Constify add_info
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
220 new object's 'num_sections' field is set to 0; it must be updated
221 by the caller. */
222
223 struct section_addr_info *
224 alloc_section_addr_info (size_t num_sections)
225 {
226 struct section_addr_info *sap;
227 size_t size;
228
229 size = (sizeof (struct section_addr_info)
230 + sizeof (struct other_sections) * (num_sections - 1));
231 sap = (struct section_addr_info *) xmalloc (size);
232 memset (sap, 0, size);
233
234 return sap;
235 }
236
237 /* Build (allocate and populate) a section_addr_info struct from
238 an existing section table. */
239
240 extern struct section_addr_info *
241 build_section_addr_info_from_section_table (const struct target_section *start,
242 const struct target_section *end)
243 {
244 struct section_addr_info *sap;
245 const struct target_section *stp;
246 int oidx;
247
248 sap = alloc_section_addr_info (end - start);
249
250 for (stp = start, oidx = 0; stp != end; stp++)
251 {
252 struct bfd_section *asect = stp->the_bfd_section;
253 bfd *abfd = asect->owner;
254
255 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
256 && oidx < end - start)
257 {
258 sap->other[oidx].addr = stp->addr;
259 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
260 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
261 oidx++;
262 }
263 }
264
265 sap->num_sections = oidx;
266
267 return sap;
268 }
269
270 /* Create a section_addr_info from section offsets in ABFD. */
271
272 static struct section_addr_info *
273 build_section_addr_info_from_bfd (bfd *abfd)
274 {
275 struct section_addr_info *sap;
276 int i;
277 struct bfd_section *sec;
278
279 sap = alloc_section_addr_info (bfd_count_sections (abfd));
280 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
281 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
282 {
283 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
284 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
285 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
286 i++;
287 }
288
289 sap->num_sections = i;
290
291 return sap;
292 }
293
294 /* Create a section_addr_info from section offsets in OBJFILE. */
295
296 struct section_addr_info *
297 build_section_addr_info_from_objfile (const struct objfile *objfile)
298 {
299 struct section_addr_info *sap;
300 int i;
301
302 /* Before reread_symbols gets rewritten it is not safe to call:
303 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
304 */
305 sap = build_section_addr_info_from_bfd (objfile->obfd);
306 for (i = 0; i < sap->num_sections; i++)
307 {
308 int sectindex = sap->other[i].sectindex;
309
310 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
311 }
312 return sap;
313 }
314
315 /* Free all memory allocated by build_section_addr_info_from_section_table. */
316
317 extern void
318 free_section_addr_info (struct section_addr_info *sap)
319 {
320 int idx;
321
322 for (idx = 0; idx < sap->num_sections; idx++)
323 xfree (sap->other[idx].name);
324 xfree (sap);
325 }
326
327 /* Initialize OBJFILE's sect_index_* members. */
328
329 static void
330 init_objfile_sect_indices (struct objfile *objfile)
331 {
332 asection *sect;
333 int i;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".text");
336 if (sect)
337 objfile->sect_index_text = sect->index;
338
339 sect = bfd_get_section_by_name (objfile->obfd, ".data");
340 if (sect)
341 objfile->sect_index_data = sect->index;
342
343 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
344 if (sect)
345 objfile->sect_index_bss = sect->index;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
348 if (sect)
349 objfile->sect_index_rodata = sect->index;
350
351 /* This is where things get really weird... We MUST have valid
352 indices for the various sect_index_* members or gdb will abort.
353 So if for example, there is no ".text" section, we have to
354 accomodate that. First, check for a file with the standard
355 one or two segments. */
356
357 symfile_find_segment_sections (objfile);
358
359 /* Except when explicitly adding symbol files at some address,
360 section_offsets contains nothing but zeros, so it doesn't matter
361 which slot in section_offsets the individual sect_index_* members
362 index into. So if they are all zero, it is safe to just point
363 all the currently uninitialized indices to the first slot. But
364 beware: if this is the main executable, it may be relocated
365 later, e.g. by the remote qOffsets packet, and then this will
366 be wrong! That's why we try segments first. */
367
368 for (i = 0; i < objfile->num_sections; i++)
369 {
370 if (ANOFFSET (objfile->section_offsets, i) != 0)
371 {
372 break;
373 }
374 }
375 if (i == objfile->num_sections)
376 {
377 if (objfile->sect_index_text == -1)
378 objfile->sect_index_text = 0;
379 if (objfile->sect_index_data == -1)
380 objfile->sect_index_data = 0;
381 if (objfile->sect_index_bss == -1)
382 objfile->sect_index_bss = 0;
383 if (objfile->sect_index_rodata == -1)
384 objfile->sect_index_rodata = 0;
385 }
386 }
387
388 /* The arguments to place_section. */
389
390 struct place_section_arg
391 {
392 struct section_offsets *offsets;
393 CORE_ADDR lowest;
394 };
395
396 /* Find a unique offset to use for loadable section SECT if
397 the user did not provide an offset. */
398
399 static void
400 place_section (bfd *abfd, asection *sect, void *obj)
401 {
402 struct place_section_arg *arg = (struct place_section_arg *) obj;
403 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
404 int done;
405 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
406
407 /* We are only interested in allocated sections. */
408 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
409 return;
410
411 /* If the user specified an offset, honor it. */
412 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
413 return;
414
415 /* Otherwise, let's try to find a place for the section. */
416 start_addr = (arg->lowest + align - 1) & -align;
417
418 do {
419 asection *cur_sec;
420
421 done = 1;
422
423 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
424 {
425 int indx = cur_sec->index;
426
427 /* We don't need to compare against ourself. */
428 if (cur_sec == sect)
429 continue;
430
431 /* We can only conflict with allocated sections. */
432 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
433 continue;
434
435 /* If the section offset is 0, either the section has not been placed
436 yet, or it was the lowest section placed (in which case LOWEST
437 will be past its end). */
438 if (offsets[indx] == 0)
439 continue;
440
441 /* If this section would overlap us, then we must move up. */
442 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
443 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
444 {
445 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
446 start_addr = (start_addr + align - 1) & -align;
447 done = 0;
448 break;
449 }
450
451 /* Otherwise, we appear to be OK. So far. */
452 }
453 }
454 while (!done);
455
456 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
457 arg->lowest = start_addr + bfd_get_section_size (sect);
458 }
459
460 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
461 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
462 entries. */
463
464 void
465 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
466 int num_sections,
467 const struct section_addr_info *addrs)
468 {
469 int i;
470
471 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
472
473 /* Now calculate offsets for section that were specified by the caller. */
474 for (i = 0; i < addrs->num_sections; i++)
475 {
476 const struct other_sections *osp;
477
478 osp = &addrs->other[i];
479 if (osp->sectindex == -1)
480 continue;
481
482 /* Record all sections in offsets. */
483 /* The section_offsets in the objfile are here filled in using
484 the BFD index. */
485 section_offsets->offsets[osp->sectindex] = osp->addr;
486 }
487 }
488
489 /* Transform section name S for a name comparison. prelink can split section
490 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
491 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
492 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
493 (`.sbss') section has invalid (increased) virtual address. */
494
495 static const char *
496 addr_section_name (const char *s)
497 {
498 if (strcmp (s, ".dynbss") == 0)
499 return ".bss";
500 if (strcmp (s, ".sdynbss") == 0)
501 return ".sbss";
502
503 return s;
504 }
505
506 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
507 their (name, sectindex) pair. sectindex makes the sort by name stable. */
508
509 static int
510 addrs_section_compar (const void *ap, const void *bp)
511 {
512 const struct other_sections *a = *((struct other_sections **) ap);
513 const struct other_sections *b = *((struct other_sections **) bp);
514 int retval;
515
516 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
517 if (retval)
518 return retval;
519
520 return a->sectindex - b->sectindex;
521 }
522
523 /* Provide sorted array of pointers to sections of ADDRS. The array is
524 terminated by NULL. Caller is responsible to call xfree for it. */
525
526 static struct other_sections **
527 addrs_section_sort (struct section_addr_info *addrs)
528 {
529 struct other_sections **array;
530 int i;
531
532 /* `+ 1' for the NULL terminator. */
533 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
534 for (i = 0; i < addrs->num_sections; i++)
535 array[i] = &addrs->other[i];
536 array[i] = NULL;
537
538 qsort (array, i, sizeof (*array), addrs_section_compar);
539
540 return array;
541 }
542
543 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
544 also SECTINDEXes specific to ABFD there. This function can be used to
545 rebase ADDRS to start referencing different BFD than before. */
546
547 void
548 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
549 {
550 asection *lower_sect;
551 CORE_ADDR lower_offset;
552 int i;
553 struct cleanup *my_cleanup;
554 struct section_addr_info *abfd_addrs;
555 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
556 struct other_sections **addrs_to_abfd_addrs;
557
558 /* Find lowest loadable section to be used as starting point for
559 continguous sections. */
560 lower_sect = NULL;
561 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
562 if (lower_sect == NULL)
563 {
564 warning (_("no loadable sections found in added symbol-file %s"),
565 bfd_get_filename (abfd));
566 lower_offset = 0;
567 }
568 else
569 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
570
571 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
572 in ABFD. Section names are not unique - there can be multiple sections of
573 the same name. Also the sections of the same name do not have to be
574 adjacent to each other. Some sections may be present only in one of the
575 files. Even sections present in both files do not have to be in the same
576 order.
577
578 Use stable sort by name for the sections in both files. Then linearly
579 scan both lists matching as most of the entries as possible. */
580
581 addrs_sorted = addrs_section_sort (addrs);
582 my_cleanup = make_cleanup (xfree, addrs_sorted);
583
584 abfd_addrs = build_section_addr_info_from_bfd (abfd);
585 make_cleanup_free_section_addr_info (abfd_addrs);
586 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
587 make_cleanup (xfree, abfd_addrs_sorted);
588
589 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
590 ABFD_ADDRS_SORTED. */
591
592 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
593 make_cleanup (xfree, addrs_to_abfd_addrs);
594
595 while (*addrs_sorted)
596 {
597 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
598
599 while (*abfd_addrs_sorted
600 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
601 sect_name) < 0)
602 abfd_addrs_sorted++;
603
604 if (*abfd_addrs_sorted
605 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
606 sect_name) == 0)
607 {
608 int index_in_addrs;
609
610 /* Make the found item directly addressable from ADDRS. */
611 index_in_addrs = *addrs_sorted - addrs->other;
612 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
613 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
614
615 /* Never use the same ABFD entry twice. */
616 abfd_addrs_sorted++;
617 }
618
619 addrs_sorted++;
620 }
621
622 /* Calculate offsets for the loadable sections.
623 FIXME! Sections must be in order of increasing loadable section
624 so that contiguous sections can use the lower-offset!!!
625
626 Adjust offsets if the segments are not contiguous.
627 If the section is contiguous, its offset should be set to
628 the offset of the highest loadable section lower than it
629 (the loadable section directly below it in memory).
630 this_offset = lower_offset = lower_addr - lower_orig_addr */
631
632 for (i = 0; i < addrs->num_sections; i++)
633 {
634 struct other_sections *sect = addrs_to_abfd_addrs[i];
635
636 if (sect)
637 {
638 /* This is the index used by BFD. */
639 addrs->other[i].sectindex = sect->sectindex;
640
641 if (addrs->other[i].addr != 0)
642 {
643 addrs->other[i].addr -= sect->addr;
644 lower_offset = addrs->other[i].addr;
645 }
646 else
647 addrs->other[i].addr = lower_offset;
648 }
649 else
650 {
651 /* addr_section_name transformation is not used for SECT_NAME. */
652 const char *sect_name = addrs->other[i].name;
653
654 /* This section does not exist in ABFD, which is normally
655 unexpected and we want to issue a warning.
656
657 However, the ELF prelinker does create a few sections which are
658 marked in the main executable as loadable (they are loaded in
659 memory from the DYNAMIC segment) and yet are not present in
660 separate debug info files. This is fine, and should not cause
661 a warning. Shared libraries contain just the section
662 ".gnu.liblist" but it is not marked as loadable there. There is
663 no other way to identify them than by their name as the sections
664 created by prelink have no special flags.
665
666 For the sections `.bss' and `.sbss' see addr_section_name. */
667
668 if (!(strcmp (sect_name, ".gnu.liblist") == 0
669 || strcmp (sect_name, ".gnu.conflict") == 0
670 || (strcmp (sect_name, ".bss") == 0
671 && i > 0
672 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
673 && addrs_to_abfd_addrs[i - 1] != NULL)
674 || (strcmp (sect_name, ".sbss") == 0
675 && i > 0
676 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
677 && addrs_to_abfd_addrs[i - 1] != NULL)))
678 warning (_("section %s not found in %s"), sect_name,
679 bfd_get_filename (abfd));
680
681 addrs->other[i].addr = 0;
682 addrs->other[i].sectindex = -1;
683 }
684 }
685
686 do_cleanups (my_cleanup);
687 }
688
689 /* Parse the user's idea of an offset for dynamic linking, into our idea
690 of how to represent it for fast symbol reading. This is the default
691 version of the sym_fns.sym_offsets function for symbol readers that
692 don't need to do anything special. It allocates a section_offsets table
693 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
694
695 void
696 default_symfile_offsets (struct objfile *objfile,
697 const struct section_addr_info *addrs)
698 {
699 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
700 objfile->section_offsets = (struct section_offsets *)
701 obstack_alloc (&objfile->objfile_obstack,
702 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
703 relative_addr_info_to_section_offsets (objfile->section_offsets,
704 objfile->num_sections, addrs);
705
706 /* For relocatable files, all loadable sections will start at zero.
707 The zero is meaningless, so try to pick arbitrary addresses such
708 that no loadable sections overlap. This algorithm is quadratic,
709 but the number of sections in a single object file is generally
710 small. */
711 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
712 {
713 struct place_section_arg arg;
714 bfd *abfd = objfile->obfd;
715 asection *cur_sec;
716
717 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
718 /* We do not expect this to happen; just skip this step if the
719 relocatable file has a section with an assigned VMA. */
720 if (bfd_section_vma (abfd, cur_sec) != 0)
721 break;
722
723 if (cur_sec == NULL)
724 {
725 CORE_ADDR *offsets = objfile->section_offsets->offsets;
726
727 /* Pick non-overlapping offsets for sections the user did not
728 place explicitly. */
729 arg.offsets = objfile->section_offsets;
730 arg.lowest = 0;
731 bfd_map_over_sections (objfile->obfd, place_section, &arg);
732
733 /* Correctly filling in the section offsets is not quite
734 enough. Relocatable files have two properties that
735 (most) shared objects do not:
736
737 - Their debug information will contain relocations. Some
738 shared libraries do also, but many do not, so this can not
739 be assumed.
