* gdbarch.sh (overlay_update): New gdbarch function.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static void find_sym_fns (struct objfile *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
458 }
459
460 /* The arguments to place_section. */
461
462 struct place_section_arg
463 {
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466 };
467
468 /* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471 void
472 place_section (bfd *abfd, asection *sect, void *obj)
473 {
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
478
479 /* We are only interested in allocated sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 start_addr = (arg->lowest + align - 1) & -align;
489
490 do {
491 asection *cur_sec;
492
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with allocated sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
506 continue;
507
508 /* If the section offset is 0, either the section has not been placed
509 yet, or it was the lowest section placed (in which case LOWEST
510 will be past its end). */
511 if (offsets[indx] == 0)
512 continue;
513
514 /* If this section would overlap us, then we must move up. */
515 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
516 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
517 {
518 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
519 start_addr = (start_addr + align - 1) & -align;
520 done = 0;
521 break;
522 }
523
524 /* Otherwise, we appear to be OK. So far. */
525 }
526 }
527 while (!done);
528
529 offsets[sect->index] = start_addr;
530 arg->lowest = start_addr + bfd_get_section_size (sect);
531
532 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
533 }
534
535 /* Parse the user's idea of an offset for dynamic linking, into our idea
536 of how to represent it for fast symbol reading. This is the default
537 version of the sym_fns.sym_offsets function for symbol readers that
538 don't need to do anything special. It allocates a section_offsets table
539 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
540
541 void
542 default_symfile_offsets (struct objfile *objfile,
543 struct section_addr_info *addrs)
544 {
545 int i;
546
547 objfile->num_sections = bfd_count_sections (objfile->obfd);
548 objfile->section_offsets = (struct section_offsets *)
549 obstack_alloc (&objfile->objfile_obstack,
550 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
551 memset (objfile->section_offsets, 0,
552 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
553
554 /* Now calculate offsets for section that were specified by the
555 caller. */
556 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
557 {
558 struct other_sections *osp ;
559
560 osp = &addrs->other[i] ;
561 if (osp->addr == 0)
562 continue;
563
564 /* Record all sections in offsets */
565 /* The section_offsets in the objfile are here filled in using
566 the BFD index. */
567 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
568 }
569
570 /* For relocatable files, all loadable sections will start at zero.
571 The zero is meaningless, so try to pick arbitrary addresses such
572 that no loadable sections overlap. This algorithm is quadratic,
573 but the number of sections in a single object file is generally
574 small. */
575 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
576 {
577 struct place_section_arg arg;
578 bfd *abfd = objfile->obfd;
579 asection *cur_sec;
580 CORE_ADDR lowest = 0;
581
582 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
583 /* We do not expect this to happen; just skip this step if the
584 relocatable file has a section with an assigned VMA. */
585 if (bfd_section_vma (abfd, cur_sec) != 0)
586 break;
587
588 if (cur_sec == NULL)
589 {
590 CORE_ADDR *offsets = objfile->section_offsets->offsets;
591
592 /* Pick non-overlapping offsets for sections the user did not
593 place explicitly. */
594 arg.offsets = objfile->section_offsets;
595 arg.lowest = 0;
596 bfd_map_over_sections (objfile->obfd, place_section, &arg);
597
598 /* Correctly filling in the section offsets is not quite
599 enough. Relocatable files have two properties that
600 (most) shared objects do not:
601
602 - Their debug information will contain relocations. Some
603 shared libraries do also, but many do not, so this can not
604 be assumed.
605
606 - If there are multiple code sections they will be loaded
607 at different relative addresses in memory than they are
608 in the objfile, since all sections in the file will start
609 at address zero.
610
611 Because GDB has very limited ability to map from an
612 address in debug info to the correct code section,
613 it relies on adding SECT_OFF_TEXT to things which might be
614 code. If we clear all the section offsets, and set the
615 section VMAs instead, then symfile_relocate_debug_section
616 will return meaningful debug information pointing at the
617 correct sections.
618
619 GDB has too many different data structures for section
620 addresses - a bfd, objfile, and so_list all have section
621 tables, as does exec_ops. Some of these could probably
622 be eliminated. */
623
624 for (cur_sec = abfd->sections; cur_sec != NULL;
625 cur_sec = cur_sec->next)
626 {
627 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
628 continue;
629
630 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
631 offsets[cur_sec->index] = 0;
632 }
633 }
634 }
635
636 /* Remember the bfd indexes for the .text, .data, .bss and
637 .rodata sections. */
638 init_objfile_sect_indices (objfile);
639 }
640
641
642 /* Process a symbol file, as either the main file or as a dynamically
643 loaded file.
644
645 OBJFILE is where the symbols are to be read from.
646
647 ADDRS is the list of section load addresses. If the user has given
648 an 'add-symbol-file' command, then this is the list of offsets and
649 addresses he or she provided as arguments to the command; or, if
650 we're handling a shared library, these are the actual addresses the
651 sections are loaded at, according to the inferior's dynamic linker
652 (as gleaned by GDB's shared library code). We convert each address
653 into an offset from the section VMA's as it appears in the object
654 file, and then call the file's sym_offsets function to convert this
655 into a format-specific offset table --- a `struct section_offsets'.
656 If ADDRS is non-zero, OFFSETS must be zero.
657
658 OFFSETS is a table of section offsets already in the right
659 format-specific representation. NUM_OFFSETS is the number of
660 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
661 assume this is the proper table the call to sym_offsets described
662 above would produce. Instead of calling sym_offsets, we just dump
663 it right into objfile->section_offsets. (When we're re-reading
664 symbols from an objfile, we don't have the original load address
665 list any more; all we have is the section offset table.) If
666 OFFSETS is non-zero, ADDRS must be zero.
667
668 MAINLINE is nonzero if this is the main symbol file, or zero if
669 it's an extra symbol file such as dynamically loaded code.
670
671 VERBO is nonzero if the caller has printed a verbose message about
672 the symbol reading (and complaints can be more terse about it). */
673
674 void
675 syms_from_objfile (struct objfile *objfile,
676 struct section_addr_info *addrs,
677 struct section_offsets *offsets,
678 int num_offsets,
679 int mainline,
680 int verbo)
681 {
682 struct section_addr_info *local_addr = NULL;
683 struct cleanup *old_chain;
684
685 gdb_assert (! (addrs && offsets));
686
687 init_entry_point_info (objfile);
688 find_sym_fns (objfile);
689
690 if (objfile->sf == NULL)
691 return; /* No symbols. */
692
693 /* Make sure that partially constructed symbol tables will be cleaned up
694 if an error occurs during symbol reading. */
695 old_chain = make_cleanup_free_objfile (objfile);
696
697 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
698 list. We now establish the convention that an addr of zero means
699 no load address was specified. */
700 if (! addrs && ! offsets)
701 {
702 local_addr
703 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
704 make_cleanup (xfree, local_addr);
705 addrs = local_addr;
706 }
707
708 /* Now either addrs or offsets is non-zero. */
709
710 if (mainline)
711 {
712 /* We will modify the main symbol table, make sure that all its users
713 will be cleaned up if an error occurs during symbol reading. */
714 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
715
716 /* Since no error yet, throw away the old symbol table. */
717
718 if (symfile_objfile != NULL)
719 {
720 free_objfile (symfile_objfile);
721 symfile_objfile = NULL;
722 }
723
724 /* Currently we keep symbols from the add-symbol-file command.
725 If the user wants to get rid of them, they should do "symbol-file"
726 without arguments first. Not sure this is the best behavior
727 (PR 2207). */
728
729 (*objfile->sf->sym_new_init) (objfile);
730 }
731
732 /* Convert addr into an offset rather than an absolute address.
733 We find the lowest address of a loaded segment in the objfile,
734 and assume that <addr> is where that got loaded.
735
736 We no longer warn if the lowest section is not a text segment (as
737 happens for the PA64 port. */
738 if (!mainline && addrs && addrs->other[0].name)
739 {
740 asection *lower_sect;
741 asection *sect;
742 CORE_ADDR lower_offset;
743 int i;
744
745 /* Find lowest loadable section to be used as starting point for
746 continguous sections. FIXME!! won't work without call to find
747 .text first, but this assumes text is lowest section. */
748 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
749 if (lower_sect == NULL)
750 bfd_map_over_sections (objfile->obfd, find_lowest_section,
751 &lower_sect);
752 if (lower_sect == NULL)
753 warning (_("no loadable sections found in added symbol-file %s"),
754 objfile->name);
755 else
756 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
757 warning (_("Lowest section in %s is %s at %s"),
758 objfile->name,
759 bfd_section_name (objfile->obfd, lower_sect),
760 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
761 if (lower_sect != NULL)
762 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
763 else
764 lower_offset = 0;
765
766 /* Calculate offsets for the loadable sections.
767 FIXME! Sections must be in order of increasing loadable section
768 so that contiguous sections can use the lower-offset!!!
769
770 Adjust offsets if the segments are not contiguous.
771 If the section is contiguous, its offset should be set to
772 the offset of the highest loadable section lower than it
773 (the loadable section directly below it in memory).
774 this_offset = lower_offset = lower_addr - lower_orig_addr */
775
776 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
777 {
778 if (addrs->other[i].addr != 0)
779 {
780 sect = bfd_get_section_by_name (objfile->obfd,
781 addrs->other[i].name);
782 if (sect)
783 {
784 addrs->other[i].addr
785 -= bfd_section_vma (objfile->obfd, sect);
786 lower_offset = addrs->other[i].addr;
787 /* This is the index used by BFD. */
788 addrs->other[i].sectindex = sect->index ;
789 }
790 else
791 {
792 warning (_("section %s not found in %s"),
793 addrs->other[i].name,
794 objfile->name);
795 addrs->other[i].addr = 0;
796 }
797 }
798 else
799 addrs->other[i].addr = lower_offset;
800 }
801 }
802
803 /* Initialize symbol reading routines for this objfile, allow complaints to
804 appear for this new file, and record how verbose to be, then do the
805 initial symbol reading for this file. */
806
807 (*objfile->sf->sym_init) (objfile);
808 clear_complaints (&symfile_complaints, 1, verbo);
809
810 if (addrs)
811 (*objfile->sf->sym_offsets) (objfile, addrs);
812 else
813 {
814 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
815
816 /* Just copy in the offset table directly as given to us. */
817 objfile->num_sections = num_offsets;
818 objfile->section_offsets
819 = ((struct section_offsets *)
820 obstack_alloc (&objfile->objfile_obstack, size));
821 memcpy (objfile->section_offsets, offsets, size);
822
823 init_objfile_sect_indices (objfile);
824 }
825
826 #ifndef DEPRECATED_IBM6000_TARGET
827 /* This is a SVR4/SunOS specific hack, I think. In any event, it
828 screws RS/6000. sym_offsets should be doing this sort of thing,
829 because it knows the mapping between bfd sections and
830 section_offsets. */
831 /* This is a hack. As far as I can tell, section offsets are not
832 target dependent. They are all set to addr with a couple of
833 exceptions. The exceptions are sysvr4 shared libraries, whose
834 offsets are kept in solib structures anyway and rs6000 xcoff
835 which handles shared libraries in a completely unique way.
836
837 Section offsets are built similarly, except that they are built
838 by adding addr in all cases because there is no clear mapping
839 from section_offsets into actual sections. Note that solib.c
840 has a different algorithm for finding section offsets.
841
842 These should probably all be collapsed into some target
843 independent form of shared library support. FIXME. */
844
845 if (addrs)
846 {
847 struct obj_section *s;
848
849 /* Map section offsets in "addr" back to the object's
850 sections by comparing the section names with bfd's
851 section names. Then adjust the section address by
852 the offset. */ /* for gdb/13815 */
853
854 ALL_OBJFILE_OSECTIONS (objfile, s)
855 {
856 CORE_ADDR s_addr = 0;
857 int i;
858
859 for (i = 0;
860 !s_addr && i < addrs->num_sections && addrs->other[i].name;
861 i++)
862 if (strcmp (bfd_section_name (s->objfile->obfd,
863 s->the_bfd_section),
864 addrs->other[i].name) == 0)
865 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
866
867 s->addr -= s->offset;
868 s->addr += s_addr;
869 s->endaddr -= s->offset;
870 s->endaddr += s_addr;
871 s->offset += s_addr;
872 }
873 }
874 #endif /* not DEPRECATED_IBM6000_TARGET */
875
876 (*objfile->sf->sym_read) (objfile, mainline);
877
878 /* Don't allow char * to have a typename (else would get caddr_t).
879 Ditto void *. FIXME: Check whether this is now done by all the
880 symbol readers themselves (many of them now do), and if so remove
881 it from here. */
882
883 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
884 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
885
886 /* Mark the objfile has having had initial symbol read attempted. Note
887 that this does not mean we found any symbols... */
888
889 objfile->flags |= OBJF_SYMS;
890
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
894 }
895
896 /* Perform required actions after either reading in the initial
897 symbols for a new objfile, or mapping in the symbols from a reusable
898 objfile. */
899
900 void
901 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
902 {
903
904 /* If this is the main symbol file we have to clean up all users of the
905 old main symbol file. Otherwise it is sufficient to fixup all the
906 breakpoints that may have been redefined by this symbol file. */
907 if (mainline)
908 {
909 /* OK, make it the "real" symbol file. */
910 symfile_objfile = objfile;
911
912 clear_symtab_users ();
913 }
914 else
915 {
916 breakpoint_re_set ();
917 }
918
919 /* We're done reading the symbol file; finish off complaints. */
920 clear_complaints (&symfile_complaints, 0, verbo);
921 }
922
923 /* Process a symbol file, as either the main file or as a dynamically
924 loaded file.
