gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include "gdb_string.h"
57 #include "gdb_stat.h"
58 #include <ctype.h>
59 #include <time.h>
60
61 #ifndef O_BINARY
62 #define O_BINARY 0
63 #endif
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73 void (*deprecated_target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static void find_sym_fns (struct objfile *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
458 }
459
460 /* The arguments to place_section. */
461
462 struct place_section_arg
463 {
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466 };
467
468 /* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471 void
472 place_section (bfd *abfd, asection *sect, void *obj)
473 {
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
477
478 /* We are only interested in loadable sections. */
479 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
480 return;
481
482 /* If the user specified an offset, honor it. */
483 if (offsets[sect->index] != 0)
484 return;
485
486 /* Otherwise, let's try to find a place for the section. */
487 do {
488 asection *cur_sec;
489 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
490
491 start_addr = (arg->lowest + align - 1) & -align;
492 done = 1;
493
494 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
495 {
496 int indx = cur_sec->index;
497 CORE_ADDR cur_offset;
498
499 /* We don't need to compare against ourself. */
500 if (cur_sec == sect)
501 continue;
502
503 /* We can only conflict with loadable sections. */
504 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
505 continue;
506
507 /* We do not expect this to happen; just ignore sections in a
508 relocatable file with an assigned VMA. */
509 if (bfd_section_vma (abfd, cur_sec) != 0)
510 continue;
511
512 /* If the section offset is 0, either the section has not been placed
513 yet, or it was the lowest section placed (in which case LOWEST
514 will be past its end). */
515 if (offsets[indx] == 0)
516 continue;
517
518 /* If this section would overlap us, then we must move up. */
519 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
520 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
521 {
522 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
523 start_addr = (start_addr + align - 1) & -align;
524 done = 0;
525 continue;
526 }
527
528 /* Otherwise, we appear to be OK. So far. */
529 }
530 }
531 while (!done);
532
533 offsets[sect->index] = start_addr;
534 arg->lowest = start_addr + bfd_get_section_size (sect);
535
536 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 arg.offsets = objfile->section_offsets;
583 arg.lowest = 0;
584 bfd_map_over_sections (objfile->obfd, place_section, &arg);
585 }
586
587 /* Remember the bfd indexes for the .text, .data, .bss and
588 .rodata sections. */
589 init_objfile_sect_indices (objfile);
590 }
591
592
593 /* Process a symbol file, as either the main file or as a dynamically
594 loaded file.
595
596 OBJFILE is where the symbols are to be read from.
597
598 ADDRS is the list of section load addresses. If the user has given
599 an 'add-symbol-file' command, then this is the list of offsets and
600 addresses he or she provided as arguments to the command; or, if
601 we're handling a shared library, these are the actual addresses the
602 sections are loaded at, according to the inferior's dynamic linker
603 (as gleaned by GDB's shared library code). We convert each address
604 into an offset from the section VMA's as it appears in the object
605 file, and then call the file's sym_offsets function to convert this
606 into a format-specific offset table --- a `struct section_offsets'.
607 If ADDRS is non-zero, OFFSETS must be zero.
608
609 OFFSETS is a table of section offsets already in the right
610 format-specific representation. NUM_OFFSETS is the number of
611 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
612 assume this is the proper table the call to sym_offsets described
613 above would produce. Instead of calling sym_offsets, we just dump
614 it right into objfile->section_offsets. (When we're re-reading
615 symbols from an objfile, we don't have the original load address
616 list any more; all we have is the section offset table.) If
617 OFFSETS is non-zero, ADDRS must be zero.
618
619 MAINLINE is nonzero if this is the main symbol file, or zero if
620 it's an extra symbol file such as dynamically loaded code.
621
622 VERBO is nonzero if the caller has printed a verbose message about
623 the symbol reading (and complaints can be more terse about it). */
624
625 void
626 syms_from_objfile (struct objfile *objfile,
627 struct section_addr_info *addrs,
628 struct section_offsets *offsets,
629 int num_offsets,
630 int mainline,
631 int verbo)
632 {
633 struct section_addr_info *local_addr = NULL;
634 struct cleanup *old_chain;
635
636 gdb_assert (! (addrs && offsets));
637
638 init_entry_point_info (objfile);
639 find_sym_fns (objfile);
640
641 if (objfile->sf == NULL)
642 return; /* No symbols. */
643
644 /* Make sure that partially constructed symbol tables will be cleaned up
645 if an error occurs during symbol reading. */
646 old_chain = make_cleanup_free_objfile (objfile);
647
648 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
649 list. We now establish the convention that an addr of zero means
650 no load address was specified. */
651 if (! addrs && ! offsets)
652 {
653 local_addr
654 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
655 make_cleanup (xfree, local_addr);
656 addrs = local_addr;
657 }
658
659 /* Now either addrs or offsets is non-zero. */
660
661 if (mainline)
662 {
663 /* We will modify the main symbol table, make sure that all its users
664 will be cleaned up if an error occurs during symbol reading. */
665 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
666
667 /* Since no error yet, throw away the old symbol table. */
668
669 if (symfile_objfile != NULL)
670 {
671 free_objfile (symfile_objfile);
672 symfile_objfile = NULL;
673 }
674
675 /* Currently we keep symbols from the add-symbol-file command.
676 If the user wants to get rid of them, they should do "symbol-file"
677 without arguments first. Not sure this is the best behavior
678 (PR 2207). */
679
680 (*objfile->sf->sym_new_init) (objfile);
681 }
682
683 /* Convert addr into an offset rather than an absolute address.
684 We find the lowest address of a loaded segment in the objfile,
685 and assume that <addr> is where that got loaded.
686
687 We no longer warn if the lowest section is not a text segment (as
688 happens for the PA64 port. */
689 if (!mainline && addrs && addrs->other[0].name)
690 {
691 asection *lower_sect;
692 asection *sect;
693 CORE_ADDR lower_offset;
694 int i;
695
696 /* Find lowest loadable section to be used as starting point for
697 continguous sections. FIXME!! won't work without call to find
698 .text first, but this assumes text is lowest section. */
699 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
700 if (lower_sect == NULL)
701 bfd_map_over_sections (objfile->obfd, find_lowest_section,
702 &lower_sect);
703 if (lower_sect == NULL)
704 warning (_("no loadable sections found in added symbol-file %s"),
705 objfile->name);
706 else
707 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
708 warning (_("Lowest section in %s is %s at %s"),
709 objfile->name,
710 bfd_section_name (objfile->obfd, lower_sect),
711 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
712 if (lower_sect != NULL)
713 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
714 else
715 lower_offset = 0;
716
717 /* Calculate offsets for the loadable sections.
718 FIXME! Sections must be in order of increasing loadable section
719 so that contiguous sections can use the lower-offset!!!
720
721 Adjust offsets if the segments are not contiguous.
722 If the section is contiguous, its offset should be set to
723 the offset of the highest loadable section lower than it
724 (the loadable section directly below it in memory).
725 this_offset = lower_offset = lower_addr - lower_orig_addr */
726
727 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
728 {
729 if (addrs->other[i].addr != 0)
730 {
731 sect = bfd_get_section_by_name (objfile->obfd,
732 addrs->other[i].name);
733 if (sect)
734 {
735 addrs->other[i].addr
736 -= bfd_section_vma (objfile->obfd, sect);
737 lower_offset = addrs->other[i].addr;
738 /* This is the index used by BFD. */
739 addrs->other[i].sectindex = sect->index ;
740 }
741 else
742 {
743 warning (_("section %s not found in %s"),
744 addrs->other[i].name,
745 objfile->name);
746 addrs->other[i].addr = 0;
747 }
748 }
749 else
750 addrs->other[i].addr = lower_offset;
751 }
752 }
753
754 /* Initialize symbol reading routines for this objfile, allow complaints to
755 appear for this new file, and record how verbose to be, then do the
756 initial symbol reading for this file. */
757
758 (*objfile->sf->sym_init) (objfile);
759 clear_complaints (&symfile_complaints, 1, verbo);
760
761 if (addrs)
762 (*objfile->sf->sym_offsets) (objfile, addrs);
763 else
764 {
765 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
766
767 /* Just copy in the offset table directly as given to us. */
768 objfile->num_sections = num_offsets;
769 objfile->section_offsets
770 = ((struct section_offsets *)
771 obstack_alloc (&objfile->objfile_obstack, size));
772 memcpy (objfile->section_offsets, offsets, size);
773
774 init_objfile_sect_indices (objfile);
775 }
776
777 #ifndef DEPRECATED_IBM6000_TARGET
778 /* This is a SVR4/SunOS specific hack, I think. In any event, it
779 screws RS/6000. sym_offsets should be doing this sort of thing,
780 because it knows the mapping between bfd sections and
781 section_offsets. */
782 /* This is a hack. As far as I can tell, section offsets are not
783 target dependent. They are all set to addr with a couple of
784 exceptions. The exceptions are sysvr4 shared libraries, whose
785 offsets are kept in solib structures anyway and rs6000 xcoff
786 which handles shared libraries in a completely unique way.
787
788 Section offsets are built similarly, except that they are built
789 by adding addr in all cases because there is no clear mapping
790 from section_offsets into actual sections. Note that solib.c
791 has a different algorithm for finding section offsets.
792
793 These should probably all be collapsed into some target
794 independent form of shared library support. FIXME. */
795
796 if (addrs)
797 {
798 struct obj_section *s;
799
800 /* Map section offsets in "addr" back to the object's
801 sections by comparing the section names with bfd's
802 section names. Then adjust the section address by
803 the offset. */ /* for gdb/13815 */
804
805 ALL_OBJFILE_OSECTIONS (objfile, s)
806 {
807 CORE_ADDR s_addr = 0;
808 int i;
809
810 for (i = 0;
811 !s_addr && i < addrs->num_sections && addrs->other[i].name;
812 i++)
813 if (strcmp (bfd_section_name (s->objfile->obfd,
814 s->the_bfd_section),
815 addrs->other[i].name) == 0)
816 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
817
818 s->addr -= s->offset;
819 s->addr += s_addr;
820 s->endaddr -= s->offset;
821 s->endaddr += s_addr;
822 s->offset += s_addr;
823 }
824 }
825 #endif /* not DEPRECATED_IBM6000_TARGET */
826
827 (*objfile->sf->sym_read) (objfile, mainline);
828
829 /* Don't allow char * to have a typename (else would get caddr_t).
830 Ditto void *. FIXME: Check whether this is now done by all the
831 symbol readers themselves (many of them now do), and if so remove
832 it from here. */
833
834 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
835 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
836
837 /* Mark the objfile has having had initial symbol read attempted. Note
838 that this does not mean we found any symbols... */
839
840 objfile->flags |= OBJF_SYMS;
841
842 /* Discard cleanups as symbol reading was successful. */
843
844 discard_cleanups (old_chain);
845 }
846
847 /* Perform required actions after either reading in the initial
848 symbols for a new objfile, or mapping in the symbols from a reusable
849 objfile. */
850
851 void
852 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
853 {
854
855 /* If this is the main symbol file we have to clean up all users of the
856 old main symbol file. Otherwise it is sufficient to fixup all the
857 breakpoints that may have been redefined by this symbol file. */
858 if (mainline)
859 {
860 /* OK, make it the "real" symbol file. */
861 symfile_objfile = objfile;
862
863 clear_symtab_users ();
864 }
865 else
866 {
867 breakpoint_re_set ();
868 }
869
870 /* We're done reading the symbol file; finish off complaints. */
871 clear_complaints (&symfile_complaints, 0, verbo);
872 }
873
874 /* Process a symbol file, as either the main file or as a dynamically
875 loaded file.
876
877 ABFD is a BFD already open on the file, as from symfile_bfd_open.
878 This BFD will be closed on error, and is always consumed by this function.
879
880 FROM_TTY says how verbose to be.
881
882 MAINLINE specifies whether this is the main symbol file, or whether
883 it's an extra symbol file such as dynamically loaded code.
884
885 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
886 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
887 non-zero.
