PR remote/1966
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55
56 #include <sys/types.h>
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_stat.h"
60 #include <ctype.h>
61 #include <time.h>
62 #include <sys/time.h>
63
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73 void (*deprecated_target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static void find_sym_fns (struct objfile *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
458 }
459
460 /* The arguments to place_section. */
461
462 struct place_section_arg
463 {
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466 };
467
468 /* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471 void
472 place_section (bfd *abfd, asection *sect, void *obj)
473 {
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 start_addr = (arg->lowest + align - 1) & -align;
489
490 do {
491 asection *cur_sec;
492
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 break;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591 }
592
593
594 /* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
597 OBJFILE is where the symbols are to be read from.
598
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
625
626 void
627 syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
633 {
634 struct section_addr_info *local_addr = NULL;
635 struct cleanup *old_chain;
636
637 gdb_assert (! (addrs && offsets));
638
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
647 old_chain = make_cleanup_free_objfile (objfile);
648
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
654 local_addr
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
662 if (mainline)
663 {
664 /* We will modify the main symbol table, make sure that all its users
665 will be cleaned up if an error occurs during symbol reading. */
666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
680
681 (*objfile->sf->sym_new_init) (objfile);
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
686 and assume that <addr> is where that got loaded.
687
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
690 if (!mainline && addrs && addrs->other[0].name)
691 {
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
697 /* Find lowest loadable section to be used as starting point for
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
703 &lower_sect);
704 if (lower_sect == NULL)
705 warning (_("no loadable sections found in added symbol-file %s"),
706 objfile->name);
707 else
708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
709 warning (_("Lowest section in %s is %s at %s"),
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
717
718 /* Calculate offsets for the loadable sections.
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
721
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
744 warning (_("section %s not found in %s"),
745 addrs->other[i].name,
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
759 (*objfile->sf->sym_init) (objfile);
760 clear_complaints (&symfile_complaints, 1, verbo);
761
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
772 obstack_alloc (&objfile->objfile_obstack, size));
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
777
778 #ifndef DEPRECATED_IBM6000_TARGET
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
792 has a different algorithm for finding section offsets.
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
797 if (addrs)
798 {
799 struct obj_section *s;
800
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
805
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 CORE_ADDR s_addr = 0;
809 int i;
810
811 for (i = 0;
812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
813 i++)
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
816 addrs->other[i].name) == 0)
817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
818
819 s->addr -= s->offset;
820 s->addr += s_addr;
821 s->endaddr -= s->offset;
822 s->endaddr += s_addr;
823 s->offset += s_addr;
824 }
825 }
826 #endif /* not DEPRECATED_IBM6000_TARGET */
827
828 (*objfile->sf->sym_read) (objfile, mainline);
829
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
841 objfile->flags |= OBJF_SYMS;
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
846 }
847
848 /* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
851
852 void
853 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
854 {
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
872 clear_complaints (&symfile_complaints, 0, verbo);
873 }
874
875 /* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
889
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
892 static struct objfile *
893 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
898 {
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
901 char *debugfile;
902 struct section_addr_info *orig_addrs = NULL;
903 struct cleanup *my_cleanups;
904 const char *name = bfd_get_filename (abfd);
905
906 my_cleanups = make_cleanup_bfd_close (abfd);
907
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
915 error (_("Not confirmed."));
916
917 objfile = allocate_objfile (abfd, flags);
918 discard_cleanups (my_cleanups);
919
920 if (addrs)
921 {
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
924 }
925
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
930 {
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
933 else
934 {
935 printf_unfiltered (_("Reading symbols from %s..."), name);
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
939 }
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
949 {
950 if (from_tty || info_verbose)
951 {
952 printf_unfiltered (_("expanding to full symbols..."));
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
957 for (psymtab = objfile->psymtabs;
958 psymtab != NULL;
959 psymtab = psymtab->next)
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
980
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
984
985 xfree (debugfile);
986 }
987
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
991 printf_filtered (_("(no debugging symbols found)"));
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
996 wrap_here ("");
997 }
998
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
1003 else
1004 {
1005 printf_unfiltered (_("done.\n"));
1006 }
1007 }
1008
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
1014 do_cleanups (my_cleanups);
1015
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
1023
1024 bfd_cache_close_all ();
1025 return (objfile);
1026 }
1027
1028
1029 /* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034 struct objfile *
1035 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038 {
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042 }
1043
1044
1045 /* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048 struct objfile *
1049 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051 {
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
1054 }
1055
1056
1057 /* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
1064
1065 void
1066 symbol_file_add_main (char *args, int from_tty)
1067 {
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069 }
1070
1071 static void
1072 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073 {
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1081 }
1082
1083 void
1084 symbol_file_clear (int from_tty)
1085 {
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
1092 error (_("Not confirmed."));
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099 #if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101 #endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
1105 printf_unfiltered (_("No symbol file now.\n"));
1106 }
1107
1108 static char *
1109 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110 {
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
1117
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
1124
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1134
1135 *crc32_out = crc32;
1136 return contents;
1137 }
1138
1139 static int
1140 separate_debug_file_exists (const char *name, unsigned long crc)
1141 {
1142 unsigned long file_crc = 0;
1143 int fd;
1144 gdb_byte buffer[8*1024];
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157 }
1158
1159 static char *debug_file_directory = NULL;
1160 static void
1161 show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163 {
1164 fprintf_filtered (file, _("\
1165 The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167 }
1168
1169 #if ! defined (DEBUG_SUBDIRECTORY)
1170 #define DEBUG_SUBDIRECTORY ".debug"
1171 #endif
1172
1173 static char *
1174 find_separate_debug_file (struct objfile *objfile)
1175 {
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 bfd_size_type debuglink_size;
1182 unsigned long crc32;
1183 int i;
1184
1185 basename = get_debug_link_info (objfile, &crc32);
1186
1187 if (basename == NULL)
1188 return NULL;
1189
1190 dir = xstrdup (objfile->name);
1191
1192 /* Strip off the final filename part, leaving the directory name,
1193 followed by a slash. Objfile names should always be absolute and
1194 tilde-expanded, so there should always be a slash in there
1195 somewhere. */
1196 for (i = strlen(dir) - 1; i >= 0; i--)
1197 {
1198 if (IS_DIR_SEPARATOR (dir[i]))
1199 break;
1200 }
1201 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1202 dir[i+1] = '\0';
1203
1204 debugfile = alloca (strlen (debug_file_directory) + 1
1205 + strlen (dir)
1206 + strlen (DEBUG_SUBDIRECTORY)
1207 + strlen ("/")
1208 + strlen (basename)
1209 + 1);
1210
1211 /* First try in the same directory as the original file. */
1212 strcpy (debugfile, dir);
1213 strcat (debugfile, basename);
1214
1215 if (separate_debug_file_exists (debugfile, crc32))
1216 {
1217 xfree (basename);
1218 xfree (dir);
1219 return xstrdup (debugfile);
1220 }
1221
1222 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1223 strcpy (debugfile, dir);
1224 strcat (debugfile, DEBUG_SUBDIRECTORY);
1225 strcat (debugfile, "/");
1226 strcat (debugfile, basename);
1227
1228 if (separate_debug_file_exists (debugfile, crc32))
1229 {
1230 xfree (basename);
1231 xfree (dir);
1232 return xstrdup (debugfile);
1233 }
1234
1235 /* Then try in the global debugfile directory. */
1236 strcpy (debugfile, debug_file_directory);
1237 strcat (debugfile, "/");
1238 strcat (debugfile, dir);
1239 strcat (debugfile, basename);
1240
1241 if (separate_debug_file_exists (debugfile, crc32))
1242 {
1243 xfree (basename);
1244 xfree (dir);
1245 return xstrdup (debugfile);
1246 }
1247
1248 xfree (basename);
1249 xfree (dir);
1250 return NULL;
1251 }
1252
1253
1254 /* This is the symbol-file command. Read the file, analyze its
1255 symbols, and add a struct symtab to a symtab list. The syntax of
1256 the command is rather bizarre:
1257
1258 1. The function buildargv implements various quoting conventions
1259 which are undocumented and have little or nothing in common with
1260 the way things are quoted (or not quoted) elsewhere in GDB.
1261
1262 2. Options are used, which are not generally used in GDB (perhaps
1263 "set mapped on", "set readnow on" would be better)
1264
1265 3. The order of options matters, which is contrary to GNU
1266 conventions (because it is confusing and inconvenient). */
1267
1268 void
1269 symbol_file_command (char *args, int from_tty)
1270 {
1271 dont_repeat ();
1272
1273 if (args == NULL)
1274 {
1275 symbol_file_clear (from_tty);
1276 }
1277 else
1278 {
1279 char **argv = buildargv (args);
1280 int flags = OBJF_USERLOADED;
1281 struct cleanup *cleanups;
1282 char *name = NULL;
1283
1284 if (argv == NULL)
1285 nomem (0);
1286
1287 cleanups = make_cleanup_freeargv (argv);
1288 while (*argv != NULL)
1289 {
1290 if (strcmp (*argv, "-readnow") == 0)
1291 flags |= OBJF_READNOW;
1292 else if (**argv == '-')
1293 error (_("unknown option `%s'"), *argv);
1294 else
1295 {
1296 symbol_file_add_main_1 (*argv, from_tty, flags);
1297 name = *argv;
1298 }
1299
1300 argv++;
1301 }
1302
1303 if (name == NULL)
1304 error (_("no symbol file name was specified"));
1305
1306 do_cleanups (cleanups);
1307 }
1308 }
1309
1310 /* Set the initial language.
