*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54
55 #include <sys/types.h>
56 #include <fcntl.h>
57 #include "gdb_string.h"
58 #include "gdb_stat.h"
59 #include <ctype.h>
60 #include <time.h>
61 #include <sys/time.h>
62
63
64 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
65 void (*deprecated_show_load_progress) (const char *section,
66 unsigned long section_sent,
67 unsigned long section_size,
68 unsigned long total_sent,
69 unsigned long total_size);
70 void (*deprecated_pre_add_symbol_hook) (const char *);
71 void (*deprecated_post_add_symbol_hook) (void);
72 void (*deprecated_target_new_objfile_hook) (struct objfile *);
73
74 static void clear_symtab_users_cleanup (void *ignore);
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 /* External variables and functions referenced. */
80
81 extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83 /* Functions this file defines */
84
85 #if 0
86 static int simple_read_overlay_region_table (void);
87 static void simple_free_overlay_region_table (void);
88 #endif
89
90 static void set_initial_language (void);
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static void find_sym_fns (struct objfile *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 static int overlay_is_mapped (struct obj_section *);
115
116 void list_overlays_command (char *, int);
117
118 void map_overlay_command (char *, int);
119
120 void unmap_overlay_command (char *, int);
121
122 static void overlay_auto_command (char *, int);
123
124 static void overlay_manual_command (char *, int);
125
126 static void overlay_off_command (char *, int);
127
128 static void overlay_load_command (char *, int);
129
130 static void overlay_command (char *, int);
131
132 static void simple_free_overlay_table (void);
133
134 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136 static int simple_read_overlay_table (void);
137
138 static int simple_overlay_update_1 (struct obj_section *);
139
140 static void add_filename_language (char *ext, enum language lang);
141
142 static void info_ext_lang_command (char *args, int from_tty);
143
144 static char *find_separate_debug_file (struct objfile *objfile);
145
146 static void init_filename_language_table (void);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct section_table *start,
366 const struct section_table *end)
367 {
368 struct section_addr_info *sap;
369 const struct section_table *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. Except when explicitly adding symbol files at
433 some address, section_offsets contains nothing but zeros, so it
434 doesn't matter which slot in section_offsets the individual
435 sect_index_* members index into. So if they are all zero, it is
436 safe to just point all the currently uninitialized indices to the
437 first slot. */
438
439 for (i = 0; i < objfile->num_sections; i++)
440 {
441 if (ANOFFSET (objfile->section_offsets, i) != 0)
442 {
443 break;
444 }
445 }
446 if (i == objfile->num_sections)
447 {
448 if (objfile->sect_index_text == -1)
449 objfile->sect_index_text = 0;
450 if (objfile->sect_index_data == -1)
451 objfile->sect_index_data = 0;
452 if (objfile->sect_index_bss == -1)
453 objfile->sect_index_bss = 0;
454 if (objfile->sect_index_rodata == -1)
455 objfile->sect_index_rodata = 0;
456 }
457 }
458
459 /* The arguments to place_section. */
460
461 struct place_section_arg
462 {
463 struct section_offsets *offsets;
464 CORE_ADDR lowest;
465 };
466
467 /* Find a unique offset to use for loadable section SECT if
468 the user did not provide an offset. */
469
470 void
471 place_section (bfd *abfd, asection *sect, void *obj)
472 {
473 struct place_section_arg *arg = obj;
474 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
475 int done;
476 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
477
478 /* We are only interested in loadable sections. */
479 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
480 return;
481
482 /* If the user specified an offset, honor it. */
483 if (offsets[sect->index] != 0)
484 return;
485
486 /* Otherwise, let's try to find a place for the section. */
487 start_addr = (arg->lowest + align - 1) & -align;
488
489 do {
490 asection *cur_sec;
491
492 done = 1;
493
494 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
495 {
496 int indx = cur_sec->index;
497 CORE_ADDR cur_offset;
498
499 /* We don't need to compare against ourself. */
500 if (cur_sec == sect)
501 continue;
502
503 /* We can only conflict with loadable sections. */
504 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
505 continue;
506
507 /* We do not expect this to happen; just ignore sections in a
508 relocatable file with an assigned VMA. */
509 if (bfd_section_vma (abfd, cur_sec) != 0)
510 continue;
511
512 /* If the section offset is 0, either the section has not been placed
513 yet, or it was the lowest section placed (in which case LOWEST
514 will be past its end). */
515 if (offsets[indx] == 0)
516 continue;
517
518 /* If this section would overlap us, then we must move up. */
519 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
520 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
521 {
522 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
523 start_addr = (start_addr + align - 1) & -align;
524 done = 0;
525 break;
526 }
527
528 /* Otherwise, we appear to be OK. So far. */
529 }
530 }
531 while (!done);
532
533 offsets[sect->index] = start_addr;
534 arg->lowest = start_addr + bfd_get_section_size (sect);
535
536 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 arg.offsets = objfile->section_offsets;
583 arg.lowest = 0;
584 bfd_map_over_sections (objfile->obfd, place_section, &arg);
585 }
586
587 /* Remember the bfd indexes for the .text, .data, .bss and
588 .rodata sections. */
589 init_objfile_sect_indices (objfile);
590 }
591
592
593 /* Process a symbol file, as either the main file or as a dynamically
594 loaded file.
595
596 OBJFILE is where the symbols are to be read from.
597
598 ADDRS is the list of section load addresses. If the user has given
599 an 'add-symbol-file' command, then this is the list of offsets and
600 addresses he or she provided as arguments to the command; or, if
601 we're handling a shared library, these are the actual addresses the
602 sections are loaded at, according to the inferior's dynamic linker
603 (as gleaned by GDB's shared library code). We convert each address
604 into an offset from the section VMA's as it appears in the object
605 file, and then call the file's sym_offsets function to convert this
606 into a format-specific offset table --- a `struct section_offsets'.
607 If ADDRS is non-zero, OFFSETS must be zero.
608
609 OFFSETS is a table of section offsets already in the right
610 format-specific representation. NUM_OFFSETS is the number of
611 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
612 assume this is the proper table the call to sym_offsets described
613 above would produce. Instead of calling sym_offsets, we just dump
614 it right into objfile->section_offsets. (When we're re-reading
615 symbols from an objfile, we don't have the original load address
616 list any more; all we have is the section offset table.) If
617 OFFSETS is non-zero, ADDRS must be zero.
618
619 MAINLINE is nonzero if this is the main symbol file, or zero if
620 it's an extra symbol file such as dynamically loaded code.
621
622 VERBO is nonzero if the caller has printed a verbose message about
623 the symbol reading (and complaints can be more terse about it). */
624
625 void
626 syms_from_objfile (struct objfile *objfile,
627 struct section_addr_info *addrs,
628 struct section_offsets *offsets,
629 int num_offsets,
630 int mainline,
631 int verbo)
632 {
633 struct section_addr_info *local_addr = NULL;
634 struct cleanup *old_chain;
635
636 gdb_assert (! (addrs && offsets));
637
638 init_entry_point_info (objfile);
639 find_sym_fns (objfile);
640
641 if (objfile->sf == NULL)
642 return; /* No symbols. */
643
644 /* Make sure that partially constructed symbol tables will be cleaned up
645 if an error occurs during symbol reading. */
646 old_chain = make_cleanup_free_objfile (objfile);
647
648 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
649 list. We now establish the convention that an addr of zero means
650 no load address was specified. */
651 if (! addrs && ! offsets)
652 {
653 local_addr
654 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
655 make_cleanup (xfree, local_addr);
656 addrs = local_addr;
657 }
658
659 /* Now either addrs or offsets is non-zero. */
660
661 if (mainline)
662 {
663 /* We will modify the main symbol table, make sure that all its users
664 will be cleaned up if an error occurs during symbol reading. */
665 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
666
667 /* Since no error yet, throw away the old symbol table. */
668
669 if (symfile_objfile != NULL)
670 {
671 free_objfile (symfile_objfile);
672 symfile_objfile = NULL;
673 }
674
675 /* Currently we keep symbols from the add-symbol-file command.
676 If the user wants to get rid of them, they should do "symbol-file"
677 without arguments first. Not sure this is the best behavior
678 (PR 2207). */
679
680 (*objfile->sf->sym_new_init) (objfile);
681 }
682
683 /* Convert addr into an offset rather than an absolute address.
684 We find the lowest address of a loaded segment in the objfile,
685 and assume that <addr> is where that got loaded.
686
687 We no longer warn if the lowest section is not a text segment (as
688 happens for the PA64 port. */
689 if (!mainline && addrs && addrs->other[0].name)
690 {
691 asection *lower_sect;
692 asection *sect;
693 CORE_ADDR lower_offset;
694 int i;
695
696 /* Find lowest loadable section to be used as starting point for
697 continguous sections. FIXME!! won't work without call to find
698 .text first, but this assumes text is lowest section. */
699 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
700 if (lower_sect == NULL)
701 bfd_map_over_sections (objfile->obfd, find_lowest_section,
702 &lower_sect);
703 if (lower_sect == NULL)
704 warning (_("no loadable sections found in added symbol-file %s"),
705 objfile->name);
706 else
707 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
708 warning (_("Lowest section in %s is %s at %s"),
709 objfile->name,
710 bfd_section_name (objfile->obfd, lower_sect),
711 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
712 if (lower_sect != NULL)
713 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
714 else
715 lower_offset = 0;
716
717 /* Calculate offsets for the loadable sections.
718 FIXME! Sections must be in order of increasing loadable section
719 so that contiguous sections can use the lower-offset!!!
720
721 Adjust offsets if the segments are not contiguous.
722 If the section is contiguous, its offset should be set to
723 the offset of the highest loadable section lower than it
724 (the loadable section directly below it in memory).
725 this_offset = lower_offset = lower_addr - lower_orig_addr */
726
727 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
728 {
729 if (addrs->other[i].addr != 0)
730 {
731 sect = bfd_get_section_by_name (objfile->obfd,
732 addrs->other[i].name);
733 if (sect)
734 {
735 addrs->other[i].addr
736 -= bfd_section_vma (objfile->obfd, sect);
737 lower_offset = addrs->other[i].addr;
738 /* This is the index used by BFD. */
739 addrs->other[i].sectindex = sect->index ;
740 }
741 else
742 {
743 warning (_("section %s not found in %s"),
744 addrs->other[i].name,
745 objfile->name);
746 addrs->other[i].addr = 0;
747 }
748 }
749 else
750 addrs->other[i].addr = lower_offset;
751 }
752 }
753
754 /* Initialize symbol reading routines for this objfile, allow complaints to
755 appear for this new file, and record how verbose to be, then do the
756 initial symbol reading for this file. */
757
758 (*objfile->sf->sym_init) (objfile);
759 clear_complaints (&symfile_complaints, 1, verbo);
760
761 if (addrs)
762 (*objfile->sf->sym_offsets) (objfile, addrs);
763 else
764 {
765 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
766
767 /* Just copy in the offset table directly as given to us. */
768 objfile->num_sections = num_offsets;
769 objfile->section_offsets
770 = ((struct section_offsets *)
771 obstack_alloc (&objfile->objfile_obstack, size));
772 memcpy (objfile->section_offsets, offsets, size);
773
774 init_objfile_sect_indices (objfile);
775 }
776
777 #ifndef DEPRECATED_IBM6000_TARGET
778 /* This is a SVR4/SunOS specific hack, I think. In any event, it
779 screws RS/6000. sym_offsets should be doing this sort of thing,
780 because it knows the mapping between bfd sections and
781 section_offsets. */
782 /* This is a hack. As far as I can tell, section offsets are not
783 target dependent. They are all set to addr with a couple of
784 exceptions. The exceptions are sysvr4 shared libraries, whose
785 offsets are kept in solib structures anyway and rs6000 xcoff
786 which handles shared libraries in a completely unique way.
787
788 Section offsets are built similarly, except that they are built
789 by adding addr in all cases because there is no clear mapping
790 from section_offsets into actual sections. Note that solib.c
791 has a different algorithm for finding section offsets.
792
793 These should probably all be collapsed into some target
794 independent form of shared library support. FIXME. */
795
796 if (addrs)
797 {
798 struct obj_section *s;
799
800 /* Map section offsets in "addr" back to the object's
801 sections by comparing the section names with bfd's
802 section names. Then adjust the section address by
803 the offset. */ /* for gdb/13815 */
804
805 ALL_OBJFILE_OSECTIONS (objfile, s)
806 {
807 CORE_ADDR s_addr = 0;
808 int i;
809
810 for (i = 0;
811 !s_addr && i < addrs->num_sections && addrs->other[i].name;
812 i++)
813 if (strcmp (bfd_section_name (s->objfile->obfd,
814 s->the_bfd_section),
815 addrs->other[i].name) == 0)
816 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
817
818 s->addr -= s->offset;
819 s->addr += s_addr;
820 s->endaddr -= s->offset;
821 s->endaddr += s_addr;
822 s->offset += s_addr;
823 }
824 }
825 #endif /* not DEPRECATED_IBM6000_TARGET */
826
827 (*objfile->sf->sym_read) (objfile, mainline);
828
829 /* Don't allow char * to have a typename (else would get caddr_t).