888
889 Upon success, returns a pointer to the objfile that was added.
890 Upon failure, jumps back to command level (never returns). */
891 static struct objfile *
892 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
893 struct section_addr_info *addrs,
894 struct section_offsets *offsets,
895 int num_offsets,
896 int mainline, int flags)
897 {
898 struct objfile *objfile;
899 struct partial_symtab *psymtab;
900 char *debugfile;
901 struct section_addr_info *orig_addrs = NULL;
902 struct cleanup *my_cleanups;
903 const char *name = bfd_get_filename (abfd);
904
905 my_cleanups = make_cleanup_bfd_close (abfd);
906
907 /* Give user a chance to burp if we'd be
908 interactively wiping out any existing symbols. */
909
910 if ((have_full_symbols () || have_partial_symbols ())
911 && mainline
912 && from_tty
913 && !query ("Load new symbol table from \"%s\"? ", name))
914 error (_("Not confirmed."));
915
916 objfile = allocate_objfile (abfd, flags);
917 discard_cleanups (my_cleanups);
918
919 if (addrs)
920 {
921 orig_addrs = copy_section_addr_info (addrs);
922 make_cleanup_free_section_addr_info (orig_addrs);
923 }
924
925 /* We either created a new mapped symbol table, mapped an existing
926 symbol table file which has not had initial symbol reading
927 performed, or need to read an unmapped symbol table. */
928 if (from_tty || info_verbose)
929 {
930 if (deprecated_pre_add_symbol_hook)
931 deprecated_pre_add_symbol_hook (name);
932 else
933 {
934 printf_unfiltered (_("Reading symbols from %s..."), name);
935 wrap_here ("");
936 gdb_flush (gdb_stdout);
937 }
938 }
939 syms_from_objfile (objfile, addrs, offsets, num_offsets,
940 mainline, from_tty);
941
942 /* We now have at least a partial symbol table. Check to see if the
943 user requested that all symbols be read on initial access via either
944 the gdb startup command line or on a per symbol file basis. Expand
945 all partial symbol tables for this objfile if so. */
946
947 if ((flags & OBJF_READNOW) || readnow_symbol_files)
948 {
949 if (from_tty || info_verbose)
950 {
951 printf_unfiltered (_("expanding to full symbols..."));
952 wrap_here ("");
953 gdb_flush (gdb_stdout);
954 }
955
956 for (psymtab = objfile->psymtabs;
957 psymtab != NULL;
958 psymtab = psymtab->next)
959 {
960 psymtab_to_symtab (psymtab);
961 }
962 }
963
964 debugfile = find_separate_debug_file (objfile);
965 if (debugfile)
966 {
967 if (addrs != NULL)
968 {
969 objfile->separate_debug_objfile
970 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
971 }
972 else
973 {
974 objfile->separate_debug_objfile
975 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
976 }
977 objfile->separate_debug_objfile->separate_debug_objfile_backlink
978 = objfile;
979
980 /* Put the separate debug object before the normal one, this is so that
981 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
982 put_objfile_before (objfile->separate_debug_objfile, objfile);
983
984 xfree (debugfile);
985 }
986
987 if (!have_partial_symbols () && !have_full_symbols ())
988 {
989 wrap_here ("");
990 printf_filtered (_("(no debugging symbols found)"));
991 if (from_tty || info_verbose)
992 printf_filtered ("...");
993 else
994 printf_filtered ("\n");
995 wrap_here ("");
996 }
997
998 if (from_tty || info_verbose)
999 {
1000 if (deprecated_post_add_symbol_hook)
1001 deprecated_post_add_symbol_hook ();
1002 else
1003 {
1004 printf_unfiltered (_("done.\n"));
1005 }
1006 }
1007
1008 /* We print some messages regardless of whether 'from_tty ||
1009 info_verbose' is true, so make sure they go out at the right
1010 time. */
1011 gdb_flush (gdb_stdout);
1012
1013 do_cleanups (my_cleanups);
1014
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
1020 if (deprecated_target_new_objfile_hook)
1021 deprecated_target_new_objfile_hook (objfile);
1022
1023 bfd_cache_close_all ();
1024 return (objfile);
1025 }
1026
1027
1028 /* Process the symbol file ABFD, as either the main file or as a
1029 dynamically loaded file.
1030
1031 See symbol_file_add_with_addrs_or_offsets's comments for
1032 details. */
1033 struct objfile *
1034 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1035 struct section_addr_info *addrs,
1036 int mainline, int flags)
1037 {
1038 return symbol_file_add_with_addrs_or_offsets (abfd,
1039 from_tty, addrs, 0, 0,
1040 mainline, flags);
1041 }
1042
1043
1044 /* Process a symbol file, as either the main file or as a dynamically
1045 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1046 for details. */
1047 struct objfile *
1048 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1049 int mainline, int flags)
1050 {
1051 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1052 addrs, mainline, flags);
1053 }
1054
1055
1056 /* Call symbol_file_add() with default values and update whatever is
1057 affected by the loading of a new main().
1058 Used when the file is supplied in the gdb command line
1059 and by some targets with special loading requirements.
1060 The auxiliary function, symbol_file_add_main_1(), has the flags
1061 argument for the switches that can only be specified in the symbol_file
1062 command itself. */
1063
1064 void
1065 symbol_file_add_main (char *args, int from_tty)
1066 {
1067 symbol_file_add_main_1 (args, from_tty, 0);
1068 }
1069
1070 static void
1071 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1072 {
1073 symbol_file_add (args, from_tty, NULL, 1, flags);
1074
1075 /* Getting new symbols may change our opinion about
1076 what is frameless. */
1077 reinit_frame_cache ();
1078
1079 set_initial_language ();
1080 }
1081
1082 void
1083 symbol_file_clear (int from_tty)
1084 {
1085 if ((have_full_symbols () || have_partial_symbols ())
1086 && from_tty
1087 && !query ("Discard symbol table from `%s'? ",
1088 symfile_objfile->name))
1089 error (_("Not confirmed."));
1090 free_all_objfiles ();
1091
1092 /* solib descriptors may have handles to objfiles. Since their
1093 storage has just been released, we'd better wipe the solib
1094 descriptors as well.
1095 */
1096 #if defined(SOLIB_RESTART)
1097 SOLIB_RESTART ();
1098 #endif
1099
1100 symfile_objfile = NULL;
1101 if (from_tty)
1102 printf_unfiltered (_("No symbol file now.\n"));
1103 }
1104
1105 static char *
1106 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1107 {
1108 asection *sect;
1109 bfd_size_type debuglink_size;
1110 unsigned long crc32;
1111 char *contents;
1112 int crc_offset;
1113 unsigned char *p;
1114
1115 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1116
1117 if (sect == NULL)
1118 return NULL;
1119
1120 debuglink_size = bfd_section_size (objfile->obfd, sect);
1121
1122 contents = xmalloc (debuglink_size);
1123 bfd_get_section_contents (objfile->obfd, sect, contents,
1124 (file_ptr)0, (bfd_size_type)debuglink_size);
1125
1126 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1127 crc_offset = strlen (contents) + 1;
1128 crc_offset = (crc_offset + 3) & ~3;
1129
1130 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1131
1132 *crc32_out = crc32;
1133 return contents;
1134 }
1135
1136 static int
1137 separate_debug_file_exists (const char *name, unsigned long crc)
1138 {
1139 unsigned long file_crc = 0;
1140 int fd;
1141 char buffer[8*1024];
1142 int count;
1143
1144 fd = open (name, O_RDONLY | O_BINARY);
1145 if (fd < 0)
1146 return 0;
1147
1148 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1149 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1150
1151 close (fd);
1152
1153 return crc == file_crc;
1154 }
1155
1156 static char *debug_file_directory = NULL;
1157 static void
1158 show_debug_file_directory (struct ui_file *file, int from_tty,
1159 struct cmd_list_element *c, const char *value)
1160 {
1161 fprintf_filtered (file, _("\
1162 The directory where separate debug symbols are searched for is \"%s\".\n"),
1163 value);
1164 }
1165
1166 #if ! defined (DEBUG_SUBDIRECTORY)
1167 #define DEBUG_SUBDIRECTORY ".debug"
1168 #endif
1169
1170 static char *
1171 find_separate_debug_file (struct objfile *objfile)
1172 {
1173 asection *sect;
1174 char *basename;
1175 char *dir;
1176 char *debugfile;
1177 char *name_copy;
1178 bfd_size_type debuglink_size;
1179 unsigned long crc32;
1180 int i;
1181
1182 basename = get_debug_link_info (objfile, &crc32);
1183
1184 if (basename == NULL)
1185 return NULL;
1186
1187 dir = xstrdup (objfile->name);
1188
1189 /* Strip off the final filename part, leaving the directory name,
1190 followed by a slash. Objfile names should always be absolute and
1191 tilde-expanded, so there should always be a slash in there
1192 somewhere. */
1193 for (i = strlen(dir) - 1; i >= 0; i--)
1194 {
1195 if (IS_DIR_SEPARATOR (dir[i]))
1196 break;
1197 }
1198 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1199 dir[i+1] = '\0';
1200
1201 debugfile = alloca (strlen (debug_file_directory) + 1
1202 + strlen (dir)
1203 + strlen (DEBUG_SUBDIRECTORY)
1204 + strlen ("/")
1205 + strlen (basename)
1206 + 1);
1207
1208 /* First try in the same directory as the original file. */
1209 strcpy (debugfile, dir);
1210 strcat (debugfile, basename);
1211
1212 if (separate_debug_file_exists (debugfile, crc32))
1213 {
1214 xfree (basename);
1215 xfree (dir);
1216 return xstrdup (debugfile);
1217 }
1218
1219 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1220 strcpy (debugfile, dir);
1221 strcat (debugfile, DEBUG_SUBDIRECTORY);
1222 strcat (debugfile, "/");
1223 strcat (debugfile, basename);
1224
1225 if (separate_debug_file_exists (debugfile, crc32))
1226 {
1227 xfree (basename);
1228 xfree (dir);
1229 return xstrdup (debugfile);
1230 }
1231
1232 /* Then try in the global debugfile directory. */
1233 strcpy (debugfile, debug_file_directory);
1234 strcat (debugfile, "/");
1235 strcat (debugfile, dir);
1236 strcat (debugfile, basename);
1237
1238 if (separate_debug_file_exists (debugfile, crc32))
1239 {
1240 xfree (basename);
1241 xfree (dir);
1242 return xstrdup (debugfile);
1243 }
1244
1245 xfree (basename);
1246 xfree (dir);
1247 return NULL;
1248 }
1249
1250
1251 /* This is the symbol-file command. Read the file, analyze its
1252 symbols, and add a struct symtab to a symtab list. The syntax of
1253 the command is rather bizarre--(1) buildargv implements various
1254 quoting conventions which are undocumented and have little or
1255 nothing in common with the way things are quoted (or not quoted)
1256 elsewhere in GDB, (2) options are used, which are not generally
1257 used in GDB (perhaps "set mapped on", "set readnow on" would be
1258 better), (3) the order of options matters, which is contrary to GNU
1259 conventions (because it is confusing and inconvenient). */
1260
1261 void
1262 symbol_file_command (char *args, int from_tty)
1263 {
1264 char **argv;
1265 char *name = NULL;
1266 struct cleanup *cleanups;
1267 int flags = OBJF_USERLOADED;
1268
1269 dont_repeat ();
1270
1271 if (args == NULL)
1272 {
1273 symbol_file_clear (from_tty);
1274 }
1275 else
1276 {
1277 if ((argv = buildargv (args)) == NULL)
1278 {
1279 nomem (0);
1280 }
1281 cleanups = make_cleanup_freeargv (argv);
1282 while (*argv != NULL)
1283 {
1284 if (strcmp (*argv, "-readnow") == 0)
1285 flags |= OBJF_READNOW;
1286 else if (**argv == '-')
1287 error (_("unknown option `%s'"), *argv);
1288 else
1289 {
1290 name = *argv;
1291
1292 symbol_file_add_main_1 (name, from_tty, flags);
1293 }
1294 argv++;
1295 }
1296
1297 if (name == NULL)
1298 {
1299 error (_("no symbol file name was specified"));
1300 }
1301 do_cleanups (cleanups);
1302 }
1303 }
1304
1305 /* Set the initial language.
1306
1307 A better solution would be to record the language in the psymtab when reading
1308 partial symbols, and then use it (if known) to set the language. This would
1309 be a win for formats that encode the language in an easily discoverable place,
1310 such as DWARF. For stabs, we can jump through hoops looking for specially
1311 named symbols or try to intuit the language from the specific type of stabs
1312 we find, but we can't do that until later when we read in full symbols.
1313 FIXME. */
1314
1315 static void
1316 set_initial_language (void)
1317 {
1318 struct partial_symtab *pst;
1319 enum language lang = language_unknown;
1320
1321 pst = find_main_psymtab ();
1322 if (pst != NULL)
1323 {
1324 if (pst->filename != NULL)
1325 {
1326 lang = deduce_language_from_filename (pst->filename);
1327 }
1328 if (lang == language_unknown)
1329 {
1330 /* Make C the default language */
1331 lang = language_c;
1332 }
1333 set_language (lang);
1334 expected_language = current_language; /* Don't warn the user */
1335 }
1336 }
1337
1338 /* Open file specified by NAME and hand it off to BFD for preliminary
1339 analysis. Result is a newly initialized bfd *, which includes a newly
1340 malloc'd` copy of NAME (tilde-expanded and made absolute).
