* Makefile.in (objfiles.o): Update.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. First, check for a file with the standard
434 one or two segments. */
435
436 symfile_find_segment_sections (objfile);
437
438 /* Except when explicitly adding symbol files at some address,
439 section_offsets contains nothing but zeros, so it doesn't matter
440 which slot in section_offsets the individual sect_index_* members
441 index into. So if they are all zero, it is safe to just point
442 all the currently uninitialized indices to the first slot. But
443 beware: if this is the main executable, it may be relocated
444 later, e.g. by the remote qOffsets packet, and then this will
445 be wrong! That's why we try segments first. */
446
447 for (i = 0; i < objfile->num_sections; i++)
448 {
449 if (ANOFFSET (objfile->section_offsets, i) != 0)
450 {
451 break;
452 }
453 }
454 if (i == objfile->num_sections)
455 {
456 if (objfile->sect_index_text == -1)
457 objfile->sect_index_text = 0;
458 if (objfile->sect_index_data == -1)
459 objfile->sect_index_data = 0;
460 if (objfile->sect_index_bss == -1)
461 objfile->sect_index_bss = 0;
462 if (objfile->sect_index_rodata == -1)
463 objfile->sect_index_rodata = 0;
464 }
465 }
466
467 /* The arguments to place_section. */
468
469 struct place_section_arg
470 {
471 struct section_offsets *offsets;
472 CORE_ADDR lowest;
473 };
474
475 /* Find a unique offset to use for loadable section SECT if
476 the user did not provide an offset. */
477
478 void
479 place_section (bfd *abfd, asection *sect, void *obj)
480 {
481 struct place_section_arg *arg = obj;
482 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
483 int done;
484 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
485
486 /* We are only interested in allocated sections. */
487 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
488 return;
489
490 /* If the user specified an offset, honor it. */
491 if (offsets[sect->index] != 0)
492 return;
493
494 /* Otherwise, let's try to find a place for the section. */
495 start_addr = (arg->lowest + align - 1) & -align;
496
497 do {
498 asection *cur_sec;
499
500 done = 1;
501
502 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
503 {
504 int indx = cur_sec->index;
505 CORE_ADDR cur_offset;
506
507 /* We don't need to compare against ourself. */
508 if (cur_sec == sect)
509 continue;
510
511 /* We can only conflict with allocated sections. */
512 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
528 break;
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 bfd *abfd = objfile->obfd;
584 asection *cur_sec;
585 CORE_ADDR lowest = 0;
586
587 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
588 /* We do not expect this to happen; just skip this step if the
589 relocatable file has a section with an assigned VMA. */
590 if (bfd_section_vma (abfd, cur_sec) != 0)
591 break;
592
593 if (cur_sec == NULL)
594 {
595 CORE_ADDR *offsets = objfile->section_offsets->offsets;
596
597 /* Pick non-overlapping offsets for sections the user did not
598 place explicitly. */
599 arg.offsets = objfile->section_offsets;
600 arg.lowest = 0;
601 bfd_map_over_sections (objfile->obfd, place_section, &arg);
602
603 /* Correctly filling in the section offsets is not quite
604 enough. Relocatable files have two properties that
605 (most) shared objects do not:
606
607 - Their debug information will contain relocations. Some
608 shared libraries do also, but many do not, so this can not
609 be assumed.
610
611 - If there are multiple code sections they will be loaded
612 at different relative addresses in memory than they are
613 in the objfile, since all sections in the file will start
614 at address zero.
615
616 Because GDB has very limited ability to map from an
617 address in debug info to the correct code section,
618 it relies on adding SECT_OFF_TEXT to things which might be
619 code. If we clear all the section offsets, and set the
620 section VMAs instead, then symfile_relocate_debug_section
621 will return meaningful debug information pointing at the
622 correct sections.
623
624 GDB has too many different data structures for section
625 addresses - a bfd, objfile, and so_list all have section
626 tables, as does exec_ops. Some of these could probably
627 be eliminated. */
628
629 for (cur_sec = abfd->sections; cur_sec != NULL;
630 cur_sec = cur_sec->next)
631 {
632 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
633 continue;
634
635 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
636 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
637 offsets[cur_sec->index]);
638 offsets[cur_sec->index] = 0;
639 }
640 }
641 }
642
643 /* Remember the bfd indexes for the .text, .data, .bss and
644 .rodata sections. */
645 init_objfile_sect_indices (objfile);
646 }
647
648
649 /* Divide the file into segments, which are individual relocatable units.
650 This is the default version of the sym_fns.sym_segments function for
651 symbol readers that do not have an explicit representation of segments.
652 It assumes that object files do not have segments, and fully linked
653 files have a single segment. */
654
655 struct symfile_segment_data *
656 default_symfile_segments (bfd *abfd)
657 {
658 int num_sections, i;
659 asection *sect;
660 struct symfile_segment_data *data;
661 CORE_ADDR low, high;
662
663 /* Relocatable files contain enough information to position each
664 loadable section independently; they should not be relocated
665 in segments. */
666 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
667 return NULL;
668
669 /* Make sure there is at least one loadable section in the file. */
670 for (sect = abfd->sections; sect != NULL; sect = sect->next)
671 {
672 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
673 continue;
674
675 break;
676 }
677 if (sect == NULL)
678 return NULL;
679
680 low = bfd_get_section_vma (abfd, sect);
681 high = low + bfd_get_section_size (sect);
682
683 data = XZALLOC (struct symfile_segment_data);
684 data->num_segments = 1;
685 data->segment_bases = XCALLOC (1, CORE_ADDR);
686 data->segment_sizes = XCALLOC (1, CORE_ADDR);
687
688 num_sections = bfd_count_sections (abfd);
689 data->segment_info = XCALLOC (num_sections, int);
690
691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
692 {
693 CORE_ADDR vma;
694
695 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
696 continue;
697
698 vma = bfd_get_section_vma (abfd, sect);
699 if (vma < low)
700 low = vma;
701 if (vma + bfd_get_section_size (sect) > high)
702 high = vma + bfd_get_section_size (sect);
703
704 data->segment_info[i] = 1;
705 }
706
707 data->segment_bases[0] = low;
708 data->segment_sizes[0] = high - low;
709
710 return data;
711 }
712
713 /* Process a symbol file, as either the main file or as a dynamically
714 loaded file.
715
716 OBJFILE is where the symbols are to be read from.
717
718 ADDRS is the list of section load addresses. If the user has given
719 an 'add-symbol-file' command, then this is the list of offsets and
720 addresses he or she provided as arguments to the command; or, if
721 we're handling a shared library, these are the actual addresses the
722 sections are loaded at, according to the inferior's dynamic linker
723 (as gleaned by GDB's shared library code). We convert each address
724 into an offset from the section VMA's as it appears in the object
725 file, and then call the file's sym_offsets function to convert this
726 into a format-specific offset table --- a `struct section_offsets'.
727 If ADDRS is non-zero, OFFSETS must be zero.
728
729 OFFSETS is a table of section offsets already in the right
730 format-specific representation. NUM_OFFSETS is the number of
731 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
732 assume this is the proper table the call to sym_offsets described
733 above would produce. Instead of calling sym_offsets, we just dump
734 it right into objfile->section_offsets. (When we're re-reading
735 symbols from an objfile, we don't have the original load address
736 list any more; all we have is the section offset table.) If
737 OFFSETS is non-zero, ADDRS must be zero.
738
739 MAINLINE is nonzero if this is the main symbol file, or zero if
740 it's an extra symbol file such as dynamically loaded code.
741
742 VERBO is nonzero if the caller has printed a verbose message about
743 the symbol reading (and complaints can be more terse about it). */
744
745 void
746 syms_from_objfile (struct objfile *objfile,
747 struct section_addr_info *addrs,
748 struct section_offsets *offsets,
749 int num_offsets,
750 int mainline,
751 int verbo)
752 {
753 struct section_addr_info *local_addr = NULL;
754 struct cleanup *old_chain;
755
756 gdb_assert (! (addrs && offsets));
757
758 init_entry_point_info (objfile);
759 objfile->sf = find_sym_fns (objfile->obfd);
760
761 if (objfile->sf == NULL)
762 return; /* No symbols. */
763
764 /* Make sure that partially constructed symbol tables will be cleaned up
765 if an error occurs during symbol reading. */
766 old_chain = make_cleanup_free_objfile (objfile);
767
768 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
769 list. We now establish the convention that an addr of zero means
770 no load address was specified. */
771 if (! addrs && ! offsets)
772 {
773 local_addr
774 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
775 make_cleanup (xfree, local_addr);
776 addrs = local_addr;
777 }
778
779 /* Now either addrs or offsets is non-zero. */
780
781 if (mainline)
782 {
783 /* We will modify the main symbol table, make sure that all its users
784 will be cleaned up if an error occurs during symbol reading. */
785 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
786
787 /* Since no error yet, throw away the old symbol table. */
788
789 if (symfile_objfile != NULL)
790 {
791 free_objfile (symfile_objfile);
792 symfile_objfile = NULL;
793 }
794
795 /* Currently we keep symbols from the add-symbol-file command.
796 If the user wants to get rid of them, they should do "symbol-file"
797 without arguments first. Not sure this is the best behavior
798 (PR 2207). */
799
800 (*objfile->sf->sym_new_init) (objfile);
801 }
802
803 /* Convert addr into an offset rather than an absolute address.
804 We find the lowest address of a loaded segment in the objfile,
805 and assume that <addr> is where that got loaded.
806
807 We no longer warn if the lowest section is not a text segment (as
808 happens for the PA64 port. */
809 if (!mainline && addrs && addrs->other[0].name)
810 {
811 asection *lower_sect;
812 asection *sect;
813 CORE_ADDR lower_offset;
814 int i;
815
816 /* Find lowest loadable section to be used as starting point for
817 continguous sections. FIXME!! won't work without call to find
818 .text first, but this assumes text is lowest section. */
819 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
820 if (lower_sect == NULL)
821 bfd_map_over_sections (objfile->obfd, find_lowest_section,
822 &lower_sect);
823 if (lower_sect == NULL)
824 {
825 warning (_("no loadable sections found in added symbol-file %s"),
826 objfile->name);
827 lower_offset = 0;
828 }
829 else
830 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
831
832 /* Calculate offsets for the loadable sections.
833 FIXME! Sections must be in order of increasing loadable section
834 so that contiguous sections can use the lower-offset!!!
835
836 Adjust offsets if the segments are not contiguous.
837 If the section is contiguous, its offset should be set to
838 the offset of the highest loadable section lower than it
839 (the loadable section directly below it in memory).