740
741 - If there are multiple code sections they will be loaded
742 at different relative addresses in memory than they are
743 in the objfile, since all sections in the file will start
744 at address zero.
745
746 Because GDB has very limited ability to map from an
747 address in debug info to the correct code section,
748 it relies on adding SECT_OFF_TEXT to things which might be
749 code. If we clear all the section offsets, and set the
750 section VMAs instead, then symfile_relocate_debug_section
751 will return meaningful debug information pointing at the
752 correct sections.
753
754 GDB has too many different data structures for section
755 addresses - a bfd, objfile, and so_list all have section
756 tables, as does exec_ops. Some of these could probably
757 be eliminated. */
758
759 for (cur_sec = abfd->sections; cur_sec != NULL;
760 cur_sec = cur_sec->next)
761 {
762 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
763 continue;
764
765 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
766 exec_set_section_address (bfd_get_filename (abfd),
767 cur_sec->index,
768 offsets[cur_sec->index]);
769 offsets[cur_sec->index] = 0;
770 }
771 }
772 }
773
774 /* Remember the bfd indexes for the .text, .data, .bss and
775 .rodata sections. */
776 init_objfile_sect_indices (objfile);
777 }
778
779 /* Divide the file into segments, which are individual relocatable units.
780 This is the default version of the sym_fns.sym_segments function for
781 symbol readers that do not have an explicit representation of segments.
782 It assumes that object files do not have segments, and fully linked
783 files have a single segment. */
784
785 struct symfile_segment_data *
786 default_symfile_segments (bfd *abfd)
787 {
788 int num_sections, i;
789 asection *sect;
790 struct symfile_segment_data *data;
791 CORE_ADDR low, high;
792
793 /* Relocatable files contain enough information to position each
794 loadable section independently; they should not be relocated
795 in segments. */
796 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
797 return NULL;
798
799 /* Make sure there is at least one loadable section in the file. */
800 for (sect = abfd->sections; sect != NULL; sect = sect->next)
801 {
802 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
803 continue;
804
805 break;
806 }
807 if (sect == NULL)
808 return NULL;
809
810 low = bfd_get_section_vma (abfd, sect);
811 high = low + bfd_get_section_size (sect);
812
813 data = XCNEW (struct symfile_segment_data);
814 data->num_segments = 1;
815 data->segment_bases = XCNEW (CORE_ADDR);
816 data->segment_sizes = XCNEW (CORE_ADDR);
817
818 num_sections = bfd_count_sections (abfd);
819 data->segment_info = XCNEWVEC (int, num_sections);
820
821 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
822 {
823 CORE_ADDR vma;
824
825 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
826 continue;
827
828 vma = bfd_get_section_vma (abfd, sect);
829 if (vma < low)
830 low = vma;
831 if (vma + bfd_get_section_size (sect) > high)
832 high = vma + bfd_get_section_size (sect);
833
834 data->segment_info[i] = 1;
835 }
836
837 data->segment_bases[0] = low;
838 data->segment_sizes[0] = high - low;
839
840 return data;
841 }
842
843 /* This is a convenience function to call sym_read for OBJFILE and
844 possibly force the partial symbols to be read. */
845
846 static void
847 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
848 {
849 (*objfile->sf->sym_read) (objfile, add_flags);
850 objfile->per_bfd->minsyms_read = true;
851
852 /* find_separate_debug_file_in_section should be called only if there is
853 single binary with no existing separate debug info file. */
854 if (!objfile_has_partial_symbols (objfile)
855 && objfile->separate_debug_objfile == NULL
856 && objfile->separate_debug_objfile_backlink == NULL)
857 {
858 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
859
860 if (abfd != NULL)
861 {
862 /* find_separate_debug_file_in_section uses the same filename for the
863 virtual section-as-bfd like the bfd filename containing the
864 section. Therefore use also non-canonical name form for the same
865 file containing the section. */
866 symbol_file_add_separate (abfd.get (), objfile->original_name,
867 add_flags, objfile);
868 }
869 }
870 if ((add_flags & SYMFILE_NO_READ) == 0)
871 require_partial_symbols (objfile, 0);
872 }
873
874 /* Initialize entry point information for this objfile. */
875
876 static void
877 init_entry_point_info (struct objfile *objfile)
878 {
879 struct entry_info *ei = &objfile->per_bfd->ei;
880
881 if (ei->initialized)
882 return;
883 ei->initialized = 1;
884
885 /* Save startup file's range of PC addresses to help blockframe.c
886 decide where the bottom of the stack is. */
887
888 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
889 {
890 /* Executable file -- record its entry point so we'll recognize
891 the startup file because it contains the entry point. */
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
894 }
895 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
896 && bfd_get_start_address (objfile->obfd) != 0)
897 {
898 /* Some shared libraries may have entry points set and be
899 runnable. There's no clear way to indicate this, so just check
900 for values other than zero. */
901 ei->entry_point = bfd_get_start_address (objfile->obfd);
902 ei->entry_point_p = 1;
903 }
904 else
905 {
906 /* Examination of non-executable.o files. Short-circuit this stuff. */
907 ei->entry_point_p = 0;
908 }
909
910 if (ei->entry_point_p)
911 {
912 struct obj_section *osect;
913 CORE_ADDR entry_point = ei->entry_point;
914 int found;
915
916 /* Make certain that the address points at real code, and not a
917 function descriptor. */
918 entry_point
919 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
920 entry_point,
921 &current_target);
922
923 /* Remove any ISA markers, so that this matches entries in the
924 symbol table. */
925 ei->entry_point
926 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
927
928 found = 0;
929 ALL_OBJFILE_OSECTIONS (objfile, osect)
930 {
931 struct bfd_section *sect = osect->the_bfd_section;
932
933 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
934 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
935 + bfd_get_section_size (sect)))
936 {
937 ei->the_bfd_section_index
938 = gdb_bfd_section_index (objfile->obfd, sect);
939 found = 1;
940 break;
941 }
942 }
943
944 if (!found)
945 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
946 }
947 }
948
949 /* Process a symbol file, as either the main file or as a dynamically
950 loaded file.
951
952 This function does not set the OBJFILE's entry-point info.
953
954 OBJFILE is where the symbols are to be read from.
955
956 ADDRS is the list of section load addresses. If the user has given
957 an 'add-symbol-file' command, then this is the list of offsets and
958 addresses he or she provided as arguments to the command; or, if
959 we're handling a shared library, these are the actual addresses the
960 sections are loaded at, according to the inferior's dynamic linker
961 (as gleaned by GDB's shared library code). We convert each address
962 into an offset from the section VMA's as it appears in the object
963 file, and then call the file's sym_offsets function to convert this
964 into a format-specific offset table --- a `struct section_offsets'.
965
966 ADD_FLAGS encodes verbosity level, whether this is main symbol or
967 an extra symbol file such as dynamically loaded code, and wether
968 breakpoint reset should be deferred. */
969
970 static void
971 syms_from_objfile_1 (struct objfile *objfile,
972 struct section_addr_info *addrs,
973 symfile_add_flags add_flags)
974 {
975 struct section_addr_info *local_addr = NULL;
976 struct cleanup *old_chain;
977 const int mainline = add_flags & SYMFILE_MAINLINE;
978
979 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
980
981 if (objfile->sf == NULL)
982 {
983 /* No symbols to load, but we still need to make sure
984 that the section_offsets table is allocated. */
985 int num_sections = gdb_bfd_count_sections (objfile->obfd);
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
987
988 objfile->num_sections = num_sections;
989 objfile->section_offsets
990 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
991 size);
992 memset (objfile->section_offsets, 0, size);
993 return;
994 }
995
996 /* Make sure that partially constructed symbol tables will be cleaned up
997 if an error occurs during symbol reading. */
998 old_chain = make_cleanup (null_cleanup, NULL);
999 std::unique_ptr<struct objfile> objfile_holder (objfile);
1000
1001 /* If ADDRS is NULL, put together a dummy address list.
1002 We now establish the convention that an addr of zero means
1003 no load address was specified. */
1004 if (! addrs)
1005 {
1006 local_addr = alloc_section_addr_info (1);
1007 make_cleanup (xfree, local_addr);
1008 addrs = local_addr;
1009 }
1010
1011 if (mainline)
1012 {
1013 /* We will modify the main symbol table, make sure that all its users
1014 will be cleaned up if an error occurs during symbol reading. */
1015 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1016
1017 /* Since no error yet, throw away the old symbol table. */
1018
1019 if (symfile_objfile != NULL)
1020 {
1021 delete symfile_objfile;
1022 gdb_assert (symfile_objfile == NULL);
1023 }
1024
1025 /* Currently we keep symbols from the add-symbol-file command.
1026 If the user wants to get rid of them, they should do "symbol-file"
1027 without arguments first. Not sure this is the best behavior
1028 (PR 2207). */
1029
1030 (*objfile->sf->sym_new_init) (objfile);
1031 }
1032
1033 /* Convert addr into an offset rather than an absolute address.
1034 We find the lowest address of a loaded segment in the objfile,
1035 and assume that <addr> is where that got loaded.
1036
1037 We no longer warn if the lowest section is not a text segment (as
1038 happens for the PA64 port. */
1039 if (addrs->num_sections > 0)
1040 addr_info_make_relative (addrs, objfile->obfd);
1041
1042 /* Initialize symbol reading routines for this objfile, allow complaints to
1043 appear for this new file, and record how verbose to be, then do the
1044 initial symbol reading for this file. */
1045
1046 (*objfile->sf->sym_init) (objfile);
1047 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1048
1049 (*objfile->sf->sym_offsets) (objfile, addrs);
1050
1051 read_symbols (objfile, add_flags);
1052
1053 /* Discard cleanups as symbol reading was successful. */
1054
1055 objfile_holder.release ();
1056 discard_cleanups (old_chain);
1057 xfree (local_addr);
1058 }
1059
1060 /* Same as syms_from_objfile_1, but also initializes the objfile
1061 entry-point info. */
1062
1063 static void
1064 syms_from_objfile (struct objfile *objfile,
1065 struct section_addr_info *addrs,
1066 symfile_add_flags add_flags)
1067 {
1068 syms_from_objfile_1 (objfile, addrs, add_flags);
1069 init_entry_point_info (objfile);
1070 }
1071
1072 /* Perform required actions after either reading in the initial
1073 symbols for a new objfile, or mapping in the symbols from a reusable
1074 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1075
1076 static void
1077 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1078 {
1079 /* If this is the main symbol file we have to clean up all users of the
1080 old main symbol file. Otherwise it is sufficient to fixup all the
1081 breakpoints that may have been redefined by this symbol file. */
1082 if (add_flags & SYMFILE_MAINLINE)
1083 {
1084 /* OK, make it the "real" symbol file. */
1085 symfile_objfile = objfile;
1086
1087 clear_symtab_users (add_flags);
1088 }
1089 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1090 {
1091 breakpoint_re_set ();
1092 }
1093
1094 /* We're done reading the symbol file; finish off complaints. */
1095 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1096 }
1097
1098 /* Process a symbol file, as either the main file or as a dynamically
1099 loaded file.
1100
1101 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1102 A new reference is acquired by this function.
1103
1104 For NAME description see the objfile constructor.
1105
1106 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1107 extra, such as dynamically loaded code, and what to do with breakpoins.
1108
1109 ADDRS is as described for syms_from_objfile_1, above.
1110 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1111
1112 PARENT is the original objfile if ABFD is a separate debug info file.
1113 Otherwise PARENT is NULL.
1114
1115 Upon success, returns a pointer to the objfile that was added.
1116 Upon failure, jumps back to command level (never returns). */
1117
1118 static struct objfile *
1119 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1120 symfile_add_flags add_flags,
1121 struct section_addr_info *addrs,
1122 objfile_flags flags, struct objfile *parent)
1123 {
1124 struct objfile *objfile;
1125 const int from_tty = add_flags & SYMFILE_VERBOSE;
1126 const int mainline = add_flags & SYMFILE_MAINLINE;
1127 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1128 && (readnow_symbol_files
1129 || (add_flags & SYMFILE_NO_READ) == 0));
1130
1131 if (readnow_symbol_files)
1132 {
1133 flags |= OBJF_READNOW;
1134 add_flags &= ~SYMFILE_NO_READ;
1135 }
1136
1137 /* Give user a chance to burp if we'd be
1138 interactively wiping out any existing symbols. */
1139
1140 if ((have_full_symbols () || have_partial_symbols ())
1141 && mainline
1142 && from_tty
1143 && !query (_("Load new symbol table from \"%s\"? "), name))
1144 error (_("Not confirmed."));
1145
1146 if (mainline)
1147 flags |= OBJF_MAINLINE;
1148 objfile = new struct objfile (abfd, name, flags);
1149
1150 if (parent)
1151 add_separate_debug_objfile (objfile, parent);
1152
1153 /* We either created a new mapped symbol table, mapped an existing
1154 symbol table file which has not had initial symbol reading
1155 performed, or need to read an unmapped symbol table. */
1156 if (should_print)
1157 {
1158 if (deprecated_pre_add_symbol_hook)
1159 deprecated_pre_add_symbol_hook (name);
1160 else
1161 {
1162 printf_unfiltered (_("Reading symbols from %s..."), name);
1163 wrap_here ("");
1164 gdb_flush (gdb_stdout);
1165 }
1166 }
1167 syms_from_objfile (objfile, addrs, add_flags);
1168
1169 /* We now have at least a partial symbol table. Check to see if the
1170 user requested that all symbols be read on initial access via either
1171 the gdb startup command line or on a per symbol file basis. Expand
1172 all partial symbol tables for this objfile if so. */
1173
1174 if ((flags & OBJF_READNOW))
1175 {
1176 if (should_print)
1177 {
1178 printf_unfiltered (_("expanding to full symbols..."));
1179 wrap_here ("");
1180 gdb_flush (gdb_stdout);
1181 }
1182
1183 if (objfile->sf)
1184 objfile->sf->qf->expand_all_symtabs (objfile);
1185 }
1186
1187 if (should_print && !objfile_has_symbols (objfile))
1188 {
1189 wrap_here ("");
1190 printf_unfiltered (_("(no debugging symbols found)..."));
1191 wrap_here ("");
1192 }
1193
1194 if (should_print)
1195 {
1196 if (deprecated_post_add_symbol_hook)
1197 deprecated_post_add_symbol_hook ();
1198 else
1199 printf_unfiltered (_("done.\n"));
1200 }
1201
1202 /* We print some messages regardless of whether 'from_tty ||
1203 info_verbose' is true, so make sure they go out at the right
1204 time. */
1205 gdb_flush (gdb_stdout);
1206
1207 if (objfile->sf == NULL)
1208 {
1209 observer_notify_new_objfile (objfile);
1210 return objfile; /* No symbols. */
1211 }
1212
1213 finish_new_objfile (objfile, add_flags);
1214
1215 observer_notify_new_objfile (objfile);
1216
1217 bfd_cache_close_all ();
1218 return (objfile);
1219 }
1220
1221 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1222 see the objfile constructor. */
1223
1224 void
1225 symbol_file_add_separate (bfd *bfd, const char *name,
1226 symfile_add_flags symfile_flags,
1227 struct objfile *objfile)
1228 {
1229 struct section_addr_info *sap;
1230 struct cleanup *my_cleanup;
1231
1232 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1233 because sections of BFD may not match sections of OBJFILE and because
1234 vma may have been modified by tools such as prelink. */
1235 sap = build_section_addr_info_from_objfile (objfile);
1236 my_cleanup = make_cleanup_free_section_addr_info (sap);
1237
1238 symbol_file_add_with_addrs
1239 (bfd, name, symfile_flags, sap,
1240 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1241 | OBJF_USERLOADED),
1242 objfile);
1243
1244 do_cleanups (my_cleanup);
1245 }
1246
1247 /* Process the symbol file ABFD, as either the main file or as a
1248 dynamically loaded file.
