2003-03-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include <readline/readline.h>
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206 static int
207 compare_symbols (const void *s1p, const void *s2p)
208 {
209 register struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
214 }
215
216 /* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
218
219 static int
220 compare_psymbols (const void *s1p, const void *s2p)
221 {
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
227 }
228
229 void
230 sort_pst_symbols (struct partial_symtab *pst)
231 {
232 /* Sort the global list; don't sort the static list */
233
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
236 compare_psymbols);
237 }
238
239 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
240
241 void
242 sort_block_syms (register struct block *b)
243 {
244 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
245 sizeof (struct symbol *), compare_symbols);
246 }
247
248 /* Call sort_symtab_syms to sort alphabetically
249 the symbols of each block of one symtab. */
250
251 void
252 sort_symtab_syms (register struct symtab *s)
253 {
254 register struct blockvector *bv;
255 int nbl;
256 int i;
257 register struct block *b;
258
259 if (s == 0)
260 return;
261 bv = BLOCKVECTOR (s);
262 nbl = BLOCKVECTOR_NBLOCKS (bv);
263 for (i = 0; i < nbl; i++)
264 {
265 b = BLOCKVECTOR_BLOCK (bv, i);
266 if (BLOCK_SHOULD_SORT (b))
267 sort_block_syms (b);
268 }
269 }
270
271 /* Make a null terminated copy of the string at PTR with SIZE characters in
272 the obstack pointed to by OBSTACKP . Returns the address of the copy.
273 Note that the string at PTR does not have to be null terminated, I.E. it
274 may be part of a larger string and we are only saving a substring. */
275
276 char *
277 obsavestring (const char *ptr, int size, struct obstack *obstackp)
278 {
279 register char *p = (char *) obstack_alloc (obstackp, size + 1);
280 /* Open-coded memcpy--saves function call time. These strings are usually
281 short. FIXME: Is this really still true with a compiler that can
282 inline memcpy? */
283 {
284 register const char *p1 = ptr;
285 register char *p2 = p;
286 const char *end = ptr + size;
287 while (p1 != end)
288 *p2++ = *p1++;
289 }
290 p[size] = 0;
291 return p;
292 }
293
294 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
295 in the obstack pointed to by OBSTACKP. */
296
297 char *
298 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
299 const char *s3)
300 {
301 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
302 register char *val = (char *) obstack_alloc (obstackp, len);
303 strcpy (val, s1);
304 strcat (val, s2);
305 strcat (val, s3);
306 return val;
307 }
308
309 /* True if we are nested inside psymtab_to_symtab. */
310
311 int currently_reading_symtab = 0;
312
313 static void
314 decrement_reading_symtab (void *dummy)
315 {
316 currently_reading_symtab--;
317 }
318
319 /* Get the symbol table that corresponds to a partial_symtab.
320 This is fast after the first time you do it. In fact, there
321 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
322 case inline. */
323
324 struct symtab *
325 psymtab_to_symtab (register struct partial_symtab *pst)
326 {
327 /* If it's been looked up before, return it. */
328 if (pst->symtab)
329 return pst->symtab;
330
331 /* If it has not yet been read in, read it. */
332 if (!pst->readin)
333 {
334 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
335 currently_reading_symtab++;
336 (*pst->read_symtab) (pst);
337 do_cleanups (back_to);
338 }
339
340 return pst->symtab;
341 }
342
343 /* Initialize entry point information for this objfile. */
344
345 void
346 init_entry_point_info (struct objfile *objfile)
347 {
348 /* Save startup file's range of PC addresses to help blockframe.c
349 decide where the bottom of the stack is. */
350
351 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
352 {
353 /* Executable file -- record its entry point so we'll recognize
354 the startup file because it contains the entry point. */
355 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
356 }
357 else
358 {
359 /* Examination of non-executable.o files. Short-circuit this stuff. */
360 objfile->ei.entry_point = INVALID_ENTRY_POINT;
361 }
362 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
363 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
364 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
365 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
366 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
367 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
368 }
369
370 /* Get current entry point address. */
371
372 CORE_ADDR
373 entry_point_address (void)
374 {
375 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
376 }
377
378 /* Remember the lowest-addressed loadable section we've seen.
379 This function is called via bfd_map_over_sections.
380
381 In case of equal vmas, the section with the largest size becomes the
382 lowest-addressed loadable section.
383
384 If the vmas and sizes are equal, the last section is considered the
385 lowest-addressed loadable section. */
386
387 void
388 find_lowest_section (bfd *abfd, asection *sect, void *obj)
389 {
390 asection **lowest = (asection **) obj;
391
392 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
393 return;
394 if (!*lowest)
395 *lowest = sect; /* First loadable section */
396 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
397 *lowest = sect; /* A lower loadable section */
398 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
399 && (bfd_section_size (abfd, (*lowest))
400 <= bfd_section_size (abfd, sect)))
401 *lowest = sect;
402 }
403
404
405 /* Build (allocate and populate) a section_addr_info struct from
406 an existing section table. */
407
408 extern struct section_addr_info *
409 build_section_addr_info_from_section_table (const struct section_table *start,
410 const struct section_table *end)
411 {
412 struct section_addr_info *sap;
413 const struct section_table *stp;
414 int oidx;
415
416 sap = xmalloc (sizeof (struct section_addr_info));
417 memset (sap, 0, sizeof (struct section_addr_info));
418
419 for (stp = start, oidx = 0; stp != end; stp++)
420 {
421 if (bfd_get_section_flags (stp->bfd,
422 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
423 && oidx < MAX_SECTIONS)
424 {
425 sap->other[oidx].addr = stp->addr;
426 sap->other[oidx].name
427 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
428 sap->other[oidx].sectindex = stp->the_bfd_section->index;
429 oidx++;
430 }
431 }
432
433 return sap;
434 }
435
436
437 /* Free all memory allocated by build_section_addr_info_from_section_table. */
438
439 extern void
440 free_section_addr_info (struct section_addr_info *sap)
441 {
442 int idx;
443
444 for (idx = 0; idx < MAX_SECTIONS; idx++)
445 if (sap->other[idx].name)
446 xfree (sap->other[idx].name);
447 xfree (sap);
448 }
449
450
451 /* Initialize OBJFILE's sect_index_* members. */
452 static void
453 init_objfile_sect_indices (struct objfile *objfile)
454 {
455 asection *sect;
456 int i;
457
458 sect = bfd_get_section_by_name (objfile->obfd, ".text");
459 if (sect)
460 objfile->sect_index_text = sect->index;
461
462 sect = bfd_get_section_by_name (objfile->obfd, ".data");
463 if (sect)
464 objfile->sect_index_data = sect->index;
465
466 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
467 if (sect)
468 objfile->sect_index_bss = sect->index;
469
470 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
471 if (sect)
472 objfile->sect_index_rodata = sect->index;
473
474 /* This is where things get really weird... We MUST have valid
475 indices for the various sect_index_* members or gdb will abort.
476 So if for example, there is no ".text" section, we have to
477 accomodate that. Except when explicitly adding symbol files at
478 some address, section_offsets contains nothing but zeros, so it
479 doesn't matter which slot in section_offsets the individual
480 sect_index_* members index into. So if they are all zero, it is
481 safe to just point all the currently uninitialized indices to the
482 first slot. */
483
484 for (i = 0; i < objfile->num_sections; i++)
485 {
486 if (ANOFFSET (objfile->section_offsets, i) != 0)
487 {
488 break;
489 }
490 }
491 if (i == objfile->num_sections)
492 {
493 if (objfile->sect_index_text == -1)
494 objfile->sect_index_text = 0;
495 if (objfile->sect_index_data == -1)
496 objfile->sect_index_data = 0;
497 if (objfile->sect_index_bss == -1)
498 objfile->sect_index_bss = 0;
499 if (objfile->sect_index_rodata == -1)
500 objfile->sect_index_rodata = 0;
501 }
502 }
503
504
505 /* Parse the user's idea of an offset for dynamic linking, into our idea
506 of how to represent it for fast symbol reading. This is the default
507 version of the sym_fns.sym_offsets function for symbol readers that
508 don't need to do anything special. It allocates a section_offsets table
509 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
510
511 void
512 default_symfile_offsets (struct objfile *objfile,
513 struct section_addr_info *addrs)
514 {
515 int i;
516
517 objfile->num_sections = SECT_OFF_MAX;
518 objfile->section_offsets = (struct section_offsets *)
519 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
520 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
521
522 /* Now calculate offsets for section that were specified by the
523 caller. */
524 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
525 {
526 struct other_sections *osp ;
527
528 osp = &addrs->other[i] ;
529 if (osp->addr == 0)
530 continue;
531
532 /* Record all sections in offsets */
533 /* The section_offsets in the objfile are here filled in using
534 the BFD index. */
535 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
536 }
537
538 /* Remember the bfd indexes for the .text, .data, .bss and
539 .rodata sections. */
540 init_objfile_sect_indices (objfile);
541 }
542
543
544 /* Process a symbol file, as either the main file or as a dynamically
545 loaded file.
546
547 OBJFILE is where the symbols are to be read from.
548
549 ADDRS is the list of section load addresses. If the user has given
550 an 'add-symbol-file' command, then this is the list of offsets and
551 addresses he or she provided as arguments to the command; or, if
552 we're handling a shared library, these are the actual addresses the
553 sections are loaded at, according to the inferior's dynamic linker
554 (as gleaned by GDB's shared library code). We convert each address
555 into an offset from the section VMA's as it appears in the object
556 file, and then call the file's sym_offsets function to convert this
557 into a format-specific offset table --- a `struct section_offsets'.
558 If ADDRS is non-zero, OFFSETS must be zero.
559
560 OFFSETS is a table of section offsets already in the right
561 format-specific representation. NUM_OFFSETS is the number of
562 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
563 assume this is the proper table the call to sym_offsets described
564 above would produce. Instead of calling sym_offsets, we just dump
565 it right into objfile->section_offsets. (When we're re-reading
566 symbols from an objfile, we don't have the original load address
567 list any more; all we have is the section offset table.) If
568 OFFSETS is non-zero, ADDRS must be zero.
569
570 MAINLINE is nonzero if this is the main symbol file, or zero if
571 it's an extra symbol file such as dynamically loaded code.
572
573 VERBO is nonzero if the caller has printed a verbose message about
574 the symbol reading (and complaints can be more terse about it). */
575
576 void
577 syms_from_objfile (struct objfile *objfile,
578 struct section_addr_info *addrs,
579 struct section_offsets *offsets,
580 int num_offsets,
581 int mainline,
582 int verbo)
583 {
584 asection *lower_sect;
585 asection *sect;
586 CORE_ADDR lower_offset;
587 struct section_addr_info local_addr;
588 struct cleanup *old_chain;
589 int i;
590
591 gdb_assert (! (addrs && offsets));
592
593 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
594 list. We now establish the convention that an addr of zero means
595 no load address was specified. */
596 if (! addrs && ! offsets)
597 {
598 memset (&local_addr, 0, sizeof (local_addr));
599 addrs = &local_addr;
600 }
601
602 /* Now either addrs or offsets is non-zero. */
603
604 init_entry_point_info (objfile);
605 find_sym_fns (objfile);
606
607 if (objfile->sf == NULL)
608 return; /* No symbols. */
609
610 /* Make sure that partially constructed symbol tables will be cleaned up
611 if an error occurs during symbol reading. */
612 old_chain = make_cleanup_free_objfile (objfile);
613
614 if (mainline)
615 {
616 /* We will modify the main symbol table, make sure that all its users
617 will be cleaned up if an error occurs during symbol reading. */
618 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
619
620 /* Since no error yet, throw away the old symbol table. */
621
622 if (symfile_objfile != NULL)
623 {
624 free_objfile (symfile_objfile);
625 symfile_objfile = NULL;
626 }
627
628 /* Currently we keep symbols from the add-symbol-file command.
629 If the user wants to get rid of them, they should do "symbol-file"
630 without arguments first. Not sure this is the best behavior
631 (PR 2207). */
632
633 (*objfile->sf->sym_new_init) (objfile);
634 }
635
636 /* Convert addr into an offset rather than an absolute address.
637 We find the lowest address of a loaded segment in the objfile,
638 and assume that <addr> is where that got loaded.
639
640 We no longer warn if the lowest section is not a text segment (as
641 happens for the PA64 port. */
642 if (!mainline)
643 {
644 /* Find lowest loadable section to be used as starting point for
645 continguous sections. FIXME!! won't work without call to find
646 .text first, but this assumes text is lowest section. */
647 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
648 if (lower_sect == NULL)
649 bfd_map_over_sections (objfile->obfd, find_lowest_section,
650 &lower_sect);
651 if (lower_sect == NULL)
652 warning ("no loadable sections found in added symbol-file %s",
653 objfile->name);
654 else
655 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
656 warning ("Lowest section in %s is %s at %s",
657 objfile->name,
658 bfd_section_name (objfile->obfd, lower_sect),
659 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
660 if (lower_sect != NULL)
661 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
662 else
663 lower_offset = 0;
664
665 /* Calculate offsets for the loadable sections.
666 FIXME! Sections must be in order of increasing loadable section
667 so that contiguous sections can use the lower-offset!!!
668
669 Adjust offsets if the segments are not contiguous.
670 If the section is contiguous, its offset should be set to
671 the offset of the highest loadable section lower than it
672 (the loadable section directly below it in memory).
