (ps);
2523 goto again; /* Must restart, chain has been munged. */
2524 }
2525 }
2526 }
2527 }
2528 }
2529
2530 /* If a symtab or psymtab for filename NAME is found, free it along
2531 with any dependent breakpoints, displays, etc.
2532 Used when loading new versions of object modules with the "add-file"
2533 command. This is only called on the top-level symtab or psymtab's name;
2534 it is not called for subsidiary files such as .h files.
2535
2536 Return value is 1 if we blew away the environment, 0 if not.
2537 FIXME. The return value appears to never be used.
2538
2539 FIXME. I think this is not the best way to do this. We should
2540 work on being gentler to the environment while still cleaning up
2541 all stray pointers into the freed symtab. */
2542
2543 int
2544 free_named_symtabs (char *name)
2545 {
2546 #if 0
2547 /* FIXME: With the new method of each objfile having it's own
2548 psymtab list, this function needs serious rethinking. In particular,
2549 why was it ever necessary to toss psymtabs with specific compilation
2550 unit filenames, as opposed to all psymtabs from a particular symbol
2551 file? -- fnf
2552 Well, the answer is that some systems permit reloading of particular
2553 compilation units. We want to blow away any old info about these
2554 compilation units, regardless of which objfiles they arrived in. --gnu. */
2555
2556 register struct symtab *s;
2557 register struct symtab *prev;
2558 register struct partial_symtab *ps;
2559 struct blockvector *bv;
2560 int blewit = 0;
2561
2562 /* We only wack things if the symbol-reload switch is set. */
2563 if (!symbol_reloading)
2564 return 0;
2565
2566 /* Some symbol formats have trouble providing file names... */
2567 if (name == 0 || *name == '\0')
2568 return 0;
2569
2570 /* Look for a psymtab with the specified name. */
2571
2572 again2:
2573 for (ps = partial_symtab_list; ps; ps = ps->next)
2574 {
2575 if (STREQ (name, ps->filename))
2576 {
2577 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2578 goto again2; /* Must restart, chain has been munged */
2579 }
2580 }
2581
2582 /* Look for a symtab with the specified name. */
2583
2584 for (s = symtab_list; s; s = s->next)
2585 {
2586 if (STREQ (name, s->filename))
2587 break;
2588 prev = s;
2589 }
2590
2591 if (s)
2592 {
2593 if (s == symtab_list)
2594 symtab_list = s->next;
2595 else
2596 prev->next = s->next;
2597
2598 /* For now, queue a delete for all breakpoints, displays, etc., whether
2599 or not they depend on the symtab being freed. This should be
2600 changed so that only those data structures affected are deleted. */
2601
2602 /* But don't delete anything if the symtab is empty.
2603 This test is necessary due to a bug in "dbxread.c" that
2604 causes empty symtabs to be created for N_SO symbols that
2605 contain the pathname of the object file. (This problem
2606 has been fixed in GDB 3.9x). */
2607
2608 bv = BLOCKVECTOR (s);
2609 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2610 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2611 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2612 {
2613 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2614 name);
2615 clear_symtab_users_queued++;
2616 make_cleanup (clear_symtab_users_once, 0);
2617 blewit = 1;
2618 }
2619 else
2620 {
2621 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2622 name);
2623 }
2624
2625 free_symtab (s);
2626 }
2627 else
2628 {
2629 /* It is still possible that some breakpoints will be affected
2630 even though no symtab was found, since the file might have
2631 been compiled without debugging, and hence not be associated
2632 with a symtab. In order to handle this correctly, we would need
2633 to keep a list of text address ranges for undebuggable files.
2634 For now, we do nothing, since this is a fairly obscure case. */
2635 ;
2636 }
2637
2638 /* FIXME, what about the minimal symbol table? */
2639 return blewit;
2640 #else
2641 return (0);
2642 #endif
2643 }
2644 \f
2645 /* Allocate and partially fill a partial symtab. It will be
2646 completely filled at the end of the symbol list.
2647
2648 FILENAME is the name of the symbol-file we are reading from. */
2649
2650 struct partial_symtab *
2651 start_psymtab_common (struct objfile *objfile,
2652 struct section_offsets *section_offsets, char *filename,
2653 CORE_ADDR textlow, struct partial_symbol **global_syms,
2654 struct partial_symbol **static_syms)
2655 {
2656 struct partial_symtab *psymtab;
2657
2658 psymtab = allocate_psymtab (filename, objfile);
2659 psymtab->section_offsets = section_offsets;
2660 psymtab->textlow = textlow;
2661 psymtab->texthigh = psymtab->textlow; /* default */
2662 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2663 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2664 return (psymtab);
2665 }
2666 \f
2667 /* Add a symbol with a long value to a psymtab.