1249 See symbol_file_add_with_addrs's comments for details. */
1250
1251 struct objfile *
1252 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1253 symfile_add_flags add_flags,
1254 struct section_addr_info *addrs,
1255 objfile_flags flags, struct objfile *parent)
1256 {
1257 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1258 parent);
1259 }
1260
1261 /* Process a symbol file, as either the main file or as a dynamically
1262 loaded file. See symbol_file_add_with_addrs's comments for details. */
1263
1264 struct objfile *
1265 symbol_file_add (const char *name, symfile_add_flags add_flags,
1266 struct section_addr_info *addrs, objfile_flags flags)
1267 {
1268 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1269
1270 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1271 flags, NULL);
1272 }
1273
1274 /* Call symbol_file_add() with default values and update whatever is
1275 affected by the loading of a new main().
1276 Used when the file is supplied in the gdb command line
1277 and by some targets with special loading requirements.
1278 The auxiliary function, symbol_file_add_main_1(), has the flags
1279 argument for the switches that can only be specified in the symbol_file
1280 command itself. */
1281
1282 void
1283 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1284 {
1285 symbol_file_add_main_1 (args, add_flags, 0);
1286 }
1287
1288 static void
1289 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1290 objfile_flags flags)
1291 {
1292 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1293
1294 symbol_file_add (args, add_flags, NULL, flags);
1295
1296 /* Getting new symbols may change our opinion about
1297 what is frameless. */
1298 reinit_frame_cache ();
1299
1300 if ((add_flags & SYMFILE_NO_READ) == 0)
1301 set_initial_language ();
1302 }
1303
1304 void
1305 symbol_file_clear (int from_tty)
1306 {
1307 if ((have_full_symbols () || have_partial_symbols ())
1308 && from_tty
1309 && (symfile_objfile
1310 ? !query (_("Discard symbol table from `%s'? "),
1311 objfile_name (symfile_objfile))
1312 : !query (_("Discard symbol table? "))))
1313 error (_("Not confirmed."));
1314
1315 /* solib descriptors may have handles to objfiles. Wipe them before their
1316 objfiles get stale by free_all_objfiles. */
1317 no_shared_libraries (NULL, from_tty);
1318
1319 free_all_objfiles ();
1320
1321 gdb_assert (symfile_objfile == NULL);
1322 if (from_tty)
1323 printf_unfiltered (_("No symbol file now.\n"));
1324 }
1325
1326 /* See symfile.h. */
1327
1328 int separate_debug_file_debug = 0;
1329
1330 static int
1331 separate_debug_file_exists (const char *name, unsigned long crc,
1332 struct objfile *parent_objfile)
1333 {
1334 unsigned long file_crc;
1335 int file_crc_p;
1336 struct stat parent_stat, abfd_stat;
1337 int verified_as_different;
1338
1339 /* Find a separate debug info file as if symbols would be present in
1340 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1341 section can contain just the basename of PARENT_OBJFILE without any
1342 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1343 the separate debug infos with the same basename can exist. */
1344
1345 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1346 return 0;
1347
1348 if (separate_debug_file_debug)
1349 printf_unfiltered (_(" Trying %s\n"), name);
1350
1351 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1352
1353 if (abfd == NULL)
1354 return 0;
1355
1356 /* Verify symlinks were not the cause of filename_cmp name difference above.
1357
1358 Some operating systems, e.g. Windows, do not provide a meaningful
1359 st_ino; they always set it to zero. (Windows does provide a
1360 meaningful st_dev.) Files accessed from gdbservers that do not
1361 support the vFile:fstat packet will also have st_ino set to zero.
1362 Do not indicate a duplicate library in either case. While there
1363 is no guarantee that a system that provides meaningful inode
1364 numbers will never set st_ino to zero, this is merely an
1365 optimization, so we do not need to worry about false negatives. */
1366
1367 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1368 && abfd_stat.st_ino != 0
1369 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1370 {
1371 if (abfd_stat.st_dev == parent_stat.st_dev
1372 && abfd_stat.st_ino == parent_stat.st_ino)
1373 return 0;
1374 verified_as_different = 1;
1375 }
1376 else
1377 verified_as_different = 0;
1378
1379 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1380
1381 if (!file_crc_p)
1382 return 0;
1383
1384 if (crc != file_crc)
1385 {
1386 unsigned long parent_crc;
1387
1388 /* If the files could not be verified as different with
1389 bfd_stat then we need to calculate the parent's CRC
1390 to verify whether the files are different or not. */
1391
1392 if (!verified_as_different)
1393 {
1394 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1395 return 0;
1396 }
1397
1398 if (verified_as_different || parent_crc != file_crc)
1399 warning (_("the debug information found in \"%s\""
1400 " does not match \"%s\" (CRC mismatch).\n"),
1401 name, objfile_name (parent_objfile));
1402
1403 return 0;
1404 }
1405
1406 return 1;
1407 }
1408
1409 char *debug_file_directory = NULL;
1410 static void
1411 show_debug_file_directory (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413 {
1414 fprintf_filtered (file,
1415 _("The directory where separate debug "
1416 "symbols are searched for is \"%s\".\n"),
1417 value);
1418 }
1419
1420 #if ! defined (DEBUG_SUBDIRECTORY)
1421 #define DEBUG_SUBDIRECTORY ".debug"
1422 #endif
1423
1424 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1425 where the original file resides (may not be the same as
1426 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1427 looking for. CANON_DIR is the "realpath" form of DIR.
1428 DIR must contain a trailing '/'.
1429 Returns the path of the file with separate debug info, of NULL. */
1430
1431 static char *
1432 find_separate_debug_file (const char *dir,
1433 const char *canon_dir,
1434 const char *debuglink,
1435 unsigned long crc32, struct objfile *objfile)
1436 {
1437 char *debugdir;
1438 char *debugfile;
1439 int i;
1440 VEC (char_ptr) *debugdir_vec;
1441 struct cleanup *back_to;
1442 int ix;
1443
1444 if (separate_debug_file_debug)
1445 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1446 "%s\n"), objfile_name (objfile));
1447
1448 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1449 i = strlen (dir);
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1452
1453 debugfile
1454 = (char *) xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1463 strcat (debugfile, debuglink);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* Then try in the global debugfile directories.
1478
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
1481
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1484
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
1488 strcat (debugfile, "/");
1489 strcat (debugfile, dir);
1490 strcat (debugfile, debuglink);
1491
1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1493 {
1494 do_cleanups (back_to);
1495 return debugfile;
1496 }
1497
1498 /* If the file is in the sysroot, try using its base path in the
1499 global debugfile directory. */
1500 if (canon_dir != NULL
1501 && filename_ncmp (canon_dir, gdb_sysroot,
1502 strlen (gdb_sysroot)) == 0
1503 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1504 {
1505 strcpy (debugfile, debugdir);
1506 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1507 strcat (debugfile, "/");
1508 strcat (debugfile, debuglink);
1509
1510 if (separate_debug_file_exists (debugfile, crc32, objfile))
1511 {
1512 do_cleanups (back_to);
1513 return debugfile;
1514 }
1515 }
1516 }
1517
1518 do_cleanups (back_to);
1519 xfree (debugfile);
1520 return NULL;
1521 }
1522
1523 /* Modify PATH to contain only "[/]directory/" part of PATH.
1524 If there were no directory separators in PATH, PATH will be empty
1525 string on return. */
1526
1527 static void
1528 terminate_after_last_dir_separator (char *path)
1529 {
1530 int i;
1531
1532 /* Strip off the final filename part, leaving the directory name,
1533 followed by a slash. The directory can be relative or absolute. */
1534 for (i = strlen(path) - 1; i >= 0; i--)
1535 if (IS_DIR_SEPARATOR (path[i]))
1536 break;
1537
1538 /* If I is -1 then no directory is present there and DIR will be "". */
1539 path[i + 1] = '\0';
1540 }
1541
1542 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1543 Returns pathname, or NULL. */
1544
1545 char *
1546 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1547 {
1548 char *debugfile;
1549 unsigned long crc32;
1550
1551 gdb::unique_xmalloc_ptr<char> debuglink
1552 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1553
1554 if (debuglink == NULL)
1555 {
1556 /* There's no separate debug info, hence there's no way we could
1557 load it => no warning. */
1558 return NULL;
1559 }
1560
1561 std::string dir = objfile_name (objfile);
1562 terminate_after_last_dir_separator (&dir[0]);
1563 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1564
1565 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1566 debuglink.get (), crc32, objfile);
1567
1568 if (debugfile == NULL)
1569 {
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile_name (objfile), &st_buf) == 0
1576 && S_ISLNK (st_buf.st_mode))
1577 {
1578 gdb::unique_xmalloc_ptr<char> symlink_dir
1579 (lrealpath (objfile_name (objfile)));
1580 if (symlink_dir != NULL)
1581 {
1582 terminate_after_last_dir_separator (symlink_dir.get ());
1583 if (dir != symlink_dir.get ())
1584 {
1585 /* Different directory, so try using it. */
1586 debugfile = find_separate_debug_file (symlink_dir.get (),
1587 symlink_dir.get (),
1588 debuglink.get (),
1589 crc32,
1590 objfile);
1591 }
1592 }
1593 }
1594 }
1595
1596 return debugfile;
1597 }
1598
1599 /* This is the symbol-file command. Read the file, analyze its
1600 symbols, and add a struct symtab to a symtab list. The syntax of
1601 the command is rather bizarre:
1602
1603 1. The function buildargv implements various quoting conventions
1604 which are undocumented and have little or nothing in common with
1605 the way things are quoted (or not quoted) elsewhere in GDB.
1606
1607 2. Options are used, which are not generally used in GDB (perhaps
1608 "set mapped on", "set readnow on" would be better)
1609
1610 3. The order of options matters, which is contrary to GNU
1611 conventions (because it is confusing and inconvenient). */
1612
1613 void
1614 symbol_file_command (const char *args, int from_tty)
1615 {
1616 dont_repeat ();
1617
1618 if (args == NULL)
1619 {
1620 symbol_file_clear (from_tty);
1621 }
1622 else
1623 {
1624 objfile_flags flags = OBJF_USERLOADED;
1625 symfile_add_flags add_flags = 0;
1626 char *name = NULL;
1627
1628 if (from_tty)
1629 add_flags |= SYMFILE_VERBOSE;
1630
1631 gdb_argv built_argv (args);
1632 for (char *arg : built_argv)
1633 {
1634 if (strcmp (arg, "-readnow") == 0)
1635 flags |= OBJF_READNOW;
1636 else if (*arg == '-')
1637 error (_("unknown option `%s'"), arg);
1638 else
1639 {
1640 symbol_file_add_main_1 (arg, add_flags, flags);
1641 name = arg;
1642 }
1643 }
1644
1645 if (name == NULL)
1646 error (_("no symbol file name was specified"));
1647 }
1648 }
1649
1650 /* Set the initial language.
1651
1652 FIXME: A better solution would be to record the language in the
1653 psymtab when reading partial symbols, and then use it (if known) to
1654 set the language. This would be a win for formats that encode the
1655 language in an easily discoverable place, such as DWARF. For
1656 stabs, we can jump through hoops looking for specially named
1657 symbols or try to intuit the language from the specific type of
1658 stabs we find, but we can't do that until later when we read in
1659 full symbols. */
1660
1661 void
1662 set_initial_language (void)
1663 {
1664 enum language lang = main_language ();
1665
1666 if (lang == language_unknown)
1667 {
1668 char *name = main_name ();
1669 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1670
1671 if (sym != NULL)
1672 lang = SYMBOL_LANGUAGE (sym);
1673 }
1674
1675 if (lang == language_unknown)
1676 {
1677 /* Make C the default language */
1678 lang = language_c;
1679 }
1680
1681 set_language (lang);
1682 expected_language = current_language; /* Don't warn the user. */
1683 }
1684
1685 /* Open the file specified by NAME and hand it off to BFD for
1686 preliminary analysis. Return a newly initialized bfd *, which
1687 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1688 absolute). In case of trouble, error() is called. */
1689
1690 gdb_bfd_ref_ptr
1691 symfile_bfd_open (const char *name)
1692 {
1693 int desc = -1;
1694 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1695
1696 if (!is_target_filename (name))
1697 {
1698 char *absolute_name;
1699
1700 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1701
1702 /* Look down path for it, allocate 2nd new malloc'd copy. */
1703 desc = openp (getenv ("PATH"),
1704 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1705 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1706 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1707 if (desc < 0)
1708 {
1709 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1710
1711 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1712 desc = openp (getenv ("PATH"),
1713 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1714 exename, O_RDONLY | O_BINARY, &absolute_name);
1715 }
1716 #endif
1717 if (desc < 0)
1718 perror_with_name (expanded_name.get ());
1719
1720 make_cleanup (xfree, absolute_name);
1721 name = absolute_name;
1722 }
1723
1724 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1725 if (sym_bfd == NULL)
1726 error (_("`%s': can't open to read symbols: %s."), name,
1727 bfd_errmsg (bfd_get_error ()));
1728
1729 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1730 bfd_set_cacheable (sym_bfd.get (), 1);
1731
1732 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1733 error (_("`%s': can't read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 do_cleanups (back_to);
1737
1738 return sym_bfd;
1739 }
1740
1741 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1742 the section was not found. */
1743
1744 int
1745 get_section_index (struct objfile *objfile, const char *section_name)
1746 {
1747 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1748
1749 if (sect)
1750 return sect->index;
1751 else
1752 return -1;
1753 }
1754
1755 /* Link SF into the global symtab_fns list.