673 this_offset = lower_offset = lower_addr - lower_orig_addr */
674
675 /* Calculate offsets for sections. */
676 if (addrs)
677 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
678 {
679 if (addrs->other[i].addr != 0)
680 {
681 sect = bfd_get_section_by_name (objfile->obfd,
682 addrs->other[i].name);
683 if (sect)
684 {
685 addrs->other[i].addr
686 -= bfd_section_vma (objfile->obfd, sect);
687 lower_offset = addrs->other[i].addr;
688 /* This is the index used by BFD. */
689 addrs->other[i].sectindex = sect->index ;
690 }
691 else
692 {
693 warning ("section %s not found in %s",
694 addrs->other[i].name,
695 objfile->name);
696 addrs->other[i].addr = 0;
697 }
698 }
699 else
700 addrs->other[i].addr = lower_offset;
701 }
702 }
703
704 /* Initialize symbol reading routines for this objfile, allow complaints to
705 appear for this new file, and record how verbose to be, then do the
706 initial symbol reading for this file. */
707
708 (*objfile->sf->sym_init) (objfile);
709 clear_complaints (&symfile_complaints, 1, verbo);
710
711 if (addrs)
712 (*objfile->sf->sym_offsets) (objfile, addrs);
713 else
714 {
715 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
716
717 /* Just copy in the offset table directly as given to us. */
718 objfile->num_sections = num_offsets;
719 objfile->section_offsets
720 = ((struct section_offsets *)
721 obstack_alloc (&objfile->psymbol_obstack, size));
722 memcpy (objfile->section_offsets, offsets, size);
723
724 init_objfile_sect_indices (objfile);
725 }
726
727 #ifndef IBM6000_TARGET
728 /* This is a SVR4/SunOS specific hack, I think. In any event, it
729 screws RS/6000. sym_offsets should be doing this sort of thing,
730 because it knows the mapping between bfd sections and
731 section_offsets. */
732 /* This is a hack. As far as I can tell, section offsets are not
733 target dependent. They are all set to addr with a couple of
734 exceptions. The exceptions are sysvr4 shared libraries, whose
735 offsets are kept in solib structures anyway and rs6000 xcoff
736 which handles shared libraries in a completely unique way.
737
738 Section offsets are built similarly, except that they are built
739 by adding addr in all cases because there is no clear mapping
740 from section_offsets into actual sections. Note that solib.c
741 has a different algorithm for finding section offsets.
742
743 These should probably all be collapsed into some target
744 independent form of shared library support. FIXME. */
745
746 if (addrs)
747 {
748 struct obj_section *s;
749
750 /* Map section offsets in "addr" back to the object's
751 sections by comparing the section names with bfd's
752 section names. Then adjust the section address by
753 the offset. */ /* for gdb/13815 */
754
755 ALL_OBJFILE_OSECTIONS (objfile, s)
756 {
757 CORE_ADDR s_addr = 0;
758 int i;
759
760 for (i = 0;
761 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
762 i++)
763 if (strcmp (bfd_section_name (s->objfile->obfd,
764 s->the_bfd_section),
765 addrs->other[i].name) == 0)
766 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
767
768 s->addr -= s->offset;
769 s->addr += s_addr;
770 s->endaddr -= s->offset;
771 s->endaddr += s_addr;
772 s->offset += s_addr;
773 }
774 }
775 #endif /* not IBM6000_TARGET */
776
777 (*objfile->sf->sym_read) (objfile, mainline);
778
779 /* Don't allow char * to have a typename (else would get caddr_t).
780 Ditto void *. FIXME: Check whether this is now done by all the
781 symbol readers themselves (many of them now do), and if so remove
782 it from here. */
783
784 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
785 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
786
787 /* Mark the objfile has having had initial symbol read attempted. Note
788 that this does not mean we found any symbols... */
789
790 objfile->flags |= OBJF_SYMS;
791
792 /* Discard cleanups as symbol reading was successful. */
793
794 discard_cleanups (old_chain);
795
796 /* Call this after reading in a new symbol table to give target
797 dependent code a crack at the new symbols. For instance, this
798 could be used to update the values of target-specific symbols GDB
799 needs to keep track of (such as _sigtramp, or whatever). */
800
801 TARGET_SYMFILE_POSTREAD (objfile);
802 }
803
804 /* Perform required actions after either reading in the initial
805 symbols for a new objfile, or mapping in the symbols from a reusable
806 objfile. */
807
808 void
809 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
810 {
811
812 /* If this is the main symbol file we have to clean up all users of the
813 old main symbol file. Otherwise it is sufficient to fixup all the
814 breakpoints that may have been redefined by this symbol file. */
815 if (mainline)
816 {
817 /* OK, make it the "real" symbol file. */
818 symfile_objfile = objfile;
819
820 clear_symtab_users ();
821 }
822 else
823 {
824 breakpoint_re_set ();
825 }
826
827 /* We're done reading the symbol file; finish off complaints. */
828 clear_complaints (&symfile_complaints, 0, verbo);
829 }
830
831 /* Process a symbol file, as either the main file or as a dynamically
832 loaded file.
833
834 NAME is the file name (which will be tilde-expanded and made
835 absolute herein) (but we don't free or modify NAME itself).
836
837 FROM_TTY says how verbose to be.
838
839 MAINLINE specifies whether this is the main symbol file, or whether
840 it's an extra symbol file such as dynamically loaded code.
841
842 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
843 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
844 non-zero.
845
846 Upon success, returns a pointer to the objfile that was added.
847 Upon failure, jumps back to command level (never returns). */
848 static struct objfile *
849 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
850 struct section_addr_info *addrs,
851 struct section_offsets *offsets,
852 int num_offsets,
853 int mainline, int flags)
854 {
855 struct objfile *objfile;
856 struct partial_symtab *psymtab;
857 char *debugfile;
858 bfd *abfd;
859 struct section_addr_info orig_addrs;
860
861 if (addrs)
862 orig_addrs = *addrs;
863
864 /* Open a bfd for the file, and give user a chance to burp if we'd be
865 interactively wiping out any existing symbols. */
866
867 abfd = symfile_bfd_open (name);
868
869 if ((have_full_symbols () || have_partial_symbols ())
870 && mainline
871 && from_tty
872 && !query ("Load new symbol table from \"%s\"? ", name))
873 error ("Not confirmed.");
874
875 objfile = allocate_objfile (abfd, flags);
876
877 /* If the objfile uses a mapped symbol file, and we have a psymtab for
878 it, then skip reading any symbols at this time. */
879
880 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
881 {
882 /* We mapped in an existing symbol table file that already has had
883 initial symbol reading performed, so we can skip that part. Notify
884 the user that instead of reading the symbols, they have been mapped.
885 */
886 if (from_tty || info_verbose)
887 {
888 printf_filtered ("Mapped symbols for %s...", name);
889 wrap_here ("");
890 gdb_flush (gdb_stdout);
891 }
892 init_entry_point_info (objfile);
893 find_sym_fns (objfile);
894 }
895 else
896 {
897 /* We either created a new mapped symbol table, mapped an existing
898 symbol table file which has not had initial symbol reading
899 performed, or need to read an unmapped symbol table. */
900 if (from_tty || info_verbose)
901 {
902 if (pre_add_symbol_hook)
903 pre_add_symbol_hook (name);
904 else
905 {
906 printf_filtered ("Reading symbols from %s...", name);
907 wrap_here ("");
908 gdb_flush (gdb_stdout);
909 }
910 }
911 syms_from_objfile (objfile, addrs, offsets, num_offsets,
912 mainline, from_tty);
913 }
914
915 /* We now have at least a partial symbol table. Check to see if the
916 user requested that all symbols be read on initial access via either
917 the gdb startup command line or on a per symbol file basis. Expand
918 all partial symbol tables for this objfile if so. */
919
920 if ((flags & OBJF_READNOW) || readnow_symbol_files)
921 {
922 if (from_tty || info_verbose)
923 {
924 printf_filtered ("expanding to full symbols...");
925 wrap_here ("");
926 gdb_flush (gdb_stdout);
927 }
928
929 for (psymtab = objfile->psymtabs;
930 psymtab != NULL;
931 psymtab = psymtab->next)
932 {
933 psymtab_to_symtab (psymtab);
934 }
935 }
936
937 debugfile = find_separate_debug_file (objfile);
938 if (debugfile)
939 {
940 if (addrs != NULL)
941 {
942 objfile->separate_debug_objfile
943 = symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
944 }
945 else
946 {
947 objfile->separate_debug_objfile
948 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
949 }
950 objfile->separate_debug_objfile->separate_debug_objfile_backlink
951 = objfile;
952
953 /* Put the separate debug object before the normal one, this is so that
954 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
955 put_objfile_before (objfile->separate_debug_objfile, objfile);
956
957 xfree (debugfile);
958 }
959
960 if (!have_partial_symbols () && !have_full_symbols ())
961 {
962 wrap_here ("");
963 printf_filtered ("(no debugging symbols found)...");
964 wrap_here ("");
965 }
966
967 if (from_tty || info_verbose)
968 {
969 if (post_add_symbol_hook)
970 post_add_symbol_hook ();
971 else
972 {
973 printf_filtered ("done.\n");
974 }
975 }
976
977 /* We print some messages regardless of whether 'from_tty ||
978 info_verbose' is true, so make sure they go out at the right
979 time. */
980 gdb_flush (gdb_stdout);
981
982 if (objfile->sf == NULL)
983 return objfile; /* No symbols. */
984
985 new_symfile_objfile (objfile, mainline, from_tty);
986
987 if (target_new_objfile_hook)
988 target_new_objfile_hook (objfile);
989
990 return (objfile);
991 }
992
993
994 /* Process a symbol file, as either the main file or as a dynamically
995 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
996 for details. */
997 struct objfile *
998 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
999 int mainline, int flags)
1000 {
1001 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
1002 mainline, flags);
1003 }
1004
1005
1006 /* Call symbol_file_add() with default values and update whatever is
1007 affected by the loading of a new main().
1008 Used when the file is supplied in the gdb command line
1009 and by some targets with special loading requirements.
1010 The auxiliary function, symbol_file_add_main_1(), has the flags
1011 argument for the switches that can only be specified in the symbol_file
1012 command itself. */
1013
1014 void
1015 symbol_file_add_main (char *args, int from_tty)
1016 {
1017 symbol_file_add_main_1 (args, from_tty, 0);
1018 }
1019
1020 static void
1021 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1022 {
1023 symbol_file_add (args, from_tty, NULL, 1, flags);
1024
1025 #ifdef HPUXHPPA
1026 RESET_HP_UX_GLOBALS ();
1027 #endif
1028
1029 /* Getting new symbols may change our opinion about
1030 what is frameless. */
1031 reinit_frame_cache ();
1032
1033 set_initial_language ();
1034 }
1035
1036 void
1037 symbol_file_clear (int from_tty)
1038 {
1039 if ((have_full_symbols () || have_partial_symbols ())
1040 && from_tty
1041 && !query ("Discard symbol table from `%s'? ",
1042 symfile_objfile->name))
1043 error ("Not confirmed.");
1044 free_all_objfiles ();
1045
1046 /* solib descriptors may have handles to objfiles. Since their
1047 storage has just been released, we'd better wipe the solib
1048 descriptors as well.