2668 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2669
2670 void
2671 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2672 enum address_class class,
2673 struct psymbol_allocation_list *list, long val, /* Value as a long */
2674 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2675 enum language language, struct objfile *objfile)
2676 {
2677 register struct partial_symbol *psym;
2678 char *buf = alloca (namelength + 1);
2679 /* psymbol is static so that there will be no uninitialized gaps in the
2680 structure which might contain random data, causing cache misses in
2681 bcache. */
2682 static struct partial_symbol psymbol;
2683
2684 /* Create local copy of the partial symbol */
2685 memcpy (buf, name, namelength);
2686 buf[namelength] = '\0';
2687 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2688 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2689 if (val != 0)
2690 {
2691 SYMBOL_VALUE (&psymbol) = val;
2692 }
2693 else
2694 {
2695 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2696 }
2697 SYMBOL_SECTION (&psymbol) = 0;
2698 SYMBOL_LANGUAGE (&psymbol) = language;
2699 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2700 PSYMBOL_CLASS (&psymbol) = class;
2701 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2702
2703 /* Stash the partial symbol away in the cache */
2704 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2705
2706 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2707 if (list->next >= list->list + list->size)
2708 {
2709 extend_psymbol_list (list, objfile);
2710 }
2711 *list->next++ = psym;
2712 OBJSTAT (objfile, n_psyms++);
2713 }
2714
2715 /* Add a symbol with a long value to a psymtab. This differs from
2716 * add_psymbol_to_list above in taking both a mangled and a demangled
2717 * name. */
2718
2719 void
2720 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2721 int dem_namelength, namespace_enum namespace,
2722 enum address_class class,
2723 struct psymbol_allocation_list *list, long val, /* Value as a long */
2724 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2725 enum language language,
2726 struct objfile *objfile)
2727 {
2728 register struct partial_symbol *psym;
2729 char *buf = alloca (namelength + 1);
2730 /* psymbol is static so that there will be no uninitialized gaps in the
2731 structure which might contain random data, causing cache misses in
2732 bcache. */
2733 static struct partial_symbol psymbol;
2734
2735 /* Create local copy of the partial symbol */
2736
2737 memcpy (buf, name, namelength);
2738 buf[namelength] = '\0';
2739 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2740
2741 buf = alloca (dem_namelength + 1);
2742 memcpy (buf, dem_name, dem_namelength);
2743 buf[dem_namelength] = '\0';
2744
2745 switch (language)
2746 {
2747 case language_c:
2748 case language_cplus:
2749 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2750 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2751 break;
2752 /* FIXME What should be done for the default case? Ignoring for now. */
2753 }
2754
2755 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2756 if (val != 0)
2757 {
2758 SYMBOL_VALUE (&psymbol) = val;
2759 }
2760 else
2761 {
2762 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2763 }
2764 SYMBOL_SECTION (&psymbol) = 0;
2765 SYMBOL_LANGUAGE (&psymbol) = language;
2766 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2767 PSYMBOL_CLASS (&psymbol) = class;
2768 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2769
2770 /* Stash the partial symbol away in the cache */
2771 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2772
2773 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2774 if (list->next >= list->list + list->size)
2775 {
2776 extend_psymbol_list (list, objfile);
2777 }
2778 *list->next++ = psym;
2779 OBJSTAT (objfile, n_psyms++);
2780 }
2781
2782 /* Initialize storage for partial symbols. */
2783
2784 void
2785 init_psymbol_list (struct objfile *objfile, int total_symbols)
2786 {
2787 /* Free any previously allocated psymbol lists. */
2788
2789 if (objfile->global_psymbols.list)
2790 {
2791 xmfree (objfile->md, objfile->global_psymbols.list);
2792 }
2793 if (objfile->static_psymbols.list)
2794 {
2795 xmfree (objfile->md, objfile->static_psymbols.list);
2796 }
2797
2798 /* Current best guess is that approximately a twentieth
2799 of the total symbols (in a debugging file) are global or static
2800 oriented symbols */
2801
2802 objfile->global_psymbols.size = total_symbols / 10;
2803 objfile->static_psymbols.size = total_symbols / 10;
2804
2805 if (objfile->global_psymbols.size > 0)
2806 {
2807 objfile->global_psymbols.next =
2808 objfile->global_psymbols.list = (struct partial_symbol **)
2809 xmmalloc (objfile->md, (objfile->global_psymbols.size
2810 * sizeof (struct partial_symbol *)));
2811 }
2812 if (objfile->static_psymbols.size > 0)
2813 {
2814 objfile->static_psymbols.next =
2815 objfile->static_psymbols.list = (struct partial_symbol **)
2816 xmmalloc (objfile->md, (objfile->static_psymbols.size
2817 * sizeof (struct partial_symbol *)));
2818 }
2819 }
2820
2821 /* OVERLAYS:
2822 The following code implements an abstraction for debugging overlay sections.
2823
2824 The target model is as follows:
2825 1) The gnu linker will permit multiple sections to be mapped into the
2826 same VMA, each with its own unique LMA (or load address).
2827 2) It is assumed that some runtime mechanism exists for mapping the
2828 sections, one by one, from the load address into the VMA address.