1756 FLAVOUR is the file format that SF handles.
1757 Called on startup by the _initialize routine in each object file format
1758 reader, to register information about each format the reader is prepared
1759 to handle. */
1760
1761 void
1762 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1763 {
1764 symtab_fns.emplace_back (flavour, sf);
1765 }
1766
1767 /* Initialize OBJFILE to read symbols from its associated BFD. It
1768 either returns or calls error(). The result is an initialized
1769 struct sym_fns in the objfile structure, that contains cached
1770 information about the symbol file. */
1771
1772 static const struct sym_fns *
1773 find_sym_fns (bfd *abfd)
1774 {
1775 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1776
1777 if (our_flavour == bfd_target_srec_flavour
1778 || our_flavour == bfd_target_ihex_flavour
1779 || our_flavour == bfd_target_tekhex_flavour)
1780 return NULL; /* No symbols. */
1781
1782 for (const registered_sym_fns &rsf : symtab_fns)
1783 if (our_flavour == rsf.sym_flavour)
1784 return rsf.sym_fns;
1785
1786 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1787 bfd_get_target (abfd));
1788 }
1789 \f
1790
1791 /* This function runs the load command of our current target. */
1792
1793 static void
1794 load_command (char *arg, int from_tty)
1795 {
1796 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1797
1798 dont_repeat ();
1799
1800 /* The user might be reloading because the binary has changed. Take
1801 this opportunity to check. */
1802 reopen_exec_file ();
1803 reread_symbols ();
1804
1805 if (arg == NULL)
1806 {
1807 char *parg;
1808 int count = 0;
1809
1810 parg = arg = get_exec_file (1);
1811
1812 /* Count how many \ " ' tab space there are in the name. */
1813 while ((parg = strpbrk (parg, "\\\"'\t ")))
1814 {
1815 parg++;
1816 count++;
1817 }
1818
1819 if (count)
1820 {
1821 /* We need to quote this string so buildargv can pull it apart. */
1822 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1823 char *ptemp = temp;
1824 char *prev;
1825
1826 make_cleanup (xfree, temp);
1827
1828 prev = parg = arg;
1829 while ((parg = strpbrk (parg, "\\\"'\t ")))
1830 {
1831 strncpy (ptemp, prev, parg - prev);
1832 ptemp += parg - prev;
1833 prev = parg++;
1834 *ptemp++ = '\\';
1835 }
1836 strcpy (ptemp, prev);
1837
1838 arg = temp;
1839 }
1840 }
1841
1842 target_load (arg, from_tty);
1843
1844 /* After re-loading the executable, we don't really know which
1845 overlays are mapped any more. */
1846 overlay_cache_invalid = 1;
1847
1848 do_cleanups (cleanup);
1849 }
1850
1851 /* This version of "load" should be usable for any target. Currently
1852 it is just used for remote targets, not inftarg.c or core files,
1853 on the theory that only in that case is it useful.
1854
1855 Avoiding xmodem and the like seems like a win (a) because we don't have
1856 to worry about finding it, and (b) On VMS, fork() is very slow and so
1857 we don't want to run a subprocess. On the other hand, I'm not sure how
1858 performance compares. */
1859
1860 static int validate_download = 0;
1861
1862 /* Callback service function for generic_load (bfd_map_over_sections). */
1863
1864 static void
1865 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1866 {
1867 bfd_size_type *sum = (bfd_size_type *) data;
1868
1869 *sum += bfd_get_section_size (asec);
1870 }
1871
1872 /* Opaque data for load_section_callback. */
1873 struct load_section_data {
1874 CORE_ADDR load_offset;
1875 struct load_progress_data *progress_data;
1876 VEC(memory_write_request_s) *requests;
1877 };
1878
1879 /* Opaque data for load_progress. */
1880 struct load_progress_data {
1881 /* Cumulative data. */
1882 unsigned long write_count;
1883 unsigned long data_count;
1884 bfd_size_type total_size;
1885 };
1886
1887 /* Opaque data for load_progress for a single section. */
1888 struct load_progress_section_data {
1889 struct load_progress_data *cumulative;
1890
1891 /* Per-section data. */
1892 const char *section_name;
1893 ULONGEST section_sent;
1894 ULONGEST section_size;
1895 CORE_ADDR lma;
1896 gdb_byte *buffer;
1897 };
1898
1899 /* Target write callback routine for progress reporting. */
1900
1901 static void
1902 load_progress (ULONGEST bytes, void *untyped_arg)
1903 {
1904 struct load_progress_section_data *args
1905 = (struct load_progress_section_data *) untyped_arg;
1906 struct load_progress_data *totals;
1907
1908 if (args == NULL)
1909 /* Writing padding data. No easy way to get at the cumulative
1910 stats, so just ignore this. */
1911 return;
1912
1913 totals = args->cumulative;
1914
1915 if (bytes == 0 && args->section_sent == 0)
1916 {
1917 /* The write is just starting. Let the user know we've started
1918 this section. */
1919 current_uiout->message ("Loading section %s, size %s lma %s\n",
1920 args->section_name,
1921 hex_string (args->section_size),
1922 paddress (target_gdbarch (), args->lma));
1923 return;
1924 }
1925
1926 if (validate_download)
1927 {
1928 /* Broken memories and broken monitors manifest themselves here
1929 when bring new computers to life. This doubles already slow
1930 downloads. */
1931 /* NOTE: cagney/1999-10-18: A more efficient implementation
1932 might add a verify_memory() method to the target vector and
1933 then use that. remote.c could implement that method using
1934 the ``qCRC'' packet. */
1935 gdb::byte_vector check (bytes);
1936
1937 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1938 error (_("Download verify read failed at %s"),
1939 paddress (target_gdbarch (), args->lma));
1940 if (memcmp (args->buffer, check.data (), bytes) != 0)
1941 error (_("Download verify compare failed at %s"),
1942 paddress (target_gdbarch (), args->lma));
1943 }
1944 totals->data_count += bytes;
1945 args->lma += bytes;
1946 args->buffer += bytes;
1947 totals->write_count += 1;
1948 args->section_sent += bytes;
1949 if (check_quit_flag ()
1950 || (deprecated_ui_load_progress_hook != NULL
1951 && deprecated_ui_load_progress_hook (args->section_name,
1952 args->section_sent)))
1953 error (_("Canceled the download"));
1954
1955 if (deprecated_show_load_progress != NULL)
1956 deprecated_show_load_progress (args->section_name,
1957 args->section_sent,
1958 args->section_size,
1959 totals->data_count,
1960 totals->total_size);
1961 }
1962
1963 /* Callback service function for generic_load (bfd_map_over_sections). */
1964
1965 static void
1966 load_section_callback (bfd *abfd, asection *asec, void *data)
1967 {
1968 struct memory_write_request *new_request;
1969 struct load_section_data *args = (struct load_section_data *) data;
1970 struct load_progress_section_data *section_data;
1971 bfd_size_type size = bfd_get_section_size (asec);
1972 gdb_byte *buffer;
1973 const char *sect_name = bfd_get_section_name (abfd, asec);
1974
1975 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1976 return;
1977
1978 if (size == 0)
1979 return;
1980
1981 new_request = VEC_safe_push (memory_write_request_s,
1982 args->requests, NULL);
1983 memset (new_request, 0, sizeof (struct memory_write_request));
1984 section_data = XCNEW (struct load_progress_section_data);
1985 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1986 new_request->end = new_request->begin + size; /* FIXME Should size
1987 be in instead? */
1988 new_request->data = (gdb_byte *) xmalloc (size);
1989 new_request->baton = section_data;
1990
1991 buffer = new_request->data;
1992
1993 section_data->cumulative = args->progress_data;
1994 section_data->section_name = sect_name;
1995 section_data->section_size = size;
1996 section_data->lma = new_request->begin;
1997 section_data->buffer = buffer;
1998
1999 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2000 }
2001
2002 /* Clean up an entire memory request vector, including load
2003 data and progress records. */
2004
2005 static void
2006 clear_memory_write_data (void *arg)
2007 {
2008 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2009 VEC(memory_write_request_s) *vec = *vec_p;
2010 int i;
2011 struct memory_write_request *mr;
2012
2013 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2014 {
2015 xfree (mr->data);
2016 xfree (mr->baton);
2017 }
2018 VEC_free (memory_write_request_s, vec);
2019 }
2020
2021 static void print_transfer_performance (struct ui_file *stream,
2022 unsigned long data_count,
2023 unsigned long write_count,
2024 std::chrono::steady_clock::duration d);
2025
2026 void
2027 generic_load (const char *args, int from_tty)
2028 {
2029 struct cleanup *old_cleanups;
2030 struct load_section_data cbdata;
2031 struct load_progress_data total_progress;
2032 struct ui_out *uiout = current_uiout;
2033
2034 CORE_ADDR entry;
2035
2036 memset (&cbdata, 0, sizeof (cbdata));
2037 memset (&total_progress, 0, sizeof (total_progress));
2038 cbdata.progress_data = &total_progress;
2039
2040 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2041
2042 if (args == NULL)
2043 error_no_arg (_("file to load"));
2044
2045 gdb_argv argv (args);
2046
2047 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2048
2049 if (argv[1] != NULL)
2050 {
2051 const char *endptr;
2052
2053 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2054
2055 /* If the last word was not a valid number then
2056 treat it as a file name with spaces in. */
2057 if (argv[1] == endptr)
2058 error (_("Invalid download offset:%s."), argv[1]);
2059
2060 if (argv[2] != NULL)
2061 error (_("Too many parameters."));
2062 }
2063
2064 /* Open the file for loading. */
2065 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2066 if (loadfile_bfd == NULL)
2067 perror_with_name (filename.get ());
2068
2069 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2070 {
2071 error (_("\"%s\" is not an object file: %s"), filename.get (),
2072 bfd_errmsg (bfd_get_error ()));
2073 }
2074
2075 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2076 (void *) &total_progress.total_size);
2077
2078 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2079
2080 using namespace std::chrono;
2081
2082 steady_clock::time_point start_time = steady_clock::now ();
2083
2084 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2085 load_progress) != 0)
2086 error (_("Load failed"));
2087
2088 steady_clock::time_point end_time = steady_clock::now ();
2089
2090 entry = bfd_get_start_address (loadfile_bfd.get ());
2091 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2092 uiout->text ("Start address ");
2093 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2094 uiout->text (", load size ");
2095 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2096 uiout->text ("\n");
2097 regcache_write_pc (get_current_regcache (), entry);
2098
2099 /* Reset breakpoints, now that we have changed the load image. For
2100 instance, breakpoints may have been set (or reset, by
2101 post_create_inferior) while connected to the target but before we
2102 loaded the program. In that case, the prologue analyzer could
2103 have read instructions from the target to find the right
2104 breakpoint locations. Loading has changed the contents of that
2105 memory. */
2106
2107 breakpoint_re_set ();
2108
2109 print_transfer_performance (gdb_stdout, total_progress.data_count,
2110 total_progress.write_count,
2111 end_time - start_time);
2112
2113 do_cleanups (old_cleanups);
2114 }
2115
2116 /* Report on STREAM the performance of a memory transfer operation,
2117 such as 'load'. DATA_COUNT is the number of bytes transferred.
2118 WRITE_COUNT is the number of separate write operations, or 0, if
2119 that information is not available. TIME is how long the operation
2120 lasted. */
2121
2122 static void
2123 print_transfer_performance (struct ui_file *stream,
2124 unsigned long data_count,
2125 unsigned long write_count,
2126 std::chrono::steady_clock::duration time)
2127 {
2128 using namespace std::chrono;
2129 struct ui_out *uiout = current_uiout;
2130
2131 milliseconds ms = duration_cast<milliseconds> (time);
2132
2133 uiout->text ("Transfer rate: ");
2134 if (ms.count () > 0)
2135 {
2136 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2137
2138 if (uiout->is_mi_like_p ())
2139 {
2140 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2141 uiout->text (" bits/sec");
2142 }
2143 else if (rate < 1024)
2144 {
2145 uiout->field_fmt ("transfer-rate", "%lu", rate);
2146 uiout->text (" bytes/sec");
2147 }
2148 else
2149 {
2150 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2151 uiout->text (" KB/sec");
2152 }
2153 }
2154 else
2155 {
2156 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2157 uiout->text (" bits in <1 sec");
2158 }
2159 if (write_count > 0)
2160 {
2161 uiout->text (", ");
2162 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2163 uiout->text (" bytes/write");
2164 }
2165 uiout->text (".\n");
2166 }
2167
2168 /* This function allows the addition of incrementally linked object files.