1049 */
1050 #if defined(SOLIB_RESTART)
1051 SOLIB_RESTART ();
1052 #endif
1053
1054 symfile_objfile = NULL;
1055 if (from_tty)
1056 printf_unfiltered ("No symbol file now.\n");
1057 #ifdef HPUXHPPA
1058 RESET_HP_UX_GLOBALS ();
1059 #endif
1060 }
1061
1062 static char *
1063 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1064 {
1065 asection *sect;
1066 bfd_size_type debuglink_size;
1067 unsigned long crc32;
1068 char *contents;
1069 int crc_offset;
1070 unsigned char *p;
1071
1072 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1073
1074 if (sect == NULL)
1075 return NULL;
1076
1077 debuglink_size = bfd_section_size (objfile->obfd, sect);
1078
1079 contents = xmalloc (debuglink_size);
1080 bfd_get_section_contents (objfile->obfd, sect, contents,
1081 (file_ptr)0, (bfd_size_type)debuglink_size);
1082
1083 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1084 crc_offset = strlen (contents) + 1;
1085 crc_offset = (crc_offset + 3) & ~3;
1086
1087 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1088
1089 *crc32_out = crc32;
1090 return contents;
1091 }
1092
1093 static int
1094 separate_debug_file_exists (const char *name, unsigned long crc)
1095 {
1096 unsigned long file_crc = 0;
1097 int fd;
1098 char buffer[8*1024];
1099 int count;
1100
1101 fd = open (name, O_RDONLY | O_BINARY);
1102 if (fd < 0)
1103 return 0;
1104
1105 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1106 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1107
1108 close (fd);
1109
1110 return crc == file_crc;
1111 }
1112
1113 static char *debug_file_directory = NULL;
1114
1115 #if ! defined (DEBUG_SUBDIRECTORY)
1116 #define DEBUG_SUBDIRECTORY ".debug"
1117 #endif
1118
1119 static char *
1120 find_separate_debug_file (struct objfile *objfile)
1121 {
1122 asection *sect;
1123 char *basename;
1124 char *dir;
1125 char *debugfile;
1126 char *name_copy;
1127 bfd_size_type debuglink_size;
1128 unsigned long crc32;
1129 int i;
1130
1131 basename = get_debug_link_info (objfile, &crc32);
1132
1133 if (basename == NULL)
1134 return NULL;
1135
1136 dir = xstrdup (objfile->name);
1137
1138 /* Strip off the final filename part, leaving the directory name,
1139 followed by a slash. Objfile names should always be absolute and
1140 tilde-expanded, so there should always be a slash in there
1141 somewhere. */
1142 for (i = strlen(dir) - 1; i >= 0; i--)
1143 {
1144 if (IS_DIR_SEPARATOR (dir[i]))
1145 break;
1146 }
1147 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1148 dir[i+1] = '\0';
1149
1150 debugfile = alloca (strlen (debug_file_directory) + 1
1151 + strlen (dir)
1152 + strlen (DEBUG_SUBDIRECTORY)
1153 + strlen ("/")
1154 + strlen (basename)
1155 + 1);
1156
1157 /* First try in the same directory as the original file. */
1158 strcpy (debugfile, dir);
1159 strcat (debugfile, basename);
1160
1161 if (separate_debug_file_exists (debugfile, crc32))
1162 {
1163 xfree (basename);
1164 xfree (dir);
1165 return xstrdup (debugfile);
1166 }
1167
1168 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1169 strcpy (debugfile, dir);
1170 strcat (debugfile, DEBUG_SUBDIRECTORY);
1171 strcat (debugfile, "/");
1172 strcat (debugfile, basename);
1173
1174 if (separate_debug_file_exists (debugfile, crc32))
1175 {
1176 xfree (basename);
1177 xfree (dir);
1178 return xstrdup (debugfile);
1179 }
1180
1181 /* Then try in the global debugfile directory. */
1182 strcpy (debugfile, debug_file_directory);
1183 strcat (debugfile, "/");
1184 strcat (debugfile, dir);
1185 strcat (debugfile, basename);
1186
1187 if (separate_debug_file_exists (debugfile, crc32))
1188 {
1189 xfree (basename);
1190 xfree (dir);
1191 return xstrdup (debugfile);
1192 }
1193
1194 xfree (basename);
1195 xfree (dir);
1196 return NULL;
1197 }
1198
1199
1200 /* This is the symbol-file command. Read the file, analyze its
1201 symbols, and add a struct symtab to a symtab list. The syntax of
1202 the command is rather bizarre--(1) buildargv implements various
1203 quoting conventions which are undocumented and have little or
1204 nothing in common with the way things are quoted (or not quoted)
1205 elsewhere in GDB, (2) options are used, which are not generally
1206 used in GDB (perhaps "set mapped on", "set readnow on" would be
1207 better), (3) the order of options matters, which is contrary to GNU
1208 conventions (because it is confusing and inconvenient). */
1209 /* Note: ezannoni 2000-04-17. This function used to have support for
1210 rombug (see remote-os9k.c). It consisted of a call to target_link()
1211 (target.c) to get the address of the text segment from the target,
1212 and pass that to symbol_file_add(). This is no longer supported. */
1213
1214 void
1215 symbol_file_command (char *args, int from_tty)
1216 {
1217 char **argv;
1218 char *name = NULL;
1219 struct cleanup *cleanups;
1220 int flags = OBJF_USERLOADED;
1221
1222 dont_repeat ();
1223
1224 if (args == NULL)
1225 {
1226 symbol_file_clear (from_tty);
1227 }
1228 else
1229 {
1230 if ((argv = buildargv (args)) == NULL)
1231 {
1232 nomem (0);
1233 }
1234 cleanups = make_cleanup_freeargv (argv);
1235 while (*argv != NULL)
1236 {
1237 if (STREQ (*argv, "-mapped"))
1238 flags |= OBJF_MAPPED;
1239 else
1240 if (STREQ (*argv, "-readnow"))
1241 flags |= OBJF_READNOW;
1242 else
1243 if (**argv == '-')
1244 error ("unknown option `%s'", *argv);
1245 else
1246 {
1247 name = *argv;
1248
1249 symbol_file_add_main_1 (name, from_tty, flags);
1250 }
1251 argv++;
1252 }
1253
1254 if (name == NULL)
1255 {
1256 error ("no symbol file name was specified");
1257 }
1258 do_cleanups (cleanups);
1259 }
1260 }
1261
1262 /* Set the initial language.
1263
1264 A better solution would be to record the language in the psymtab when reading
1265 partial symbols, and then use it (if known) to set the language. This would
1266 be a win for formats that encode the language in an easily discoverable place,
1267 such as DWARF. For stabs, we can jump through hoops looking for specially
1268 named symbols or try to intuit the language from the specific type of stabs
1269 we find, but we can't do that until later when we read in full symbols.
1270 FIXME. */
1271
1272 static void
1273 set_initial_language (void)
1274 {
1275 struct partial_symtab *pst;
1276 enum language lang = language_unknown;
1277
1278 pst = find_main_psymtab ();
1279 if (pst != NULL)
1280 {
1281 if (pst->filename != NULL)
1282 {
1283 lang = deduce_language_from_filename (pst->filename);
1284 }
1285 if (lang == language_unknown)
1286 {
1287 /* Make C the default language */
1288 lang = language_c;
1289 }
1290 set_language (lang);
1291 expected_language = current_language; /* Don't warn the user */
1292 }
1293 }
1294
1295 /* Open file specified by NAME and hand it off to BFD for preliminary
1296 analysis. Result is a newly initialized bfd *, which includes a newly
1297 malloc'd` copy of NAME (tilde-expanded and made absolute).
1298 In case of trouble, error() is called. */
1299
1300 bfd *
1301 symfile_bfd_open (char *name)
1302 {
1303 bfd *sym_bfd;
1304 int desc;
1305 char *absolute_name;
1306
1307
1308
1309 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1310
1311 /* Look down path for it, allocate 2nd new malloc'd copy. */
1312 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1313 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1314 if (desc < 0)
1315 {
1316 char *exename = alloca (strlen (name) + 5);
1317 strcat (strcpy (exename, name), ".exe");
1318 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1319 0, &absolute_name);
1320 }
1321 #endif
1322 if (desc < 0)
1323 {
1324 make_cleanup (xfree, name);
1325 perror_with_name (name);
1326 }
1327 xfree (name); /* Free 1st new malloc'd copy */
1328 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1329 /* It'll be freed in free_objfile(). */
1330
1331 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1332 if (!sym_bfd)
1333 {
1334 close (desc);
1335 make_cleanup (xfree, name);
1336 error ("\"%s\": can't open to read symbols: %s.", name,
1337 bfd_errmsg (bfd_get_error ()));
1338 }
1339 sym_bfd->cacheable = 1;
1340
1341 if (!bfd_check_format (sym_bfd, bfd_object))
1342 {
1343 /* FIXME: should be checking for errors from bfd_close (for one thing,
1344 on error it does not free all the storage associated with the
1345 bfd). */
1346 bfd_close (sym_bfd); /* This also closes desc */
1347 make_cleanup (xfree, name);
1348 error ("\"%s\": can't read symbols: %s.", name,
1349 bfd_errmsg (bfd_get_error ()));
1350 }
1351 return (sym_bfd);
1352 }
1353
1354 /* Return the section index for the given section name. Return -1 if
1355 the section was not found. */
1356 int
1357 get_section_index (struct objfile *objfile, char *section_name)
1358 {
1359 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1360 if (sect)
1361 return sect->index;
1362 else
1363 return -1;
1364 }
1365
1366 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1367 startup by the _initialize routine in each object file format reader,
1368 to register information about each format the the reader is prepared
1369 to handle. */
1370
1371 void
1372 add_symtab_fns (struct sym_fns *sf)
1373 {
1374 sf->next = symtab_fns;
1375 symtab_fns = sf;
1376 }
1377
1378
1379 /* Initialize to read symbols from the symbol file sym_bfd. It either
1380 returns or calls error(). The result is an initialized struct sym_fns
1381 in the objfile structure, that contains cached information about the
1382 symbol file. */
1383
1384 static void
1385 find_sym_fns (struct objfile *objfile)
1386 {
1387 struct sym_fns *sf;
1388 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1389 char *our_target = bfd_get_target (objfile->obfd);
1390
1391 if (our_flavour == bfd_target_srec_flavour
1392 || our_flavour == bfd_target_ihex_flavour
1393 || our_flavour == bfd_target_tekhex_flavour)
1394 return; /* No symbols. */
1395
1396 /* Special kludge for apollo. See dstread.c. */
1397 if (STREQN (our_target, "apollo", 6))
1398 our_flavour = (enum bfd_flavour) -2;
1399
1400 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1401 {
1402 if (our_flavour == sf->sym_flavour)
1403 {
1404 objfile->sf = sf;
1405 return;
1406 }
1407 }
1408 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1409 bfd_get_target (objfile->obfd));
1410 }
1411 \f
1412 /* This function runs the load command of our current target. */
1413
1414 static void
1415 load_command (char *arg, int from_tty)
1416 {
1417 if (arg == NULL)
1418 arg = get_exec_file (1);
1419 target_load (arg, from_tty);
1420
1421 /* After re-loading the executable, we don't really know which
1422 overlays are mapped any more. */
1423 overlay_cache_invalid = 1;
1424 }
1425
1426 /* This version of "load" should be usable for any target. Currently
1427 it is just used for remote targets, not inftarg.c or core files,
1428 on the theory that only in that case is it useful.
1429
1430 Avoiding xmodem and the like seems like a win (a) because we don't have
1431 to worry about finding it, and (b) On VMS, fork() is very slow and so
1432 we don't want to run a subprocess. On the other hand, I'm not sure how
1433 performance compares. */
1434
1435 static int download_write_size = 512;
1436 static int validate_download = 0;
1437
1438 /* Callback service function for generic_load (bfd_map_over_sections). */
1439
1440 static void
1441 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1442 {
1443 bfd_size_type *sum = data;
1444
1445 *sum += bfd_get_section_size_before_reloc (asec);
1446 }
1447
1448 /* Opaque data for load_section_callback. */
1449 struct load_section_data {
1450 unsigned long load_offset;
1451 unsigned long write_count;
1452 unsigned long data_count;
1453 bfd_size_type total_size;
1454 };
1455
1456 /* Callback service function for generic_load (bfd_map_over_sections). */
1457
1458 static void
1459 load_section_callback (bfd *abfd, asection *asec, void *data)
1460 {
1461 struct load_section_data *args = data;
1462
1463 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1464 {
1465 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1466 if (size > 0)
1467 {
1468 char *buffer;
1469 struct cleanup *old_chain;
1470 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1471 bfd_size_type block_size;
1472 int err;
1473 const char *sect_name = bfd_get_section_name (abfd, asec);
1474 bfd_size_type sent;
1475
1476 if (download_write_size > 0 && size > download_write_size)
1477 block_size = download_write_size;
1478 else
1479 block_size = size;
1480
1481 buffer = xmalloc (size);
1482 old_chain = make_cleanup (xfree, buffer);
1483
1484 /* Is this really necessary? I guess it gives the user something
1485 to look at during a long download. */
1486 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1487 sect_name, paddr_nz (size), paddr_nz (lma));
1488
1489 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1490
1491 sent = 0;
1492 do
1493 {
1494 int len;
1495 bfd_size_type this_transfer = size - sent;
1496
1497 if (this_transfer >= block_size)
1498 this_transfer = block_size;
1499 len = target_write_memory_partial (lma, buffer,
1500 this_transfer, &err);
1501 if (err)
1502 break;
1503 if (validate_download)
1504 {
1505 /* Broken memories and broken monitors manifest
1506 themselves here when bring new computers to
1507 life. This doubles already slow downloads. */
1508 /* NOTE: cagney/1999-10-18: A more efficient
1509 implementation might add a verify_memory()
1510 method to the target vector and then use
1511 that. remote.c could implement that method
1512 using the ``qCRC'' packet. */
1513 char *check = xmalloc (len);
1514 struct cleanup *verify_cleanups =
1515 make_cleanup (xfree, check);
1516
1517 if (target_read_memory (lma, check, len) != 0)
1518 error ("Download verify read failed at 0x%s",
1519 paddr (lma));
1520 if (memcmp (buffer, check, len) != 0)
1521 error ("Download verify compare failed at 0x%s",
1522 paddr (lma));
1523 do_cleanups (verify_cleanups);
1524 }
1525 args->data_count += len;
1526 lma += len;
1527 buffer += len;
1528 args->write_count += 1;
1529 sent += len;
1530 if (quit_flag
1531 || (ui_load_progress_hook != NULL
1532 && ui_load_progress_hook (sect_name, sent)))
1533 error ("Canceled the download");
1534
1535 if (show_load_progress != NULL)
1536 show_load_progress (sect_name, sent, size,
1537 args->data_count, args->total_size);
1538 }
1539 while (sent < size);
1540
1541 if (err != 0)
1542 error ("Memory access error while loading section %s.", sect_name);
1543
1544 do_cleanups (old_chain);
1545 }
1546 }
1547 }
1548
1549 void
1550 generic_load (char *args, int from_tty)
1551 {
1552 asection *s;
1553 bfd *loadfile_bfd;
1554 time_t start_time, end_time; /* Start and end times of download */
1555 char *filename;
1556 struct cleanup *old_cleanups;
1557 char *offptr;
1558 struct load_section_data cbdata;
1559 CORE_ADDR entry;
1560
1561 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1562 cbdata.write_count = 0; /* Number of writes needed. */
1563 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1564 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1565
1566 /* Parse the input argument - the user can specify a load offset as
1567 a second argument. */
1568 filename = xmalloc (strlen (args) + 1);
1569 old_cleanups = make_cleanup (xfree, filename);
1570 strcpy (filename, args);
1571 offptr = strchr (filename, ' ');
1572 if (offptr != NULL)
1573 {
1574 char *endptr;
1575
1576 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1577 if (offptr == endptr)
1578 error ("Invalid download offset:%s\n", offptr);
1579 *offptr = '\0';
1580 }
1581 else
1582 cbdata.load_offset = 0;
1583
1584 /* Open the file for loading. */
1585 loadfile_bfd = bfd_openr (filename, gnutarget);
1586 if (loadfile_bfd == NULL)
1587 {
1588 perror_with_name (filename);
1589 return;
1590 }
1591
1592 /* FIXME: should be checking for errors from bfd_close (for one thing,
1593 on error it does not free all the storage associated with the
1594 bfd). */
1595 make_cleanup_bfd_close (loadfile_bfd);
1596
1597 if (!bfd_check_format (loadfile_bfd, bfd_object))
1598 {
1599 error ("\"%s\" is not an object file: %s", filename,
1600 bfd_errmsg (bfd_get_error ()));
1601 }
1602
1603 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1604 (void *) &cbdata.total_size);
1605
1606 start_time = time (NULL);
1607
1608 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1609
1610 end_time = time (NULL);
1611
1612 entry = bfd_get_start_address (loadfile_bfd);
1613 ui_out_text (uiout, "Start address ");
1614 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1615 ui_out_text (uiout, ", load size ");
1616 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1617 ui_out_text (uiout, "\n");
1618 /* We were doing this in remote-mips.c, I suspect it is right
1619 for other targets too. */
1620 write_pc (entry);
1621
1622 /* FIXME: are we supposed to call symbol_file_add or not? According
1623 to a comment from remote-mips.c (where a call to symbol_file_add
1624 was commented out), making the call confuses GDB if more than one
1625 file is loaded in. Some targets do (e.g., remote-vx.c) but
1626 others don't (or didn't - perhaphs they have all been deleted). */
1627
1628 print_transfer_performance (gdb_stdout, cbdata.data_count,
1629 cbdata.write_count, end_time - start_time);
1630
1631 do_cleanups (old_cleanups);
1632 }
1633
1634 /* Report how fast the transfer went. */
1635
1636 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1637 replaced by print_transfer_performance (with a very different
1638 function signature). */
1639
1640 void
1641 report_transfer_performance (unsigned long data_count, time_t start_time,
1642 time_t end_time)
1643 {
1644 print_transfer_performance (gdb_stdout, data_count,
1645 end_time - start_time, 0);
1646 }
1647
1648 void
1649 print_transfer_performance (struct ui_file *stream,
1650 unsigned long data_count,
1651 unsigned long write_count,
1652 unsigned long time_count)
1653 {
1654 ui_out_text (uiout, "Transfer rate: ");
1655 if (time_count > 0)
1656 {
1657 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1658 (data_count * 8) / time_count);
1659 ui_out_text (uiout, " bits/sec");
1660 }
1661 else
1662 {
1663 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1664 ui_out_text (uiout, " bits in <1 sec");
1665 }
1666 if (write_count > 0)
1667 {
1668 ui_out_text (uiout, ", ");
1669 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1670 ui_out_text (uiout, " bytes/write");
1671 }
1672 ui_out_text (uiout, ".\n");
1673 }
1674
1675 /* This function allows the addition of incrementally linked object files.