830 Ditto void *. FIXME: Check whether this is now done by all the
831 symbol readers themselves (many of them now do), and if so remove
832 it from here. */
833
834 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
835 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
836
837 /* Mark the objfile has having had initial symbol read attempted. Note
838 that this does not mean we found any symbols... */
839
840 objfile->flags |= OBJF_SYMS;
841
842 /* Discard cleanups as symbol reading was successful. */
843
844 discard_cleanups (old_chain);
845 }
846
847 /* Perform required actions after either reading in the initial
848 symbols for a new objfile, or mapping in the symbols from a reusable
849 objfile. */
850
851 void
852 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
853 {
854
855 /* If this is the main symbol file we have to clean up all users of the
856 old main symbol file. Otherwise it is sufficient to fixup all the
857 breakpoints that may have been redefined by this symbol file. */
858 if (mainline)
859 {
860 /* OK, make it the "real" symbol file. */
861 symfile_objfile = objfile;
862
863 clear_symtab_users ();
864 }
865 else
866 {
867 breakpoint_re_set ();
868 }
869
870 /* We're done reading the symbol file; finish off complaints. */
871 clear_complaints (&symfile_complaints, 0, verbo);
872 }
873
874 /* Process a symbol file, as either the main file or as a dynamically
875 loaded file.
876
877 ABFD is a BFD already open on the file, as from symfile_bfd_open.
878 This BFD will be closed on error, and is always consumed by this function.
879
880 FROM_TTY says how verbose to be.
881
882 MAINLINE specifies whether this is the main symbol file, or whether
883 it's an extra symbol file such as dynamically loaded code.
884
885 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
886 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
887 non-zero.
888
889 Upon success, returns a pointer to the objfile that was added.
890 Upon failure, jumps back to command level (never returns). */
891 static struct objfile *
892 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
893 struct section_addr_info *addrs,
894 struct section_offsets *offsets,
895 int num_offsets,
896 int mainline, int flags)
897 {
898 struct objfile *objfile;
899 struct partial_symtab *psymtab;
900 char *debugfile;
901 struct section_addr_info *orig_addrs = NULL;
902 struct cleanup *my_cleanups;
903 const char *name = bfd_get_filename (abfd);
904
905 my_cleanups = make_cleanup_bfd_close (abfd);
906
907 /* Give user a chance to burp if we'd be
908 interactively wiping out any existing symbols. */
909
910 if ((have_full_symbols () || have_partial_symbols ())
911 && mainline
912 && from_tty
913 && !query ("Load new symbol table from \"%s\"? ", name))
914 error (_("Not confirmed."));
915
916 objfile = allocate_objfile (abfd, flags);
917 discard_cleanups (my_cleanups);
918
919 if (addrs)
920 {
921 orig_addrs = copy_section_addr_info (addrs);
922 make_cleanup_free_section_addr_info (orig_addrs);
923 }
924
925 /* We either created a new mapped symbol table, mapped an existing
926 symbol table file which has not had initial symbol reading
927 performed, or need to read an unmapped symbol table. */
928 if (from_tty || info_verbose)
929 {
930 if (deprecated_pre_add_symbol_hook)
931 deprecated_pre_add_symbol_hook (name);
932 else
933 {
934 printf_unfiltered (_("Reading symbols from %s..."), name);
935 wrap_here ("");
936 gdb_flush (gdb_stdout);
937 }
938 }
939 syms_from_objfile (objfile, addrs, offsets, num_offsets,
940 mainline, from_tty);
941
942 /* We now have at least a partial symbol table. Check to see if the
943 user requested that all symbols be read on initial access via either
944 the gdb startup command line or on a per symbol file basis. Expand
945 all partial symbol tables for this objfile if so. */
946
947 if ((flags & OBJF_READNOW) || readnow_symbol_files)
948 {
949 if (from_tty || info_verbose)
950 {
951 printf_unfiltered (_("expanding to full symbols..."));
952 wrap_here ("");
953 gdb_flush (gdb_stdout);
954 }
955
956 for (psymtab = objfile->psymtabs;
957 psymtab != NULL;
958 psymtab = psymtab->next)
959 {
960 psymtab_to_symtab (psymtab);
961 }
962 }
963
964 debugfile = find_separate_debug_file (objfile);
965 if (debugfile)
966 {
967 if (addrs != NULL)
968 {
969 objfile->separate_debug_objfile
970 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
971 }
972 else
973 {
974 objfile->separate_debug_objfile
975 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
976 }
977 objfile->separate_debug_objfile->separate_debug_objfile_backlink
978 = objfile;
979
980 /* Put the separate debug object before the normal one, this is so that
981 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
982 put_objfile_before (objfile->separate_debug_objfile, objfile);
983
984 xfree (debugfile);
985 }
986
987 if (!have_partial_symbols () && !have_full_symbols ())
988 {
989 wrap_here ("");
990 printf_filtered (_("(no debugging symbols found)"));
991 if (from_tty || info_verbose)
992 printf_filtered ("...");
993 else
994 printf_filtered ("\n");
995 wrap_here ("");
996 }
997
998 if (from_tty || info_verbose)
999 {
1000 if (deprecated_post_add_symbol_hook)
1001 deprecated_post_add_symbol_hook ();
1002 else
1003 {
1004 printf_unfiltered (_("done.\n"));
1005 }
1006 }
1007
1008 /* We print some messages regardless of whether 'from_tty ||
1009 info_verbose' is true, so make sure they go out at the right
1010 time. */
1011 gdb_flush (gdb_stdout);
1012
1013 do_cleanups (my_cleanups);
1014
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
1020 if (deprecated_target_new_objfile_hook)
1021 deprecated_target_new_objfile_hook (objfile);
1022
1023 bfd_cache_close_all ();
1024 return (objfile);
1025 }
1026
1027
1028 /* Process the symbol file ABFD, as either the main file or as a
1029 dynamically loaded file.
1030
1031 See symbol_file_add_with_addrs_or_offsets's comments for
1032 details. */
1033 struct objfile *
1034 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1035 struct section_addr_info *addrs,
1036 int mainline, int flags)
1037 {
1038 return symbol_file_add_with_addrs_or_offsets (abfd,
1039 from_tty, addrs, 0, 0,
1040 mainline, flags);
1041 }
1042
1043
1044 /* Process a symbol file, as either the main file or as a dynamically
1045 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1046 for details. */
1047 struct objfile *
1048 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1049 int mainline, int flags)
1050 {
1051 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1052 addrs, mainline, flags);
1053 }
1054
1055
1056 /* Call symbol_file_add() with default values and update whatever is
1057 affected by the loading of a new main().
1058 Used when the file is supplied in the gdb command line
1059 and by some targets with special loading requirements.
1060 The auxiliary function, symbol_file_add_main_1(), has the flags
1061 argument for the switches that can only be specified in the symbol_file
1062 command itself. */
1063
1064 void
1065 symbol_file_add_main (char *args, int from_tty)
1066 {
1067 symbol_file_add_main_1 (args, from_tty, 0);
1068 }
1069
1070 static void
1071 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1072 {
1073 symbol_file_add (args, from_tty, NULL, 1, flags);
1074
1075 /* Getting new symbols may change our opinion about
1076 what is frameless. */
1077 reinit_frame_cache ();
1078
1079 set_initial_language ();
1080 }
1081
1082 void
1083 symbol_file_clear (int from_tty)
1084 {
1085 if ((have_full_symbols () || have_partial_symbols ())
1086 && from_tty
1087 && (symfile_objfile
1088 ? !query (_("Discard symbol table from `%s'? "),
1089 symfile_objfile->name)
1090 : !query (_("Discard symbol table? "))))
1091 error (_("Not confirmed."));
1092 free_all_objfiles ();
1093
1094 /* solib descriptors may have handles to objfiles. Since their
1095 storage has just been released, we'd better wipe the solib
1096 descriptors as well.
1097 */
1098 #if defined(SOLIB_RESTART)
1099 SOLIB_RESTART ();
1100 #endif
1101
1102 symfile_objfile = NULL;
1103 if (from_tty)
1104 printf_unfiltered (_("No symbol file now.\n"));
1105 }
1106
1107 static char *
1108 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1109 {
1110 asection *sect;
1111 bfd_size_type debuglink_size;
1112 unsigned long crc32;
1113 char *contents;
1114 int crc_offset;
1115 unsigned char *p;
1116
1117 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1118
1119 if (sect == NULL)
1120 return NULL;
1121
1122 debuglink_size = bfd_section_size (objfile->obfd, sect);
1123
1124 contents = xmalloc (debuglink_size);
1125 bfd_get_section_contents (objfile->obfd, sect, contents,
1126 (file_ptr)0, (bfd_size_type)debuglink_size);
1127
1128 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1129 crc_offset = strlen (contents) + 1;
1130 crc_offset = (crc_offset + 3) & ~3;
1131
1132 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1133
1134 *crc32_out = crc32;
1135 return contents;
1136 }
1137
1138 static int
1139 separate_debug_file_exists (const char *name, unsigned long crc)
1140 {
1141 unsigned long file_crc = 0;
1142 int fd;
1143 gdb_byte buffer[8*1024];
1144 int count;
1145
1146 fd = open (name, O_RDONLY | O_BINARY);
1147 if (fd < 0)
1148 return 0;
1149
1150 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1151 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1152
1153 close (fd);
1154
1155 return crc == file_crc;
1156 }
1157
1158 static char *debug_file_directory = NULL;
1159 static void
1160 show_debug_file_directory (struct ui_file *file, int from_tty,
1161 struct cmd_list_element *c, const char *value)
1162 {
1163 fprintf_filtered (file, _("\
1164 The directory where separate debug symbols are searched for is \"%s\".\n"),
1165 value);
1166 }
1167
1168 #if ! defined (DEBUG_SUBDIRECTORY)
1169 #define DEBUG_SUBDIRECTORY ".debug"
1170 #endif
1171
1172 static char *
1173 find_separate_debug_file (struct objfile *objfile)
1174 {
1175 asection *sect;
1176 char *basename;
1177 char *dir;
1178 char *debugfile;
1179 char *name_copy;
1180 bfd_size_type debuglink_size;
1181 unsigned long crc32;
1182 int i;
1183
1184 basename = get_debug_link_info (objfile, &crc32);
1185
1186 if (basename == NULL)
1187 return NULL;
1188
1189 dir = xstrdup (objfile->name);
1190
1191 /* Strip off the final filename part, leaving the directory name,
1192 followed by a slash. Objfile names should always be absolute and
1193 tilde-expanded, so there should always be a slash in there
1194 somewhere. */
1195 for (i = strlen(dir) - 1; i >= 0; i--)
1196 {
1197 if (IS_DIR_SEPARATOR (dir[i]))
1198 break;
1199 }
1200 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1201 dir[i+1] = '\0';
1202
1203 debugfile = alloca (strlen (debug_file_directory) + 1
1204 + strlen (dir)
1205 + strlen (DEBUG_SUBDIRECTORY)
1206 + strlen ("/")
1207 + strlen (basename)
1208 + 1);
1209
1210 /* First try in the same directory as the original file. */
1211 strcpy (debugfile, dir);
1212 strcat (debugfile, basename);
1213
1214 if (separate_debug_file_exists (debugfile, crc32))
1215 {
1216 xfree (basename);
1217 xfree (dir);
1218 return xstrdup (debugfile);
1219 }
1220
1221 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1222 strcpy (debugfile, dir);
1223 strcat (debugfile, DEBUG_SUBDIRECTORY);
1224 strcat (debugfile, "/");
1225 strcat (debugfile, basename);
1226
1227 if (separate_debug_file_exists (debugfile, crc32))
1228 {
1229 xfree (basename);
1230 xfree (dir);
1231 return xstrdup (debugfile);
1232 }
1233
1234 /* Then try in the global debugfile directory. */
1235 strcpy (debugfile, debug_file_directory);
1236 strcat (debugfile, "/");
1237 strcat (debugfile, dir);
1238 strcat (debugfile, basename);
1239
1240 if (separate_debug_file_exists (debugfile, crc32))
1241 {
1242 xfree (basename);
1243 xfree (dir);
1244 return xstrdup (debugfile);
1245 }
1246
1247 xfree (basename);
1248 xfree (dir);
1249 return NULL;
1250 }
1251
1252
1253 /* This is the symbol-file command. Read the file, analyze its
1254 symbols, and add a struct symtab to a symtab list. The syntax of
1255 the command is rather bizarre:
1256
1257 1. The function buildargv implements various quoting conventions
1258 which are undocumented and have little or nothing in common with
1259 the way things are quoted (or not quoted) elsewhere in GDB.
1260
1261 2. Options are used, which are not generally used in GDB (perhaps
1262 "set mapped on", "set readnow on" would be better)
1263
1264 3. The order of options matters, which is contrary to GNU
1265 conventions (because it is confusing and inconvenient). */
1266
1267 void
1268 symbol_file_command (char *args, int from_tty)
1269 {
1270 dont_repeat ();
1271
1272 if (args == NULL)
1273 {
1274 symbol_file_clear (from_tty);
1275 }
1276 else
1277 {
1278 char **argv = buildargv (args);
1279 int flags = OBJF_USERLOADED;
1280 struct cleanup *cleanups;
1281 char *name = NULL;
1282
1283 if (argv == NULL)
1284 nomem (0);
1285
1286 cleanups = make_cleanup_freeargv (argv);
1287 while (*argv != NULL)
1288 {
1289 if (strcmp (*argv, "-readnow") == 0)
1290 flags |= OBJF_READNOW;
1291 else if (**argv == '-')
1292 error (_("unknown option `%s'"), *argv);
1293 else
1294 {
1295 symbol_file_add_main_1 (*argv, from_tty, flags);
1296 name = *argv;
1297 }
1298
1299 argv++;
1300 }
1301
1302 if (name == NULL)
1303 error (_("no symbol file name was specified"));
1304
1305 do_cleanups (cleanups);
1306 }
1307 }
1308
1309 /* Set the initial language.