1311
1312 FIXME: A better solution would be to record the language in the
1313 psymtab when reading partial symbols, and then use it (if known) to
1314 set the language. This would be a win for formats that encode the
1315 language in an easily discoverable place, such as DWARF. For
1316 stabs, we can jump through hoops looking for specially named
1317 symbols or try to intuit the language from the specific type of
1318 stabs we find, but we can't do that until later when we read in
1319 full symbols. */
1320
1321 static void
1322 set_initial_language (void)
1323 {
1324 struct partial_symtab *pst;
1325 enum language lang = language_unknown;
1326
1327 pst = find_main_psymtab ();
1328 if (pst != NULL)
1329 {
1330 if (pst->filename != NULL)
1331 lang = deduce_language_from_filename (pst->filename);
1332
1333 if (lang == language_unknown)
1334 {
1335 /* Make C the default language */
1336 lang = language_c;
1337 }
1338
1339 set_language (lang);
1340 expected_language = current_language; /* Don't warn the user. */
1341 }
1342 }
1343
1344 /* Open the file specified by NAME and hand it off to BFD for
1345 preliminary analysis. Return a newly initialized bfd *, which
1346 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1347 absolute). In case of trouble, error() is called. */
1348
1349 bfd *
1350 symfile_bfd_open (char *name)
1351 {
1352 bfd *sym_bfd;
1353 int desc;
1354 char *absolute_name;
1355
1356 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1357
1358 /* Look down path for it, allocate 2nd new malloc'd copy. */
1359 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1360 O_RDONLY | O_BINARY, 0, &absolute_name);
1361 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1362 if (desc < 0)
1363 {
1364 char *exename = alloca (strlen (name) + 5);
1365 strcat (strcpy (exename, name), ".exe");
1366 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1367 O_RDONLY | O_BINARY, 0, &absolute_name);
1368 }
1369 #endif
1370 if (desc < 0)
1371 {
1372 make_cleanup (xfree, name);
1373 perror_with_name (name);
1374 }
1375
1376 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1377 bfd. It'll be freed in free_objfile(). */
1378 xfree (name);
1379 name = absolute_name;
1380
1381 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1382 if (!sym_bfd)
1383 {
1384 close (desc);
1385 make_cleanup (xfree, name);
1386 error (_("\"%s\": can't open to read symbols: %s."), name,
1387 bfd_errmsg (bfd_get_error ()));
1388 }
1389 bfd_set_cacheable (sym_bfd, 1);
1390
1391 if (!bfd_check_format (sym_bfd, bfd_object))
1392 {
1393 /* FIXME: should be checking for errors from bfd_close (for one
1394 thing, on error it does not free all the storage associated
1395 with the bfd). */
1396 bfd_close (sym_bfd); /* This also closes desc. */
1397 make_cleanup (xfree, name);
1398 error (_("\"%s\": can't read symbols: %s."), name,
1399 bfd_errmsg (bfd_get_error ()));
1400 }
1401
1402 return sym_bfd;
1403 }
1404
1405 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1406 the section was not found. */
1407
1408 int
1409 get_section_index (struct objfile *objfile, char *section_name)
1410 {
1411 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1412
1413 if (sect)
1414 return sect->index;
1415 else
1416 return -1;
1417 }
1418
1419 /* Link SF into the global symtab_fns list. Called on startup by the
1420 _initialize routine in each object file format reader, to register
1421 information about each format the the reader is prepared to
1422 handle. */
1423
1424 void
1425 add_symtab_fns (struct sym_fns *sf)
1426 {
1427 sf->next = symtab_fns;
1428 symtab_fns = sf;
1429 }
1430
1431 /* Initialize OBJFILE to read symbols from its associated BFD. It
1432 either returns or calls error(). The result is an initialized
1433 struct sym_fns in the objfile structure, that contains cached
1434 information about the symbol file. */
1435
1436 static void
1437 find_sym_fns (struct objfile *objfile)
1438 {
1439 struct sym_fns *sf;
1440 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1441 char *our_target = bfd_get_target (objfile->obfd);
1442
1443 if (our_flavour == bfd_target_srec_flavour
1444 || our_flavour == bfd_target_ihex_flavour
1445 || our_flavour == bfd_target_tekhex_flavour)
1446 return; /* No symbols. */
1447
1448 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1449 {
1450 if (our_flavour == sf->sym_flavour)
1451 {
1452 objfile->sf = sf;
1453 return;
1454 }
1455 }
1456
1457 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1458 bfd_get_target (objfile->obfd));
1459 }
1460 \f
1461
1462 /* This function runs the load command of our current target. */
1463
1464 static void
1465 load_command (char *arg, int from_tty)
1466 {
1467 if (arg == NULL)
1468 {
1469 char *parg;
1470 int count = 0;
1471
1472 parg = arg = get_exec_file (1);
1473
1474 /* Count how many \ " ' tab space there are in the name. */
1475 while ((parg = strpbrk (parg, "\\\"'\t ")))
1476 {
1477 parg++;
1478 count++;
1479 }
1480
1481 if (count)
1482 {
1483 /* We need to quote this string so buildargv can pull it apart. */
1484 char *temp = xmalloc (strlen (arg) + count + 1 );
1485 char *ptemp = temp;
1486 char *prev;
1487
1488 make_cleanup (xfree, temp);
1489
1490 prev = parg = arg;
1491 while ((parg = strpbrk (parg, "\\\"'\t ")))
1492 {
1493 strncpy (ptemp, prev, parg - prev);
1494 ptemp += parg - prev;
1495 prev = parg++;
1496 *ptemp++ = '\\';
1497 }
1498 strcpy (ptemp, prev);
1499
1500 arg = temp;
1501 }
1502 }
1503
1504 /* The user might be reloading because the binary has changed. Take
1505 this opportunity to check. */
1506 reopen_exec_file ();
1507 reread_symbols ();
1508
1509 target_load (arg, from_tty);
1510
1511 /* After re-loading the executable, we don't really know which
1512 overlays are mapped any more. */
1513 overlay_cache_invalid = 1;
1514 }
1515
1516 /* This version of "load" should be usable for any target. Currently
1517 it is just used for remote targets, not inftarg.c or core files,
1518 on the theory that only in that case is it useful.
1519
1520 Avoiding xmodem and the like seems like a win (a) because we don't have
1521 to worry about finding it, and (b) On VMS, fork() is very slow and so
1522 we don't want to run a subprocess. On the other hand, I'm not sure how
1523 performance compares. */
1524
1525 static int validate_download = 0;
1526
1527 /* Callback service function for generic_load (bfd_map_over_sections). */
1528
1529 static void
1530 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1531 {
1532 bfd_size_type *sum = data;
1533
1534 *sum += bfd_get_section_size (asec);
1535 }
1536
1537 /* Opaque data for load_section_callback. */
1538 struct load_section_data {
1539 unsigned long load_offset;
1540 unsigned long write_count;
1541 unsigned long data_count;
1542 bfd_size_type total_size;
1543
1544 /* Per-section data for load_progress. */
1545 const char *section_name;
1546 ULONGEST section_sent;
1547 ULONGEST section_size;
1548 CORE_ADDR lma;
1549 gdb_byte *buffer;
1550 };
1551
1552 /* Target write callback routine for load_section_callback. */
1553
1554 static void
1555 load_progress (ULONGEST bytes, void *untyped_arg)
1556 {
1557 struct load_section_data *args = untyped_arg;
1558
1559 if (validate_download)
1560 {
1561 /* Broken memories and broken monitors manifest themselves here
1562 when bring new computers to life. This doubles already slow
1563 downloads. */
1564 /* NOTE: cagney/1999-10-18: A more efficient implementation
1565 might add a verify_memory() method to the target vector and
1566 then use that. remote.c could implement that method using
1567 the ``qCRC'' packet. */
1568 gdb_byte *check = xmalloc (bytes);
1569 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1570
1571 if (target_read_memory (args->lma, check, bytes) != 0)
1572 error (_("Download verify read failed at 0x%s"),
1573 paddr (args->lma));
1574 if (memcmp (args->buffer, check, bytes) != 0)
1575 error (_("Download verify compare failed at 0x%s"),
1576 paddr (args->lma));
1577 do_cleanups (verify_cleanups);
1578 }
1579 args->data_count += bytes;
1580 args->lma += bytes;
1581 args->buffer += bytes;
1582 args->write_count += 1;
1583 args->section_sent += bytes;
1584 if (quit_flag
1585 || (deprecated_ui_load_progress_hook != NULL
1586 && deprecated_ui_load_progress_hook (args->section_name,
1587 args->section_sent)))
1588 error (_("Canceled the download"));
1589
1590 if (deprecated_show_load_progress != NULL)
1591 deprecated_show_load_progress (args->section_name,
1592 args->section_sent,
1593 args->section_size,
1594 args->data_count,
1595 args->total_size);
1596 }
1597
1598 /* Callback service function for generic_load (bfd_map_over_sections). */
1599
1600 static void
1601 load_section_callback (bfd *abfd, asection *asec, void *data)
1602 {
1603 struct load_section_data *args = data;
1604 bfd_size_type size = bfd_get_section_size (asec);
1605 gdb_byte *buffer;
1606 struct cleanup *old_chain;
1607 const char *sect_name = bfd_get_section_name (abfd, asec);
1608 LONGEST transferred;
1609
1610 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1611 return;
1612
1613 if (size == 0)
1614 return;
1615
1616 buffer = xmalloc (size);
1617 old_chain = make_cleanup (xfree, buffer);
1618
1619 args->section_name = sect_name;
1620 args->section_sent = 0;
1621 args->section_size = size;
1622 args->lma = bfd_section_lma (abfd, asec) + args->load_offset;
1623 args->buffer = buffer;
1624
1625 /* Is this really necessary? I guess it gives the user something
1626 to look at during a long download. */
1627 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1628 sect_name, paddr_nz (size), paddr_nz (args->lma));
1629
1630 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1631
1632 transferred = target_write_with_progress (&current_target,
1633 TARGET_OBJECT_MEMORY,
1634 NULL, buffer, args->lma,
1635 size, load_progress, args);
1636 if (transferred < size)
1637 error (_("Memory access error while loading section %s."),
1638 sect_name);
1639
1640 do_cleanups (old_chain);
1641 }
1642
1643 void
1644 generic_load (char *args, int from_tty)
1645 {
1646 asection *s;
1647 bfd *loadfile_bfd;
1648 struct timeval start_time, end_time;
1649 char *filename;
1650 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1651 struct load_section_data cbdata;
1652 CORE_ADDR entry;
1653 char **argv;
1654
1655 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1656 cbdata.write_count = 0; /* Number of writes needed. */
1657 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1658 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1659
1660 argv = buildargv (args);
1661
1662 if (argv == NULL)
1663 nomem(0);
1664
1665 make_cleanup_freeargv (argv);
1666
1667 filename = tilde_expand (argv[0]);
1668 make_cleanup (xfree, filename);
1669
1670 if (argv[1] != NULL)
1671 {
1672 char *endptr;
1673
1674 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1675
1676 /* If the last word was not a valid number then
1677 treat it as a file name with spaces in. */
1678 if (argv[1] == endptr)
1679 error (_("Invalid download offset:%s."), argv[1]);
1680
1681 if (argv[2] != NULL)
1682 error (_("Too many parameters."));
1683 }
1684
1685 /* Open the file for loading. */
1686 loadfile_bfd = bfd_openr (filename, gnutarget);
1687 if (loadfile_bfd == NULL)
1688 {
1689 perror_with_name (filename);
1690 return;
1691 }
1692
1693 /* FIXME: should be checking for errors from bfd_close (for one thing,
1694 on error it does not free all the storage associated with the
1695 bfd). */
1696 make_cleanup_bfd_close (loadfile_bfd);
1697
1698 if (!bfd_check_format (loadfile_bfd, bfd_object))
1699 {
1700 error (_("\"%s\" is not an object file: %s"), filename,
1701 bfd_errmsg (bfd_get_error ()));
1702 }
1703
1704 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1705 (void *) &cbdata.total_size);
1706
1707 gettimeofday (&start_time, NULL);
1708
1709 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1710
1711 gettimeofday (&end_time, NULL);
1712
1713 entry = bfd_get_start_address (loadfile_bfd);
1714 ui_out_text (uiout, "Start address ");
1715 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1716 ui_out_text (uiout, ", load size ");
1717 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1718 ui_out_text (uiout, "\n");
1719 /* We were doing this in remote-mips.c, I suspect it is right
1720 for other targets too. */
1721 write_pc (entry);
1722
1723 /* FIXME: are we supposed to call symbol_file_add or not? According
1724 to a comment from remote-mips.c (where a call to symbol_file_add
1725 was commented out), making the call confuses GDB if more than one
1726 file is loaded in. Some targets do (e.g., remote-vx.c) but
1727 others don't (or didn't - perhaps they have all been deleted). */
1728
1729 print_transfer_performance (gdb_stdout, cbdata.data_count,
1730 cbdata.write_count, &start_time, &end_time);
1731
1732 do_cleanups (old_cleanups);
1733 }
1734
1735 /* Report how fast the transfer went. */
1736
1737 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1738 replaced by print_transfer_performance (with a very different
1739 function signature). */
1740
1741 void
1742 report_transfer_performance (unsigned long data_count, time_t start_time,
1743 time_t end_time)
1744 {
1745 struct timeval start, end;
1746
1747 start.tv_sec = start_time;
1748 start.tv_usec = 0;
1749 end.tv_sec = end_time;
1750 end.tv_usec = 0;
1751
1752 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1753 }
1754
1755 void
1756 print_transfer_performance (struct ui_file *stream,
1757 unsigned long data_count,
1758 unsigned long write_count,
1759 const struct timeval *start_time,
1760 const struct timeval *end_time)
1761 {
1762 unsigned long time_count;
1763
1764 /* Compute the elapsed time in milliseconds, as a tradeoff between
1765 accuracy and overflow. */
1766 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1767 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1768
1769 ui_out_text (uiout, "Transfer rate: ");
1770 if (time_count > 0)
1771 {
1772 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1773 1000 * (data_count * 8) / time_count);
1774 ui_out_text (uiout, " bits/sec");
1775 }
1776 else
1777 {
1778 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1779 ui_out_text (uiout, " bits in <1 sec");
1780 }
1781 if (write_count > 0)
1782 {
1783 ui_out_text (uiout, ", ");
1784 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1785 ui_out_text (uiout, " bytes/write");
1786 }
1787 ui_out_text (uiout, ".\n");
1788 }
1789
1790 /* This function allows the addition of incrementally linked object files.