1676 It does not modify any state in the target, only in the debugger. */
1677 /* Note: ezannoni 2000-04-13 This function/command used to have a
1678 special case syntax for the rombug target (Rombug is the boot
1679 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1680 rombug case, the user doesn't need to supply a text address,
1681 instead a call to target_link() (in target.c) would supply the
1682 value to use. We are now discontinuing this type of ad hoc syntax. */
1683
1684 /* ARGSUSED */
1685 static void
1686 add_symbol_file_command (char *args, int from_tty)
1687 {
1688 char *filename = NULL;
1689 int flags = OBJF_USERLOADED;
1690 char *arg;
1691 int expecting_option = 0;
1692 int section_index = 0;
1693 int argcnt = 0;
1694 int sec_num = 0;
1695 int i;
1696 int expecting_sec_name = 0;
1697 int expecting_sec_addr = 0;
1698
1699 struct
1700 {
1701 char *name;
1702 char *value;
1703 } sect_opts[SECT_OFF_MAX];
1704
1705 struct section_addr_info section_addrs;
1706 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1707
1708 dont_repeat ();
1709
1710 if (args == NULL)
1711 error ("add-symbol-file takes a file name and an address");
1712
1713 /* Make a copy of the string that we can safely write into. */
1714 args = xstrdup (args);
1715
1716 /* Ensure section_addrs is initialized */
1717 memset (&section_addrs, 0, sizeof (section_addrs));
1718
1719 while (*args != '\000')
1720 {
1721 /* Any leading spaces? */
1722 while (isspace (*args))
1723 args++;
1724
1725 /* Point arg to the beginning of the argument. */
1726 arg = args;
1727
1728 /* Move args pointer over the argument. */
1729 while ((*args != '\000') && !isspace (*args))
1730 args++;
1731
1732 /* If there are more arguments, terminate arg and
1733 proceed past it. */
1734 if (*args != '\000')
1735 *args++ = '\000';
1736
1737 /* Now process the argument. */
1738 if (argcnt == 0)
1739 {
1740 /* The first argument is the file name. */
1741 filename = tilde_expand (arg);
1742 make_cleanup (xfree, filename);
1743 }
1744 else
1745 if (argcnt == 1)
1746 {
1747 /* The second argument is always the text address at which
1748 to load the program. */
1749 sect_opts[section_index].name = ".text";
1750 sect_opts[section_index].value = arg;
1751 section_index++;
1752 }
1753 else
1754 {
1755 /* It's an option (starting with '-') or it's an argument
1756 to an option */
1757
1758 if (*arg == '-')
1759 {
1760 if (strcmp (arg, "-mapped") == 0)
1761 flags |= OBJF_MAPPED;
1762 else
1763 if (strcmp (arg, "-readnow") == 0)
1764 flags |= OBJF_READNOW;
1765 else
1766 if (strcmp (arg, "-s") == 0)
1767 {
1768 if (section_index >= SECT_OFF_MAX)
1769 error ("Too many sections specified.");
1770 expecting_sec_name = 1;
1771 expecting_sec_addr = 1;
1772 }
1773 }
1774 else
1775 {
1776 if (expecting_sec_name)
1777 {
1778 sect_opts[section_index].name = arg;
1779 expecting_sec_name = 0;
1780 }
1781 else
1782 if (expecting_sec_addr)
1783 {
1784 sect_opts[section_index].value = arg;
1785 expecting_sec_addr = 0;
1786 section_index++;
1787 }
1788 else
1789 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1790 }
1791 }
1792 argcnt++;
1793 }
1794
1795 /* Print the prompt for the query below. And save the arguments into
1796 a sect_addr_info structure to be passed around to other
1797 functions. We have to split this up into separate print
1798 statements because local_hex_string returns a local static
1799 string. */
1800
1801 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1802 for (i = 0; i < section_index; i++)
1803 {
1804 CORE_ADDR addr;
1805 char *val = sect_opts[i].value;
1806 char *sec = sect_opts[i].name;
1807
1808 val = sect_opts[i].value;
1809 if (val[0] == '0' && val[1] == 'x')
1810 addr = strtoul (val+2, NULL, 16);
1811 else
1812 addr = strtoul (val, NULL, 10);
1813
1814 /* Here we store the section offsets in the order they were
1815 entered on the command line. */
1816 section_addrs.other[sec_num].name = sec;
1817 section_addrs.other[sec_num].addr = addr;
1818 printf_filtered ("\t%s_addr = %s\n",
1819 sec,
1820 local_hex_string ((unsigned long)addr));
1821 sec_num++;
1822
1823 /* The object's sections are initialized when a
1824 call is made to build_objfile_section_table (objfile).
1825 This happens in reread_symbols.
1826 At this point, we don't know what file type this is,
1827 so we can't determine what section names are valid. */
1828 }
1829
1830 if (from_tty && (!query ("%s", "")))
1831 error ("Not confirmed.");
1832
1833 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1834
1835 /* Getting new symbols may change our opinion about what is
1836 frameless. */
1837 reinit_frame_cache ();
1838 do_cleanups (my_cleanups);
1839 }
1840 \f
1841 static void
1842 add_shared_symbol_files_command (char *args, int from_tty)
1843 {
1844 #ifdef ADD_SHARED_SYMBOL_FILES
1845 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1846 #else
1847 error ("This command is not available in this configuration of GDB.");
1848 #endif
1849 }
1850 \f
1851 /* Re-read symbols if a symbol-file has changed. */
1852 void
1853 reread_symbols (void)
1854 {
1855 struct objfile *objfile;
1856 long new_modtime;
1857 int reread_one = 0;
1858 struct stat new_statbuf;
1859 int res;
1860
1861 /* With the addition of shared libraries, this should be modified,
1862 the load time should be saved in the partial symbol tables, since
1863 different tables may come from different source files. FIXME.
1864 This routine should then walk down each partial symbol table
1865 and see if the symbol table that it originates from has been changed */
1866
1867 for (objfile = object_files; objfile; objfile = objfile->next)
1868 {
1869 if (objfile->obfd)
1870 {
1871 #ifdef IBM6000_TARGET
1872 /* If this object is from a shared library, then you should
1873 stat on the library name, not member name. */
1874
1875 if (objfile->obfd->my_archive)
1876 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1877 else
1878 #endif
1879 res = stat (objfile->name, &new_statbuf);
1880 if (res != 0)
1881 {
1882 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1883 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1884 objfile->name);
1885 continue;
1886 }
1887 new_modtime = new_statbuf.st_mtime;
1888 if (new_modtime != objfile->mtime)
1889 {
1890 struct cleanup *old_cleanups;
1891 struct section_offsets *offsets;
1892 int num_offsets;
1893 char *obfd_filename;
1894
1895 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1896 objfile->name);
1897
1898 /* There are various functions like symbol_file_add,
1899 symfile_bfd_open, syms_from_objfile, etc., which might
1900 appear to do what we want. But they have various other
1901 effects which we *don't* want. So we just do stuff
1902 ourselves. We don't worry about mapped files (for one thing,
1903 any mapped file will be out of date). */
1904
1905 /* If we get an error, blow away this objfile (not sure if
1906 that is the correct response for things like shared
1907 libraries). */
1908 old_cleanups = make_cleanup_free_objfile (objfile);
1909 /* We need to do this whenever any symbols go away. */
1910 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1911
1912 /* Clean up any state BFD has sitting around. We don't need
1913 to close the descriptor but BFD lacks a way of closing the
1914 BFD without closing the descriptor. */
1915 obfd_filename = bfd_get_filename (objfile->obfd);
1916 if (!bfd_close (objfile->obfd))
1917 error ("Can't close BFD for %s: %s", objfile->name,
1918 bfd_errmsg (bfd_get_error ()));
1919 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1920 if (objfile->obfd == NULL)
1921 error ("Can't open %s to read symbols.", objfile->name);
1922 /* bfd_openr sets cacheable to true, which is what we want. */
1923 if (!bfd_check_format (objfile->obfd, bfd_object))
1924 error ("Can't read symbols from %s: %s.", objfile->name,
1925 bfd_errmsg (bfd_get_error ()));
1926
1927 /* Save the offsets, we will nuke them with the rest of the
1928 psymbol_obstack. */
1929 num_offsets = objfile->num_sections;
1930 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1931 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1932
1933 /* Nuke all the state that we will re-read. Much of the following
1934 code which sets things to NULL really is necessary to tell
1935 other parts of GDB that there is nothing currently there. */
1936
1937 /* FIXME: Do we have to free a whole linked list, or is this
1938 enough? */
1939 if (objfile->global_psymbols.list)
1940 xmfree (objfile->md, objfile->global_psymbols.list);
1941 memset (&objfile->global_psymbols, 0,
1942 sizeof (objfile->global_psymbols));
1943 if (objfile->static_psymbols.list)
1944 xmfree (objfile->md, objfile->static_psymbols.list);
1945 memset (&objfile->static_psymbols, 0,
1946 sizeof (objfile->static_psymbols));
1947
1948 /* Free the obstacks for non-reusable objfiles */
1949 bcache_xfree (objfile->psymbol_cache);
1950 objfile->psymbol_cache = bcache_xmalloc ();
1951 bcache_xfree (objfile->macro_cache);
1952 objfile->macro_cache = bcache_xmalloc ();
1953 if (objfile->demangled_names_hash != NULL)
1954 {
1955 htab_delete (objfile->demangled_names_hash);
1956 objfile->demangled_names_hash = NULL;
1957 }
1958 obstack_free (&objfile->psymbol_obstack, 0);
1959 obstack_free (&objfile->symbol_obstack, 0);
1960 obstack_free (&objfile->type_obstack, 0);
1961 objfile->sections = NULL;
1962 objfile->symtabs = NULL;
1963 objfile->psymtabs = NULL;
1964 objfile->free_psymtabs = NULL;
1965 objfile->msymbols = NULL;
1966 objfile->minimal_symbol_count = 0;
1967 memset (&objfile->msymbol_hash, 0,
1968 sizeof (objfile->msymbol_hash));
1969 memset (&objfile->msymbol_demangled_hash, 0,
1970 sizeof (objfile->msymbol_demangled_hash));
1971 objfile->fundamental_types = NULL;
1972 if (objfile->sf != NULL)
1973 {
1974 (*objfile->sf->sym_finish) (objfile);
1975 }
1976
1977 /* We never make this a mapped file. */
1978 objfile->md = NULL;
1979 /* obstack_specify_allocation also initializes the obstack so
1980 it is empty. */
1981 objfile->psymbol_cache = bcache_xmalloc ();
1982 objfile->macro_cache = bcache_xmalloc ();
1983 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1984 xmalloc, xfree);
1985 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1986 xmalloc, xfree);
1987 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1988 xmalloc, xfree);
1989 if (build_objfile_section_table (objfile))
1990 {
1991 error ("Can't find the file sections in `%s': %s",
1992 objfile->name, bfd_errmsg (bfd_get_error ()));
1993 }
1994 terminate_minimal_symbol_table (objfile);
1995
1996 /* We use the same section offsets as from last time. I'm not
1997 sure whether that is always correct for shared libraries. */
1998 objfile->section_offsets = (struct section_offsets *)
1999 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
2000 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
2001 objfile->num_sections = num_offsets;
2002
2003 /* What the hell is sym_new_init for, anyway? The concept of
2004 distinguishing between the main file and additional files
2005 in this way seems rather dubious. */
2006 if (objfile == symfile_objfile)
2007 {
2008 (*objfile->sf->sym_new_init) (objfile);
2009 #ifdef HPUXHPPA
2010 RESET_HP_UX_GLOBALS ();
2011 #endif
2012 }
2013
2014 (*objfile->sf->sym_init) (objfile);
2015 clear_complaints (&symfile_complaints, 1, 1);
2016 /* The "mainline" parameter is a hideous hack; I think leaving it
2017 zero is OK since dbxread.c also does what it needs to do if
2018 objfile->global_psymbols.size is 0. */
2019 (*objfile->sf->sym_read) (objfile, 0);
2020 if (!have_partial_symbols () && !have_full_symbols ())
2021 {
2022 wrap_here ("");
2023 printf_filtered ("(no debugging symbols found)\n");
2024 wrap_here ("");
2025 }
2026 objfile->flags |= OBJF_SYMS;
2027
2028 /* We're done reading the symbol file; finish off complaints. */
2029 clear_complaints (&symfile_complaints, 0, 1);
2030
2031 /* Getting new symbols may change our opinion about what is
2032 frameless. */
2033
2034 reinit_frame_cache ();
2035
2036 /* Discard cleanups as symbol reading was successful. */
2037 discard_cleanups (old_cleanups);
2038
2039 /* If the mtime has changed between the time we set new_modtime
2040 and now, we *want* this to be out of date, so don't call stat
2041 again now. */
2042 objfile->mtime = new_modtime;
2043 reread_one = 1;
2044
2045 /* Call this after reading in a new symbol table to give target
2046 dependent code a crack at the new symbols. For instance, this
2047 could be used to update the values of target-specific symbols GDB
2048 needs to keep track of (such as _sigtramp, or whatever). */
2049
2050 TARGET_SYMFILE_POSTREAD (objfile);
2051
2052 reread_separate_symbols (objfile);
2053 }
2054 }
2055 }
2056
2057 if (reread_one)
2058 clear_symtab_users ();
2059 }
2060
2061
2062 /* Handle separate debug info for OBJFILE, which has just been
2063 re-read:
2064 - If we had separate debug info before, but now we don't, get rid
2065 of the separated objfile.