840 this_offset = lower_offset = lower_addr - lower_orig_addr */
841
842 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
843 {
844 if (addrs->other[i].addr != 0)
845 {
846 sect = bfd_get_section_by_name (objfile->obfd,
847 addrs->other[i].name);
848 if (sect)
849 {
850 addrs->other[i].addr
851 -= bfd_section_vma (objfile->obfd, sect);
852 lower_offset = addrs->other[i].addr;
853 /* This is the index used by BFD. */
854 addrs->other[i].sectindex = sect->index ;
855 }
856 else
857 {
858 warning (_("section %s not found in %s"),
859 addrs->other[i].name,
860 objfile->name);
861 addrs->other[i].addr = 0;
862 }
863 }
864 else
865 addrs->other[i].addr = lower_offset;
866 }
867 }
868
869 /* Initialize symbol reading routines for this objfile, allow complaints to
870 appear for this new file, and record how verbose to be, then do the
871 initial symbol reading for this file. */
872
873 (*objfile->sf->sym_init) (objfile);
874 clear_complaints (&symfile_complaints, 1, verbo);
875
876 if (addrs)
877 (*objfile->sf->sym_offsets) (objfile, addrs);
878 else
879 {
880 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
881
882 /* Just copy in the offset table directly as given to us. */
883 objfile->num_sections = num_offsets;
884 objfile->section_offsets
885 = ((struct section_offsets *)
886 obstack_alloc (&objfile->objfile_obstack, size));
887 memcpy (objfile->section_offsets, offsets, size);
888
889 init_objfile_sect_indices (objfile);
890 }
891
892 #ifndef DEPRECATED_IBM6000_TARGET
893 /* This is a SVR4/SunOS specific hack, I think. In any event, it
894 screws RS/6000. sym_offsets should be doing this sort of thing,
895 because it knows the mapping between bfd sections and
896 section_offsets. */
897 /* This is a hack. As far as I can tell, section offsets are not
898 target dependent. They are all set to addr with a couple of
899 exceptions. The exceptions are sysvr4 shared libraries, whose
900 offsets are kept in solib structures anyway and rs6000 xcoff
901 which handles shared libraries in a completely unique way.
902
903 Section offsets are built similarly, except that they are built
904 by adding addr in all cases because there is no clear mapping
905 from section_offsets into actual sections. Note that solib.c
906 has a different algorithm for finding section offsets.
907
908 These should probably all be collapsed into some target
909 independent form of shared library support. FIXME. */
910
911 if (addrs)
912 {
913 struct obj_section *s;
914
915 /* Map section offsets in "addr" back to the object's
916 sections by comparing the section names with bfd's
917 section names. Then adjust the section address by
918 the offset. */ /* for gdb/13815 */
919
920 ALL_OBJFILE_OSECTIONS (objfile, s)
921 {
922 CORE_ADDR s_addr = 0;
923 int i;
924
925 for (i = 0;
926 !s_addr && i < addrs->num_sections && addrs->other[i].name;
927 i++)
928 if (strcmp (bfd_section_name (s->objfile->obfd,
929 s->the_bfd_section),
930 addrs->other[i].name) == 0)
931 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
932
933 s->addr -= s->offset;
934 s->addr += s_addr;
935 s->endaddr -= s->offset;
936 s->endaddr += s_addr;
937 s->offset += s_addr;
938 }
939 }
940 #endif /* not DEPRECATED_IBM6000_TARGET */
941
942 (*objfile->sf->sym_read) (objfile, mainline);
943
944 /* Don't allow char * to have a typename (else would get caddr_t).
945 Ditto void *. FIXME: Check whether this is now done by all the
946 symbol readers themselves (many of them now do), and if so remove
947 it from here. */
948
949 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
950 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
951
952 /* Mark the objfile has having had initial symbol read attempted. Note
953 that this does not mean we found any symbols... */
954
955 objfile->flags |= OBJF_SYMS;
956
957 /* Discard cleanups as symbol reading was successful. */
958
959 discard_cleanups (old_chain);
960 }
961
962 /* Perform required actions after either reading in the initial
963 symbols for a new objfile, or mapping in the symbols from a reusable
964 objfile. */
965
966 void
967 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
968 {
969
970 /* If this is the main symbol file we have to clean up all users of the
971 old main symbol file. Otherwise it is sufficient to fixup all the
972 breakpoints that may have been redefined by this symbol file. */
973 if (mainline)
974 {
975 /* OK, make it the "real" symbol file. */
976 symfile_objfile = objfile;
977
978 clear_symtab_users ();
979 }
980 else
981 {
982 breakpoint_re_set ();
983 }
984
985 /* We're done reading the symbol file; finish off complaints. */
986 clear_complaints (&symfile_complaints, 0, verbo);
987 }
988
989 /* Process a symbol file, as either the main file or as a dynamically
990 loaded file.
991
992 ABFD is a BFD already open on the file, as from symfile_bfd_open.
993 This BFD will be closed on error, and is always consumed by this function.
994
995 FROM_TTY says how verbose to be.
996
997 MAINLINE specifies whether this is the main symbol file, or whether
998 it's an extra symbol file such as dynamically loaded code.
999
1000 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1001 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1002 non-zero.
1003
1004 Upon success, returns a pointer to the objfile that was added.
1005 Upon failure, jumps back to command level (never returns). */
1006 static struct objfile *
1007 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1008 struct section_addr_info *addrs,
1009 struct section_offsets *offsets,
1010 int num_offsets,
1011 int mainline, int flags)
1012 {
1013 struct objfile *objfile;
1014 struct partial_symtab *psymtab;
1015 char *debugfile = NULL;
1016 struct section_addr_info *orig_addrs = NULL;
1017 struct cleanup *my_cleanups;
1018 const char *name = bfd_get_filename (abfd);
1019
1020 my_cleanups = make_cleanup_bfd_close (abfd);
1021
1022 /* Give user a chance to burp if we'd be
1023 interactively wiping out any existing symbols. */
1024
1025 if ((have_full_symbols () || have_partial_symbols ())
1026 && mainline
1027 && from_tty
1028 && !query ("Load new symbol table from \"%s\"? ", name))
1029 error (_("Not confirmed."));
1030
1031 objfile = allocate_objfile (abfd, flags);
1032 discard_cleanups (my_cleanups);
1033
1034 if (addrs)
1035 {
1036 orig_addrs = copy_section_addr_info (addrs);
1037 make_cleanup_free_section_addr_info (orig_addrs);
1038 }
1039
1040 /* We either created a new mapped symbol table, mapped an existing
1041 symbol table file which has not had initial symbol reading
1042 performed, or need to read an unmapped symbol table. */
1043 if (from_tty || info_verbose)
1044 {
1045 if (deprecated_pre_add_symbol_hook)
1046 deprecated_pre_add_symbol_hook (name);
1047 else
1048 {
1049 printf_unfiltered (_("Reading symbols from %s..."), name);
1050 wrap_here ("");
1051 gdb_flush (gdb_stdout);
1052 }
1053 }
1054 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1055 mainline, from_tty);
1056
1057 /* We now have at least a partial symbol table. Check to see if the
1058 user requested that all symbols be read on initial access via either
1059 the gdb startup command line or on a per symbol file basis. Expand
1060 all partial symbol tables for this objfile if so. */
1061
1062 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1063 {
1064 if (from_tty || info_verbose)
1065 {
1066 printf_unfiltered (_("expanding to full symbols..."));
1067 wrap_here ("");
1068 gdb_flush (gdb_stdout);
1069 }
1070
1071 for (psymtab = objfile->psymtabs;
1072 psymtab != NULL;
1073 psymtab = psymtab->next)
1074 {
1075 psymtab_to_symtab (psymtab);
1076 }
1077 }
1078
1079 /* If the file has its own symbol tables it has no separate debug info.
1080 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1081 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1082 if (objfile->psymtabs == NULL)
1083 debugfile = find_separate_debug_file (objfile);
1084 if (debugfile)
1085 {
1086 if (addrs != NULL)
1087 {
1088 objfile->separate_debug_objfile
1089 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1090 }
1091 else
1092 {
1093 objfile->separate_debug_objfile
1094 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1095 }
1096 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1097 = objfile;
1098
1099 /* Put the separate debug object before the normal one, this is so that
1100 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1101 put_objfile_before (objfile->separate_debug_objfile, objfile);
1102
1103 xfree (debugfile);
1104 }
1105
1106 if (!have_partial_symbols () && !have_full_symbols ())
1107 {
1108 wrap_here ("");
1109 printf_filtered (_("(no debugging symbols found)"));
1110 if (from_tty || info_verbose)
1111 printf_filtered ("...");
1112 else
1113 printf_filtered ("\n");
1114 wrap_here ("");
1115 }
1116
1117 if (from_tty || info_verbose)
1118 {
1119 if (deprecated_post_add_symbol_hook)
1120 deprecated_post_add_symbol_hook ();
1121 else
1122 {
1123 printf_unfiltered (_("done.\n"));
1124 }
1125 }
1126
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
1132 do_cleanups (my_cleanups);
1133
1134 if (objfile->sf == NULL)
1135 return objfile; /* No symbols. */
1136
1137 new_symfile_objfile (objfile, mainline, from_tty);
1138
1139 observer_notify_new_objfile (objfile);
1140
1141 bfd_cache_close_all ();
1142 return (objfile);
1143 }
1144
1145
1146 /* Process the symbol file ABFD, as either the main file or as a
1147 dynamically loaded file.
1148
1149 See symbol_file_add_with_addrs_or_offsets's comments for
1150 details. */
1151 struct objfile *
1152 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1153 struct section_addr_info *addrs,
1154 int mainline, int flags)
1155 {
1156 return symbol_file_add_with_addrs_or_offsets (abfd,
1157 from_tty, addrs, 0, 0,
1158 mainline, flags);
1159 }
1160
1161
1162 /* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1164 for details. */
1165 struct objfile *
1166 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1167 int mainline, int flags)
1168 {
1169 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1170 addrs, mainline, flags);
1171 }
1172
1173
1174 /* Call symbol_file_add() with default values and update whatever is
1175 affected by the loading of a new main().
1176 Used when the file is supplied in the gdb command line
1177 and by some targets with special loading requirements.
1178 The auxiliary function, symbol_file_add_main_1(), has the flags
1179 argument for the switches that can only be specified in the symbol_file
1180 command itself. */
1181
1182 void
1183 symbol_file_add_main (char *args, int from_tty)
1184 {
1185 symbol_file_add_main_1 (args, from_tty, 0);
1186 }
1187
1188 static void
1189 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1190 {
1191 symbol_file_add (args, from_tty, NULL, 1, flags);
1192
1193 /* Getting new symbols may change our opinion about
1194 what is frameless. */
1195 reinit_frame_cache ();
1196
1197 set_initial_language ();
1198 }
1199
1200 void
1201 symbol_file_clear (int from_tty)
1202 {
1203 if ((have_full_symbols () || have_partial_symbols ())
1204 && from_tty
1205 && (symfile_objfile
1206 ? !query (_("Discard symbol table from `%s'? "),
1207 symfile_objfile->name)
1208 : !query (_("Discard symbol table? "))))
1209 error (_("Not confirmed."));
1210 free_all_objfiles ();
1211
1212 /* solib descriptors may have handles to objfiles. Since their
1213 storage has just been released, we'd better wipe the solib
1214 descriptors as well.