2169 It does not modify any state in the target, only in the debugger. */
2170 /* Note: ezannoni 2000-04-13 This function/command used to have a
2171 special case syntax for the rombug target (Rombug is the boot
2172 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2173 rombug case, the user doesn't need to supply a text address,
2174 instead a call to target_link() (in target.c) would supply the
2175 value to use. We are now discontinuing this type of ad hoc syntax. */
2176
2177 static void
2178 add_symbol_file_command (const char *args, int from_tty)
2179 {
2180 struct gdbarch *gdbarch = get_current_arch ();
2181 gdb::unique_xmalloc_ptr<char> filename;
2182 char *arg;
2183 int argcnt = 0;
2184 int sec_num = 0;
2185 int expecting_sec_name = 0;
2186 int expecting_sec_addr = 0;
2187 struct objfile *objf;
2188 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2189 symfile_add_flags add_flags = 0;
2190
2191 if (from_tty)
2192 add_flags |= SYMFILE_VERBOSE;
2193
2194 struct sect_opt
2195 {
2196 const char *name;
2197 const char *value;
2198 };
2199
2200 struct section_addr_info *section_addrs;
2201 std::vector<sect_opt> sect_opts;
2202 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2203
2204 dont_repeat ();
2205
2206 if (args == NULL)
2207 error (_("add-symbol-file takes a file name and an address"));
2208
2209 gdb_argv argv (args);
2210
2211 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2212 {
2213 /* Process the argument. */
2214 if (argcnt == 0)
2215 {
2216 /* The first argument is the file name. */
2217 filename.reset (tilde_expand (arg));
2218 }
2219 else if (argcnt == 1)
2220 {
2221 /* The second argument is always the text address at which
2222 to load the program. */
2223 sect_opt sect = { ".text", arg };
2224 sect_opts.push_back (sect);
2225 }
2226 else
2227 {
2228 /* It's an option (starting with '-') or it's an argument
2229 to an option. */
2230 if (expecting_sec_name)
2231 {
2232 sect_opt sect = { arg, NULL };
2233 sect_opts.push_back (sect);
2234 expecting_sec_name = 0;
2235 }
2236 else if (expecting_sec_addr)
2237 {
2238 sect_opts.back ().value = arg;
2239 expecting_sec_addr = 0;
2240 }
2241 else if (strcmp (arg, "-readnow") == 0)
2242 flags |= OBJF_READNOW;
2243 else if (strcmp (arg, "-s") == 0)
2244 {
2245 expecting_sec_name = 1;
2246 expecting_sec_addr = 1;
2247 }
2248 else
2249 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2250 " [-readnow] [-s <secname> <addr>]*"));
2251 }
2252 }
2253
2254 /* This command takes at least two arguments. The first one is a
2255 filename, and the second is the address where this file has been
2256 loaded. Abort now if this address hasn't been provided by the
2257 user. */
2258 if (sect_opts.empty ())
2259 error (_("The address where %s has been loaded is missing"),
2260 filename.get ());
2261
2262 /* Print the prompt for the query below. And save the arguments into
2263 a sect_addr_info structure to be passed around to other
2264 functions. We have to split this up into separate print
2265 statements because hex_string returns a local static
2266 string. */
2267
2268 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2269 filename.get ());
2270 section_addrs = alloc_section_addr_info (sect_opts.size ());
2271 make_cleanup (xfree, section_addrs);
2272 for (sect_opt &sect : sect_opts)
2273 {
2274 CORE_ADDR addr;
2275 const char *val = sect.value;
2276 const char *sec = sect.name;
2277
2278 addr = parse_and_eval_address (val);
2279
2280 /* Here we store the section offsets in the order they were
2281 entered on the command line. */
2282 section_addrs->other[sec_num].name = (char *) sec;
2283 section_addrs->other[sec_num].addr = addr;
2284 printf_unfiltered ("\t%s_addr = %s\n", sec,
2285 paddress (gdbarch, addr));
2286 sec_num++;
2287
2288 /* The object's sections are initialized when a
2289 call is made to build_objfile_section_table (objfile).
2290 This happens in reread_symbols.
2291 At this point, we don't know what file type this is,
2292 so we can't determine what section names are valid. */
2293 }
2294 section_addrs->num_sections = sec_num;
2295
2296 if (from_tty && (!query ("%s", "")))
2297 error (_("Not confirmed."));
2298
2299 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2300
2301 add_target_sections_of_objfile (objf);
2302
2303 /* Getting new symbols may change our opinion about what is
2304 frameless. */
2305 reinit_frame_cache ();
2306 do_cleanups (my_cleanups);
2307 }
2308 \f
2309
2310 /* This function removes a symbol file that was added via add-symbol-file. */
2311
2312 static void
2313 remove_symbol_file_command (const char *args, int from_tty)
2314 {
2315 struct objfile *objf = NULL;
2316 struct program_space *pspace = current_program_space;
2317
2318 dont_repeat ();
2319
2320 if (args == NULL)
2321 error (_("remove-symbol-file: no symbol file provided"));
2322
2323 gdb_argv argv (args);
2324
2325 if (strcmp (argv[0], "-a") == 0)
2326 {
2327 /* Interpret the next argument as an address. */
2328 CORE_ADDR addr;
2329
2330 if (argv[1] == NULL)
2331 error (_("Missing address argument"));
2332
2333 if (argv[2] != NULL)
2334 error (_("Junk after %s"), argv[1]);
2335
2336 addr = parse_and_eval_address (argv[1]);
2337
2338 ALL_OBJFILES (objf)
2339 {
2340 if ((objf->flags & OBJF_USERLOADED) != 0
2341 && (objf->flags & OBJF_SHARED) != 0
2342 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2343 break;
2344 }
2345 }
2346 else if (argv[0] != NULL)
2347 {
2348 /* Interpret the current argument as a file name. */
2349
2350 if (argv[1] != NULL)
2351 error (_("Junk after %s"), argv[0]);
2352
2353 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2354
2355 ALL_OBJFILES (objf)
2356 {
2357 if ((objf->flags & OBJF_USERLOADED) != 0
2358 && (objf->flags & OBJF_SHARED) != 0
2359 && objf->pspace == pspace
2360 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2361 break;
2362 }
2363 }
2364
2365 if (objf == NULL)
2366 error (_("No symbol file found"));
2367
2368 if (from_tty
2369 && !query (_("Remove symbol table from file \"%s\"? "),
2370 objfile_name (objf)))
2371 error (_("Not confirmed."));
2372
2373 delete objf;
2374 clear_symtab_users (0);
2375 }
2376
2377 /* Re-read symbols if a symbol-file has changed. */
2378
2379 void
2380 reread_symbols (void)
2381 {
2382 struct objfile *objfile;
2383 long new_modtime;
2384 struct stat new_statbuf;
2385 int res;
2386 std::vector<struct objfile *> new_objfiles;
2387
2388 /* With the addition of shared libraries, this should be modified,
2389 the load time should be saved in the partial symbol tables, since
2390 different tables may come from different source files. FIXME.
2391 This routine should then walk down each partial symbol table
2392 and see if the symbol table that it originates from has been changed. */
2393
2394 for (objfile = object_files; objfile; objfile = objfile->next)
2395 {
2396 if (objfile->obfd == NULL)
2397 continue;
2398
2399 /* Separate debug objfiles are handled in the main objfile. */
2400 if (objfile->separate_debug_objfile_backlink)
2401 continue;
2402
2403 /* If this object is from an archive (what you usually create with
2404 `ar', often called a `static library' on most systems, though
2405 a `shared library' on AIX is also an archive), then you should
2406 stat on the archive name, not member name. */
2407 if (objfile->obfd->my_archive)
2408 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2409 else
2410 res = stat (objfile_name (objfile), &new_statbuf);
2411 if (res != 0)
2412 {
2413 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2414 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2415 objfile_name (objfile));
2416 continue;
2417 }
2418 new_modtime = new_statbuf.st_mtime;
2419 if (new_modtime != objfile->mtime)
2420 {
2421 struct cleanup *old_cleanups;
2422 struct section_offsets *offsets;
2423 int num_offsets;
2424 char *original_name;
2425
2426 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2427 objfile_name (objfile));
2428
2429 /* There are various functions like symbol_file_add,
2430 symfile_bfd_open, syms_from_objfile, etc., which might
2431 appear to do what we want. But they have various other
2432 effects which we *don't* want. So we just do stuff
2433 ourselves. We don't worry about mapped files (for one thing,
2434 any mapped file will be out of date). */
2435
2436 /* If we get an error, blow away this objfile (not sure if
2437 that is the correct response for things like shared
2438 libraries). */
2439 std::unique_ptr<struct objfile> objfile_holder (objfile);
2440
2441 /* We need to do this whenever any symbols go away. */
2442 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2443
2444 if (exec_bfd != NULL
2445 && filename_cmp (bfd_get_filename (objfile->obfd),
2446 bfd_get_filename (exec_bfd)) == 0)
2447 {
2448 /* Reload EXEC_BFD without asking anything. */
2449
2450 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2451 }
2452
2453 /* Keep the calls order approx. the same as in free_objfile. */
2454
2455 /* Free the separate debug objfiles. It will be
2456 automatically recreated by sym_read. */
2457 free_objfile_separate_debug (objfile);
2458
2459 /* Remove any references to this objfile in the global
2460 value lists. */
2461 preserve_values (objfile);
2462
2463 /* Nuke all the state that we will re-read. Much of the following
2464 code which sets things to NULL really is necessary to tell
2465 other parts of GDB that there is nothing currently there.
2466
2467 Try to keep the freeing order compatible with free_objfile. */
2468
2469 if (objfile->sf != NULL)
2470 {
2471 (*objfile->sf->sym_finish) (objfile);
2472 }
2473
2474 clear_objfile_data (objfile);
2475
2476 /* Clean up any state BFD has sitting around. */
2477 {
2478 gdb_bfd_ref_ptr obfd (objfile->obfd);
2479 char *obfd_filename;
2480
2481 obfd_filename = bfd_get_filename (objfile->obfd);
2482 /* Open the new BFD before freeing the old one, so that
2483 the filename remains live. */
2484 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2485 objfile->obfd = temp.release ();
2486 if (objfile->obfd == NULL)
2487 error (_("Can't open %s to read symbols."), obfd_filename);
2488 }
2489
2490 original_name = xstrdup (objfile->original_name);
2491 make_cleanup (xfree, original_name);
2492
2493 /* bfd_openr sets cacheable to true, which is what we want. */
2494 if (!bfd_check_format (objfile->obfd, bfd_object))
2495 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2496 bfd_errmsg (bfd_get_error ()));
2497
2498 /* Save the offsets, we will nuke them with the rest of the
2499 objfile_obstack. */
2500 num_offsets = objfile->num_sections;
2501 offsets = ((struct section_offsets *)
2502 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2503 memcpy (offsets, objfile->section_offsets,
2504 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2505
2506 /* FIXME: Do we have to free a whole linked list, or is this
2507 enough? */
2508 objfile->global_psymbols.clear ();
2509 objfile->static_psymbols.clear ();
2510
2511 /* Free the obstacks for non-reusable objfiles. */
2512 psymbol_bcache_free (objfile->psymbol_cache);
2513 objfile->psymbol_cache = psymbol_bcache_init ();
2514
2515 /* NB: after this call to obstack_free, objfiles_changed
2516 will need to be called (see discussion below). */
2517 obstack_free (&objfile->objfile_obstack, 0);
2518 objfile->sections = NULL;
2519 objfile->compunit_symtabs = NULL;
2520 objfile->psymtabs = NULL;
2521 objfile->psymtabs_addrmap = NULL;
2522 objfile->free_psymtabs = NULL;
2523 objfile->template_symbols = NULL;
2524
2525 /* obstack_init also initializes the obstack so it is
2526 empty. We could use obstack_specify_allocation but
2527 gdb_obstack.h specifies the alloc/dealloc functions. */
2528 obstack_init (&objfile->objfile_obstack);
2529
2530 /* set_objfile_per_bfd potentially allocates the per-bfd
2531 data on the objfile's obstack (if sharing data across
2532 multiple users is not possible), so it's important to
2533 do it *after* the obstack has been initialized. */
2534 set_objfile_per_bfd (objfile);
2535
2536 objfile->original_name
2537 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2538 strlen (original_name));
2539
2540 /* Reset the sym_fns pointer. The ELF reader can change it
2541 based on whether .gdb_index is present, and we need it to
2542 start over. PR symtab/15885 */
2543 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2544
2545 build_objfile_section_table (objfile);
2546 terminate_minimal_symbol_table (objfile);
2547
2548 /* We use the same section offsets as from last time. I'm not
2549 sure whether that is always correct for shared libraries. */
2550 objfile->section_offsets = (struct section_offsets *)
2551 obstack_alloc (&objfile->objfile_obstack,
2552 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2553 memcpy (objfile->section_offsets, offsets,
2554 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2555 objfile->num_sections = num_offsets;
2556
2557 /* What the hell is sym_new_init for, anyway? The concept of
2558 distinguishing between the main file and additional files
2559 in this way seems rather dubious. */
2560 if (objfile == symfile_objfile)
2561 {
2562 (*objfile->sf->sym_new_init) (objfile);
2563 }
2564
2565 (*objfile->sf->sym_init) (objfile);
2566 clear_complaints (&symfile_complaints, 1, 1);
2567
2568 objfile->flags &= ~OBJF_PSYMTABS_READ;
2569
2570 /* We are about to read new symbols and potentially also
2571 DWARF information. Some targets may want to pass addresses
2572 read from DWARF DIE's through an adjustment function before
2573 saving them, like MIPS, which may call into
2574 "find_pc_section". When called, that function will make
2575 use of per-objfile program space data.
2576
2577 Since we discarded our section information above, we have
2578 dangling pointers in the per-objfile program space data
2579 structure. Force GDB to update the section mapping
2580 information by letting it know the objfile has changed,
2581 making the dangling pointers point to correct data
2582 again. */
2583
2584 objfiles_changed ();
2585
2586 read_symbols (objfile, 0);
2587
2588 if (!objfile_has_symbols (objfile))
2589 {
2590 wrap_here ("");
2591 printf_unfiltered (_("(no debugging symbols found)\n"));
2592 wrap_here ("");
2593 }
2594
2595 /* We're done reading the symbol file; finish off complaints. */
2596 clear_complaints (&symfile_complaints, 0, 1);
2597
2598 /* Getting new symbols may change our opinion about what is
2599 frameless. */
2600
2601 reinit_frame_cache ();
2602
2603 /* Discard cleanups as symbol reading was successful. */
2604 objfile_holder.release ();
2605 discard_cleanups (old_cleanups);
2606
2607 /* If the mtime has changed between the time we set new_modtime
2608 and now, we *want* this to be out of date, so don't call stat
2609 again now. */
2610 objfile->mtime = new_modtime;
2611 init_entry_point_info (objfile);
2612
2613 new_objfiles.push_back (objfile);
2614 }
2615 }
2616
2617 if (!new_objfiles.empty ())
2618 {
2619 clear_symtab_users (0);
2620
2621 /* clear_objfile_data for each objfile was called before freeing it and
2622 observer_notify_new_objfile (NULL) has been called by
2623 clear_symtab_users above. Notify the new files now. */
2624 for (auto iter : new_objfiles)
2625 observer_notify_new_objfile (iter);
2626
2627 /* At least one objfile has changed, so we can consider that
2628 the executable we're debugging has changed too. */
2629 observer_notify_executable_changed ();
2630 }
2631 }
2632 \f
2633
2634 struct filename_language
2635 {
2636 filename_language (const std::string &ext_, enum language lang_)
2637 : ext (ext_), lang (lang_)
2638 {}
2639
2640 std::string ext;
2641 enum language lang;
2642 };
2643
2644 static std::vector<filename_language> filename_language_table;
2645
2646 /* See symfile.h. */
2647
2648 void
2649 add_filename_language (const char *ext, enum language lang)
2650 {
2651 filename_language_table.emplace_back (ext, lang);
2652 }
2653
2654 static char *ext_args;
2655 static void
2656 show_ext_args (struct ui_file *file, int from_tty,
2657 struct cmd_list_element *c, const char *value)
2658 {
2659 fprintf_filtered (file,
2660 _("Mapping between filename extension "
2661 "and source language is \"%s\".\n"),
2662 value);
2663 }
2664
2665 static void
2666 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2667 {
2668 char *cp = ext_args;
2669 enum language lang;
2670
2671 /* First arg is filename extension, starting with '.' */
2672 if (*cp != '.')