2066 - If we didn't have separated debug info before, but now we do,
2067 read in the new separated debug info file.
2068 - If the debug link points to a different file, toss the old one
2069 and read the new one.
2070 This function does *not* handle the case where objfile is still
2071 using the same separate debug info file, but that file's timestamp
2072 has changed. That case should be handled by the loop in
2073 reread_symbols already. */
2074 static void
2075 reread_separate_symbols (struct objfile *objfile)
2076 {
2077 char *debug_file;
2078 unsigned long crc32;
2079
2080 /* Does the updated objfile's debug info live in a
2081 separate file? */
2082 debug_file = find_separate_debug_file (objfile);
2083
2084 if (objfile->separate_debug_objfile)
2085 {
2086 /* There are two cases where we need to get rid of
2087 the old separated debug info objfile:
2088 - if the new primary objfile doesn't have
2089 separated debug info, or
2090 - if the new primary objfile has separate debug
2091 info, but it's under a different filename.
2092
2093 If the old and new objfiles both have separate
2094 debug info, under the same filename, then we're
2095 okay --- if the separated file's contents have
2096 changed, we will have caught that when we
2097 visited it in this function's outermost
2098 loop. */
2099 if (! debug_file
2100 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2101 free_objfile (objfile->separate_debug_objfile);
2102 }
2103
2104 /* If the new objfile has separate debug info, and we
2105 haven't loaded it already, do so now. */
2106 if (debug_file
2107 && ! objfile->separate_debug_objfile)
2108 {
2109 /* Use the same section offset table as objfile itself.
2110 Preserve the flags from objfile that make sense. */
2111 objfile->separate_debug_objfile
2112 = (symbol_file_add_with_addrs_or_offsets
2113 (debug_file,
2114 info_verbose, /* from_tty: Don't override the default. */
2115 0, /* No addr table. */
2116 objfile->section_offsets, objfile->num_sections,
2117 0, /* Not mainline. See comments about this above. */
2118 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2119 | OBJF_SHARED | OBJF_READNOW
2120 | OBJF_USERLOADED)));
2121 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2122 = objfile;
2123 }
2124 }
2125
2126
2127 \f
2128
2129
2130 typedef struct
2131 {
2132 char *ext;
2133 enum language lang;
2134 }
2135 filename_language;
2136
2137 static filename_language *filename_language_table;
2138 static int fl_table_size, fl_table_next;
2139
2140 static void
2141 add_filename_language (char *ext, enum language lang)
2142 {
2143 if (fl_table_next >= fl_table_size)
2144 {
2145 fl_table_size += 10;
2146 filename_language_table =
2147 xrealloc (filename_language_table,
2148 fl_table_size * sizeof (*filename_language_table));
2149 }
2150
2151 filename_language_table[fl_table_next].ext = xstrdup (ext);
2152 filename_language_table[fl_table_next].lang = lang;
2153 fl_table_next++;
2154 }
2155
2156 static char *ext_args;
2157
2158 static void
2159 set_ext_lang_command (char *args, int from_tty)
2160 {
2161 int i;
2162 char *cp = ext_args;
2163 enum language lang;
2164
2165 /* First arg is filename extension, starting with '.' */
2166 if (*cp != '.')
2167 error ("'%s': Filename extension must begin with '.'", ext_args);
2168
2169 /* Find end of first arg. */
2170 while (*cp && !isspace (*cp))
2171 cp++;
2172
2173 if (*cp == '\0')
2174 error ("'%s': two arguments required -- filename extension and language",
2175 ext_args);
2176
2177 /* Null-terminate first arg */
2178 *cp++ = '\0';
2179
2180 /* Find beginning of second arg, which should be a source language. */
2181 while (*cp && isspace (*cp))
2182 cp++;
2183
2184 if (*cp == '\0')
2185 error ("'%s': two arguments required -- filename extension and language",
2186 ext_args);
2187
2188 /* Lookup the language from among those we know. */
2189 lang = language_enum (cp);
2190
2191 /* Now lookup the filename extension: do we already know it? */
2192 for (i = 0; i < fl_table_next; i++)
2193 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2194 break;
2195
2196 if (i >= fl_table_next)
2197 {
2198 /* new file extension */
2199 add_filename_language (ext_args, lang);
2200 }
2201 else
2202 {
2203 /* redefining a previously known filename extension */
2204
2205 /* if (from_tty) */
2206 /* query ("Really make files of type %s '%s'?", */
2207 /* ext_args, language_str (lang)); */
2208
2209 xfree (filename_language_table[i].ext);
2210 filename_language_table[i].ext = xstrdup (ext_args);
2211 filename_language_table[i].lang = lang;
2212 }
2213 }
2214
2215 static void
2216 info_ext_lang_command (char *args, int from_tty)
2217 {
2218 int i;
2219
2220 printf_filtered ("Filename extensions and the languages they represent:");
2221 printf_filtered ("\n\n");
2222 for (i = 0; i < fl_table_next; i++)
2223 printf_filtered ("\t%s\t- %s\n",
2224 filename_language_table[i].ext,
2225 language_str (filename_language_table[i].lang));
2226 }
2227
2228 static void
2229 init_filename_language_table (void)
2230 {
2231 if (fl_table_size == 0) /* protect against repetition */
2232 {
2233 fl_table_size = 20;
2234 fl_table_next = 0;
2235 filename_language_table =
2236 xmalloc (fl_table_size * sizeof (*filename_language_table));
2237 add_filename_language (".c", language_c);
2238 add_filename_language (".C", language_cplus);
2239 add_filename_language (".cc", language_cplus);
2240 add_filename_language (".cp", language_cplus);
2241 add_filename_language (".cpp", language_cplus);
2242 add_filename_language (".cxx", language_cplus);
2243 add_filename_language (".c++", language_cplus);
2244 add_filename_language (".java", language_java);
2245 add_filename_language (".class", language_java);
2246 add_filename_language (".m", language_objc);
2247 add_filename_language (".f", language_fortran);
2248 add_filename_language (".F", language_fortran);
2249 add_filename_language (".s", language_asm);
2250 add_filename_language (".S", language_asm);
2251 add_filename_language (".pas", language_pascal);
2252 add_filename_language (".p", language_pascal);
2253 add_filename_language (".pp", language_pascal);
2254 }
2255 }
2256
2257 enum language
2258 deduce_language_from_filename (char *filename)
2259 {
2260 int i;
2261 char *cp;
2262
2263 if (filename != NULL)
2264 if ((cp = strrchr (filename, '.')) != NULL)
2265 for (i = 0; i < fl_table_next; i++)
2266 if (strcmp (cp, filename_language_table[i].ext) == 0)
2267 return filename_language_table[i].lang;
2268
2269 return language_unknown;
2270 }
2271 \f
2272 /* allocate_symtab:
2273
2274 Allocate and partly initialize a new symbol table. Return a pointer
2275 to it. error() if no space.
2276
2277 Caller must set these fields:
2278 LINETABLE(symtab)
2279 symtab->blockvector
2280 symtab->dirname
2281 symtab->free_code
2282 symtab->free_ptr
2283 possibly free_named_symtabs (symtab->filename);
2284 */
2285
2286 struct symtab *
2287 allocate_symtab (char *filename, struct objfile *objfile)
2288 {
2289 register struct symtab *symtab;
2290
2291 symtab = (struct symtab *)
2292 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2293 memset (symtab, 0, sizeof (*symtab));
2294 symtab->filename = obsavestring (filename, strlen (filename),
2295 &objfile->symbol_obstack);
2296 symtab->fullname = NULL;
2297 symtab->language = deduce_language_from_filename (filename);
2298 symtab->debugformat = obsavestring ("unknown", 7,
2299 &objfile->symbol_obstack);
2300
2301 /* Hook it to the objfile it comes from */
2302
2303 symtab->objfile = objfile;
2304 symtab->next = objfile->symtabs;
2305 objfile->symtabs = symtab;
2306
2307 /* FIXME: This should go away. It is only defined for the Z8000,
2308 and the Z8000 definition of this macro doesn't have anything to
2309 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2310 here for convenience. */
2311 #ifdef INIT_EXTRA_SYMTAB_INFO
2312 INIT_EXTRA_SYMTAB_INFO (symtab);
2313 #endif
2314
2315 return (symtab);
2316 }
2317
2318 struct partial_symtab *
2319 allocate_psymtab (char *filename, struct objfile *objfile)
2320 {
2321 struct partial_symtab *psymtab;
2322
2323 if (objfile->free_psymtabs)
2324 {
2325 psymtab = objfile->free_psymtabs;
2326 objfile->free_psymtabs = psymtab->next;
2327 }
2328 else
2329 psymtab = (struct partial_symtab *)
2330 obstack_alloc (&objfile->psymbol_obstack,
2331 sizeof (struct partial_symtab));
2332
2333 memset (psymtab, 0, sizeof (struct partial_symtab));
2334 psymtab->filename = obsavestring (filename, strlen (filename),
2335 &objfile->psymbol_obstack);
2336 psymtab->symtab = NULL;
2337
2338 /* Prepend it to the psymtab list for the objfile it belongs to.
2339 Psymtabs are searched in most recent inserted -> least recent
2340 inserted order. */
2341
2342 psymtab->objfile = objfile;
2343 psymtab->next = objfile->psymtabs;
2344 objfile->psymtabs = psymtab;
2345 #if 0
2346 {
2347 struct partial_symtab **prev_pst;
2348 psymtab->objfile = objfile;
2349 psymtab->next = NULL;
2350 prev_pst = &(objfile->psymtabs);
2351 while ((*prev_pst) != NULL)
2352 prev_pst = &((*prev_pst)->next);
2353 (*prev_pst) = psymtab;
2354 }
2355 #endif
2356
2357 return (psymtab);
2358 }
2359
2360 void
2361 discard_psymtab (struct partial_symtab *pst)
2362 {
2363 struct partial_symtab **prev_pst;
2364
2365 /* From dbxread.c:
2366 Empty psymtabs happen as a result of header files which don't
2367 have any symbols in them. There can be a lot of them. But this
2368 check is wrong, in that a psymtab with N_SLINE entries but
2369 nothing else is not empty, but we don't realize that. Fixing
2370 that without slowing things down might be tricky. */
2371
2372 /* First, snip it out of the psymtab chain */
2373
2374 prev_pst = &(pst->objfile->psymtabs);
2375 while ((*prev_pst) != pst)
2376 prev_pst = &((*prev_pst)->next);
2377 (*prev_pst) = pst->next;
2378
2379 /* Next, put it on a free list for recycling */
2380
2381 pst->next = pst->objfile->free_psymtabs;
2382 pst->objfile->free_psymtabs = pst;
2383 }
2384 \f
2385
2386 /* Reset all data structures in gdb which may contain references to symbol
2387 table data. */
2388
2389 void
2390 clear_symtab_users (void)
2391 {
2392 /* Someday, we should do better than this, by only blowing away
2393 the things that really need to be blown. */
2394 clear_value_history ();
2395 clear_displays ();
2396 clear_internalvars ();
2397 breakpoint_re_set ();
2398 set_default_breakpoint (0, 0, 0, 0);
2399 clear_current_source_symtab_and_line ();
2400 clear_pc_function_cache ();
2401 if (target_new_objfile_hook)
2402 target_new_objfile_hook (NULL);
2403 }
2404
2405 static void
2406 clear_symtab_users_cleanup (void *ignore)
2407 {
2408 clear_symtab_users ();
2409 }
2410
2411 /* clear_symtab_users_once:
2412
2413 This function is run after symbol reading, or from a cleanup.
2414 If an old symbol table was obsoleted, the old symbol table
2415 has been blown away, but the other GDB data structures that may
2416 reference it have not yet been cleared or re-directed. (The old
2417 symtab was zapped, and the cleanup queued, in free_named_symtab()
2418 below.)