1215 */
1216 no_shared_libraries (NULL, from_tty);
1217
1218 symfile_objfile = NULL;
1219 if (from_tty)
1220 printf_unfiltered (_("No symbol file now.\n"));
1221 }
1222
1223 struct build_id
1224 {
1225 size_t size;
1226 gdb_byte data[1];
1227 };
1228
1229 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1230
1231 static struct build_id *
1232 build_id_bfd_get (bfd *abfd)
1233 {
1234 struct build_id *retval;
1235
1236 if (!bfd_check_format (abfd, bfd_object)
1237 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1238 || elf_tdata (abfd)->build_id == NULL)
1239 return NULL;
1240
1241 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1242 retval->size = elf_tdata (abfd)->build_id_size;
1243 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1244
1245 return retval;
1246 }
1247
1248 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1249
1250 static int
1251 build_id_verify (const char *filename, struct build_id *check)
1252 {
1253 bfd *abfd;
1254 struct build_id *found = NULL;
1255 int retval = 0;
1256
1257 /* We expect to be silent on the non-existing files. */
1258 abfd = bfd_openr (filename, gnutarget);
1259 if (abfd == NULL)
1260 return 0;
1261
1262 found = build_id_bfd_get (abfd);
1263
1264 if (found == NULL)
1265 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1266 else if (found->size != check->size
1267 || memcmp (found->data, check->data, found->size) != 0)
1268 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1269 else
1270 retval = 1;
1271
1272 if (!bfd_close (abfd))
1273 warning (_("cannot close \"%s\": %s"), filename,
1274 bfd_errmsg (bfd_get_error ()));
1275 return retval;
1276 }
1277
1278 static char *
1279 build_id_to_debug_filename (struct build_id *build_id)
1280 {
1281 char *link, *s, *retval = NULL;
1282 gdb_byte *data = build_id->data;
1283 size_t size = build_id->size;
1284
1285 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1286 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1287 + 2 * size + (sizeof ".debug" - 1) + 1);
1288 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1289 if (size > 0)
1290 {
1291 size--;
1292 s += sprintf (s, "%02x", (unsigned) *data++);
1293 }
1294 if (size > 0)
1295 *s++ = '/';
1296 while (size-- > 0)
1297 s += sprintf (s, "%02x", (unsigned) *data++);
1298 strcpy (s, ".debug");
1299
1300 /* lrealpath() is expensive even for the usually non-existent files. */
1301 if (access (link, F_OK) == 0)
1302 retval = lrealpath (link);
1303 xfree (link);
1304
1305 if (retval != NULL && !build_id_verify (retval, build_id))
1306 {
1307 xfree (retval);
1308 retval = NULL;
1309 }
1310
1311 return retval;
1312 }
1313
1314 static char *
1315 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1316 {
1317 asection *sect;
1318 bfd_size_type debuglink_size;
1319 unsigned long crc32;
1320 char *contents;
1321 int crc_offset;
1322 unsigned char *p;
1323
1324 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1325
1326 if (sect == NULL)
1327 return NULL;
1328
1329 debuglink_size = bfd_section_size (objfile->obfd, sect);
1330
1331 contents = xmalloc (debuglink_size);
1332 bfd_get_section_contents (objfile->obfd, sect, contents,
1333 (file_ptr)0, (bfd_size_type)debuglink_size);
1334
1335 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1336 crc_offset = strlen (contents) + 1;
1337 crc_offset = (crc_offset + 3) & ~3;
1338
1339 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1340
1341 *crc32_out = crc32;
1342 return contents;
1343 }
1344
1345 static int
1346 separate_debug_file_exists (const char *name, unsigned long crc)
1347 {
1348 unsigned long file_crc = 0;
1349 int fd;
1350 gdb_byte buffer[8*1024];
1351 int count;
1352
1353 fd = open (name, O_RDONLY | O_BINARY);
1354 if (fd < 0)
1355 return 0;
1356
1357 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 close (fd);
1361
1362 return crc == file_crc;
1363 }
1364
1365 char *debug_file_directory = NULL;
1366 static void
1367 show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369 {
1370 fprintf_filtered (file, _("\
1371 The directory where separate debug symbols are searched for is \"%s\".\n"),
1372 value);
1373 }
1374
1375 #if ! defined (DEBUG_SUBDIRECTORY)
1376 #define DEBUG_SUBDIRECTORY ".debug"
1377 #endif
1378
1379 static char *
1380 find_separate_debug_file (struct objfile *objfile)
1381 {
1382 asection *sect;
1383 char *basename;
1384 char *dir;
1385 char *debugfile;
1386 char *name_copy;
1387 char *canon_name;
1388 bfd_size_type debuglink_size;
1389 unsigned long crc32;
1390 int i;
1391 struct build_id *build_id;
1392
1393 build_id = build_id_bfd_get (objfile->obfd);
1394 if (build_id != NULL)
1395 {
1396 char *build_id_name;
1397
1398 build_id_name = build_id_to_debug_filename (build_id);
1399 free (build_id);
1400 /* Prevent looping on a stripped .debug file. */
1401 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1402 {
1403 warning (_("\"%s\": separate debug info file has no debug info"),
1404 build_id_name);
1405 xfree (build_id_name);
1406 }
1407 else if (build_id_name != NULL)
1408 return build_id_name;
1409 }
1410
1411 basename = get_debug_link_info (objfile, &crc32);
1412
1413 if (basename == NULL)
1414 return NULL;
1415
1416 dir = xstrdup (objfile->name);
1417
1418 /* Strip off the final filename part, leaving the directory name,
1419 followed by a slash. Objfile names should always be absolute and
1420 tilde-expanded, so there should always be a slash in there
1421 somewhere. */
1422 for (i = strlen(dir) - 1; i >= 0; i--)
1423 {
1424 if (IS_DIR_SEPARATOR (dir[i]))
1425 break;
1426 }
1427 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1428 dir[i+1] = '\0';
1429
1430 debugfile = alloca (strlen (debug_file_directory) + 1
1431 + strlen (dir)
1432 + strlen (DEBUG_SUBDIRECTORY)
1433 + strlen ("/")
1434 + strlen (basename)
1435 + 1);
1436
1437 /* First try in the same directory as the original file. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, basename);
1440
1441 if (separate_debug_file_exists (debugfile, crc32))
1442 {
1443 xfree (basename);
1444 xfree (dir);
1445 return xstrdup (debugfile);
1446 }
1447
1448 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, DEBUG_SUBDIRECTORY);
1451 strcat (debugfile, "/");
1452 strcat (debugfile, basename);
1453
1454 if (separate_debug_file_exists (debugfile, crc32))
1455 {
1456 xfree (basename);
1457 xfree (dir);
1458 return xstrdup (debugfile);
1459 }
1460
1461 /* Then try in the global debugfile directory. */
1462 strcpy (debugfile, debug_file_directory);
1463 strcat (debugfile, "/");
1464 strcat (debugfile, dir);
1465 strcat (debugfile, basename);
1466
1467 if (separate_debug_file_exists (debugfile, crc32))
1468 {
1469 xfree (basename);
1470 xfree (dir);
1471 return xstrdup (debugfile);
1472 }
1473
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1476 canon_name = lrealpath (dir);
1477 if (canon_name
1478 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1479 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1480 {
1481 strcpy (debugfile, debug_file_directory);
1482 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, basename);
1485
1486 if (separate_debug_file_exists (debugfile, crc32))
1487 {
1488 xfree (canon_name);
1489 xfree (basename);
1490 xfree (dir);
1491 return xstrdup (debugfile);
1492 }
1493 }
1494
1495 if (canon_name)
1496 xfree (canon_name);
1497
1498 xfree (basename);
1499 xfree (dir);
1500 return NULL;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 if (argv == NULL)
1535 nomem (0);
1536
1537 cleanups = make_cleanup_freeargv (argv);
1538 while (*argv != NULL)
1539 {
1540 if (strcmp (*argv, "-readnow") == 0)
1541 flags |= OBJF_READNOW;
1542 else if (**argv == '-')
1543 error (_("unknown option `%s'"), *argv);
1544 else
1545 {
1546 symbol_file_add_main_1 (*argv, from_tty, flags);
1547 name = *argv;
1548 }
1549
1550 argv++;
1551 }
1552
1553 if (name == NULL)
1554 error (_("no symbol file name was specified"));
1555
1556 do_cleanups (cleanups);
1557 }
1558 }
1559
1560 /* Set the initial language.
1561
1562 FIXME: A better solution would be to record the language in the
1563 psymtab when reading partial symbols, and then use it (if known) to
1564 set the language. This would be a win for formats that encode the
1565 language in an easily discoverable place, such as DWARF. For
1566 stabs, we can jump through hoops looking for specially named
1567 symbols or try to intuit the language from the specific type of
1568 stabs we find, but we can't do that until later when we read in
1569 full symbols. */
1570
1571 void
1572 set_initial_language (void)
1573 {
1574 struct partial_symtab *pst;
1575 enum language lang = language_unknown;
1576
1577 pst = find_main_psymtab ();
1578 if (pst != NULL)
1579 {
1580 if (pst->filename != NULL)
1581 lang = deduce_language_from_filename (pst->filename);
1582
1583 if (lang == language_unknown)
1584 {
1585 /* Make C the default language */
1586 lang = language_c;
1587 }
1588
1589 set_language (lang);
1590 expected_language = current_language; /* Don't warn the user. */
1591 }
1592 }
1593
1594 /* Open the file specified by NAME and hand it off to BFD for
1595 preliminary analysis. Return a newly initialized bfd *, which
1596 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1597 absolute). In case of trouble, error() is called. */
1598
1599 bfd *
1600 symfile_bfd_open (char *name)
1601 {
1602 bfd *sym_bfd;
1603 int desc;
1604 char *absolute_name;
1605
1606 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1607
1608 /* Look down path for it, allocate 2nd new malloc'd copy. */
1609 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1610 O_RDONLY | O_BINARY, 0, &absolute_name);
1611 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1612 if (desc < 0)
1613 {
1614 char *exename = alloca (strlen (name) + 5);
1615 strcat (strcpy (exename, name), ".exe");
1616 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1617 O_RDONLY | O_BINARY, 0, &absolute_name);
1618 }
1619 #endif
1620 if (desc < 0)
1621 {
1622 make_cleanup (xfree, name);
1623 perror_with_name (name);
1624 }
1625
1626 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1627 bfd. It'll be freed in free_objfile(). */
1628 xfree (name);
1629 name = absolute_name;
1630
1631 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1632 if (!sym_bfd)
1633 {
1634 close (desc);
1635 make_cleanup (xfree, name);
1636 error (_("\"%s\": can't open to read symbols: %s."), name,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
1639 bfd_set_cacheable (sym_bfd, 1);
1640
1641 if (!bfd_check_format (sym_bfd, bfd_object))
1642 {
1643 /* FIXME: should be checking for errors from bfd_close (for one
1644 thing, on error it does not free all the storage associated
1645 with the bfd). */
1646 bfd_close (sym_bfd); /* This also closes desc. */
1647 make_cleanup (xfree, name);
1648 error (_("\"%s\": can't read symbols: %s."), name,
1649 bfd_errmsg (bfd_get_error ()));
1650 }
1651
1652 return sym_bfd;
1653 }
1654
1655 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1657
1658 int
1659 get_section_index (struct objfile *objfile, char *section_name)
1660 {
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1662
1663 if (sect)
1664 return sect->index;
1665 else
1666 return -1;
1667 }
1668
1669 /* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1672 handle. */
1673
1674 void
1675 add_symtab_fns (struct sym_fns *sf)
1676 {
1677 sf->next = symtab_fns;
1678 symtab_fns = sf;
1679 }
1680
1681 /* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
1685
1686 static struct sym_fns *
1687 find_sym_fns (bfd *abfd)
1688 {
1689 struct sym_fns *sf;
1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1691
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
1695 return NULL; /* No symbols. */
1696
1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1698 if (our_flavour == sf->sym_flavour)
1699 return sf;
1700
1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1702 bfd_get_target (abfd));
1703 }
1704 \f
1705
1706 /* This function runs the load command of our current target. */
1707
1708 static void
1709 load_command (char *arg, int from_tty)
1710 {
1711 if (arg == NULL)
1712 {
1713 char *parg;
1714 int count = 0;
1715
1716 parg = arg = get_exec_file (1);
1717
1718 /* Count how many \ " ' tab space there are in the name. */
1719 while ((parg = strpbrk (parg, "\\\"'\t ")))
1720 {
1721 parg++;
1722 count++;
1723 }
1724
1725 if (count)
1726 {
1727 /* We need to quote this string so buildargv can pull it apart. */
1728 char *temp = xmalloc (strlen (arg) + count + 1 );
1729 char *ptemp = temp;
1730 char *prev;
1731
1732 make_cleanup (xfree, temp);
1733
1734 prev = parg = arg;
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1736 {
1737 strncpy (ptemp, prev, parg - prev);
1738 ptemp += parg - prev;
1739 prev = parg++;
1740 *ptemp++ = '\\';
1741 }
1742 strcpy (ptemp, prev);
1743