925
926 ABFD is a BFD already open on the file, as from symfile_bfd_open.
927 This BFD will be closed on error, and is always consumed by this function.
928
929 FROM_TTY says how verbose to be.
930
931 MAINLINE specifies whether this is the main symbol file, or whether
932 it's an extra symbol file such as dynamically loaded code.
933
934 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
935 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
936 non-zero.
937
938 Upon success, returns a pointer to the objfile that was added.
939 Upon failure, jumps back to command level (never returns). */
940 static struct objfile *
941 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
942 struct section_addr_info *addrs,
943 struct section_offsets *offsets,
944 int num_offsets,
945 int mainline, int flags)
946 {
947 struct objfile *objfile;
948 struct partial_symtab *psymtab;
949 char *debugfile;
950 struct section_addr_info *orig_addrs = NULL;
951 struct cleanup *my_cleanups;
952 const char *name = bfd_get_filename (abfd);
953
954 my_cleanups = make_cleanup_bfd_close (abfd);
955
956 /* Give user a chance to burp if we'd be
957 interactively wiping out any existing symbols. */
958
959 if ((have_full_symbols () || have_partial_symbols ())
960 && mainline
961 && from_tty
962 && !query ("Load new symbol table from \"%s\"? ", name))
963 error (_("Not confirmed."));
964
965 objfile = allocate_objfile (abfd, flags);
966 discard_cleanups (my_cleanups);
967
968 if (addrs)
969 {
970 orig_addrs = copy_section_addr_info (addrs);
971 make_cleanup_free_section_addr_info (orig_addrs);
972 }
973
974 /* We either created a new mapped symbol table, mapped an existing
975 symbol table file which has not had initial symbol reading
976 performed, or need to read an unmapped symbol table. */
977 if (from_tty || info_verbose)
978 {
979 if (deprecated_pre_add_symbol_hook)
980 deprecated_pre_add_symbol_hook (name);
981 else
982 {
983 printf_unfiltered (_("Reading symbols from %s..."), name);
984 wrap_here ("");
985 gdb_flush (gdb_stdout);
986 }
987 }
988 syms_from_objfile (objfile, addrs, offsets, num_offsets,
989 mainline, from_tty);
990
991 /* We now have at least a partial symbol table. Check to see if the
992 user requested that all symbols be read on initial access via either
993 the gdb startup command line or on a per symbol file basis. Expand
994 all partial symbol tables for this objfile if so. */
995
996 if ((flags & OBJF_READNOW) || readnow_symbol_files)
997 {
998 if (from_tty || info_verbose)
999 {
1000 printf_unfiltered (_("expanding to full symbols..."));
1001 wrap_here ("");
1002 gdb_flush (gdb_stdout);
1003 }
1004
1005 for (psymtab = objfile->psymtabs;
1006 psymtab != NULL;
1007 psymtab = psymtab->next)
1008 {
1009 psymtab_to_symtab (psymtab);
1010 }
1011 }
1012
1013 debugfile = find_separate_debug_file (objfile);
1014 if (debugfile)
1015 {
1016 if (addrs != NULL)
1017 {
1018 objfile->separate_debug_objfile
1019 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1020 }
1021 else
1022 {
1023 objfile->separate_debug_objfile
1024 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1025 }
1026 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1027 = objfile;
1028
1029 /* Put the separate debug object before the normal one, this is so that
1030 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1031 put_objfile_before (objfile->separate_debug_objfile, objfile);
1032
1033 xfree (debugfile);
1034 }
1035
1036 if (!have_partial_symbols () && !have_full_symbols ())
1037 {
1038 wrap_here ("");
1039 printf_filtered (_("(no debugging symbols found)"));
1040 if (from_tty || info_verbose)
1041 printf_filtered ("...");
1042 else
1043 printf_filtered ("\n");
1044 wrap_here ("");
1045 }
1046
1047 if (from_tty || info_verbose)
1048 {
1049 if (deprecated_post_add_symbol_hook)
1050 deprecated_post_add_symbol_hook ();
1051 else
1052 {
1053 printf_unfiltered (_("done.\n"));
1054 }
1055 }
1056
1057 /* We print some messages regardless of whether 'from_tty ||
1058 info_verbose' is true, so make sure they go out at the right
1059 time. */
1060 gdb_flush (gdb_stdout);
1061
1062 do_cleanups (my_cleanups);
1063
1064 if (objfile->sf == NULL)
1065 return objfile; /* No symbols. */
1066
1067 new_symfile_objfile (objfile, mainline, from_tty);
1068
1069 observer_notify_new_objfile (objfile);
1070
1071 bfd_cache_close_all ();
1072 return (objfile);
1073 }
1074
1075
1076 /* Process the symbol file ABFD, as either the main file or as a
1077 dynamically loaded file.
1078
1079 See symbol_file_add_with_addrs_or_offsets's comments for
1080 details. */
1081 struct objfile *
1082 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1083 struct section_addr_info *addrs,
1084 int mainline, int flags)
1085 {
1086 return symbol_file_add_with_addrs_or_offsets (abfd,
1087 from_tty, addrs, 0, 0,
1088 mainline, flags);
1089 }
1090
1091
1092 /* Process a symbol file, as either the main file or as a dynamically
1093 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1094 for details. */
1095 struct objfile *
1096 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1097 int mainline, int flags)
1098 {
1099 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1100 addrs, mainline, flags);
1101 }
1102
1103
1104 /* Call symbol_file_add() with default values and update whatever is
1105 affected by the loading of a new main().
1106 Used when the file is supplied in the gdb command line
1107 and by some targets with special loading requirements.
1108 The auxiliary function, symbol_file_add_main_1(), has the flags
1109 argument for the switches that can only be specified in the symbol_file
1110 command itself. */
1111
1112 void
1113 symbol_file_add_main (char *args, int from_tty)
1114 {
1115 symbol_file_add_main_1 (args, from_tty, 0);
1116 }
1117
1118 static void
1119 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1120 {
1121 symbol_file_add (args, from_tty, NULL, 1, flags);
1122
1123 /* Getting new symbols may change our opinion about
1124 what is frameless. */
1125 reinit_frame_cache ();
1126
1127 set_initial_language ();
1128 }
1129
1130 void
1131 symbol_file_clear (int from_tty)
1132 {
1133 if ((have_full_symbols () || have_partial_symbols ())
1134 && from_tty
1135 && (symfile_objfile
1136 ? !query (_("Discard symbol table from `%s'? "),
1137 symfile_objfile->name)
1138 : !query (_("Discard symbol table? "))))
1139 error (_("Not confirmed."));
1140 free_all_objfiles ();
1141
1142 /* solib descriptors may have handles to objfiles. Since their
1143 storage has just been released, we'd better wipe the solib
1144 descriptors as well.
1145 */
1146 #if defined(SOLIB_RESTART)
1147 SOLIB_RESTART ();
1148 #endif
1149
1150 symfile_objfile = NULL;
1151 if (from_tty)
1152 printf_unfiltered (_("No symbol file now.\n"));
1153 }
1154
1155 static char *
1156 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1157 {
1158 asection *sect;
1159 bfd_size_type debuglink_size;
1160 unsigned long crc32;
1161 char *contents;
1162 int crc_offset;
1163 unsigned char *p;
1164
1165 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1166
1167 if (sect == NULL)
1168 return NULL;
1169
1170 debuglink_size = bfd_section_size (objfile->obfd, sect);
1171
1172 contents = xmalloc (debuglink_size);
1173 bfd_get_section_contents (objfile->obfd, sect, contents,
1174 (file_ptr)0, (bfd_size_type)debuglink_size);
1175
1176 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1177 crc_offset = strlen (contents) + 1;
1178 crc_offset = (crc_offset + 3) & ~3;
1179
1180 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1181
1182 *crc32_out = crc32;
1183 return contents;
1184 }
1185
1186 static int
1187 separate_debug_file_exists (const char *name, unsigned long crc)
1188 {
1189 unsigned long file_crc = 0;
1190 int fd;
1191 gdb_byte buffer[8*1024];
1192 int count;
1193
1194 fd = open (name, O_RDONLY | O_BINARY);
1195 if (fd < 0)
1196 return 0;
1197
1198 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1199 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1200
1201 close (fd);
1202
1203 return crc == file_crc;
1204 }
1205
1206 char *debug_file_directory = NULL;
1207 static void
1208 show_debug_file_directory (struct ui_file *file, int from_tty,
1209 struct cmd_list_element *c, const char *value)
1210 {
1211 fprintf_filtered (file, _("\
1212 The directory where separate debug symbols are searched for is \"%s\".\n"),
1213 value);
1214 }
1215
1216 #if ! defined (DEBUG_SUBDIRECTORY)
1217 #define DEBUG_SUBDIRECTORY ".debug"
1218 #endif
1219
1220 static char *
1221 find_separate_debug_file (struct objfile *objfile)
1222 {
1223 asection *sect;
1224 char *basename;
1225 char *dir;
1226 char *debugfile;
1227 char *name_copy;
1228 char *canon_name;
1229 bfd_size_type debuglink_size;
1230 unsigned long crc32;
1231 int i;
1232
1233 basename = get_debug_link_info (objfile, &crc32);
1234
1235 if (basename == NULL)
1236 return NULL;
1237
1238 dir = xstrdup (objfile->name);
1239
1240 /* Strip off the final filename part, leaving the directory name,
1241 followed by a slash. Objfile names should always be absolute and
1242 tilde-expanded, so there should always be a slash in there
1243 somewhere. */
1244 for (i = strlen(dir) - 1; i >= 0; i--)
1245 {
1246 if (IS_DIR_SEPARATOR (dir[i]))
1247 break;
1248 }
1249 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1250 dir[i+1] = '\0';
1251
1252 debugfile = alloca (strlen (debug_file_directory) + 1
1253 + strlen (dir)
1254 + strlen (DEBUG_SUBDIRECTORY)
1255 + strlen ("/")
1256 + strlen (basename)
1257 + 1);
1258
1259 /* First try in the same directory as the original file. */
1260 strcpy (debugfile, dir);
1261 strcat (debugfile, basename);
1262
1263 if (separate_debug_file_exists (debugfile, crc32))
1264 {
1265 xfree (basename);
1266 xfree (dir);
1267 return xstrdup (debugfile);
1268 }
1269
1270 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1271 strcpy (debugfile, dir);
1272 strcat (debugfile, DEBUG_SUBDIRECTORY);
1273 strcat (debugfile, "/");
1274 strcat (debugfile, basename);
1275
1276 if (separate_debug_file_exists (debugfile, crc32))
1277 {
1278 xfree (basename);
1279 xfree (dir);
1280 return xstrdup (debugfile);
1281 }
1282
1283 /* Then try in the global debugfile directory. */
1284 strcpy (debugfile, debug_file_directory);
1285 strcat (debugfile, "/");
1286 strcat (debugfile, dir);
1287 strcat (debugfile, basename);
1288
1289 if (separate_debug_file_exists (debugfile, crc32))
1290 {
1291 xfree (basename);
1292 xfree (dir);
1293 return xstrdup (debugfile);
1294 }
1295
1296 /* If the file is in the sysroot, try using its base path in the
1297 global debugfile directory. */
1298 canon_name = lrealpath (dir);
1299 if (canon_name
1300 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1301 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1302 {
1303 strcpy (debugfile, debug_file_directory);
1304 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1305 strcat (debugfile, "/");
1306 strcat (debugfile, basename);
1307
1308 if (separate_debug_file_exists (debugfile, crc32))
1309 {
1310 xfree (canon_name);
1311 xfree (basename);
1312 xfree (dir);
1313 return xstrdup (debugfile);
1314 }
1315 }
1316
1317 if (canon_name)
1318 xfree (canon_name);
1319
1320 xfree (basename);
1321 xfree (dir);
1322 return NULL;
1323 }
1324
1325
1326 /* This is the symbol-file command. Read the file, analyze its
1327 symbols, and add a struct symtab to a symtab list. The syntax of
1328 the command is rather bizarre:
1329
1330 1. The function buildargv implements various quoting conventions
1331 which are undocumented and have little or nothing in common with
1332 the way things are quoted (or not quoted) elsewhere in GDB.
1333
1334 2. Options are used, which are not generally used in GDB (perhaps
1335 "set mapped on", "set readnow on" would be better)
1336
1337 3. The order of options matters, which is contrary to GNU
1338 conventions (because it is confusing and inconvenient). */
1339
1340 void
1341 symbol_file_command (char *args, int from_tty)
1342 {
1343 dont_repeat ();
1344
1345 if (args == NULL)
1346 {
1347 symbol_file_clear (from_tty);
1348 }
1349 else
1350 {
1351 char **argv = buildargv (args);
1352 int flags = OBJF_USERLOADED;
1353 struct cleanup *cleanups;
1354 char *name = NULL;
1355
1356 if (argv == NULL)
1357 nomem (0);
1358
1359 cleanups = make_cleanup_freeargv (argv);
1360 while (*argv != NULL)
1361 {
1362 if (strcmp (*argv, "-readnow") == 0)
1363 flags |= OBJF_READNOW;
1364 else if (**argv == '-')
1365 error (_("unknown option `%s'"), *argv);
1366 else
1367 {
1368 symbol_file_add_main_1 (*argv, from_tty, flags);
1369 name = *argv;
1370 }
1371
1372 argv++;
1373 }
1374
1375 if (name == NULL)
1376 error (_("no symbol file name was specified"));
1377
1378 do_cleanups (cleanups);
1379 }
1380 }
1381
1382 /* Set the initial language.