2419
2420 This function can be queued N times as a cleanup, or called
2421 directly; it will do all the work the first time, and then will be a
2422 no-op until the next time it is queued. This works by bumping a
2423 counter at queueing time. Much later when the cleanup is run, or at
2424 the end of symbol processing (in case the cleanup is discarded), if
2425 the queued count is greater than the "done-count", we do the work
2426 and set the done-count to the queued count. If the queued count is
2427 less than or equal to the done-count, we just ignore the call. This
2428 is needed because reading a single .o file will often replace many
2429 symtabs (one per .h file, for example), and we don't want to reset
2430 the breakpoints N times in the user's face.
2431
2432 The reason we both queue a cleanup, and call it directly after symbol
2433 reading, is because the cleanup protects us in case of errors, but is
2434 discarded if symbol reading is successful. */
2435
2436 #if 0
2437 /* FIXME: As free_named_symtabs is currently a big noop this function
2438 is no longer needed. */
2439 static void clear_symtab_users_once (void);
2440
2441 static int clear_symtab_users_queued;
2442 static int clear_symtab_users_done;
2443
2444 static void
2445 clear_symtab_users_once (void)
2446 {
2447 /* Enforce once-per-`do_cleanups'-semantics */
2448 if (clear_symtab_users_queued <= clear_symtab_users_done)
2449 return;
2450 clear_symtab_users_done = clear_symtab_users_queued;
2451
2452 clear_symtab_users ();
2453 }
2454 #endif
2455
2456 /* Delete the specified psymtab, and any others that reference it. */
2457
2458 static void
2459 cashier_psymtab (struct partial_symtab *pst)
2460 {
2461 struct partial_symtab *ps, *pprev = NULL;
2462 int i;
2463
2464 /* Find its previous psymtab in the chain */
2465 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2466 {
2467 if (ps == pst)
2468 break;
2469 pprev = ps;
2470 }
2471
2472 if (ps)
2473 {
2474 /* Unhook it from the chain. */
2475 if (ps == pst->objfile->psymtabs)
2476 pst->objfile->psymtabs = ps->next;
2477 else
2478 pprev->next = ps->next;
2479
2480 /* FIXME, we can't conveniently deallocate the entries in the
2481 partial_symbol lists (global_psymbols/static_psymbols) that
2482 this psymtab points to. These just take up space until all
2483 the psymtabs are reclaimed. Ditto the dependencies list and
2484 filename, which are all in the psymbol_obstack. */
2485
2486 /* We need to cashier any psymtab that has this one as a dependency... */
2487 again:
2488 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2489 {
2490 for (i = 0; i < ps->number_of_dependencies; i++)
2491 {
2492 if (ps->dependencies[i] == pst)
2493 {
2494 cashier_psymtab (ps);
2495 goto again; /* Must restart, chain has been munged. */
2496 }
2497 }
2498 }
2499 }
2500 }
2501
2502 /* If a symtab or psymtab for filename NAME is found, free it along
2503 with any dependent breakpoints, displays, etc.
2504 Used when loading new versions of object modules with the "add-file"
2505 command. This is only called on the top-level symtab or psymtab's name;
2506 it is not called for subsidiary files such as .h files.
2507
2508 Return value is 1 if we blew away the environment, 0 if not.
2509 FIXME. The return value appears to never be used.
2510
2511 FIXME. I think this is not the best way to do this. We should
2512 work on being gentler to the environment while still cleaning up
2513 all stray pointers into the freed symtab. */
2514
2515 int
2516 free_named_symtabs (char *name)
2517 {
2518 #if 0
2519 /* FIXME: With the new method of each objfile having it's own
2520 psymtab list, this function needs serious rethinking. In particular,
2521 why was it ever necessary to toss psymtabs with specific compilation
2522 unit filenames, as opposed to all psymtabs from a particular symbol
2523 file? -- fnf
2524 Well, the answer is that some systems permit reloading of particular
2525 compilation units. We want to blow away any old info about these
2526 compilation units, regardless of which objfiles they arrived in. --gnu. */
2527
2528 register struct symtab *s;
2529 register struct symtab *prev;
2530 register struct partial_symtab *ps;
2531 struct blockvector *bv;
2532 int blewit = 0;
2533
2534 /* We only wack things if the symbol-reload switch is set. */
2535 if (!symbol_reloading)
2536 return 0;
2537
2538 /* Some symbol formats have trouble providing file names... */
2539 if (name == 0 || *name == '\0')
2540 return 0;
2541
2542 /* Look for a psymtab with the specified name. */
2543
2544 again2:
2545 for (ps = partial_symtab_list; ps; ps = ps->next)
2546 {
2547 if (STREQ (name, ps->filename))
2548 {
2549 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2550 goto again2; /* Must restart, chain has been munged */
2551 }
2552 }
2553
2554 /* Look for a symtab with the specified name. */
2555
2556 for (s = symtab_list; s; s = s->next)
2557 {
2558 if (STREQ (name, s->filename))
2559 break;
2560 prev = s;
2561 }
2562
2563 if (s)
2564 {
2565 if (s == symtab_list)
2566 symtab_list = s->next;
2567 else
2568 prev->next = s->next;
2569
2570 /* For now, queue a delete for all breakpoints, displays, etc., whether
2571 or not they depend on the symtab being freed. This should be
2572 changed so that only those data structures affected are deleted. */
2573
2574 /* But don't delete anything if the symtab is empty.
2575 This test is necessary due to a bug in "dbxread.c" that
2576 causes empty symtabs to be created for N_SO symbols that
2577 contain the pathname of the object file. (This problem
2578 has been fixed in GDB 3.9x). */
2579
2580 bv = BLOCKVECTOR (s);
2581 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2582 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2583 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2584 {
2585 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2586 name);
2587 clear_symtab_users_queued++;
2588 make_cleanup (clear_symtab_users_once, 0);
2589 blewit = 1;
2590 }
2591 else
2592 {
2593 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2594 name);
2595 }
2596
2597 free_symtab (s);
2598 }
2599 else
2600 {
2601 /* It is still possible that some breakpoints will be affected
2602 even though no symtab was found, since the file might have
2603 been compiled without debugging, and hence not be associated
2604 with a symtab. In order to handle this correctly, we would need
2605 to keep a list of text address ranges for undebuggable files.
2606 For now, we do nothing, since this is a fairly obscure case. */
2607 ;
2608 }
2609
2610 /* FIXME, what about the minimal symbol table? */
2611 return blewit;
2612 #else
2613 return (0);
2614 #endif
2615 }
2616 \f
2617 /* Allocate and partially fill a partial symtab. It will be
2618 completely filled at the end of the symbol list.
2619
2620 FILENAME is the name of the symbol-file we are reading from. */
2621
2622 struct partial_symtab *
2623 start_psymtab_common (struct objfile *objfile,
2624 struct section_offsets *section_offsets, char *filename,
2625 CORE_ADDR textlow, struct partial_symbol **global_syms,
2626 struct partial_symbol **static_syms)
2627 {
2628 struct partial_symtab *psymtab;
2629
2630 psymtab = allocate_psymtab (filename, objfile);
2631 psymtab->section_offsets = section_offsets;
2632 psymtab->textlow = textlow;
2633 psymtab->texthigh = psymtab->textlow; /* default */
2634 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2635 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2636 return (psymtab);
2637 }
2638 \f
2639 /* Add a symbol with a long value to a psymtab.
2640 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2641
2642 void
2643 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2644 enum address_class class,
2645 struct psymbol_allocation_list *list, long val, /* Value as a long */
2646 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2647 enum language language, struct objfile *objfile)
2648 {
2649 register struct partial_symbol *psym;
2650 char *buf = alloca (namelength + 1);
2651 /* psymbol is static so that there will be no uninitialized gaps in the
2652 structure which might contain random data, causing cache misses in
2653 bcache. */
2654 static struct partial_symbol psymbol;
2655
2656 /* Create local copy of the partial symbol */
2657 memcpy (buf, name, namelength);
2658 buf[namelength] = '\0';
2659 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2660 if (val != 0)
2661 {
2662 SYMBOL_VALUE (&psymbol) = val;
2663 }
2664 else
2665 {
2666 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2667 }
2668 SYMBOL_SECTION (&psymbol) = 0;
2669 SYMBOL_LANGUAGE (&psymbol) = language;
2670 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2671 PSYMBOL_CLASS (&psymbol) = class;
2672
2673 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2674
2675 /* Stash the partial symbol away in the cache */
2676 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2677
2678 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2679 if (list->next >= list->list + list->size)
2680 {
2681 extend_psymbol_list (list, objfile);
2682 }
2683 *list->next++ = psym;
2684 OBJSTAT (objfile, n_psyms++);
2685 }
2686
2687 /* Add a symbol with a long value to a psymtab. This differs from
2688 * add_psymbol_to_list above in taking both a mangled and a demangled
2689 * name. */
2690
2691 void
2692 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2693 int dem_namelength, namespace_enum namespace,
2694 enum address_class class,
2695 struct psymbol_allocation_list *list, long val, /* Value as a long */
2696 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2697 enum language language,
2698 struct objfile *objfile)
2699 {
2700 register struct partial_symbol *psym;
2701 char *buf = alloca (namelength + 1);
2702 /* psymbol is static so that there will be no uninitialized gaps in the
2703 structure which might contain random data, causing cache misses in
2704 bcache. */
2705 static struct partial_symbol psymbol;
2706
2707 /* Create local copy of the partial symbol */
2708
2709 memcpy (buf, name, namelength);
2710 buf[namelength] = '\0';
2711 DEPRECATED_SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2712
2713 buf = alloca (dem_namelength + 1);
2714 memcpy (buf, dem_name, dem_namelength);
2715 buf[dem_namelength] = '\0';
2716
2717 switch (language)
2718 {
2719 case language_c:
2720 case language_cplus:
2721 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2722 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2723 break;
2724 /* FIXME What should be done for the default case? Ignoring for now. */
2725 }
2726
2727 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2728 if (val != 0)
2729 {
2730 SYMBOL_VALUE (&psymbol) = val;
2731 }
2732 else
2733 {
2734 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2735 }
2736 SYMBOL_SECTION (&psymbol) = 0;
2737 SYMBOL_LANGUAGE (&psymbol) = language;
2738 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2739 PSYMBOL_CLASS (&psymbol) = class;
2740 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2741
2742 /* Stash the partial symbol away in the cache */
2743 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2744
2745 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2746 if (list->next >= list->list + list->size)
2747 {
2748 extend_psymbol_list (list, objfile);
2749 }
2750 *list->next++ = psym;
2751 OBJSTAT (objfile, n_psyms++);
2752 }
2753
2754 /* Initialize storage for partial symbols. */
2755
2756 void
2757 init_psymbol_list (struct objfile *objfile, int total_symbols)
2758 {
2759 /* Free any previously allocated psymbol lists. */
2760
2761 if (objfile->global_psymbols.list)
2762 {
2763 xmfree (objfile->md, objfile->global_psymbols.list);
2764 }
2765 if (objfile->static_psymbols.list)
2766 {
2767 xmfree (objfile->md, objfile->static_psymbols.list);
2768 }
2769
2770 /* Current best guess is that approximately a twentieth
2771 of the total symbols (in a debugging file) are global or static
2772 oriented symbols */
2773
2774 objfile->global_psymbols.size = total_symbols / 10;
2775 objfile->static_psymbols.size = total_symbols / 10;
2776
2777 if (objfile->global_psymbols.size > 0)
2778 {
2779 objfile->global_psymbols.next =
2780 objfile->global_psymbols.list = (struct partial_symbol **)
2781 xmmalloc (objfile->md, (objfile->global_psymbols.size
2782 * sizeof (struct partial_symbol *)));
2783 }
2784 if (objfile->static_psymbols.size > 0)
2785 {
2786 objfile->static_psymbols.next =
2787 objfile->static_psymbols.list = (struct partial_symbol **)
2788 xmmalloc (objfile->md, (objfile->static_psymbols.size
2789 * sizeof (struct partial_symbol *)));
2790 }
2791 }
2792
2793 /* OVERLAYS:
2794 The following code implements an abstraction for debugging overlay sections.
2795
2796 The target model is as follows:
2797 1) The gnu linker will permit multiple sections to be mapped into the
2798 same VMA, each with its own unique LMA (or load address).
2799 2) It is assumed that some runtime mechanism exists for mapping the
2800 sections, one by one, from the load address into the VMA address.
2801 3) This code provides a mechanism for gdb to keep track of which
2802 sections should be considered to be mapped from the VMA to the LMA.
2803 This information is used for symbol lookup, and memory read/write.
2804 For instance, if a section has been mapped then its contents
2805 should be read from the VMA, otherwise from the LMA.
2806
2807 Two levels of debugger support for overlays are available. One is
2808 "manual", in which the debugger relies on the user to tell it which
2809 overlays are currently mapped. This level of support is
2810 implemented entirely in the core debugger, and the information about
2811 whether a section is mapped is kept in the objfile->obj_section table.
2812
2813 The second level of support is "automatic", and is only available if
2814 the target-specific code provides functionality to read the target's
2815 overlay mapping table, and translate its contents for the debugger
2816 (by updating the mapped state information in the obj_section tables).
2817
2818 The interface is as follows:
2819 User commands:
2820 overlay map <name> -- tell gdb to consider this section mapped
2821 overlay unmap <name> -- tell gdb to consider this section unmapped
2822 overlay list -- list the sections that GDB thinks are mapped
2823 overlay read-target -- get the target's state of what's mapped
2824 overlay off/manual/auto -- set overlay debugging state
2825 Functional interface:
2826 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2827 section, return that section.