2829 3) This code provides a mechanism for gdb to keep track of which
2830 sections should be considered to be mapped from the VMA to the LMA.
2831 This information is used for symbol lookup, and memory read/write.
2832 For instance, if a section has been mapped then its contents
2833 should be read from the VMA, otherwise from the LMA.
2834
2835 Two levels of debugger support for overlays are available. One is
2836 "manual", in which the debugger relies on the user to tell it which
2837 overlays are currently mapped. This level of support is
2838 implemented entirely in the core debugger, and the information about
2839 whether a section is mapped is kept in the objfile->obj_section table.
2840
2841 The second level of support is "automatic", and is only available if
2842 the target-specific code provides functionality to read the target's
2843 overlay mapping table, and translate its contents for the debugger
2844 (by updating the mapped state information in the obj_section tables).
2845
2846 The interface is as follows:
2847 User commands:
2848 overlay map <name> -- tell gdb to consider this section mapped
2849 overlay unmap <name> -- tell gdb to consider this section unmapped
2850 overlay list -- list the sections that GDB thinks are mapped
2851 overlay read-target -- get the target's state of what's mapped
2852 overlay off/manual/auto -- set overlay debugging state
2853 Functional interface:
2854 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2855 section, return that section.
2856 find_pc_overlay(pc): find any overlay section that contains
2857 the pc, either in its VMA or its LMA
2858 overlay_is_mapped(sect): true if overlay is marked as mapped
2859 section_is_overlay(sect): true if section's VMA != LMA
2860 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2861 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2862 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2863 overlay_mapped_address(...): map an address from section's LMA to VMA
2864 overlay_unmapped_address(...): map an address from section's VMA to LMA
2865 symbol_overlayed_address(...): Return a "current" address for symbol:
2866 either in VMA or LMA depending on whether
2867 the symbol's section is currently mapped
2868 */
2869
2870 /* Overlay debugging state: */
2871
2872 enum overlay_debugging_state overlay_debugging = ovly_off;
2873 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2874
2875 /* Target vector for refreshing overlay mapped state */
2876 static void simple_overlay_update (struct obj_section *);
2877 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2878
2879 /* Function: section_is_overlay (SECTION)
2880 Returns true if SECTION has VMA not equal to LMA, ie.
2881 SECTION is loaded at an address different from where it will "run". */
2882
2883 int
2884 section_is_overlay (asection *section)
2885 {
2886 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2887
2888 if (overlay_debugging)
2889 if (section && section->lma != 0 &&
2890 section->vma != section->lma)
2891 return 1;
2892
2893 return 0;
2894 }
2895
2896 /* Function: overlay_invalidate_all (void)
2897 Invalidate the mapped state of all overlay sections (mark it as stale). */
2898
2899 static void
2900 overlay_invalidate_all (void)
2901 {
2902 struct objfile *objfile;
2903 struct obj_section *sect;
2904
2905 ALL_OBJSECTIONS (objfile, sect)
2906 if (section_is_overlay (sect->the_bfd_section))
2907 sect->ovly_mapped = -1;
2908 }
2909
2910 /* Function: overlay_is_mapped (SECTION)
2911 Returns true if section is an overlay, and is currently mapped.
2912 Private: public access is thru function section_is_mapped.
2913
2914 Access to the ovly_mapped flag is restricted to this function, so
2915 that we can do automatic update. If the global flag
2916 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2917 overlay_invalidate_all. If the mapped state of the particular
2918 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2919
2920 static int
2921 overlay_is_mapped (struct obj_section *osect)
2922 {
2923 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2924 return 0;
2925
2926 switch (overlay_debugging)
2927 {
2928 default:
2929 case ovly_off:
2930 return 0; /* overlay debugging off */
2931 case ovly_auto: /* overlay debugging automatic */
2932 /* Unles there is a target_overlay_update function,
2933 there's really nothing useful to do here (can't really go auto) */