1383
1384 FIXME: A better solution would be to record the language in the
1385 psymtab when reading partial symbols, and then use it (if known) to
1386 set the language. This would be a win for formats that encode the
1387 language in an easily discoverable place, such as DWARF. For
1388 stabs, we can jump through hoops looking for specially named
1389 symbols or try to intuit the language from the specific type of
1390 stabs we find, but we can't do that until later when we read in
1391 full symbols. */
1392
1393 static void
1394 set_initial_language (void)
1395 {
1396 struct partial_symtab *pst;
1397 enum language lang = language_unknown;
1398
1399 pst = find_main_psymtab ();
1400 if (pst != NULL)
1401 {
1402 if (pst->filename != NULL)
1403 lang = deduce_language_from_filename (pst->filename);
1404
1405 if (lang == language_unknown)
1406 {
1407 /* Make C the default language */
1408 lang = language_c;
1409 }
1410
1411 set_language (lang);
1412 expected_language = current_language; /* Don't warn the user. */
1413 }
1414 }
1415
1416 /* Open the file specified by NAME and hand it off to BFD for
1417 preliminary analysis. Return a newly initialized bfd *, which
1418 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1419 absolute). In case of trouble, error() is called. */
1420
1421 bfd *
1422 symfile_bfd_open (char *name)
1423 {
1424 bfd *sym_bfd;
1425 int desc;
1426 char *absolute_name;
1427
1428 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1429
1430 /* Look down path for it, allocate 2nd new malloc'd copy. */
1431 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1432 O_RDONLY | O_BINARY, 0, &absolute_name);
1433 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1434 if (desc < 0)
1435 {
1436 char *exename = alloca (strlen (name) + 5);
1437 strcat (strcpy (exename, name), ".exe");
1438 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1439 O_RDONLY | O_BINARY, 0, &absolute_name);
1440 }
1441 #endif
1442 if (desc < 0)
1443 {
1444 make_cleanup (xfree, name);
1445 perror_with_name (name);
1446 }
1447
1448 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1449 bfd. It'll be freed in free_objfile(). */
1450 xfree (name);
1451 name = absolute_name;
1452
1453 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1454 if (!sym_bfd)
1455 {
1456 close (desc);
1457 make_cleanup (xfree, name);
1458 error (_("\"%s\": can't open to read symbols: %s."), name,
1459 bfd_errmsg (bfd_get_error ()));
1460 }
1461 bfd_set_cacheable (sym_bfd, 1);
1462
1463 if (!bfd_check_format (sym_bfd, bfd_object))
1464 {
1465 /* FIXME: should be checking for errors from bfd_close (for one
1466 thing, on error it does not free all the storage associated
1467 with the bfd). */
1468 bfd_close (sym_bfd); /* This also closes desc. */
1469 make_cleanup (xfree, name);
1470 error (_("\"%s\": can't read symbols: %s."), name,
1471 bfd_errmsg (bfd_get_error ()));
1472 }
1473
1474 return sym_bfd;
1475 }
1476
1477 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1478 the section was not found. */
1479
1480 int
1481 get_section_index (struct objfile *objfile, char *section_name)
1482 {
1483 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1484
1485 if (sect)
1486 return sect->index;
1487 else
1488 return -1;
1489 }
1490
1491 /* Link SF into the global symtab_fns list. Called on startup by the
1492 _initialize routine in each object file format reader, to register
1493 information about each format the the reader is prepared to
1494 handle. */
1495
1496 void
1497 add_symtab_fns (struct sym_fns *sf)
1498 {
1499 sf->next = symtab_fns;
1500 symtab_fns = sf;
1501 }
1502
1503 /* Initialize OBJFILE to read symbols from its associated BFD. It
1504 either returns or calls error(). The result is an initialized
1505 struct sym_fns in the objfile structure, that contains cached
1506 information about the symbol file. */
1507
1508 static void
1509 find_sym_fns (struct objfile *objfile)
1510 {
1511 struct sym_fns *sf;
1512 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1513 char *our_target = bfd_get_target (objfile->obfd);
1514
1515 if (our_flavour == bfd_target_srec_flavour
1516 || our_flavour == bfd_target_ihex_flavour
1517 || our_flavour == bfd_target_tekhex_flavour)
1518 return; /* No symbols. */
1519
1520 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1521 {
1522 if (our_flavour == sf->sym_flavour)
1523 {
1524 objfile->sf = sf;
1525 return;
1526 }
1527 }
1528
1529 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1530 bfd_get_target (objfile->obfd));
1531 }
1532 \f
1533
1534 /* This function runs the load command of our current target. */
1535
1536 static void
1537 load_command (char *arg, int from_tty)
1538 {
1539 if (arg == NULL)
1540 {
1541 char *parg;
1542 int count = 0;
1543
1544 parg = arg = get_exec_file (1);
1545
1546 /* Count how many \ " ' tab space there are in the name. */
1547 while ((parg = strpbrk (parg, "\\\"'\t ")))
1548 {
1549 parg++;
1550 count++;
1551 }
1552
1553 if (count)
1554 {
1555 /* We need to quote this string so buildargv can pull it apart. */
1556 char *temp = xmalloc (strlen (arg) + count + 1 );
1557 char *ptemp = temp;
1558 char *prev;
1559
1560 make_cleanup (xfree, temp);
1561
1562 prev = parg = arg;
1563 while ((parg = strpbrk (parg, "\\\"'\t ")))
1564 {
1565 strncpy (ptemp, prev, parg - prev);
1566 ptemp += parg - prev;
1567 prev = parg++;
1568 *ptemp++ = '\\';
1569 }
1570 strcpy (ptemp, prev);
1571
1572 arg = temp;
1573 }
1574 }
1575
1576 /* The user might be reloading because the binary has changed. Take
1577 this opportunity to check. */
1578 reopen_exec_file ();
1579 reread_symbols ();
1580
1581 target_load (arg, from_tty);
1582
1583 /* After re-loading the executable, we don't really know which
1584 overlays are mapped any more. */
1585 overlay_cache_invalid = 1;
1586 }
1587
1588 /* This version of "load" should be usable for any target. Currently
1589 it is just used for remote targets, not inftarg.c or core files,
1590 on the theory that only in that case is it useful.
1591
1592 Avoiding xmodem and the like seems like a win (a) because we don't have
1593 to worry about finding it, and (b) On VMS, fork() is very slow and so
1594 we don't want to run a subprocess. On the other hand, I'm not sure how
1595 performance compares. */
1596
1597 static int validate_download = 0;
1598
1599 /* Callback service function for generic_load (bfd_map_over_sections). */
1600
1601 static void
1602 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1603 {
1604 bfd_size_type *sum = data;
1605
1606 *sum += bfd_get_section_size (asec);
1607 }
1608
1609 /* Opaque data for load_section_callback. */
1610 struct load_section_data {
1611 unsigned long load_offset;
1612 struct load_progress_data *progress_data;
1613 VEC(memory_write_request_s) *requests;
1614 };
1615
1616 /* Opaque data for load_progress. */
1617 struct load_progress_data {
1618 /* Cumulative data. */
1619 unsigned long write_count;
1620 unsigned long data_count;
1621 bfd_size_type total_size;
1622 };
1623
1624 /* Opaque data for load_progress for a single section. */
1625 struct load_progress_section_data {
1626 struct load_progress_data *cumulative;
1627
1628 /* Per-section data. */
1629 const char *section_name;
1630 ULONGEST section_sent;
1631 ULONGEST section_size;
1632 CORE_ADDR lma;
1633 gdb_byte *buffer;
1634 };
1635
1636 /* Target write callback routine for progress reporting. */
1637
1638 static void
1639 load_progress (ULONGEST bytes, void *untyped_arg)
1640 {
1641 struct load_progress_section_data *args = untyped_arg;
1642 struct load_progress_data *totals;
1643
1644 if (args == NULL)
1645 /* Writing padding data. No easy way to get at the cumulative
1646 stats, so just ignore this. */
1647 return;
1648
1649 totals = args->cumulative;
1650
1651 if (bytes == 0 && args->section_sent == 0)
1652 {
1653 /* The write is just starting. Let the user know we've started
1654 this section. */
1655 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1656 args->section_name, paddr_nz (args->section_size),
1657 paddr_nz (args->lma));
1658 return;
1659 }
1660
1661 if (validate_download)
1662 {
1663 /* Broken memories and broken monitors manifest themselves here
1664 when bring new computers to life. This doubles already slow
1665 downloads. */
1666 /* NOTE: cagney/1999-10-18: A more efficient implementation
1667 might add a verify_memory() method to the target vector and
1668 then use that. remote.c could implement that method using
1669 the ``qCRC'' packet. */
1670 gdb_byte *check = xmalloc (bytes);
1671 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1672
1673 if (target_read_memory (args->lma, check, bytes) != 0)
1674 error (_("Download verify read failed at 0x%s"),
1675 paddr (args->lma));
1676 if (memcmp (args->buffer, check, bytes) != 0)
1677 error (_("Download verify compare failed at 0x%s"),
1678 paddr (args->lma));
1679 do_cleanups (verify_cleanups);
1680 }
1681 totals->data_count += bytes;
1682 args->lma += bytes;
1683 args->buffer += bytes;
1684 totals->write_count += 1;
1685 args->section_sent += bytes;
1686 if (quit_flag
1687 || (deprecated_ui_load_progress_hook != NULL
1688 && deprecated_ui_load_progress_hook (args->section_name,
1689 args->section_sent)))
1690 error (_("Canceled the download"));
1691
1692 if (deprecated_show_load_progress != NULL)
1693 deprecated_show_load_progress (args->section_name,
1694 args->section_sent,
1695 args->section_size,
1696 totals->data_count,
1697 totals->total_size);
1698 }
1699
1700 /* Callback service function for generic_load (bfd_map_over_sections). */
1701
1702 static void
1703 load_section_callback (bfd *abfd, asection *asec, void *data)
1704 {
1705 struct memory_write_request *new_request;
1706 struct load_section_data *args = data;
1707 struct load_progress_section_data *section_data;
1708 bfd_size_type size = bfd_get_section_size (asec);
1709 gdb_byte *buffer;
1710 const char *sect_name = bfd_get_section_name (abfd, asec);
1711
1712 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1713 return;
1714
1715 if (size == 0)
1716 return;
1717
1718 new_request = VEC_safe_push (memory_write_request_s,
1719 args->requests, NULL);
1720 memset (new_request, 0, sizeof (struct memory_write_request));
1721 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1722 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1723 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1724 new_request->data = xmalloc (size);
1725 new_request->baton = section_data;
1726
1727 buffer = new_request->data;
1728
1729 section_data->cumulative = args->progress_data;
1730 section_data->section_name = sect_name;
1731 section_data->section_size = size;
1732 section_data->lma = new_request->begin;
1733 section_data->buffer = buffer;
1734
1735 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1736 }
1737
1738 /* Clean up an entire memory request vector, including load
1739 data and progress records. */
1740
1741 static void
1742 clear_memory_write_data (void *arg)
1743 {
1744 VEC(memory_write_request_s) **vec_p = arg;
1745 VEC(memory_write_request_s) *vec = *vec_p;
1746 int i;
1747 struct memory_write_request *mr;
1748
1749 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1750 {
1751 xfree (mr->data);
1752 xfree (mr->baton);
1753 }
1754 VEC_free (memory_write_request_s, vec);
1755 }
1756
1757 void
1758 generic_load (char *args, int from_tty)
1759 {
1760 bfd *loadfile_bfd;
1761 struct timeval start_time, end_time;
1762 char *filename;
1763 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1764 struct load_section_data cbdata;
1765 struct load_progress_data total_progress;
1766
1767 CORE_ADDR entry;
1768 char **argv;
1769
1770 memset (&cbdata, 0, sizeof (cbdata));
1771 memset (&total_progress, 0, sizeof (total_progress));
1772 cbdata.progress_data = &total_progress;
1773
1774 make_cleanup (clear_memory_write_data, &cbdata.requests);
1775
1776 argv = buildargv (args);
1777
1778 if (argv == NULL)
1779 nomem(0);
1780
1781 make_cleanup_freeargv (argv);
1782
1783 filename = tilde_expand (argv[0]);
1784 make_cleanup (xfree, filename);
1785
1786 if (argv[1] != NULL)
1787 {
1788 char *endptr;
1789
1790 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1791
1792 /* If the last word was not a valid number then
1793 treat it as a file name with spaces in. */
1794 if (argv[1] == endptr)
1795 error (_("Invalid download offset:%s."), argv[1]);
1796
1797 if (argv[2] != NULL)
1798 error (_("Too many parameters."));
1799 }
1800
1801 /* Open the file for loading. */
1802 loadfile_bfd = bfd_openr (filename, gnutarget);
1803 if (loadfile_bfd == NULL)
1804 {
1805 perror_with_name (filename);
1806 return;
1807 }
1808
1809 /* FIXME: should be checking for errors from bfd_close (for one thing,
1810 on error it does not free all the storage associated with the
1811 bfd). */
1812 make_cleanup_bfd_close (loadfile_bfd);
1813
1814 if (!bfd_check_format (loadfile_bfd, bfd_object))
1815 {
1816 error (_("\"%s\" is not an object file: %s"), filename,
1817 bfd_errmsg (bfd_get_error ()));
1818 }
1819
1820 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1821 (void *) &total_progress.total_size);
1822
1823 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1824
1825 gettimeofday (&start_time, NULL);
1826
1827 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1828 load_progress) != 0)
1829 error (_("Load failed"));
1830
1831 gettimeofday (&end_time, NULL);
1832
1833 entry = bfd_get_start_address (loadfile_bfd);
1834 ui_out_text (uiout, "Start address ");
1835 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1836 ui_out_text (uiout, ", load size ");
1837 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1838 ui_out_text (uiout, "\n");
1839 /* We were doing this in remote-mips.c, I suspect it is right
1840 for other targets too. */
1841 write_pc (entry);
1842
1843 /* FIXME: are we supposed to call symbol_file_add or not? According
1844 to a comment from remote-mips.c (where a call to symbol_file_add
1845 was commented out), making the call confuses GDB if more than one
1846 file is loaded in. Some targets do (e.g., remote-vx.c) but
1847 others don't (or didn't - perhaps they have all been deleted). */
1848
1849 print_transfer_performance (gdb_stdout, total_progress.data_count,
1850 total_progress.write_count,
1851 &start_time, &end_time);
1852
1853 do_cleanups (old_cleanups);
1854 }
1855
1856 /* Report how fast the transfer went. */
1857
1858 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1859 replaced by print_transfer_performance (with a very different
1860 function signature). */
1861
1862 void
1863 report_transfer_performance (unsigned long data_count, time_t start_time,
1864 time_t end_time)
1865 {
1866 struct timeval start, end;
1867
1868 start.tv_sec = start_time;
1869 start.tv_usec = 0;
1870 end.tv_sec = end_time;
1871 end.tv_usec = 0;
1872
1873 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1874 }
1875
1876 void
1877 print_transfer_performance (struct ui_file *stream,
1878 unsigned long data_count,
1879 unsigned long write_count,
1880 const struct timeval *start_time,
1881 const struct timeval *end_time)
1882 {
1883 unsigned long time_count;
1884
1885 /* Compute the elapsed time in milliseconds, as a tradeoff between
1886 accuracy and overflow. */
1887 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1888 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1889
1890 ui_out_text (uiout, "Transfer rate: ");
1891 if (time_count > 0)
1892 {
1893 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1894 1000 * (data_count * 8) / time_count);
1895 ui_out_text (uiout, " bits/sec");
1896 }
1897 else
1898 {
1899 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1900 ui_out_text (uiout, " bits in <1 sec");
1901 }
1902 if (write_count > 0)
1903 {
1904 ui_out_text (uiout, ", ");
1905 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1906 ui_out_text (uiout, " bytes/write");
1907 }
1908 ui_out_text (uiout, ".\n");
1909 }
1910
1911 /* This function allows the addition of incrementally linked object files.