1341 In case of trouble, error() is called. */
1342
1343 bfd *
1344 symfile_bfd_open (char *name)
1345 {
1346 bfd *sym_bfd;
1347 int desc;
1348 char *absolute_name;
1349
1350
1351
1352 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1353
1354 /* Look down path for it, allocate 2nd new malloc'd copy. */
1355 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1356 0, &absolute_name);
1357 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1358 if (desc < 0)
1359 {
1360 char *exename = alloca (strlen (name) + 5);
1361 strcat (strcpy (exename, name), ".exe");
1362 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1363 O_RDONLY | O_BINARY, 0, &absolute_name);
1364 }
1365 #endif
1366 if (desc < 0)
1367 {
1368 make_cleanup (xfree, name);
1369 perror_with_name (name);
1370 }
1371 xfree (name); /* Free 1st new malloc'd copy */
1372 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1373 /* It'll be freed in free_objfile(). */
1374
1375 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1376 if (!sym_bfd)
1377 {
1378 close (desc);
1379 make_cleanup (xfree, name);
1380 error (_("\"%s\": can't open to read symbols: %s."), name,
1381 bfd_errmsg (bfd_get_error ()));
1382 }
1383 bfd_set_cacheable (sym_bfd, 1);
1384
1385 if (!bfd_check_format (sym_bfd, bfd_object))
1386 {
1387 /* FIXME: should be checking for errors from bfd_close (for one thing,
1388 on error it does not free all the storage associated with the
1389 bfd). */
1390 bfd_close (sym_bfd); /* This also closes desc */
1391 make_cleanup (xfree, name);
1392 error (_("\"%s\": can't read symbols: %s."), name,
1393 bfd_errmsg (bfd_get_error ()));
1394 }
1395 return (sym_bfd);
1396 }
1397
1398 /* Return the section index for the given section name. Return -1 if
1399 the section was not found. */
1400 int
1401 get_section_index (struct objfile *objfile, char *section_name)
1402 {
1403 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1404 if (sect)
1405 return sect->index;
1406 else
1407 return -1;
1408 }
1409
1410 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1411 startup by the _initialize routine in each object file format reader,
1412 to register information about each format the the reader is prepared
1413 to handle. */
1414
1415 void
1416 add_symtab_fns (struct sym_fns *sf)
1417 {
1418 sf->next = symtab_fns;
1419 symtab_fns = sf;
1420 }
1421
1422
1423 /* Initialize to read symbols from the symbol file sym_bfd. It either
1424 returns or calls error(). The result is an initialized struct sym_fns
1425 in the objfile structure, that contains cached information about the
1426 symbol file. */
1427
1428 static void
1429 find_sym_fns (struct objfile *objfile)
1430 {
1431 struct sym_fns *sf;
1432 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1433 char *our_target = bfd_get_target (objfile->obfd);
1434
1435 if (our_flavour == bfd_target_srec_flavour
1436 || our_flavour == bfd_target_ihex_flavour
1437 || our_flavour == bfd_target_tekhex_flavour)
1438 return; /* No symbols. */
1439
1440 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1441 {
1442 if (our_flavour == sf->sym_flavour)
1443 {
1444 objfile->sf = sf;
1445 return;
1446 }
1447 }
1448 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1449 bfd_get_target (objfile->obfd));
1450 }
1451 \f
1452 /* This function runs the load command of our current target. */
1453
1454 static void
1455 load_command (char *arg, int from_tty)
1456 {
1457 if (arg == NULL)
1458 arg = get_exec_file (1);
1459 target_load (arg, from_tty);
1460
1461 /* After re-loading the executable, we don't really know which
1462 overlays are mapped any more. */
1463 overlay_cache_invalid = 1;
1464 }
1465
1466 /* This version of "load" should be usable for any target. Currently
1467 it is just used for remote targets, not inftarg.c or core files,
1468 on the theory that only in that case is it useful.
1469
1470 Avoiding xmodem and the like seems like a win (a) because we don't have
1471 to worry about finding it, and (b) On VMS, fork() is very slow and so
1472 we don't want to run a subprocess. On the other hand, I'm not sure how
1473 performance compares. */
1474
1475 static int download_write_size = 512;
1476 static void
1477 show_download_write_size (struct ui_file *file, int from_tty,
1478 struct cmd_list_element *c, const char *value)
1479 {
1480 fprintf_filtered (file, _("\
1481 The write size used when downloading a program is %s.\n"),
1482 value);
1483 }
1484 static int validate_download = 0;
1485
1486 /* Callback service function for generic_load (bfd_map_over_sections). */
1487
1488 static void
1489 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1490 {
1491 bfd_size_type *sum = data;
1492
1493 *sum += bfd_get_section_size (asec);
1494 }
1495
1496 /* Opaque data for load_section_callback. */
1497 struct load_section_data {
1498 unsigned long load_offset;
1499 unsigned long write_count;
1500 unsigned long data_count;
1501 bfd_size_type total_size;
1502 };
1503
1504 /* Callback service function for generic_load (bfd_map_over_sections). */
1505
1506 static void
1507 load_section_callback (bfd *abfd, asection *asec, void *data)
1508 {
1509 struct load_section_data *args = data;
1510
1511 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1512 {
1513 bfd_size_type size = bfd_get_section_size (asec);
1514 if (size > 0)
1515 {
1516 char *buffer;
1517 struct cleanup *old_chain;
1518 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1519 bfd_size_type block_size;
1520 int err;
1521 const char *sect_name = bfd_get_section_name (abfd, asec);
1522 bfd_size_type sent;
1523
1524 if (download_write_size > 0 && size > download_write_size)
1525 block_size = download_write_size;
1526 else
1527 block_size = size;
1528
1529 buffer = xmalloc (size);
1530 old_chain = make_cleanup (xfree, buffer);
1531
1532 /* Is this really necessary? I guess it gives the user something
1533 to look at during a long download. */
1534 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1535 sect_name, paddr_nz (size), paddr_nz (lma));
1536
1537 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1538
1539 sent = 0;
1540 do
1541 {
1542 int len;
1543 bfd_size_type this_transfer = size - sent;
1544
1545 if (this_transfer >= block_size)
1546 this_transfer = block_size;
1547 len = target_write_memory_partial (lma, buffer,
1548 this_transfer, &err);
1549 if (err)
1550 break;
1551 if (validate_download)
1552 {
1553 /* Broken memories and broken monitors manifest
1554 themselves here when bring new computers to
1555 life. This doubles already slow downloads. */
1556 /* NOTE: cagney/1999-10-18: A more efficient
1557 implementation might add a verify_memory()
1558 method to the target vector and then use
1559 that. remote.c could implement that method
1560 using the ``qCRC'' packet. */
1561 char *check = xmalloc (len);
1562 struct cleanup *verify_cleanups =
1563 make_cleanup (xfree, check);
1564
1565 if (target_read_memory (lma, check, len) != 0)
1566 error (_("Download verify read failed at 0x%s"),
1567 paddr (lma));
1568 if (memcmp (buffer, check, len) != 0)
1569 error (_("Download verify compare failed at 0x%s"),
1570 paddr (lma));
1571 do_cleanups (verify_cleanups);
1572 }
1573 args->data_count += len;
1574 lma += len;
1575 buffer += len;
1576 args->write_count += 1;
1577 sent += len;
1578 if (quit_flag
1579 || (deprecated_ui_load_progress_hook != NULL
1580 && deprecated_ui_load_progress_hook (sect_name, sent)))
1581 error (_("Canceled the download"));
1582
1583 if (deprecated_show_load_progress != NULL)
1584 deprecated_show_load_progress (sect_name, sent, size,
1585 args->data_count,
1586 args->total_size);
1587 }
1588 while (sent < size);
1589
1590 if (err != 0)
1591 error (_("Memory access error while loading section %s."), sect_name);
1592
1593 do_cleanups (old_chain);
1594 }
1595 }
1596 }
1597
1598 void
1599 generic_load (char *args, int from_tty)
1600 {
1601 asection *s;
1602 bfd *loadfile_bfd;
1603 time_t start_time, end_time; /* Start and end times of download */
1604 char *filename;
1605 struct cleanup *old_cleanups;
1606 char *offptr;
1607 struct load_section_data cbdata;
1608 CORE_ADDR entry;
1609
1610 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1611 cbdata.write_count = 0; /* Number of writes needed. */
1612 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1613 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1614
1615 /* Parse the input argument - the user can specify a load offset as
1616 a second argument. */
1617 filename = xmalloc (strlen (args) + 1);
1618 old_cleanups = make_cleanup (xfree, filename);
1619 strcpy (filename, args);
1620 offptr = strchr (filename, ' ');
1621 if (offptr != NULL)
1622 {
1623 char *endptr;
1624
1625 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1626 if (offptr == endptr)
1627 error (_("Invalid download offset:%s."), offptr);
1628 *offptr = '\0';
1629 }
1630 else
1631 cbdata.load_offset = 0;
1632
1633 /* Open the file for loading. */
1634 loadfile_bfd = bfd_openr (filename, gnutarget);
1635 if (loadfile_bfd == NULL)
1636 {
1637 perror_with_name (filename);
1638 return;
1639 }
1640
1641 /* FIXME: should be checking for errors from bfd_close (for one thing,
1642 on error it does not free all the storage associated with the
1643 bfd). */
1644 make_cleanup_bfd_close (loadfile_bfd);
1645
1646 if (!bfd_check_format (loadfile_bfd, bfd_object))
1647 {
1648 error (_("\"%s\" is not an object file: %s"), filename,
1649 bfd_errmsg (bfd_get_error ()));
1650 }
1651
1652 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1653 (void *) &cbdata.total_size);
1654
1655 start_time = time (NULL);
1656
1657 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1658
1659 end_time = time (NULL);
1660
1661 entry = bfd_get_start_address (loadfile_bfd);
1662 ui_out_text (uiout, "Start address ");
1663 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1664 ui_out_text (uiout, ", load size ");
1665 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1666 ui_out_text (uiout, "\n");
1667 /* We were doing this in remote-mips.c, I suspect it is right
1668 for other targets too. */
1669 write_pc (entry);
1670
1671 /* FIXME: are we supposed to call symbol_file_add or not? According
1672 to a comment from remote-mips.c (where a call to symbol_file_add
1673 was commented out), making the call confuses GDB if more than one
1674 file is loaded in. Some targets do (e.g., remote-vx.c) but
1675 others don't (or didn't - perhaps they have all been deleted). */
1676
1677 print_transfer_performance (gdb_stdout, cbdata.data_count,
1678 cbdata.write_count, end_time - start_time);
1679
1680 do_cleanups (old_cleanups);
1681 }
1682
1683 /* Report how fast the transfer went. */
1684
1685 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1686 replaced by print_transfer_performance (with a very different
1687 function signature). */
1688
1689 void
1690 report_transfer_performance (unsigned long data_count, time_t start_time,
1691 time_t end_time)
1692 {
1693 print_transfer_performance (gdb_stdout, data_count,
1694 end_time - start_time, 0);
1695 }
1696
1697 void
1698 print_transfer_performance (struct ui_file *stream,
1699 unsigned long data_count,
1700 unsigned long write_count,
1701 unsigned long time_count)
1702 {
1703 ui_out_text (uiout, "Transfer rate: ");
1704 if (time_count > 0)
1705 {
1706 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1707 (data_count * 8) / time_count);
1708 ui_out_text (uiout, " bits/sec");
1709 }
1710 else
1711 {
1712 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1713 ui_out_text (uiout, " bits in <1 sec");
1714 }
1715 if (write_count > 0)
1716 {
1717 ui_out_text (uiout, ", ");
1718 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1719 ui_out_text (uiout, " bytes/write");
1720 }
1721 ui_out_text (uiout, ".\n");
1722 }
1723
1724 /* This function allows the addition of incrementally linked object files.