2934 if (target_overlay_update)
2935 {
2936 if (overlay_cache_invalid)
2937 {
2938 overlay_invalidate_all ();
2939 overlay_cache_invalid = 0;
2940 }
2941 if (osect->ovly_mapped == -1)
2942 (*target_overlay_update) (osect);
2943 }
2944 /* fall thru to manual case */
2945 case ovly_on: /* overlay debugging manual */
2946 return osect->ovly_mapped == 1;
2947 }
2948 }
2949
2950 /* Function: section_is_mapped
2951 Returns true if section is an overlay, and is currently mapped. */
2952
2953 int
2954 section_is_mapped (asection *section)
2955 {
2956 struct objfile *objfile;
2957 struct obj_section *osect;
2958
2959 if (overlay_debugging)
2960 if (section && section_is_overlay (section))
2961 ALL_OBJSECTIONS (objfile, osect)
2962 if (osect->the_bfd_section == section)
2963 return overlay_is_mapped (osect);
2964
2965 return 0;
2966 }
2967
2968 /* Function: pc_in_unmapped_range
2969 If PC falls into the lma range of SECTION, return true, else false. */
2970
2971 CORE_ADDR
2972 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2973 {
2974 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2975
2976 int size;
2977
2978 if (overlay_debugging)
2979 if (section && section_is_overlay (section))
2980 {
2981 size = bfd_get_section_size_before_reloc (section);
2982 if (section->lma <= pc && pc < section->lma + size)
2983 return 1;
2984 }
2985 return 0;
2986 }
2987
2988 /* Function: pc_in_mapped_range
2989 If PC falls into the vma range of SECTION, return true, else false. */
2990
2991 CORE_ADDR
2992 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2993 {
2994 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2995
2996 int size;
2997
2998 if (overlay_debugging)
2999 if (section && section_is_overlay (section))
3000 {
3001 size = bfd_get_section_size_before_reloc (section);
3002 if (section->vma <= pc && pc < section->vma + size)
3003 return 1;
3004 }
3005 return 0;
3006 }
3007
3008
3009 /* Return true if the mapped ranges of sections A and B overlap, false
3010 otherwise. */
3011 int
3012 sections_overlap (asection *a, asection *b)
3013 {
3014 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3015
3016 CORE_ADDR a_start = a->vma;
3017 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3018 CORE_ADDR b_start = b->vma;
3019 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3020
3021 return (a_start < b_end && b_start < a_end);
3022 }
3023
3024 /* Function: overlay_unmapped_address (PC, SECTION)
3025 Returns the address corresponding to PC in the unmapped (load) range.
3026 May be the same as PC. */
3027
3028 CORE_ADDR
3029 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3030 {
3031 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3032
3033 if (overlay_debugging)
3034 if (section && section_is_overlay (section) &&
3035 pc_in_mapped_range (pc, section))
3036 return pc + section->lma - section->vma;
3037
3038 return pc;
3039 }
3040
3041 /* Function: overlay_mapped_address (PC, SECTION)
3042 Returns the address corresponding to PC in the mapped (runtime) range.
3043 May be the same as PC. */
3044
3045 CORE_ADDR
3046 overlay_mapped_address (CORE_ADDR pc, asection *section)
3047 {
3048 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3049
3050 if (overlay_debugging)
3051 if (section && section_is_overlay (section) &&
3052 pc_in_unmapped_range (pc, section))
3053 return pc + section->vma - section->lma;
3054
3055 return pc;
3056 }
3057
3058
3059 /* Function: symbol_overlayed_address
3060 Return one of two addresses (relative to the VMA or to the LMA),
3061 depending on whether the section is mapped or not. */
3062
3063 CORE_ADDR
3064 symbol_overlayed_address (CORE_ADDR address, asection *section)
3065 {
3066 if (overlay_debugging)
3067 {
3068 /* If the symbol has no section, just return its regular address. */
3069 if (section == 0)
3070 return address;
3071 /* If the symbol's section is not an overlay, just return its address */
3072 if (!section_is_overlay (section))
3073 return address;
3074 /* If the symbol's section is mapped, just return its address */
3075 if (section_is_mapped (section))
3076 return address;
3077 /*
3078 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3079 * then return its LOADED address rather than its vma address!!
3080 */
3081 return overlay_unmapped_address (address, section);
3082 }
3083 return address;
3084 }
3085
3086 /* Function: find_pc_overlay (PC)