1744 arg = temp;
1745 }
1746 }
1747
1748 /* The user might be reloading because the binary has changed. Take
1749 this opportunity to check. */
1750 reopen_exec_file ();
1751 reread_symbols ();
1752
1753 target_load (arg, from_tty);
1754
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
1758 }
1759
1760 /* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1763
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
1768
1769 static int validate_download = 0;
1770
1771 /* Callback service function for generic_load (bfd_map_over_sections). */
1772
1773 static void
1774 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1775 {
1776 bfd_size_type *sum = data;
1777
1778 *sum += bfd_get_section_size (asec);
1779 }
1780
1781 /* Opaque data for load_section_callback. */
1782 struct load_section_data {
1783 unsigned long load_offset;
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1786 };
1787
1788 /* Opaque data for load_progress. */
1789 struct load_progress_data {
1790 /* Cumulative data. */
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
1794 };
1795
1796 /* Opaque data for load_progress for a single section. */
1797 struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
1799
1800 /* Per-section data. */
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1804 CORE_ADDR lma;
1805 gdb_byte *buffer;
1806 };
1807
1808 /* Target write callback routine for progress reporting. */
1809
1810 static void
1811 load_progress (ULONGEST bytes, void *untyped_arg)
1812 {
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1815
1816 if (args == NULL)
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1819 return;
1820
1821 totals = args->cumulative;
1822
1823 if (bytes == 0 && args->section_sent == 0)
1824 {
1825 /* The write is just starting. Let the user know we've started
1826 this section. */
1827 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1828 args->section_name, paddr_nz (args->section_size),
1829 paddr_nz (args->lma));
1830 return;
1831 }
1832
1833 if (validate_download)
1834 {
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1837 downloads. */
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1844
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at 0x%s"),
1847 paddr (args->lma));
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at 0x%s"),
1850 paddr (args->lma));
1851 do_cleanups (verify_cleanups);
1852 }
1853 totals->data_count += bytes;
1854 args->lma += bytes;
1855 args->buffer += bytes;
1856 totals->write_count += 1;
1857 args->section_sent += bytes;
1858 if (quit_flag
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1863
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1866 args->section_sent,
1867 args->section_size,
1868 totals->data_count,
1869 totals->total_size);
1870 }
1871
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874 static void
1875 load_section_callback (bfd *abfd, asection *asec, void *data)
1876 {
1877 struct memory_write_request *new_request;
1878 struct load_section_data *args = data;
1879 struct load_progress_section_data *section_data;
1880 bfd_size_type size = bfd_get_section_size (asec);
1881 gdb_byte *buffer;
1882 const char *sect_name = bfd_get_section_name (abfd, asec);
1883
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1885 return;
1886
1887 if (size == 0)
1888 return;
1889
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
1898
1899 buffer = new_request->data;
1900
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
1906
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1908 }
1909
1910 /* Clean up an entire memory request vector, including load
1911 data and progress records. */
1912
1913 static void
1914 clear_memory_write_data (void *arg)
1915 {
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1918 int i;
1919 struct memory_write_request *mr;
1920
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1922 {
1923 xfree (mr->data);
1924 xfree (mr->baton);
1925 }
1926 VEC_free (memory_write_request_s, vec);
1927 }
1928
1929 void
1930 generic_load (char *args, int from_tty)
1931 {
1932 bfd *loadfile_bfd;
1933 struct timeval start_time, end_time;
1934 char *filename;
1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1936 struct load_section_data cbdata;
1937 struct load_progress_data total_progress;
1938
1939 CORE_ADDR entry;
1940 char **argv;
1941
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1945
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
1947
1948 argv = buildargv (args);
1949
1950 if (argv == NULL)
1951 nomem(0);
1952
1953 make_cleanup_freeargv (argv);
1954
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1957
1958 if (argv[1] != NULL)
1959 {
1960 char *endptr;
1961
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1968
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
1971 }
1972
1973 /* Open the file for loading. */
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1976 {
1977 perror_with_name (filename);
1978 return;
1979 }
1980
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1983 bfd). */
1984 make_cleanup_bfd_close (loadfile_bfd);
1985
1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
1987 {
1988 error (_("\"%s\" is not an object file: %s"), filename,
1989 bfd_errmsg (bfd_get_error ()));
1990 }
1991
1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1993 (void *) &total_progress.total_size);
1994
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1996
1997 gettimeofday (&start_time, NULL);
1998
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
2002
2003 gettimeofday (&end_time, NULL);
2004
2005 entry = bfd_get_start_address (loadfile_bfd);
2006 ui_out_text (uiout, "Start address ");
2007 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2008 ui_out_text (uiout, ", load size ");
2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2010 ui_out_text (uiout, "\n");
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
2013 write_pc (entry);
2014
2015 /* FIXME: are we supposed to call symbol_file_add or not? According
2016 to a comment from remote-mips.c (where a call to symbol_file_add
2017 was commented out), making the call confuses GDB if more than one
2018 file is loaded in. Some targets do (e.g., remote-vx.c) but
2019 others don't (or didn't - perhaps they have all been deleted). */
2020
2021 print_transfer_performance (gdb_stdout, total_progress.data_count,
2022 total_progress.write_count,
2023 &start_time, &end_time);
2024
2025 do_cleanups (old_cleanups);
2026 }
2027
2028 /* Report how fast the transfer went. */
2029
2030 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2031 replaced by print_transfer_performance (with a very different
2032 function signature). */
2033
2034 void
2035 report_transfer_performance (unsigned long data_count, time_t start_time,
2036 time_t end_time)
2037 {
2038 struct timeval start, end;
2039
2040 start.tv_sec = start_time;
2041 start.tv_usec = 0;
2042 end.tv_sec = end_time;
2043 end.tv_usec = 0;
2044
2045 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2046 }
2047
2048 void
2049 print_transfer_performance (struct ui_file *stream,
2050 unsigned long data_count,
2051 unsigned long write_count,
2052 const struct timeval *start_time,
2053 const struct timeval *end_time)
2054 {
2055 ULONGEST time_count;
2056
2057 /* Compute the elapsed time in milliseconds, as a tradeoff between
2058 accuracy and overflow. */
2059 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2060 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2061
2062 ui_out_text (uiout, "Transfer rate: ");
2063 if (time_count > 0)
2064 {
2065 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2066
2067 if (ui_out_is_mi_like_p (uiout))
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2070 ui_out_text (uiout, " bits/sec");
2071 }
2072 else if (rate < 1024)
2073 {
2074 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2075 ui_out_text (uiout, " bytes/sec");
2076 }
2077 else
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2080 ui_out_text (uiout, " KB/sec");
2081 }
2082 }
2083 else
2084 {
2085 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2086 ui_out_text (uiout, " bits in <1 sec");
2087 }
2088 if (write_count > 0)
2089 {
2090 ui_out_text (uiout, ", ");
2091 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2092 ui_out_text (uiout, " bytes/write");
2093 }
2094 ui_out_text (uiout, ".\n");
2095 }
2096
2097 /* This function allows the addition of incrementally linked object files.
2098 It does not modify any state in the target, only in the debugger. */
2099 /* Note: ezannoni 2000-04-13 This function/command used to have a
2100 special case syntax for the rombug target (Rombug is the boot
2101 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2102 rombug case, the user doesn't need to supply a text address,
2103 instead a call to target_link() (in target.c) would supply the
2104 value to use. We are now discontinuing this type of ad hoc syntax. */
2105
2106 static void
2107 add_symbol_file_command (char *args, int from_tty)
2108 {
2109 char *filename = NULL;
2110 int flags = OBJF_USERLOADED;
2111 char *arg;
2112 int expecting_option = 0;
2113 int section_index = 0;
2114 int argcnt = 0;
2115 int sec_num = 0;
2116 int i;
2117 int expecting_sec_name = 0;
2118 int expecting_sec_addr = 0;
2119 char **argv;
2120
2121 struct sect_opt
2122 {
2123 char *name;
2124 char *value;
2125 };
2126
2127 struct section_addr_info *section_addrs;
2128 struct sect_opt *sect_opts = NULL;
2129 size_t num_sect_opts = 0;
2130 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2131
2132 num_sect_opts = 16;
2133 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2134 * sizeof (struct sect_opt));
2135
2136 dont_repeat ();
2137
2138 if (args == NULL)
2139 error (_("add-symbol-file takes a file name and an address"));
2140
2141 argv = buildargv (args);
2142 make_cleanup_freeargv (argv);
2143
2144 if (argv == NULL)
2145 nomem (0);
2146
2147 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2148 {
2149 /* Process the argument. */
2150 if (argcnt == 0)
2151 {
2152 /* The first argument is the file name. */
2153 filename = tilde_expand (arg);
2154 make_cleanup (xfree, filename);
2155 }
2156 else
2157 if (argcnt == 1)
2158 {
2159 /* The second argument is always the text address at which
2160 to load the program. */
2161 sect_opts[section_index].name = ".text";
2162 sect_opts[section_index].value = arg;
2163 if (++section_index >= num_sect_opts)
2164 {
2165 num_sect_opts *= 2;
2166 sect_opts = ((struct sect_opt *)
2167 xrealloc (sect_opts,
2168 num_sect_opts
2169 * sizeof (struct sect_opt)));
2170 }
2171 }
2172 else
2173 {
2174 /* It's an option (starting with '-') or it's an argument
2175 to an option */
2176
2177 if (*arg == '-')
2178 {
2179 if (strcmp (arg, "-readnow") == 0)
2180 flags |= OBJF_READNOW;
2181 else if (strcmp (arg, "-s") == 0)
2182 {
2183 expecting_sec_name = 1;
2184 expecting_sec_addr = 1;
2185 }
2186 }
2187 else
2188 {
2189 if (expecting_sec_name)
2190 {
2191 sect_opts[section_index].name = arg;
2192 expecting_sec_name = 0;
2193 }
2194 else
2195 if (expecting_sec_addr)
2196 {
2197 sect_opts[section_index].value = arg;
2198 expecting_sec_addr = 0;
2199 if (++section_index >= num_sect_opts)
2200 {
2201 num_sect_opts *= 2;
2202 sect_opts = ((struct sect_opt *)
2203 xrealloc (sect_opts,
2204 num_sect_opts
2205 * sizeof (struct sect_opt)));
2206 }
2207 }
2208 else
2209 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2210 }
2211 }
2212 }
2213
2214 /* This command takes at least two arguments. The first one is a
2215 filename, and the second is the address where this file has been
2216 loaded. Abort now if this address hasn't been provided by the
2217 user. */
2218 if (section_index < 1)
2219 error (_("The address where %s has been loaded is missing"), filename);
2220
2221 /* Print the prompt for the query below. And save the arguments into
2222 a sect_addr_info structure to be passed around to other
2223 functions. We have to split this up into separate print
2224 statements because hex_string returns a local static
2225 string. */
2226
2227 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2228 section_addrs = alloc_section_addr_info (section_index);
2229 make_cleanup (xfree, section_addrs);
2230 for (i = 0; i < section_index; i++)
2231 {
2232 CORE_ADDR addr;
2233 char *val = sect_opts[i].value;
2234 char *sec = sect_opts[i].name;
2235
2236 addr = parse_and_eval_address (val);
2237
2238 /* Here we store the section offsets in the order they were
2239 entered on the command line. */
2240 section_addrs->other[sec_num].name = sec;
2241 section_addrs->other[sec_num].addr = addr;
2242 printf_unfiltered ("\t%s_addr = %s\n",
2243 sec, hex_string ((unsigned long)addr));
2244 sec_num++;
2245
2246 /* The object's sections are initialized when a
2247 call is made to build_objfile_section_table (objfile).