1791 It does not modify any state in the target, only in the debugger. */
1792 /* Note: ezannoni 2000-04-13 This function/command used to have a
1793 special case syntax for the rombug target (Rombug is the boot
1794 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1795 rombug case, the user doesn't need to supply a text address,
1796 instead a call to target_link() (in target.c) would supply the
1797 value to use. We are now discontinuing this type of ad hoc syntax. */
1798
1799 static void
1800 add_symbol_file_command (char *args, int from_tty)
1801 {
1802 char *filename = NULL;
1803 int flags = OBJF_USERLOADED;
1804 char *arg;
1805 int expecting_option = 0;
1806 int section_index = 0;
1807 int argcnt = 0;
1808 int sec_num = 0;
1809 int i;
1810 int expecting_sec_name = 0;
1811 int expecting_sec_addr = 0;
1812 char **argv;
1813
1814 struct sect_opt
1815 {
1816 char *name;
1817 char *value;
1818 };
1819
1820 struct section_addr_info *section_addrs;
1821 struct sect_opt *sect_opts = NULL;
1822 size_t num_sect_opts = 0;
1823 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1824
1825 num_sect_opts = 16;
1826 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1827 * sizeof (struct sect_opt));
1828
1829 dont_repeat ();
1830
1831 if (args == NULL)
1832 error (_("add-symbol-file takes a file name and an address"));
1833
1834 argv = buildargv (args);
1835 make_cleanup_freeargv (argv);
1836
1837 if (argv == NULL)
1838 nomem (0);
1839
1840 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1841 {
1842 /* Process the argument. */
1843 if (argcnt == 0)
1844 {
1845 /* The first argument is the file name. */
1846 filename = tilde_expand (arg);
1847 make_cleanup (xfree, filename);
1848 }
1849 else
1850 if (argcnt == 1)
1851 {
1852 /* The second argument is always the text address at which
1853 to load the program. */
1854 sect_opts[section_index].name = ".text";
1855 sect_opts[section_index].value = arg;
1856 if (++section_index > num_sect_opts)
1857 {
1858 num_sect_opts *= 2;
1859 sect_opts = ((struct sect_opt *)
1860 xrealloc (sect_opts,
1861 num_sect_opts
1862 * sizeof (struct sect_opt)));
1863 }
1864 }
1865 else
1866 {
1867 /* It's an option (starting with '-') or it's an argument
1868 to an option */
1869
1870 if (*arg == '-')
1871 {
1872 if (strcmp (arg, "-readnow") == 0)
1873 flags |= OBJF_READNOW;
1874 else if (strcmp (arg, "-s") == 0)
1875 {
1876 expecting_sec_name = 1;
1877 expecting_sec_addr = 1;
1878 }
1879 }
1880 else
1881 {
1882 if (expecting_sec_name)
1883 {
1884 sect_opts[section_index].name = arg;
1885 expecting_sec_name = 0;
1886 }
1887 else
1888 if (expecting_sec_addr)
1889 {
1890 sect_opts[section_index].value = arg;
1891 expecting_sec_addr = 0;
1892 if (++section_index > num_sect_opts)
1893 {
1894 num_sect_opts *= 2;
1895 sect_opts = ((struct sect_opt *)
1896 xrealloc (sect_opts,
1897 num_sect_opts
1898 * sizeof (struct sect_opt)));
1899 }
1900 }
1901 else
1902 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1903 }
1904 }
1905 }
1906
1907 /* This command takes at least two arguments. The first one is a
1908 filename, and the second is the address where this file has been
1909 loaded. Abort now if this address hasn't been provided by the
1910 user. */
1911 if (section_index < 1)
1912 error (_("The address where %s has been loaded is missing"), filename);
1913
1914 /* Print the prompt for the query below. And save the arguments into
1915 a sect_addr_info structure to be passed around to other
1916 functions. We have to split this up into separate print
1917 statements because hex_string returns a local static
1918 string. */
1919
1920 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1921 section_addrs = alloc_section_addr_info (section_index);
1922 make_cleanup (xfree, section_addrs);
1923 for (i = 0; i < section_index; i++)
1924 {
1925 CORE_ADDR addr;
1926 char *val = sect_opts[i].value;
1927 char *sec = sect_opts[i].name;
1928
1929 addr = parse_and_eval_address (val);
1930
1931 /* Here we store the section offsets in the order they were
1932 entered on the command line. */
1933 section_addrs->other[sec_num].name = sec;
1934 section_addrs->other[sec_num].addr = addr;
1935 printf_unfiltered ("\t%s_addr = %s\n",
1936 sec, hex_string ((unsigned long)addr));
1937 sec_num++;
1938
1939 /* The object's sections are initialized when a
1940 call is made to build_objfile_section_table (objfile).
1941 This happens in reread_symbols.
1942 At this point, we don't know what file type this is,
1943 so we can't determine what section names are valid. */
1944 }
1945
1946 if (from_tty && (!query ("%s", "")))
1947 error (_("Not confirmed."));
1948
1949 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1950
1951 /* Getting new symbols may change our opinion about what is
1952 frameless. */
1953 reinit_frame_cache ();
1954 do_cleanups (my_cleanups);
1955 }
1956 \f
1957 static void
1958 add_shared_symbol_files_command (char *args, int from_tty)
1959 {
1960 #ifdef ADD_SHARED_SYMBOL_FILES
1961 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1962 #else
1963 error (_("This command is not available in this configuration of GDB."));
1964 #endif
1965 }
1966 \f
1967 /* Re-read symbols if a symbol-file has changed. */
1968 void
1969 reread_symbols (void)
1970 {
1971 struct objfile *objfile;
1972 long new_modtime;
1973 int reread_one = 0;
1974 struct stat new_statbuf;
1975 int res;
1976
1977 /* With the addition of shared libraries, this should be modified,
1978 the load time should be saved in the partial symbol tables, since
1979 different tables may come from different source files. FIXME.
1980 This routine should then walk down each partial symbol table
1981 and see if the symbol table that it originates from has been changed */
1982
1983 for (objfile = object_files; objfile; objfile = objfile->next)
1984 {
1985 if (objfile->obfd)
1986 {
1987 #ifdef DEPRECATED_IBM6000_TARGET
1988 /* If this object is from a shared library, then you should
1989 stat on the library name, not member name. */
1990
1991 if (objfile->obfd->my_archive)
1992 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1993 else
1994 #endif
1995 res = stat (objfile->name, &new_statbuf);
1996 if (res != 0)
1997 {
1998 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1999 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2000 objfile->name);
2001 continue;
2002 }
2003 new_modtime = new_statbuf.st_mtime;
2004 if (new_modtime != objfile->mtime)
2005 {
2006 struct cleanup *old_cleanups;
2007 struct section_offsets *offsets;
2008 int num_offsets;
2009 char *obfd_filename;
2010
2011 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2012 objfile->name);
2013
2014 /* There are various functions like symbol_file_add,
2015 symfile_bfd_open, syms_from_objfile, etc., which might
2016 appear to do what we want. But they have various other
2017 effects which we *don't* want. So we just do stuff
2018 ourselves. We don't worry about mapped files (for one thing,
2019 any mapped file will be out of date). */
2020
2021 /* If we get an error, blow away this objfile (not sure if
2022 that is the correct response for things like shared
2023 libraries). */
2024 old_cleanups = make_cleanup_free_objfile (objfile);
2025 /* We need to do this whenever any symbols go away. */
2026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2027
2028 /* Clean up any state BFD has sitting around. We don't need
2029 to close the descriptor but BFD lacks a way of closing the
2030 BFD without closing the descriptor. */
2031 obfd_filename = bfd_get_filename (objfile->obfd);
2032 if (!bfd_close (objfile->obfd))
2033 error (_("Can't close BFD for %s: %s"), objfile->name,
2034 bfd_errmsg (bfd_get_error ()));
2035 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2036 if (objfile->obfd == NULL)
2037 error (_("Can't open %s to read symbols."), objfile->name);
2038 /* bfd_openr sets cacheable to true, which is what we want. */
2039 if (!bfd_check_format (objfile->obfd, bfd_object))
2040 error (_("Can't read symbols from %s: %s."), objfile->name,
2041 bfd_errmsg (bfd_get_error ()));
2042
2043 /* Save the offsets, we will nuke them with the rest of the
2044 objfile_obstack. */
2045 num_offsets = objfile->num_sections;
2046 offsets = ((struct section_offsets *)
2047 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2048 memcpy (offsets, objfile->section_offsets,
2049 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2050
2051 /* Remove any references to this objfile in the global
2052 value lists. */
2053 preserve_values (objfile);
2054
2055 /* Nuke all the state that we will re-read. Much of the following
2056 code which sets things to NULL really is necessary to tell
2057 other parts of GDB that there is nothing currently there. */
2058
2059 /* FIXME: Do we have to free a whole linked list, or is this
2060 enough? */
2061 if (objfile->global_psymbols.list)
2062 xfree (objfile->global_psymbols.list);
2063 memset (&objfile->global_psymbols, 0,
2064 sizeof (objfile->global_psymbols));
2065 if (objfile->static_psymbols.list)
2066 xfree (objfile->static_psymbols.list);
2067 memset (&objfile->static_psymbols, 0,
2068 sizeof (objfile->static_psymbols));
2069
2070 /* Free the obstacks for non-reusable objfiles */
2071 bcache_xfree (objfile->psymbol_cache);
2072 objfile->psymbol_cache = bcache_xmalloc ();
2073 bcache_xfree (objfile->macro_cache);
2074 objfile->macro_cache = bcache_xmalloc ();
2075 if (objfile->demangled_names_hash != NULL)
2076 {
2077 htab_delete (objfile->demangled_names_hash);
2078 objfile->demangled_names_hash = NULL;
2079 }
2080 obstack_free (&objfile->objfile_obstack, 0);
2081 objfile->sections = NULL;
2082 objfile->symtabs = NULL;
2083 objfile->psymtabs = NULL;
2084 objfile->free_psymtabs = NULL;
2085 objfile->cp_namespace_symtab = NULL;
2086 objfile->msymbols = NULL;
2087 objfile->deprecated_sym_private = NULL;
2088 objfile->minimal_symbol_count = 0;
2089 memset (&objfile->msymbol_hash, 0,
2090 sizeof (objfile->msymbol_hash));
2091 memset (&objfile->msymbol_demangled_hash, 0,
2092 sizeof (objfile->msymbol_demangled_hash));
2093 objfile->fundamental_types = NULL;
2094 clear_objfile_data (objfile);
2095 if (objfile->sf != NULL)
2096 {
2097 (*objfile->sf->sym_finish) (objfile);
2098 }
2099
2100 /* We never make this a mapped file. */
2101 objfile->md = NULL;
2102 objfile->psymbol_cache = bcache_xmalloc ();
2103 objfile->macro_cache = bcache_xmalloc ();
2104 /* obstack_init also initializes the obstack so it is
2105 empty. We could use obstack_specify_allocation but
2106 gdb_obstack.h specifies the alloc/dealloc
2107 functions. */
2108 obstack_init (&objfile->objfile_obstack);
2109 if (build_objfile_section_table (objfile))
2110 {
2111 error (_("Can't find the file sections in `%s': %s"),
2112 objfile->name, bfd_errmsg (bfd_get_error ()));
2113 }
2114 terminate_minimal_symbol_table (objfile);
2115
2116 /* We use the same section offsets as from last time. I'm not
2117 sure whether that is always correct for shared libraries. */
2118 objfile->section_offsets = (struct section_offsets *)
2119 obstack_alloc (&objfile->objfile_obstack,
2120 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2121 memcpy (objfile->section_offsets, offsets,
2122 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2123 objfile->num_sections = num_offsets;
2124
2125 /* What the hell is sym_new_init for, anyway? The concept of
2126 distinguishing between the main file and additional files
2127 in this way seems rather dubious. */
2128 if (objfile == symfile_objfile)
2129 {
2130 (*objfile->sf->sym_new_init) (objfile);
2131 }
2132
2133 (*objfile->sf->sym_init) (objfile);
2134 clear_complaints (&symfile_complaints, 1, 1);
2135 /* The "mainline" parameter is a hideous hack; I think leaving it
2136 zero is OK since dbxread.c also does what it needs to do if
2137 objfile->global_psymbols.size is 0. */
2138 (*objfile->sf->sym_read) (objfile, 0);
2139 if (!have_partial_symbols () && !have_full_symbols ())
2140 {
2141 wrap_here ("");
2142 printf_unfiltered (_("(no debugging symbols found)\n"));
2143 wrap_here ("");
2144 }
2145 objfile->flags |= OBJF_SYMS;
2146
2147 /* We're done reading the symbol file; finish off complaints. */
2148 clear_complaints (&symfile_complaints, 0, 1);
2149
2150 /* Getting new symbols may change our opinion about what is
2151 frameless. */
2152
2153 reinit_frame_cache ();
2154
2155 /* Discard cleanups as symbol reading was successful. */
2156 discard_cleanups (old_cleanups);
2157
2158 /* If the mtime has changed between the time we set new_modtime
2159 and now, we *want* this to be out of date, so don't call stat
2160 again now. */
2161 objfile->mtime = new_modtime;
2162 reread_one = 1;
2163 reread_separate_symbols (objfile);
2164 }
2165 }
2166 }
2167
2168 if (reread_one)
2169 {
2170 clear_symtab_users ();
2171 /* At least one objfile has changed, so we can consider that
2172 the executable we're debugging has changed too. */
2173 observer_notify_executable_changed (NULL);
2174 }
2175
2176 }
2177
2178
2179 /* Handle separate debug info for OBJFILE, which has just been
2180 re-read:
2181 - If we had separate debug info before, but now we don't, get rid
2182 of the separated objfile.