1310
1311 FIXME: A better solution would be to record the language in the
1312 psymtab when reading partial symbols, and then use it (if known) to
1313 set the language. This would be a win for formats that encode the
1314 language in an easily discoverable place, such as DWARF. For
1315 stabs, we can jump through hoops looking for specially named
1316 symbols or try to intuit the language from the specific type of
1317 stabs we find, but we can't do that until later when we read in
1318 full symbols. */
1319
1320 static void
1321 set_initial_language (void)
1322 {
1323 struct partial_symtab *pst;
1324 enum language lang = language_unknown;
1325
1326 pst = find_main_psymtab ();
1327 if (pst != NULL)
1328 {
1329 if (pst->filename != NULL)
1330 lang = deduce_language_from_filename (pst->filename);
1331
1332 if (lang == language_unknown)
1333 {
1334 /* Make C the default language */
1335 lang = language_c;
1336 }
1337
1338 set_language (lang);
1339 expected_language = current_language; /* Don't warn the user. */
1340 }
1341 }
1342
1343 /* Open the file specified by NAME and hand it off to BFD for
1344 preliminary analysis. Return a newly initialized bfd *, which
1345 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1346 absolute). In case of trouble, error() is called. */
1347
1348 bfd *
1349 symfile_bfd_open (char *name)
1350 {
1351 bfd *sym_bfd;
1352 int desc;
1353 char *absolute_name;
1354
1355 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1356
1357 /* Look down path for it, allocate 2nd new malloc'd copy. */
1358 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1359 O_RDONLY | O_BINARY, 0, &absolute_name);
1360 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1361 if (desc < 0)
1362 {
1363 char *exename = alloca (strlen (name) + 5);
1364 strcat (strcpy (exename, name), ".exe");
1365 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1366 O_RDONLY | O_BINARY, 0, &absolute_name);
1367 }
1368 #endif
1369 if (desc < 0)
1370 {
1371 make_cleanup (xfree, name);
1372 perror_with_name (name);
1373 }
1374
1375 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1376 bfd. It'll be freed in free_objfile(). */
1377 xfree (name);
1378 name = absolute_name;
1379
1380 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1381 if (!sym_bfd)
1382 {
1383 close (desc);
1384 make_cleanup (xfree, name);
1385 error (_("\"%s\": can't open to read symbols: %s."), name,
1386 bfd_errmsg (bfd_get_error ()));
1387 }
1388 bfd_set_cacheable (sym_bfd, 1);
1389
1390 if (!bfd_check_format (sym_bfd, bfd_object))
1391 {
1392 /* FIXME: should be checking for errors from bfd_close (for one
1393 thing, on error it does not free all the storage associated
1394 with the bfd). */
1395 bfd_close (sym_bfd); /* This also closes desc. */
1396 make_cleanup (xfree, name);
1397 error (_("\"%s\": can't read symbols: %s."), name,
1398 bfd_errmsg (bfd_get_error ()));
1399 }
1400
1401 return sym_bfd;
1402 }
1403
1404 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1405 the section was not found. */
1406
1407 int
1408 get_section_index (struct objfile *objfile, char *section_name)
1409 {
1410 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1411
1412 if (sect)
1413 return sect->index;
1414 else
1415 return -1;
1416 }
1417
1418 /* Link SF into the global symtab_fns list. Called on startup by the
1419 _initialize routine in each object file format reader, to register
1420 information about each format the the reader is prepared to
1421 handle. */
1422
1423 void
1424 add_symtab_fns (struct sym_fns *sf)
1425 {
1426 sf->next = symtab_fns;
1427 symtab_fns = sf;
1428 }
1429
1430 /* Initialize OBJFILE to read symbols from its associated BFD. It
1431 either returns or calls error(). The result is an initialized
1432 struct sym_fns in the objfile structure, that contains cached
1433 information about the symbol file. */
1434
1435 static void
1436 find_sym_fns (struct objfile *objfile)
1437 {
1438 struct sym_fns *sf;
1439 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1440 char *our_target = bfd_get_target (objfile->obfd);
1441
1442 if (our_flavour == bfd_target_srec_flavour
1443 || our_flavour == bfd_target_ihex_flavour
1444 || our_flavour == bfd_target_tekhex_flavour)
1445 return; /* No symbols. */
1446
1447 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1448 {
1449 if (our_flavour == sf->sym_flavour)
1450 {
1451 objfile->sf = sf;
1452 return;
1453 }
1454 }
1455
1456 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1457 bfd_get_target (objfile->obfd));
1458 }
1459 \f
1460
1461 /* This function runs the load command of our current target. */
1462
1463 static void
1464 load_command (char *arg, int from_tty)
1465 {
1466 if (arg == NULL)
1467 {
1468 char *parg;
1469 int count = 0;
1470
1471 parg = arg = get_exec_file (1);
1472
1473 /* Count how many \ " ' tab space there are in the name. */
1474 while ((parg = strpbrk (parg, "\\\"'\t ")))
1475 {
1476 parg++;
1477 count++;
1478 }
1479
1480 if (count)
1481 {
1482 /* We need to quote this string so buildargv can pull it apart. */
1483 char *temp = xmalloc (strlen (arg) + count + 1 );
1484 char *ptemp = temp;
1485 char *prev;
1486
1487 make_cleanup (xfree, temp);
1488
1489 prev = parg = arg;
1490 while ((parg = strpbrk (parg, "\\\"'\t ")))
1491 {
1492 strncpy (ptemp, prev, parg - prev);
1493 ptemp += parg - prev;
1494 prev = parg++;
1495 *ptemp++ = '\\';
1496 }
1497 strcpy (ptemp, prev);
1498
1499 arg = temp;
1500 }
1501 }
1502
1503 /* The user might be reloading because the binary has changed. Take
1504 this opportunity to check. */
1505 reopen_exec_file ();
1506 reread_symbols ();
1507
1508 target_load (arg, from_tty);
1509
1510 /* After re-loading the executable, we don't really know which
1511 overlays are mapped any more. */
1512 overlay_cache_invalid = 1;
1513 }
1514
1515 /* This version of "load" should be usable for any target. Currently
1516 it is just used for remote targets, not inftarg.c or core files,
1517 on the theory that only in that case is it useful.
1518
1519 Avoiding xmodem and the like seems like a win (a) because we don't have
1520 to worry about finding it, and (b) On VMS, fork() is very slow and so
1521 we don't want to run a subprocess. On the other hand, I'm not sure how
1522 performance compares. */
1523
1524 static int download_write_size = 512;
1525 static void
1526 show_download_write_size (struct ui_file *file, int from_tty,
1527 struct cmd_list_element *c, const char *value)
1528 {
1529 fprintf_filtered (file, _("\
1530 The write size used when downloading a program is %s.\n"),
1531 value);
1532 }
1533 static int validate_download = 0;
1534
1535 /* Callback service function for generic_load (bfd_map_over_sections). */
1536
1537 static void
1538 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1539 {
1540 bfd_size_type *sum = data;
1541
1542 *sum += bfd_get_section_size (asec);
1543 }
1544
1545 /* Opaque data for load_section_callback. */
1546 struct load_section_data {
1547 unsigned long load_offset;
1548 unsigned long write_count;
1549 unsigned long data_count;
1550 bfd_size_type total_size;
1551 };
1552
1553 /* Callback service function for generic_load (bfd_map_over_sections). */
1554
1555 static void
1556 load_section_callback (bfd *abfd, asection *asec, void *data)
1557 {
1558 struct load_section_data *args = data;
1559
1560 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1561 {
1562 bfd_size_type size = bfd_get_section_size (asec);
1563 if (size > 0)
1564 {
1565 gdb_byte *buffer;
1566 struct cleanup *old_chain;
1567 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1568 bfd_size_type block_size;
1569 int err;
1570 const char *sect_name = bfd_get_section_name (abfd, asec);
1571 bfd_size_type sent;
1572
1573 if (download_write_size > 0 && size > download_write_size)
1574 block_size = download_write_size;
1575 else
1576 block_size = size;
1577
1578 buffer = xmalloc (size);
1579 old_chain = make_cleanup (xfree, buffer);
1580
1581 /* Is this really necessary? I guess it gives the user something
1582 to look at during a long download. */
1583 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1584 sect_name, paddr_nz (size), paddr_nz (lma));
1585
1586 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1587
1588 sent = 0;
1589 do
1590 {
1591 int len;
1592 bfd_size_type this_transfer = size - sent;
1593
1594 if (this_transfer >= block_size)
1595 this_transfer = block_size;
1596 len = target_write_memory_partial (lma, buffer,
1597 this_transfer, &err);
1598 if (err)
1599 break;
1600 if (validate_download)
1601 {
1602 /* Broken memories and broken monitors manifest
1603 themselves here when bring new computers to
1604 life. This doubles already slow downloads. */
1605 /* NOTE: cagney/1999-10-18: A more efficient
1606 implementation might add a verify_memory()
1607 method to the target vector and then use
1608 that. remote.c could implement that method
1609 using the ``qCRC'' packet. */
1610 gdb_byte *check = xmalloc (len);
1611 struct cleanup *verify_cleanups =
1612 make_cleanup (xfree, check);
1613
1614 if (target_read_memory (lma, check, len) != 0)
1615 error (_("Download verify read failed at 0x%s"),
1616 paddr (lma));
1617 if (memcmp (buffer, check, len) != 0)
1618 error (_("Download verify compare failed at 0x%s"),
1619 paddr (lma));
1620 do_cleanups (verify_cleanups);
1621 }
1622 args->data_count += len;
1623 lma += len;
1624 buffer += len;
1625 args->write_count += 1;
1626 sent += len;
1627 if (quit_flag
1628 || (deprecated_ui_load_progress_hook != NULL
1629 && deprecated_ui_load_progress_hook (sect_name, sent)))
1630 error (_("Canceled the download"));
1631
1632 if (deprecated_show_load_progress != NULL)
1633 deprecated_show_load_progress (sect_name, sent, size,
1634 args->data_count,
1635 args->total_size);
1636 }
1637 while (sent < size);
1638
1639 if (err != 0)
1640 error (_("Memory access error while loading section %s."), sect_name);
1641
1642 do_cleanups (old_chain);
1643 }
1644 }
1645 }
1646
1647 void
1648 generic_load (char *args, int from_tty)
1649 {
1650 asection *s;
1651 bfd *loadfile_bfd;
1652 struct timeval start_time, end_time;
1653 char *filename;
1654 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1655 struct load_section_data cbdata;
1656 CORE_ADDR entry;
1657 char **argv;
1658
1659 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1660 cbdata.write_count = 0; /* Number of writes needed. */
1661 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1662 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1663
1664 argv = buildargv (args);
1665
1666 if (argv == NULL)
1667 nomem(0);
1668
1669 make_cleanup_freeargv (argv);
1670
1671 filename = tilde_expand (argv[0]);
1672 make_cleanup (xfree, filename);
1673
1674 if (argv[1] != NULL)
1675 {
1676 char *endptr;
1677
1678 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1679
1680 /* If the last word was not a valid number then
1681 treat it as a file name with spaces in. */
1682 if (argv[1] == endptr)
1683 error (_("Invalid download offset:%s."), argv[1]);
1684
1685 if (argv[2] != NULL)
1686 error (_("Too many parameters."));
1687 }
1688
1689 /* Open the file for loading. */
1690 loadfile_bfd = bfd_openr (filename, gnutarget);
1691 if (loadfile_bfd == NULL)
1692 {
1693 perror_with_name (filename);
1694 return;
1695 }
1696
1697 /* FIXME: should be checking for errors from bfd_close (for one thing,
1698 on error it does not free all the storage associated with the
1699 bfd). */
1700 make_cleanup_bfd_close (loadfile_bfd);
1701
1702 if (!bfd_check_format (loadfile_bfd, bfd_object))
1703 {
1704 error (_("\"%s\" is not an object file: %s"), filename,
1705 bfd_errmsg (bfd_get_error ()));
1706 }
1707
1708 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1709 (void *) &cbdata.total_size);
1710
1711 gettimeofday (&start_time, NULL);
1712
1713 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1714
1715 gettimeofday (&end_time, NULL);
1716
1717 entry = bfd_get_start_address (loadfile_bfd);
1718 ui_out_text (uiout, "Start address ");
1719 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1720 ui_out_text (uiout, ", load size ");
1721 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1722 ui_out_text (uiout, "\n");
1723 /* We were doing this in remote-mips.c, I suspect it is right
1724 for other targets too. */
1725 write_pc (entry);
1726
1727 /* FIXME: are we supposed to call symbol_file_add or not? According
1728 to a comment from remote-mips.c (where a call to symbol_file_add
1729 was commented out), making the call confuses GDB if more than one
1730 file is loaded in. Some targets do (e.g., remote-vx.c) but
1731 others don't (or didn't - perhaps they have all been deleted). */
1732
1733 print_transfer_performance (gdb_stdout, cbdata.data_count,
1734 cbdata.write_count, &start_time, &end_time);
1735
1736 do_cleanups (old_cleanups);
1737 }
1738
1739 /* Report how fast the transfer went. */
1740
1741 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1742 replaced by print_transfer_performance (with a very different
1743 function signature). */
1744
1745 void
1746 report_transfer_performance (unsigned long data_count, time_t start_time,
1747 time_t end_time)
1748 {
1749 struct timeval start, end;
1750
1751 start.tv_sec = start_time;
1752 start.tv_usec = 0;
1753 end.tv_sec = end_time;
1754 end.tv_usec = 0;
1755
1756 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1757 }
1758
1759 void
1760 print_transfer_performance (struct ui_file *stream,
1761 unsigned long data_count,
1762 unsigned long write_count,
1763 const struct timeval *start_time,
1764 const struct timeval *end_time)
1765 {
1766 unsigned long time_count;
1767
1768 /* Compute the elapsed time in milliseconds, as a tradeoff between
1769 accuracy and overflow. */
1770 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1771 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1772
1773 ui_out_text (uiout, "Transfer rate: ");
1774 if (time_count > 0)
1775 {
1776 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1777 1000 * (data_count * 8) / time_count);
1778 ui_out_text (uiout, " bits/sec");
1779 }
1780 else
1781 {
1782 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1783 ui_out_text (uiout, " bits in <1 sec");
1784 }
1785 if (write_count > 0)
1786 {
1787 ui_out_text (uiout, ", ");
1788 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1789 ui_out_text (uiout, " bytes/write");
1790 }
1791 ui_out_text (uiout, ".\n");
1792 }
1793
1794 /* This function allows the addition of incrementally linked object files.