2248 This happens in reread_symbols.
2249 At this point, we don't know what file type this is,
2250 so we can't determine what section names are valid. */
2251 }
2252
2253 if (from_tty && (!query ("%s", "")))
2254 error (_("Not confirmed."));
2255
2256 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2257
2258 /* Getting new symbols may change our opinion about what is
2259 frameless. */
2260 reinit_frame_cache ();
2261 do_cleanups (my_cleanups);
2262 }
2263 \f
2264 static void
2265 add_shared_symbol_files_command (char *args, int from_tty)
2266 {
2267 #ifdef ADD_SHARED_SYMBOL_FILES
2268 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2269 #else
2270 error (_("This command is not available in this configuration of GDB."));
2271 #endif
2272 }
2273 \f
2274 /* Re-read symbols if a symbol-file has changed. */
2275 void
2276 reread_symbols (void)
2277 {
2278 struct objfile *objfile;
2279 long new_modtime;
2280 int reread_one = 0;
2281 struct stat new_statbuf;
2282 int res;
2283
2284 /* With the addition of shared libraries, this should be modified,
2285 the load time should be saved in the partial symbol tables, since
2286 different tables may come from different source files. FIXME.
2287 This routine should then walk down each partial symbol table
2288 and see if the symbol table that it originates from has been changed */
2289
2290 for (objfile = object_files; objfile; objfile = objfile->next)
2291 {
2292 if (objfile->obfd)
2293 {
2294 #ifdef DEPRECATED_IBM6000_TARGET
2295 /* If this object is from a shared library, then you should
2296 stat on the library name, not member name. */
2297
2298 if (objfile->obfd->my_archive)
2299 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2300 else
2301 #endif
2302 res = stat (objfile->name, &new_statbuf);
2303 if (res != 0)
2304 {
2305 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2306 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2307 objfile->name);
2308 continue;
2309 }
2310 new_modtime = new_statbuf.st_mtime;
2311 if (new_modtime != objfile->mtime)
2312 {
2313 struct cleanup *old_cleanups;
2314 struct section_offsets *offsets;
2315 int num_offsets;
2316 char *obfd_filename;
2317
2318 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2319 objfile->name);
2320
2321 /* There are various functions like symbol_file_add,
2322 symfile_bfd_open, syms_from_objfile, etc., which might
2323 appear to do what we want. But they have various other
2324 effects which we *don't* want. So we just do stuff
2325 ourselves. We don't worry about mapped files (for one thing,
2326 any mapped file will be out of date). */
2327
2328 /* If we get an error, blow away this objfile (not sure if
2329 that is the correct response for things like shared
2330 libraries). */
2331 old_cleanups = make_cleanup_free_objfile (objfile);
2332 /* We need to do this whenever any symbols go away. */
2333 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2334
2335 /* Clean up any state BFD has sitting around. We don't need
2336 to close the descriptor but BFD lacks a way of closing the
2337 BFD without closing the descriptor. */
2338 obfd_filename = bfd_get_filename (objfile->obfd);
2339 if (!bfd_close (objfile->obfd))
2340 error (_("Can't close BFD for %s: %s"), objfile->name,
2341 bfd_errmsg (bfd_get_error ()));
2342 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2343 if (objfile->obfd == NULL)
2344 error (_("Can't open %s to read symbols."), objfile->name);
2345 /* bfd_openr sets cacheable to true, which is what we want. */
2346 if (!bfd_check_format (objfile->obfd, bfd_object))
2347 error (_("Can't read symbols from %s: %s."), objfile->name,
2348 bfd_errmsg (bfd_get_error ()));
2349
2350 /* Save the offsets, we will nuke them with the rest of the
2351 objfile_obstack. */
2352 num_offsets = objfile->num_sections;
2353 offsets = ((struct section_offsets *)
2354 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2355 memcpy (offsets, objfile->section_offsets,
2356 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2357
2358 /* Remove any references to this objfile in the global
2359 value lists. */
2360 preserve_values (objfile);
2361
2362 /* Nuke all the state that we will re-read. Much of the following
2363 code which sets things to NULL really is necessary to tell
2364 other parts of GDB that there is nothing currently there. */
2365
2366 /* FIXME: Do we have to free a whole linked list, or is this
2367 enough? */
2368 if (objfile->global_psymbols.list)
2369 xfree (objfile->global_psymbols.list);
2370 memset (&objfile->global_psymbols, 0,
2371 sizeof (objfile->global_psymbols));
2372 if (objfile->static_psymbols.list)
2373 xfree (objfile->static_psymbols.list);
2374 memset (&objfile->static_psymbols, 0,
2375 sizeof (objfile->static_psymbols));
2376
2377 /* Free the obstacks for non-reusable objfiles */
2378 bcache_xfree (objfile->psymbol_cache);
2379 objfile->psymbol_cache = bcache_xmalloc ();
2380 bcache_xfree (objfile->macro_cache);
2381 objfile->macro_cache = bcache_xmalloc ();
2382 if (objfile->demangled_names_hash != NULL)
2383 {
2384 htab_delete (objfile->demangled_names_hash);
2385 objfile->demangled_names_hash = NULL;
2386 }
2387 obstack_free (&objfile->objfile_obstack, 0);
2388 objfile->sections = NULL;
2389 objfile->symtabs = NULL;
2390 objfile->psymtabs = NULL;
2391 objfile->free_psymtabs = NULL;
2392 objfile->cp_namespace_symtab = NULL;
2393 objfile->msymbols = NULL;
2394 objfile->deprecated_sym_private = NULL;
2395 objfile->minimal_symbol_count = 0;
2396 memset (&objfile->msymbol_hash, 0,
2397 sizeof (objfile->msymbol_hash));
2398 memset (&objfile->msymbol_demangled_hash, 0,
2399 sizeof (objfile->msymbol_demangled_hash));
2400 clear_objfile_data (objfile);
2401 if (objfile->sf != NULL)
2402 {
2403 (*objfile->sf->sym_finish) (objfile);
2404 }
2405
2406 /* We never make this a mapped file. */
2407 objfile->md = NULL;
2408 objfile->psymbol_cache = bcache_xmalloc ();
2409 objfile->macro_cache = bcache_xmalloc ();
2410 /* obstack_init also initializes the obstack so it is
2411 empty. We could use obstack_specify_allocation but
2412 gdb_obstack.h specifies the alloc/dealloc
2413 functions. */
2414 obstack_init (&objfile->objfile_obstack);
2415 if (build_objfile_section_table (objfile))
2416 {
2417 error (_("Can't find the file sections in `%s': %s"),
2418 objfile->name, bfd_errmsg (bfd_get_error ()));
2419 }
2420 terminate_minimal_symbol_table (objfile);
2421
2422 /* We use the same section offsets as from last time. I'm not
2423 sure whether that is always correct for shared libraries. */
2424 objfile->section_offsets = (struct section_offsets *)
2425 obstack_alloc (&objfile->objfile_obstack,
2426 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2427 memcpy (objfile->section_offsets, offsets,
2428 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2429 objfile->num_sections = num_offsets;
2430
2431 /* What the hell is sym_new_init for, anyway? The concept of
2432 distinguishing between the main file and additional files
2433 in this way seems rather dubious. */
2434 if (objfile == symfile_objfile)
2435 {
2436 (*objfile->sf->sym_new_init) (objfile);
2437 }
2438
2439 (*objfile->sf->sym_init) (objfile);
2440 clear_complaints (&symfile_complaints, 1, 1);
2441 /* The "mainline" parameter is a hideous hack; I think leaving it
2442 zero is OK since dbxread.c also does what it needs to do if
2443 objfile->global_psymbols.size is 0. */
2444 (*objfile->sf->sym_read) (objfile, 0);
2445 if (!have_partial_symbols () && !have_full_symbols ())
2446 {
2447 wrap_here ("");
2448 printf_unfiltered (_("(no debugging symbols found)\n"));
2449 wrap_here ("");
2450 }
2451 objfile->flags |= OBJF_SYMS;
2452
2453 /* We're done reading the symbol file; finish off complaints. */
2454 clear_complaints (&symfile_complaints, 0, 1);
2455
2456 /* Getting new symbols may change our opinion about what is
2457 frameless. */
2458
2459 reinit_frame_cache ();
2460
2461 /* Discard cleanups as symbol reading was successful. */
2462 discard_cleanups (old_cleanups);
2463
2464 /* If the mtime has changed between the time we set new_modtime
2465 and now, we *want* this to be out of date, so don't call stat
2466 again now. */
2467 objfile->mtime = new_modtime;
2468 reread_one = 1;
2469 reread_separate_symbols (objfile);
2470 }
2471 }
2472 }
2473
2474 if (reread_one)
2475 {
2476 clear_symtab_users ();
2477 /* At least one objfile has changed, so we can consider that
2478 the executable we're debugging has changed too. */
2479 observer_notify_executable_changed (NULL);
2480 }
2481
2482 }
2483
2484
2485 /* Handle separate debug info for OBJFILE, which has just been
2486 re-read:
2487 - If we had separate debug info before, but now we don't, get rid
2488 of the separated objfile.
2489 - If we didn't have separated debug info before, but now we do,
2490 read in the new separated debug info file.
2491 - If the debug link points to a different file, toss the old one
2492 and read the new one.
2493 This function does *not* handle the case where objfile is still
2494 using the same separate debug info file, but that file's timestamp
2495 has changed. That case should be handled by the loop in
2496 reread_symbols already. */
2497 static void
2498 reread_separate_symbols (struct objfile *objfile)
2499 {
2500 char *debug_file;
2501 unsigned long crc32;
2502
2503 /* Does the updated objfile's debug info live in a
2504 separate file? */
2505 debug_file = find_separate_debug_file (objfile);
2506
2507 if (objfile->separate_debug_objfile)
2508 {
2509 /* There are two cases where we need to get rid of
2510 the old separated debug info objfile:
2511 - if the new primary objfile doesn't have
2512 separated debug info, or
2513 - if the new primary objfile has separate debug
2514 info, but it's under a different filename.