2183 - If we didn't have separated debug info before, but now we do,
2184 read in the new separated debug info file.
2185 - If the debug link points to a different file, toss the old one
2186 and read the new one.
2187 This function does *not* handle the case where objfile is still
2188 using the same separate debug info file, but that file's timestamp
2189 has changed. That case should be handled by the loop in
2190 reread_symbols already. */
2191 static void
2192 reread_separate_symbols (struct objfile *objfile)
2193 {
2194 char *debug_file;
2195 unsigned long crc32;
2196
2197 /* Does the updated objfile's debug info live in a
2198 separate file? */
2199 debug_file = find_separate_debug_file (objfile);
2200
2201 if (objfile->separate_debug_objfile)
2202 {
2203 /* There are two cases where we need to get rid of
2204 the old separated debug info objfile:
2205 - if the new primary objfile doesn't have
2206 separated debug info, or
2207 - if the new primary objfile has separate debug
2208 info, but it's under a different filename.
2209
2210 If the old and new objfiles both have separate
2211 debug info, under the same filename, then we're
2212 okay --- if the separated file's contents have
2213 changed, we will have caught that when we
2214 visited it in this function's outermost
2215 loop. */
2216 if (! debug_file
2217 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2218 free_objfile (objfile->separate_debug_objfile);
2219 }
2220
2221 /* If the new objfile has separate debug info, and we
2222 haven't loaded it already, do so now. */
2223 if (debug_file
2224 && ! objfile->separate_debug_objfile)
2225 {
2226 /* Use the same section offset table as objfile itself.
2227 Preserve the flags from objfile that make sense. */
2228 objfile->separate_debug_objfile
2229 = (symbol_file_add_with_addrs_or_offsets
2230 (symfile_bfd_open (debug_file),
2231 info_verbose, /* from_tty: Don't override the default. */
2232 0, /* No addr table. */
2233 objfile->section_offsets, objfile->num_sections,
2234 0, /* Not mainline. See comments about this above. */
2235 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2236 | OBJF_USERLOADED)));
2237 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2238 = objfile;
2239 }
2240 }
2241
2242
2243 \f
2244
2245
2246 typedef struct
2247 {
2248 char *ext;
2249 enum language lang;
2250 }
2251 filename_language;
2252
2253 static filename_language *filename_language_table;
2254 static int fl_table_size, fl_table_next;
2255
2256 static void
2257 add_filename_language (char *ext, enum language lang)
2258 {
2259 if (fl_table_next >= fl_table_size)
2260 {
2261 fl_table_size += 10;
2262 filename_language_table =
2263 xrealloc (filename_language_table,
2264 fl_table_size * sizeof (*filename_language_table));
2265 }
2266
2267 filename_language_table[fl_table_next].ext = xstrdup (ext);
2268 filename_language_table[fl_table_next].lang = lang;
2269 fl_table_next++;
2270 }
2271
2272 static char *ext_args;
2273 static void
2274 show_ext_args (struct ui_file *file, int from_tty,
2275 struct cmd_list_element *c, const char *value)
2276 {
2277 fprintf_filtered (file, _("\
2278 Mapping between filename extension and source language is \"%s\".\n"),
2279 value);
2280 }
2281
2282 static void
2283 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2284 {
2285 int i;
2286 char *cp = ext_args;
2287 enum language lang;
2288
2289 /* First arg is filename extension, starting with '.' */
2290 if (*cp != '.')
2291 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2292
2293 /* Find end of first arg. */
2294 while (*cp && !isspace (*cp))
2295 cp++;
2296
2297 if (*cp == '\0')
2298 error (_("'%s': two arguments required -- filename extension and language"),
2299 ext_args);
2300
2301 /* Null-terminate first arg */
2302 *cp++ = '\0';
2303
2304 /* Find beginning of second arg, which should be a source language. */
2305 while (*cp && isspace (*cp))
2306 cp++;
2307
2308 if (*cp == '\0')
2309 error (_("'%s': two arguments required -- filename extension and language"),
2310 ext_args);
2311
2312 /* Lookup the language from among those we know. */
2313 lang = language_enum (cp);
2314
2315 /* Now lookup the filename extension: do we already know it? */
2316 for (i = 0; i < fl_table_next; i++)
2317 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2318 break;
2319
2320 if (i >= fl_table_next)
2321 {
2322 /* new file extension */
2323 add_filename_language (ext_args, lang);
2324 }
2325 else
2326 {
2327 /* redefining a previously known filename extension */
2328
2329 /* if (from_tty) */
2330 /* query ("Really make files of type %s '%s'?", */
2331 /* ext_args, language_str (lang)); */
2332
2333 xfree (filename_language_table[i].ext);
2334 filename_language_table[i].ext = xstrdup (ext_args);
2335 filename_language_table[i].lang = lang;
2336 }
2337 }
2338
2339 static void
2340 info_ext_lang_command (char *args, int from_tty)
2341 {
2342 int i;
2343
2344 printf_filtered (_("Filename extensions and the languages they represent:"));
2345 printf_filtered ("\n\n");
2346 for (i = 0; i < fl_table_next; i++)
2347 printf_filtered ("\t%s\t- %s\n",
2348 filename_language_table[i].ext,
2349 language_str (filename_language_table[i].lang));
2350 }
2351
2352 static void
2353 init_filename_language_table (void)
2354 {
2355 if (fl_table_size == 0) /* protect against repetition */
2356 {
2357 fl_table_size = 20;
2358 fl_table_next = 0;
2359 filename_language_table =
2360 xmalloc (fl_table_size * sizeof (*filename_language_table));
2361 add_filename_language (".c", language_c);
2362 add_filename_language (".C", language_cplus);
2363 add_filename_language (".cc", language_cplus);
2364 add_filename_language (".cp", language_cplus);
2365 add_filename_language (".cpp", language_cplus);
2366 add_filename_language (".cxx", language_cplus);
2367 add_filename_language (".c++", language_cplus);
2368 add_filename_language (".java", language_java);
2369 add_filename_language (".class", language_java);
2370 add_filename_language (".m", language_objc);
2371 add_filename_language (".f", language_fortran);
2372 add_filename_language (".F", language_fortran);
2373 add_filename_language (".s", language_asm);
2374 add_filename_language (".S", language_asm);
2375 add_filename_language (".pas", language_pascal);
2376 add_filename_language (".p", language_pascal);
2377 add_filename_language (".pp", language_pascal);
2378 add_filename_language (".adb", language_ada);
2379 add_filename_language (".ads", language_ada);
2380 add_filename_language (".a", language_ada);
2381 add_filename_language (".ada", language_ada);
2382 }
2383 }
2384
2385 enum language
2386 deduce_language_from_filename (char *filename)
2387 {
2388 int i;
2389 char *cp;
2390
2391 if (filename != NULL)
2392 if ((cp = strrchr (filename, '.')) != NULL)
2393 for (i = 0; i < fl_table_next; i++)
2394 if (strcmp (cp, filename_language_table[i].ext) == 0)
2395 return filename_language_table[i].lang;
2396
2397 return language_unknown;
2398 }
2399 \f
2400 /* allocate_symtab:
2401
2402 Allocate and partly initialize a new symbol table. Return a pointer
2403 to it. error() if no space.