1912 It does not modify any state in the target, only in the debugger. */
1913 /* Note: ezannoni 2000-04-13 This function/command used to have a
1914 special case syntax for the rombug target (Rombug is the boot
1915 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1916 rombug case, the user doesn't need to supply a text address,
1917 instead a call to target_link() (in target.c) would supply the
1918 value to use. We are now discontinuing this type of ad hoc syntax. */
1919
1920 static void
1921 add_symbol_file_command (char *args, int from_tty)
1922 {
1923 char *filename = NULL;
1924 int flags = OBJF_USERLOADED;
1925 char *arg;
1926 int expecting_option = 0;
1927 int section_index = 0;
1928 int argcnt = 0;
1929 int sec_num = 0;
1930 int i;
1931 int expecting_sec_name = 0;
1932 int expecting_sec_addr = 0;
1933 char **argv;
1934
1935 struct sect_opt
1936 {
1937 char *name;
1938 char *value;
1939 };
1940
1941 struct section_addr_info *section_addrs;
1942 struct sect_opt *sect_opts = NULL;
1943 size_t num_sect_opts = 0;
1944 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1945
1946 num_sect_opts = 16;
1947 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1948 * sizeof (struct sect_opt));
1949
1950 dont_repeat ();
1951
1952 if (args == NULL)
1953 error (_("add-symbol-file takes a file name and an address"));
1954
1955 argv = buildargv (args);
1956 make_cleanup_freeargv (argv);
1957
1958 if (argv == NULL)
1959 nomem (0);
1960
1961 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1962 {
1963 /* Process the argument. */
1964 if (argcnt == 0)
1965 {
1966 /* The first argument is the file name. */
1967 filename = tilde_expand (arg);
1968 make_cleanup (xfree, filename);
1969 }
1970 else
1971 if (argcnt == 1)
1972 {
1973 /* The second argument is always the text address at which
1974 to load the program. */
1975 sect_opts[section_index].name = ".text";
1976 sect_opts[section_index].value = arg;
1977 if (++section_index >= num_sect_opts)
1978 {
1979 num_sect_opts *= 2;
1980 sect_opts = ((struct sect_opt *)
1981 xrealloc (sect_opts,
1982 num_sect_opts
1983 * sizeof (struct sect_opt)));
1984 }
1985 }
1986 else
1987 {
1988 /* It's an option (starting with '-') or it's an argument
1989 to an option */
1990
1991 if (*arg == '-')
1992 {
1993 if (strcmp (arg, "-readnow") == 0)
1994 flags |= OBJF_READNOW;
1995 else if (strcmp (arg, "-s") == 0)
1996 {
1997 expecting_sec_name = 1;
1998 expecting_sec_addr = 1;
1999 }
2000 }
2001 else
2002 {
2003 if (expecting_sec_name)
2004 {
2005 sect_opts[section_index].name = arg;
2006 expecting_sec_name = 0;
2007 }
2008 else
2009 if (expecting_sec_addr)
2010 {
2011 sect_opts[section_index].value = arg;
2012 expecting_sec_addr = 0;
2013 if (++section_index >= num_sect_opts)
2014 {
2015 num_sect_opts *= 2;
2016 sect_opts = ((struct sect_opt *)
2017 xrealloc (sect_opts,
2018 num_sect_opts
2019 * sizeof (struct sect_opt)));
2020 }
2021 }
2022 else
2023 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2024 }
2025 }
2026 }
2027
2028 /* This command takes at least two arguments. The first one is a
2029 filename, and the second is the address where this file has been
2030 loaded. Abort now if this address hasn't been provided by the
2031 user. */
2032 if (section_index < 1)
2033 error (_("The address where %s has been loaded is missing"), filename);
2034
2035 /* Print the prompt for the query below. And save the arguments into
2036 a sect_addr_info structure to be passed around to other
2037 functions. We have to split this up into separate print
2038 statements because hex_string returns a local static
2039 string. */
2040
2041 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2042 section_addrs = alloc_section_addr_info (section_index);
2043 make_cleanup (xfree, section_addrs);
2044 for (i = 0; i < section_index; i++)
2045 {
2046 CORE_ADDR addr;
2047 char *val = sect_opts[i].value;
2048 char *sec = sect_opts[i].name;
2049
2050 addr = parse_and_eval_address (val);
2051
2052 /* Here we store the section offsets in the order they were
2053 entered on the command line. */
2054 section_addrs->other[sec_num].name = sec;
2055 section_addrs->other[sec_num].addr = addr;
2056 printf_unfiltered ("\t%s_addr = %s\n",
2057 sec, hex_string ((unsigned long)addr));
2058 sec_num++;
2059
2060 /* The object's sections are initialized when a
2061 call is made to build_objfile_section_table (objfile).
2062 This happens in reread_symbols.
2063 At this point, we don't know what file type this is,
2064 so we can't determine what section names are valid. */
2065 }
2066
2067 if (from_tty && (!query ("%s", "")))
2068 error (_("Not confirmed."));
2069
2070 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2071
2072 /* Getting new symbols may change our opinion about what is
2073 frameless. */
2074 reinit_frame_cache ();
2075 do_cleanups (my_cleanups);
2076 }
2077 \f
2078 static void
2079 add_shared_symbol_files_command (char *args, int from_tty)
2080 {
2081 #ifdef ADD_SHARED_SYMBOL_FILES
2082 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2083 #else
2084 error (_("This command is not available in this configuration of GDB."));
2085 #endif
2086 }
2087 \f
2088 /* Re-read symbols if a symbol-file has changed. */
2089 void
2090 reread_symbols (void)
2091 {
2092 struct objfile *objfile;
2093 long new_modtime;
2094 int reread_one = 0;
2095 struct stat new_statbuf;
2096 int res;
2097
2098 /* With the addition of shared libraries, this should be modified,
2099 the load time should be saved in the partial symbol tables, since
2100 different tables may come from different source files. FIXME.
2101 This routine should then walk down each partial symbol table
2102 and see if the symbol table that it originates from has been changed */
2103
2104 for (objfile = object_files; objfile; objfile = objfile->next)
2105 {
2106 if (objfile->obfd)
2107 {
2108 #ifdef DEPRECATED_IBM6000_TARGET
2109 /* If this object is from a shared library, then you should
2110 stat on the library name, not member name. */
2111
2112 if (objfile->obfd->my_archive)
2113 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2114 else
2115 #endif
2116 res = stat (objfile->name, &new_statbuf);
2117 if (res != 0)
2118 {
2119 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2120 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2121 objfile->name);
2122 continue;
2123 }
2124 new_modtime = new_statbuf.st_mtime;
2125 if (new_modtime != objfile->mtime)
2126 {
2127 struct cleanup *old_cleanups;
2128 struct section_offsets *offsets;
2129 int num_offsets;
2130 char *obfd_filename;
2131
2132 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2133 objfile->name);
2134
2135 /* There are various functions like symbol_file_add,
2136 symfile_bfd_open, syms_from_objfile, etc., which might
2137 appear to do what we want. But they have various other
2138 effects which we *don't* want. So we just do stuff
2139 ourselves. We don't worry about mapped files (for one thing,
2140 any mapped file will be out of date). */
2141
2142 /* If we get an error, blow away this objfile (not sure if
2143 that is the correct response for things like shared
2144 libraries). */
2145 old_cleanups = make_cleanup_free_objfile (objfile);
2146 /* We need to do this whenever any symbols go away. */
2147 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2148
2149 /* Clean up any state BFD has sitting around. We don't need
2150 to close the descriptor but BFD lacks a way of closing the
2151 BFD without closing the descriptor. */
2152 obfd_filename = bfd_get_filename (objfile->obfd);
2153 if (!bfd_close (objfile->obfd))
2154 error (_("Can't close BFD for %s: %s"), objfile->name,
2155 bfd_errmsg (bfd_get_error ()));
2156 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2157 if (objfile->obfd == NULL)
2158 error (_("Can't open %s to read symbols."), objfile->name);
2159 /* bfd_openr sets cacheable to true, which is what we want. */
2160 if (!bfd_check_format (objfile->obfd, bfd_object))
2161 error (_("Can't read symbols from %s: %s."), objfile->name,
2162 bfd_errmsg (bfd_get_error ()));
2163
2164 /* Save the offsets, we will nuke them with the rest of the
2165 objfile_obstack. */
2166 num_offsets = objfile->num_sections;
2167 offsets = ((struct section_offsets *)
2168 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2169 memcpy (offsets, objfile->section_offsets,
2170 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2171
2172 /* Remove any references to this objfile in the global
2173 value lists. */
2174 preserve_values (objfile);
2175
2176 /* Nuke all the state that we will re-read. Much of the following
2177 code which sets things to NULL really is necessary to tell
2178 other parts of GDB that there is nothing currently there. */
2179
2180 /* FIXME: Do we have to free a whole linked list, or is this
2181 enough? */
2182 if (objfile->global_psymbols.list)
2183 xfree (objfile->global_psymbols.list);
2184 memset (&objfile->global_psymbols, 0,
2185 sizeof (objfile->global_psymbols));
2186 if (objfile->static_psymbols.list)
2187 xfree (objfile->static_psymbols.list);
2188 memset (&objfile->static_psymbols, 0,
2189 sizeof (objfile->static_psymbols));
2190
2191 /* Free the obstacks for non-reusable objfiles */
2192 bcache_xfree (objfile->psymbol_cache);
2193 objfile->psymbol_cache = bcache_xmalloc ();
2194 bcache_xfree (objfile->macro_cache);
2195 objfile->macro_cache = bcache_xmalloc ();
2196 if (objfile->demangled_names_hash != NULL)
2197 {
2198 htab_delete (objfile->demangled_names_hash);
2199 objfile->demangled_names_hash = NULL;
2200 }
2201 obstack_free (&objfile->objfile_obstack, 0);
2202 objfile->sections = NULL;
2203 objfile->symtabs = NULL;
2204 objfile->psymtabs = NULL;
2205 objfile->free_psymtabs = NULL;
2206 objfile->cp_namespace_symtab = NULL;
2207 objfile->msymbols = NULL;
2208 objfile->deprecated_sym_private = NULL;
2209 objfile->minimal_symbol_count = 0;
2210 memset (&objfile->msymbol_hash, 0,
2211 sizeof (objfile->msymbol_hash));
2212 memset (&objfile->msymbol_demangled_hash, 0,
2213 sizeof (objfile->msymbol_demangled_hash));
2214 objfile->fundamental_types = NULL;
2215 clear_objfile_data (objfile);
2216 if (objfile->sf != NULL)
2217 {
2218 (*objfile->sf->sym_finish) (objfile);
2219 }
2220
2221 /* We never make this a mapped file. */
2222 objfile->md = NULL;
2223 objfile->psymbol_cache = bcache_xmalloc ();
2224 objfile->macro_cache = bcache_xmalloc ();
2225 /* obstack_init also initializes the obstack so it is
2226 empty. We could use obstack_specify_allocation but
2227 gdb_obstack.h specifies the alloc/dealloc
2228 functions. */
2229 obstack_init (&objfile->objfile_obstack);
2230 if (build_objfile_section_table (objfile))
2231 {
2232 error (_("Can't find the file sections in `%s': %s"),
2233 objfile->name, bfd_errmsg (bfd_get_error ()));
2234 }
2235 terminate_minimal_symbol_table (objfile);
2236
2237 /* We use the same section offsets as from last time. I'm not
2238 sure whether that is always correct for shared libraries. */
2239 objfile->section_offsets = (struct section_offsets *)
2240 obstack_alloc (&objfile->objfile_obstack,
2241 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2242 memcpy (objfile->section_offsets, offsets,
2243 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2244 objfile->num_sections = num_offsets;
2245
2246 /* What the hell is sym_new_init for, anyway? The concept of
2247 distinguishing between the main file and additional files
2248 in this way seems rather dubious. */
2249 if (objfile == symfile_objfile)
2250 {
2251 (*objfile->sf->sym_new_init) (objfile);
2252 }
2253
2254 (*objfile->sf->sym_init) (objfile);
2255 clear_complaints (&symfile_complaints, 1, 1);
2256 /* The "mainline" parameter is a hideous hack; I think leaving it
2257 zero is OK since dbxread.c also does what it needs to do if
2258 objfile->global_psymbols.size is 0. */
2259 (*objfile->sf->sym_read) (objfile, 0);
2260 if (!have_partial_symbols () && !have_full_symbols ())
2261 {
2262 wrap_here ("");
2263 printf_unfiltered (_("(no debugging symbols found)\n"));
2264 wrap_here ("");
2265 }
2266 objfile->flags |= OBJF_SYMS;
2267
2268 /* We're done reading the symbol file; finish off complaints. */
2269 clear_complaints (&symfile_complaints, 0, 1);
2270
2271 /* Getting new symbols may change our opinion about what is
2272 frameless. */
2273
2274 reinit_frame_cache ();
2275
2276 /* Discard cleanups as symbol reading was successful. */
2277 discard_cleanups (old_cleanups);
2278
2279 /* If the mtime has changed between the time we set new_modtime
2280 and now, we *want* this to be out of date, so don't call stat
2281 again now. */
2282 objfile->mtime = new_modtime;
2283 reread_one = 1;
2284 reread_separate_symbols (objfile);
2285 }
2286 }
2287 }
2288
2289 if (reread_one)
2290 {
2291 clear_symtab_users ();
2292 /* At least one objfile has changed, so we can consider that
2293 the executable we're debugging has changed too. */
2294 observer_notify_executable_changed (NULL);
2295 }
2296
2297 }
2298
2299
2300 /* Handle separate debug info for OBJFILE, which has just been
2301 re-read:
2302 - If we had separate debug info before, but now we don't, get rid
2303 of the separated objfile.