2828 find_pc_overlay(pc): find any overlay section that contains
2829 the pc, either in its VMA or its LMA
2830 overlay_is_mapped(sect): true if overlay is marked as mapped
2831 section_is_overlay(sect): true if section's VMA != LMA
2832 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2833 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2834 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2835 overlay_mapped_address(...): map an address from section's LMA to VMA
2836 overlay_unmapped_address(...): map an address from section's VMA to LMA
2837 symbol_overlayed_address(...): Return a "current" address for symbol:
2838 either in VMA or LMA depending on whether
2839 the symbol's section is currently mapped
2840 */
2841
2842 /* Overlay debugging state: */
2843
2844 enum overlay_debugging_state overlay_debugging = ovly_off;
2845 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2846
2847 /* Target vector for refreshing overlay mapped state */
2848 static void simple_overlay_update (struct obj_section *);
2849 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2850
2851 /* Function: section_is_overlay (SECTION)
2852 Returns true if SECTION has VMA not equal to LMA, ie.
2853 SECTION is loaded at an address different from where it will "run". */
2854
2855 int
2856 section_is_overlay (asection *section)
2857 {
2858 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2859
2860 if (overlay_debugging)
2861 if (section && section->lma != 0 &&
2862 section->vma != section->lma)
2863 return 1;
2864
2865 return 0;
2866 }
2867
2868 /* Function: overlay_invalidate_all (void)
2869 Invalidate the mapped state of all overlay sections (mark it as stale). */
2870
2871 static void
2872 overlay_invalidate_all (void)
2873 {
2874 struct objfile *objfile;
2875 struct obj_section *sect;
2876
2877 ALL_OBJSECTIONS (objfile, sect)
2878 if (section_is_overlay (sect->the_bfd_section))
2879 sect->ovly_mapped = -1;
2880 }
2881
2882 /* Function: overlay_is_mapped (SECTION)
2883 Returns true if section is an overlay, and is currently mapped.
2884 Private: public access is thru function section_is_mapped.
2885
2886 Access to the ovly_mapped flag is restricted to this function, so
2887 that we can do automatic update. If the global flag
2888 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2889 overlay_invalidate_all. If the mapped state of the particular
2890 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2891
2892 static int
2893 overlay_is_mapped (struct obj_section *osect)
2894 {
2895 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2896 return 0;
2897
2898 switch (overlay_debugging)
2899 {
2900 default:
2901 case ovly_off:
2902 return 0; /* overlay debugging off */
2903 case ovly_auto: /* overlay debugging automatic */
2904 /* Unles there is a target_overlay_update function,
2905 there's really nothing useful to do here (can't really go auto) */
2906 if (target_overlay_update)
2907 {
2908 if (overlay_cache_invalid)
2909 {
2910 overlay_invalidate_all ();
2911 overlay_cache_invalid = 0;
2912 }
2913 if (osect->ovly_mapped == -1)
2914 (*target_overlay_update) (osect);
2915 }
2916 /* fall thru to manual case */
2917 case ovly_on: /* overlay debugging manual */
2918 return osect->ovly_mapped == 1;
2919 }
2920 }
2921
2922 /* Function: section_is_mapped
2923 Returns true if section is an overlay, and is currently mapped. */
2924
2925 int
2926 section_is_mapped (asection *section)
2927 {
2928 struct objfile *objfile;
2929 struct obj_section *osect;
2930
2931 if (overlay_debugging)
2932 if (section && section_is_overlay (section))
2933 ALL_OBJSECTIONS (objfile, osect)
2934 if (osect->the_bfd_section == section)
2935 return overlay_is_mapped (osect);
2936
2937 return 0;
2938 }
2939
2940 /* Function: pc_in_unmapped_range
2941 If PC falls into the lma range of SECTION, return true, else false. */
2942
2943 CORE_ADDR
2944 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2945 {
2946 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2947
2948 int size;
2949
2950 if (overlay_debugging)
2951 if (section && section_is_overlay (section))
2952 {
2953 size = bfd_get_section_size_before_reloc (section);
2954 if (section->lma <= pc && pc < section->lma + size)
2955 return 1;
2956 }
2957 return 0;
2958 }
2959
2960 /* Function: pc_in_mapped_range
2961 If PC falls into the vma range of SECTION, return true, else false. */
2962
2963 CORE_ADDR
2964 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2965 {
2966 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2967
2968 int size;
2969
2970 if (overlay_debugging)
2971 if (section && section_is_overlay (section))
2972 {
2973 size = bfd_get_section_size_before_reloc (section);
2974 if (section->vma <= pc && pc < section->vma + size)
2975 return 1;
2976 }
2977 return 0;
2978 }
2979
2980
2981 /* Return true if the mapped ranges of sections A and B overlap, false
2982 otherwise. */
2983 int
2984 sections_overlap (asection *a, asection *b)
2985 {
2986 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2987
2988 CORE_ADDR a_start = a->vma;
2989 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2990 CORE_ADDR b_start = b->vma;
2991 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2992
2993 return (a_start < b_end && b_start < a_end);
2994 }
2995
2996 /* Function: overlay_unmapped_address (PC, SECTION)
2997 Returns the address corresponding to PC in the unmapped (load) range.
2998 May be the same as PC. */
2999
3000 CORE_ADDR
3001 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3002 {
3003 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3004
3005 if (overlay_debugging)
3006 if (section && section_is_overlay (section) &&
3007 pc_in_mapped_range (pc, section))
3008 return pc + section->lma - section->vma;
3009
3010 return pc;
3011 }
3012
3013 /* Function: overlay_mapped_address (PC, SECTION)
3014 Returns the address corresponding to PC in the mapped (runtime) range.
3015 May be the same as PC. */
3016
3017 CORE_ADDR
3018 overlay_mapped_address (CORE_ADDR pc, asection *section)
3019 {
3020 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3021
3022 if (overlay_debugging)
3023 if (section && section_is_overlay (section) &&
3024 pc_in_unmapped_range (pc, section))
3025 return pc + section->vma - section->lma;
3026
3027 return pc;
3028 }
3029
3030
3031 /* Function: symbol_overlayed_address
3032 Return one of two addresses (relative to the VMA or to the LMA),
3033 depending on whether the section is mapped or not. */
3034
3035 CORE_ADDR
3036 symbol_overlayed_address (CORE_ADDR address, asection *section)
3037 {
3038 if (overlay_debugging)
3039 {
3040 /* If the symbol has no section, just return its regular address. */
3041 if (section == 0)
3042 return address;
3043 /* If the symbol's section is not an overlay, just return its address */
3044 if (!section_is_overlay (section))
3045 return address;
3046 /* If the symbol's section is mapped, just return its address */
3047 if (section_is_mapped (section))
3048 return address;
3049 /*
3050 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3051 * then return its LOADED address rather than its vma address!!
3052 */
3053 return overlay_unmapped_address (address, section);
3054 }
3055 return address;
3056 }
3057
3058 /* Function: find_pc_overlay (PC)
3059 Return the best-match overlay section for PC:
3060 If PC matches a mapped overlay section's VMA, return that section.
3061 Else if PC matches an unmapped section's VMA, return that section.
3062 Else if PC matches an unmapped section's LMA, return that section. */
3063
3064 asection *
3065 find_pc_overlay (CORE_ADDR pc)
3066 {
3067 struct objfile *objfile;
3068 struct obj_section *osect, *best_match = NULL;
3069
3070 if (overlay_debugging)
3071 ALL_OBJSECTIONS (objfile, osect)
3072 if (section_is_overlay (osect->the_bfd_section))
3073 {
3074 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3075 {
3076 if (overlay_is_mapped (osect))
3077 return osect->the_bfd_section;
3078 else
3079 best_match = osect;
3080 }
3081 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3082 best_match = osect;
3083 }
3084 return best_match ? best_match->the_bfd_section : NULL;
3085 }
3086
3087 /* Function: find_pc_mapped_section (PC)
3088 If PC falls into the VMA address range of an overlay section that is
3089 currently marked as MAPPED, return that section. Else return NULL. */
3090
3091 asection *
3092 find_pc_mapped_section (CORE_ADDR pc)
3093 {
3094 struct objfile *objfile;
3095 struct obj_section *osect;
3096
3097 if (overlay_debugging)
3098 ALL_OBJSECTIONS (objfile, osect)
3099 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3100 overlay_is_mapped (osect))
3101 return osect->the_bfd_section;
3102
3103 return NULL;
3104 }
3105
3106 /* Function: list_overlays_command
3107 Print a list of mapped sections and their PC ranges */
3108
3109 void
3110 list_overlays_command (char *args, int from_tty)
3111 {
3112 int nmapped = 0;
3113 struct objfile *objfile;
3114 struct obj_section *osect;
3115
3116 if (overlay_debugging)
3117 ALL_OBJSECTIONS (objfile, osect)
3118 if (overlay_is_mapped (osect))
3119 {
3120 const char *name;
3121 bfd_vma lma, vma;
3122 int size;
3123
3124 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3125 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3126 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3127 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3128
3129 printf_filtered ("Section %s, loaded at ", name);
3130 print_address_numeric (lma, 1, gdb_stdout);
3131 puts_filtered (" - ");
3132 print_address_numeric (lma + size, 1, gdb_stdout);
3133 printf_filtered (", mapped at ");
3134 print_address_numeric (vma, 1, gdb_stdout);
3135 puts_filtered (" - ");
3136 print_address_numeric (vma + size, 1, gdb_stdout);
3137 puts_filtered ("\n");
3138
3139 nmapped++;
3140 }
3141 if (nmapped == 0)
3142 printf_filtered ("No sections are mapped.\n");
3143 }
3144
3145 /* Function: map_overlay_command
3146 Mark the named section as mapped (ie. residing at its VMA address). */
3147
3148 void
3149 map_overlay_command (char *args, int from_tty)
3150 {
3151 struct objfile *objfile, *objfile2;
3152 struct obj_section *sec, *sec2;
3153 asection *bfdsec;
3154
3155 if (!overlay_debugging)
3156 error ("\
3157 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3158 the 'overlay manual' command.");
3159
3160 if (args == 0 || *args == 0)
3161 error ("Argument required: name of an overlay section");
3162
3163 /* First, find a section matching the user supplied argument */
3164 ALL_OBJSECTIONS (objfile, sec)
3165 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3166 {
3167 /* Now, check to see if the section is an overlay. */
3168 bfdsec = sec->the_bfd_section;
3169 if (!section_is_overlay (bfdsec))
3170 continue; /* not an overlay section */
3171
3172 /* Mark the overlay as "mapped" */
3173 sec->ovly_mapped = 1;
3174
3175 /* Next, make a pass and unmap any sections that are
3176 overlapped by this new section: */
3177 ALL_OBJSECTIONS (objfile2, sec2)
3178 if (sec2->ovly_mapped
3179 && sec != sec2
3180 && sec->the_bfd_section != sec2->the_bfd_section
3181 && sections_overlap (sec->the_bfd_section,
3182 sec2->the_bfd_section))
3183 {
3184 if (info_verbose)
3185 printf_filtered ("Note: section %s unmapped by overlap\n",
3186 bfd_section_name (objfile->obfd,
3187 sec2->the_bfd_section));
3188 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3189 }
3190 return;
3191 }
3192 error ("No overlay section called %s", args);
3193 }
3194
3195 /* Function: unmap_overlay_command
3196 Mark the overlay section as unmapped
3197 (ie. resident in its LMA address range, rather than the VMA range). */
3198
3199 void
3200 unmap_overlay_command (char *args, int from_tty)
3201 {
3202 struct objfile *objfile;
3203 struct obj_section *sec;
3204
3205 if (!overlay_debugging)
3206 error ("\
3207 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3208 the 'overlay manual' command.");
3209
3210 if (args == 0 || *args == 0)
3211 error ("Argument required: name of an overlay section");
3212
3213 /* First, find a section matching the user supplied argument */
3214 ALL_OBJSECTIONS (objfile, sec)
3215 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3216 {
3217 if (!sec->ovly_mapped)
3218 error ("Section %s is not mapped", args);
3219 sec->ovly_mapped = 0;
3220 return;
3221 }
3222 error ("No overlay section called %s", args);
3223 }
3224
3225 /* Function: overlay_auto_command
3226 A utility command to turn on overlay debugging.
3227 Possibly this should be done via a set/show command. */
3228
3229 static void
3230 overlay_auto_command (char *args, int from_tty)
3231 {
3232 overlay_debugging = ovly_auto;
3233 enable_overlay_breakpoints ();
3234 if (info_verbose)
3235 printf_filtered ("Automatic overlay debugging enabled.");
3236 }
3237
3238 /* Function: overlay_manual_command
3239 A utility command to turn on overlay debugging.
3240 Possibly this should be done via a set/show command. */
3241
3242 static void
3243 overlay_manual_command (char *args, int from_tty)
3244 {
3245 overlay_debugging = ovly_on;
3246 disable_overlay_breakpoints ();
3247 if (info_verbose)
3248 printf_filtered ("Overlay debugging enabled.");
3249 }
3250
3251 /* Function: overlay_off_command
3252 A utility command to turn on overlay debugging.
3253 Possibly this should be done via a set/show command. */
3254
3255 static void
3256 overlay_off_command (char *args, int from_tty)
3257 {
3258 overlay_debugging = ovly_off;
3259 disable_overlay_breakpoints ();
3260 if (info_verbose)
3261 printf_filtered ("Overlay debugging disabled.");
3262 }
3263
3264 static void
3265 overlay_load_command (char *args, int from_tty)
3266 {
3267 if (target_overlay_update)
3268 (*target_overlay_update) (NULL);
3269 else
3270 error ("This target does not know how to read its overlay state.");
3271 }
3272
3273 /* Function: overlay_command
3274 A place-holder for a mis-typed command */
3275
3276 /* Command list chain containing all defined "overlay" subcommands. */
3277 struct cmd_list_element *overlaylist;
3278
3279 static void
3280 overlay_command (char *args, int from_tty)
3281 {
3282 printf_unfiltered
3283 ("\"overlay\" must be followed by the name of an overlay command.\n");
3284 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3285 }
3286
3287
3288 /* Target Overlays for the "Simplest" overlay manager:
3289
3290 This is GDB's default target overlay layer. It works with the
3291 minimal overlay manager supplied as an example by Cygnus. The
3292 entry point is via a function pointer "target_overlay_update",
3293 so targets that use a different runtime overlay manager can
3294 substitute their own overlay_update function and take over the
3295 function pointer.