1795 It does not modify any state in the target, only in the debugger. */
1796 /* Note: ezannoni 2000-04-13 This function/command used to have a
1797 special case syntax for the rombug target (Rombug is the boot
1798 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1799 rombug case, the user doesn't need to supply a text address,
1800 instead a call to target_link() (in target.c) would supply the
1801 value to use. We are now discontinuing this type of ad hoc syntax. */
1802
1803 static void
1804 add_symbol_file_command (char *args, int from_tty)
1805 {
1806 char *filename = NULL;
1807 int flags = OBJF_USERLOADED;
1808 char *arg;
1809 int expecting_option = 0;
1810 int section_index = 0;
1811 int argcnt = 0;
1812 int sec_num = 0;
1813 int i;
1814 int expecting_sec_name = 0;
1815 int expecting_sec_addr = 0;
1816 char **argv;
1817
1818 struct sect_opt
1819 {
1820 char *name;
1821 char *value;
1822 };
1823
1824 struct section_addr_info *section_addrs;
1825 struct sect_opt *sect_opts = NULL;
1826 size_t num_sect_opts = 0;
1827 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1828
1829 num_sect_opts = 16;
1830 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1831 * sizeof (struct sect_opt));
1832
1833 dont_repeat ();
1834
1835 if (args == NULL)
1836 error (_("add-symbol-file takes a file name and an address"));
1837
1838 argv = buildargv (args);
1839 make_cleanup_freeargv (argv);
1840
1841 if (argv == NULL)
1842 nomem (0);
1843
1844 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1845 {
1846 /* Process the argument. */
1847 if (argcnt == 0)
1848 {
1849 /* The first argument is the file name. */
1850 filename = tilde_expand (arg);
1851 make_cleanup (xfree, filename);
1852 }
1853 else
1854 if (argcnt == 1)
1855 {
1856 /* The second argument is always the text address at which
1857 to load the program. */
1858 sect_opts[section_index].name = ".text";
1859 sect_opts[section_index].value = arg;
1860 if (++section_index > num_sect_opts)
1861 {
1862 num_sect_opts *= 2;
1863 sect_opts = ((struct sect_opt *)
1864 xrealloc (sect_opts,
1865 num_sect_opts
1866 * sizeof (struct sect_opt)));
1867 }
1868 }
1869 else
1870 {
1871 /* It's an option (starting with '-') or it's an argument
1872 to an option */
1873
1874 if (*arg == '-')
1875 {
1876 if (strcmp (arg, "-readnow") == 0)
1877 flags |= OBJF_READNOW;
1878 else if (strcmp (arg, "-s") == 0)
1879 {
1880 expecting_sec_name = 1;
1881 expecting_sec_addr = 1;
1882 }
1883 }
1884 else
1885 {
1886 if (expecting_sec_name)
1887 {
1888 sect_opts[section_index].name = arg;
1889 expecting_sec_name = 0;
1890 }
1891 else
1892 if (expecting_sec_addr)
1893 {
1894 sect_opts[section_index].value = arg;
1895 expecting_sec_addr = 0;
1896 if (++section_index > num_sect_opts)
1897 {
1898 num_sect_opts *= 2;
1899 sect_opts = ((struct sect_opt *)
1900 xrealloc (sect_opts,
1901 num_sect_opts
1902 * sizeof (struct sect_opt)));
1903 }
1904 }
1905 else
1906 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1907 }
1908 }
1909 }
1910
1911 /* This command takes at least two arguments. The first one is a
1912 filename, and the second is the address where this file has been
1913 loaded. Abort now if this address hasn't been provided by the
1914 user. */
1915 if (section_index < 1)
1916 error (_("The address where %s has been loaded is missing"), filename);
1917
1918 /* Print the prompt for the query below. And save the arguments into
1919 a sect_addr_info structure to be passed around to other
1920 functions. We have to split this up into separate print
1921 statements because hex_string returns a local static
1922 string. */
1923
1924 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1925 section_addrs = alloc_section_addr_info (section_index);
1926 make_cleanup (xfree, section_addrs);
1927 for (i = 0; i < section_index; i++)
1928 {
1929 CORE_ADDR addr;
1930 char *val = sect_opts[i].value;
1931 char *sec = sect_opts[i].name;
1932
1933 addr = parse_and_eval_address (val);
1934
1935 /* Here we store the section offsets in the order they were
1936 entered on the command line. */
1937 section_addrs->other[sec_num].name = sec;
1938 section_addrs->other[sec_num].addr = addr;
1939 printf_unfiltered ("\t%s_addr = %s\n",
1940 sec, hex_string ((unsigned long)addr));
1941 sec_num++;
1942
1943 /* The object's sections are initialized when a
1944 call is made to build_objfile_section_table (objfile).
1945 This happens in reread_symbols.
1946 At this point, we don't know what file type this is,
1947 so we can't determine what section names are valid. */
1948 }
1949
1950 if (from_tty && (!query ("%s", "")))
1951 error (_("Not confirmed."));
1952
1953 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1954
1955 /* Getting new symbols may change our opinion about what is
1956 frameless. */
1957 reinit_frame_cache ();
1958 do_cleanups (my_cleanups);
1959 }
1960 \f
1961 static void
1962 add_shared_symbol_files_command (char *args, int from_tty)
1963 {
1964 #ifdef ADD_SHARED_SYMBOL_FILES
1965 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1966 #else
1967 error (_("This command is not available in this configuration of GDB."));
1968 #endif
1969 }
1970 \f
1971 /* Re-read symbols if a symbol-file has changed. */
1972 void
1973 reread_symbols (void)
1974 {
1975 struct objfile *objfile;
1976 long new_modtime;
1977 int reread_one = 0;
1978 struct stat new_statbuf;
1979 int res;
1980
1981 /* With the addition of shared libraries, this should be modified,
1982 the load time should be saved in the partial symbol tables, since
1983 different tables may come from different source files. FIXME.
1984 This routine should then walk down each partial symbol table
1985 and see if the symbol table that it originates from has been changed */
1986
1987 for (objfile = object_files; objfile; objfile = objfile->next)
1988 {
1989 if (objfile->obfd)
1990 {
1991 #ifdef DEPRECATED_IBM6000_TARGET
1992 /* If this object is from a shared library, then you should
1993 stat on the library name, not member name. */
1994
1995 if (objfile->obfd->my_archive)
1996 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1997 else
1998 #endif
1999 res = stat (objfile->name, &new_statbuf);
2000 if (res != 0)
2001 {
2002 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2003 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2004 objfile->name);
2005 continue;
2006 }
2007 new_modtime = new_statbuf.st_mtime;
2008 if (new_modtime != objfile->mtime)
2009 {
2010 struct cleanup *old_cleanups;
2011 struct section_offsets *offsets;
2012 int num_offsets;
2013 char *obfd_filename;
2014
2015 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2016 objfile->name);
2017
2018 /* There are various functions like symbol_file_add,
2019 symfile_bfd_open, syms_from_objfile, etc., which might
2020 appear to do what we want. But they have various other
2021 effects which we *don't* want. So we just do stuff
2022 ourselves. We don't worry about mapped files (for one thing,
2023 any mapped file will be out of date). */
2024
2025 /* If we get an error, blow away this objfile (not sure if
2026 that is the correct response for things like shared
2027 libraries). */
2028 old_cleanups = make_cleanup_free_objfile (objfile);
2029 /* We need to do this whenever any symbols go away. */
2030 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2031
2032 /* Clean up any state BFD has sitting around. We don't need
2033 to close the descriptor but BFD lacks a way of closing the
2034 BFD without closing the descriptor. */
2035 obfd_filename = bfd_get_filename (objfile->obfd);
2036 if (!bfd_close (objfile->obfd))
2037 error (_("Can't close BFD for %s: %s"), objfile->name,
2038 bfd_errmsg (bfd_get_error ()));
2039 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2040 if (objfile->obfd == NULL)
2041 error (_("Can't open %s to read symbols."), objfile->name);
2042 /* bfd_openr sets cacheable to true, which is what we want. */
2043 if (!bfd_check_format (objfile->obfd, bfd_object))
2044 error (_("Can't read symbols from %s: %s."), objfile->name,
2045 bfd_errmsg (bfd_get_error ()));
2046
2047 /* Save the offsets, we will nuke them with the rest of the
2048 objfile_obstack. */
2049 num_offsets = objfile->num_sections;
2050 offsets = ((struct section_offsets *)
2051 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2052 memcpy (offsets, objfile->section_offsets,
2053 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2054
2055 /* Remove any references to this objfile in the global
2056 value lists. */
2057 preserve_values (objfile);
2058
2059 /* Nuke all the state that we will re-read. Much of the following
2060 code which sets things to NULL really is necessary to tell
2061 other parts of GDB that there is nothing currently there. */
2062
2063 /* FIXME: Do we have to free a whole linked list, or is this
2064 enough? */
2065 if (objfile->global_psymbols.list)
2066 xfree (objfile->global_psymbols.list);
2067 memset (&objfile->global_psymbols, 0,
2068 sizeof (objfile->global_psymbols));
2069 if (objfile->static_psymbols.list)
2070 xfree (objfile->static_psymbols.list);
2071 memset (&objfile->static_psymbols, 0,
2072 sizeof (objfile->static_psymbols));
2073
2074 /* Free the obstacks for non-reusable objfiles */
2075 bcache_xfree (objfile->psymbol_cache);
2076 objfile->psymbol_cache = bcache_xmalloc ();
2077 bcache_xfree (objfile->macro_cache);
2078 objfile->macro_cache = bcache_xmalloc ();
2079 if (objfile->demangled_names_hash != NULL)
2080 {
2081 htab_delete (objfile->demangled_names_hash);
2082 objfile->demangled_names_hash = NULL;
2083 }
2084 obstack_free (&objfile->objfile_obstack, 0);
2085 objfile->sections = NULL;
2086 objfile->symtabs = NULL;
2087 objfile->psymtabs = NULL;
2088 objfile->free_psymtabs = NULL;
2089 objfile->cp_namespace_symtab = NULL;
2090 objfile->msymbols = NULL;
2091 objfile->deprecated_sym_private = NULL;
2092 objfile->minimal_symbol_count = 0;
2093 memset (&objfile->msymbol_hash, 0,
2094 sizeof (objfile->msymbol_hash));
2095 memset (&objfile->msymbol_demangled_hash, 0,
2096 sizeof (objfile->msymbol_demangled_hash));
2097 objfile->fundamental_types = NULL;
2098 clear_objfile_data (objfile);
2099 if (objfile->sf != NULL)
2100 {
2101 (*objfile->sf->sym_finish) (objfile);
2102 }
2103
2104 /* We never make this a mapped file. */
2105 objfile->md = NULL;
2106 objfile->psymbol_cache = bcache_xmalloc ();
2107 objfile->macro_cache = bcache_xmalloc ();
2108 /* obstack_init also initializes the obstack so it is
2109 empty. We could use obstack_specify_allocation but
2110 gdb_obstack.h specifies the alloc/dealloc
2111 functions. */
2112 obstack_init (&objfile->objfile_obstack);
2113 if (build_objfile_section_table (objfile))
2114 {
2115 error (_("Can't find the file sections in `%s': %s"),
2116 objfile->name, bfd_errmsg (bfd_get_error ()));
2117 }
2118 terminate_minimal_symbol_table (objfile);
2119
2120 /* We use the same section offsets as from last time. I'm not
2121 sure whether that is always correct for shared libraries. */
2122 objfile->section_offsets = (struct section_offsets *)
2123 obstack_alloc (&objfile->objfile_obstack,
2124 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2125 memcpy (objfile->section_offsets, offsets,
2126 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2127 objfile->num_sections = num_offsets;
2128
2129 /* What the hell is sym_new_init for, anyway? The concept of
2130 distinguishing between the main file and additional files
2131 in this way seems rather dubious. */
2132 if (objfile == symfile_objfile)
2133 {
2134 (*objfile->sf->sym_new_init) (objfile);
2135 }
2136
2137 (*objfile->sf->sym_init) (objfile);
2138 clear_complaints (&symfile_complaints, 1, 1);
2139 /* The "mainline" parameter is a hideous hack; I think leaving it
2140 zero is OK since dbxread.c also does what it needs to do if
2141 objfile->global_psymbols.size is 0. */
2142 (*objfile->sf->sym_read) (objfile, 0);
2143 if (!have_partial_symbols () && !have_full_symbols ())
2144 {
2145 wrap_here ("");
2146 printf_unfiltered (_("(no debugging symbols found)\n"));
2147 wrap_here ("");
2148 }
2149 objfile->flags |= OBJF_SYMS;
2150
2151 /* We're done reading the symbol file; finish off complaints. */
2152 clear_complaints (&symfile_complaints, 0, 1);
2153
2154 /* Getting new symbols may change our opinion about what is
2155 frameless. */
2156
2157 reinit_frame_cache ();
2158
2159 /* Discard cleanups as symbol reading was successful. */
2160 discard_cleanups (old_cleanups);
2161
2162 /* If the mtime has changed between the time we set new_modtime
2163 and now, we *want* this to be out of date, so don't call stat
2164 again now. */
2165 objfile->mtime = new_modtime;
2166 reread_one = 1;
2167 reread_separate_symbols (objfile);
2168 }
2169 }
2170 }
2171
2172 if (reread_one)
2173 {
2174 clear_symtab_users ();
2175 /* At least one objfile has changed, so we can consider that
2176 the executable we're debugging has changed too. */
2177 observer_notify_executable_changed (NULL);
2178 }
2179
2180 }
2181
2182
2183 /* Handle separate debug info for OBJFILE, which has just been
2184 re-read:
2185 - If we had separate debug info before, but now we don't, get rid
2186 of the separated objfile.