2304 - If we didn't have separated debug info before, but now we do,
2305 read in the new separated debug info file.
2306 - If the debug link points to a different file, toss the old one
2307 and read the new one.
2308 This function does *not* handle the case where objfile is still
2309 using the same separate debug info file, but that file's timestamp
2310 has changed. That case should be handled by the loop in
2311 reread_symbols already. */
2312 static void
2313 reread_separate_symbols (struct objfile *objfile)
2314 {
2315 char *debug_file;
2316 unsigned long crc32;
2317
2318 /* Does the updated objfile's debug info live in a
2319 separate file? */
2320 debug_file = find_separate_debug_file (objfile);
2321
2322 if (objfile->separate_debug_objfile)
2323 {
2324 /* There are two cases where we need to get rid of
2325 the old separated debug info objfile:
2326 - if the new primary objfile doesn't have
2327 separated debug info, or
2328 - if the new primary objfile has separate debug
2329 info, but it's under a different filename.
2330
2331 If the old and new objfiles both have separate
2332 debug info, under the same filename, then we're
2333 okay --- if the separated file's contents have
2334 changed, we will have caught that when we
2335 visited it in this function's outermost
2336 loop. */
2337 if (! debug_file
2338 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2339 free_objfile (objfile->separate_debug_objfile);
2340 }
2341
2342 /* If the new objfile has separate debug info, and we
2343 haven't loaded it already, do so now. */
2344 if (debug_file
2345 && ! objfile->separate_debug_objfile)
2346 {
2347 /* Use the same section offset table as objfile itself.
2348 Preserve the flags from objfile that make sense. */
2349 objfile->separate_debug_objfile
2350 = (symbol_file_add_with_addrs_or_offsets
2351 (symfile_bfd_open (debug_file),
2352 info_verbose, /* from_tty: Don't override the default. */
2353 0, /* No addr table. */
2354 objfile->section_offsets, objfile->num_sections,
2355 0, /* Not mainline. See comments about this above. */
2356 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2357 | OBJF_USERLOADED)));
2358 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2359 = objfile;
2360 }
2361 }
2362
2363
2364 \f
2365
2366
2367 typedef struct
2368 {
2369 char *ext;
2370 enum language lang;
2371 }
2372 filename_language;
2373
2374 static filename_language *filename_language_table;
2375 static int fl_table_size, fl_table_next;
2376
2377 static void
2378 add_filename_language (char *ext, enum language lang)
2379 {
2380 if (fl_table_next >= fl_table_size)
2381 {
2382 fl_table_size += 10;
2383 filename_language_table =
2384 xrealloc (filename_language_table,
2385 fl_table_size * sizeof (*filename_language_table));
2386 }
2387
2388 filename_language_table[fl_table_next].ext = xstrdup (ext);
2389 filename_language_table[fl_table_next].lang = lang;
2390 fl_table_next++;
2391 }
2392
2393 static char *ext_args;
2394 static void
2395 show_ext_args (struct ui_file *file, int from_tty,
2396 struct cmd_list_element *c, const char *value)
2397 {
2398 fprintf_filtered (file, _("\
2399 Mapping between filename extension and source language is \"%s\".\n"),
2400 value);
2401 }
2402
2403 static void
2404 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2405 {
2406 int i;
2407 char *cp = ext_args;
2408 enum language lang;
2409
2410 /* First arg is filename extension, starting with '.' */
2411 if (*cp != '.')
2412 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2413
2414 /* Find end of first arg. */
2415 while (*cp && !isspace (*cp))
2416 cp++;
2417
2418 if (*cp == '\0')
2419 error (_("'%s': two arguments required -- filename extension and language"),
2420 ext_args);
2421
2422 /* Null-terminate first arg */
2423 *cp++ = '\0';
2424
2425 /* Find beginning of second arg, which should be a source language. */
2426 while (*cp && isspace (*cp))
2427 cp++;
2428
2429 if (*cp == '\0')
2430 error (_("'%s': two arguments required -- filename extension and language"),
2431 ext_args);
2432
2433 /* Lookup the language from among those we know. */
2434 lang = language_enum (cp);
2435
2436 /* Now lookup the filename extension: do we already know it? */
2437 for (i = 0; i < fl_table_next; i++)
2438 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2439 break;
2440
2441 if (i >= fl_table_next)
2442 {
2443 /* new file extension */
2444 add_filename_language (ext_args, lang);
2445 }
2446 else
2447 {
2448 /* redefining a previously known filename extension */
2449
2450 /* if (from_tty) */
2451 /* query ("Really make files of type %s '%s'?", */
2452 /* ext_args, language_str (lang)); */
2453
2454 xfree (filename_language_table[i].ext);
2455 filename_language_table[i].ext = xstrdup (ext_args);
2456 filename_language_table[i].lang = lang;
2457 }
2458 }
2459
2460 static void
2461 info_ext_lang_command (char *args, int from_tty)
2462 {
2463 int i;
2464
2465 printf_filtered (_("Filename extensions and the languages they represent:"));
2466 printf_filtered ("\n\n");
2467 for (i = 0; i < fl_table_next; i++)
2468 printf_filtered ("\t%s\t- %s\n",
2469 filename_language_table[i].ext,
2470 language_str (filename_language_table[i].lang));
2471 }
2472
2473 static void
2474 init_filename_language_table (void)
2475 {
2476 if (fl_table_size == 0) /* protect against repetition */
2477 {
2478 fl_table_size = 20;
2479 fl_table_next = 0;
2480 filename_language_table =
2481 xmalloc (fl_table_size * sizeof (*filename_language_table));
2482 add_filename_language (".c", language_c);
2483 add_filename_language (".C", language_cplus);
2484 add_filename_language (".cc", language_cplus);
2485 add_filename_language (".cp", language_cplus);
2486 add_filename_language (".cpp", language_cplus);
2487 add_filename_language (".cxx", language_cplus);
2488 add_filename_language (".c++", language_cplus);
2489 add_filename_language (".java", language_java);
2490 add_filename_language (".class", language_java);
2491 add_filename_language (".m", language_objc);
2492 add_filename_language (".f", language_fortran);
2493 add_filename_language (".F", language_fortran);
2494 add_filename_language (".s", language_asm);
2495 add_filename_language (".S", language_asm);
2496 add_filename_language (".pas", language_pascal);
2497 add_filename_language (".p", language_pascal);
2498 add_filename_language (".pp", language_pascal);
2499 add_filename_language (".adb", language_ada);
2500 add_filename_language (".ads", language_ada);
2501 add_filename_language (".a", language_ada);
2502 add_filename_language (".ada", language_ada);
2503 }
2504 }
2505
2506 enum language
2507 deduce_language_from_filename (char *filename)
2508 {
2509 int i;
2510 char *cp;
2511
2512 if (filename != NULL)
2513 if ((cp = strrchr (filename, '.')) != NULL)
2514 for (i = 0; i < fl_table_next; i++)
2515 if (strcmp (cp, filename_language_table[i].ext) == 0)
2516 return filename_language_table[i].lang;
2517
2518 return language_unknown;
2519 }
2520 \f
2521 /* allocate_symtab:
2522
2523 Allocate and partly initialize a new symbol table. Return a pointer
2524 to it. error() if no space.
2525
2526 Caller must set these fields:
2527 LINETABLE(symtab)
2528 symtab->blockvector
2529 symtab->dirname
2530 symtab->free_code
2531 symtab->free_ptr
2532 possibly free_named_symtabs (symtab->filename);
2533 */
2534
2535 struct symtab *
2536 allocate_symtab (char *filename, struct objfile *objfile)
2537 {
2538 struct symtab *symtab;
2539
2540 symtab = (struct symtab *)
2541 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2542 memset (symtab, 0, sizeof (*symtab));
2543 symtab->filename = obsavestring (filename, strlen (filename),
2544 &objfile->objfile_obstack);
2545 symtab->fullname = NULL;
2546 symtab->language = deduce_language_from_filename (filename);
2547 symtab->debugformat = obsavestring ("unknown", 7,
2548 &objfile->objfile_obstack);
2549
2550 /* Hook it to the objfile it comes from */
2551
2552 symtab->objfile = objfile;
2553 symtab->next = objfile->symtabs;
2554 objfile->symtabs = symtab;
2555
2556 return (symtab);
2557 }
2558
2559 struct partial_symtab *
2560 allocate_psymtab (char *filename, struct objfile *objfile)
2561 {
2562 struct partial_symtab *psymtab;
2563
2564 if (objfile->free_psymtabs)
2565 {
2566 psymtab = objfile->free_psymtabs;
2567 objfile->free_psymtabs = psymtab->next;
2568 }
2569 else
2570 psymtab = (struct partial_symtab *)
2571 obstack_alloc (&objfile->objfile_obstack,
2572 sizeof (struct partial_symtab));
2573
2574 memset (psymtab, 0, sizeof (struct partial_symtab));
2575 psymtab->filename = obsavestring (filename, strlen (filename),
2576 &objfile->objfile_obstack);
2577 psymtab->symtab = NULL;
2578
2579 /* Prepend it to the psymtab list for the objfile it belongs to.
2580 Psymtabs are searched in most recent inserted -> least recent
2581 inserted order. */
2582
2583 psymtab->objfile = objfile;
2584 psymtab->next = objfile->psymtabs;
2585 objfile->psymtabs = psymtab;
2586 #if 0
2587 {
2588 struct partial_symtab **prev_pst;
2589 psymtab->objfile = objfile;
2590 psymtab->next = NULL;
2591 prev_pst = &(objfile->psymtabs);
2592 while ((*prev_pst) != NULL)
2593 prev_pst = &((*prev_pst)->next);
2594 (*prev_pst) = psymtab;
2595 }
2596 #endif
2597
2598 return (psymtab);
2599 }
2600
2601 void
2602 discard_psymtab (struct partial_symtab *pst)
2603 {
2604 struct partial_symtab **prev_pst;
2605
2606 /* From dbxread.c:
2607 Empty psymtabs happen as a result of header files which don't
2608 have any symbols in them. There can be a lot of them. But this
2609 check is wrong, in that a psymtab with N_SLINE entries but
2610 nothing else is not empty, but we don't realize that. Fixing
2611 that without slowing things down might be tricky. */
2612
2613 /* First, snip it out of the psymtab chain */
2614
2615 prev_pst = &(pst->objfile->psymtabs);
2616 while ((*prev_pst) != pst)
2617 prev_pst = &((*prev_pst)->next);
2618 (*prev_pst) = pst->next;
2619
2620 /* Next, put it on a free list for recycling */
2621
2622 pst->next = pst->objfile->free_psymtabs;
2623 pst->objfile->free_psymtabs = pst;
2624 }
2625 \f
2626
2627 /* Reset all data structures in gdb which may contain references to symbol
2628 table data. */
2629
2630 void
2631 clear_symtab_users (void)
2632 {
2633 /* Someday, we should do better than this, by only blowing away
2634 the things that really need to be blown. */
2635
2636 /* Clear the "current" symtab first, because it is no longer valid.