2404
2405 Caller must set these fields:
2406 LINETABLE(symtab)
2407 symtab->blockvector
2408 symtab->dirname
2409 symtab->free_code
2410 symtab->free_ptr
2411 possibly free_named_symtabs (symtab->filename);
2412 */
2413
2414 struct symtab *
2415 allocate_symtab (char *filename, struct objfile *objfile)
2416 {
2417 struct symtab *symtab;
2418
2419 symtab = (struct symtab *)
2420 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2421 memset (symtab, 0, sizeof (*symtab));
2422 symtab->filename = obsavestring (filename, strlen (filename),
2423 &objfile->objfile_obstack);
2424 symtab->fullname = NULL;
2425 symtab->language = deduce_language_from_filename (filename);
2426 symtab->debugformat = obsavestring ("unknown", 7,
2427 &objfile->objfile_obstack);
2428
2429 /* Hook it to the objfile it comes from */
2430
2431 symtab->objfile = objfile;
2432 symtab->next = objfile->symtabs;
2433 objfile->symtabs = symtab;
2434
2435 /* FIXME: This should go away. It is only defined for the Z8000,
2436 and the Z8000 definition of this macro doesn't have anything to
2437 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2438 here for convenience. */
2439 #ifdef INIT_EXTRA_SYMTAB_INFO
2440 INIT_EXTRA_SYMTAB_INFO (symtab);
2441 #endif
2442
2443 return (symtab);
2444 }
2445
2446 struct partial_symtab *
2447 allocate_psymtab (char *filename, struct objfile *objfile)
2448 {
2449 struct partial_symtab *psymtab;
2450
2451 if (objfile->free_psymtabs)
2452 {
2453 psymtab = objfile->free_psymtabs;
2454 objfile->free_psymtabs = psymtab->next;
2455 }
2456 else
2457 psymtab = (struct partial_symtab *)
2458 obstack_alloc (&objfile->objfile_obstack,
2459 sizeof (struct partial_symtab));
2460
2461 memset (psymtab, 0, sizeof (struct partial_symtab));
2462 psymtab->filename = obsavestring (filename, strlen (filename),
2463 &objfile->objfile_obstack);
2464 psymtab->symtab = NULL;
2465
2466 /* Prepend it to the psymtab list for the objfile it belongs to.
2467 Psymtabs are searched in most recent inserted -> least recent
2468 inserted order. */
2469
2470 psymtab->objfile = objfile;
2471 psymtab->next = objfile->psymtabs;
2472 objfile->psymtabs = psymtab;
2473 #if 0
2474 {
2475 struct partial_symtab **prev_pst;
2476 psymtab->objfile = objfile;
2477 psymtab->next = NULL;
2478 prev_pst = &(objfile->psymtabs);
2479 while ((*prev_pst) != NULL)
2480 prev_pst = &((*prev_pst)->next);
2481 (*prev_pst) = psymtab;
2482 }
2483 #endif
2484
2485 return (psymtab);
2486 }
2487
2488 void
2489 discard_psymtab (struct partial_symtab *pst)
2490 {
2491 struct partial_symtab **prev_pst;
2492
2493 /* From dbxread.c:
2494 Empty psymtabs happen as a result of header files which don't
2495 have any symbols in them. There can be a lot of them. But this
2496 check is wrong, in that a psymtab with N_SLINE entries but
2497 nothing else is not empty, but we don't realize that. Fixing
2498 that without slowing things down might be tricky. */
2499
2500 /* First, snip it out of the psymtab chain */
2501
2502 prev_pst = &(pst->objfile->psymtabs);
2503 while ((*prev_pst) != pst)
2504 prev_pst = &((*prev_pst)->next);
2505 (*prev_pst) = pst->next;
2506
2507 /* Next, put it on a free list for recycling */
2508
2509 pst->next = pst->objfile->free_psymtabs;
2510 pst->objfile->free_psymtabs = pst;
2511 }
2512 \f
2513
2514 /* Reset all data structures in gdb which may contain references to symbol
2515 table data. */
2516
2517 void
2518 clear_symtab_users (void)
2519 {
2520 /* Someday, we should do better than this, by only blowing away
2521 the things that really need to be blown. */
2522
2523 /* Clear the "current" symtab first, because it is no longer valid.
2524 breakpoint_re_set may try to access the current symtab. */
2525 clear_current_source_symtab_and_line ();
2526
2527 clear_displays ();
2528 breakpoint_re_set ();
2529 set_default_breakpoint (0, 0, 0, 0);
2530 clear_pc_function_cache ();
2531 if (deprecated_target_new_objfile_hook)
2532 deprecated_target_new_objfile_hook (NULL);
2533
2534 /* Clear globals which might have pointed into a removed objfile.
2535 FIXME: It's not clear which of these are supposed to persist
2536 between expressions and which ought to be reset each time. */
2537 expression_context_block = NULL;
2538 innermost_block = NULL;
2539 }
2540
2541 static void
2542 clear_symtab_users_cleanup (void *ignore)
2543 {
2544 clear_symtab_users ();
2545 }
2546
2547 /* clear_symtab_users_once:
2548
2549 This function is run after symbol reading, or from a cleanup.
2550 If an old symbol table was obsoleted, the old symbol table
2551 has been blown away, but the other GDB data structures that may
2552 reference it have not yet been cleared or re-directed. (The old
2553 symtab was zapped, and the cleanup queued, in free_named_symtab()
2554 below.)
2555
2556 This function can be queued N times as a cleanup, or called
2557 directly; it will do all the work the first time, and then will be a
2558 no-op until the next time it is queued. This works by bumping a
2559 counter at queueing time. Much later when the cleanup is run, or at
2560 the end of symbol processing (in case the cleanup is discarded), if
2561 the queued count is greater than the "done-count", we do the work
2562 and set the done-count to the queued count. If the queued count is
2563 less than or equal to the done-count, we just ignore the call. This
2564 is needed because reading a single .o file will often replace many
2565 symtabs (one per .h file, for example), and we don't want to reset
2566 the breakpoints N times in the user's face.
2567
2568 The reason we both queue a cleanup, and call it directly after symbol
2569 reading, is because the cleanup protects us in case of errors, but is
2570 discarded if symbol reading is successful. */
2571
2572 #if 0
2573 /* FIXME: As free_named_symtabs is currently a big noop this function
2574 is no longer needed. */
2575 static void clear_symtab_users_once (void);
2576
2577 static int clear_symtab_users_queued;
2578 static int clear_symtab_users_done;
2579
2580 static void
2581 clear_symtab_users_once (void)
2582 {
2583 /* Enforce once-per-`do_cleanups'-semantics */
2584 if (clear_symtab_users_queued <= clear_symtab_users_done)
2585 return;
2586 clear_symtab_users_done = clear_symtab_users_queued;
2587
2588 clear_symtab_users ();
2589 }
2590 #endif
2591
2592 /* Delete the specified psymtab, and any others that reference it. */
2593
2594 static void
2595 cashier_psymtab (struct partial_symtab *pst)
2596 {
2597 struct partial_symtab *ps, *pprev = NULL;
2598 int i;
2599
2600 /* Find its previous psymtab in the chain */
2601 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2602 {
2603 if (ps == pst)
2604 break;
2605 pprev = ps;
2606 }
2607
2608 if (ps)
2609 {
2610 /* Unhook it from the chain. */
2611 if (ps == pst->objfile->psymtabs)
2612 pst->objfile->psymtabs = ps->next;
2613 else
2614 pprev->next = ps->next;
2615
2616 /* FIXME, we can't conveniently deallocate the entries in the
2617 partial_symbol lists (global_psymbols/static_psymbols) that
2618 this psymtab points to. These just take up space until all
2619 the psymtabs are reclaimed. Ditto the dependencies list and
2620 filename, which are all in the objfile_obstack. */
2621
2622 /* We need to cashier any psymtab that has this one as a dependency... */
2623 again:
2624 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2625 {
2626 for (i = 0; i < ps->number_of_dependencies; i++)
2627 {
2628 if (ps->dependencies[i] == pst)
2629 {
2630 cashier_psymtab (ps);
2631 goto again; /* Must restart, chain has been munged. */
2632 }
2633 }
2634 }
2635 }
2636 }
2637
2638 /* If a symtab or psymtab for filename NAME is found, free it along
2639 with any dependent breakpoints, displays, etc.
2640 Used when loading new versions of object modules with the "add-file"
2641 command. This is only called on the top-level symtab or psymtab's name;
2642 it is not called for subsidiary files such as .h files.
2643
2644 Return value is 1 if we blew away the environment, 0 if not.
2645 FIXME. The return value appears to never be used.
2646
2647 FIXME. I think this is not the best way to do this. We should
2648 work on being gentler to the environment while still cleaning up
2649 all stray pointers into the freed symtab. */
2650
2651 int
2652 free_named_symtabs (char *name)
2653 {
2654 #if 0
2655 /* FIXME: With the new method of each objfile having it's own
2656 psymtab list, this function needs serious rethinking. In particular,
2657 why was it ever necessary to toss psymtabs with specific compilation
2658 unit filenames, as opposed to all psymtabs from a particular symbol
2659 file? -- fnf
2660 Well, the answer is that some systems permit reloading of particular
2661 compilation units. We want to blow away any old info about these
2662 compilation units, regardless of which objfiles they arrived in. --gnu. */
2663
2664 struct symtab *s;
2665 struct symtab *prev;
2666 struct partial_symtab *ps;
2667 struct blockvector *bv;
2668 int blewit = 0;
2669
2670 /* We only wack things if the symbol-reload switch is set. */
2671 if (!symbol_reloading)
2672 return 0;
2673
2674 /* Some symbol formats have trouble providing file names... */
2675 if (name == 0 || *name == '\0')
2676 return 0;
2677
2678 /* Look for a psymtab with the specified name. */
2679
2680 again2:
2681 for (ps = partial_symtab_list; ps; ps = ps->next)
2682 {
2683 if (strcmp (name, ps->filename) == 0)
2684 {
2685 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2686 goto again2; /* Must restart, chain has been munged */
2687 }
2688 }
2689
2690 /* Look for a symtab with the specified name. */
2691
2692 for (s = symtab_list; s; s = s->next)
2693 {
2694 if (strcmp (name, s->filename) == 0)
2695 break;
2696 prev = s;
2697 }
2698
2699 if (s)
2700 {
2701 if (s == symtab_list)
2702 symtab_list = s->next;
2703 else
2704 prev->next = s->next;
2705
2706 /* For now, queue a delete for all breakpoints, displays, etc., whether
2707 or not they depend on the symtab being freed. This should be
2708 changed so that only those data structures affected are deleted. */
2709
2710 /* But don't delete anything if the symtab is empty.
2711 This test is necessary due to a bug in "dbxread.c" that
2712 causes empty symtabs to be created for N_SO symbols that
2713 contain the pathname of the object file. (This problem
2714 has been fixed in GDB 3.9x). */
2715
2716 bv = BLOCKVECTOR (s);
2717 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2718 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2719 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2720 {
2721 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2722 name);
2723 clear_symtab_users_queued++;
2724 make_cleanup (clear_symtab_users_once, 0);
2725 blewit = 1;
2726 }
2727 else
2728 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2729 name);
2730
2731 free_symtab (s);
2732 }
2733 else
2734 {
2735 /* It is still possible that some breakpoints will be affected
2736 even though no symtab was found, since the file might have
2737 been compiled without debugging, and hence not be associated
2738 with a symtab. In order to handle this correctly, we would need
2739 to keep a list of text address ranges for undebuggable files.
2740 For now, we do nothing, since this is a fairly obscure case. */
2741 ;
2742 }
2743
2744 /* FIXME, what about the minimal symbol table? */
2745 return blewit;
2746 #else
2747 return (0);
2748 #endif
2749 }
2750 \f
2751 /* Allocate and partially fill a partial symtab. It will be
2752 completely filled at the end of the symbol list.
2753
2754 FILENAME is the name of the symbol-file we are reading from. */
2755
2756 struct partial_symtab *
2757 start_psymtab_common (struct objfile *objfile,
2758 struct section_offsets *section_offsets, char *filename,
2759 CORE_ADDR textlow, struct partial_symbol **global_syms,
2760 struct partial_symbol **static_syms)
2761 {
2762 struct partial_symtab *psymtab;
2763
2764 psymtab = allocate_psymtab (filename, objfile);
2765 psymtab->section_offsets = section_offsets;
2766 psymtab->textlow = textlow;
2767 psymtab->texthigh = psymtab->textlow; /* default */
2768 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2769 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2770 return (psymtab);
2771 }
2772 \f
2773 /* Add a symbol with a long value to a psymtab.