3087 Return the best-match overlay section for PC:
3088 If PC matches a mapped overlay section's VMA, return that section.
3089 Else if PC matches an unmapped section's VMA, return that section.
3090 Else if PC matches an unmapped section's LMA, return that section. */
3091
3092 asection *
3093 find_pc_overlay (CORE_ADDR pc)
3094 {
3095 struct objfile *objfile;
3096 struct obj_section *osect, *best_match = NULL;
3097
3098 if (overlay_debugging)
3099 ALL_OBJSECTIONS (objfile, osect)
3100 if (section_is_overlay (osect->the_bfd_section))
3101 {
3102 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3103 {
3104 if (overlay_is_mapped (osect))
3105 return osect->the_bfd_section;
3106 else
3107 best_match = osect;
3108 }
3109 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3110 best_match = osect;
3111 }
3112 return best_match ? best_match->the_bfd_section : NULL;
3113 }
3114
3115 /* Function: find_pc_mapped_section (PC)
3116 If PC falls into the VMA address range of an overlay section that is
3117 currently marked as MAPPED, return that section. Else return NULL. */
3118
3119 asection *
3120 find_pc_mapped_section (CORE_ADDR pc)
3121 {
3122 struct objfile *objfile;
3123 struct obj_section *osect;
3124
3125 if (overlay_debugging)
3126 ALL_OBJSECTIONS (objfile, osect)
3127 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3128 overlay_is_mapped (osect))
3129 return osect->the_bfd_section;
3130
3131 return NULL;
3132 }
3133
3134 /* Function: list_overlays_command
3135 Print a list of mapped sections and their PC ranges */
3136
3137 void
3138 list_overlays_command (char *args, int from_tty)
3139 {
3140 int nmapped = 0;
3141 struct objfile *objfile;
3142 struct obj_section *osect;
3143
3144 if (overlay_debugging)
3145 ALL_OBJSECTIONS (objfile, osect)
3146 if (overlay_is_mapped (osect))
3147 {
3148 const char *name;
3149 bfd_vma lma, vma;
3150 int size;
3151
3152 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3153 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3154 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3155 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3156
3157 printf_filtered ("Section %s, loaded at ", name);
3158 print_address_numeric (lma, 1, gdb_stdout);
3159 puts_filtered (" - ");
3160 print_address_numeric (lma + size, 1, gdb_stdout);
3161 printf_filtered (", mapped at ");
3162 print_address_numeric (vma, 1, gdb_stdout);
3163 puts_filtered (" - ");
3164 print_address_numeric (vma + size, 1, gdb_stdout);
3165 puts_filtered ("\n");
3166
3167 nmapped++;
3168 }
3169 if (nmapped == 0)
3170 printf_filtered ("No sections are mapped.\n");
3171 }
3172
3173 /* Function: map_overlay_command
3174 Mark the named section as mapped (ie. residing at its VMA address). */
3175
3176 void
3177 map_overlay_command (char *args, int from_tty)
3178 {
3179 struct objfile *objfile, *objfile2;
3180 struct obj_section *sec, *sec2;
3181 asection *bfdsec;
3182
3183 if (!overlay_debugging)
3184 error ("\
3185 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3186 the 'overlay manual' command.");
3187
3188 if (args == 0 || *args == 0)
3189 error ("Argument required: name of an overlay section");
3190
3191 /* First, find a section matching the user supplied argument */
3192 ALL_OBJSECTIONS (objfile, sec)
3193 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3194 {
3195 /* Now, check to see if the section is an overlay. */
3196 bfdsec = sec->the_bfd_section;
3197 if (!section_is_overlay (bfdsec))
3198 continue; /* not an overlay section */
3199
3200 /* Mark the overlay as "mapped" */
3201 sec->ovly_mapped = 1;
3202
3203 /* Next, make a pass and unmap any sections that are
3204 overlapped by this new section: */
3205 ALL_OBJSECTIONS (objfile2, sec2)
3206 if (sec2->ovly_mapped
3207 && sec != sec2
3208 && sec->the_bfd_section != sec2->the_bfd_section
3209 && sections_overlap (sec->the_bfd_section,
3210 sec2->the_bfd_section))
3211 {
3212 if (info_verbose)
3213 printf_filtered ("Note: section %s unmapped by overlap\n",
3214 bfd_section_name (objfile->obfd,
3215 sec2->the_bfd_section));
3216 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3217 }
3218 return;
3219 }
3220 error ("No overlay section called %s", args);
3221 }
3222
3223 /* Function: unmap_overlay_command
3224 Mark the overlay section as unmapped
3225 (ie. resident in its LMA address range, rather than the VMA range). */
3226
3227 void
3228 unmap_overlay_command (char *args, int from_tty)
3229 {
3230 struct objfile *objfile;
3231 struct obj_section *sec;
3232
3233 if (!overlay_debugging)
3234 error ("\
3235 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3236 the 'overlay manual' command.");
3237
3238 if (args == 0 || *args == 0)
3239 error ("Argument required: name of an overlay section");
3240
3241 /* First, find a section matching the user supplied argument */
3242 ALL_OBJSECTIONS (objfile, sec)
3243 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3244 {
3245 if (!sec->ovly_mapped)
3246 error ("Section %s is not mapped", args);
3247 sec->ovly_mapped = 0;
3248 return;
3249 }
3250 error ("No overlay section called %s", args);
3251 }
3252
3253 /* Function: overlay_auto_command
3254 A utility command to turn on overlay debugging.
3255 Possibly this should be done via a set/show command. */
3256
3257 static void
3258 overlay_auto_command (char *args, int from_tty)
3259 {
3260 overlay_debugging = ovly_auto;
3261 enable_overlay_breakpoints ();
3262 if (info_verbose)
3263 printf_filtered ("Automatic overlay debugging enabled.");
3264 }
3265
3266 /* Function: overlay_manual_command
3267 A utility command to turn on overlay debugging.
3268 Possibly this should be done via a set/show command. */
3269
3270 static void
3271 overlay_manual_command (char *args, int from_tty)
3272 {
3273 overlay_debugging = ovly_on;
3274 disable_overlay_breakpoints ();
3275 if (info_verbose)
3276 printf_filtered ("Overlay debugging enabled.");