2187 - If we didn't have separated debug info before, but now we do,
2188 read in the new separated debug info file.
2189 - If the debug link points to a different file, toss the old one
2190 and read the new one.
2191 This function does *not* handle the case where objfile is still
2192 using the same separate debug info file, but that file's timestamp
2193 has changed. That case should be handled by the loop in
2194 reread_symbols already. */
2195 static void
2196 reread_separate_symbols (struct objfile *objfile)
2197 {
2198 char *debug_file;
2199 unsigned long crc32;
2200
2201 /* Does the updated objfile's debug info live in a
2202 separate file? */
2203 debug_file = find_separate_debug_file (objfile);
2204
2205 if (objfile->separate_debug_objfile)
2206 {
2207 /* There are two cases where we need to get rid of
2208 the old separated debug info objfile:
2209 - if the new primary objfile doesn't have
2210 separated debug info, or
2211 - if the new primary objfile has separate debug
2212 info, but it's under a different filename.
2213
2214 If the old and new objfiles both have separate
2215 debug info, under the same filename, then we're
2216 okay --- if the separated file's contents have
2217 changed, we will have caught that when we
2218 visited it in this function's outermost
2219 loop. */
2220 if (! debug_file
2221 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2222 free_objfile (objfile->separate_debug_objfile);
2223 }
2224
2225 /* If the new objfile has separate debug info, and we
2226 haven't loaded it already, do so now. */
2227 if (debug_file
2228 && ! objfile->separate_debug_objfile)
2229 {
2230 /* Use the same section offset table as objfile itself.
2231 Preserve the flags from objfile that make sense. */
2232 objfile->separate_debug_objfile
2233 = (symbol_file_add_with_addrs_or_offsets
2234 (symfile_bfd_open (debug_file),
2235 info_verbose, /* from_tty: Don't override the default. */
2236 0, /* No addr table. */
2237 objfile->section_offsets, objfile->num_sections,
2238 0, /* Not mainline. See comments about this above. */
2239 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2240 | OBJF_USERLOADED)));
2241 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2242 = objfile;
2243 }
2244 }
2245
2246
2247 \f
2248
2249
2250 typedef struct
2251 {
2252 char *ext;
2253 enum language lang;
2254 }
2255 filename_language;
2256
2257 static filename_language *filename_language_table;
2258 static int fl_table_size, fl_table_next;
2259
2260 static void
2261 add_filename_language (char *ext, enum language lang)
2262 {
2263 if (fl_table_next >= fl_table_size)
2264 {
2265 fl_table_size += 10;
2266 filename_language_table =
2267 xrealloc (filename_language_table,
2268 fl_table_size * sizeof (*filename_language_table));
2269 }
2270
2271 filename_language_table[fl_table_next].ext = xstrdup (ext);
2272 filename_language_table[fl_table_next].lang = lang;
2273 fl_table_next++;
2274 }
2275
2276 static char *ext_args;
2277 static void
2278 show_ext_args (struct ui_file *file, int from_tty,
2279 struct cmd_list_element *c, const char *value)
2280 {
2281 fprintf_filtered (file, _("\
2282 Mapping between filename extension and source language is \"%s\".\n"),
2283 value);
2284 }
2285
2286 static void
2287 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2288 {
2289 int i;
2290 char *cp = ext_args;
2291 enum language lang;
2292
2293 /* First arg is filename extension, starting with '.' */
2294 if (*cp != '.')
2295 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2296
2297 /* Find end of first arg. */
2298 while (*cp && !isspace (*cp))
2299 cp++;
2300
2301 if (*cp == '\0')
2302 error (_("'%s': two arguments required -- filename extension and language"),
2303 ext_args);
2304
2305 /* Null-terminate first arg */
2306 *cp++ = '\0';
2307
2308 /* Find beginning of second arg, which should be a source language. */
2309 while (*cp && isspace (*cp))
2310 cp++;
2311
2312 if (*cp == '\0')
2313 error (_("'%s': two arguments required -- filename extension and language"),
2314 ext_args);
2315
2316 /* Lookup the language from among those we know. */
2317 lang = language_enum (cp);
2318
2319 /* Now lookup the filename extension: do we already know it? */
2320 for (i = 0; i < fl_table_next; i++)
2321 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2322 break;
2323
2324 if (i >= fl_table_next)
2325 {
2326 /* new file extension */
2327 add_filename_language (ext_args, lang);
2328 }
2329 else
2330 {
2331 /* redefining a previously known filename extension */
2332
2333 /* if (from_tty) */
2334 /* query ("Really make files of type %s '%s'?", */
2335 /* ext_args, language_str (lang)); */
2336
2337 xfree (filename_language_table[i].ext);
2338 filename_language_table[i].ext = xstrdup (ext_args);
2339 filename_language_table[i].lang = lang;
2340 }
2341 }
2342
2343 static void
2344 info_ext_lang_command (char *args, int from_tty)
2345 {
2346 int i;
2347
2348 printf_filtered (_("Filename extensions and the languages they represent:"));
2349 printf_filtered ("\n\n");
2350 for (i = 0; i < fl_table_next; i++)
2351 printf_filtered ("\t%s\t- %s\n",
2352 filename_language_table[i].ext,
2353 language_str (filename_language_table[i].lang));
2354 }
2355
2356 static void
2357 init_filename_language_table (void)
2358 {
2359 if (fl_table_size == 0) /* protect against repetition */
2360 {
2361 fl_table_size = 20;
2362 fl_table_next = 0;
2363 filename_language_table =
2364 xmalloc (fl_table_size * sizeof (*filename_language_table));
2365 add_filename_language (".c", language_c);
2366 add_filename_language (".C", language_cplus);
2367 add_filename_language (".cc", language_cplus);
2368 add_filename_language (".cp", language_cplus);
2369 add_filename_language (".cpp", language_cplus);
2370 add_filename_language (".cxx", language_cplus);
2371 add_filename_language (".c++", language_cplus);
2372 add_filename_language (".java", language_java);
2373 add_filename_language (".class", language_java);
2374 add_filename_language (".m", language_objc);
2375 add_filename_language (".f", language_fortran);
2376 add_filename_language (".F", language_fortran);
2377 add_filename_language (".s", language_asm);
2378 add_filename_language (".S", language_asm);
2379 add_filename_language (".pas", language_pascal);
2380 add_filename_language (".p", language_pascal);
2381 add_filename_language (".pp", language_pascal);
2382 add_filename_language (".adb", language_ada);
2383 add_filename_language (".ads", language_ada);
2384 add_filename_language (".a", language_ada);
2385 add_filename_language (".ada", language_ada);
2386 }
2387 }
2388
2389 enum language
2390 deduce_language_from_filename (char *filename)
2391 {
2392 int i;
2393 char *cp;
2394
2395 if (filename != NULL)
2396 if ((cp = strrchr (filename, '.')) != NULL)
2397 for (i = 0; i < fl_table_next; i++)
2398 if (strcmp (cp, filename_language_table[i].ext) == 0)
2399 return filename_language_table[i].lang;
2400
2401 return language_unknown;
2402 }
2403 \f
2404 /* allocate_symtab:
2405
2406 Allocate and partly initialize a new symbol table. Return a pointer
2407 to it. error() if no space.
2408
2409 Caller must set these fields:
2410 LINETABLE(symtab)
2411 symtab->blockvector
2412 symtab->dirname
2413 symtab->free_code
2414 symtab->free_ptr
2415 possibly free_named_symtabs (symtab->filename);
2416 */
2417
2418 struct symtab *
2419 allocate_symtab (char *filename, struct objfile *objfile)
2420 {
2421 struct symtab *symtab;
2422
2423 symtab = (struct symtab *)
2424 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2425 memset (symtab, 0, sizeof (*symtab));
2426 symtab->filename = obsavestring (filename, strlen (filename),
2427 &objfile->objfile_obstack);
2428 symtab->fullname = NULL;
2429 symtab->language = deduce_language_from_filename (filename);
2430 symtab->debugformat = obsavestring ("unknown", 7,
2431 &objfile->objfile_obstack);
2432
2433 /* Hook it to the objfile it comes from */
2434
2435 symtab->objfile = objfile;
2436 symtab->next = objfile->symtabs;
2437 objfile->symtabs = symtab;
2438
2439 /* FIXME: This should go away. It is only defined for the Z8000,
2440 and the Z8000 definition of this macro doesn't have anything to
2441 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2442 here for convenience. */
2443 #ifdef INIT_EXTRA_SYMTAB_INFO
2444 INIT_EXTRA_SYMTAB_INFO (symtab);
2445 #endif
2446
2447 return (symtab);
2448 }
2449
2450 struct partial_symtab *
2451 allocate_psymtab (char *filename, struct objfile *objfile)
2452 {
2453 struct partial_symtab *psymtab;
2454
2455 if (objfile->free_psymtabs)
2456 {
2457 psymtab = objfile->free_psymtabs;
2458 objfile->free_psymtabs = psymtab->next;
2459 }
2460 else
2461 psymtab = (struct partial_symtab *)
2462 obstack_alloc (&objfile->objfile_obstack,
2463 sizeof (struct partial_symtab));
2464
2465 memset (psymtab, 0, sizeof (struct partial_symtab));
2466 psymtab->filename = obsavestring (filename, strlen (filename),
2467 &objfile->objfile_obstack);
2468 psymtab->symtab = NULL;
2469
2470 /* Prepend it to the psymtab list for the objfile it belongs to.
2471 Psymtabs are searched in most recent inserted -> least recent
2472 inserted order. */
2473
2474 psymtab->objfile = objfile;
2475 psymtab->next = objfile->psymtabs;
2476 objfile->psymtabs = psymtab;
2477 #if 0
2478 {
2479 struct partial_symtab **prev_pst;
2480 psymtab->objfile = objfile;
2481 psymtab->next = NULL;
2482 prev_pst = &(objfile->psymtabs);
2483 while ((*prev_pst) != NULL)
2484 prev_pst = &((*prev_pst)->next);
2485 (*prev_pst) = psymtab;
2486 }
2487 #endif
2488
2489 return (psymtab);
2490 }
2491
2492 void
2493 discard_psymtab (struct partial_symtab *pst)
2494 {
2495 struct partial_symtab **prev_pst;
2496
2497 /* From dbxread.c:
2498 Empty psymtabs happen as a result of header files which don't
2499 have any symbols in them. There can be a lot of them. But this
2500 check is wrong, in that a psymtab with N_SLINE entries but
2501 nothing else is not empty, but we don't realize that. Fixing
2502 that without slowing things down might be tricky. */
2503
2504 /* First, snip it out of the psymtab chain */
2505
2506 prev_pst = &(pst->objfile->psymtabs);
2507 while ((*prev_pst) != pst)
2508 prev_pst = &((*prev_pst)->next);
2509 (*prev_pst) = pst->next;
2510
2511 /* Next, put it on a free list for recycling */
2512
2513 pst->next = pst->objfile->free_psymtabs;
2514 pst->objfile->free_psymtabs = pst;
2515 }
2516 \f
2517
2518 /* Reset all data structures in gdb which may contain references to symbol
2519 table data. */
2520
2521 void
2522 clear_symtab_users (void)
2523 {
2524 /* Someday, we should do better than this, by only blowing away
2525 the things that really need to be blown. */
2526
2527 /* Clear the "current" symtab first, because it is no longer valid.
2528 breakpoint_re_set may try to access the current symtab. */
2529 clear_current_source_symtab_and_line ();
2530
2531 clear_displays ();
2532 breakpoint_re_set ();
2533 set_default_breakpoint (0, 0, 0, 0);
2534 clear_pc_function_cache ();
2535 if (deprecated_target_new_objfile_hook)
2536 deprecated_target_new_objfile_hook (NULL);
2537 }
2538
2539 static void
2540 clear_symtab_users_cleanup (void *ignore)
2541 {
2542 clear_symtab_users ();
2543 }
2544
2545 /* clear_symtab_users_once:
2546
2547 This function is run after symbol reading, or from a cleanup.
2548 If an old symbol table was obsoleted, the old symbol table
2549 has been blown away, but the other GDB data structures that may
2550 reference it have not yet been cleared or re-directed. (The old
2551 symtab was zapped, and the cleanup queued, in free_named_symtab()
2552 below.)
2553
2554 This function can be queued N times as a cleanup, or called
2555 directly; it will do all the work the first time, and then will be a
2556 no-op until the next time it is queued. This works by bumping a
2557 counter at queueing time. Much later when the cleanup is run, or at
2558 the end of symbol processing (in case the cleanup is discarded), if
2559 the queued count is greater than the "done-count", we do the work
2560 and set the done-count to the queued count. If the queued count is
2561 less than or equal to the done-count, we just ignore the call. This
2562 is needed because reading a single .o file will often replace many
2563 symtabs (one per .h file, for example), and we don't want to reset
2564 the breakpoints N times in the user's face.