2515
2516 If the old and new objfiles both have separate
2517 debug info, under the same filename, then we're
2518 okay --- if the separated file's contents have
2519 changed, we will have caught that when we
2520 visited it in this function's outermost
2521 loop. */
2522 if (! debug_file
2523 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2524 free_objfile (objfile->separate_debug_objfile);
2525 }
2526
2527 /* If the new objfile has separate debug info, and we
2528 haven't loaded it already, do so now. */
2529 if (debug_file
2530 && ! objfile->separate_debug_objfile)
2531 {
2532 /* Use the same section offset table as objfile itself.
2533 Preserve the flags from objfile that make sense. */
2534 objfile->separate_debug_objfile
2535 = (symbol_file_add_with_addrs_or_offsets
2536 (symfile_bfd_open (debug_file),
2537 info_verbose, /* from_tty: Don't override the default. */
2538 0, /* No addr table. */
2539 objfile->section_offsets, objfile->num_sections,
2540 0, /* Not mainline. See comments about this above. */
2541 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2542 | OBJF_USERLOADED)));
2543 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2544 = objfile;
2545 }
2546 if (debug_file)
2547 xfree (debug_file);
2548 }
2549
2550
2551 \f
2552
2553
2554 typedef struct
2555 {
2556 char *ext;
2557 enum language lang;
2558 }
2559 filename_language;
2560
2561 static filename_language *filename_language_table;
2562 static int fl_table_size, fl_table_next;
2563
2564 static void
2565 add_filename_language (char *ext, enum language lang)
2566 {
2567 if (fl_table_next >= fl_table_size)
2568 {
2569 fl_table_size += 10;
2570 filename_language_table =
2571 xrealloc (filename_language_table,
2572 fl_table_size * sizeof (*filename_language_table));
2573 }
2574
2575 filename_language_table[fl_table_next].ext = xstrdup (ext);
2576 filename_language_table[fl_table_next].lang = lang;
2577 fl_table_next++;
2578 }
2579
2580 static char *ext_args;
2581 static void
2582 show_ext_args (struct ui_file *file, int from_tty,
2583 struct cmd_list_element *c, const char *value)
2584 {
2585 fprintf_filtered (file, _("\
2586 Mapping between filename extension and source language is \"%s\".\n"),
2587 value);
2588 }
2589
2590 static void
2591 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2592 {
2593 int i;
2594 char *cp = ext_args;
2595 enum language lang;
2596
2597 /* First arg is filename extension, starting with '.' */
2598 if (*cp != '.')
2599 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2600
2601 /* Find end of first arg. */
2602 while (*cp && !isspace (*cp))
2603 cp++;
2604
2605 if (*cp == '\0')
2606 error (_("'%s': two arguments required -- filename extension and language"),
2607 ext_args);
2608
2609 /* Null-terminate first arg */
2610 *cp++ = '\0';
2611
2612 /* Find beginning of second arg, which should be a source language. */
2613 while (*cp && isspace (*cp))
2614 cp++;
2615
2616 if (*cp == '\0')
2617 error (_("'%s': two arguments required -- filename extension and language"),
2618 ext_args);
2619
2620 /* Lookup the language from among those we know. */
2621 lang = language_enum (cp);
2622
2623 /* Now lookup the filename extension: do we already know it? */
2624 for (i = 0; i < fl_table_next; i++)
2625 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2626 break;
2627
2628 if (i >= fl_table_next)
2629 {
2630 /* new file extension */
2631 add_filename_language (ext_args, lang);
2632 }
2633 else
2634 {
2635 /* redefining a previously known filename extension */
2636
2637 /* if (from_tty) */
2638 /* query ("Really make files of type %s '%s'?", */
2639 /* ext_args, language_str (lang)); */
2640
2641 xfree (filename_language_table[i].ext);
2642 filename_language_table[i].ext = xstrdup (ext_args);
2643 filename_language_table[i].lang = lang;
2644 }
2645 }
2646
2647 static void
2648 info_ext_lang_command (char *args, int from_tty)
2649 {
2650 int i;
2651
2652 printf_filtered (_("Filename extensions and the languages they represent:"));
2653 printf_filtered ("\n\n");
2654 for (i = 0; i < fl_table_next; i++)
2655 printf_filtered ("\t%s\t- %s\n",
2656 filename_language_table[i].ext,
2657 language_str (filename_language_table[i].lang));
2658 }
2659
2660 static void
2661 init_filename_language_table (void)
2662 {
2663 if (fl_table_size == 0) /* protect against repetition */
2664 {
2665 fl_table_size = 20;
2666 fl_table_next = 0;
2667 filename_language_table =
2668 xmalloc (fl_table_size * sizeof (*filename_language_table));
2669 add_filename_language (".c", language_c);
2670 add_filename_language (".C", language_cplus);
2671 add_filename_language (".cc", language_cplus);
2672 add_filename_language (".cp", language_cplus);
2673 add_filename_language (".cpp", language_cplus);
2674 add_filename_language (".cxx", language_cplus);
2675 add_filename_language (".c++", language_cplus);
2676 add_filename_language (".java", language_java);
2677 add_filename_language (".class", language_java);
2678 add_filename_language (".m", language_objc);
2679 add_filename_language (".f", language_fortran);
2680 add_filename_language (".F", language_fortran);
2681 add_filename_language (".s", language_asm);
2682 add_filename_language (".sx", language_asm);
2683 add_filename_language (".S", language_asm);
2684 add_filename_language (".pas", language_pascal);
2685 add_filename_language (".p", language_pascal);
2686 add_filename_language (".pp", language_pascal);
2687 add_filename_language (".adb", language_ada);
2688 add_filename_language (".ads", language_ada);
2689 add_filename_language (".a", language_ada);
2690 add_filename_language (".ada", language_ada);
2691 }
2692 }
2693
2694 enum language
2695 deduce_language_from_filename (char *filename)
2696 {
2697 int i;
2698 char *cp;
2699
2700 if (filename != NULL)
2701 if ((cp = strrchr (filename, '.')) != NULL)
2702 for (i = 0; i < fl_table_next; i++)
2703 if (strcmp (cp, filename_language_table[i].ext) == 0)
2704 return filename_language_table[i].lang;
2705
2706 return language_unknown;
2707 }
2708 \f
2709 /* allocate_symtab:
2710
2711 Allocate and partly initialize a new symbol table. Return a pointer
2712 to it. error() if no space.
2713
2714 Caller must set these fields:
2715 LINETABLE(symtab)
2716 symtab->blockvector
2717 symtab->dirname
2718 symtab->free_code
2719 symtab->free_ptr
2720 possibly free_named_symtabs (symtab->filename);
2721 */
2722
2723 struct symtab *
2724 allocate_symtab (char *filename, struct objfile *objfile)
2725 {
2726 struct symtab *symtab;
2727
2728 symtab = (struct symtab *)
2729 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2730 memset (symtab, 0, sizeof (*symtab));
2731 symtab->filename = obsavestring (filename, strlen (filename),
2732 &objfile->objfile_obstack);
2733 symtab->fullname = NULL;
2734 symtab->language = deduce_language_from_filename (filename);
2735 symtab->debugformat = obsavestring ("unknown", 7,
2736 &objfile->objfile_obstack);
2737
2738 /* Hook it to the objfile it comes from */
2739
2740 symtab->objfile = objfile;
2741 symtab->next = objfile->symtabs;
2742 objfile->symtabs = symtab;
2743
2744 return (symtab);
2745 }
2746
2747 struct partial_symtab *
2748 allocate_psymtab (char *filename, struct objfile *objfile)
2749 {
2750 struct partial_symtab *psymtab;
2751
2752 if (objfile->free_psymtabs)
2753 {
2754 psymtab = objfile->free_psymtabs;
2755 objfile->free_psymtabs = psymtab->next;
2756 }
2757 else
2758 psymtab = (struct partial_symtab *)
2759 obstack_alloc (&objfile->objfile_obstack,
2760 sizeof (struct partial_symtab));
2761
2762 memset (psymtab, 0, sizeof (struct partial_symtab));
2763 psymtab->filename = obsavestring (filename, strlen (filename),
2764 &objfile->objfile_obstack);
2765 psymtab->symtab = NULL;
2766
2767 /* Prepend it to the psymtab list for the objfile it belongs to.
2768 Psymtabs are searched in most recent inserted -> least recent
2769 inserted order. */
2770
2771 psymtab->objfile = objfile;
2772 psymtab->next = objfile->psymtabs;
2773 objfile->psymtabs = psymtab;
2774 #if 0
2775 {
2776 struct partial_symtab **prev_pst;
2777 psymtab->objfile = objfile;
2778 psymtab->next = NULL;
2779 prev_pst = &(objfile->psymtabs);
2780 while ((*prev_pst) != NULL)
2781 prev_pst = &((*prev_pst)->next);
2782 (*prev_pst) = psymtab;
2783 }
2784 #endif
2785
2786 return (psymtab);
2787 }
2788
2789 void
2790 discard_psymtab (struct partial_symtab *pst)
2791 {
2792 struct partial_symtab **prev_pst;
2793
2794 /* From dbxread.c:
2795 Empty psymtabs happen as a result of header files which don't
2796 have any symbols in them. There can be a lot of them. But this
2797 check is wrong, in that a psymtab with N_SLINE entries but
2798 nothing else is not empty, but we don't realize that. Fixing
2799 that without slowing things down might be tricky. */
2800
2801 /* First, snip it out of the psymtab chain */
2802
2803 prev_pst = &(pst->objfile->psymtabs);
2804 while ((*prev_pst) != pst)
2805 prev_pst = &((*prev_pst)->next);
2806 (*prev_pst) = pst->next;
2807
2808 /* Next, put it on a free list for recycling */
2809
2810 pst->next = pst->objfile->free_psymtabs;
2811 pst->objfile->free_psymtabs = pst;
2812 }
2813 \f
2814
2815 /* Reset all data structures in gdb which may contain references to symbol
2816 table data. */
2817
2818 void
2819 clear_symtab_users (void)
2820 {
2821 /* Someday, we should do better than this, by only blowing away
2822 the things that really need to be blown. */
2823
2824 /* Clear the "current" symtab first, because it is no longer valid.
2825 breakpoint_re_set may try to access the current symtab. */
2826 clear_current_source_symtab_and_line ();
2827
2828 clear_displays ();
2829 breakpoint_re_set ();
2830 set_default_breakpoint (0, 0, 0, 0);
2831 clear_pc_function_cache ();
2832 observer_notify_new_objfile (NULL);
2833
2834 /* Clear globals which might have pointed into a removed objfile.
2835 FIXME: It's not clear which of these are supposed to persist
2836 between expressions and which ought to be reset each time. */
2837 expression_context_block = NULL;
2838 innermost_block = NULL;
2839
2840 /* Varobj may refer to old symbols, perform a cleanup. */
2841 varobj_invalidate ();
2842
2843 }
2844
2845 static void
2846 clear_symtab_users_cleanup (void *ignore)
2847 {
2848 clear_symtab_users ();
2849 }
2850
2851 /* clear_symtab_users_once:
2852
2853 This function is run after symbol reading, or from a cleanup.
2854 If an old symbol table was obsoleted, the old symbol table
2855 has been blown away, but the other GDB data structures that may
2856 reference it have not yet been cleared or re-directed. (The old
2857 symtab was zapped, and the cleanup queued, in free_named_symtab()
2858 below.)