3277 }
3278
3279 /* Function: overlay_off_command
3280 A utility command to turn on overlay debugging.
3281 Possibly this should be done via a set/show command. */
3282
3283 static void
3284 overlay_off_command (char *args, int from_tty)
3285 {
3286 overlay_debugging = ovly_off;
3287 disable_overlay_breakpoints ();
3288 if (info_verbose)
3289 printf_filtered ("Overlay debugging disabled.");
3290 }
3291
3292 static void
3293 overlay_load_command (char *args, int from_tty)
3294 {
3295 if (target_overlay_update)
3296 (*target_overlay_update) (NULL);
3297 else
3298 error ("This target does not know how to read its overlay state.");
3299 }
3300
3301 /* Function: overlay_command
3302 A place-holder for a mis-typed command */
3303
3304 /* Command list chain containing all defined "overlay" subcommands. */
3305 struct cmd_list_element *overlaylist;
3306
3307 static void
3308 overlay_command (char *args, int from_tty)
3309 {
3310 printf_unfiltered
3311 ("\"overlay\" must be followed by the name of an overlay command.\n");
3312 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3313 }
3314
3315
3316 /* Target Overlays for the "Simplest" overlay manager:
3317
3318 This is GDB's default target overlay layer. It works with the
3319 minimal overlay manager supplied as an example by Cygnus. The
3320 entry point is via a function pointer "target_overlay_update",
3321 so targets that use a different runtime overlay manager can
3322 substitute their own overlay_update function and take over the
3323 function pointer.
3324
3325 The overlay_update function pokes around in the target's data structures
3326 to see what overlays are mapped, and updates GDB's overlay mapping with
3327 this information.
3328
3329 In this simple implementation, the target data structures are as follows:
3330 unsigned _novlys; /# number of overlay sections #/
3331 unsigned _ovly_table[_novlys][4] = {
3332 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3333 {..., ..., ..., ...},
3334 }
3335 unsigned _novly_regions; /# number of overlay regions #/
3336 unsigned _ovly_region_table[_novly_regions][3] = {
3337 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3338 {..., ..., ...},
3339 }
3340 These functions will attempt to update GDB's mappedness state in the
3341 symbol section table, based on the target's mappedness state.
3342
3343 To do this, we keep a cached copy of the target's _ovly_table, and
3344 attempt to detect when the cached copy is invalidated. The main
3345 entry point is "simple_overlay_update(SECT), which looks up SECT in
3346 the cached table and re-reads only the entry for that section from
3347 the target (whenever possible).
3348 */
3349
3350 /* Cached, dynamically allocated copies of the target data structures: */
3351 static unsigned (*cache_ovly_table)[4] = 0;
3352 #if 0
3353 static unsigned (*cache_ovly_region_table)[3] = 0;
3354 #endif
3355 static unsigned cache_novlys = 0;
3356 #if 0
3357 static unsigned cache_novly_regions = 0;
3358 #endif
3359 static CORE_ADDR cache_ovly_table_base = 0;
3360 #if 0
3361 static CORE_ADDR cache_ovly_region_table_base = 0;
3362 #endif
3363 enum ovly_index
3364 {
3365 VMA, SIZE, LMA, MAPPED
3366 };
3367 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3368
3369 /* Throw away the cached copy of _ovly_table */
3370 static void
3371 simple_free_overlay_table (void)
3372 {
3373 if (cache_ovly_table)
3374 xfree (cache_ovly_table);
3375 cache_novlys = 0;
3376 cache_ovly_table = NULL;
3377 cache_ovly_table_base = 0;
3378 }
3379
3380 #if 0
3381 /* Throw away the cached copy of _ovly_region_table */
3382 static void
3383 simple_free_overlay_region_table (void)
3384 {
3385 if (cache_ovly_region_table)
3386 xfree (cache_ovly_region_table);
3387 cache_novly_regions = 0;
3388 cache_ovly_region_table = NULL;
3389 cache_ovly_region_table_base = 0;
3390 }
3391 #endif
3392
3393 /* Read an array of ints from the target into a local buffer.