2565
2566 The reason we both queue a cleanup, and call it directly after symbol
2567 reading, is because the cleanup protects us in case of errors, but is
2568 discarded if symbol reading is successful. */
2569
2570 #if 0
2571 /* FIXME: As free_named_symtabs is currently a big noop this function
2572 is no longer needed. */
2573 static void clear_symtab_users_once (void);
2574
2575 static int clear_symtab_users_queued;
2576 static int clear_symtab_users_done;
2577
2578 static void
2579 clear_symtab_users_once (void)
2580 {
2581 /* Enforce once-per-`do_cleanups'-semantics */
2582 if (clear_symtab_users_queued <= clear_symtab_users_done)
2583 return;
2584 clear_symtab_users_done = clear_symtab_users_queued;
2585
2586 clear_symtab_users ();
2587 }
2588 #endif
2589
2590 /* Delete the specified psymtab, and any others that reference it. */
2591
2592 static void
2593 cashier_psymtab (struct partial_symtab *pst)
2594 {
2595 struct partial_symtab *ps, *pprev = NULL;
2596 int i;
2597
2598 /* Find its previous psymtab in the chain */
2599 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2600 {
2601 if (ps == pst)
2602 break;
2603 pprev = ps;
2604 }
2605
2606 if (ps)
2607 {
2608 /* Unhook it from the chain. */
2609 if (ps == pst->objfile->psymtabs)
2610 pst->objfile->psymtabs = ps->next;
2611 else
2612 pprev->next = ps->next;
2613
2614 /* FIXME, we can't conveniently deallocate the entries in the
2615 partial_symbol lists (global_psymbols/static_psymbols) that
2616 this psymtab points to. These just take up space until all
2617 the psymtabs are reclaimed. Ditto the dependencies list and
2618 filename, which are all in the objfile_obstack. */
2619
2620 /* We need to cashier any psymtab that has this one as a dependency... */
2621 again:
2622 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2623 {
2624 for (i = 0; i < ps->number_of_dependencies; i++)
2625 {
2626 if (ps->dependencies[i] == pst)
2627 {
2628 cashier_psymtab (ps);
2629 goto again; /* Must restart, chain has been munged. */
2630 }
2631 }
2632 }
2633 }
2634 }
2635
2636 /* If a symtab or psymtab for filename NAME is found, free it along
2637 with any dependent breakpoints, displays, etc.
2638 Used when loading new versions of object modules with the "add-file"
2639 command. This is only called on the top-level symtab or psymtab's name;
2640 it is not called for subsidiary files such as .h files.
2641
2642 Return value is 1 if we blew away the environment, 0 if not.
2643 FIXME. The return value appears to never be used.
2644
2645 FIXME. I think this is not the best way to do this. We should
2646 work on being gentler to the environment while still cleaning up
2647 all stray pointers into the freed symtab. */
2648
2649 int
2650 free_named_symtabs (char *name)
2651 {
2652 #if 0
2653 /* FIXME: With the new method of each objfile having it's own
2654 psymtab list, this function needs serious rethinking. In particular,
2655 why was it ever necessary to toss psymtabs with specific compilation
2656 unit filenames, as opposed to all psymtabs from a particular symbol
2657 file? -- fnf
2658 Well, the answer is that some systems permit reloading of particular
2659 compilation units. We want to blow away any old info about these
2660 compilation units, regardless of which objfiles they arrived in. --gnu. */
2661
2662 struct symtab *s;
2663 struct symtab *prev;
2664 struct partial_symtab *ps;
2665 struct blockvector *bv;
2666 int blewit = 0;
2667
2668 /* We only wack things if the symbol-reload switch is set. */
2669 if (!symbol_reloading)
2670 return 0;
2671
2672 /* Some symbol formats have trouble providing file names... */
2673 if (name == 0 || *name == '\0')
2674 return 0;
2675
2676 /* Look for a psymtab with the specified name. */
2677
2678 again2:
2679 for (ps = partial_symtab_list; ps; ps = ps->next)
2680 {
2681 if (strcmp (name, ps->filename) == 0)
2682 {
2683 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2684 goto again2; /* Must restart, chain has been munged */
2685 }
2686 }
2687
2688 /* Look for a symtab with the specified name. */
2689
2690 for (s = symtab_list; s; s = s->next)
2691 {
2692 if (strcmp (name, s->filename) == 0)
2693 break;
2694 prev = s;
2695 }
2696
2697 if (s)
2698 {
2699 if (s == symtab_list)
2700 symtab_list = s->next;
2701 else
2702 prev->next = s->next;
2703
2704 /* For now, queue a delete for all breakpoints, displays, etc., whether
2705 or not they depend on the symtab being freed. This should be
2706 changed so that only those data structures affected are deleted. */
2707
2708 /* But don't delete anything if the symtab is empty.
2709 This test is necessary due to a bug in "dbxread.c" that
2710 causes empty symtabs to be created for N_SO symbols that
2711 contain the pathname of the object file. (This problem
2712 has been fixed in GDB 3.9x). */
2713
2714 bv = BLOCKVECTOR (s);
2715 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2716 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2717 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2718 {
2719 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2720 name);
2721 clear_symtab_users_queued++;
2722 make_cleanup (clear_symtab_users_once, 0);
2723 blewit = 1;
2724 }
2725 else
2726 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2727 name);
2728
2729 free_symtab (s);
2730 }
2731 else
2732 {
2733 /* It is still possible that some breakpoints will be affected
2734 even though no symtab was found, since the file might have
2735 been compiled without debugging, and hence not be associated
2736 with a symtab. In order to handle this correctly, we would need
2737 to keep a list of text address ranges for undebuggable files.
2738 For now, we do nothing, since this is a fairly obscure case. */
2739 ;
2740 }
2741
2742 /* FIXME, what about the minimal symbol table? */
2743 return blewit;
2744 #else
2745 return (0);
2746 #endif
2747 }
2748 \f
2749 /* Allocate and partially fill a partial symtab. It will be
2750 completely filled at the end of the symbol list.
2751
2752 FILENAME is the name of the symbol-file we are reading from. */
2753
2754 struct partial_symtab *
2755 start_psymtab_common (struct objfile *objfile,
2756 struct section_offsets *section_offsets, char *filename,
2757 CORE_ADDR textlow, struct partial_symbol **global_syms,
2758 struct partial_symbol **static_syms)
2759 {
2760 struct partial_symtab *psymtab;
2761
2762 psymtab = allocate_psymtab (filename, objfile);
2763 psymtab->section_offsets = section_offsets;
2764 psymtab->textlow = textlow;
2765 psymtab->texthigh = psymtab->textlow; /* default */
2766 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2767 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2768 return (psymtab);
2769 }
2770 \f
2771 /* Add a symbol with a long value to a psymtab.
2772 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2773 Return the partial symbol that has been added. */
2774
2775 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2776 symbol is so that callers can get access to the symbol's demangled
2777 name, which they don't have any cheap way to determine otherwise.
2778 (Currenly, dwarf2read.c is the only file who uses that information,
2779 though it's possible that other readers might in the future.)
2780 Elena wasn't thrilled about that, and I don't blame her, but we
2781 couldn't come up with a better way to get that information. If
2782 it's needed in other situations, we could consider breaking up
2783 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2784 cache. */
2785
2786 const struct partial_symbol *
2787 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2788 enum address_class class,
2789 struct psymbol_allocation_list *list, long val, /* Value as a long */
2790 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2791 enum language language, struct objfile *objfile)
2792 {
2793 struct partial_symbol *psym;
2794 char *buf = alloca (namelength + 1);
2795 /* psymbol is static so that there will be no uninitialized gaps in the
2796 structure which might contain random data, causing cache misses in
2797 bcache. */
2798 static struct partial_symbol psymbol;
2799
2800 /* Create local copy of the partial symbol */
2801 memcpy (buf, name, namelength);
2802 buf[namelength] = '\0';
2803 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2804 if (val != 0)
2805 {
2806 SYMBOL_VALUE (&psymbol) = val;
2807 }
2808 else
2809 {
2810 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2811 }
2812 SYMBOL_SECTION (&psymbol) = 0;
2813 SYMBOL_LANGUAGE (&psymbol) = language;
2814 PSYMBOL_DOMAIN (&psymbol) = domain;
2815 PSYMBOL_CLASS (&psymbol) = class;
2816
2817 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2818
2819 /* Stash the partial symbol away in the cache */
2820 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2821 objfile->psymbol_cache);
2822
2823 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2824 if (list->next >= list->list + list->size)
2825 {
2826 extend_psymbol_list (list, objfile);
2827 }
2828 *list->next++ = psym;
2829 OBJSTAT (objfile, n_psyms++);
2830
2831 return psym;
2832 }
2833
2834 /* Add a symbol with a long value to a psymtab. This differs from
2835 * add_psymbol_to_list above in taking both a mangled and a demangled
2836 * name. */
2837
2838 void
2839 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2840 int dem_namelength, domain_enum domain,
2841 enum address_class class,
2842 struct psymbol_allocation_list *list, long val, /* Value as a long */
2843 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2844 enum language language,
2845 struct objfile *objfile)
2846 {
2847 struct partial_symbol *psym;
2848 char *buf = alloca (namelength + 1);
2849 /* psymbol is static so that there will be no uninitialized gaps in the
2850 structure which might contain random data, causing cache misses in
2851 bcache. */
2852 static struct partial_symbol psymbol;
2853
2854 /* Create local copy of the partial symbol */
2855
2856 memcpy (buf, name, namelength);
2857 buf[namelength] = '\0';
2858 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2859 objfile->psymbol_cache);
2860
2861 buf = alloca (dem_namelength + 1);
2862 memcpy (buf, dem_name, dem_namelength);
2863 buf[dem_namelength] = '\0';
2864
2865 switch (language)
2866 {
2867 case language_c:
2868 case language_cplus:
2869 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2870 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2871 break;
2872 /* FIXME What should be done for the default case? Ignoring for now. */
2873 }
2874
2875 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2876 if (val != 0)
2877 {
2878 SYMBOL_VALUE (&psymbol) = val;
2879 }
2880 else
2881 {
2882 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2883 }
2884 SYMBOL_SECTION (&psymbol) = 0;
2885 SYMBOL_LANGUAGE (&psymbol) = language;
2886 PSYMBOL_DOMAIN (&psymbol) = domain;
2887 PSYMBOL_CLASS (&psymbol) = class;
2888 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2889
2890 /* Stash the partial symbol away in the cache */
2891 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2892 objfile->psymbol_cache);
2893
2894 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2895 if (list->next >= list->list + list->size)
2896 {
2897 extend_psymbol_list (list, objfile);
2898 }
2899 *list->next++ = psym;
2900 OBJSTAT (objfile, n_psyms++);
2901 }
2902
2903 /* Initialize storage for partial symbols. */
2904
2905 void
2906 init_psymbol_list (struct objfile *objfile, int total_symbols)
2907 {
2908 /* Free any previously allocated psymbol lists. */
2909
2910 if (objfile->global_psymbols.list)
2911 {
2912 xfree (objfile->global_psymbols.list);
2913 }
2914 if (objfile->static_psymbols.list)
2915 {
2916 xfree (objfile->static_psymbols.list);
2917 }
2918
2919 /* Current best guess is that approximately a twentieth
2920 of the total symbols (in a debugging file) are global or static
2921 oriented symbols */
2922
2923 objfile->global_psymbols.size = total_symbols / 10;
2924 objfile->static_psymbols.size = total_symbols / 10;
2925
2926 if (objfile->global_psymbols.size > 0)
2927 {
2928 objfile->global_psymbols.next =
2929 objfile->global_psymbols.list = (struct partial_symbol **)
2930 xmalloc ((objfile->global_psymbols.size
2931 * sizeof (struct partial_symbol *)));
2932 }
2933 if (objfile->static_psymbols.size > 0)
2934 {
2935 objfile->static_psymbols.next =
2936 objfile->static_psymbols.list = (struct partial_symbol **)
2937 xmalloc ((objfile->static_psymbols.size
2938 * sizeof (struct partial_symbol *)));
2939 }
2940 }
2941
2942 /* OVERLAYS:
2943 The following code implements an abstraction for debugging overlay sections.
2944
2945 The target model is as follows:
2946 1) The gnu linker will permit multiple sections to be mapped into the
2947 same VMA, each with its own unique LMA (or load address).
2948 2) It is assumed that some runtime mechanism exists for mapping the
2949 sections, one by one, from the load address into the VMA address.
2950 3) This code provides a mechanism for gdb to keep track of which
2951 sections should be considered to be mapped from the VMA to the LMA.
2952 This information is used for symbol lookup, and memory read/write.
2953 For instance, if a section has been mapped then its contents
2954 should be read from the VMA, otherwise from the LMA.
2955
2956 Two levels of debugger support for overlays are available. One is
2957 "manual", in which the debugger relies on the user to tell it which
2958 overlays are currently mapped. This level of support is
2959 implemented entirely in the core debugger, and the information about
2960 whether a section is mapped is kept in the objfile->obj_section table.
2961
2962 The second level of support is "automatic", and is only available if
2963 the target-specific code provides functionality to read the target's
2964 overlay mapping table, and translate its contents for the debugger
2965 (by updating the mapped state information in the obj_section tables).
2966
2967 The interface is as follows:
2968 User commands:
2969 overlay map <name> -- tell gdb to consider this section mapped
2970 overlay unmap <name> -- tell gdb to consider this section unmapped
2971 overlay list -- list the sections that GDB thinks are mapped
2972 overlay read-target -- get the target's state of what's mapped
2973 overlay off/manual/auto -- set overlay debugging state
2974 Functional interface:
2975 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2976 section, return that section.