2859
2860 This function can be queued N times as a cleanup, or called
2861 directly; it will do all the work the first time, and then will be a
2862 no-op until the next time it is queued. This works by bumping a
2863 counter at queueing time. Much later when the cleanup is run, or at
2864 the end of symbol processing (in case the cleanup is discarded), if
2865 the queued count is greater than the "done-count", we do the work
2866 and set the done-count to the queued count. If the queued count is
2867 less than or equal to the done-count, we just ignore the call. This
2868 is needed because reading a single .o file will often replace many
2869 symtabs (one per .h file, for example), and we don't want to reset
2870 the breakpoints N times in the user's face.
2871
2872 The reason we both queue a cleanup, and call it directly after symbol
2873 reading, is because the cleanup protects us in case of errors, but is
2874 discarded if symbol reading is successful. */
2875
2876 #if 0
2877 /* FIXME: As free_named_symtabs is currently a big noop this function
2878 is no longer needed. */
2879 static void clear_symtab_users_once (void);
2880
2881 static int clear_symtab_users_queued;
2882 static int clear_symtab_users_done;
2883
2884 static void
2885 clear_symtab_users_once (void)
2886 {
2887 /* Enforce once-per-`do_cleanups'-semantics */
2888 if (clear_symtab_users_queued <= clear_symtab_users_done)
2889 return;
2890 clear_symtab_users_done = clear_symtab_users_queued;
2891
2892 clear_symtab_users ();
2893 }
2894 #endif
2895
2896 /* Delete the specified psymtab, and any others that reference it. */
2897
2898 static void
2899 cashier_psymtab (struct partial_symtab *pst)
2900 {
2901 struct partial_symtab *ps, *pprev = NULL;
2902 int i;
2903
2904 /* Find its previous psymtab in the chain */
2905 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2906 {
2907 if (ps == pst)
2908 break;
2909 pprev = ps;
2910 }
2911
2912 if (ps)
2913 {
2914 /* Unhook it from the chain. */
2915 if (ps == pst->objfile->psymtabs)
2916 pst->objfile->psymtabs = ps->next;
2917 else
2918 pprev->next = ps->next;
2919
2920 /* FIXME, we can't conveniently deallocate the entries in the
2921 partial_symbol lists (global_psymbols/static_psymbols) that
2922 this psymtab points to. These just take up space until all
2923 the psymtabs are reclaimed. Ditto the dependencies list and
2924 filename, which are all in the objfile_obstack. */
2925
2926 /* We need to cashier any psymtab that has this one as a dependency... */
2927 again:
2928 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2929 {
2930 for (i = 0; i < ps->number_of_dependencies; i++)
2931 {
2932 if (ps->dependencies[i] == pst)
2933 {
2934 cashier_psymtab (ps);
2935 goto again; /* Must restart, chain has been munged. */
2936 }
2937 }
2938 }
2939 }
2940 }
2941
2942 /* If a symtab or psymtab for filename NAME is found, free it along
2943 with any dependent breakpoints, displays, etc.
2944 Used when loading new versions of object modules with the "add-file"
2945 command. This is only called on the top-level symtab or psymtab's name;
2946 it is not called for subsidiary files such as .h files.
2947
2948 Return value is 1 if we blew away the environment, 0 if not.
2949 FIXME. The return value appears to never be used.
2950
2951 FIXME. I think this is not the best way to do this. We should
2952 work on being gentler to the environment while still cleaning up
2953 all stray pointers into the freed symtab. */
2954
2955 int
2956 free_named_symtabs (char *name)
2957 {
2958 #if 0
2959 /* FIXME: With the new method of each objfile having it's own
2960 psymtab list, this function needs serious rethinking. In particular,
2961 why was it ever necessary to toss psymtabs with specific compilation
2962 unit filenames, as opposed to all psymtabs from a particular symbol
2963 file? -- fnf
2964 Well, the answer is that some systems permit reloading of particular
2965 compilation units. We want to blow away any old info about these
2966 compilation units, regardless of which objfiles they arrived in. --gnu. */
2967
2968 struct symtab *s;
2969 struct symtab *prev;
2970 struct partial_symtab *ps;
2971 struct blockvector *bv;
2972 int blewit = 0;
2973
2974 /* We only wack things if the symbol-reload switch is set. */
2975 if (!symbol_reloading)
2976 return 0;
2977
2978 /* Some symbol formats have trouble providing file names... */
2979 if (name == 0 || *name == '\0')
2980 return 0;
2981
2982 /* Look for a psymtab with the specified name. */
2983
2984 again2:
2985 for (ps = partial_symtab_list; ps; ps = ps->next)
2986 {
2987 if (strcmp (name, ps->filename) == 0)
2988 {
2989 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2990 goto again2; /* Must restart, chain has been munged */
2991 }
2992 }
2993
2994 /* Look for a symtab with the specified name. */
2995
2996 for (s = symtab_list; s; s = s->next)
2997 {
2998 if (strcmp (name, s->filename) == 0)
2999 break;
3000 prev = s;
3001 }
3002
3003 if (s)
3004 {
3005 if (s == symtab_list)
3006 symtab_list = s->next;
3007 else
3008 prev->next = s->next;
3009
3010 /* For now, queue a delete for all breakpoints, displays, etc., whether
3011 or not they depend on the symtab being freed. This should be
3012 changed so that only those data structures affected are deleted. */
3013
3014 /* But don't delete anything if the symtab is empty.
3015 This test is necessary due to a bug in "dbxread.c" that
3016 causes empty symtabs to be created for N_SO symbols that
3017 contain the pathname of the object file. (This problem
3018 has been fixed in GDB 3.9x). */
3019
3020 bv = BLOCKVECTOR (s);
3021 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3022 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3023 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3024 {
3025 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3026 name);
3027 clear_symtab_users_queued++;
3028 make_cleanup (clear_symtab_users_once, 0);
3029 blewit = 1;
3030 }
3031 else
3032 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3033 name);
3034
3035 free_symtab (s);
3036 }
3037 else
3038 {
3039 /* It is still possible that some breakpoints will be affected
3040 even though no symtab was found, since the file might have
3041 been compiled without debugging, and hence not be associated
3042 with a symtab. In order to handle this correctly, we would need
3043 to keep a list of text address ranges for undebuggable files.
3044 For now, we do nothing, since this is a fairly obscure case. */
3045 ;
3046 }
3047
3048 /* FIXME, what about the minimal symbol table? */
3049 return blewit;
3050 #else
3051 return (0);
3052 #endif
3053 }
3054 \f
3055 /* Allocate and partially fill a partial symtab. It will be
3056 completely filled at the end of the symbol list.
3057
3058 FILENAME is the name of the symbol-file we are reading from. */
3059
3060 struct partial_symtab *
3061 start_psymtab_common (struct objfile *objfile,
3062 struct section_offsets *section_offsets, char *filename,
3063 CORE_ADDR textlow, struct partial_symbol **global_syms,
3064 struct partial_symbol **static_syms)
3065 {
3066 struct partial_symtab *psymtab;
3067
3068 psymtab = allocate_psymtab (filename, objfile);
3069 psymtab->section_offsets = section_offsets;
3070 psymtab->textlow = textlow;
3071 psymtab->texthigh = psymtab->textlow; /* default */
3072 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3073 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3074 return (psymtab);
3075 }
3076 \f
3077 /* Add a symbol with a long value to a psymtab.
3078 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3079 Return the partial symbol that has been added. */
3080
3081 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3082 symbol is so that callers can get access to the symbol's demangled
3083 name, which they don't have any cheap way to determine otherwise.
3084 (Currenly, dwarf2read.c is the only file who uses that information,
3085 though it's possible that other readers might in the future.)
3086 Elena wasn't thrilled about that, and I don't blame her, but we
3087 couldn't come up with a better way to get that information. If
3088 it's needed in other situations, we could consider breaking up
3089 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3090 cache. */
3091
3092 const struct partial_symbol *
3093 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3094 enum address_class class,
3095 struct psymbol_allocation_list *list, long val, /* Value as a long */
3096 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3097 enum language language, struct objfile *objfile)
3098 {
3099 struct partial_symbol *psym;
3100 char *buf = alloca (namelength + 1);
3101 /* psymbol is static so that there will be no uninitialized gaps in the
3102 structure which might contain random data, causing cache misses in
3103 bcache. */
3104 static struct partial_symbol psymbol;
3105
3106 /* Create local copy of the partial symbol */
3107 memcpy (buf, name, namelength);
3108 buf[namelength] = '\0';
3109 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3110 if (val != 0)
3111 {
3112 SYMBOL_VALUE (&psymbol) = val;
3113 }
3114 else
3115 {
3116 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3117 }
3118 SYMBOL_SECTION (&psymbol) = 0;
3119 SYMBOL_LANGUAGE (&psymbol) = language;
3120 PSYMBOL_DOMAIN (&psymbol) = domain;
3121 PSYMBOL_CLASS (&psymbol) = class;
3122
3123 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3124
3125 /* Stash the partial symbol away in the cache */
3126 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3127 objfile->psymbol_cache);
3128
3129 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3130 if (list->next >= list->list + list->size)
3131 {
3132 extend_psymbol_list (list, objfile);
3133 }
3134 *list->next++ = psym;
3135 OBJSTAT (objfile, n_psyms++);
3136
3137 return psym;
3138 }
3139
3140 /* Initialize storage for partial symbols. */
3141
3142 void
3143 init_psymbol_list (struct objfile *objfile, int total_symbols)
3144 {
3145 /* Free any previously allocated psymbol lists. */
3146
3147 if (objfile->global_psymbols.list)
3148 {
3149 xfree (objfile->global_psymbols.list);
3150 }
3151 if (objfile->static_psymbols.list)
3152 {
3153 xfree (objfile->static_psymbols.list);
3154 }
3155
3156 /* Current best guess is that approximately a twentieth
3157 of the total symbols (in a debugging file) are global or static
3158 oriented symbols */
3159
3160 objfile->global_psymbols.size = total_symbols / 10;
3161 objfile->static_psymbols.size = total_symbols / 10;
3162
3163 if (objfile->global_psymbols.size > 0)
3164 {
3165 objfile->global_psymbols.next =
3166 objfile->global_psymbols.list = (struct partial_symbol **)
3167 xmalloc ((objfile->global_psymbols.size
3168 * sizeof (struct partial_symbol *)));
3169 }
3170 if (objfile->static_psymbols.size > 0)
3171 {
3172 objfile->static_psymbols.next =
3173 objfile->static_psymbols.list = (struct partial_symbol **)
3174 xmalloc ((objfile->static_psymbols.size
3175 * sizeof (struct partial_symbol *)));
3176 }
3177 }
3178
3179 /* OVERLAYS:
3180 The following code implements an abstraction for debugging overlay sections.
3181
3182 The target model is as follows:
3183 1) The gnu linker will permit multiple sections to be mapped into the
3184 same VMA, each with its own unique LMA (or load address).
3185 2) It is assumed that some runtime mechanism exists for mapping the
3186 sections, one by one, from the load address into the VMA address.
3187 3) This code provides a mechanism for gdb to keep track of which
3188 sections should be considered to be mapped from the VMA to the LMA.
3189 This information is used for symbol lookup, and memory read/write.
3190 For instance, if a section has been mapped then its contents
3191 should be read from the VMA, otherwise from the LMA.