1725 It does not modify any state in the target, only in the debugger. */
1726 /* Note: ezannoni 2000-04-13 This function/command used to have a
1727 special case syntax for the rombug target (Rombug is the boot
1728 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1729 rombug case, the user doesn't need to supply a text address,
1730 instead a call to target_link() (in target.c) would supply the
1731 value to use. We are now discontinuing this type of ad hoc syntax. */
1732
1733 static void
1734 add_symbol_file_command (char *args, int from_tty)
1735 {
1736 char *filename = NULL;
1737 int flags = OBJF_USERLOADED;
1738 char *arg;
1739 int expecting_option = 0;
1740 int section_index = 0;
1741 int argcnt = 0;
1742 int sec_num = 0;
1743 int i;
1744 int expecting_sec_name = 0;
1745 int expecting_sec_addr = 0;
1746
1747 struct sect_opt
1748 {
1749 char *name;
1750 char *value;
1751 };
1752
1753 struct section_addr_info *section_addrs;
1754 struct sect_opt *sect_opts = NULL;
1755 size_t num_sect_opts = 0;
1756 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1757
1758 num_sect_opts = 16;
1759 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1760 * sizeof (struct sect_opt));
1761
1762 dont_repeat ();
1763
1764 if (args == NULL)
1765 error (_("add-symbol-file takes a file name and an address"));
1766
1767 /* Make a copy of the string that we can safely write into. */
1768 args = xstrdup (args);
1769
1770 while (*args != '\000')
1771 {
1772 /* Any leading spaces? */
1773 while (isspace (*args))
1774 args++;
1775
1776 /* Point arg to the beginning of the argument. */
1777 arg = args;
1778
1779 /* Move args pointer over the argument. */
1780 while ((*args != '\000') && !isspace (*args))
1781 args++;
1782
1783 /* If there are more arguments, terminate arg and
1784 proceed past it. */
1785 if (*args != '\000')
1786 *args++ = '\000';
1787
1788 /* Now process the argument. */
1789 if (argcnt == 0)
1790 {
1791 /* The first argument is the file name. */
1792 filename = tilde_expand (arg);
1793 make_cleanup (xfree, filename);
1794 }
1795 else
1796 if (argcnt == 1)
1797 {
1798 /* The second argument is always the text address at which
1799 to load the program. */
1800 sect_opts[section_index].name = ".text";
1801 sect_opts[section_index].value = arg;
1802 if (++section_index > num_sect_opts)
1803 {
1804 num_sect_opts *= 2;
1805 sect_opts = ((struct sect_opt *)
1806 xrealloc (sect_opts,
1807 num_sect_opts
1808 * sizeof (struct sect_opt)));
1809 }
1810 }
1811 else
1812 {
1813 /* It's an option (starting with '-') or it's an argument
1814 to an option */
1815
1816 if (*arg == '-')
1817 {
1818 if (strcmp (arg, "-readnow") == 0)
1819 flags |= OBJF_READNOW;
1820 else if (strcmp (arg, "-s") == 0)
1821 {
1822 expecting_sec_name = 1;
1823 expecting_sec_addr = 1;
1824 }
1825 }
1826 else
1827 {
1828 if (expecting_sec_name)
1829 {
1830 sect_opts[section_index].name = arg;
1831 expecting_sec_name = 0;
1832 }
1833 else
1834 if (expecting_sec_addr)
1835 {
1836 sect_opts[section_index].value = arg;
1837 expecting_sec_addr = 0;
1838 if (++section_index > num_sect_opts)
1839 {
1840 num_sect_opts *= 2;
1841 sect_opts = ((struct sect_opt *)
1842 xrealloc (sect_opts,
1843 num_sect_opts
1844 * sizeof (struct sect_opt)));
1845 }
1846 }
1847 else
1848 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1849 }
1850 }
1851 argcnt++;
1852 }
1853
1854 /* Print the prompt for the query below. And save the arguments into
1855 a sect_addr_info structure to be passed around to other
1856 functions. We have to split this up into separate print
1857 statements because hex_string returns a local static
1858 string. */
1859
1860 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1861 section_addrs = alloc_section_addr_info (section_index);
1862 make_cleanup (xfree, section_addrs);
1863 for (i = 0; i < section_index; i++)
1864 {
1865 CORE_ADDR addr;
1866 char *val = sect_opts[i].value;
1867 char *sec = sect_opts[i].name;
1868
1869 addr = parse_and_eval_address (val);
1870
1871 /* Here we store the section offsets in the order they were
1872 entered on the command line. */
1873 section_addrs->other[sec_num].name = sec;
1874 section_addrs->other[sec_num].addr = addr;
1875 printf_unfiltered ("\t%s_addr = %s\n",
1876 sec, hex_string ((unsigned long)addr));
1877 sec_num++;
1878
1879 /* The object's sections are initialized when a
1880 call is made to build_objfile_section_table (objfile).
1881 This happens in reread_symbols.
1882 At this point, we don't know what file type this is,
1883 so we can't determine what section names are valid. */
1884 }
1885
1886 if (from_tty && (!query ("%s", "")))
1887 error (_("Not confirmed."));
1888
1889 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1890
1891 /* Getting new symbols may change our opinion about what is
1892 frameless. */
1893 reinit_frame_cache ();
1894 do_cleanups (my_cleanups);
1895 }
1896 \f
1897 static void
1898 add_shared_symbol_files_command (char *args, int from_tty)
1899 {
1900 #ifdef ADD_SHARED_SYMBOL_FILES
1901 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1902 #else
1903 error (_("This command is not available in this configuration of GDB."));
1904 #endif
1905 }
1906 \f
1907 /* Re-read symbols if a symbol-file has changed. */
1908 void
1909 reread_symbols (void)
1910 {
1911 struct objfile *objfile;
1912 long new_modtime;
1913 int reread_one = 0;
1914 struct stat new_statbuf;
1915 int res;
1916
1917 /* With the addition of shared libraries, this should be modified,
1918 the load time should be saved in the partial symbol tables, since
1919 different tables may come from different source files. FIXME.
1920 This routine should then walk down each partial symbol table
1921 and see if the symbol table that it originates from has been changed */
1922
1923 for (objfile = object_files; objfile; objfile = objfile->next)
1924 {
1925 if (objfile->obfd)
1926 {
1927 #ifdef DEPRECATED_IBM6000_TARGET
1928 /* If this object is from a shared library, then you should
1929 stat on the library name, not member name. */
1930
1931 if (objfile->obfd->my_archive)
1932 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1933 else
1934 #endif
1935 res = stat (objfile->name, &new_statbuf);
1936 if (res != 0)
1937 {
1938 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1939 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1940 objfile->name);
1941 continue;
1942 }
1943 new_modtime = new_statbuf.st_mtime;
1944 if (new_modtime != objfile->mtime)
1945 {
1946 struct cleanup *old_cleanups;
1947 struct section_offsets *offsets;
1948 int num_offsets;
1949 char *obfd_filename;
1950
1951 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1952 objfile->name);
1953
1954 /* There are various functions like symbol_file_add,
1955 symfile_bfd_open, syms_from_objfile, etc., which might
1956 appear to do what we want. But they have various other
1957 effects which we *don't* want. So we just do stuff
1958 ourselves. We don't worry about mapped files (for one thing,
1959 any mapped file will be out of date). */
1960
1961 /* If we get an error, blow away this objfile (not sure if
1962 that is the correct response for things like shared
1963 libraries). */
1964 old_cleanups = make_cleanup_free_objfile (objfile);
1965 /* We need to do this whenever any symbols go away. */
1966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1967
1968 /* Clean up any state BFD has sitting around. We don't need
1969 to close the descriptor but BFD lacks a way of closing the
1970 BFD without closing the descriptor. */
1971 obfd_filename = bfd_get_filename (objfile->obfd);
1972 if (!bfd_close (objfile->obfd))
1973 error (_("Can't close BFD for %s: %s"), objfile->name,
1974 bfd_errmsg (bfd_get_error ()));
1975 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1976 if (objfile->obfd == NULL)
1977 error (_("Can't open %s to read symbols."), objfile->name);
1978 /* bfd_openr sets cacheable to true, which is what we want. */
1979 if (!bfd_check_format (objfile->obfd, bfd_object))
1980 error (_("Can't read symbols from %s: %s."), objfile->name,
1981 bfd_errmsg (bfd_get_error ()));
1982
1983 /* Save the offsets, we will nuke them with the rest of the
1984 objfile_obstack. */
1985 num_offsets = objfile->num_sections;
1986 offsets = ((struct section_offsets *)
1987 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1988 memcpy (offsets, objfile->section_offsets,
1989 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1990
1991 /* Nuke all the state that we will re-read. Much of the following
1992 code which sets things to NULL really is necessary to tell
1993 other parts of GDB that there is nothing currently there. */
1994
1995 /* FIXME: Do we have to free a whole linked list, or is this
1996 enough? */
1997 if (objfile->global_psymbols.list)
1998 xfree (objfile->global_psymbols.list);
1999 memset (&objfile->global_psymbols, 0,
2000 sizeof (objfile->global_psymbols));
2001 if (objfile->static_psymbols.list)
2002 xfree (objfile->static_psymbols.list);
2003 memset (&objfile->static_psymbols, 0,
2004 sizeof (objfile->static_psymbols));
2005
2006 /* Free the obstacks for non-reusable objfiles */
2007 bcache_xfree (objfile->psymbol_cache);
2008 objfile->psymbol_cache = bcache_xmalloc ();
2009 bcache_xfree (objfile->macro_cache);
2010 objfile->macro_cache = bcache_xmalloc ();
2011 if (objfile->demangled_names_hash != NULL)
2012 {
2013 htab_delete (objfile->demangled_names_hash);
2014 objfile->demangled_names_hash = NULL;
2015 }
2016 obstack_free (&objfile->objfile_obstack, 0);
2017 objfile->sections = NULL;
2018 objfile->symtabs = NULL;
2019 objfile->psymtabs = NULL;
2020 objfile->free_psymtabs = NULL;
2021 objfile->cp_namespace_symtab = NULL;
2022 objfile->msymbols = NULL;
2023 objfile->deprecated_sym_private = NULL;
2024 objfile->minimal_symbol_count = 0;
2025 memset (&objfile->msymbol_hash, 0,
2026 sizeof (objfile->msymbol_hash));
2027 memset (&objfile->msymbol_demangled_hash, 0,
2028 sizeof (objfile->msymbol_demangled_hash));
2029 objfile->fundamental_types = NULL;
2030 clear_objfile_data (objfile);
2031 if (objfile->sf != NULL)
2032 {
2033 (*objfile->sf->sym_finish) (objfile);
2034 }
2035
2036 /* We never make this a mapped file. */
2037 objfile->md = NULL;
2038 objfile->psymbol_cache = bcache_xmalloc ();
2039 objfile->macro_cache = bcache_xmalloc ();
2040 /* obstack_init also initializes the obstack so it is
2041 empty. We could use obstack_specify_allocation but
2042 gdb_obstack.h specifies the alloc/dealloc
2043 functions. */
2044 obstack_init (&objfile->objfile_obstack);
2045 if (build_objfile_section_table (objfile))
2046 {
2047 error (_("Can't find the file sections in `%s': %s"),
2048 objfile->name, bfd_errmsg (bfd_get_error ()));
2049 }
2050 terminate_minimal_symbol_table (objfile);
2051
2052 /* We use the same section offsets as from last time. I'm not
2053 sure whether that is always correct for shared libraries. */
2054 objfile->section_offsets = (struct section_offsets *)
2055 obstack_alloc (&objfile->objfile_obstack,
2056 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2057 memcpy (objfile->section_offsets, offsets,
2058 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2059 objfile->num_sections = num_offsets;
2060
2061 /* What the hell is sym_new_init for, anyway? The concept of
2062 distinguishing between the main file and additional files
2063 in this way seems rather dubious. */
2064 if (objfile == symfile_objfile)
2065 {
2066 (*objfile->sf->sym_new_init) (objfile);
2067 }
2068
2069 (*objfile->sf->sym_init) (objfile);
2070 clear_complaints (&symfile_complaints, 1, 1);
2071 /* The "mainline" parameter is a hideous hack; I think leaving it
2072 zero is OK since dbxread.c also does what it needs to do if
2073 objfile->global_psymbols.size is 0. */
2074 (*objfile->sf->sym_read) (objfile, 0);
2075 if (!have_partial_symbols () && !have_full_symbols ())
2076 {
2077 wrap_here ("");
2078 printf_unfiltered (_("(no debugging symbols found)\n"));
2079 wrap_here ("");
2080 }
2081 objfile->flags |= OBJF_SYMS;
2082
2083 /* We're done reading the symbol file; finish off complaints. */
2084 clear_complaints (&symfile_complaints, 0, 1);
2085
2086 /* Getting new symbols may change our opinion about what is
2087 frameless. */
2088
2089 reinit_frame_cache ();
2090
2091 /* Discard cleanups as symbol reading was successful. */
2092 discard_cleanups (old_cleanups);
2093
2094 /* If the mtime has changed between the time we set new_modtime
2095 and now, we *want* this to be out of date, so don't call stat
2096 again now. */
2097 objfile->mtime = new_modtime;
2098 reread_one = 1;
2099 reread_separate_symbols (objfile);
2100 }
2101 }
2102 }
2103
2104 if (reread_one)
2105 {
2106 clear_symtab_users ();
2107 /* At least one objfile has changed, so we can consider that
2108 the executable we're debugging has changed too. */
2109 observer_notify_executable_changed (NULL);
2110 }
2111
2112 }
2113
2114
2115 /* Handle separate debug info for OBJFILE, which has just been
2116 re-read:
2117 - If we had separate debug info before, but now we don't, get rid
2118 of the separated objfile.
2119 - If we didn't have separated debug info before, but now we do,
2120 read in the new separated debug info file.
2121 - If the debug link points to a different file, toss the old one
2122 and read the new one.
2123 This function does *not* handle the case where objfile is still
2124 using the same separate debug info file, but that file's timestamp
2125 has changed. That case should be handled by the loop in
2126 reread_symbols already. */
2127 static void
2128 reread_separate_symbols (struct objfile *objfile)
2129 {
2130 char *debug_file;
2131 unsigned long crc32;
2132
2133 /* Does the updated objfile's debug info live in a
2134 separate file? */
2135 debug_file = find_separate_debug_file (objfile);
2136
2137 if (objfile->separate_debug_objfile)
2138 {
2139 /* There are two cases where we need to get rid of
2140 the old separated debug info objfile:
2141 - if the new primary objfile doesn't have
2142 separated debug info, or
2143 - if the new primary objfile has separate debug
2144 info, but it's under a different filename.
2145
2146 If the old and new objfiles both have separate
2147 debug info, under the same filename, then we're
2148 okay --- if the separated file's contents have
2149 changed, we will have caught that when we
2150 visited it in this function's outermost
2151 loop. */
2152 if (! debug_file
2153 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2154 free_objfile (objfile->separate_debug_objfile);
2155 }
2156
2157 /* If the new objfile has separate debug info, and we
2158 haven't loaded it already, do so now. */
2159 if (debug_file
2160 && ! objfile->separate_debug_objfile)
2161 {
2162 /* Use the same section offset table as objfile itself.