2977 find_pc_overlay(pc): find any overlay section that contains
2978 the pc, either in its VMA or its LMA
2979 overlay_is_mapped(sect): true if overlay is marked as mapped
2980 section_is_overlay(sect): true if section's VMA != LMA
2981 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2982 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2983 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2984 overlay_mapped_address(...): map an address from section's LMA to VMA
2985 overlay_unmapped_address(...): map an address from section's VMA to LMA
2986 symbol_overlayed_address(...): Return a "current" address for symbol:
2987 either in VMA or LMA depending on whether
2988 the symbol's section is currently mapped
2989 */
2990
2991 /* Overlay debugging state: */
2992
2993 enum overlay_debugging_state overlay_debugging = ovly_off;
2994 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2995
2996 /* Target vector for refreshing overlay mapped state */
2997 static void simple_overlay_update (struct obj_section *);
2998 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2999
3000 /* Function: section_is_overlay (SECTION)
3001 Returns true if SECTION has VMA not equal to LMA, ie.
3002 SECTION is loaded at an address different from where it will "run". */
3003
3004 int
3005 section_is_overlay (asection *section)
3006 {
3007 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3008
3009 if (overlay_debugging)
3010 if (section && section->lma != 0 &&
3011 section->vma != section->lma)
3012 return 1;
3013
3014 return 0;
3015 }
3016
3017 /* Function: overlay_invalidate_all (void)
3018 Invalidate the mapped state of all overlay sections (mark it as stale). */
3019
3020 static void
3021 overlay_invalidate_all (void)
3022 {
3023 struct objfile *objfile;
3024 struct obj_section *sect;
3025
3026 ALL_OBJSECTIONS (objfile, sect)
3027 if (section_is_overlay (sect->the_bfd_section))
3028 sect->ovly_mapped = -1;
3029 }
3030
3031 /* Function: overlay_is_mapped (SECTION)
3032 Returns true if section is an overlay, and is currently mapped.
3033 Private: public access is thru function section_is_mapped.
3034
3035 Access to the ovly_mapped flag is restricted to this function, so
3036 that we can do automatic update. If the global flag
3037 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3038 overlay_invalidate_all. If the mapped state of the particular
3039 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3040
3041 static int
3042 overlay_is_mapped (struct obj_section *osect)
3043 {
3044 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3045 return 0;
3046
3047 switch (overlay_debugging)
3048 {
3049 default:
3050 case ovly_off:
3051 return 0; /* overlay debugging off */
3052 case ovly_auto: /* overlay debugging automatic */
3053 /* Unles there is a target_overlay_update function,
3054 there's really nothing useful to do here (can't really go auto) */
3055 if (target_overlay_update)
3056 {
3057 if (overlay_cache_invalid)
3058 {
3059 overlay_invalidate_all ();
3060 overlay_cache_invalid = 0;
3061 }
3062 if (osect->ovly_mapped == -1)
3063 (*target_overlay_update) (osect);
3064 }
3065 /* fall thru to manual case */
3066 case ovly_on: /* overlay debugging manual */
3067 return osect->ovly_mapped == 1;
3068 }
3069 }
3070
3071 /* Function: section_is_mapped
3072 Returns true if section is an overlay, and is currently mapped. */
3073
3074 int
3075 section_is_mapped (asection *section)
3076 {
3077 struct objfile *objfile;
3078 struct obj_section *osect;
3079
3080 if (overlay_debugging)
3081 if (section && section_is_overlay (section))
3082 ALL_OBJSECTIONS (objfile, osect)
3083 if (osect->the_bfd_section == section)
3084 return overlay_is_mapped (osect);
3085
3086 return 0;
3087 }
3088
3089 /* Function: pc_in_unmapped_range
3090 If PC falls into the lma range of SECTION, return true, else false. */
3091
3092 CORE_ADDR
3093 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3094 {
3095 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3096
3097 int size;
3098
3099 if (overlay_debugging)
3100 if (section && section_is_overlay (section))
3101 {
3102 size = bfd_get_section_size (section);
3103 if (section->lma <= pc && pc < section->lma + size)
3104 return 1;
3105 }
3106 return 0;
3107 }
3108
3109 /* Function: pc_in_mapped_range
3110 If PC falls into the vma range of SECTION, return true, else false. */
3111
3112 CORE_ADDR
3113 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3114 {
3115 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3116
3117 int size;
3118
3119 if (overlay_debugging)
3120 if (section && section_is_overlay (section))
3121 {
3122 size = bfd_get_section_size (section);
3123 if (section->vma <= pc && pc < section->vma + size)
3124 return 1;
3125 }
3126 return 0;
3127 }
3128
3129
3130 /* Return true if the mapped ranges of sections A and B overlap, false
3131 otherwise. */
3132 static int
3133 sections_overlap (asection *a, asection *b)
3134 {
3135 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3136
3137 CORE_ADDR a_start = a->vma;
3138 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3139 CORE_ADDR b_start = b->vma;
3140 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3141
3142 return (a_start < b_end && b_start < a_end);
3143 }
3144
3145 /* Function: overlay_unmapped_address (PC, SECTION)
3146 Returns the address corresponding to PC in the unmapped (load) range.
3147 May be the same as PC. */
3148
3149 CORE_ADDR
3150 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3151 {
3152 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3153
3154 if (overlay_debugging)
3155 if (section && section_is_overlay (section) &&
3156 pc_in_mapped_range (pc, section))
3157 return pc + section->lma - section->vma;
3158
3159 return pc;
3160 }
3161
3162 /* Function: overlay_mapped_address (PC, SECTION)
3163 Returns the address corresponding to PC in the mapped (runtime) range.
3164 May be the same as PC. */
3165
3166 CORE_ADDR
3167 overlay_mapped_address (CORE_ADDR pc, asection *section)
3168 {
3169 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3170
3171 if (overlay_debugging)
3172 if (section && section_is_overlay (section) &&
3173 pc_in_unmapped_range (pc, section))
3174 return pc + section->vma - section->lma;
3175
3176 return pc;
3177 }
3178
3179
3180 /* Function: symbol_overlayed_address
3181 Return one of two addresses (relative to the VMA or to the LMA),
3182 depending on whether the section is mapped or not. */
3183
3184 CORE_ADDR
3185 symbol_overlayed_address (CORE_ADDR address, asection *section)
3186 {
3187 if (overlay_debugging)
3188 {
3189 /* If the symbol has no section, just return its regular address. */
3190 if (section == 0)
3191 return address;
3192 /* If the symbol's section is not an overlay, just return its address */
3193 if (!section_is_overlay (section))
3194 return address;
3195 /* If the symbol's section is mapped, just return its address */
3196 if (section_is_mapped (section))
3197 return address;
3198 /*
3199 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3200 * then return its LOADED address rather than its vma address!!
3201 */
3202 return overlay_unmapped_address (address, section);
3203 }
3204 return address;
3205 }
3206
3207 /* Function: find_pc_overlay (PC)
3208 Return the best-match overlay section for PC:
3209 If PC matches a mapped overlay section's VMA, return that section.
3210 Else if PC matches an unmapped section's VMA, return that section.
3211 Else if PC matches an unmapped section's LMA, return that section. */
3212
3213 asection *
3214 find_pc_overlay (CORE_ADDR pc)
3215 {
3216 struct objfile *objfile;
3217 struct obj_section *osect, *best_match = NULL;
3218
3219 if (overlay_debugging)
3220 ALL_OBJSECTIONS (objfile, osect)
3221 if (section_is_overlay (osect->the_bfd_section))
3222 {
3223 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3224 {
3225 if (overlay_is_mapped (osect))
3226 return osect->the_bfd_section;
3227 else
3228 best_match = osect;
3229 }
3230 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3231 best_match = osect;
3232 }
3233 return best_match ? best_match->the_bfd_section : NULL;
3234 }
3235
3236 /* Function: find_pc_mapped_section (PC)
3237 If PC falls into the VMA address range of an overlay section that is
3238 currently marked as MAPPED, return that section. Else return NULL. */
3239
3240 asection *
3241 find_pc_mapped_section (CORE_ADDR pc)
3242 {
3243 struct objfile *objfile;
3244 struct obj_section *osect;
3245
3246 if (overlay_debugging)
3247 ALL_OBJSECTIONS (objfile, osect)
3248 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3249 overlay_is_mapped (osect))
3250 return osect->the_bfd_section;
3251
3252 return NULL;
3253 }
3254
3255 /* Function: list_overlays_command
3256 Print a list of mapped sections and their PC ranges */
3257
3258 void
3259 list_overlays_command (char *args, int from_tty)
3260 {
3261 int nmapped = 0;
3262 struct objfile *objfile;
3263 struct obj_section *osect;
3264
3265 if (overlay_debugging)
3266 ALL_OBJSECTIONS (objfile, osect)
3267 if (overlay_is_mapped (osect))
3268 {
3269 const char *name;
3270 bfd_vma lma, vma;
3271 int size;
3272
3273 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3274 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3275 size = bfd_get_section_size (osect->the_bfd_section);
3276 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3277
3278 printf_filtered ("Section %s, loaded at ", name);
3279 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3280 puts_filtered (" - ");
3281 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3282 printf_filtered (", mapped at ");
3283 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3284 puts_filtered (" - ");
3285 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3286 puts_filtered ("\n");
3287
3288 nmapped++;
3289 }
3290 if (nmapped == 0)
3291 printf_filtered (_("No sections are mapped.\n"));
3292 }
3293
3294 /* Function: map_overlay_command
3295 Mark the named section as mapped (ie. residing at its VMA address). */
3296
3297 void
3298 map_overlay_command (char *args, int from_tty)
3299 {
3300 struct objfile *objfile, *objfile2;
3301 struct obj_section *sec, *sec2;
3302 asection *bfdsec;
3303
3304 if (!overlay_debugging)
3305 error (_("\
3306 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3307 the 'overlay manual' command."));
3308
3309 if (args == 0 || *args == 0)
3310 error (_("Argument required: name of an overlay section"));
3311
3312 /* First, find a section matching the user supplied argument */
3313 ALL_OBJSECTIONS (objfile, sec)
3314 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3315 {
3316 /* Now, check to see if the section is an overlay. */
3317 bfdsec = sec->the_bfd_section;
3318 if (!section_is_overlay (bfdsec))
3319 continue; /* not an overlay section */
3320
3321 /* Mark the overlay as "mapped" */
3322 sec->ovly_mapped = 1;
3323
3324 /* Next, make a pass and unmap any sections that are
3325 overlapped by this new section: */
3326 ALL_OBJSECTIONS (objfile2, sec2)
3327 if (sec2->ovly_mapped
3328 && sec != sec2
3329 && sec->the_bfd_section != sec2->the_bfd_section
3330 && sections_overlap (sec->the_bfd_section,
3331 sec2->the_bfd_section))
3332 {
3333 if (info_verbose)
3334 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3335 bfd_section_name (objfile->obfd,
3336 sec2->the_bfd_section));
3337 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3338 }
3339 return;
3340 }
3341 error (_("No overlay section called %s"), args);
3342 }
3343
3344 /* Function: unmap_overlay_command
3345 Mark the overlay section as unmapped
3346 (ie. resident in its LMA address range, rather than the VMA range). */
3347
3348 void
3349 unmap_overlay_command (char *args, int from_tty)
3350 {
3351 struct objfile *objfile;
3352 struct obj_section *sec;
3353
3354 if (!overlay_debugging)
3355 error (_("\
3356 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3357 the 'overlay manual' command."));
3358
3359 if (args == 0 || *args == 0)
3360 error (_("Argument required: name of an overlay section"));
3361
3362 /* First, find a section matching the user supplied argument */
3363 ALL_OBJSECTIONS (objfile, sec)
3364 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3365 {
3366 if (!sec->ovly_mapped)
3367 error (_("Section %s is not mapped"), args);
3368 sec->ovly_mapped = 0;
3369 return;
3370 }
3371 error (_("No overlay section called %s"), args);
3372 }
3373
3374 /* Function: overlay_auto_command
3375 A utility command to turn on overlay debugging.
3376 Possibly this should be done via a set/show command. */
3377
3378 static void
3379 overlay_auto_command (char *args, int from_tty)
3380 {
3381 overlay_debugging = ovly_auto;
3382 enable_overlay_breakpoints ();
3383 if (info_verbose)
3384 printf_unfiltered (_("Automatic overlay debugging enabled."));
3385 }
3386
3387 /* Function: overlay_manual_command
3388 A utility command to turn on overlay debugging.
3389 Possibly this should be done via a set/show command. */
3390
3391 static void
3392 overlay_manual_command (char *args, int from_tty)
3393 {
3394 overlay_debugging = ovly_on;
3395 disable_overlay_breakpoints ();
3396 if (info_verbose)
3397 printf_unfiltered (_("Overlay debugging enabled."));
3398 }
3399
3400 /* Function: overlay_off_command
3401 A utility command to turn on overlay debugging.
3402 Possibly this should be done via a set/show command. */
3403
3404 static void
3405 overlay_off_command (char *args, int from_tty)
3406 {
3407 overlay_debugging = ovly_off;
3408 disable_overlay_breakpoints ();
3409 if (info_verbose)
3410 printf_unfiltered (_("Overlay debugging disabled."));
3411 }
3412
3413 static void
3414 overlay_load_command (char *args, int from_tty)
3415 {
3416 if (target_overlay_update)
3417 (*target_overlay_update) (NULL);
3418 else
3419 error (_("This target does not know how to read its overlay state."));
3420 }
3421
3422 /* Function: overlay_command
3423 A place-holder for a mis-typed command */
3424
3425 /* Command list chain containing all defined "overlay" subcommands. */
3426 struct cmd_list_element *overlaylist;
3427
3428 static void
3429 overlay_command (char *args, int from_tty)
3430 {
3431 printf_unfiltered
3432 ("\"overlay\" must be followed by the name of an overlay command.\n");
3433 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3434 }
3435
3436
3437 /* Target Overlays for the "Simplest" overlay manager:
3438
3439 This is GDB's default target overlay layer. It works with the
3440 minimal overlay manager supplied as an example by Cygnus. The
3441 entry point is via a function pointer "target_overlay_update",
3442 so targets that use a different runtime overlay manager can
3443 substitute their own overlay_update function and take over the
3444 function pointer.