2637 breakpoint_re_set may try to access the current symtab. */
2638 clear_current_source_symtab_and_line ();
2639
2640 clear_displays ();
2641 breakpoint_re_set ();
2642 set_default_breakpoint (0, 0, 0, 0);
2643 clear_pc_function_cache ();
2644 observer_notify_new_objfile (NULL);
2645
2646 /* Clear globals which might have pointed into a removed objfile.
2647 FIXME: It's not clear which of these are supposed to persist
2648 between expressions and which ought to be reset each time. */
2649 expression_context_block = NULL;
2650 innermost_block = NULL;
2651
2652 /* Varobj may refer to old symbols, perform a cleanup. */
2653 varobj_invalidate ();
2654
2655 }
2656
2657 static void
2658 clear_symtab_users_cleanup (void *ignore)
2659 {
2660 clear_symtab_users ();
2661 }
2662
2663 /* clear_symtab_users_once:
2664
2665 This function is run after symbol reading, or from a cleanup.
2666 If an old symbol table was obsoleted, the old symbol table
2667 has been blown away, but the other GDB data structures that may
2668 reference it have not yet been cleared or re-directed. (The old
2669 symtab was zapped, and the cleanup queued, in free_named_symtab()
2670 below.)
2671
2672 This function can be queued N times as a cleanup, or called
2673 directly; it will do all the work the first time, and then will be a
2674 no-op until the next time it is queued. This works by bumping a
2675 counter at queueing time. Much later when the cleanup is run, or at
2676 the end of symbol processing (in case the cleanup is discarded), if
2677 the queued count is greater than the "done-count", we do the work
2678 and set the done-count to the queued count. If the queued count is
2679 less than or equal to the done-count, we just ignore the call. This
2680 is needed because reading a single .o file will often replace many
2681 symtabs (one per .h file, for example), and we don't want to reset
2682 the breakpoints N times in the user's face.
2683
2684 The reason we both queue a cleanup, and call it directly after symbol
2685 reading, is because the cleanup protects us in case of errors, but is
2686 discarded if symbol reading is successful. */
2687
2688 #if 0
2689 /* FIXME: As free_named_symtabs is currently a big noop this function
2690 is no longer needed. */
2691 static void clear_symtab_users_once (void);
2692
2693 static int clear_symtab_users_queued;
2694 static int clear_symtab_users_done;
2695
2696 static void
2697 clear_symtab_users_once (void)
2698 {
2699 /* Enforce once-per-`do_cleanups'-semantics */
2700 if (clear_symtab_users_queued <= clear_symtab_users_done)
2701 return;
2702 clear_symtab_users_done = clear_symtab_users_queued;
2703
2704 clear_symtab_users ();
2705 }
2706 #endif
2707
2708 /* Delete the specified psymtab, and any others that reference it. */
2709
2710 static void
2711 cashier_psymtab (struct partial_symtab *pst)
2712 {
2713 struct partial_symtab *ps, *pprev = NULL;
2714 int i;
2715
2716 /* Find its previous psymtab in the chain */
2717 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2718 {
2719 if (ps == pst)
2720 break;
2721 pprev = ps;
2722 }
2723
2724 if (ps)
2725 {
2726 /* Unhook it from the chain. */
2727 if (ps == pst->objfile->psymtabs)
2728 pst->objfile->psymtabs = ps->next;
2729 else
2730 pprev->next = ps->next;
2731
2732 /* FIXME, we can't conveniently deallocate the entries in the
2733 partial_symbol lists (global_psymbols/static_psymbols) that
2734 this psymtab points to. These just take up space until all
2735 the psymtabs are reclaimed. Ditto the dependencies list and
2736 filename, which are all in the objfile_obstack. */
2737
2738 /* We need to cashier any psymtab that has this one as a dependency... */
2739 again:
2740 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2741 {
2742 for (i = 0; i < ps->number_of_dependencies; i++)
2743 {
2744 if (ps->dependencies[i] == pst)
2745 {
2746 cashier_psymtab (ps);
2747 goto again; /* Must restart, chain has been munged. */
2748 }
2749 }
2750 }
2751 }
2752 }
2753
2754 /* If a symtab or psymtab for filename NAME is found, free it along
2755 with any dependent breakpoints, displays, etc.
2756 Used when loading new versions of object modules with the "add-file"
2757 command. This is only called on the top-level symtab or psymtab's name;
2758 it is not called for subsidiary files such as .h files.
2759
2760 Return value is 1 if we blew away the environment, 0 if not.
2761 FIXME. The return value appears to never be used.
2762
2763 FIXME. I think this is not the best way to do this. We should
2764 work on being gentler to the environment while still cleaning up
2765 all stray pointers into the freed symtab. */
2766
2767 int
2768 free_named_symtabs (char *name)
2769 {
2770 #if 0
2771 /* FIXME: With the new method of each objfile having it's own
2772 psymtab list, this function needs serious rethinking. In particular,
2773 why was it ever necessary to toss psymtabs with specific compilation
2774 unit filenames, as opposed to all psymtabs from a particular symbol
2775 file? -- fnf
2776 Well, the answer is that some systems permit reloading of particular
2777 compilation units. We want to blow away any old info about these
2778 compilation units, regardless of which objfiles they arrived in. --gnu. */
2779
2780 struct symtab *s;
2781 struct symtab *prev;
2782 struct partial_symtab *ps;
2783 struct blockvector *bv;
2784 int blewit = 0;
2785
2786 /* We only wack things if the symbol-reload switch is set. */
2787 if (!symbol_reloading)
2788 return 0;
2789
2790 /* Some symbol formats have trouble providing file names... */
2791 if (name == 0 || *name == '\0')
2792 return 0;
2793
2794 /* Look for a psymtab with the specified name. */
2795
2796 again2:
2797 for (ps = partial_symtab_list; ps; ps = ps->next)
2798 {
2799 if (strcmp (name, ps->filename) == 0)
2800 {
2801 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2802 goto again2; /* Must restart, chain has been munged */
2803 }
2804 }
2805
2806 /* Look for a symtab with the specified name. */
2807
2808 for (s = symtab_list; s; s = s->next)
2809 {
2810 if (strcmp (name, s->filename) == 0)
2811 break;
2812 prev = s;
2813 }
2814
2815 if (s)
2816 {
2817 if (s == symtab_list)
2818 symtab_list = s->next;
2819 else
2820 prev->next = s->next;
2821
2822 /* For now, queue a delete for all breakpoints, displays, etc., whether
2823 or not they depend on the symtab being freed. This should be
2824 changed so that only those data structures affected are deleted. */
2825
2826 /* But don't delete anything if the symtab is empty.
2827 This test is necessary due to a bug in "dbxread.c" that
2828 causes empty symtabs to be created for N_SO symbols that
2829 contain the pathname of the object file. (This problem
2830 has been fixed in GDB 3.9x). */
2831
2832 bv = BLOCKVECTOR (s);
2833 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2834 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2835 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2836 {
2837 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2838 name);
2839 clear_symtab_users_queued++;
2840 make_cleanup (clear_symtab_users_once, 0);
2841 blewit = 1;
2842 }
2843 else
2844 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2845 name);
2846
2847 free_symtab (s);
2848 }
2849 else
2850 {
2851 /* It is still possible that some breakpoints will be affected
2852 even though no symtab was found, since the file might have
2853 been compiled without debugging, and hence not be associated
2854 with a symtab. In order to handle this correctly, we would need
2855 to keep a list of text address ranges for undebuggable files.
2856 For now, we do nothing, since this is a fairly obscure case. */
2857 ;
2858 }
2859
2860 /* FIXME, what about the minimal symbol table? */
2861 return blewit;
2862 #else
2863 return (0);
2864 #endif
2865 }
2866 \f
2867 /* Allocate and partially fill a partial symtab. It will be
2868 completely filled at the end of the symbol list.
2869
2870 FILENAME is the name of the symbol-file we are reading from. */
2871
2872 struct partial_symtab *
2873 start_psymtab_common (struct objfile *objfile,
2874 struct section_offsets *section_offsets, char *filename,
2875 CORE_ADDR textlow, struct partial_symbol **global_syms,
2876 struct partial_symbol **static_syms)
2877 {
2878 struct partial_symtab *psymtab;
2879
2880 psymtab = allocate_psymtab (filename, objfile);
2881 psymtab->section_offsets = section_offsets;
2882 psymtab->textlow = textlow;
2883 psymtab->texthigh = psymtab->textlow; /* default */
2884 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2885 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2886 return (psymtab);
2887 }
2888 \f
2889 /* Add a symbol with a long value to a psymtab.
2890 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2891 Return the partial symbol that has been added. */
2892
2893 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2894 symbol is so that callers can get access to the symbol's demangled
2895 name, which they don't have any cheap way to determine otherwise.
2896 (Currenly, dwarf2read.c is the only file who uses that information,
2897 though it's possible that other readers might in the future.)
2898 Elena wasn't thrilled about that, and I don't blame her, but we
2899 couldn't come up with a better way to get that information. If
2900 it's needed in other situations, we could consider breaking up
2901 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2902 cache. */
2903
2904 const struct partial_symbol *
2905 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2906 enum address_class class,
2907 struct psymbol_allocation_list *list, long val, /* Value as a long */
2908 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2909 enum language language, struct objfile *objfile)
2910 {
2911 struct partial_symbol *psym;
2912 char *buf = alloca (namelength + 1);
2913 /* psymbol is static so that there will be no uninitialized gaps in the
2914 structure which might contain random data, causing cache misses in
2915 bcache. */
2916 static struct partial_symbol psymbol;
2917
2918 /* Create local copy of the partial symbol */
2919 memcpy (buf, name, namelength);
2920 buf[namelength] = '\0';
2921 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2922 if (val != 0)
2923 {
2924 SYMBOL_VALUE (&psymbol) = val;
2925 }
2926 else
2927 {
2928 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2929 }
2930 SYMBOL_SECTION (&psymbol) = 0;
2931 SYMBOL_LANGUAGE (&psymbol) = language;
2932 PSYMBOL_DOMAIN (&psymbol) = domain;
2933 PSYMBOL_CLASS (&psymbol) = class;
2934
2935 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2936
2937 /* Stash the partial symbol away in the cache */
2938 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2939 objfile->psymbol_cache);
2940
2941 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2942 if (list->next >= list->list + list->size)
2943 {
2944 extend_psymbol_list (list, objfile);
2945 }
2946 *list->next++ = psym;
2947 OBJSTAT (objfile, n_psyms++);
2948
2949 return psym;
2950 }
2951
2952 /* Initialize storage for partial symbols. */
2953
2954 void
2955 init_psymbol_list (struct objfile *objfile, int total_symbols)
2956 {
2957 /* Free any previously allocated psymbol lists. */
2958
2959 if (objfile->global_psymbols.list)
2960 {
2961 xfree (objfile->global_psymbols.list);
2962 }
2963 if (objfile->static_psymbols.list)
2964 {
2965 xfree (objfile->static_psymbols.list);
2966 }
2967
2968 /* Current best guess is that approximately a twentieth
2969 of the total symbols (in a debugging file) are global or static
2970 oriented symbols */
2971
2972 objfile->global_psymbols.size = total_symbols / 10;
2973 objfile->static_psymbols.size = total_symbols / 10;
2974
2975 if (objfile->global_psymbols.size > 0)
2976 {
2977 objfile->global_psymbols.next =
2978 objfile->global_psymbols.list = (struct partial_symbol **)
2979 xmalloc ((objfile->global_psymbols.size
2980 * sizeof (struct partial_symbol *)));
2981 }
2982 if (objfile->static_psymbols.size > 0)
2983 {
2984 objfile->static_psymbols.next =
2985 objfile->static_psymbols.list = (struct partial_symbol **)
2986 xmalloc ((objfile->static_psymbols.size
2987 * sizeof (struct partial_symbol *)));
2988 }
2989 }
2990
2991 /* OVERLAYS:
2992 The following code implements an abstraction for debugging overlay sections.
2993
2994 The target model is as follows:
2995 1) The gnu linker will permit multiple sections to be mapped into the
2996 same VMA, each with its own unique LMA (or load address).
2997 2) It is assumed that some runtime mechanism exists for mapping the
2998 sections, one by one, from the load address into the VMA address.
2999 3) This code provides a mechanism for gdb to keep track of which
3000 sections should be considered to be mapped from the VMA to the LMA.
3001 This information is used for symbol lookup, and memory read/write.
3002 For instance, if a section has been mapped then its contents
3003 should be read from the VMA, otherwise from the LMA.
3004
3005 Two levels of debugger support for overlays are available. One is
3006 "manual", in which the debugger relies on the user to tell it which
3007 overlays are currently mapped. This level of support is
3008 implemented entirely in the core debugger, and the information about
3009 whether a section is mapped is kept in the objfile->obj_section table.
3010
3011 The second level of support is "automatic", and is only available if
3012 the target-specific code provides functionality to read the target's
3013 overlay mapping table, and translate its contents for the debugger
3014 (by updating the mapped state information in the obj_section tables).
3015
3016 The interface is as follows:
3017 User commands:
3018 overlay map <name> -- tell gdb to consider this section mapped
3019 overlay unmap <name> -- tell gdb to consider this section unmapped
3020 overlay list -- list the sections that GDB thinks are mapped
3021 overlay read-target -- get the target's state of what's mapped
3022 overlay off/manual/auto -- set overlay debugging state
3023 Functional interface:
3024 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3025 section, return that section.