2163 Preserve the flags from objfile that make sense. */
2164 objfile->separate_debug_objfile
2165 = (symbol_file_add_with_addrs_or_offsets
2166 (symfile_bfd_open (debug_file),
2167 info_verbose, /* from_tty: Don't override the default. */
2168 0, /* No addr table. */
2169 objfile->section_offsets, objfile->num_sections,
2170 0, /* Not mainline. See comments about this above. */
2171 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2172 | OBJF_USERLOADED)));
2173 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2174 = objfile;
2175 }
2176 }
2177
2178
2179 \f
2180
2181
2182 typedef struct
2183 {
2184 char *ext;
2185 enum language lang;
2186 }
2187 filename_language;
2188
2189 static filename_language *filename_language_table;
2190 static int fl_table_size, fl_table_next;
2191
2192 static void
2193 add_filename_language (char *ext, enum language lang)
2194 {
2195 if (fl_table_next >= fl_table_size)
2196 {
2197 fl_table_size += 10;
2198 filename_language_table =
2199 xrealloc (filename_language_table,
2200 fl_table_size * sizeof (*filename_language_table));
2201 }
2202
2203 filename_language_table[fl_table_next].ext = xstrdup (ext);
2204 filename_language_table[fl_table_next].lang = lang;
2205 fl_table_next++;
2206 }
2207
2208 static char *ext_args;
2209 static void
2210 show_ext_args (struct ui_file *file, int from_tty,
2211 struct cmd_list_element *c, const char *value)
2212 {
2213 fprintf_filtered (file, _("\
2214 Mapping between filename extension and source language is \"%s\".\n"),
2215 value);
2216 }
2217
2218 static void
2219 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2220 {
2221 int i;
2222 char *cp = ext_args;
2223 enum language lang;
2224
2225 /* First arg is filename extension, starting with '.' */
2226 if (*cp != '.')
2227 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2228
2229 /* Find end of first arg. */
2230 while (*cp && !isspace (*cp))
2231 cp++;
2232
2233 if (*cp == '\0')
2234 error (_("'%s': two arguments required -- filename extension and language"),
2235 ext_args);
2236
2237 /* Null-terminate first arg */
2238 *cp++ = '\0';
2239
2240 /* Find beginning of second arg, which should be a source language. */
2241 while (*cp && isspace (*cp))
2242 cp++;
2243
2244 if (*cp == '\0')
2245 error (_("'%s': two arguments required -- filename extension and language"),
2246 ext_args);
2247
2248 /* Lookup the language from among those we know. */
2249 lang = language_enum (cp);
2250
2251 /* Now lookup the filename extension: do we already know it? */
2252 for (i = 0; i < fl_table_next; i++)
2253 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2254 break;
2255
2256 if (i >= fl_table_next)
2257 {
2258 /* new file extension */
2259 add_filename_language (ext_args, lang);
2260 }
2261 else
2262 {
2263 /* redefining a previously known filename extension */
2264
2265 /* if (from_tty) */
2266 /* query ("Really make files of type %s '%s'?", */
2267 /* ext_args, language_str (lang)); */
2268
2269 xfree (filename_language_table[i].ext);
2270 filename_language_table[i].ext = xstrdup (ext_args);
2271 filename_language_table[i].lang = lang;
2272 }
2273 }
2274
2275 static void
2276 info_ext_lang_command (char *args, int from_tty)
2277 {
2278 int i;
2279
2280 printf_filtered (_("Filename extensions and the languages they represent:"));
2281 printf_filtered ("\n\n");
2282 for (i = 0; i < fl_table_next; i++)
2283 printf_filtered ("\t%s\t- %s\n",
2284 filename_language_table[i].ext,
2285 language_str (filename_language_table[i].lang));
2286 }
2287
2288 static void
2289 init_filename_language_table (void)
2290 {
2291 if (fl_table_size == 0) /* protect against repetition */
2292 {
2293 fl_table_size = 20;
2294 fl_table_next = 0;
2295 filename_language_table =
2296 xmalloc (fl_table_size * sizeof (*filename_language_table));
2297 add_filename_language (".c", language_c);
2298 add_filename_language (".C", language_cplus);
2299 add_filename_language (".cc", language_cplus);
2300 add_filename_language (".cp", language_cplus);
2301 add_filename_language (".cpp", language_cplus);
2302 add_filename_language (".cxx", language_cplus);
2303 add_filename_language (".c++", language_cplus);
2304 add_filename_language (".java", language_java);
2305 add_filename_language (".class", language_java);
2306 add_filename_language (".m", language_objc);
2307 add_filename_language (".f", language_fortran);
2308 add_filename_language (".F", language_fortran);
2309 add_filename_language (".s", language_asm);
2310 add_filename_language (".S", language_asm);
2311 add_filename_language (".pas", language_pascal);
2312 add_filename_language (".p", language_pascal);
2313 add_filename_language (".pp", language_pascal);
2314 add_filename_language (".adb", language_ada);
2315 add_filename_language (".ads", language_ada);
2316 add_filename_language (".a", language_ada);
2317 add_filename_language (".ada", language_ada);
2318 }
2319 }
2320
2321 enum language
2322 deduce_language_from_filename (char *filename)
2323 {
2324 int i;
2325 char *cp;
2326
2327 if (filename != NULL)
2328 if ((cp = strrchr (filename, '.')) != NULL)
2329 for (i = 0; i < fl_table_next; i++)
2330 if (strcmp (cp, filename_language_table[i].ext) == 0)
2331 return filename_language_table[i].lang;
2332
2333 return language_unknown;
2334 }
2335 \f
2336 /* allocate_symtab:
2337
2338 Allocate and partly initialize a new symbol table. Return a pointer
2339 to it. error() if no space.
2340
2341 Caller must set these fields:
2342 LINETABLE(symtab)
2343 symtab->blockvector
2344 symtab->dirname
2345 symtab->free_code
2346 symtab->free_ptr
2347 possibly free_named_symtabs (symtab->filename);
2348 */
2349
2350 struct symtab *
2351 allocate_symtab (char *filename, struct objfile *objfile)
2352 {
2353 struct symtab *symtab;
2354
2355 symtab = (struct symtab *)
2356 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2357 memset (symtab, 0, sizeof (*symtab));
2358 symtab->filename = obsavestring (filename, strlen (filename),
2359 &objfile->objfile_obstack);
2360 symtab->fullname = NULL;
2361 symtab->language = deduce_language_from_filename (filename);
2362 symtab->debugformat = obsavestring ("unknown", 7,
2363 &objfile->objfile_obstack);
2364
2365 /* Hook it to the objfile it comes from */
2366
2367 symtab->objfile = objfile;
2368 symtab->next = objfile->symtabs;
2369 objfile->symtabs = symtab;
2370
2371 /* FIXME: This should go away. It is only defined for the Z8000,
2372 and the Z8000 definition of this macro doesn't have anything to
2373 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2374 here for convenience. */
2375 #ifdef INIT_EXTRA_SYMTAB_INFO
2376 INIT_EXTRA_SYMTAB_INFO (symtab);
2377 #endif
2378
2379 return (symtab);
2380 }
2381
2382 struct partial_symtab *
2383 allocate_psymtab (char *filename, struct objfile *objfile)
2384 {
2385 struct partial_symtab *psymtab;
2386
2387 if (objfile->free_psymtabs)
2388 {
2389 psymtab = objfile->free_psymtabs;
2390 objfile->free_psymtabs = psymtab->next;
2391 }
2392 else
2393 psymtab = (struct partial_symtab *)
2394 obstack_alloc (&objfile->objfile_obstack,
2395 sizeof (struct partial_symtab));
2396
2397 memset (psymtab, 0, sizeof (struct partial_symtab));
2398 psymtab->filename = obsavestring (filename, strlen (filename),
2399 &objfile->objfile_obstack);
2400 psymtab->symtab = NULL;
2401
2402 /* Prepend it to the psymtab list for the objfile it belongs to.
2403 Psymtabs are searched in most recent inserted -> least recent
2404 inserted order. */
2405
2406 psymtab->objfile = objfile;
2407 psymtab->next = objfile->psymtabs;
2408 objfile->psymtabs = psymtab;
2409 #if 0
2410 {
2411 struct partial_symtab **prev_pst;
2412 psymtab->objfile = objfile;
2413 psymtab->next = NULL;
2414 prev_pst = &(objfile->psymtabs);
2415 while ((*prev_pst) != NULL)
2416 prev_pst = &((*prev_pst)->next);
2417 (*prev_pst) = psymtab;
2418 }
2419 #endif
2420
2421 return (psymtab);
2422 }
2423
2424 void
2425 discard_psymtab (struct partial_symtab *pst)
2426 {
2427 struct partial_symtab **prev_pst;
2428
2429 /* From dbxread.c:
2430 Empty psymtabs happen as a result of header files which don't
2431 have any symbols in them. There can be a lot of them. But this
2432 check is wrong, in that a psymtab with N_SLINE entries but
2433 nothing else is not empty, but we don't realize that. Fixing
2434 that without slowing things down might be tricky. */
2435
2436 /* First, snip it out of the psymtab chain */
2437
2438 prev_pst = &(pst->objfile->psymtabs);
2439 while ((*prev_pst) != pst)
2440 prev_pst = &((*prev_pst)->next);
2441 (*prev_pst) = pst->next;
2442
2443 /* Next, put it on a free list for recycling */
2444
2445 pst->next = pst->objfile->free_psymtabs;
2446 pst->objfile->free_psymtabs = pst;
2447 }
2448 \f
2449
2450 /* Reset all data structures in gdb which may contain references to symbol
2451 table data. */
2452
2453 void
2454 clear_symtab_users (void)
2455 {
2456 /* Someday, we should do better than this, by only blowing away
2457 the things that really need to be blown. */
2458
2459 /* Clear the "current" symtab first, because it is no longer valid.
2460 breakpoint_re_set may try to access the current symtab. */
2461 clear_current_source_symtab_and_line ();
2462
2463 clear_value_history ();
2464 clear_displays ();
2465 clear_internalvars ();
2466 breakpoint_re_set ();
2467 set_default_breakpoint (0, 0, 0, 0);
2468 clear_pc_function_cache ();
2469 if (deprecated_target_new_objfile_hook)
2470 deprecated_target_new_objfile_hook (NULL);
2471 }
2472
2473 static void
2474 clear_symtab_users_cleanup (void *ignore)
2475 {
2476 clear_symtab_users ();
2477 }
2478
2479 /* clear_symtab_users_once:
2480
2481 This function is run after symbol reading, or from a cleanup.
2482 If an old symbol table was obsoleted, the old symbol table
2483 has been blown away, but the other GDB data structures that may
2484 reference it have not yet been cleared or re-directed. (The old
2485 symtab was zapped, and the cleanup queued, in free_named_symtab()
2486 below.)
2487
2488 This function can be queued N times as a cleanup, or called
2489 directly; it will do all the work the first time, and then will be a
2490 no-op until the next time it is queued. This works by bumping a
2491 counter at queueing time. Much later when the cleanup is run, or at
2492 the end of symbol processing (in case the cleanup is discarded), if
2493 the queued count is greater than the "done-count", we do the work
2494 and set the done-count to the queued count. If the queued count is
2495 less than or equal to the done-count, we just ignore the call. This
2496 is needed because reading a single .o file will often replace many
2497 symtabs (one per .h file, for example), and we don't want to reset
2498 the breakpoints N times in the user's face.
2499
2500 The reason we both queue a cleanup, and call it directly after symbol
2501 reading, is because the cleanup protects us in case of errors, but is
2502 discarded if symbol reading is successful. */
2503
2504 #if 0
2505 /* FIXME: As free_named_symtabs is currently a big noop this function
2506 is no longer needed. */
2507 static void clear_symtab_users_once (void);
2508
2509 static int clear_symtab_users_queued;
2510 static int clear_symtab_users_done;
2511
2512 static void
2513 clear_symtab_users_once (void)
2514 {
2515 /* Enforce once-per-`do_cleanups'-semantics */
2516 if (clear_symtab_users_queued <= clear_symtab_users_done)
2517 return;
2518 clear_symtab_users_done = clear_symtab_users_queued;
2519
2520 clear_symtab_users ();
2521 }
2522 #endif
2523
2524 /* Delete the specified psymtab, and any others that reference it. */
2525
2526 static void
2527 cashier_psymtab (struct partial_symtab *pst)
2528 {
2529 struct partial_symtab *ps, *pprev = NULL;
2530 int i;
2531
2532 /* Find its previous psymtab in the chain */
2533 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2534 {
2535 if (ps == pst)
2536 break;
2537 pprev = ps;
2538 }
2539
2540 if (ps)
2541 {
2542 /* Unhook it from the chain. */
2543 if (ps == pst->objfile->psymtabs)
2544 pst->objfile->psymtabs = ps->next;
2545 else
2546 pprev->next = ps->next;
2547
2548 /* FIXME, we can't conveniently deallocate the entries in the
2549 partial_symbol lists (global_psymbols/static_psymbols) that
2550 this psymtab points to. These just take up space until all
2551 the psymtabs are reclaimed. Ditto the dependencies list and
2552 filename, which are all in the objfile_obstack. */
2553
2554 /* We need to cashier any psymtab that has this one as a dependency... */
2555 again:
2556 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2557 {
2558 for (i = 0; i < ps->number_of_dependencies; i++)
2559 {
2560 if (ps->dependencies[i] == pst)
2561 {
2562 cashier_psymtab (ps);
2563 goto again; /* Must restart, chain has been munged. */
2564 }
2565 }
2566 }
2567 }
2568 }
2569
2570 /* If a symtab or psymtab for filename NAME is found, free it along
2571 with any dependent breakpoints, displays, etc.