3445
3446 The overlay_update function pokes around in the target's data structures
3447 to see what overlays are mapped, and updates GDB's overlay mapping with
3448 this information.
3449
3450 In this simple implementation, the target data structures are as follows:
3451 unsigned _novlys; /# number of overlay sections #/
3452 unsigned _ovly_table[_novlys][4] = {
3453 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3454 {..., ..., ..., ...},
3455 }
3456 unsigned _novly_regions; /# number of overlay regions #/
3457 unsigned _ovly_region_table[_novly_regions][3] = {
3458 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3459 {..., ..., ...},
3460 }
3461 These functions will attempt to update GDB's mappedness state in the
3462 symbol section table, based on the target's mappedness state.
3463
3464 To do this, we keep a cached copy of the target's _ovly_table, and
3465 attempt to detect when the cached copy is invalidated. The main
3466 entry point is "simple_overlay_update(SECT), which looks up SECT in
3467 the cached table and re-reads only the entry for that section from
3468 the target (whenever possible).
3469 */
3470
3471 /* Cached, dynamically allocated copies of the target data structures: */
3472 static unsigned (*cache_ovly_table)[4] = 0;
3473 #if 0
3474 static unsigned (*cache_ovly_region_table)[3] = 0;
3475 #endif
3476 static unsigned cache_novlys = 0;
3477 #if 0
3478 static unsigned cache_novly_regions = 0;
3479 #endif
3480 static CORE_ADDR cache_ovly_table_base = 0;
3481 #if 0
3482 static CORE_ADDR cache_ovly_region_table_base = 0;
3483 #endif
3484 enum ovly_index
3485 {
3486 VMA, SIZE, LMA, MAPPED
3487 };
3488 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3489
3490 /* Throw away the cached copy of _ovly_table */
3491 static void
3492 simple_free_overlay_table (void)
3493 {
3494 if (cache_ovly_table)
3495 xfree (cache_ovly_table);
3496 cache_novlys = 0;
3497 cache_ovly_table = NULL;
3498 cache_ovly_table_base = 0;
3499 }
3500
3501 #if 0
3502 /* Throw away the cached copy of _ovly_region_table */
3503 static void
3504 simple_free_overlay_region_table (void)
3505 {
3506 if (cache_ovly_region_table)
3507 xfree (cache_ovly_region_table);
3508 cache_novly_regions = 0;
3509 cache_ovly_region_table = NULL;
3510 cache_ovly_region_table_base = 0;
3511 }
3512 #endif
3513
3514 /* Read an array of ints from the target into a local buffer.
3515 Convert to host order. int LEN is number of ints */
3516 static void
3517 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3518 {
3519 /* FIXME (alloca): Not safe if array is very large. */
3520 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3521 int i;
3522
3523 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3524 for (i = 0; i < len; i++)
3525 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3526 TARGET_LONG_BYTES);
3527 }
3528
3529 /* Find and grab a copy of the target _ovly_table
3530 (and _novlys, which is needed for the table's size) */
3531 static int
3532 simple_read_overlay_table (void)
3533 {
3534 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3535
3536 simple_free_overlay_table ();
3537 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3538 if (! novlys_msym)
3539 {
3540 error (_("Error reading inferior's overlay table: "
3541 "couldn't find `_novlys' variable\n"
3542 "in inferior. Use `overlay manual' mode."));
3543 return 0;
3544 }
3545
3546 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3547 if (! ovly_table_msym)
3548 {
3549 error (_("Error reading inferior's overlay table: couldn't find "
3550 "`_ovly_table' array\n"
3551 "in inferior. Use `overlay manual' mode."));
3552 return 0;
3553 }
3554
3555 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3556 cache_ovly_table
3557 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3558 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3559 read_target_long_array (cache_ovly_table_base,
3560 (unsigned int *) cache_ovly_table,
3561 cache_novlys * 4);
3562
3563 return 1; /* SUCCESS */
3564 }
3565
3566 #if 0
3567 /* Find and grab a copy of the target _ovly_region_table
3568 (and _novly_regions, which is needed for the table's size) */
3569 static int
3570 simple_read_overlay_region_table (void)
3571 {
3572 struct minimal_symbol *msym;
3573
3574 simple_free_overlay_region_table ();
3575 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3576 if (msym != NULL)
3577 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3578 else
3579 return 0; /* failure */
3580 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3581 if (cache_ovly_region_table != NULL)
3582 {
3583 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3584 if (msym != NULL)
3585 {
3586 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3587 read_target_long_array (cache_ovly_region_table_base,
3588 (unsigned int *) cache_ovly_region_table,
3589 cache_novly_regions * 3);
3590 }
3591 else
3592 return 0; /* failure */
3593 }
3594 else
3595 return 0; /* failure */
3596 return 1; /* SUCCESS */
3597 }
3598 #endif
3599
3600 /* Function: simple_overlay_update_1
3601 A helper function for simple_overlay_update. Assuming a cached copy
3602 of _ovly_table exists, look through it to find an entry whose vma,
3603 lma and size match those of OSECT. Re-read the entry and make sure
3604 it still matches OSECT (else the table may no longer be valid).
3605 Set OSECT's mapped state to match the entry. Return: 1 for
3606 success, 0 for failure. */
3607
3608 static int
3609 simple_overlay_update_1 (struct obj_section *osect)
3610 {
3611 int i, size;
3612 bfd *obfd = osect->objfile->obfd;
3613 asection *bsect = osect->the_bfd_section;
3614
3615 size = bfd_get_section_size (osect->the_bfd_section);
3616 for (i = 0; i < cache_novlys; i++)
3617 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3618 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3619 /* && cache_ovly_table[i][SIZE] == size */ )
3620 {
3621 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3622 (unsigned int *) cache_ovly_table[i], 4);
3623 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3624 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3625 /* && cache_ovly_table[i][SIZE] == size */ )
3626 {
3627 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3628 return 1;
3629 }
3630 else /* Warning! Warning! Target's ovly table has changed! */
3631 return 0;
3632 }
3633 return 0;
3634 }
3635
3636 /* Function: simple_overlay_update
3637 If OSECT is NULL, then update all sections' mapped state
3638 (after re-reading the entire target _ovly_table).
3639 If OSECT is non-NULL, then try to find a matching entry in the
3640 cached ovly_table and update only OSECT's mapped state.
3641 If a cached entry can't be found or the cache isn't valid, then
3642 re-read the entire cache, and go ahead and update all sections. */
3643
3644 static void
3645 simple_overlay_update (struct obj_section *osect)
3646 {
3647 struct objfile *objfile;
3648
3649 /* Were we given an osect to look up? NULL means do all of them. */
3650 if (osect)
3651 /* Have we got a cached copy of the target's overlay table? */
3652 if (cache_ovly_table != NULL)
3653 /* Does its cached location match what's currently in the symtab? */
3654 if (cache_ovly_table_base ==
3655 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3656 /* Then go ahead and try to look up this single section in the cache */
3657 if (simple_overlay_update_1 (osect))
3658 /* Found it! We're done. */
3659 return;
3660
3661 /* Cached table no good: need to read the entire table anew.
3662 Or else we want all the sections, in which case it's actually
3663 more efficient to read the whole table in one block anyway. */
3664
3665 if (! simple_read_overlay_table ())
3666 return;
3667
3668 /* Now may as well update all sections, even if only one was requested. */
3669 ALL_OBJSECTIONS (objfile, osect)
3670 if (section_is_overlay (osect->the_bfd_section))
3671 {
3672 int i, size;
3673 bfd *obfd = osect->objfile->obfd;
3674 asection *bsect = osect->the_bfd_section;
3675
3676 size = bfd_get_section_size (bsect);
3677 for (i = 0; i < cache_novlys; i++)
3678 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3679 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3680 /* && cache_ovly_table[i][SIZE] == size */ )
3681 { /* obj_section matches i'th entry in ovly_table */
3682 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3683 break; /* finished with inner for loop: break out */
3684 }
3685 }
3686 }
3687
3688 /* Set the output sections and output offsets for section SECTP in
3689 ABFD. The relocation code in BFD will read these offsets, so we
3690 need to be sure they're initialized. We map each section to itself,
3691 with no offset; this means that SECTP->vma will be honored. */
3692
3693 static void
3694 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3695 {
3696 sectp->output_section = sectp;
3697 sectp->output_offset = 0;
3698 }
3699
3700 /* Relocate the contents of a debug section SECTP in ABFD. The
3701 contents are stored in BUF if it is non-NULL, or returned in a
3702 malloc'd buffer otherwise.
3703
3704 For some platforms and debug info formats, shared libraries contain
3705 relocations against the debug sections (particularly for DWARF-2;
3706 one affected platform is PowerPC GNU/Linux, although it depends on
3707 the version of the linker in use). Also, ELF object files naturally
3708 have unresolved relocations for their debug sections. We need to apply
3709 the relocations in order to get the locations of symbols correct. */
3710
3711 bfd_byte *
3712 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3713 {
3714 /* We're only interested in debugging sections with relocation
3715 information. */
3716 if ((sectp->flags & SEC_RELOC) == 0)
3717 return NULL;
3718 if ((sectp->flags & SEC_DEBUGGING) == 0)
3719 return NULL;
3720
3721 /* We will handle section offsets properly elsewhere, so relocate as if
3722 all sections begin at 0. */
3723 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3724
3725 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3726 }
3727
3728 void
3729 _initialize_symfile (void)
3730 {
3731 struct cmd_list_element *c;
3732
3733 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3734 Load symbol table from executable file FILE.\n\
3735 The `file' command can also load symbol tables, as well as setting the file\n\
3736 to execute."), &cmdlist);
3737 set_cmd_completer (c, filename_completer);
3738
3739 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3740 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3741 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3742 ADDR is the starting address of the file's text.\n\
3743 The optional arguments are section-name section-address pairs and\n\
3744 should be specified if the data and bss segments are not contiguous\n\
3745 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3746 &cmdlist);
3747 set_cmd_completer (c, filename_completer);
3748
3749 c = add_cmd ("add-shared-symbol-files", class_files,
3750 add_shared_symbol_files_command, _("\
3751 Load the symbols from shared objects in the dynamic linker's link map."),
3752 &cmdlist);
3753 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3754 &cmdlist);
3755
3756 c = add_cmd ("load", class_files, load_command, _("\
3757 Dynamically load FILE into the running program, and record its symbols\n\
3758 for access from GDB.\n\
3759 A load OFFSET may also be given."), &cmdlist);
3760 set_cmd_completer (c, filename_completer);
3761
3762 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3763 &symbol_reloading, _("\
3764 Set dynamic symbol table reloading multiple times in one run."), _("\
3765 Show dynamic symbol table reloading multiple times in one run."), NULL,
3766 NULL,
3767 show_symbol_reloading,
3768 &setlist, &showlist);
3769
3770 add_prefix_cmd ("overlay", class_support, overlay_command,
3771 _("Commands for debugging overlays."), &overlaylist,
3772 "overlay ", 0, &cmdlist);
3773
3774 add_com_alias ("ovly", "overlay", class_alias, 1);
3775 add_com_alias ("ov", "overlay", class_alias, 1);
3776
3777 add_cmd ("map-overlay", class_support, map_overlay_command,
3778 _("Assert that an overlay section is mapped."), &overlaylist);
3779
3780 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3781 _("Assert that an overlay section is unmapped."), &overlaylist);
3782
3783 add_cmd ("list-overlays", class_support, list_overlays_command,
3784 _("List mappings of overlay sections."), &overlaylist);
3785
3786 add_cmd ("manual", class_support, overlay_manual_command,
3787 _("Enable overlay debugging."), &overlaylist);
3788 add_cmd ("off", class_support, overlay_off_command,
3789 _("Disable overlay debugging."), &overlaylist);
3790 add_cmd ("auto", class_support, overlay_auto_command,
3791 _("Enable automatic overlay debugging."), &overlaylist);
3792 add_cmd ("load-target", class_support, overlay_load_command,
3793 _("Read the overlay mapping state from the target."), &overlaylist);
3794
3795 /* Filename extension to source language lookup table: */
3796 init_filename_language_table ();
3797 add_setshow_string_noescape_cmd ("extension-language", class_files,
3798 &ext_args, _("\
3799 Set mapping between filename extension and source language."), _("\
3800 Show mapping between filename extension and source language."), _("\
3801 Usage: set extension-language .foo bar"),
3802 set_ext_lang_command,
3803 show_ext_args,
3804 &setlist, &showlist);
3805
3806 add_info ("extensions", info_ext_lang_command,
3807 _("All filename extensions associated with a source language."));
3808
3809 add_setshow_integer_cmd ("download-write-size", class_obscure,
3810 &download_write_size, _("\
3811 Set the write size used when downloading a program."), _("\
3812 Show the write size used when downloading a program."), _("\
3813 Only used when downloading a program onto a remote\n\
3814 target. Specify zero, or a negative value, to disable\n\
3815 blocked writes. The actual size of each transfer is also\n\
3816 limited by the size of the target packet and the memory\n\
3817 cache."),
3818 NULL,
3819 show_download_write_size,
3820 &setlist, &showlist);
3821
3822 debug_file_directory = xstrdup (DEBUGDIR);
3823 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3824 &debug_file_directory, _("\
3825 Set the directory where separate debug symbols are searched for."), _("\
3826 Show the directory where separate debug symbols are searched for."), _("\
3827 Separate debug symbols are first searched for in the same\n\
3828 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3829 and lastly at the path of the directory of the binary with\n\
3830 the global debug-file directory prepended."),
3831 NULL,
3832 show_debug_file_directory,
3833 &setlist, &showlist);
3834 }
This page took 0.206643 seconds and 4 git commands to generate.