2774 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2775 Return the partial symbol that has been added. */
2776
2777 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2778 symbol is so that callers can get access to the symbol's demangled
2779 name, which they don't have any cheap way to determine otherwise.
2780 (Currenly, dwarf2read.c is the only file who uses that information,
2781 though it's possible that other readers might in the future.)
2782 Elena wasn't thrilled about that, and I don't blame her, but we
2783 couldn't come up with a better way to get that information. If
2784 it's needed in other situations, we could consider breaking up
2785 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2786 cache. */
2787
2788 const struct partial_symbol *
2789 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2790 enum address_class class,
2791 struct psymbol_allocation_list *list, long val, /* Value as a long */
2792 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2793 enum language language, struct objfile *objfile)
2794 {
2795 struct partial_symbol *psym;
2796 char *buf = alloca (namelength + 1);
2797 /* psymbol is static so that there will be no uninitialized gaps in the
2798 structure which might contain random data, causing cache misses in
2799 bcache. */
2800 static struct partial_symbol psymbol;
2801
2802 /* Create local copy of the partial symbol */
2803 memcpy (buf, name, namelength);
2804 buf[namelength] = '\0';
2805 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2806 if (val != 0)
2807 {
2808 SYMBOL_VALUE (&psymbol) = val;
2809 }
2810 else
2811 {
2812 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2813 }
2814 SYMBOL_SECTION (&psymbol) = 0;
2815 SYMBOL_LANGUAGE (&psymbol) = language;
2816 PSYMBOL_DOMAIN (&psymbol) = domain;
2817 PSYMBOL_CLASS (&psymbol) = class;
2818
2819 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2820
2821 /* Stash the partial symbol away in the cache */
2822 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2823 objfile->psymbol_cache);
2824
2825 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2826 if (list->next >= list->list + list->size)
2827 {
2828 extend_psymbol_list (list, objfile);
2829 }
2830 *list->next++ = psym;
2831 OBJSTAT (objfile, n_psyms++);
2832
2833 return psym;
2834 }
2835
2836 /* Add a symbol with a long value to a psymtab. This differs from
2837 * add_psymbol_to_list above in taking both a mangled and a demangled
2838 * name. */
2839
2840 void
2841 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2842 int dem_namelength, domain_enum domain,
2843 enum address_class class,
2844 struct psymbol_allocation_list *list, long val, /* Value as a long */
2845 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2846 enum language language,
2847 struct objfile *objfile)
2848 {
2849 struct partial_symbol *psym;
2850 char *buf = alloca (namelength + 1);
2851 /* psymbol is static so that there will be no uninitialized gaps in the
2852 structure which might contain random data, causing cache misses in
2853 bcache. */
2854 static struct partial_symbol psymbol;
2855
2856 /* Create local copy of the partial symbol */
2857
2858 memcpy (buf, name, namelength);
2859 buf[namelength] = '\0';
2860 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2861 objfile->psymbol_cache);
2862
2863 buf = alloca (dem_namelength + 1);
2864 memcpy (buf, dem_name, dem_namelength);
2865 buf[dem_namelength] = '\0';
2866
2867 switch (language)
2868 {
2869 case language_c:
2870 case language_cplus:
2871 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2872 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2873 break;
2874 /* FIXME What should be done for the default case? Ignoring for now. */
2875 }
2876
2877 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2878 if (val != 0)
2879 {
2880 SYMBOL_VALUE (&psymbol) = val;
2881 }
2882 else
2883 {
2884 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2885 }
2886 SYMBOL_SECTION (&psymbol) = 0;
2887 SYMBOL_LANGUAGE (&psymbol) = language;
2888 PSYMBOL_DOMAIN (&psymbol) = domain;
2889 PSYMBOL_CLASS (&psymbol) = class;
2890 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2891
2892 /* Stash the partial symbol away in the cache */
2893 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2894 objfile->psymbol_cache);
2895
2896 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2897 if (list->next >= list->list + list->size)
2898 {
2899 extend_psymbol_list (list, objfile);
2900 }
2901 *list->next++ = psym;
2902 OBJSTAT (objfile, n_psyms++);
2903 }
2904
2905 /* Initialize storage for partial symbols. */
2906
2907 void
2908 init_psymbol_list (struct objfile *objfile, int total_symbols)
2909 {
2910 /* Free any previously allocated psymbol lists. */
2911
2912 if (objfile->global_psymbols.list)
2913 {
2914 xfree (objfile->global_psymbols.list);
2915 }
2916 if (objfile->static_psymbols.list)
2917 {
2918 xfree (objfile->static_psymbols.list);
2919 }
2920
2921 /* Current best guess is that approximately a twentieth
2922 of the total symbols (in a debugging file) are global or static
2923 oriented symbols */
2924
2925 objfile->global_psymbols.size = total_symbols / 10;
2926 objfile->static_psymbols.size = total_symbols / 10;
2927
2928 if (objfile->global_psymbols.size > 0)
2929 {
2930 objfile->global_psymbols.next =
2931 objfile->global_psymbols.list = (struct partial_symbol **)
2932 xmalloc ((objfile->global_psymbols.size
2933 * sizeof (struct partial_symbol *)));
2934 }
2935 if (objfile->static_psymbols.size > 0)
2936 {
2937 objfile->static_psymbols.next =
2938 objfile->static_psymbols.list = (struct partial_symbol **)
2939 xmalloc ((objfile->static_psymbols.size
2940 * sizeof (struct partial_symbol *)));
2941 }
2942 }
2943
2944 /* OVERLAYS:
2945 The following code implements an abstraction for debugging overlay sections.
2946
2947 The target model is as follows:
2948 1) The gnu linker will permit multiple sections to be mapped into the
2949 same VMA, each with its own unique LMA (or load address).
2950 2) It is assumed that some runtime mechanism exists for mapping the
2951 sections, one by one, from the load address into the VMA address.
2952 3) This code provides a mechanism for gdb to keep track of which
2953 sections should be considered to be mapped from the VMA to the LMA.
2954 This information is used for symbol lookup, and memory read/write.
2955 For instance, if a section has been mapped then its contents
2956 should be read from the VMA, otherwise from the LMA.
2957
2958 Two levels of debugger support for overlays are available. One is
2959 "manual", in which the debugger relies on the user to tell it which
2960 overlays are currently mapped. This level of support is
2961 implemented entirely in the core debugger, and the information about
2962 whether a section is mapped is kept in the objfile->obj_section table.
2963
2964 The second level of support is "automatic", and is only available if
2965 the target-specific code provides functionality to read the target's
2966 overlay mapping table, and translate its contents for the debugger
2967 (by updating the mapped state information in the obj_section tables).
2968
2969 The interface is as follows:
2970 User commands:
2971 overlay map <name> -- tell gdb to consider this section mapped
2972 overlay unmap <name> -- tell gdb to consider this section unmapped
2973 overlay list -- list the sections that GDB thinks are mapped
2974 overlay read-target -- get the target's state of what's mapped
2975 overlay off/manual/auto -- set overlay debugging state
2976 Functional interface:
2977 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2978 section, return that section.
2979 find_pc_overlay(pc): find any overlay section that contains
2980 the pc, either in its VMA or its LMA
2981 overlay_is_mapped(sect): true if overlay is marked as mapped
2982 section_is_overlay(sect): true if section's VMA != LMA
2983 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2984 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2985 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2986 overlay_mapped_address(...): map an address from section's LMA to VMA
2987 overlay_unmapped_address(...): map an address from section's VMA to LMA
2988 symbol_overlayed_address(...): Return a "current" address for symbol:
2989 either in VMA or LMA depending on whether
2990 the symbol's section is currently mapped
2991 */
2992
2993 /* Overlay debugging state: */
2994
2995 enum overlay_debugging_state overlay_debugging = ovly_off;
2996 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2997
2998 /* Target vector for refreshing overlay mapped state */
2999 static void simple_overlay_update (struct obj_section *);
3000 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
3001
3002 /* Function: section_is_overlay (SECTION)
3003 Returns true if SECTION has VMA not equal to LMA, ie.
3004 SECTION is loaded at an address different from where it will "run". */
3005
3006 int
3007 section_is_overlay (asection *section)
3008 {
3009 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3010
3011 if (overlay_debugging)
3012 if (section && section->lma != 0 &&
3013 section->vma != section->lma)
3014 return 1;
3015
3016 return 0;
3017 }
3018
3019 /* Function: overlay_invalidate_all (void)
3020 Invalidate the mapped state of all overlay sections (mark it as stale). */
3021
3022 static void
3023 overlay_invalidate_all (void)
3024 {
3025 struct objfile *objfile;
3026 struct obj_section *sect;
3027
3028 ALL_OBJSECTIONS (objfile, sect)
3029 if (section_is_overlay (sect->the_bfd_section))
3030 sect->ovly_mapped = -1;
3031 }
3032
3033 /* Function: overlay_is_mapped (SECTION)
3034 Returns true if section is an overlay, and is currently mapped.
3035 Private: public access is thru function section_is_mapped.
3036
3037 Access to the ovly_mapped flag is restricted to this function, so
3038 that we can do automatic update. If the global flag
3039 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3040 overlay_invalidate_all. If the mapped state of the particular
3041 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3042
3043 static int
3044 overlay_is_mapped (struct obj_section *osect)
3045 {
3046 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3047 return 0;
3048
3049 switch (overlay_debugging)
3050 {
3051 default:
3052 case ovly_off:
3053 return 0; /* overlay debugging off */
3054 case ovly_auto: /* overlay debugging automatic */
3055 /* Unles there is a target_overlay_update function,
3056 there's really nothing useful to do here (can't really go auto) */
3057 if (target_overlay_update)
3058 {
3059 if (overlay_cache_invalid)
3060 {
3061 overlay_invalidate_all ();
3062 overlay_cache_invalid = 0;
3063 }
3064 if (osect->ovly_mapped == -1)
3065 (*target_overlay_update) (osect);
3066 }
3067 /* fall thru to manual case */
3068 case ovly_on: /* overlay debugging manual */
3069 return osect->ovly_mapped == 1;
3070 }
3071 }
3072
3073 /* Function: section_is_mapped
3074 Returns true if section is an overlay, and is currently mapped. */
3075
3076 int
3077 section_is_mapped (asection *section)
3078 {
3079 struct objfile *objfile;
3080 struct obj_section *osect;
3081
3082 if (overlay_debugging)
3083 if (section && section_is_overlay (section))
3084 ALL_OBJSECTIONS (objfile, osect)
3085 if (osect->the_bfd_section == section)
3086 return overlay_is_mapped (osect);
3087
3088 return 0;
3089 }
3090
3091 /* Function: pc_in_unmapped_range
3092 If PC falls into the lma range of SECTION, return true, else false. */
3093
3094 CORE_ADDR
3095 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3096 {
3097 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3098
3099 int size;
3100
3101 if (overlay_debugging)
3102 if (section && section_is_overlay (section))
3103 {
3104 size = bfd_get_section_size (section);
3105 if (section->lma <= pc && pc < section->lma + size)
3106 return 1;
3107 }
3108 return 0;
3109 }
3110
3111 /* Function: pc_in_mapped_range
3112 If PC falls into the vma range of SECTION, return true, else false. */
3113
3114 CORE_ADDR
3115 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3116 {
3117 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3118
3119 int size;
3120
3121 if (overlay_debugging)
3122 if (section && section_is_overlay (section))
3123 {
3124 size = bfd_get_section_size (section);
3125 if (section->vma <= pc && pc < section->vma + size)
3126 return 1;
3127 }
3128 return 0;
3129 }
3130
3131
3132 /* Return true if the mapped ranges of sections A and B overlap, false
3133 otherwise. */
3134 static int
3135 sections_overlap (asection *a, asection *b)
3136 {
3137 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3138
3139 CORE_ADDR a_start = a->vma;
3140 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3141 CORE_ADDR b_start = b->vma;
3142 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3143
3144 return (a_start < b_end && b_start < a_end);
3145 }
3146
3147 /* Function: overlay_unmapped_address (PC, SECTION)