2572 Used when loading new versions of object modules with the "add-file"
2573 command. This is only called on the top-level symtab or psymtab's name;
2574 it is not called for subsidiary files such as .h files.
2575
2576 Return value is 1 if we blew away the environment, 0 if not.
2577 FIXME. The return value appears to never be used.
2578
2579 FIXME. I think this is not the best way to do this. We should
2580 work on being gentler to the environment while still cleaning up
2581 all stray pointers into the freed symtab. */
2582
2583 int
2584 free_named_symtabs (char *name)
2585 {
2586 #if 0
2587 /* FIXME: With the new method of each objfile having it's own
2588 psymtab list, this function needs serious rethinking. In particular,
2589 why was it ever necessary to toss psymtabs with specific compilation
2590 unit filenames, as opposed to all psymtabs from a particular symbol
2591 file? -- fnf
2592 Well, the answer is that some systems permit reloading of particular
2593 compilation units. We want to blow away any old info about these
2594 compilation units, regardless of which objfiles they arrived in. --gnu. */
2595
2596 struct symtab *s;
2597 struct symtab *prev;
2598 struct partial_symtab *ps;
2599 struct blockvector *bv;
2600 int blewit = 0;
2601
2602 /* We only wack things if the symbol-reload switch is set. */
2603 if (!symbol_reloading)
2604 return 0;
2605
2606 /* Some symbol formats have trouble providing file names... */
2607 if (name == 0 || *name == '\0')
2608 return 0;
2609
2610 /* Look for a psymtab with the specified name. */
2611
2612 again2:
2613 for (ps = partial_symtab_list; ps; ps = ps->next)
2614 {
2615 if (strcmp (name, ps->filename) == 0)
2616 {
2617 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2618 goto again2; /* Must restart, chain has been munged */
2619 }
2620 }
2621
2622 /* Look for a symtab with the specified name. */
2623
2624 for (s = symtab_list; s; s = s->next)
2625 {
2626 if (strcmp (name, s->filename) == 0)
2627 break;
2628 prev = s;
2629 }
2630
2631 if (s)
2632 {
2633 if (s == symtab_list)
2634 symtab_list = s->next;
2635 else
2636 prev->next = s->next;
2637
2638 /* For now, queue a delete for all breakpoints, displays, etc., whether
2639 or not they depend on the symtab being freed. This should be
2640 changed so that only those data structures affected are deleted. */
2641
2642 /* But don't delete anything if the symtab is empty.
2643 This test is necessary due to a bug in "dbxread.c" that
2644 causes empty symtabs to be created for N_SO symbols that
2645 contain the pathname of the object file. (This problem
2646 has been fixed in GDB 3.9x). */
2647
2648 bv = BLOCKVECTOR (s);
2649 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2650 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2651 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2652 {
2653 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2654 name);
2655 clear_symtab_users_queued++;
2656 make_cleanup (clear_symtab_users_once, 0);
2657 blewit = 1;
2658 }
2659 else
2660 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2661 name);
2662
2663 free_symtab (s);
2664 }
2665 else
2666 {
2667 /* It is still possible that some breakpoints will be affected
2668 even though no symtab was found, since the file might have
2669 been compiled without debugging, and hence not be associated
2670 with a symtab. In order to handle this correctly, we would need
2671 to keep a list of text address ranges for undebuggable files.
2672 For now, we do nothing, since this is a fairly obscure case. */
2673 ;
2674 }
2675
2676 /* FIXME, what about the minimal symbol table? */
2677 return blewit;
2678 #else
2679 return (0);
2680 #endif
2681 }
2682 \f
2683 /* Allocate and partially fill a partial symtab. It will be
2684 completely filled at the end of the symbol list.
2685
2686 FILENAME is the name of the symbol-file we are reading from. */
2687
2688 struct partial_symtab *
2689 start_psymtab_common (struct objfile *objfile,
2690 struct section_offsets *section_offsets, char *filename,
2691 CORE_ADDR textlow, struct partial_symbol **global_syms,
2692 struct partial_symbol **static_syms)
2693 {
2694 struct partial_symtab *psymtab;
2695
2696 psymtab = allocate_psymtab (filename, objfile);
2697 psymtab->section_offsets = section_offsets;
2698 psymtab->textlow = textlow;
2699 psymtab->texthigh = psymtab->textlow; /* default */
2700 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2701 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2702 return (psymtab);
2703 }
2704 \f
2705 /* Add a symbol with a long value to a psymtab.
2706 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2707 Return the partial symbol that has been added. */
2708
2709 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2710 symbol is so that callers can get access to the symbol's demangled
2711 name, which they don't have any cheap way to determine otherwise.
2712 (Currenly, dwarf2read.c is the only file who uses that information,
2713 though it's possible that other readers might in the future.)
2714 Elena wasn't thrilled about that, and I don't blame her, but we
2715 couldn't come up with a better way to get that information. If
2716 it's needed in other situations, we could consider breaking up
2717 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2718 cache. */
2719
2720 const struct partial_symbol *
2721 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2722 enum address_class class,
2723 struct psymbol_allocation_list *list, long val, /* Value as a long */
2724 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2725 enum language language, struct objfile *objfile)
2726 {
2727 struct partial_symbol *psym;
2728 char *buf = alloca (namelength + 1);
2729 /* psymbol is static so that there will be no uninitialized gaps in the
2730 structure which might contain random data, causing cache misses in
2731 bcache. */
2732 static struct partial_symbol psymbol;
2733
2734 /* Create local copy of the partial symbol */
2735 memcpy (buf, name, namelength);
2736 buf[namelength] = '\0';
2737 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2738 if (val != 0)
2739 {
2740 SYMBOL_VALUE (&psymbol) = val;
2741 }
2742 else
2743 {
2744 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2745 }
2746 SYMBOL_SECTION (&psymbol) = 0;
2747 SYMBOL_LANGUAGE (&psymbol) = language;
2748 PSYMBOL_DOMAIN (&psymbol) = domain;
2749 PSYMBOL_CLASS (&psymbol) = class;
2750
2751 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2752
2753 /* Stash the partial symbol away in the cache */
2754 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2755 objfile->psymbol_cache);
2756
2757 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2758 if (list->next >= list->list + list->size)
2759 {
2760 extend_psymbol_list (list, objfile);
2761 }
2762 *list->next++ = psym;
2763 OBJSTAT (objfile, n_psyms++);
2764
2765 return psym;
2766 }
2767
2768 /* Add a symbol with a long value to a psymtab. This differs from
2769 * add_psymbol_to_list above in taking both a mangled and a demangled
2770 * name. */
2771
2772 void
2773 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2774 int dem_namelength, domain_enum domain,
2775 enum address_class class,
2776 struct psymbol_allocation_list *list, long val, /* Value as a long */
2777 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2778 enum language language,
2779 struct objfile *objfile)
2780 {
2781 struct partial_symbol *psym;
2782 char *buf = alloca (namelength + 1);
2783 /* psymbol is static so that there will be no uninitialized gaps in the
2784 structure which might contain random data, causing cache misses in
2785 bcache. */
2786 static struct partial_symbol psymbol;
2787
2788 /* Create local copy of the partial symbol */
2789
2790 memcpy (buf, name, namelength);
2791 buf[namelength] = '\0';
2792 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2793 objfile->psymbol_cache);
2794
2795 buf = alloca (dem_namelength + 1);
2796 memcpy (buf, dem_name, dem_namelength);
2797 buf[dem_namelength] = '\0';
2798
2799 switch (language)
2800 {
2801 case language_c:
2802 case language_cplus:
2803 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2804 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2805 break;
2806 /* FIXME What should be done for the default case? Ignoring for now. */
2807 }
2808
2809 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2810 if (val != 0)
2811 {
2812 SYMBOL_VALUE (&psymbol) = val;
2813 }
2814 else
2815 {
2816 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2817 }
2818 SYMBOL_SECTION (&psymbol) = 0;
2819 SYMBOL_LANGUAGE (&psymbol) = language;
2820 PSYMBOL_DOMAIN (&psymbol) = domain;
2821 PSYMBOL_CLASS (&psymbol) = class;
2822 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2823
2824 /* Stash the partial symbol away in the cache */
2825 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2826 objfile->psymbol_cache);
2827
2828 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2829 if (list->next >= list->list + list->size)
2830 {
2831 extend_psymbol_list (list, objfile);
2832 }
2833 *list->next++ = psym;
2834 OBJSTAT (objfile, n_psyms++);
2835 }
2836
2837 /* Initialize storage for partial symbols. */
2838
2839 void
2840 init_psymbol_list (struct objfile *objfile, int total_symbols)
2841 {
2842 /* Free any previously allocated psymbol lists. */
2843
2844 if (objfile->global_psymbols.list)
2845 {
2846 xfree (objfile->global_psymbols.list);
2847 }
2848 if (objfile->static_psymbols.list)
2849 {
2850 xfree (objfile->static_psymbols.list);
2851 }
2852
2853 /* Current best guess is that approximately a twentieth
2854 of the total symbols (in a debugging file) are global or static
2855 oriented symbols */
2856
2857 objfile->global_psymbols.size = total_symbols / 10;
2858 objfile->static_psymbols.size = total_symbols / 10;
2859
2860 if (objfile->global_psymbols.size > 0)
2861 {
2862 objfile->global_psymbols.next =
2863 objfile->global_psymbols.list = (struct partial_symbol **)
2864 xmalloc ((objfile->global_psymbols.size
2865 * sizeof (struct partial_symbol *)));
2866 }
2867 if (objfile->static_psymbols.size > 0)
2868 {
2869 objfile->static_psymbols.next =
2870 objfile->static_psymbols.list = (struct partial_symbol **)
2871 xmalloc ((objfile->static_psymbols.size
2872 * sizeof (struct partial_symbol *)));
2873 }
2874 }
2875
2876 /* OVERLAYS:
2877 The following code implements an abstraction for debugging overlay sections.
2878
2879 The target model is as follows:
2880 1) The gnu linker will permit multiple sections to be mapped into the
2881 same VMA, each with its own unique LMA (or load address).
2882 2) It is assumed that some runtime mechanism exists for mapping the
2883 sections, one by one, from the load address into the VMA address.
2884 3) This code provides a mechanism for gdb to keep track of which
2885 sections should be considered to be mapped from the VMA to the LMA.
2886 This information is used for symbol lookup, and memory read/write.
2887 For instance, if a section has been mapped then its contents
2888 should be read from the VMA, otherwise from the LMA.
2889
2890 Two levels of debugger support for overlays are available. One is
2891 "manual", in which the debugger relies on the user to tell it which
2892 overlays are currently mapped. This level of support is
2893 implemented entirely in the core debugger, and the information about
2894 whether a section is mapped is kept in the objfile->obj_section table.
2895
2896 The second level of support is "automatic", and is only available if
2897 the target-specific code provides functionality to read the target's
2898 overlay mapping table, and translate its contents for the debugger
2899 (by updating the mapped state information in the obj_section tables).
2900
2901 The interface is as follows:
2902 User commands:
2903 overlay map <name> -- tell gdb to consider this section mapped
2904 overlay unmap <name> -- tell gdb to consider this section unmapped
2905 overlay list -- list the sections that GDB thinks are mapped
2906 overlay read-target -- get the target's state of what's mapped
2907 overlay off/manual/auto -- set overlay debugging state
2908 Functional interface:
2909 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2910 section, return that section.