3026 find_pc_overlay(pc): find any overlay section that contains
3027 the pc, either in its VMA or its LMA
3028 overlay_is_mapped(sect): true if overlay is marked as mapped
3029 section_is_overlay(sect): true if section's VMA != LMA
3030 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3031 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3032 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3033 overlay_mapped_address(...): map an address from section's LMA to VMA
3034 overlay_unmapped_address(...): map an address from section's VMA to LMA
3035 symbol_overlayed_address(...): Return a "current" address for symbol:
3036 either in VMA or LMA depending on whether
3037 the symbol's section is currently mapped
3038 */
3039
3040 /* Overlay debugging state: */
3041
3042 enum overlay_debugging_state overlay_debugging = ovly_off;
3043 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3044
3045 /* Function: section_is_overlay (SECTION)
3046 Returns true if SECTION has VMA not equal to LMA, ie.
3047 SECTION is loaded at an address different from where it will "run". */
3048
3049 int
3050 section_is_overlay (asection *section)
3051 {
3052 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3053
3054 if (overlay_debugging)
3055 if (section && section->lma != 0 &&
3056 section->vma != section->lma)
3057 return 1;
3058
3059 return 0;
3060 }
3061
3062 /* Function: overlay_invalidate_all (void)
3063 Invalidate the mapped state of all overlay sections (mark it as stale). */
3064
3065 static void
3066 overlay_invalidate_all (void)
3067 {
3068 struct objfile *objfile;
3069 struct obj_section *sect;
3070
3071 ALL_OBJSECTIONS (objfile, sect)
3072 if (section_is_overlay (sect->the_bfd_section))
3073 sect->ovly_mapped = -1;
3074 }
3075
3076 /* Function: overlay_is_mapped (SECTION)
3077 Returns true if section is an overlay, and is currently mapped.
3078 Private: public access is thru function section_is_mapped.
3079
3080 Access to the ovly_mapped flag is restricted to this function, so
3081 that we can do automatic update. If the global flag
3082 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3083 overlay_invalidate_all. If the mapped state of the particular
3084 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3085
3086 static int
3087 overlay_is_mapped (struct obj_section *osect)
3088 {
3089 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3090 return 0;
3091
3092 switch (overlay_debugging)
3093 {
3094 default:
3095 case ovly_off:
3096 return 0; /* overlay debugging off */
3097 case ovly_auto: /* overlay debugging automatic */
3098 /* Unles there is a gdbarch_overlay_update function,
3099 there's really nothing useful to do here (can't really go auto) */
3100 if (gdbarch_overlay_update_p (current_gdbarch))
3101 {
3102 if (overlay_cache_invalid)
3103 {
3104 overlay_invalidate_all ();
3105 overlay_cache_invalid = 0;
3106 }
3107 if (osect->ovly_mapped == -1)
3108 gdbarch_overlay_update (current_gdbarch, osect);
3109 }
3110 /* fall thru to manual case */
3111 case ovly_on: /* overlay debugging manual */
3112 return osect->ovly_mapped == 1;
3113 }
3114 }
3115
3116 /* Function: section_is_mapped
3117 Returns true if section is an overlay, and is currently mapped. */
3118
3119 int
3120 section_is_mapped (asection *section)
3121 {
3122 struct objfile *objfile;
3123 struct obj_section *osect;
3124
3125 if (overlay_debugging)
3126 if (section && section_is_overlay (section))
3127 ALL_OBJSECTIONS (objfile, osect)
3128 if (osect->the_bfd_section == section)
3129 return overlay_is_mapped (osect);
3130
3131 return 0;
3132 }
3133
3134 /* Function: pc_in_unmapped_range
3135 If PC falls into the lma range of SECTION, return true, else false. */
3136
3137 CORE_ADDR
3138 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3139 {
3140 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3141
3142 int size;
3143
3144 if (overlay_debugging)
3145 if (section && section_is_overlay (section))
3146 {
3147 size = bfd_get_section_size (section);
3148 if (section->lma <= pc && pc < section->lma + size)
3149 return 1;
3150 }
3151 return 0;
3152 }
3153
3154 /* Function: pc_in_mapped_range
3155 If PC falls into the vma range of SECTION, return true, else false. */
3156
3157 CORE_ADDR
3158 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3159 {
3160 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3161
3162 int size;
3163
3164 if (overlay_debugging)
3165 if (section && section_is_overlay (section))
3166 {
3167 size = bfd_get_section_size (section);
3168 if (section->vma <= pc && pc < section->vma + size)
3169 return 1;
3170 }
3171 return 0;
3172 }
3173
3174
3175 /* Return true if the mapped ranges of sections A and B overlap, false
3176 otherwise. */
3177 static int
3178 sections_overlap (asection *a, asection *b)
3179 {
3180 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3181
3182 CORE_ADDR a_start = a->vma;
3183 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3184 CORE_ADDR b_start = b->vma;
3185 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3186
3187 return (a_start < b_end && b_start < a_end);
3188 }
3189
3190 /* Function: overlay_unmapped_address (PC, SECTION)
3191 Returns the address corresponding to PC in the unmapped (load) range.
3192 May be the same as PC. */
3193
3194 CORE_ADDR
3195 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3196 {
3197 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3198
3199 if (overlay_debugging)
3200 if (section && section_is_overlay (section) &&
3201 pc_in_mapped_range (pc, section))
3202 return pc + section->lma - section->vma;
3203
3204 return pc;
3205 }
3206
3207 /* Function: overlay_mapped_address (PC, SECTION)
3208 Returns the address corresponding to PC in the mapped (runtime) range.
3209 May be the same as PC. */
3210
3211 CORE_ADDR
3212 overlay_mapped_address (CORE_ADDR pc, asection *section)
3213 {
3214 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3215
3216 if (overlay_debugging)
3217 if (section && section_is_overlay (section) &&
3218 pc_in_unmapped_range (pc, section))
3219 return pc + section->vma - section->lma;
3220
3221 return pc;
3222 }
3223
3224
3225 /* Function: symbol_overlayed_address
3226 Return one of two addresses (relative to the VMA or to the LMA),
3227 depending on whether the section is mapped or not. */
3228
3229 CORE_ADDR
3230 symbol_overlayed_address (CORE_ADDR address, asection *section)
3231 {
3232 if (overlay_debugging)
3233 {
3234 /* If the symbol has no section, just return its regular address. */
3235 if (section == 0)
3236 return address;
3237 /* If the symbol's section is not an overlay, just return its address */
3238 if (!section_is_overlay (section))
3239 return address;
3240 /* If the symbol's section is mapped, just return its address */
3241 if (section_is_mapped (section))
3242 return address;
3243 /*
3244 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3245 * then return its LOADED address rather than its vma address!!
3246 */
3247 return overlay_unmapped_address (address, section);
3248 }
3249 return address;
3250 }
3251
3252 /* Function: find_pc_overlay (PC)
3253 Return the best-match overlay section for PC:
3254 If PC matches a mapped overlay section's VMA, return that section.
3255 Else if PC matches an unmapped section's VMA, return that section.
3256 Else if PC matches an unmapped section's LMA, return that section. */
3257
3258 asection *
3259 find_pc_overlay (CORE_ADDR pc)
3260 {
3261 struct objfile *objfile;
3262 struct obj_section *osect, *best_match = NULL;
3263
3264 if (overlay_debugging)
3265 ALL_OBJSECTIONS (objfile, osect)
3266 if (section_is_overlay (osect->the_bfd_section))
3267 {
3268 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3269 {
3270 if (overlay_is_mapped (osect))
3271 return osect->the_bfd_section;
3272 else
3273 best_match = osect;
3274 }
3275 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3276 best_match = osect;
3277 }
3278 return best_match ? best_match->the_bfd_section : NULL;
3279 }
3280
3281 /* Function: find_pc_mapped_section (PC)
3282 If PC falls into the VMA address range of an overlay section that is
3283 currently marked as MAPPED, return that section. Else return NULL. */
3284
3285 asection *
3286 find_pc_mapped_section (CORE_ADDR pc)
3287 {
3288 struct objfile *objfile;
3289 struct obj_section *osect;
3290
3291 if (overlay_debugging)
3292 ALL_OBJSECTIONS (objfile, osect)
3293 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3294 overlay_is_mapped (osect))
3295 return osect->the_bfd_section;
3296
3297 return NULL;
3298 }
3299
3300 /* Function: list_overlays_command
3301 Print a list of mapped sections and their PC ranges */
3302
3303 void
3304 list_overlays_command (char *args, int from_tty)
3305 {
3306 int nmapped = 0;
3307 struct objfile *objfile;
3308 struct obj_section *osect;
3309
3310 if (overlay_debugging)
3311 ALL_OBJSECTIONS (objfile, osect)
3312 if (overlay_is_mapped (osect))
3313 {
3314 const char *name;
3315 bfd_vma lma, vma;
3316 int size;
3317
3318 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3319 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3320 size = bfd_get_section_size (osect->the_bfd_section);
3321 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3322
3323 printf_filtered ("Section %s, loaded at ", name);
3324 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3325 puts_filtered (" - ");
3326 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3327 printf_filtered (", mapped at ");
3328 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3329 puts_filtered (" - ");
3330 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3331 puts_filtered ("\n");
3332
3333 nmapped++;
3334 }
3335 if (nmapped == 0)
3336 printf_filtered (_("No sections are mapped.\n"));
3337 }
3338
3339 /* Function: map_overlay_command
3340 Mark the named section as mapped (ie. residing at its VMA address). */
3341
3342 void
3343 map_overlay_command (char *args, int from_tty)
3344 {
3345 struct objfile *objfile, *objfile2;
3346 struct obj_section *sec, *sec2;
3347 asection *bfdsec;
3348
3349 if (!overlay_debugging)
3350 error (_("\
3351 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3352 the 'overlay manual' command."));
3353
3354 if (args == 0 || *args == 0)
3355 error (_("Argument required: name of an overlay section"));
3356
3357 /* First, find a section matching the user supplied argument */
3358 ALL_OBJSECTIONS (objfile, sec)
3359 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3360 {
3361 /* Now, check to see if the section is an overlay. */
3362 bfdsec = sec->the_bfd_section;
3363 if (!section_is_overlay (bfdsec))
3364 continue; /* not an overlay section */
3365
3366 /* Mark the overlay as "mapped" */
3367 sec->ovly_mapped = 1;
3368
3369 /* Next, make a pass and unmap any sections that are
3370 overlapped by this new section: */
3371 ALL_OBJSECTIONS (objfile2, sec2)
3372 if (sec2->ovly_mapped
3373 && sec != sec2
3374 && sec->the_bfd_section != sec2->the_bfd_section
3375 && sections_overlap (sec->the_bfd_section,
3376 sec2->the_bfd_section))
3377 {
3378 if (info_verbose)
3379 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3380 bfd_section_name (objfile->obfd,
3381 sec2->the_bfd_section));
3382 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3383 }
3384 return;
3385 }
3386 error (_("No overlay section called %s"), args);
3387 }
3388
3389 /* Function: unmap_overlay_command
3390 Mark the overlay section as unmapped
3391 (ie. resident in its LMA address range, rather than the VMA range). */
3392
3393 void
3394 unmap_overlay_command (char *args, int from_tty)
3395 {
3396 struct objfile *objfile;
3397 struct obj_section *sec;
3398
3399 if (!overlay_debugging)
3400 error (_("\
3401 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3402 the 'overlay manual' command."));
3403
3404 if (args == 0 || *args == 0)
3405 error (_("Argument required: name of an overlay section"));
3406
3407 /* First, find a section matching the user supplied argument */
3408 ALL_OBJSECTIONS (objfile, sec)
3409 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3410 {
3411 if (!sec->ovly_mapped)
3412 error (_("Section %s is not mapped"), args);
3413 sec->ovly_mapped = 0;
3414 return;
3415 }
3416 error (_("No overlay section called %s"), args);
3417 }
3418
3419 /* Function: overlay_auto_command
3420 A utility command to turn on overlay debugging.
3421 Possibly this should be done via a set/show command. */
3422
3423 static void
3424 overlay_auto_command (char *args, int from_tty)
3425 {
3426 overlay_debugging = ovly_auto;
3427 enable_overlay_breakpoints ();
3428 if (info_verbose)
3429 printf_unfiltered (_("Automatic overlay debugging enabled."));
3430 }
3431
3432 /* Function: overlay_manual_command
3433 A utility command to turn on overlay debugging.
3434 Possibly this should be done via a set/show command. */
3435
3436 static void
3437 overlay_manual_command (char *args, int from_tty)
3438 {
3439 overlay_debugging = ovly_on;
3440 disable_overlay_breakpoints ();
3441 if (info_verbose)
3442 printf_unfiltered (_("Overlay debugging enabled."));
3443 }
3444
3445 /* Function: overlay_off_command
3446 A utility command to turn on overlay debugging.
3447 Possibly this should be done via a set/show command. */
3448
3449 static void
3450 overlay_off_command (char *args, int from_tty)
3451 {
3452 overlay_debugging = ovly_off;
3453 disable_overlay_breakpoints ();
3454 if (info_verbose)
3455 printf_unfiltered (_("Overlay debugging disabled."));
3456 }
3457
3458 static void
3459 overlay_load_command (char *args, int from_tty)
3460 {
3461 if (gdbarch_overlay_update_p (current_gdbarch))
3462 gdbarch_overlay_update (current_gdbarch, NULL);
3463 else
3464 error (_("This target does not know how to read its overlay state."));
3465 }
3466
3467 /* Function: overlay_command
3468 A place-holder for a mis-typed command */
3469
3470 /* Command list chain containing all defined "overlay" subcommands. */
3471 struct cmd_list_element *overlaylist;
3472
3473 static void
3474 overlay_command (char *args, int from_tty)
3475 {
3476 printf_unfiltered
3477 ("\"overlay\" must be followed by the name of an overlay command.\n");
3478 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3479 }
3480
3481
3482 /* Target Overlays for the "Simplest" overlay manager:
3483
3484 This is GDB's default target overlay layer. It works with the
3485 minimal overlay manager supplied as an example by Cygnus. The
3486 entry point is via a function pointer "gdbarch_overlay_update",
3487 so targets that use a different runtime overlay manager can
3488 substitute their own overlay_update function and take over the
3489 function pointer.