3148 Returns the address corresponding to PC in the unmapped (load) range.
3149 May be the same as PC. */
3150
3151 CORE_ADDR
3152 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3153 {
3154 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3155
3156 if (overlay_debugging)
3157 if (section && section_is_overlay (section) &&
3158 pc_in_mapped_range (pc, section))
3159 return pc + section->lma - section->vma;
3160
3161 return pc;
3162 }
3163
3164 /* Function: overlay_mapped_address (PC, SECTION)
3165 Returns the address corresponding to PC in the mapped (runtime) range.
3166 May be the same as PC. */
3167
3168 CORE_ADDR
3169 overlay_mapped_address (CORE_ADDR pc, asection *section)
3170 {
3171 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3172
3173 if (overlay_debugging)
3174 if (section && section_is_overlay (section) &&
3175 pc_in_unmapped_range (pc, section))
3176 return pc + section->vma - section->lma;
3177
3178 return pc;
3179 }
3180
3181
3182 /* Function: symbol_overlayed_address
3183 Return one of two addresses (relative to the VMA or to the LMA),
3184 depending on whether the section is mapped or not. */
3185
3186 CORE_ADDR
3187 symbol_overlayed_address (CORE_ADDR address, asection *section)
3188 {
3189 if (overlay_debugging)
3190 {
3191 /* If the symbol has no section, just return its regular address. */
3192 if (section == 0)
3193 return address;
3194 /* If the symbol's section is not an overlay, just return its address */
3195 if (!section_is_overlay (section))
3196 return address;
3197 /* If the symbol's section is mapped, just return its address */
3198 if (section_is_mapped (section))
3199 return address;
3200 /*
3201 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3202 * then return its LOADED address rather than its vma address!!
3203 */
3204 return overlay_unmapped_address (address, section);
3205 }
3206 return address;
3207 }
3208
3209 /* Function: find_pc_overlay (PC)
3210 Return the best-match overlay section for PC:
3211 If PC matches a mapped overlay section's VMA, return that section.
3212 Else if PC matches an unmapped section's VMA, return that section.
3213 Else if PC matches an unmapped section's LMA, return that section. */
3214
3215 asection *
3216 find_pc_overlay (CORE_ADDR pc)
3217 {
3218 struct objfile *objfile;
3219 struct obj_section *osect, *best_match = NULL;
3220
3221 if (overlay_debugging)
3222 ALL_OBJSECTIONS (objfile, osect)
3223 if (section_is_overlay (osect->the_bfd_section))
3224 {
3225 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3226 {
3227 if (overlay_is_mapped (osect))
3228 return osect->the_bfd_section;
3229 else
3230 best_match = osect;
3231 }
3232 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3233 best_match = osect;
3234 }
3235 return best_match ? best_match->the_bfd_section : NULL;
3236 }
3237
3238 /* Function: find_pc_mapped_section (PC)
3239 If PC falls into the VMA address range of an overlay section that is
3240 currently marked as MAPPED, return that section. Else return NULL. */
3241
3242 asection *
3243 find_pc_mapped_section (CORE_ADDR pc)
3244 {
3245 struct objfile *objfile;
3246 struct obj_section *osect;
3247
3248 if (overlay_debugging)
3249 ALL_OBJSECTIONS (objfile, osect)
3250 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3251 overlay_is_mapped (osect))
3252 return osect->the_bfd_section;
3253
3254 return NULL;
3255 }
3256
3257 /* Function: list_overlays_command
3258 Print a list of mapped sections and their PC ranges */
3259
3260 void
3261 list_overlays_command (char *args, int from_tty)
3262 {
3263 int nmapped = 0;
3264 struct objfile *objfile;
3265 struct obj_section *osect;
3266
3267 if (overlay_debugging)
3268 ALL_OBJSECTIONS (objfile, osect)
3269 if (overlay_is_mapped (osect))
3270 {
3271 const char *name;
3272 bfd_vma lma, vma;
3273 int size;
3274
3275 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3276 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3277 size = bfd_get_section_size (osect->the_bfd_section);
3278 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3279
3280 printf_filtered ("Section %s, loaded at ", name);
3281 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3282 puts_filtered (" - ");
3283 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3284 printf_filtered (", mapped at ");
3285 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3286 puts_filtered (" - ");
3287 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3288 puts_filtered ("\n");
3289
3290 nmapped++;
3291 }
3292 if (nmapped == 0)
3293 printf_filtered (_("No sections are mapped.\n"));
3294 }
3295
3296 /* Function: map_overlay_command
3297 Mark the named section as mapped (ie. residing at its VMA address). */
3298
3299 void
3300 map_overlay_command (char *args, int from_tty)
3301 {
3302 struct objfile *objfile, *objfile2;
3303 struct obj_section *sec, *sec2;
3304 asection *bfdsec;
3305
3306 if (!overlay_debugging)
3307 error (_("\
3308 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3309 the 'overlay manual' command."));
3310
3311 if (args == 0 || *args == 0)
3312 error (_("Argument required: name of an overlay section"));
3313
3314 /* First, find a section matching the user supplied argument */
3315 ALL_OBJSECTIONS (objfile, sec)
3316 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3317 {
3318 /* Now, check to see if the section is an overlay. */
3319 bfdsec = sec->the_bfd_section;
3320 if (!section_is_overlay (bfdsec))
3321 continue; /* not an overlay section */
3322
3323 /* Mark the overlay as "mapped" */
3324 sec->ovly_mapped = 1;
3325
3326 /* Next, make a pass and unmap any sections that are
3327 overlapped by this new section: */
3328 ALL_OBJSECTIONS (objfile2, sec2)
3329 if (sec2->ovly_mapped
3330 && sec != sec2
3331 && sec->the_bfd_section != sec2->the_bfd_section
3332 && sections_overlap (sec->the_bfd_section,
3333 sec2->the_bfd_section))
3334 {
3335 if (info_verbose)
3336 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3337 bfd_section_name (objfile->obfd,
3338 sec2->the_bfd_section));
3339 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3340 }
3341 return;
3342 }
3343 error (_("No overlay section called %s"), args);
3344 }
3345
3346 /* Function: unmap_overlay_command
3347 Mark the overlay section as unmapped
3348 (ie. resident in its LMA address range, rather than the VMA range). */
3349
3350 void
3351 unmap_overlay_command (char *args, int from_tty)
3352 {
3353 struct objfile *objfile;
3354 struct obj_section *sec;
3355
3356 if (!overlay_debugging)
3357 error (_("\
3358 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3359 the 'overlay manual' command."));
3360
3361 if (args == 0 || *args == 0)
3362 error (_("Argument required: name of an overlay section"));
3363
3364 /* First, find a section matching the user supplied argument */
3365 ALL_OBJSECTIONS (objfile, sec)
3366 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3367 {
3368 if (!sec->ovly_mapped)
3369 error (_("Section %s is not mapped"), args);
3370 sec->ovly_mapped = 0;
3371 return;
3372 }
3373 error (_("No overlay section called %s"), args);
3374 }
3375
3376 /* Function: overlay_auto_command
3377 A utility command to turn on overlay debugging.
3378 Possibly this should be done via a set/show command. */
3379
3380 static void
3381 overlay_auto_command (char *args, int from_tty)
3382 {
3383 overlay_debugging = ovly_auto;
3384 enable_overlay_breakpoints ();
3385 if (info_verbose)
3386 printf_unfiltered (_("Automatic overlay debugging enabled."));
3387 }
3388
3389 /* Function: overlay_manual_command
3390 A utility command to turn on overlay debugging.
3391 Possibly this should be done via a set/show command. */
3392
3393 static void
3394 overlay_manual_command (char *args, int from_tty)
3395 {
3396 overlay_debugging = ovly_on;
3397 disable_overlay_breakpoints ();
3398 if (info_verbose)
3399 printf_unfiltered (_("Overlay debugging enabled."));
3400 }
3401
3402 /* Function: overlay_off_command
3403 A utility command to turn on overlay debugging.
3404 Possibly this should be done via a set/show command. */
3405
3406 static void
3407 overlay_off_command (char *args, int from_tty)
3408 {
3409 overlay_debugging = ovly_off;
3410 disable_overlay_breakpoints ();
3411 if (info_verbose)
3412 printf_unfiltered (_("Overlay debugging disabled."));
3413 }
3414
3415 static void
3416 overlay_load_command (char *args, int from_tty)
3417 {
3418 if (target_overlay_update)
3419 (*target_overlay_update) (NULL);
3420 else
3421 error (_("This target does not know how to read its overlay state."));
3422 }
3423
3424 /* Function: overlay_command
3425 A place-holder for a mis-typed command */
3426
3427 /* Command list chain containing all defined "overlay" subcommands. */
3428 struct cmd_list_element *overlaylist;
3429
3430 static void
3431 overlay_command (char *args, int from_tty)
3432 {
3433 printf_unfiltered
3434 ("\"overlay\" must be followed by the name of an overlay command.\n");
3435 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3436 }
3437
3438
3439 /* Target Overlays for the "Simplest" overlay manager:
3440
3441 This is GDB's default target overlay layer. It works with the
3442 minimal overlay manager supplied as an example by Cygnus. The
3443 entry point is via a function pointer "target_overlay_update",
3444 so targets that use a different runtime overlay manager can
3445 substitute their own overlay_update function and take over the
3446 function pointer.
3447
3448 The overlay_update function pokes around in the target's data structures
3449 to see what overlays are mapped, and updates GDB's overlay mapping with
3450 this information.
3451
3452 In this simple implementation, the target data structures are as follows:
3453 unsigned _novlys; /# number of overlay sections #/
3454 unsigned _ovly_table[_novlys][4] = {
3455 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3456 {..., ..., ..., ...},
3457 }
3458 unsigned _novly_regions; /# number of overlay regions #/
3459 unsigned _ovly_region_table[_novly_regions][3] = {
3460 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3461 {..., ..., ...},
3462 }
3463 These functions will attempt to update GDB's mappedness state in the
3464 symbol section table, based on the target's mappedness state.
3465
3466 To do this, we keep a cached copy of the target's _ovly_table, and
3467 attempt to detect when the cached copy is invalidated. The main
3468 entry point is "simple_overlay_update(SECT), which looks up SECT in
3469 the cached table and re-reads only the entry for that section from
3470 the target (whenever possible).