2911 find_pc_overlay(pc): find any overlay section that contains
2912 the pc, either in its VMA or its LMA
2913 overlay_is_mapped(sect): true if overlay is marked as mapped
2914 section_is_overlay(sect): true if section's VMA != LMA
2915 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2916 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2917 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2918 overlay_mapped_address(...): map an address from section's LMA to VMA
2919 overlay_unmapped_address(...): map an address from section's VMA to LMA
2920 symbol_overlayed_address(...): Return a "current" address for symbol:
2921 either in VMA or LMA depending on whether
2922 the symbol's section is currently mapped
2923 */
2924
2925 /* Overlay debugging state: */
2926
2927 enum overlay_debugging_state overlay_debugging = ovly_off;
2928 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2929
2930 /* Target vector for refreshing overlay mapped state */
2931 static void simple_overlay_update (struct obj_section *);
2932 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2933
2934 /* Function: section_is_overlay (SECTION)
2935 Returns true if SECTION has VMA not equal to LMA, ie.
2936 SECTION is loaded at an address different from where it will "run". */
2937
2938 int
2939 section_is_overlay (asection *section)
2940 {
2941 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2942
2943 if (overlay_debugging)
2944 if (section && section->lma != 0 &&
2945 section->vma != section->lma)
2946 return 1;
2947
2948 return 0;
2949 }
2950
2951 /* Function: overlay_invalidate_all (void)
2952 Invalidate the mapped state of all overlay sections (mark it as stale). */
2953
2954 static void
2955 overlay_invalidate_all (void)
2956 {
2957 struct objfile *objfile;
2958 struct obj_section *sect;
2959
2960 ALL_OBJSECTIONS (objfile, sect)
2961 if (section_is_overlay (sect->the_bfd_section))
2962 sect->ovly_mapped = -1;
2963 }
2964
2965 /* Function: overlay_is_mapped (SECTION)
2966 Returns true if section is an overlay, and is currently mapped.
2967 Private: public access is thru function section_is_mapped.
2968
2969 Access to the ovly_mapped flag is restricted to this function, so
2970 that we can do automatic update. If the global flag
2971 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2972 overlay_invalidate_all. If the mapped state of the particular
2973 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2974
2975 static int
2976 overlay_is_mapped (struct obj_section *osect)
2977 {
2978 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2979 return 0;
2980
2981 switch (overlay_debugging)
2982 {
2983 default:
2984 case ovly_off:
2985 return 0; /* overlay debugging off */
2986 case ovly_auto: /* overlay debugging automatic */
2987 /* Unles there is a target_overlay_update function,
2988 there's really nothing useful to do here (can't really go auto) */
2989 if (target_overlay_update)
2990 {
2991 if (overlay_cache_invalid)
2992 {
2993 overlay_invalidate_all ();
2994 overlay_cache_invalid = 0;
2995 }
2996 if (osect->ovly_mapped == -1)
2997 (*target_overlay_update) (osect);
2998 }
2999 /* fall thru to manual case */
3000 case ovly_on: /* overlay debugging manual */
3001 return osect->ovly_mapped == 1;
3002 }
3003 }
3004
3005 /* Function: section_is_mapped
3006 Returns true if section is an overlay, and is currently mapped. */
3007
3008 int
3009 section_is_mapped (asection *section)
3010 {
3011 struct objfile *objfile;
3012 struct obj_section *osect;
3013
3014 if (overlay_debugging)
3015 if (section && section_is_overlay (section))
3016 ALL_OBJSECTIONS (objfile, osect)
3017 if (osect->the_bfd_section == section)
3018 return overlay_is_mapped (osect);
3019
3020 return 0;
3021 }
3022
3023 /* Function: pc_in_unmapped_range
3024 If PC falls into the lma range of SECTION, return true, else false. */
3025
3026 CORE_ADDR
3027 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3028 {
3029 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3030
3031 int size;
3032
3033 if (overlay_debugging)
3034 if (section && section_is_overlay (section))
3035 {
3036 size = bfd_get_section_size (section);
3037 if (section->lma <= pc && pc < section->lma + size)
3038 return 1;
3039 }
3040 return 0;
3041 }
3042
3043 /* Function: pc_in_mapped_range
3044 If PC falls into the vma range of SECTION, return true, else false. */
3045
3046 CORE_ADDR
3047 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3048 {
3049 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3050
3051 int size;
3052
3053 if (overlay_debugging)
3054 if (section && section_is_overlay (section))
3055 {
3056 size = bfd_get_section_size (section);
3057 if (section->vma <= pc && pc < section->vma + size)
3058 return 1;
3059 }
3060 return 0;
3061 }
3062
3063
3064 /* Return true if the mapped ranges of sections A and B overlap, false
3065 otherwise. */
3066 static int
3067 sections_overlap (asection *a, asection *b)
3068 {
3069 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3070
3071 CORE_ADDR a_start = a->vma;
3072 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3073 CORE_ADDR b_start = b->vma;
3074 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3075
3076 return (a_start < b_end && b_start < a_end);
3077 }
3078
3079 /* Function: overlay_unmapped_address (PC, SECTION)
3080 Returns the address corresponding to PC in the unmapped (load) range.
3081 May be the same as PC. */
3082
3083 CORE_ADDR
3084 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3085 {
3086 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3087
3088 if (overlay_debugging)
3089 if (section && section_is_overlay (section) &&
3090 pc_in_mapped_range (pc, section))
3091 return pc + section->lma - section->vma;
3092
3093 return pc;
3094 }
3095
3096 /* Function: overlay_mapped_address (PC, SECTION)
3097 Returns the address corresponding to PC in the mapped (runtime) range.
3098 May be the same as PC. */
3099
3100 CORE_ADDR
3101 overlay_mapped_address (CORE_ADDR pc, asection *section)
3102 {
3103 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3104
3105 if (overlay_debugging)
3106 if (section && section_is_overlay (section) &&
3107 pc_in_unmapped_range (pc, section))
3108 return pc + section->vma - section->lma;
3109
3110 return pc;
3111 }
3112
3113
3114 /* Function: symbol_overlayed_address
3115 Return one of two addresses (relative to the VMA or to the LMA),
3116 depending on whether the section is mapped or not. */
3117
3118 CORE_ADDR
3119 symbol_overlayed_address (CORE_ADDR address, asection *section)
3120 {
3121 if (overlay_debugging)
3122 {
3123 /* If the symbol has no section, just return its regular address. */
3124 if (section == 0)
3125 return address;
3126 /* If the symbol's section is not an overlay, just return its address */
3127 if (!section_is_overlay (section))
3128 return address;
3129 /* If the symbol's section is mapped, just return its address */
3130 if (section_is_mapped (section))
3131 return address;
3132 /*
3133 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3134 * then return its LOADED address rather than its vma address!!
3135 */
3136 return overlay_unmapped_address (address, section);
3137 }
3138 return address;
3139 }
3140
3141 /* Function: find_pc_overlay (PC)
3142 Return the best-match overlay section for PC:
3143 If PC matches a mapped overlay section's VMA, return that section.
3144 Else if PC matches an unmapped section's VMA, return that section.
3145 Else if PC matches an unmapped section's LMA, return that section. */
3146
3147 asection *
3148 find_pc_overlay (CORE_ADDR pc)
3149 {
3150 struct objfile *objfile;
3151 struct obj_section *osect, *best_match = NULL;
3152
3153 if (overlay_debugging)
3154 ALL_OBJSECTIONS (objfile, osect)
3155 if (section_is_overlay (osect->the_bfd_section))
3156 {
3157 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3158 {
3159 if (overlay_is_mapped (osect))
3160 return osect->the_bfd_section;
3161 else
3162 best_match = osect;
3163 }
3164 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3165 best_match = osect;
3166 }
3167 return best_match ? best_match->the_bfd_section : NULL;
3168 }
3169
3170 /* Function: find_pc_mapped_section (PC)
3171 If PC falls into the VMA address range of an overlay section that is
3172 currently marked as MAPPED, return that section. Else return NULL. */
3173
3174 asection *
3175 find_pc_mapped_section (CORE_ADDR pc)
3176 {
3177 struct objfile *objfile;
3178 struct obj_section *osect;
3179
3180 if (overlay_debugging)
3181 ALL_OBJSECTIONS (objfile, osect)
3182 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3183 overlay_is_mapped (osect))
3184 return osect->the_bfd_section;
3185
3186 return NULL;
3187 }
3188
3189 /* Function: list_overlays_command
3190 Print a list of mapped sections and their PC ranges */
3191
3192 void
3193 list_overlays_command (char *args, int from_tty)
3194 {
3195 int nmapped = 0;
3196 struct objfile *objfile;
3197 struct obj_section *osect;
3198
3199 if (overlay_debugging)
3200 ALL_OBJSECTIONS (objfile, osect)
3201 if (overlay_is_mapped (osect))
3202 {
3203 const char *name;
3204 bfd_vma lma, vma;
3205 int size;
3206
3207 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3208 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3209 size = bfd_get_section_size (osect->the_bfd_section);
3210 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3211
3212 printf_filtered ("Section %s, loaded at ", name);
3213 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3214 puts_filtered (" - ");
3215 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3216 printf_filtered (", mapped at ");
3217 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3218 puts_filtered (" - ");
3219 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3220 puts_filtered ("\n");
3221
3222 nmapped++;
3223 }
3224 if (nmapped == 0)
3225 printf_filtered (_("No sections are mapped.\n"));
3226 }
3227
3228 /* Function: map_overlay_command
3229 Mark the named section as mapped (ie. residing at its VMA address). */
3230
3231 void
3232 map_overlay_command (char *args, int from_tty)
3233 {
3234 struct objfile *objfile, *objfile2;
3235 struct obj_section *sec, *sec2;
3236 asection *bfdsec;
3237
3238 if (!overlay_debugging)
3239 error (_("\
3240 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3241 the 'overlay manual' command."));
3242
3243 if (args == 0 || *args == 0)
3244 error (_("Argument required: name of an overlay section"));
3245
3246 /* First, find a section matching the user supplied argument */
3247 ALL_OBJSECTIONS (objfile, sec)
3248 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3249 {
3250 /* Now, check to see if the section is an overlay. */
3251 bfdsec = sec->the_bfd_section;
3252 if (!section_is_overlay (bfdsec))
3253 continue; /* not an overlay section */
3254
3255 /* Mark the overlay as "mapped" */
3256 sec->ovly_mapped = 1;
3257
3258 /* Next, make a pass and unmap any sections that are
3259 overlapped by this new section: */
3260 ALL_OBJSECTIONS (objfile2, sec2)
3261 if (sec2->ovly_mapped
3262 && sec != sec2
3263 && sec->the_bfd_section != sec2->the_bfd_section
3264 && sections_overlap (sec->the_bfd_section,
3265 sec2->the_bfd_section))
3266 {
3267 if (info_verbose)
3268 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3269 bfd_section_name (objfile->obfd,
3270 sec2->the_bfd_section));
3271 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3272 }
3273 return;
3274 }
3275 error (_("No overlay section called %s"), args);
3276 }
3277
3278 /* Function: unmap_overlay_command
3279 Mark the overlay section as unmapped
3280 (ie. resident in its LMA address range, rather than the VMA range). */
3281
3282 void
3283 unmap_overlay_command (char *args, int from_tty)
3284 {
3285 struct objfile *objfile;
3286 struct obj_section *sec;
3287
3288 if (!overlay_debugging)
3289 error (_("\
3290 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3291 the 'overlay manual' command."));
3292
3293 if (args == 0 || *args == 0)
3294 error (_("Argument required: name of an overlay section"));
3295
3296 /* First, find a section matching the user supplied argument */
3297 ALL_OBJSECTIONS (objfile, sec)
3298 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3299 {
3300 if (!sec->ovly_mapped)
3301 error (_("Section %s is not mapped"), args);
3302 sec->ovly_mapped = 0;
3303 return;
3304 }
3305 error (_("No overlay section called %s"), args);
3306 }
3307
3308 /* Function: overlay_auto_command
3309 A utility command to turn on overlay debugging.
3310 Possibly this should be done via a set/show command. */
3311
3312 static void
3313 overlay_auto_command (char *args, int from_tty)
3314 {
3315 overlay_debugging = ovly_auto;
3316 enable_overlay_breakpoints ();
3317 if (info_verbose)
3318 printf_unfiltered (_("Automatic overlay debugging enabled."));
3319 }
3320
3321 /* Function: overlay_manual_command
3322 A utility command to turn on overlay debugging.
3323 Possibly this should be done via a set/show command. */
3324
3325 static void
3326 overlay_manual_command (char *args, int from_tty)
3327 {
3328 overlay_debugging = ovly_on;
3329 disable_overlay_breakpoints ();
3330 if (info_verbose)
3331 printf_unfiltered (_("Overlay debugging enabled."));
3332 }
3333
3334 /* Function: overlay_off_command
3335 A utility command to turn on overlay debugging.
3336 Possibly this should be done via a set/show command. */
3337
3338 static void
3339 overlay_off_command (char *args, int from_tty)
3340 {
3341 overlay_debugging = ovly_off;
3342 disable_overlay_breakpoints ();
3343 if (info_verbose)
3344 printf_unfiltered (_("Overlay debugging disabled."));
3345 }
3346
3347 static void
3348 overlay_load_command (char *args, int from_tty)
3349 {
3350 if (target_overlay_update)
3351 (*target_overlay_update) (NULL);
3352 else
3353 error (_("This target does not know how to read its overlay state."));
3354 }
3355
3356 /* Function: overlay_command
3357 A place-holder for a mis-typed command */
3358
3359 /* Command list chain containing all defined "overlay" subcommands. */
3360 struct cmd_list_element *overlaylist;
3361
3362 static void
3363 overlay_command (char *args, int from_tty)
3364 {
3365 printf_unfiltered
3366 ("\"overlay\" must be followed by the name of an overlay command.\n");
3367 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3368 }
3369
3370
3371 /* Target Overlays for the "Simplest" overlay manager:
3372
3373 This is GDB's default target overlay layer. It works with the
3374 minimal overlay manager supplied as an example by Cygnus. The
3375 entry point is via a function pointer "target_overlay_update",
3376 so targets that use a different runtime overlay manager can
3377 substitute their own overlay_update function and take over the
3378 function pointer.
3379
3380 The overlay_update function pokes around in the target's data structures
3381 to see what overlays are mapped, and updates GDB's overlay mapping with
3382 this information.
3383
3384 In this simple implementation, the target data structures are as follows:
3385 unsigned _novlys; /# number of overlay sections #/
3386 unsigned _ovly_table[_novlys][4] = {
3387 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3388 {..., ..., ..., ...},
3389 }
3390 unsigned _novly_regions; /# number of overlay regions #/
3391 unsigned _ovly_region_table[_novly_regions][3] = {
3392 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3393 {..., ..., ...},
3394 }
3395 These functions will attempt to update GDB's mappedness state in the
3396 symbol section table, based on the target's mappedness state.