3490
3491 The overlay_update function pokes around in the target's data structures
3492 to see what overlays are mapped, and updates GDB's overlay mapping with
3493 this information.
3494
3495 In this simple implementation, the target data structures are as follows:
3496 unsigned _novlys; /# number of overlay sections #/
3497 unsigned _ovly_table[_novlys][4] = {
3498 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3499 {..., ..., ..., ...},
3500 }
3501 unsigned _novly_regions; /# number of overlay regions #/
3502 unsigned _ovly_region_table[_novly_regions][3] = {
3503 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3504 {..., ..., ...},
3505 }
3506 These functions will attempt to update GDB's mappedness state in the
3507 symbol section table, based on the target's mappedness state.
3508
3509 To do this, we keep a cached copy of the target's _ovly_table, and
3510 attempt to detect when the cached copy is invalidated. The main
3511 entry point is "simple_overlay_update(SECT), which looks up SECT in
3512 the cached table and re-reads only the entry for that section from
3513 the target (whenever possible).
3514 */
3515
3516 /* Cached, dynamically allocated copies of the target data structures: */
3517 static unsigned (*cache_ovly_table)[4] = 0;
3518 #if 0
3519 static unsigned (*cache_ovly_region_table)[3] = 0;
3520 #endif
3521 static unsigned cache_novlys = 0;
3522 #if 0
3523 static unsigned cache_novly_regions = 0;
3524 #endif
3525 static CORE_ADDR cache_ovly_table_base = 0;
3526 #if 0
3527 static CORE_ADDR cache_ovly_region_table_base = 0;
3528 #endif
3529 enum ovly_index
3530 {
3531 VMA, SIZE, LMA, MAPPED
3532 };
3533 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3534
3535 /* Throw away the cached copy of _ovly_table */
3536 static void
3537 simple_free_overlay_table (void)
3538 {
3539 if (cache_ovly_table)
3540 xfree (cache_ovly_table);
3541 cache_novlys = 0;
3542 cache_ovly_table = NULL;
3543 cache_ovly_table_base = 0;
3544 }
3545
3546 #if 0
3547 /* Throw away the cached copy of _ovly_region_table */
3548 static void
3549 simple_free_overlay_region_table (void)
3550 {
3551 if (cache_ovly_region_table)
3552 xfree (cache_ovly_region_table);
3553 cache_novly_regions = 0;
3554 cache_ovly_region_table = NULL;
3555 cache_ovly_region_table_base = 0;
3556 }
3557 #endif
3558
3559 /* Read an array of ints from the target into a local buffer.
3560 Convert to host order. int LEN is number of ints */
3561 static void
3562 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3563 {
3564 /* FIXME (alloca): Not safe if array is very large. */
3565 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3566 int i;
3567
3568 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3569 for (i = 0; i < len; i++)
3570 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3571 TARGET_LONG_BYTES);
3572 }
3573
3574 /* Find and grab a copy of the target _ovly_table
3575 (and _novlys, which is needed for the table's size) */
3576 static int
3577 simple_read_overlay_table (void)
3578 {
3579 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3580
3581 simple_free_overlay_table ();
3582 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3583 if (! novlys_msym)
3584 {
3585 error (_("Error reading inferior's overlay table: "
3586 "couldn't find `_novlys' variable\n"
3587 "in inferior. Use `overlay manual' mode."));
3588 return 0;
3589 }
3590
3591 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3592 if (! ovly_table_msym)
3593 {
3594 error (_("Error reading inferior's overlay table: couldn't find "
3595 "`_ovly_table' array\n"
3596 "in inferior. Use `overlay manual' mode."));
3597 return 0;
3598 }
3599
3600 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3601 cache_ovly_table
3602 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3603 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3604 read_target_long_array (cache_ovly_table_base,
3605 (unsigned int *) cache_ovly_table,
3606 cache_novlys * 4);
3607
3608 return 1; /* SUCCESS */
3609 }
3610
3611 #if 0
3612 /* Find and grab a copy of the target _ovly_region_table
3613 (and _novly_regions, which is needed for the table's size) */
3614 static int
3615 simple_read_overlay_region_table (void)
3616 {
3617 struct minimal_symbol *msym;
3618
3619 simple_free_overlay_region_table ();
3620 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3621 if (msym != NULL)
3622 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3623 else
3624 return 0; /* failure */
3625 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3626 if (cache_ovly_region_table != NULL)
3627 {
3628 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3629 if (msym != NULL)
3630 {
3631 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3632 read_target_long_array (cache_ovly_region_table_base,
3633 (unsigned int *) cache_ovly_region_table,
3634 cache_novly_regions * 3);
3635 }
3636 else
3637 return 0; /* failure */
3638 }
3639 else
3640 return 0; /* failure */
3641 return 1; /* SUCCESS */
3642 }
3643 #endif
3644
3645 /* Function: simple_overlay_update_1
3646 A helper function for simple_overlay_update. Assuming a cached copy
3647 of _ovly_table exists, look through it to find an entry whose vma,
3648 lma and size match those of OSECT. Re-read the entry and make sure
3649 it still matches OSECT (else the table may no longer be valid).
3650 Set OSECT's mapped state to match the entry. Return: 1 for
3651 success, 0 for failure. */
3652
3653 static int
3654 simple_overlay_update_1 (struct obj_section *osect)
3655 {
3656 int i, size;
3657 bfd *obfd = osect->objfile->obfd;
3658 asection *bsect = osect->the_bfd_section;
3659
3660 size = bfd_get_section_size (osect->the_bfd_section);
3661 for (i = 0; i < cache_novlys; i++)
3662 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3663 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3664 /* && cache_ovly_table[i][SIZE] == size */ )
3665 {
3666 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3667 (unsigned int *) cache_ovly_table[i], 4);
3668 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3669 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3670 /* && cache_ovly_table[i][SIZE] == size */ )
3671 {
3672 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3673 return 1;
3674 }
3675 else /* Warning! Warning! Target's ovly table has changed! */
3676 return 0;
3677 }
3678 return 0;
3679 }
3680
3681 /* Function: simple_overlay_update
3682 If OSECT is NULL, then update all sections' mapped state
3683 (after re-reading the entire target _ovly_table).
3684 If OSECT is non-NULL, then try to find a matching entry in the
3685 cached ovly_table and update only OSECT's mapped state.
3686 If a cached entry can't be found or the cache isn't valid, then
3687 re-read the entire cache, and go ahead and update all sections. */
3688
3689 void
3690 simple_overlay_update (struct obj_section *osect)
3691 {
3692 struct objfile *objfile;
3693
3694 /* Were we given an osect to look up? NULL means do all of them. */
3695 if (osect)
3696 /* Have we got a cached copy of the target's overlay table? */
3697 if (cache_ovly_table != NULL)
3698 /* Does its cached location match what's currently in the symtab? */
3699 if (cache_ovly_table_base ==
3700 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3701 /* Then go ahead and try to look up this single section in the cache */
3702 if (simple_overlay_update_1 (osect))
3703 /* Found it! We're done. */
3704 return;
3705
3706 /* Cached table no good: need to read the entire table anew.
3707 Or else we want all the sections, in which case it's actually
3708 more efficient to read the whole table in one block anyway. */
3709
3710 if (! simple_read_overlay_table ())
3711 return;
3712
3713 /* Now may as well update all sections, even if only one was requested. */
3714 ALL_OBJSECTIONS (objfile, osect)
3715 if (section_is_overlay (osect->the_bfd_section))
3716 {
3717 int i, size;
3718 bfd *obfd = osect->objfile->obfd;
3719 asection *bsect = osect->the_bfd_section;
3720
3721 size = bfd_get_section_size (bsect);
3722 for (i = 0; i < cache_novlys; i++)
3723 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3724 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3725 /* && cache_ovly_table[i][SIZE] == size */ )
3726 { /* obj_section matches i'th entry in ovly_table */
3727 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3728 break; /* finished with inner for loop: break out */
3729 }
3730 }
3731 }
3732
3733 /* Set the output sections and output offsets for section SECTP in
3734 ABFD. The relocation code in BFD will read these offsets, so we
3735 need to be sure they're initialized. We map each section to itself,
3736 with no offset; this means that SECTP->vma will be honored. */
3737
3738 static void
3739 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3740 {
3741 sectp->output_section = sectp;
3742 sectp->output_offset = 0;
3743 }
3744
3745 /* Relocate the contents of a debug section SECTP in ABFD. The
3746 contents are stored in BUF if it is non-NULL, or returned in a
3747 malloc'd buffer otherwise.
3748
3749 For some platforms and debug info formats, shared libraries contain
3750 relocations against the debug sections (particularly for DWARF-2;
3751 one affected platform is PowerPC GNU/Linux, although it depends on
3752 the version of the linker in use). Also, ELF object files naturally
3753 have unresolved relocations for their debug sections. We need to apply
3754 the relocations in order to get the locations of symbols correct. */
3755
3756 bfd_byte *
3757 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3758 {
3759 /* We're only interested in debugging sections with relocation
3760 information. */
3761 if ((sectp->flags & SEC_RELOC) == 0)
3762 return NULL;
3763 if ((sectp->flags & SEC_DEBUGGING) == 0)
3764 return NULL;
3765
3766 /* We will handle section offsets properly elsewhere, so relocate as if
3767 all sections begin at 0. */
3768 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3769
3770 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3771 }
3772
3773 void
3774 _initialize_symfile (void)
3775 {
3776 struct cmd_list_element *c;
3777
3778 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3779 Load symbol table from executable file FILE.\n\
3780 The `file' command can also load symbol tables, as well as setting the file\n\
3781 to execute."), &cmdlist);
3782 set_cmd_completer (c, filename_completer);
3783
3784 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3785 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3786 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3787 ADDR is the starting address of the file's text.\n\
3788 The optional arguments are section-name section-address pairs and\n\
3789 should be specified if the data and bss segments are not contiguous\n\
3790 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3791 &cmdlist);
3792 set_cmd_completer (c, filename_completer);
3793
3794 c = add_cmd ("add-shared-symbol-files", class_files,
3795 add_shared_symbol_files_command, _("\
3796 Load the symbols from shared objects in the dynamic linker's link map."),
3797 &cmdlist);
3798 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3799 &cmdlist);
3800
3801 c = add_cmd ("load", class_files, load_command, _("\
3802 Dynamically load FILE into the running program, and record its symbols\n\
3803 for access from GDB.\n\
3804 A load OFFSET may also be given."), &cmdlist);
3805 set_cmd_completer (c, filename_completer);
3806
3807 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3808 &symbol_reloading, _("\
3809 Set dynamic symbol table reloading multiple times in one run."), _("\
3810 Show dynamic symbol table reloading multiple times in one run."), NULL,
3811 NULL,
3812 show_symbol_reloading,
3813 &setlist, &showlist);
3814
3815 add_prefix_cmd ("overlay", class_support, overlay_command,
3816 _("Commands for debugging overlays."), &overlaylist,
3817 "overlay ", 0, &cmdlist);
3818
3819 add_com_alias ("ovly", "overlay", class_alias, 1);
3820 add_com_alias ("ov", "overlay", class_alias, 1);
3821
3822 add_cmd ("map-overlay", class_support, map_overlay_command,
3823 _("Assert that an overlay section is mapped."), &overlaylist);
3824
3825 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3826 _("Assert that an overlay section is unmapped."), &overlaylist);
3827
3828 add_cmd ("list-overlays", class_support, list_overlays_command,
3829 _("List mappings of overlay sections."), &overlaylist);
3830
3831 add_cmd ("manual", class_support, overlay_manual_command,
3832 _("Enable overlay debugging."), &overlaylist);
3833 add_cmd ("off", class_support, overlay_off_command,
3834 _("Disable overlay debugging."), &overlaylist);
3835 add_cmd ("auto", class_support, overlay_auto_command,
3836 _("Enable automatic overlay debugging."), &overlaylist);
3837 add_cmd ("load-target", class_support, overlay_load_command,
3838 _("Read the overlay mapping state from the target."), &overlaylist);
3839
3840 /* Filename extension to source language lookup table: */
3841 init_filename_language_table ();
3842 add_setshow_string_noescape_cmd ("extension-language", class_files,
3843 &ext_args, _("\
3844 Set mapping between filename extension and source language."), _("\
3845 Show mapping between filename extension and source language."), _("\
3846 Usage: set extension-language .foo bar"),
3847 set_ext_lang_command,
3848 show_ext_args,
3849 &setlist, &showlist);
3850
3851 add_info ("extensions", info_ext_lang_command,
3852 _("All filename extensions associated with a source language."));
3853
3854 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3855 &debug_file_directory, _("\
3856 Set the directory where separate debug symbols are searched for."), _("\
3857 Show the directory where separate debug symbols are searched for."), _("\
3858 Separate debug symbols are first searched for in the same\n\
3859 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3860 and lastly at the path of the directory of the binary with\n\
3861 the global debug-file directory prepended."),
3862 NULL,
3863 show_debug_file_directory,
3864 &setlist, &showlist);
3865 }
This page took 0.114378 seconds and 4 git commands to generate.