3471 */
3472
3473 /* Cached, dynamically allocated copies of the target data structures: */
3474 static unsigned (*cache_ovly_table)[4] = 0;
3475 #if 0
3476 static unsigned (*cache_ovly_region_table)[3] = 0;
3477 #endif
3478 static unsigned cache_novlys = 0;
3479 #if 0
3480 static unsigned cache_novly_regions = 0;
3481 #endif
3482 static CORE_ADDR cache_ovly_table_base = 0;
3483 #if 0
3484 static CORE_ADDR cache_ovly_region_table_base = 0;
3485 #endif
3486 enum ovly_index
3487 {
3488 VMA, SIZE, LMA, MAPPED
3489 };
3490 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3491
3492 /* Throw away the cached copy of _ovly_table */
3493 static void
3494 simple_free_overlay_table (void)
3495 {
3496 if (cache_ovly_table)
3497 xfree (cache_ovly_table);
3498 cache_novlys = 0;
3499 cache_ovly_table = NULL;
3500 cache_ovly_table_base = 0;
3501 }
3502
3503 #if 0
3504 /* Throw away the cached copy of _ovly_region_table */
3505 static void
3506 simple_free_overlay_region_table (void)
3507 {
3508 if (cache_ovly_region_table)
3509 xfree (cache_ovly_region_table);
3510 cache_novly_regions = 0;
3511 cache_ovly_region_table = NULL;
3512 cache_ovly_region_table_base = 0;
3513 }
3514 #endif
3515
3516 /* Read an array of ints from the target into a local buffer.
3517 Convert to host order. int LEN is number of ints */
3518 static void
3519 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3520 {
3521 /* FIXME (alloca): Not safe if array is very large. */
3522 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3523 int i;
3524
3525 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3526 for (i = 0; i < len; i++)
3527 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3528 TARGET_LONG_BYTES);
3529 }
3530
3531 /* Find and grab a copy of the target _ovly_table
3532 (and _novlys, which is needed for the table's size) */
3533 static int
3534 simple_read_overlay_table (void)
3535 {
3536 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3537
3538 simple_free_overlay_table ();
3539 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3540 if (! novlys_msym)
3541 {
3542 error (_("Error reading inferior's overlay table: "
3543 "couldn't find `_novlys' variable\n"
3544 "in inferior. Use `overlay manual' mode."));
3545 return 0;
3546 }
3547
3548 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3549 if (! ovly_table_msym)
3550 {
3551 error (_("Error reading inferior's overlay table: couldn't find "
3552 "`_ovly_table' array\n"
3553 "in inferior. Use `overlay manual' mode."));
3554 return 0;
3555 }
3556
3557 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3558 cache_ovly_table
3559 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3560 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3561 read_target_long_array (cache_ovly_table_base,
3562 (unsigned int *) cache_ovly_table,
3563 cache_novlys * 4);
3564
3565 return 1; /* SUCCESS */
3566 }
3567
3568 #if 0
3569 /* Find and grab a copy of the target _ovly_region_table
3570 (and _novly_regions, which is needed for the table's size) */
3571 static int
3572 simple_read_overlay_region_table (void)
3573 {
3574 struct minimal_symbol *msym;
3575
3576 simple_free_overlay_region_table ();
3577 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3578 if (msym != NULL)
3579 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3580 else
3581 return 0; /* failure */
3582 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3583 if (cache_ovly_region_table != NULL)
3584 {
3585 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3586 if (msym != NULL)
3587 {
3588 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3589 read_target_long_array (cache_ovly_region_table_base,
3590 (unsigned int *) cache_ovly_region_table,
3591 cache_novly_regions * 3);
3592 }
3593 else
3594 return 0; /* failure */
3595 }
3596 else
3597 return 0; /* failure */
3598 return 1; /* SUCCESS */
3599 }
3600 #endif
3601
3602 /* Function: simple_overlay_update_1
3603 A helper function for simple_overlay_update. Assuming a cached copy
3604 of _ovly_table exists, look through it to find an entry whose vma,
3605 lma and size match those of OSECT. Re-read the entry and make sure
3606 it still matches OSECT (else the table may no longer be valid).
3607 Set OSECT's mapped state to match the entry. Return: 1 for
3608 success, 0 for failure. */
3609
3610 static int
3611 simple_overlay_update_1 (struct obj_section *osect)
3612 {
3613 int i, size;
3614 bfd *obfd = osect->objfile->obfd;
3615 asection *bsect = osect->the_bfd_section;
3616
3617 size = bfd_get_section_size (osect->the_bfd_section);
3618 for (i = 0; i < cache_novlys; i++)
3619 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3620 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3621 /* && cache_ovly_table[i][SIZE] == size */ )
3622 {
3623 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3624 (unsigned int *) cache_ovly_table[i], 4);
3625 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3626 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3627 /* && cache_ovly_table[i][SIZE] == size */ )
3628 {
3629 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3630 return 1;
3631 }
3632 else /* Warning! Warning! Target's ovly table has changed! */
3633 return 0;
3634 }
3635 return 0;
3636 }
3637
3638 /* Function: simple_overlay_update
3639 If OSECT is NULL, then update all sections' mapped state
3640 (after re-reading the entire target _ovly_table).
3641 If OSECT is non-NULL, then try to find a matching entry in the
3642 cached ovly_table and update only OSECT's mapped state.
3643 If a cached entry can't be found or the cache isn't valid, then
3644 re-read the entire cache, and go ahead and update all sections. */
3645
3646 static void
3647 simple_overlay_update (struct obj_section *osect)
3648 {
3649 struct objfile *objfile;
3650
3651 /* Were we given an osect to look up? NULL means do all of them. */
3652 if (osect)
3653 /* Have we got a cached copy of the target's overlay table? */
3654 if (cache_ovly_table != NULL)
3655 /* Does its cached location match what's currently in the symtab? */
3656 if (cache_ovly_table_base ==
3657 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3658 /* Then go ahead and try to look up this single section in the cache */
3659 if (simple_overlay_update_1 (osect))
3660 /* Found it! We're done. */
3661 return;
3662
3663 /* Cached table no good: need to read the entire table anew.
3664 Or else we want all the sections, in which case it's actually
3665 more efficient to read the whole table in one block anyway. */
3666
3667 if (! simple_read_overlay_table ())
3668 return;
3669
3670 /* Now may as well update all sections, even if only one was requested. */
3671 ALL_OBJSECTIONS (objfile, osect)
3672 if (section_is_overlay (osect->the_bfd_section))
3673 {
3674 int i, size;
3675 bfd *obfd = osect->objfile->obfd;
3676 asection *bsect = osect->the_bfd_section;
3677
3678 size = bfd_get_section_size (bsect);
3679 for (i = 0; i < cache_novlys; i++)
3680 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3681 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3682 /* && cache_ovly_table[i][SIZE] == size */ )
3683 { /* obj_section matches i'th entry in ovly_table */
3684 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3685 break; /* finished with inner for loop: break out */
3686 }
3687 }
3688 }
3689
3690 /* Set the output sections and output offsets for section SECTP in
3691 ABFD. The relocation code in BFD will read these offsets, so we
3692 need to be sure they're initialized. We map each section to itself,
3693 with no offset; this means that SECTP->vma will be honored. */
3694
3695 static void
3696 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3697 {
3698 sectp->output_section = sectp;
3699 sectp->output_offset = 0;
3700 }
3701
3702 /* Relocate the contents of a debug section SECTP in ABFD. The
3703 contents are stored in BUF if it is non-NULL, or returned in a
3704 malloc'd buffer otherwise.
3705
3706 For some platforms and debug info formats, shared libraries contain
3707 relocations against the debug sections (particularly for DWARF-2;
3708 one affected platform is PowerPC GNU/Linux, although it depends on
3709 the version of the linker in use). Also, ELF object files naturally
3710 have unresolved relocations for their debug sections. We need to apply
3711 the relocations in order to get the locations of symbols correct. */
3712
3713 bfd_byte *
3714 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3715 {
3716 /* We're only interested in debugging sections with relocation
3717 information. */
3718 if ((sectp->flags & SEC_RELOC) == 0)
3719 return NULL;
3720 if ((sectp->flags & SEC_DEBUGGING) == 0)
3721 return NULL;
3722
3723 /* We will handle section offsets properly elsewhere, so relocate as if
3724 all sections begin at 0. */
3725 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3726
3727 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3728 }
3729
3730 void
3731 _initialize_symfile (void)
3732 {
3733 struct cmd_list_element *c;
3734
3735 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3736 Load symbol table from executable file FILE.\n\
3737 The `file' command can also load symbol tables, as well as setting the file\n\
3738 to execute."), &cmdlist);
3739 set_cmd_completer (c, filename_completer);
3740
3741 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3742 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3743 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3744 ADDR is the starting address of the file's text.\n\
3745 The optional arguments are section-name section-address pairs and\n\
3746 should be specified if the data and bss segments are not contiguous\n\
3747 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3748 &cmdlist);
3749 set_cmd_completer (c, filename_completer);
3750
3751 c = add_cmd ("add-shared-symbol-files", class_files,
3752 add_shared_symbol_files_command, _("\
3753 Load the symbols from shared objects in the dynamic linker's link map."),
3754 &cmdlist);
3755 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3756 &cmdlist);
3757
3758 c = add_cmd ("load", class_files, load_command, _("\
3759 Dynamically load FILE into the running program, and record its symbols\n\
3760 for access from GDB.\n\
3761 A load OFFSET may also be given."), &cmdlist);
3762 set_cmd_completer (c, filename_completer);
3763
3764 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3765 &symbol_reloading, _("\
3766 Set dynamic symbol table reloading multiple times in one run."), _("\
3767 Show dynamic symbol table reloading multiple times in one run."), NULL,
3768 NULL,
3769 show_symbol_reloading,
3770 &setlist, &showlist);
3771
3772 add_prefix_cmd ("overlay", class_support, overlay_command,
3773 _("Commands for debugging overlays."), &overlaylist,
3774 "overlay ", 0, &cmdlist);
3775
3776 add_com_alias ("ovly", "overlay", class_alias, 1);
3777 add_com_alias ("ov", "overlay", class_alias, 1);
3778
3779 add_cmd ("map-overlay", class_support, map_overlay_command,
3780 _("Assert that an overlay section is mapped."), &overlaylist);
3781
3782 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3783 _("Assert that an overlay section is unmapped."), &overlaylist);
3784
3785 add_cmd ("list-overlays", class_support, list_overlays_command,
3786 _("List mappings of overlay sections."), &overlaylist);
3787
3788 add_cmd ("manual", class_support, overlay_manual_command,
3789 _("Enable overlay debugging."), &overlaylist);
3790 add_cmd ("off", class_support, overlay_off_command,
3791 _("Disable overlay debugging."), &overlaylist);
3792 add_cmd ("auto", class_support, overlay_auto_command,
3793 _("Enable automatic overlay debugging."), &overlaylist);
3794 add_cmd ("load-target", class_support, overlay_load_command,
3795 _("Read the overlay mapping state from the target."), &overlaylist);
3796
3797 /* Filename extension to source language lookup table: */
3798 init_filename_language_table ();
3799 add_setshow_string_noescape_cmd ("extension-language", class_files,
3800 &ext_args, _("\
3801 Set mapping between filename extension and source language."), _("\
3802 Show mapping between filename extension and source language."), _("\
3803 Usage: set extension-language .foo bar"),
3804 set_ext_lang_command,
3805 show_ext_args,
3806 &setlist, &showlist);
3807
3808 add_info ("extensions", info_ext_lang_command,
3809 _("All filename extensions associated with a source language."));
3810
3811 debug_file_directory = xstrdup (DEBUGDIR);
3812 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3813 &debug_file_directory, _("\
3814 Set the directory where separate debug symbols are searched for."), _("\
3815 Show the directory where separate debug symbols are searched for."), _("\
3816 Separate debug symbols are first searched for in the same\n\
3817 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3818 and lastly at the path of the directory of the binary with\n\
3819 the global debug-file directory prepended."),
3820 NULL,
3821 show_debug_file_directory,
3822 &setlist, &showlist);
3823 }
This page took 0.201964 seconds and 4 git commands to generate.