3394 Convert to host order. int LEN is number of ints */
3395 static void
3396 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3397 {
3398 /* FIXME (alloca): Not safe if array is very large. */
3399 char *buf = alloca (len * TARGET_LONG_BYTES);
3400 int i;
3401
3402 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3403 for (i = 0; i < len; i++)
3404 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3405 TARGET_LONG_BYTES);
3406 }
3407
3408 /* Find and grab a copy of the target _ovly_table
3409 (and _novlys, which is needed for the table's size) */
3410 static int
3411 simple_read_overlay_table (void)
3412 {
3413 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3414
3415 simple_free_overlay_table ();
3416 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3417 if (! novlys_msym)
3418 {
3419 error ("Error reading inferior's overlay table: "
3420 "couldn't find `_novlys' variable\n"
3421 "in inferior. Use `overlay manual' mode.");
3422 return 0;
3423 }
3424
3425 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3426 if (! ovly_table_msym)
3427 {
3428 error ("Error reading inferior's overlay table: couldn't find "
3429 "`_ovly_table' array\n"
3430 "in inferior. Use `overlay manual' mode.");
3431 return 0;
3432 }
3433
3434 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3435 cache_ovly_table
3436 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3437 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3438 read_target_long_array (cache_ovly_table_base,
3439 (int *) cache_ovly_table,
3440 cache_novlys * 4);
3441
3442 return 1; /* SUCCESS */
3443 }
3444
3445 #if 0
3446 /* Find and grab a copy of the target _ovly_region_table
3447 (and _novly_regions, which is needed for the table's size) */
3448 static int
3449 simple_read_overlay_region_table (void)
3450 {
3451 struct minimal_symbol *msym;
3452
3453 simple_free_overlay_region_table ();
3454 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3455 if (msym != NULL)
3456 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3457 else
3458 return 0; /* failure */
3459 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3460 if (cache_ovly_region_table != NULL)
3461 {
3462 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3463 if (msym != NULL)
3464 {
3465 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3466 read_target_long_array (cache_ovly_region_table_base,
3467 (int *) cache_ovly_region_table,
3468 cache_novly_regions * 3);
3469 }
3470 else
3471 return 0; /* failure */
3472 }
3473 else
3474 return 0; /* failure */
3475 return 1; /* SUCCESS */
3476 }
3477 #endif
3478
3479 /* Function: simple_overlay_update_1
3480 A helper function for simple_overlay_update. Assuming a cached copy
3481 of _ovly_table exists, look through it to find an entry whose vma,
3482 lma and size match those of OSECT. Re-read the entry and make sure
3483 it still matches OSECT (else the table may no longer be valid).
3484 Set OSECT's mapped state to match the entry. Return: 1 for
3485 success, 0 for failure. */
3486
3487 static int
3488 simple_overlay_update_1 (struct obj_section *osect)
3489 {
3490 int i, size;
3491 bfd *obfd = osect->objfile->obfd;
3492 asection *bsect = osect->the_bfd_section;
3493
3494 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3495 for (i = 0; i < cache_novlys; i++)
3496 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3497 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3498 /* && cache_ovly_table[i][SIZE] == size */ )
3499 {
3500 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3501 (int *) cache_ovly_table[i], 4);
3502 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3503 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3504 /* && cache_ovly_table[i][SIZE] == size */ )
3505 {
3506 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3507 return 1;
3508 }
3509 else /* Warning! Warning! Target's ovly table has changed! */
3510 return 0;
3511 }
3512 return 0;
3513 }
3514
3515 /* Function: simple_overlay_update
3516 If OSECT is NULL, then update all sections' mapped state
3517 (after re-reading the entire target _ovly_table).
3518 If OSECT is non-NULL, then try to find a matching entry in the
3519 cached ovly_table and update only OSECT's mapped state.
3520 If a cached entry can't be found or the cache isn't valid, then
3521 re-read the entire cache, and go ahead and update all sections. */
3522
3523 static void
3524 simple_overlay_update (struct obj_section *osect)
3525 {
3526 struct objfile *objfile;
3527
3528 /* Were we given an osect to look up? NULL means do all of them. */
3529 if (osect)
3530 /* Have we got a cached copy of the target's overlay table? */
3531 if (cache_ovly_table != NULL)
3532 /* Does its cached location match what's currently in the symtab? */
3533 if (cache_ovly_table_base ==
3534 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3535 /* Then go ahead and try to look up this single section in the cache */
3536 if (simple_overlay_update_1 (osect))
3537 /* Found it! We're done. */
3538 return;
3539
3540 /* Cached table no good: need to read the entire table anew.
3541 Or else we want all the sections, in which case it's actually
3542 more efficient to read the whole table in one block anyway. */
3543
3544 if (! simple_read_overlay_table ())
3545 return;
3546
3547 /* Now may as well update all sections, even if only one was requested. */
3548 ALL_OBJSECTIONS (objfile, osect)
3549 if (section_is_overlay (osect->the_bfd_section))
3550 {
3551 int i, size;
3552 bfd *obfd = osect->objfile->obfd;
3553 asection *bsect = osect->the_bfd_section;
3554
3555 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3556 for (i = 0; i < cache_novlys; i++)
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3559 /* && cache_ovly_table[i][SIZE] == size */ )
3560 { /* obj_section matches i'th entry in ovly_table */
3561 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3562 break; /* finished with inner for loop: break out */
3563 }
3564 }
3565 }
3566
3567 /* Set the output sections and output offsets for section SECTP in
3568 ABFD. The relocation code in BFD will read these offsets, so we
3569 need to be sure they're initialized. We map each section to itself,
3570 with no offset; this means that SECTP->vma will be honored. */
3571
3572 static void
3573 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3574 {
3575 sectp->output_section = sectp;
3576 sectp->output_offset = 0;
3577 }
3578
3579 /* Relocate the contents of a debug section SECTP in ABFD. The
3580 contents are stored in BUF if it is non-NULL, or returned in a
3581 malloc'd buffer otherwise.