3296
3297 The overlay_update function pokes around in the target's data structures
3298 to see what overlays are mapped, and updates GDB's overlay mapping with
3299 this information.
3300
3301 In this simple implementation, the target data structures are as follows:
3302 unsigned _novlys; /# number of overlay sections #/
3303 unsigned _ovly_table[_novlys][4] = {
3304 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3305 {..., ..., ..., ...},
3306 }
3307 unsigned _novly_regions; /# number of overlay regions #/
3308 unsigned _ovly_region_table[_novly_regions][3] = {
3309 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3310 {..., ..., ...},
3311 }
3312 These functions will attempt to update GDB's mappedness state in the
3313 symbol section table, based on the target's mappedness state.
3314
3315 To do this, we keep a cached copy of the target's _ovly_table, and
3316 attempt to detect when the cached copy is invalidated. The main
3317 entry point is "simple_overlay_update(SECT), which looks up SECT in
3318 the cached table and re-reads only the entry for that section from
3319 the target (whenever possible).
3320 */
3321
3322 /* Cached, dynamically allocated copies of the target data structures: */
3323 static unsigned (*cache_ovly_table)[4] = 0;
3324 #if 0
3325 static unsigned (*cache_ovly_region_table)[3] = 0;
3326 #endif
3327 static unsigned cache_novlys = 0;
3328 #if 0
3329 static unsigned cache_novly_regions = 0;
3330 #endif
3331 static CORE_ADDR cache_ovly_table_base = 0;
3332 #if 0
3333 static CORE_ADDR cache_ovly_region_table_base = 0;
3334 #endif
3335 enum ovly_index
3336 {
3337 VMA, SIZE, LMA, MAPPED
3338 };
3339 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3340
3341 /* Throw away the cached copy of _ovly_table */
3342 static void
3343 simple_free_overlay_table (void)
3344 {
3345 if (cache_ovly_table)
3346 xfree (cache_ovly_table);
3347 cache_novlys = 0;
3348 cache_ovly_table = NULL;
3349 cache_ovly_table_base = 0;
3350 }
3351
3352 #if 0
3353 /* Throw away the cached copy of _ovly_region_table */
3354 static void
3355 simple_free_overlay_region_table (void)
3356 {
3357 if (cache_ovly_region_table)
3358 xfree (cache_ovly_region_table);
3359 cache_novly_regions = 0;
3360 cache_ovly_region_table = NULL;
3361 cache_ovly_region_table_base = 0;
3362 }
3363 #endif
3364
3365 /* Read an array of ints from the target into a local buffer.
3366 Convert to host order. int LEN is number of ints */
3367 static void
3368 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3369 {
3370 /* FIXME (alloca): Not safe if array is very large. */
3371 char *buf = alloca (len * TARGET_LONG_BYTES);
3372 int i;
3373
3374 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3375 for (i = 0; i < len; i++)
3376 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3377 TARGET_LONG_BYTES);
3378 }
3379
3380 /* Find and grab a copy of the target _ovly_table
3381 (and _novlys, which is needed for the table's size) */
3382 static int
3383 simple_read_overlay_table (void)
3384 {
3385 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3386
3387 simple_free_overlay_table ();
3388 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3389 if (! novlys_msym)
3390 {
3391 error ("Error reading inferior's overlay table: "
3392 "couldn't find `_novlys' variable\n"
3393 "in inferior. Use `overlay manual' mode.");
3394 return 0;
3395 }
3396
3397 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3398 if (! ovly_table_msym)
3399 {
3400 error ("Error reading inferior's overlay table: couldn't find "
3401 "`_ovly_table' array\n"
3402 "in inferior. Use `overlay manual' mode.");
3403 return 0;
3404 }
3405
3406 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3407 cache_ovly_table
3408 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3409 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3410 read_target_long_array (cache_ovly_table_base,
3411 (int *) cache_ovly_table,
3412 cache_novlys * 4);
3413
3414 return 1; /* SUCCESS */
3415 }
3416
3417 #if 0
3418 /* Find and grab a copy of the target _ovly_region_table
3419 (and _novly_regions, which is needed for the table's size) */
3420 static int
3421 simple_read_overlay_region_table (void)
3422 {
3423 struct minimal_symbol *msym;
3424
3425 simple_free_overlay_region_table ();
3426 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3427 if (msym != NULL)
3428 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3429 else
3430 return 0; /* failure */
3431 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3432 if (cache_ovly_region_table != NULL)
3433 {
3434 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3435 if (msym != NULL)
3436 {
3437 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3438 read_target_long_array (cache_ovly_region_table_base,
3439 (int *) cache_ovly_region_table,
3440 cache_novly_regions * 3);
3441 }
3442 else
3443 return 0; /* failure */
3444 }
3445 else
3446 return 0; /* failure */
3447 return 1; /* SUCCESS */
3448 }
3449 #endif
3450
3451 /* Function: simple_overlay_update_1
3452 A helper function for simple_overlay_update. Assuming a cached copy
3453 of _ovly_table exists, look through it to find an entry whose vma,
3454 lma and size match those of OSECT. Re-read the entry and make sure
3455 it still matches OSECT (else the table may no longer be valid).
3456 Set OSECT's mapped state to match the entry. Return: 1 for
3457 success, 0 for failure. */
3458
3459 static int
3460 simple_overlay_update_1 (struct obj_section *osect)
3461 {
3462 int i, size;
3463 bfd *obfd = osect->objfile->obfd;
3464 asection *bsect = osect->the_bfd_section;
3465
3466 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3467 for (i = 0; i < cache_novlys; i++)
3468 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3469 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3470 /* && cache_ovly_table[i][SIZE] == size */ )
3471 {
3472 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3473 (int *) cache_ovly_table[i], 4);
3474 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3475 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3476 /* && cache_ovly_table[i][SIZE] == size */ )
3477 {
3478 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3479 return 1;
3480 }
3481 else /* Warning! Warning! Target's ovly table has changed! */
3482 return 0;
3483 }
3484 return 0;
3485 }
3486
3487 /* Function: simple_overlay_update
3488 If OSECT is NULL, then update all sections' mapped state
3489 (after re-reading the entire target _ovly_table).
3490 If OSECT is non-NULL, then try to find a matching entry in the
3491 cached ovly_table and update only OSECT's mapped state.
3492 If a cached entry can't be found or the cache isn't valid, then
3493 re-read the entire cache, and go ahead and update all sections. */
3494
3495 static void
3496 simple_overlay_update (struct obj_section *osect)
3497 {
3498 struct objfile *objfile;
3499
3500 /* Were we given an osect to look up? NULL means do all of them. */
3501 if (osect)
3502 /* Have we got a cached copy of the target's overlay table? */
3503 if (cache_ovly_table != NULL)
3504 /* Does its cached location match what's currently in the symtab? */
3505 if (cache_ovly_table_base ==
3506 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3507 /* Then go ahead and try to look up this single section in the cache */
3508 if (simple_overlay_update_1 (osect))
3509 /* Found it! We're done. */
3510 return;
3511
3512 /* Cached table no good: need to read the entire table anew.
3513 Or else we want all the sections, in which case it's actually
3514 more efficient to read the whole table in one block anyway. */
3515
3516 if (! simple_read_overlay_table ())
3517 return;
3518
3519 /* Now may as well update all sections, even if only one was requested. */
3520 ALL_OBJSECTIONS (objfile, osect)
3521 if (section_is_overlay (osect->the_bfd_section))
3522 {
3523 int i, size;
3524 bfd *obfd = osect->objfile->obfd;
3525 asection *bsect = osect->the_bfd_section;
3526
3527 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3528 for (i = 0; i < cache_novlys; i++)
3529 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3530 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3531 /* && cache_ovly_table[i][SIZE] == size */ )
3532 { /* obj_section matches i'th entry in ovly_table */
3533 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3534 break; /* finished with inner for loop: break out */
3535 }
3536 }
3537 }
3538
3539 /* Set the output sections and output offsets for section SECTP in
3540 ABFD. The relocation code in BFD will read these offsets, so we
3541 need to be sure they're initialized. We map each section to itself,
3542 with no offset; this means that SECTP->vma will be honored. */
3543
3544 static void
3545 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3546 {
3547 sectp->output_section = sectp;
3548 sectp->output_offset = 0;
3549 }
3550
3551 /* Relocate the contents of a debug section SECTP in ABFD. The
3552 contents are stored in BUF if it is non-NULL, or returned in a
3553 malloc'd buffer otherwise.
3554
3555 For some platforms and debug info formats, shared libraries contain
3556 relocations against the debug sections (particularly for DWARF-2;
3557 one affected platform is PowerPC GNU/Linux, although it depends on
3558 the version of the linker in use). Also, ELF object files naturally
3559 have unresolved relocations for their debug sections. We need to apply
3560 the relocations in order to get the locations of symbols correct. */
3561
3562 bfd_byte *
3563 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3564 {
3565 /* We're only interested in debugging sections with relocation
3566 information. */
3567 if ((sectp->flags & SEC_RELOC) == 0)
3568 return NULL;
3569 if ((sectp->flags & SEC_DEBUGGING) == 0)
3570 return NULL;
3571
3572 /* We will handle section offsets properly elsewhere, so relocate as if
3573 all sections begin at 0. */
3574 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3575
3576 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf);
3577 }
3578
3579 void
3580 _initialize_symfile (void)
3581 {
3582 struct cmd_list_element *c;
3583
3584 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3585 "Load symbol table from executable file FILE.\n\
3586 The `file' command can also load symbol tables, as well as setting the file\n\
3587 to execute.", &cmdlist);
3588 set_cmd_completer (c, filename_completer);
3589
3590 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3591 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3592 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3593 ADDR is the starting address of the file's text.\n\
3594 The optional arguments are section-name section-address pairs and\n\
3595 should be specified if the data and bss segments are not contiguous\n\
3596 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3597 &cmdlist);
3598 set_cmd_completer (c, filename_completer);
3599
3600 c = add_cmd ("add-shared-symbol-files", class_files,
3601 add_shared_symbol_files_command,
3602 "Load the symbols from shared objects in the dynamic linker's link map.",
3603 &cmdlist);
3604 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3605 &cmdlist);
3606
3607 c = add_cmd ("load", class_files, load_command,
3608 "Dynamically load FILE into the running program, and record its symbols\n\
3609 for access from GDB.", &cmdlist);
3610 set_cmd_completer (c, filename_completer);
3611
3612 add_show_from_set
3613 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3614 (char *) &symbol_reloading,
3615 "Set dynamic symbol table reloading multiple times in one run.",
3616 &setlist),
3617 &showlist);
3618
3619 add_prefix_cmd ("overlay", class_support, overlay_command,
3620 "Commands for debugging overlays.", &overlaylist,
3621 "overlay ", 0, &cmdlist);
3622
3623 add_com_alias ("ovly", "overlay", class_alias, 1);
3624 add_com_alias ("ov", "overlay", class_alias, 1);
3625
3626 add_cmd ("map-overlay", class_support, map_overlay_command,
3627 "Assert that an overlay section is mapped.", &overlaylist);
3628
3629 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3630 "Assert that an overlay section is unmapped.", &overlaylist);
3631
3632 add_cmd ("list-overlays", class_support, list_overlays_command,
3633 "List mappings of overlay sections.", &overlaylist);
3634
3635 add_cmd ("manual", class_support, overlay_manual_command,
3636 "Enable overlay debugging.", &overlaylist);
3637 add_cmd ("off", class_support, overlay_off_command,
3638 "Disable overlay debugging.", &overlaylist);
3639 add_cmd ("auto", class_support, overlay_auto_command,
3640 "Enable automatic overlay debugging.", &overlaylist);
3641 add_cmd ("load-target", class_support, overlay_load_command,
3642 "Read the overlay mapping state from the target.", &overlaylist);
3643
3644 /* Filename extension to source language lookup table: */
3645 init_filename_language_table ();
3646 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3647 (char *) &ext_args,
3648 "Set mapping between filename extension and source language.\n\
3649 Usage: set extension-language .foo bar",
3650 &setlist);
3651 set_cmd_cfunc (c, set_ext_lang_command);
3652
3653 add_info ("extensions", info_ext_lang_command,
3654 "All filename extensions associated with a source language.");
3655
3656 add_show_from_set
3657 (add_set_cmd ("download-write-size", class_obscure,
3658 var_integer, (char *) &download_write_size,
3659 "Set the write size used when downloading a program.\n"
3660 "Only used when downloading a program onto a remote\n"
3661 "target. Specify zero, or a negative value, to disable\n"
3662 "blocked writes. The actual size of each transfer is also\n"
3663 "limited by the size of the target packet and the memory\n"
3664 "cache.\n",
3665 &setlist),
3666 &showlist);
3667
3668 debug_file_directory = xstrdup (DEBUGDIR);
3669 c = (add_set_cmd
3670 ("debug-file-directory", class_support, var_string,
3671 (char *) &debug_file_directory,
3672 "Set the directory where separate debug symbols are searched for.\n"
3673 "Separate debug symbols are first searched for in the same\n"
3674 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3675 "' subdirectory,\n"
3676 "and lastly at the path of the directory of the binary with\n"
3677 "the global debug-file directory prepended\n",
3678 &setlist));
3679 add_show_from_set (c, &showlist);
3680 set_cmd_completer (c, filename_completer);
3681 }
This page took 0.138924 seconds and 4 git commands to generate.