2673 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2674
2675 /* Find end of first arg. */
2676 while (*cp && !isspace (*cp))
2677 cp++;
2678
2679 if (*cp == '\0')
2680 error (_("'%s': two arguments required -- "
2681 "filename extension and language"),
2682 ext_args);
2683
2684 /* Null-terminate first arg. */
2685 *cp++ = '\0';
2686
2687 /* Find beginning of second arg, which should be a source language. */
2688 cp = skip_spaces (cp);
2689
2690 if (*cp == '\0')
2691 error (_("'%s': two arguments required -- "
2692 "filename extension and language"),
2693 ext_args);
2694
2695 /* Lookup the language from among those we know. */
2696 lang = language_enum (cp);
2697
2698 auto it = filename_language_table.begin ();
2699 /* Now lookup the filename extension: do we already know it? */
2700 for (; it != filename_language_table.end (); it++)
2701 {
2702 if (it->ext == ext_args)
2703 break;
2704 }
2705
2706 if (it == filename_language_table.end ())
2707 {
2708 /* New file extension. */
2709 add_filename_language (ext_args, lang);
2710 }
2711 else
2712 {
2713 /* Redefining a previously known filename extension. */
2714
2715 /* if (from_tty) */
2716 /* query ("Really make files of type %s '%s'?", */
2717 /* ext_args, language_str (lang)); */
2718
2719 it->lang = lang;
2720 }
2721 }
2722
2723 static void
2724 info_ext_lang_command (const char *args, int from_tty)
2725 {
2726 printf_filtered (_("Filename extensions and the languages they represent:"));
2727 printf_filtered ("\n\n");
2728 for (const filename_language &entry : filename_language_table)
2729 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2730 language_str (entry.lang));
2731 }
2732
2733 enum language
2734 deduce_language_from_filename (const char *filename)
2735 {
2736 const char *cp;
2737
2738 if (filename != NULL)
2739 if ((cp = strrchr (filename, '.')) != NULL)
2740 {
2741 for (const filename_language &entry : filename_language_table)
2742 if (entry.ext == cp)
2743 return entry.lang;
2744 }
2745
2746 return language_unknown;
2747 }
2748 \f
2749 /* Allocate and initialize a new symbol table.
2750 CUST is from the result of allocate_compunit_symtab. */
2751
2752 struct symtab *
2753 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2754 {
2755 struct objfile *objfile = cust->objfile;
2756 struct symtab *symtab
2757 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2758
2759 symtab->filename
2760 = (const char *) bcache (filename, strlen (filename) + 1,
2761 objfile->per_bfd->filename_cache);
2762 symtab->fullname = NULL;
2763 symtab->language = deduce_language_from_filename (filename);
2764
2765 /* This can be very verbose with lots of headers.
2766 Only print at higher debug levels. */
2767 if (symtab_create_debug >= 2)
2768 {
2769 /* Be a bit clever with debugging messages, and don't print objfile
2770 every time, only when it changes. */
2771 static char *last_objfile_name = NULL;
2772
2773 if (last_objfile_name == NULL
2774 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2775 {
2776 xfree (last_objfile_name);
2777 last_objfile_name = xstrdup (objfile_name (objfile));
2778 fprintf_unfiltered (gdb_stdlog,
2779 "Creating one or more symtabs for objfile %s ...\n",
2780 last_objfile_name);
2781 }
2782 fprintf_unfiltered (gdb_stdlog,
2783 "Created symtab %s for module %s.\n",
2784 host_address_to_string (symtab), filename);
2785 }
2786
2787 /* Add it to CUST's list of symtabs. */
2788 if (cust->filetabs == NULL)
2789 {
2790 cust->filetabs = symtab;
2791 cust->last_filetab = symtab;
2792 }
2793 else
2794 {
2795 cust->last_filetab->next = symtab;
2796 cust->last_filetab = symtab;
2797 }
2798
2799 /* Backlink to the containing compunit symtab. */
2800 symtab->compunit_symtab = cust;
2801
2802 return symtab;
2803 }
2804
2805 /* Allocate and initialize a new compunit.
2806 NAME is the name of the main source file, if there is one, or some
2807 descriptive text if there are no source files. */
2808
2809 struct compunit_symtab *
2810 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2811 {
2812 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2813 struct compunit_symtab);
2814 const char *saved_name;
2815
2816 cu->objfile = objfile;
2817
2818 /* The name we record here is only for display/debugging purposes.
2819 Just save the basename to avoid path issues (too long for display,
2820 relative vs absolute, etc.). */
2821 saved_name = lbasename (name);
2822 cu->name
2823 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2824 strlen (saved_name));
2825
2826 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2827
2828 if (symtab_create_debug)
2829 {
2830 fprintf_unfiltered (gdb_stdlog,
2831 "Created compunit symtab %s for %s.\n",
2832 host_address_to_string (cu),
2833 cu->name);
2834 }
2835
2836 return cu;
2837 }
2838
2839 /* Hook CU to the objfile it comes from. */
2840
2841 void
2842 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2843 {
2844 cu->next = cu->objfile->compunit_symtabs;
2845 cu->objfile->compunit_symtabs = cu;
2846 }
2847 \f
2848
2849 /* Reset all data structures in gdb which may contain references to
2850 symbol table data. */
2851
2852 void
2853 clear_symtab_users (symfile_add_flags add_flags)
2854 {
2855 /* Someday, we should do better than this, by only blowing away
2856 the things that really need to be blown. */
2857
2858 /* Clear the "current" symtab first, because it is no longer valid.
2859 breakpoint_re_set may try to access the current symtab. */
2860 clear_current_source_symtab_and_line ();
2861
2862 clear_displays ();
2863 clear_last_displayed_sal ();
2864 clear_pc_function_cache ();
2865 observer_notify_new_objfile (NULL);
2866
2867 /* Clear globals which might have pointed into a removed objfile.
2868 FIXME: It's not clear which of these are supposed to persist
2869 between expressions and which ought to be reset each time. */
2870 expression_context_block = NULL;
2871 innermost_block = NULL;
2872
2873 /* Varobj may refer to old symbols, perform a cleanup. */
2874 varobj_invalidate ();
2875
2876 /* Now that the various caches have been cleared, we can re_set
2877 our breakpoints without risking it using stale data. */
2878 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2879 breakpoint_re_set ();
2880 }
2881
2882 static void
2883 clear_symtab_users_cleanup (void *ignore)
2884 {
2885 clear_symtab_users (0);
2886 }
2887 \f
2888 /* OVERLAYS:
2889 The following code implements an abstraction for debugging overlay sections.
2890
2891 The target model is as follows:
2892 1) The gnu linker will permit multiple sections to be mapped into the
2893 same VMA, each with its own unique LMA (or load address).
2894 2) It is assumed that some runtime mechanism exists for mapping the
2895 sections, one by one, from the load address into the VMA address.
2896 3) This code provides a mechanism for gdb to keep track of which
2897 sections should be considered to be mapped from the VMA to the LMA.
2898 This information is used for symbol lookup, and memory read/write.
2899 For instance, if a section has been mapped then its contents
2900 should be read from the VMA, otherwise from the LMA.
2901
2902 Two levels of debugger support for overlays are available. One is
2903 "manual", in which the debugger relies on the user to tell it which
2904 overlays are currently mapped. This level of support is
2905 implemented entirely in the core debugger, and the information about
2906 whether a section is mapped is kept in the objfile->obj_section table.
2907
2908 The second level of support is "automatic", and is only available if
2909 the target-specific code provides functionality to read the target's
2910 overlay mapping table, and translate its contents for the debugger
2911 (by updating the mapped state information in the obj_section tables).
2912
2913 The interface is as follows:
2914 User commands:
2915 overlay map <name> -- tell gdb to consider this section mapped
2916 overlay unmap <name> -- tell gdb to consider this section unmapped
2917 overlay list -- list the sections that GDB thinks are mapped
2918 overlay read-target -- get the target's state of what's mapped
2919 overlay off/manual/auto -- set overlay debugging state
2920 Functional interface:
2921 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2922 section, return that section.
2923 find_pc_overlay(pc): find any overlay section that contains
2924 the pc, either in its VMA or its LMA
2925 section_is_mapped(sect): true if overlay is marked as mapped
2926 section_is_overlay(sect): true if section's VMA != LMA
2927 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2928 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2929 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2930 overlay_mapped_address(...): map an address from section's LMA to VMA
2931 overlay_unmapped_address(...): map an address from section's VMA to LMA
2932 symbol_overlayed_address(...): Return a "current" address for symbol:
2933 either in VMA or LMA depending on whether
2934 the symbol's section is currently mapped. */
2935
2936 /* Overlay debugging state: */
2937
2938 enum overlay_debugging_state overlay_debugging = ovly_off;
2939 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2940
2941 /* Function: section_is_overlay (SECTION)
2942 Returns true if SECTION has VMA not equal to LMA, ie.
2943 SECTION is loaded at an address different from where it will "run". */
2944
2945 int
2946 section_is_overlay (struct obj_section *section)
2947 {
2948 if (overlay_debugging && section)
2949 {
2950 bfd *abfd = section->objfile->obfd;
2951 asection *bfd_section = section->the_bfd_section;
2952
2953 if (bfd_section_lma (abfd, bfd_section) != 0
2954 && bfd_section_lma (abfd, bfd_section)
2955 != bfd_section_vma (abfd, bfd_section))
2956 return 1;
2957 }
2958
2959 return 0;
2960 }
2961
2962 /* Function: overlay_invalidate_all (void)
2963 Invalidate the mapped state of all overlay sections (mark it as stale). */
2964
2965 static void
2966 overlay_invalidate_all (void)
2967 {
2968 struct objfile *objfile;
2969 struct obj_section *sect;
2970
2971 ALL_OBJSECTIONS (objfile, sect)
2972 if (section_is_overlay (sect))
2973 sect->ovly_mapped = -1;
2974 }
2975
2976 /* Function: section_is_mapped (SECTION)
2977 Returns true if section is an overlay, and is currently mapped.
2978
2979 Access to the ovly_mapped flag is restricted to this function, so
2980 that we can do automatic update. If the global flag
2981 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2982 overlay_invalidate_all. If the mapped state of the particular
2983 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2984
2985 int
2986 section_is_mapped (struct obj_section *osect)
2987 {
2988 struct gdbarch *gdbarch;
2989
2990 if (osect == 0 || !section_is_overlay (osect))
2991 return 0;
2992
2993 switch (overlay_debugging)
2994 {
2995 default:
2996 case ovly_off:
2997 return 0; /* overlay debugging off */
2998 case ovly_auto: /* overlay debugging automatic */
2999 /* Unles there is a gdbarch_overlay_update function,
3000 there's really nothing useful to do here (can't really go auto). */
3001 gdbarch = get_objfile_arch (osect->objfile);
3002 if (gdbarch_overlay_update_p (gdbarch))
3003 {
3004 if (overlay_cache_invalid)
3005 {
3006 overlay_invalidate_all ();
3007 overlay_cache_invalid = 0;
3008 }
3009 if (osect->ovly_mapped == -1)
3010 gdbarch_overlay_update (gdbarch, osect);
3011 }
3012 /* fall thru to manual case */
3013 case ovly_on: /* overlay debugging manual */
3014 return osect->ovly_mapped == 1;
3015 }
3016 }
3017
3018 /* Function: pc_in_unmapped_range
3019 If PC falls into the lma range of SECTION, return true, else false. */
3020
3021 CORE_ADDR
3022 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3023 {
3024 if (section_is_overlay (section))
3025 {
3026 bfd *abfd = section->objfile->obfd;
3027 asection *bfd_section = section->the_bfd_section;
3028
3029 /* We assume the LMA is relocated by the same offset as the VMA. */
3030 bfd_vma size = bfd_get_section_size (bfd_section);
3031 CORE_ADDR offset = obj_section_offset (section);
3032
3033 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3034 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3035 return 1;
3036 }
3037
3038 return 0;
3039 }
3040
3041 /* Function: pc_in_mapped_range
3042 If PC falls into the vma range of SECTION, return true, else false. */
3043
3044 CORE_ADDR
3045 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3046 {
3047 if (section_is_overlay (section))
3048 {
3049 if (obj_section_addr (section) <= pc
3050 && pc < obj_section_endaddr (section))
3051 return 1;
3052 }
3053
3054 return 0;
3055 }
3056
3057 /* Return true if the mapped ranges of sections A and B overlap, false
3058 otherwise. */
3059
3060 static int
3061 sections_overlap (struct obj_section *a, struct obj_section *b)
3062 {
3063 CORE_ADDR a_start = obj_section_addr (a);
3064 CORE_ADDR a_end = obj_section_endaddr (a);
3065 CORE_ADDR b_start = obj_section_addr (b);
3066 CORE_ADDR b_end = obj_section_endaddr (b);
3067
3068 return (a_start < b_end && b_start < a_end);
3069 }
3070
3071 /* Function: overlay_unmapped_address (PC, SECTION)
3072 Returns the address corresponding to PC in the unmapped (load) range.
3073 May be the same as PC. */
3074
3075 CORE_ADDR
3076 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3077 {
3078 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3079 {
3080 bfd *abfd = section->objfile->obfd;
3081 asection *bfd_section = section->the_bfd_section;
3082
3083 return pc + bfd_section_lma (abfd, bfd_section)
3084 - bfd_section_vma (abfd, bfd_section);
3085 }
3086
3087 return pc;
3088 }
3089
3090 /* Function: overlay_mapped_address (PC, SECTION)
3091 Returns the address corresponding to PC in the mapped (runtime) range.
3092 May be the same as PC. */
3093
3094 CORE_ADDR
3095 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3096 {
3097 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3098 {
3099 bfd *abfd = section->objfile->obfd;
3100 asection *bfd_section = section->the_bfd_section;
3101
3102 return pc + bfd_section_vma (abfd, bfd_section)
3103 - bfd_section_lma (abfd, bfd_section);
3104 }
3105
3106 return pc;
3107 }
3108
3109 /* Function: symbol_overlayed_address
3110 Return one of two addresses (relative to the VMA or to the LMA),
3111 depending on whether the section is mapped or not. */
3112
3113 CORE_ADDR
3114 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3115 {
3116 if (overlay_debugging)
3117 {
3118 /* If the symbol has no section, just return its regular address. */
3119 if (section == 0)
3120 return address;
3121 /* If the symbol's section is not an overlay, just return its
3122 address. */
3123 if (!section_is_overlay (section))
3124 return address;
3125 /* If the symbol's section is mapped, just return its address. */
3126 if (section_is_mapped (section))
3127 return address;
3128 /*
3129 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3130 * then return its LOADED address rather than its vma address!!