3397
3398 To do this, we keep a cached copy of the target's _ovly_table, and
3399 attempt to detect when the cached copy is invalidated. The main
3400 entry point is "simple_overlay_update(SECT), which looks up SECT in
3401 the cached table and re-reads only the entry for that section from
3402 the target (whenever possible).
3403 */
3404
3405 /* Cached, dynamically allocated copies of the target data structures: */
3406 static unsigned (*cache_ovly_table)[4] = 0;
3407 #if 0
3408 static unsigned (*cache_ovly_region_table)[3] = 0;
3409 #endif
3410 static unsigned cache_novlys = 0;
3411 #if 0
3412 static unsigned cache_novly_regions = 0;
3413 #endif
3414 static CORE_ADDR cache_ovly_table_base = 0;
3415 #if 0
3416 static CORE_ADDR cache_ovly_region_table_base = 0;
3417 #endif
3418 enum ovly_index
3419 {
3420 VMA, SIZE, LMA, MAPPED
3421 };
3422 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3423
3424 /* Throw away the cached copy of _ovly_table */
3425 static void
3426 simple_free_overlay_table (void)
3427 {
3428 if (cache_ovly_table)
3429 xfree (cache_ovly_table);
3430 cache_novlys = 0;
3431 cache_ovly_table = NULL;
3432 cache_ovly_table_base = 0;
3433 }
3434
3435 #if 0
3436 /* Throw away the cached copy of _ovly_region_table */
3437 static void
3438 simple_free_overlay_region_table (void)
3439 {
3440 if (cache_ovly_region_table)
3441 xfree (cache_ovly_region_table);
3442 cache_novly_regions = 0;
3443 cache_ovly_region_table = NULL;
3444 cache_ovly_region_table_base = 0;
3445 }
3446 #endif
3447
3448 /* Read an array of ints from the target into a local buffer.
3449 Convert to host order. int LEN is number of ints */
3450 static void
3451 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3452 {
3453 /* FIXME (alloca): Not safe if array is very large. */
3454 char *buf = alloca (len * TARGET_LONG_BYTES);
3455 int i;
3456
3457 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3458 for (i = 0; i < len; i++)
3459 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3460 TARGET_LONG_BYTES);
3461 }
3462
3463 /* Find and grab a copy of the target _ovly_table
3464 (and _novlys, which is needed for the table's size) */
3465 static int
3466 simple_read_overlay_table (void)
3467 {
3468 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3469
3470 simple_free_overlay_table ();
3471 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3472 if (! novlys_msym)
3473 {
3474 error (_("Error reading inferior's overlay table: "
3475 "couldn't find `_novlys' variable\n"
3476 "in inferior. Use `overlay manual' mode."));
3477 return 0;
3478 }
3479
3480 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3481 if (! ovly_table_msym)
3482 {
3483 error (_("Error reading inferior's overlay table: couldn't find "
3484 "`_ovly_table' array\n"
3485 "in inferior. Use `overlay manual' mode."));
3486 return 0;
3487 }
3488
3489 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3490 cache_ovly_table
3491 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3492 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3493 read_target_long_array (cache_ovly_table_base,
3494 (int *) cache_ovly_table,
3495 cache_novlys * 4);
3496
3497 return 1; /* SUCCESS */
3498 }
3499
3500 #if 0
3501 /* Find and grab a copy of the target _ovly_region_table
3502 (and _novly_regions, which is needed for the table's size) */
3503 static int
3504 simple_read_overlay_region_table (void)
3505 {
3506 struct minimal_symbol *msym;
3507
3508 simple_free_overlay_region_table ();
3509 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3510 if (msym != NULL)
3511 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3512 else
3513 return 0; /* failure */
3514 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3515 if (cache_ovly_region_table != NULL)
3516 {
3517 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3518 if (msym != NULL)
3519 {
3520 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3521 read_target_long_array (cache_ovly_region_table_base,
3522 (int *) cache_ovly_region_table,
3523 cache_novly_regions * 3);
3524 }
3525 else
3526 return 0; /* failure */
3527 }
3528 else
3529 return 0; /* failure */
3530 return 1; /* SUCCESS */
3531 }
3532 #endif
3533
3534 /* Function: simple_overlay_update_1
3535 A helper function for simple_overlay_update. Assuming a cached copy
3536 of _ovly_table exists, look through it to find an entry whose vma,
3537 lma and size match those of OSECT. Re-read the entry and make sure
3538 it still matches OSECT (else the table may no longer be valid).
3539 Set OSECT's mapped state to match the entry. Return: 1 for
3540 success, 0 for failure. */
3541
3542 static int
3543 simple_overlay_update_1 (struct obj_section *osect)
3544 {
3545 int i, size;
3546 bfd *obfd = osect->objfile->obfd;
3547 asection *bsect = osect->the_bfd_section;
3548
3549 size = bfd_get_section_size (osect->the_bfd_section);
3550 for (i = 0; i < cache_novlys; i++)
3551 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3552 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3553 /* && cache_ovly_table[i][SIZE] == size */ )
3554 {
3555 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3556 (int *) cache_ovly_table[i], 4);
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3559 /* && cache_ovly_table[i][SIZE] == size */ )
3560 {
3561 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3562 return 1;
3563 }
3564 else /* Warning! Warning! Target's ovly table has changed! */
3565 return 0;
3566 }
3567 return 0;
3568 }
3569
3570 /* Function: simple_overlay_update
3571 If OSECT is NULL, then update all sections' mapped state
3572 (after re-reading the entire target _ovly_table).
3573 If OSECT is non-NULL, then try to find a matching entry in the
3574 cached ovly_table and update only OSECT's mapped state.
3575 If a cached entry can't be found or the cache isn't valid, then
3576 re-read the entire cache, and go ahead and update all sections. */
3577
3578 static void
3579 simple_overlay_update (struct obj_section *osect)
3580 {
3581 struct objfile *objfile;
3582
3583 /* Were we given an osect to look up? NULL means do all of them. */
3584 if (osect)
3585 /* Have we got a cached copy of the target's overlay table? */
3586 if (cache_ovly_table != NULL)
3587 /* Does its cached location match what's currently in the symtab? */
3588 if (cache_ovly_table_base ==
3589 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3590 /* Then go ahead and try to look up this single section in the cache */
3591 if (simple_overlay_update_1 (osect))
3592 /* Found it! We're done. */
3593 return;
3594
3595 /* Cached table no good: need to read the entire table anew.
3596 Or else we want all the sections, in which case it's actually
3597 more efficient to read the whole table in one block anyway. */
3598
3599 if (! simple_read_overlay_table ())
3600 return;
3601
3602 /* Now may as well update all sections, even if only one was requested. */
3603 ALL_OBJSECTIONS (objfile, osect)
3604 if (section_is_overlay (osect->the_bfd_section))
3605 {
3606 int i, size;
3607 bfd *obfd = osect->objfile->obfd;
3608 asection *bsect = osect->the_bfd_section;
3609
3610 size = bfd_get_section_size (bsect);
3611 for (i = 0; i < cache_novlys; i++)
3612 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3613 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3614 /* && cache_ovly_table[i][SIZE] == size */ )
3615 { /* obj_section matches i'th entry in ovly_table */
3616 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3617 break; /* finished with inner for loop: break out */
3618 }
3619 }
3620 }
3621
3622 /* Set the output sections and output offsets for section SECTP in
3623 ABFD. The relocation code in BFD will read these offsets, so we
3624 need to be sure they're initialized. We map each section to itself,
3625 with no offset; this means that SECTP->vma will be honored. */
3626
3627 static void
3628 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3629 {
3630 sectp->output_section = sectp;
3631 sectp->output_offset = 0;
3632 }
3633
3634 /* Relocate the contents of a debug section SECTP in ABFD. The
3635 contents are stored in BUF if it is non-NULL, or returned in a
3636 malloc'd buffer otherwise.
3637
3638 For some platforms and debug info formats, shared libraries contain
3639 relocations against the debug sections (particularly for DWARF-2;
3640 one affected platform is PowerPC GNU/Linux, although it depends on
3641 the version of the linker in use). Also, ELF object files naturally
3642 have unresolved relocations for their debug sections. We need to apply
3643 the relocations in order to get the locations of symbols correct. */
3644
3645 bfd_byte *
3646 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3647 {
3648 /* We're only interested in debugging sections with relocation
3649 information. */
3650 if ((sectp->flags & SEC_RELOC) == 0)
3651 return NULL;
3652 if ((sectp->flags & SEC_DEBUGGING) == 0)
3653 return NULL;
3654
3655 /* We will handle section offsets properly elsewhere, so relocate as if
3656 all sections begin at 0. */
3657 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3658
3659 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3660 }
3661
3662 void
3663 _initialize_symfile (void)
3664 {
3665 struct cmd_list_element *c;
3666
3667 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3668 Load symbol table from executable file FILE.\n\
3669 The `file' command can also load symbol tables, as well as setting the file\n\
3670 to execute."), &cmdlist);
3671 set_cmd_completer (c, filename_completer);
3672
3673 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3674 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3675 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3676 ADDR is the starting address of the file's text.\n\
3677 The optional arguments are section-name section-address pairs and\n\
3678 should be specified if the data and bss segments are not contiguous\n\
3679 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3680 &cmdlist);
3681 set_cmd_completer (c, filename_completer);
3682
3683 c = add_cmd ("add-shared-symbol-files", class_files,
3684 add_shared_symbol_files_command, _("\
3685 Load the symbols from shared objects in the dynamic linker's link map."),
3686 &cmdlist);
3687 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3688 &cmdlist);
3689
3690 c = add_cmd ("load", class_files, load_command, _("\
3691 Dynamically load FILE into the running program, and record its symbols\n\
3692 for access from GDB."), &cmdlist);
3693 set_cmd_completer (c, filename_completer);
3694
3695 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3696 &symbol_reloading, _("\
3697 Set dynamic symbol table reloading multiple times in one run."), _("\
3698 Show dynamic symbol table reloading multiple times in one run."), NULL,
3699 NULL,
3700 show_symbol_reloading,
3701 &setlist, &showlist);
3702
3703 add_prefix_cmd ("overlay", class_support, overlay_command,
3704 _("Commands for debugging overlays."), &overlaylist,
3705 "overlay ", 0, &cmdlist);
3706
3707 add_com_alias ("ovly", "overlay", class_alias, 1);
3708 add_com_alias ("ov", "overlay", class_alias, 1);
3709
3710 add_cmd ("map-overlay", class_support, map_overlay_command,
3711 _("Assert that an overlay section is mapped."), &overlaylist);
3712
3713 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3714 _("Assert that an overlay section is unmapped."), &overlaylist);
3715
3716 add_cmd ("list-overlays", class_support, list_overlays_command,
3717 _("List mappings of overlay sections."), &overlaylist);
3718
3719 add_cmd ("manual", class_support, overlay_manual_command,
3720 _("Enable overlay debugging."), &overlaylist);
3721 add_cmd ("off", class_support, overlay_off_command,
3722 _("Disable overlay debugging."), &overlaylist);
3723 add_cmd ("auto", class_support, overlay_auto_command,
3724 _("Enable automatic overlay debugging."), &overlaylist);
3725 add_cmd ("load-target", class_support, overlay_load_command,
3726 _("Read the overlay mapping state from the target."), &overlaylist);
3727
3728 /* Filename extension to source language lookup table: */
3729 init_filename_language_table ();
3730 add_setshow_string_noescape_cmd ("extension-language", class_files,
3731 &ext_args, _("\
3732 Set mapping between filename extension and source language."), _("\
3733 Show mapping between filename extension and source language."), _("\
3734 Usage: set extension-language .foo bar"),
3735 set_ext_lang_command,
3736 show_ext_args,
3737 &setlist, &showlist);
3738
3739 add_info ("extensions", info_ext_lang_command,
3740 _("All filename extensions associated with a source language."));
3741
3742 add_setshow_integer_cmd ("download-write-size", class_obscure,
3743 &download_write_size, _("\
3744 Set the write size used when downloading a program."), _("\
3745 Show the write size used when downloading a program."), _("\
3746 Only used when downloading a program onto a remote\n\
3747 target. Specify zero, or a negative value, to disable\n\
3748 blocked writes. The actual size of each transfer is also\n\
3749 limited by the size of the target packet and the memory\n\
3750 cache."),
3751 NULL,
3752 show_download_write_size,
3753 &setlist, &showlist);
3754
3755 debug_file_directory = xstrdup (DEBUGDIR);
3756 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3757 &debug_file_directory, _("\
3758 Set the directory where separate debug symbols are searched for."), _("\
3759 Show the directory where separate debug symbols are searched for."), _("\
3760 Separate debug symbols are first searched for in the same\n\
3761 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3762 and lastly at the path of the directory of the binary with\n\
3763 the global debug-file directory prepended."),
3764 NULL,
3765 show_debug_file_directory,
3766 &setlist, &showlist);
3767 }
This page took 0.131348 seconds and 4 git commands to generate.