3582
3583 For some platforms and debug info formats, shared libraries contain
3584 relocations against the debug sections (particularly for DWARF-2;
3585 one affected platform is PowerPC GNU/Linux, although it depends on
3586 the version of the linker in use). Also, ELF object files naturally
3587 have unresolved relocations for their debug sections. We need to apply
3588 the relocations in order to get the locations of symbols correct. */
3589
3590 bfd_byte *
3591 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3592 {
3593 /* We're only interested in debugging sections with relocation
3594 information. */
3595 if ((sectp->flags & SEC_RELOC) == 0)
3596 return NULL;
3597 if ((sectp->flags & SEC_DEBUGGING) == 0)
3598 return NULL;
3599
3600 /* We will handle section offsets properly elsewhere, so relocate as if
3601 all sections begin at 0. */
3602 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3603
3604 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf);
3605 }
3606
3607 void
3608 _initialize_symfile (void)
3609 {
3610 struct cmd_list_element *c;
3611
3612 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3613 "Load symbol table from executable file FILE.\n\
3614 The `file' command can also load symbol tables, as well as setting the file\n\
3615 to execute.", &cmdlist);
3616 set_cmd_completer (c, filename_completer);
3617
3618 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3619 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3620 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3621 ADDR is the starting address of the file's text.\n\
3622 The optional arguments are section-name section-address pairs and\n\
3623 should be specified if the data and bss segments are not contiguous\n\
3624 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3625 &cmdlist);
3626 set_cmd_completer (c, filename_completer);
3627
3628 c = add_cmd ("add-shared-symbol-files", class_files,
3629 add_shared_symbol_files_command,
3630 "Load the symbols from shared objects in the dynamic linker's link map.",
3631 &cmdlist);
3632 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3633 &cmdlist);
3634
3635 c = add_cmd ("load", class_files, load_command,
3636 "Dynamically load FILE into the running program, and record its symbols\n\
3637 for access from GDB.", &cmdlist);
3638 set_cmd_completer (c, filename_completer);
3639
3640 add_show_from_set
3641 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3642 (char *) &symbol_reloading,
3643 "Set dynamic symbol table reloading multiple times in one run.",
3644 &setlist),
3645 &showlist);
3646
3647 add_prefix_cmd ("overlay", class_support, overlay_command,
3648 "Commands for debugging overlays.", &overlaylist,
3649 "overlay ", 0, &cmdlist);
3650
3651 add_com_alias ("ovly", "overlay", class_alias, 1);
3652 add_com_alias ("ov", "overlay", class_alias, 1);
3653
3654 add_cmd ("map-overlay", class_support, map_overlay_command,
3655 "Assert that an overlay section is mapped.", &overlaylist);
3656
3657 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3658 "Assert that an overlay section is unmapped.", &overlaylist);
3659
3660 add_cmd ("list-overlays", class_support, list_overlays_command,
3661 "List mappings of overlay sections.", &overlaylist);
3662
3663 add_cmd ("manual", class_support, overlay_manual_command,
3664 "Enable overlay debugging.", &overlaylist);
3665 add_cmd ("off", class_support, overlay_off_command,
3666 "Disable overlay debugging.", &overlaylist);
3667 add_cmd ("auto", class_support, overlay_auto_command,
3668 "Enable automatic overlay debugging.", &overlaylist);
3669 add_cmd ("load-target", class_support, overlay_load_command,
3670 "Read the overlay mapping state from the target.", &overlaylist);
3671
3672 /* Filename extension to source language lookup table: */
3673 init_filename_language_table ();
3674 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3675 (char *) &ext_args,
3676 "Set mapping between filename extension and source language.\n\
3677 Usage: set extension-language .foo bar",
3678 &setlist);
3679 set_cmd_cfunc (c, set_ext_lang_command);
3680
3681 add_info ("extensions", info_ext_lang_command,
3682 "All filename extensions associated with a source language.");
3683
3684 add_show_from_set
3685 (add_set_cmd ("download-write-size", class_obscure,
3686 var_integer, (char *) &download_write_size,
3687 "Set the write size used when downloading a program.\n"
3688 "Only used when downloading a program onto a remote\n"
3689 "target. Specify zero, or a negative value, to disable\n"
3690 "blocked writes. The actual size of each transfer is also\n"
3691 "limited by the size of the target packet and the memory\n"
3692 "cache.\n",
3693 &setlist),
3694 &showlist);
3695
3696 debug_file_directory = xstrdup (DEBUGDIR);
3697 c = (add_set_cmd
3698 ("debug-file-directory", class_support, var_string,
3699 (char *) &debug_file_directory,
3700 "Set the directory where separate debug symbols are searched for.\n"
3701 "Separate debug symbols are first searched for in the same\n"
3702 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3703 "' subdirectory,\n"
3704 "and lastly at the path of the directory of the binary with\n"
3705 "the global debug-file directory prepended\n",
3706 &setlist));
3707 add_show_from_set (c, &showlist);
3708 set_cmd_completer (c, filename_completer);
3709
3710 }
This page took 0.108576 seconds and 4 git commands to generate.