3131 */
3132 return overlay_unmapped_address (address, section);
3133 }
3134 return address;
3135 }
3136
3137 /* Function: find_pc_overlay (PC)
3138 Return the best-match overlay section for PC:
3139 If PC matches a mapped overlay section's VMA, return that section.
3140 Else if PC matches an unmapped section's VMA, return that section.
3141 Else if PC matches an unmapped section's LMA, return that section. */
3142
3143 struct obj_section *
3144 find_pc_overlay (CORE_ADDR pc)
3145 {
3146 struct objfile *objfile;
3147 struct obj_section *osect, *best_match = NULL;
3148
3149 if (overlay_debugging)
3150 {
3151 ALL_OBJSECTIONS (objfile, osect)
3152 if (section_is_overlay (osect))
3153 {
3154 if (pc_in_mapped_range (pc, osect))
3155 {
3156 if (section_is_mapped (osect))
3157 return osect;
3158 else
3159 best_match = osect;
3160 }
3161 else if (pc_in_unmapped_range (pc, osect))
3162 best_match = osect;
3163 }
3164 }
3165 return best_match;
3166 }
3167
3168 /* Function: find_pc_mapped_section (PC)
3169 If PC falls into the VMA address range of an overlay section that is
3170 currently marked as MAPPED, return that section. Else return NULL. */
3171
3172 struct obj_section *
3173 find_pc_mapped_section (CORE_ADDR pc)
3174 {
3175 struct objfile *objfile;
3176 struct obj_section *osect;
3177
3178 if (overlay_debugging)
3179 {
3180 ALL_OBJSECTIONS (objfile, osect)
3181 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3182 return osect;
3183 }
3184
3185 return NULL;
3186 }
3187
3188 /* Function: list_overlays_command
3189 Print a list of mapped sections and their PC ranges. */
3190
3191 static void
3192 list_overlays_command (const char *args, int from_tty)
3193 {
3194 int nmapped = 0;
3195 struct objfile *objfile;
3196 struct obj_section *osect;
3197
3198 if (overlay_debugging)
3199 {
3200 ALL_OBJSECTIONS (objfile, osect)
3201 if (section_is_mapped (osect))
3202 {
3203 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3204 const char *name;
3205 bfd_vma lma, vma;
3206 int size;
3207
3208 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3209 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3210 size = bfd_get_section_size (osect->the_bfd_section);
3211 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3212
3213 printf_filtered ("Section %s, loaded at ", name);
3214 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3215 puts_filtered (" - ");
3216 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3217 printf_filtered (", mapped at ");
3218 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3219 puts_filtered (" - ");
3220 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3221 puts_filtered ("\n");
3222
3223 nmapped++;
3224 }
3225 }
3226 if (nmapped == 0)
3227 printf_filtered (_("No sections are mapped.\n"));
3228 }
3229
3230 /* Function: map_overlay_command
3231 Mark the named section as mapped (ie. residing at its VMA address). */
3232
3233 static void
3234 map_overlay_command (const char *args, int from_tty)
3235 {
3236 struct objfile *objfile, *objfile2;
3237 struct obj_section *sec, *sec2;
3238
3239 if (!overlay_debugging)
3240 error (_("Overlay debugging not enabled. Use "
3241 "either the 'overlay auto' or\n"
3242 "the 'overlay manual' command."));
3243
3244 if (args == 0 || *args == 0)
3245 error (_("Argument required: name of an overlay section"));
3246
3247 /* First, find a section matching the user supplied argument. */
3248 ALL_OBJSECTIONS (objfile, sec)
3249 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3250 {
3251 /* Now, check to see if the section is an overlay. */
3252 if (!section_is_overlay (sec))
3253 continue; /* not an overlay section */
3254
3255 /* Mark the overlay as "mapped". */
3256 sec->ovly_mapped = 1;
3257
3258 /* Next, make a pass and unmap any sections that are
3259 overlapped by this new section: */
3260 ALL_OBJSECTIONS (objfile2, sec2)
3261 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3262 {
3263 if (info_verbose)
3264 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3265 bfd_section_name (objfile->obfd,
3266 sec2->the_bfd_section));
3267 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3268 }
3269 return;
3270 }
3271 error (_("No overlay section called %s"), args);
3272 }
3273
3274 /* Function: unmap_overlay_command
3275 Mark the overlay section as unmapped
3276 (ie. resident in its LMA address range, rather than the VMA range). */
3277
3278 static void
3279 unmap_overlay_command (const char *args, int from_tty)
3280 {
3281 struct objfile *objfile;
3282 struct obj_section *sec = NULL;
3283
3284 if (!overlay_debugging)
3285 error (_("Overlay debugging not enabled. "
3286 "Use either the 'overlay auto' or\n"
3287 "the 'overlay manual' command."));
3288
3289 if (args == 0 || *args == 0)
3290 error (_("Argument required: name of an overlay section"));
3291
3292 /* First, find a section matching the user supplied argument. */
3293 ALL_OBJSECTIONS (objfile, sec)
3294 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3295 {
3296 if (!sec->ovly_mapped)
3297 error (_("Section %s is not mapped"), args);
3298 sec->ovly_mapped = 0;
3299 return;
3300 }
3301 error (_("No overlay section called %s"), args);
3302 }
3303
3304 /* Function: overlay_auto_command
3305 A utility command to turn on overlay debugging.
3306 Possibly this should be done via a set/show command. */
3307
3308 static void
3309 overlay_auto_command (const char *args, int from_tty)
3310 {
3311 overlay_debugging = ovly_auto;
3312 enable_overlay_breakpoints ();
3313 if (info_verbose)
3314 printf_unfiltered (_("Automatic overlay debugging enabled."));
3315 }
3316
3317 /* Function: overlay_manual_command
3318 A utility command to turn on overlay debugging.
3319 Possibly this should be done via a set/show command. */
3320
3321 static void
3322 overlay_manual_command (const char *args, int from_tty)
3323 {
3324 overlay_debugging = ovly_on;
3325 disable_overlay_breakpoints ();
3326 if (info_verbose)
3327 printf_unfiltered (_("Overlay debugging enabled."));
3328 }
3329
3330 /* Function: overlay_off_command
3331 A utility command to turn on overlay debugging.
3332 Possibly this should be done via a set/show command. */
3333
3334 static void
3335 overlay_off_command (const char *args, int from_tty)
3336 {
3337 overlay_debugging = ovly_off;
3338 disable_overlay_breakpoints ();
3339 if (info_verbose)
3340 printf_unfiltered (_("Overlay debugging disabled."));
3341 }
3342
3343 static void
3344 overlay_load_command (const char *args, int from_tty)
3345 {
3346 struct gdbarch *gdbarch = get_current_arch ();
3347
3348 if (gdbarch_overlay_update_p (gdbarch))
3349 gdbarch_overlay_update (gdbarch, NULL);
3350 else
3351 error (_("This target does not know how to read its overlay state."));
3352 }
3353
3354 /* Function: overlay_command
3355 A place-holder for a mis-typed command. */
3356
3357 /* Command list chain containing all defined "overlay" subcommands. */
3358 static struct cmd_list_element *overlaylist;
3359
3360 static void
3361 overlay_command (const char *args, int from_tty)
3362 {
3363 printf_unfiltered
3364 ("\"overlay\" must be followed by the name of an overlay command.\n");
3365 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3366 }
3367
3368 /* Target Overlays for the "Simplest" overlay manager:
3369
3370 This is GDB's default target overlay layer. It works with the
3371 minimal overlay manager supplied as an example by Cygnus. The
3372 entry point is via a function pointer "gdbarch_overlay_update",
3373 so targets that use a different runtime overlay manager can
3374 substitute their own overlay_update function and take over the
3375 function pointer.
3376
3377 The overlay_update function pokes around in the target's data structures
3378 to see what overlays are mapped, and updates GDB's overlay mapping with
3379 this information.
3380
3381 In this simple implementation, the target data structures are as follows:
3382 unsigned _novlys; /# number of overlay sections #/
3383 unsigned _ovly_table[_novlys][4] = {
3384 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3385 {..., ..., ..., ...},
3386 }
3387 unsigned _novly_regions; /# number of overlay regions #/
3388 unsigned _ovly_region_table[_novly_regions][3] = {
3389 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3390 {..., ..., ...},
3391 }
3392 These functions will attempt to update GDB's mappedness state in the
3393 symbol section table, based on the target's mappedness state.
3394
3395 To do this, we keep a cached copy of the target's _ovly_table, and
3396 attempt to detect when the cached copy is invalidated. The main
3397 entry point is "simple_overlay_update(SECT), which looks up SECT in
3398 the cached table and re-reads only the entry for that section from
3399 the target (whenever possible). */
3400
3401 /* Cached, dynamically allocated copies of the target data structures: */
3402 static unsigned (*cache_ovly_table)[4] = 0;
3403 static unsigned cache_novlys = 0;
3404 static CORE_ADDR cache_ovly_table_base = 0;
3405 enum ovly_index
3406 {
3407 VMA, OSIZE, LMA, MAPPED
3408 };
3409
3410 /* Throw away the cached copy of _ovly_table. */
3411
3412 static void
3413 simple_free_overlay_table (void)
3414 {
3415 if (cache_ovly_table)
3416 xfree (cache_ovly_table);
3417 cache_novlys = 0;
3418 cache_ovly_table = NULL;
3419 cache_ovly_table_base = 0;
3420 }
3421
3422 /* Read an array of ints of size SIZE from the target into a local buffer.
3423 Convert to host order. int LEN is number of ints. */
3424
3425 static void
3426 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3427 int len, int size, enum bfd_endian byte_order)
3428 {
3429 /* FIXME (alloca): Not safe if array is very large. */
3430 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3431 int i;
3432
3433 read_memory (memaddr, buf, len * size);
3434 for (i = 0; i < len; i++)
3435 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3436 }
3437
3438 /* Find and grab a copy of the target _ovly_table
3439 (and _novlys, which is needed for the table's size). */
3440
3441 static int
3442 simple_read_overlay_table (void)
3443 {
3444 struct bound_minimal_symbol novlys_msym;
3445 struct bound_minimal_symbol ovly_table_msym;
3446 struct gdbarch *gdbarch;
3447 int word_size;
3448 enum bfd_endian byte_order;
3449
3450 simple_free_overlay_table ();
3451 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3452 if (! novlys_msym.minsym)
3453 {
3454 error (_("Error reading inferior's overlay table: "
3455 "couldn't find `_novlys' variable\n"
3456 "in inferior. Use `overlay manual' mode."));
3457 return 0;
3458 }
3459
3460 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3461 if (! ovly_table_msym.minsym)
3462 {
3463 error (_("Error reading inferior's overlay table: couldn't find "
3464 "`_ovly_table' array\n"
3465 "in inferior. Use `overlay manual' mode."));
3466 return 0;
3467 }
3468
3469 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3470 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3471 byte_order = gdbarch_byte_order (gdbarch);
3472
3473 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3474 4, byte_order);
3475 cache_ovly_table
3476 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3477 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3478 read_target_long_array (cache_ovly_table_base,
3479 (unsigned int *) cache_ovly_table,
3480 cache_novlys * 4, word_size, byte_order);
3481
3482 return 1; /* SUCCESS */
3483 }
3484
3485 /* Function: simple_overlay_update_1
3486 A helper function for simple_overlay_update. Assuming a cached copy
3487 of _ovly_table exists, look through it to find an entry whose vma,
3488 lma and size match those of OSECT. Re-read the entry and make sure
3489 it still matches OSECT (else the table may no longer be valid).
3490 Set OSECT's mapped state to match the entry. Return: 1 for
3491 success, 0 for failure. */
3492
3493 static int
3494 simple_overlay_update_1 (struct obj_section *osect)
3495 {
3496 int i;
3497 bfd *obfd = osect->objfile->obfd;
3498 asection *bsect = osect->the_bfd_section;
3499 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3500 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3502
3503 for (i = 0; i < cache_novlys; i++)
3504 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3505 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3506 {
3507 read_target_long_array (cache_ovly_table_base + i * word_size,
3508 (unsigned int *) cache_ovly_table[i],
3509 4, word_size, byte_order);
3510 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3511 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3512 {
3513 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3514 return 1;
3515 }
3516 else /* Warning! Warning! Target's ovly table has changed! */
3517 return 0;
3518 }
3519 return 0;
3520 }
3521
3522 /* Function: simple_overlay_update
3523 If OSECT is NULL, then update all sections' mapped state
3524 (after re-reading the entire target _ovly_table).
3525 If OSECT is non-NULL, then try to find a matching entry in the
3526 cached ovly_table and update only OSECT's mapped state.
3527 If a cached entry can't be found or the cache isn't valid, then
3528 re-read the entire cache, and go ahead and update all sections. */
3529
3530 void
3531 simple_overlay_update (struct obj_section *osect)
3532 {
3533 struct objfile *objfile;
3534
3535 /* Were we given an osect to look up? NULL means do all of them. */
3536 if (osect)
3537 /* Have we got a cached copy of the target's overlay table? */
3538 if (cache_ovly_table != NULL)
3539 {
3540 /* Does its cached location match what's currently in the
3541 symtab? */
3542 struct bound_minimal_symbol minsym
3543 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3544
3545 if (minsym.minsym == NULL)
3546 error (_("Error reading inferior's overlay table: couldn't "
3547 "find `_ovly_table' array\n"
3548 "in inferior. Use `overlay manual' mode."));
3549
3550 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3551 /* Then go ahead and try to look up this single section in
3552 the cache. */
3553 if (simple_overlay_update_1 (osect))
3554 /* Found it! We're done. */
3555 return;
3556 }
3557
3558 /* Cached table no good: need to read the entire table anew.
3559 Or else we want all the sections, in which case it's actually
3560 more efficient to read the whole table in one block anyway. */
3561
3562 if (! simple_read_overlay_table ())
3563 return;
3564
3565 /* Now may as well update all sections, even if only one was requested. */
3566 ALL_OBJSECTIONS (objfile, osect)
3567 if (section_is_overlay (osect))
3568 {
3569 int i;
3570 bfd *obfd = osect->objfile->obfd;
3571 asection *bsect = osect->the_bfd_section;
3572
3573 for (i = 0; i < cache_novlys; i++)
3574 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3575 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3576 { /* obj_section matches i'th entry in ovly_table. */
3577 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3578 break; /* finished with inner for loop: break out. */
3579 }
3580 }
3581 }
3582
3583 /* Set the output sections and output offsets for section SECTP in
3584 ABFD. The relocation code in BFD will read these offsets, so we
3585 need to be sure they're initialized. We map each section to itself,
3586 with no offset; this means that SECTP->vma will be honored. */
3587
3588 static void
3589 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3590 {
3591 sectp->output_section = sectp;
3592 sectp->output_offset = 0;
3593 }
3594
3595 /* Default implementation for sym_relocate. */
3596
3597 bfd_byte *
3598 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3599 bfd_byte *buf)
3600 {
3601 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3602 DWO file. */
3603 bfd *abfd = sectp->owner;
3604
3605 /* We're only interested in sections with relocation
3606 information. */
3607 if ((sectp->flags & SEC_RELOC) == 0)
3608 return NULL;
3609
3610 /* We will handle section offsets properly elsewhere, so relocate as if
3611 all sections begin at 0. */
3612 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3613
3614 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3615 }
3616
3617 /* Relocate the contents of a debug section SECTP in ABFD. The
3618 contents are stored in BUF if it is non-NULL, or returned in a
3619 malloc'd buffer otherwise.
3620
3621 For some platforms and debug info formats, shared libraries contain
3622 relocations against the debug sections (particularly for DWARF-2;
3623 one affected platform is PowerPC GNU/Linux, although it depends on
3624 the version of the linker in use). Also, ELF object files naturally
3625 have unresolved relocations for their debug sections. We need to apply
3626 the relocations in order to get the locations of symbols correct.
3627 Another example that may require relocation processing, is the
3628 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3629 debug section. */
3630
3631 bfd_byte *
3632 symfile_relocate_debug_section (struct objfile *objfile,
3633 asection *sectp, bfd_byte *buf)
3634 {
3635 gdb_assert (objfile->sf->sym_relocate);
3636
3637 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3638 }
3639
3640 struct symfile_segment_data *
3641 get_symfile_segment_data (bfd *abfd)
3642 {
3643 const struct sym_fns *sf = find_sym_fns (abfd);
3644
3645 if (sf == NULL)
3646 return NULL;
3647
3648 return sf->sym_segments (abfd);
3649 }
3650
3651 void
3652 free_symfile_segment_data (struct symfile_segment_data *data)
3653 {
3654 xfree (data->segment_bases);
3655 xfree (data->segment_sizes);
3656 xfree (data->segment_info);
3657 xfree (data);
3658 }
3659
3660 /* Given:
3661 - DATA, containing segment addresses from the object file ABFD, and
3662 the mapping from ABFD's sections onto the segments that own them,
3663 and
3664 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3665 segment addresses reported by the target,
3666 store the appropriate offsets for each section in OFFSETS.
3667
3668 If there are fewer entries in SEGMENT_BASES than there are segments
3669 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3670
3671 If there are more entries, then ignore the extra. The target may
3672 not be able to distinguish between an empty data segment and a
3673 missing data segment; a missing text segment is less plausible. */
3674
3675 int
3676 symfile_map_offsets_to_segments (bfd *abfd,
3677 const struct symfile_segment_data *data,
3678 struct section_offsets *offsets,
3679 int num_segment_bases,
3680 const CORE_ADDR *segment_bases)
3681 {
3682 int i;
3683 asection *sect;
3684
3685 /* It doesn't make sense to call this function unless you have some
3686 segment base addresses. */
3687 gdb_assert (num_segment_bases > 0);
3688
3689 /* If we do not have segment mappings for the object file, we
3690 can not relocate it by segments. */
3691 gdb_assert (data != NULL);
3692 gdb_assert (data->num_segments > 0);
3693
3694 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3695 {
3696 int which = data->segment_info[i];
3697
3698 gdb_assert (0 <= which && which <= data->num_segments);
3699
3700 /* Don't bother computing offsets for sections that aren't
3701 loaded as part of any segment. */
3702 if (! which)
3703 continue;
3704
3705 /* Use the last SEGMENT_BASES entry as the address of any extra
3706 segments mentioned in DATA->segment_info. */
3707 if (which > num_segment_bases)
3708 which = num_segment_bases;
3709
3710 offsets->offsets[i] = (segment_bases[which - 1]
3711 - data->segment_bases[which - 1]);
3712 }
3713
3714 return 1;
3715 }
3716
3717 static void
3718 symfile_find_segment_sections (struct objfile *objfile)
3719 {
3720 bfd *abfd = objfile->obfd;
3721 int i;
3722 asection *sect;
3723 struct symfile_segment_data *data;
3724
3725 data = get_symfile_segment_data (objfile->obfd);
3726 if (data == NULL)
3727 return;
3728
3729 if (data->num_segments != 1 && data->num_segments != 2)
3730 {
3731 free_symfile_segment_data (data);
3732 return;
3733 }
3734
3735 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3736 {
3737 int which = data->segment_info[i];
3738
3739 if (which == 1)
3740 {
3741 if (objfile->sect_index_text == -1)
3742 objfile->sect_index_text = sect->index;
3743
3744 if (objfile->sect_index_rodata == -1)
3745 objfile->sect_index_rodata = sect->index;
3746 }
3747 else if (which == 2)
3748 {
3749 if (objfile->sect_index_data == -1)
3750 objfile->sect_index_data = sect->index;
3751
3752 if (objfile->sect_index_bss == -1)
3753 objfile->sect_index_bss = sect->index;
3754 }
3755 }
3756
3757 free_symfile_segment_data (data);
3758 }
3759
3760 /* Listen for free_objfile events. */
3761
3762 static void
3763 symfile_free_objfile (struct objfile *objfile)
3764 {
3765 /* Remove the target sections owned by this objfile. */
3766 if (objfile != NULL)
3767 remove_target_sections ((void *) objfile);
3768 }
3769
3770 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3771 Expand all symtabs that match the specified criteria.
3772 See quick_symbol_functions.expand_symtabs_matching for details. */
3773
3774 void
3775 expand_symtabs_matching
3776 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3777 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3778 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3779 enum search_domain kind)
3780 {
3781 struct objfile *objfile;
3782
3783 ALL_OBJFILES (objfile)
3784 {
3785 if (objfile->sf)
3786 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3787 symbol_matcher,
3788 expansion_notify, kind);
3789 }
3790 }
3791
3792 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3793 Map function FUN over every file.
3794 See quick_symbol_functions.map_symbol_filenames for details. */
3795
3796 void
3797 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3798 int need_fullname)
3799 {
3800 struct objfile *objfile;
3801
3802 ALL_OBJFILES (objfile)
3803 {
3804 if (objfile->sf)
3805 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3806 need_fullname);
3807 }
3808 }
3809
3810 #if GDB_SELF_TEST
3811
3812 namespace selftests {
3813 namespace filename_language {
3814
3815 static void test_filename_language ()
3816 {
3817 /* This test messes up the filename_language_table global. */
3818 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3819
3820 /* Test deducing an unknown extension. */
3821 language lang = deduce_language_from_filename ("myfile.blah");
3822 SELF_CHECK (lang == language_unknown);
3823
3824 /* Test deducing a known extension. */
3825 lang = deduce_language_from_filename ("myfile.c");
3826 SELF_CHECK (lang == language_c);
3827
3828 /* Test adding a new extension using the internal API. */
3829 add_filename_language (".blah", language_pascal);
3830 lang = deduce_language_from_filename ("myfile.blah");
3831 SELF_CHECK (lang == language_pascal);
3832 }
3833
3834 static void
3835 test_set_ext_lang_command ()
3836 {
3837 /* This test messes up the filename_language_table global. */
3838 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3839
3840 /* Confirm that the .hello extension is not known. */
3841 language lang = deduce_language_from_filename ("cake.hello");
3842 SELF_CHECK (lang == language_unknown);
3843
3844 /* Test adding a new extension using the CLI command. */
3845 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3846 ext_args = args_holder.get ();
3847 set_ext_lang_command (NULL, 1, NULL);
3848
3849 lang = deduce_language_from_filename ("cake.hello");
3850 SELF_CHECK (lang == language_rust);
3851
3852 /* Test overriding an existing extension using the CLI command. */
3853 int size_before = filename_language_table.size ();
3854 args_holder.reset (xstrdup (".hello pascal"));
3855 ext_args = args_holder.get ();
3856 set_ext_lang_command (NULL, 1, NULL);
3857 int size_after = filename_language_table.size ();
3858
3859 lang = deduce_language_from_filename ("cake.hello");
3860 SELF_CHECK (lang == language_pascal);
3861 SELF_CHECK (size_before == size_after);
3862 }
3863
3864 } /* namespace filename_language */
3865 } /* namespace selftests */
3866
3867 #endif /* GDB_SELF_TEST */
3868
3869 void
3870 _initialize_symfile (void)
3871 {
3872 struct cmd_list_element *c;
3873
3874 observer_attach_free_objfile (symfile_free_objfile);
3875
3876 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3877 Load symbol table from executable file FILE.\n\
3878 The `file' command can also load symbol tables, as well as setting the file\n\
3879 to execute."), &cmdlist);
3880 set_cmd_completer (c, filename_completer);
3881
3882 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3883 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3884 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3885 ...]\nADDR is the starting address of the file's text.\n\
3886 The optional arguments are section-name section-address pairs and\n\
3887 should be specified if the data and bss segments are not contiguous\n\
3888 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3889 &cmdlist);
3890 set_cmd_completer (c, filename_completer);
3891
3892 c = add_cmd ("remove-symbol-file", class_files,
3893 remove_symbol_file_command, _("\
3894 Remove a symbol file added via the add-symbol-file command.\n\
3895 Usage: remove-symbol-file FILENAME\n\
3896 remove-symbol-file -a ADDRESS\n\
3897 The file to remove can be identified by its filename or by an address\n\
3898 that lies within the boundaries of this symbol file in memory."),
3899 &cmdlist);
3900
3901 c = add_cmd ("load", class_files, load_command, _("\
3902 Dynamically load FILE into the running program, and record its symbols\n\
3903 for access from GDB.\n\
3904 An optional load OFFSET may also be given as a literal address.\n\
3905 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3906 on its own.\n\
3907 Usage: load [FILE] [OFFSET]"), &cmdlist);
3908 set_cmd_completer (c, filename_completer);
3909
3910 add_prefix_cmd ("overlay", class_support, overlay_command,
3911 _("Commands for debugging overlays."), &overlaylist,
3912 "overlay ", 0, &cmdlist);
3913
3914 add_com_alias ("ovly", "overlay", class_alias, 1);
3915 add_com_alias ("ov", "overlay", class_alias, 1);
3916
3917 add_cmd ("map-overlay", class_support, map_overlay_command,
3918 _("Assert that an overlay section is mapped."), &overlaylist);
3919
3920 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3921 _("Assert that an overlay section is unmapped."), &overlaylist);
3922
3923 add_cmd ("list-overlays", class_support, list_overlays_command,
3924 _("List mappings of overlay sections."), &overlaylist);
3925
3926 add_cmd ("manual", class_support, overlay_manual_command,
3927 _("Enable overlay debugging."), &overlaylist);
3928 add_cmd ("off", class_support, overlay_off_command,
3929 _("Disable overlay debugging."), &overlaylist);
3930 add_cmd ("auto", class_support, overlay_auto_command,
3931 _("Enable automatic overlay debugging."), &overlaylist);
3932 add_cmd ("load-target", class_support, overlay_load_command,
3933 _("Read the overlay mapping state from the target."), &overlaylist);
3934
3935 /* Filename extension to source language lookup table: */
3936 add_setshow_string_noescape_cmd ("extension-language", class_files,
3937 &ext_args, _("\
3938 Set mapping between filename extension and source language."), _("\
3939 Show mapping between filename extension and source language."), _("\
3940 Usage: set extension-language .foo bar"),
3941 set_ext_lang_command,
3942 show_ext_args,
3943 &setlist, &showlist);
3944
3945 add_info ("extensions", info_ext_lang_command,
3946 _("All filename extensions associated with a source language."));
3947
3948 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3949 &debug_file_directory, _("\
3950 Set the directories where separate debug symbols are searched for."), _("\
3951 Show the directories where separate debug symbols are searched for."), _("\
3952 Separate debug symbols are first searched for in the same\n\
3953 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3954 and lastly at the path of the directory of the binary with\n\
3955 each global debug-file-directory component prepended."),
3956 NULL,
3957 show_debug_file_directory,
3958 &setlist, &showlist);
3959
3960 add_setshow_enum_cmd ("symbol-loading", no_class,
3961 print_symbol_loading_enums, &print_symbol_loading,
3962 _("\
3963 Set printing of symbol loading messages."), _("\
3964 Show printing of symbol loading messages."), _("\
3965 off == turn all messages off\n\
3966 brief == print messages for the executable,\n\
3967 and brief messages for shared libraries\n\
3968 full == print messages for the executable,\n\
3969 and messages for each shared library."),
3970 NULL,
3971 NULL,
3972 &setprintlist, &showprintlist);
3973
3974 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3975 &separate_debug_file_debug, _("\
3976 Set printing of separate debug info file search debug."), _("\
3977 Show printing of separate debug info file search debug."), _("\
3978 When on, GDB prints the searched locations while looking for separate debug \
3979 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3980
3981 #if GDB_SELF_TEST
3982 selftests::register_test
3983 ("filename_language", selftests::filename_language::test_filename_language);
3984 selftests::register_test
3985 ("set_ext_lang_command",
3986 selftests::filename_language::test_set_ext_lang_command);
3987 #endif
3988 }
This page took 0.246256 seconds and 4 git commands to generate.