3192
3193 Two levels of debugger support for overlays are available. One is
3194 "manual", in which the debugger relies on the user to tell it which
3195 overlays are currently mapped. This level of support is
3196 implemented entirely in the core debugger, and the information about
3197 whether a section is mapped is kept in the objfile->obj_section table.
3198
3199 The second level of support is "automatic", and is only available if
3200 the target-specific code provides functionality to read the target's
3201 overlay mapping table, and translate its contents for the debugger
3202 (by updating the mapped state information in the obj_section tables).
3203
3204 The interface is as follows:
3205 User commands:
3206 overlay map <name> -- tell gdb to consider this section mapped
3207 overlay unmap <name> -- tell gdb to consider this section unmapped
3208 overlay list -- list the sections that GDB thinks are mapped
3209 overlay read-target -- get the target's state of what's mapped
3210 overlay off/manual/auto -- set overlay debugging state
3211 Functional interface:
3212 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3213 section, return that section.
3214 find_pc_overlay(pc): find any overlay section that contains
3215 the pc, either in its VMA or its LMA
3216 overlay_is_mapped(sect): true if overlay is marked as mapped
3217 section_is_overlay(sect): true if section's VMA != LMA
3218 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3219 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3220 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3221 overlay_mapped_address(...): map an address from section's LMA to VMA
3222 overlay_unmapped_address(...): map an address from section's VMA to LMA
3223 symbol_overlayed_address(...): Return a "current" address for symbol:
3224 either in VMA or LMA depending on whether
3225 the symbol's section is currently mapped
3226 */
3227
3228 /* Overlay debugging state: */
3229
3230 enum overlay_debugging_state overlay_debugging = ovly_off;
3231 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3232
3233 /* Function: section_is_overlay (SECTION)
3234 Returns true if SECTION has VMA not equal to LMA, ie.
3235 SECTION is loaded at an address different from where it will "run". */
3236
3237 int
3238 section_is_overlay (asection *section)
3239 {
3240 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3241
3242 if (overlay_debugging)
3243 if (section && section->lma != 0 &&
3244 section->vma != section->lma)
3245 return 1;
3246
3247 return 0;
3248 }
3249
3250 /* Function: overlay_invalidate_all (void)
3251 Invalidate the mapped state of all overlay sections (mark it as stale). */
3252
3253 static void
3254 overlay_invalidate_all (void)
3255 {
3256 struct objfile *objfile;
3257 struct obj_section *sect;
3258
3259 ALL_OBJSECTIONS (objfile, sect)
3260 if (section_is_overlay (sect->the_bfd_section))
3261 sect->ovly_mapped = -1;
3262 }
3263
3264 /* Function: overlay_is_mapped (SECTION)
3265 Returns true if section is an overlay, and is currently mapped.
3266 Private: public access is thru function section_is_mapped.
3267
3268 Access to the ovly_mapped flag is restricted to this function, so
3269 that we can do automatic update. If the global flag
3270 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3271 overlay_invalidate_all. If the mapped state of the particular
3272 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3273
3274 static int
3275 overlay_is_mapped (struct obj_section *osect)
3276 {
3277 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3278 return 0;
3279
3280 switch (overlay_debugging)
3281 {
3282 default:
3283 case ovly_off:
3284 return 0; /* overlay debugging off */
3285 case ovly_auto: /* overlay debugging automatic */
3286 /* Unles there is a gdbarch_overlay_update function,
3287 there's really nothing useful to do here (can't really go auto) */
3288 if (gdbarch_overlay_update_p (current_gdbarch))
3289 {
3290 if (overlay_cache_invalid)
3291 {
3292 overlay_invalidate_all ();
3293 overlay_cache_invalid = 0;
3294 }
3295 if (osect->ovly_mapped == -1)
3296 gdbarch_overlay_update (current_gdbarch, osect);
3297 }
3298 /* fall thru to manual case */
3299 case ovly_on: /* overlay debugging manual */
3300 return osect->ovly_mapped == 1;
3301 }
3302 }
3303
3304 /* Function: section_is_mapped
3305 Returns true if section is an overlay, and is currently mapped. */
3306
3307 int
3308 section_is_mapped (asection *section)
3309 {
3310 struct objfile *objfile;
3311 struct obj_section *osect;
3312
3313 if (overlay_debugging)
3314 if (section && section_is_overlay (section))
3315 ALL_OBJSECTIONS (objfile, osect)
3316 if (osect->the_bfd_section == section)
3317 return overlay_is_mapped (osect);
3318
3319 return 0;
3320 }
3321
3322 /* Function: pc_in_unmapped_range
3323 If PC falls into the lma range of SECTION, return true, else false. */
3324
3325 CORE_ADDR
3326 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3327 {
3328 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3329
3330 int size;
3331
3332 if (overlay_debugging)
3333 if (section && section_is_overlay (section))
3334 {
3335 size = bfd_get_section_size (section);
3336 if (section->lma <= pc && pc < section->lma + size)
3337 return 1;
3338 }
3339 return 0;
3340 }
3341
3342 /* Function: pc_in_mapped_range
3343 If PC falls into the vma range of SECTION, return true, else false. */
3344
3345 CORE_ADDR
3346 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3347 {
3348 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3349
3350 int size;
3351
3352 if (overlay_debugging)
3353 if (section && section_is_overlay (section))
3354 {
3355 size = bfd_get_section_size (section);
3356 if (section->vma <= pc && pc < section->vma + size)
3357 return 1;
3358 }
3359 return 0;
3360 }
3361
3362
3363 /* Return true if the mapped ranges of sections A and B overlap, false
3364 otherwise. */
3365 static int
3366 sections_overlap (asection *a, asection *b)
3367 {
3368 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3369
3370 CORE_ADDR a_start = a->vma;
3371 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3372 CORE_ADDR b_start = b->vma;
3373 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3374
3375 return (a_start < b_end && b_start < a_end);
3376 }
3377
3378 /* Function: overlay_unmapped_address (PC, SECTION)
3379 Returns the address corresponding to PC in the unmapped (load) range.
3380 May be the same as PC. */
3381
3382 CORE_ADDR
3383 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3384 {
3385 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3386
3387 if (overlay_debugging)
3388 if (section && section_is_overlay (section) &&
3389 pc_in_mapped_range (pc, section))
3390 return pc + section->lma - section->vma;
3391
3392 return pc;
3393 }
3394
3395 /* Function: overlay_mapped_address (PC, SECTION)
3396 Returns the address corresponding to PC in the mapped (runtime) range.
3397 May be the same as PC. */
3398
3399 CORE_ADDR
3400 overlay_mapped_address (CORE_ADDR pc, asection *section)
3401 {
3402 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3403
3404 if (overlay_debugging)
3405 if (section && section_is_overlay (section) &&
3406 pc_in_unmapped_range (pc, section))
3407 return pc + section->vma - section->lma;
3408
3409 return pc;
3410 }
3411
3412
3413 /* Function: symbol_overlayed_address
3414 Return one of two addresses (relative to the VMA or to the LMA),
3415 depending on whether the section is mapped or not. */
3416
3417 CORE_ADDR
3418 symbol_overlayed_address (CORE_ADDR address, asection *section)
3419 {
3420 if (overlay_debugging)
3421 {
3422 /* If the symbol has no section, just return its regular address. */
3423 if (section == 0)
3424 return address;
3425 /* If the symbol's section is not an overlay, just return its address */
3426 if (!section_is_overlay (section))
3427 return address;
3428 /* If the symbol's section is mapped, just return its address */
3429 if (section_is_mapped (section))
3430 return address;
3431 /*
3432 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3433 * then return its LOADED address rather than its vma address!!
3434 */
3435 return overlay_unmapped_address (address, section);
3436 }
3437 return address;
3438 }
3439
3440 /* Function: find_pc_overlay (PC)
3441 Return the best-match overlay section for PC:
3442 If PC matches a mapped overlay section's VMA, return that section.
3443 Else if PC matches an unmapped section's VMA, return that section.
3444 Else if PC matches an unmapped section's LMA, return that section. */
3445
3446 asection *
3447 find_pc_overlay (CORE_ADDR pc)
3448 {
3449 struct objfile *objfile;
3450 struct obj_section *osect, *best_match = NULL;
3451
3452 if (overlay_debugging)
3453 ALL_OBJSECTIONS (objfile, osect)
3454 if (section_is_overlay (osect->the_bfd_section))
3455 {
3456 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3457 {
3458 if (overlay_is_mapped (osect))
3459 return osect->the_bfd_section;
3460 else
3461 best_match = osect;
3462 }
3463 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3464 best_match = osect;
3465 }
3466 return best_match ? best_match->the_bfd_section : NULL;
3467 }
3468
3469 /* Function: find_pc_mapped_section (PC)
3470 If PC falls into the VMA address range of an overlay section that is
3471 currently marked as MAPPED, return that section. Else return NULL. */
3472
3473 asection *
3474 find_pc_mapped_section (CORE_ADDR pc)
3475 {
3476 struct objfile *objfile;
3477 struct obj_section *osect;
3478
3479 if (overlay_debugging)
3480 ALL_OBJSECTIONS (objfile, osect)
3481 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3482 overlay_is_mapped (osect))
3483 return osect->the_bfd_section;
3484
3485 return NULL;
3486 }
3487
3488 /* Function: list_overlays_command
3489 Print a list of mapped sections and their PC ranges */
3490
3491 void
3492 list_overlays_command (char *args, int from_tty)
3493 {
3494 int nmapped = 0;
3495 struct objfile *objfile;
3496 struct obj_section *osect;
3497
3498 if (overlay_debugging)
3499 ALL_OBJSECTIONS (objfile, osect)
3500 if (overlay_is_mapped (osect))
3501 {
3502 const char *name;
3503 bfd_vma lma, vma;
3504 int size;
3505
3506 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3507 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3508 size = bfd_get_section_size (osect->the_bfd_section);
3509 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3510
3511 printf_filtered ("Section %s, loaded at ", name);
3512 fputs_filtered (paddress (lma), gdb_stdout);
3513 puts_filtered (" - ");
3514 fputs_filtered (paddress (lma + size), gdb_stdout);
3515 printf_filtered (", mapped at ");
3516 fputs_filtered (paddress (vma), gdb_stdout);
3517 puts_filtered (" - ");
3518 fputs_filtered (paddress (vma + size), gdb_stdout);
3519 puts_filtered ("\n");
3520
3521 nmapped++;
3522 }
3523 if (nmapped == 0)
3524 printf_filtered (_("No sections are mapped.\n"));
3525 }
3526
3527 /* Function: map_overlay_command
3528 Mark the named section as mapped (ie. residing at its VMA address). */
3529
3530 void
3531 map_overlay_command (char *args, int from_tty)
3532 {
3533 struct objfile *objfile, *objfile2;
3534 struct obj_section *sec, *sec2;
3535 asection *bfdsec;
3536
3537 if (!overlay_debugging)
3538 error (_("\
3539 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3540 the 'overlay manual' command."));
3541
3542 if (args == 0 || *args == 0)
3543 error (_("Argument required: name of an overlay section"));
3544
3545 /* First, find a section matching the user supplied argument */
3546 ALL_OBJSECTIONS (objfile, sec)
3547 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3548 {
3549 /* Now, check to see if the section is an overlay. */
3550 bfdsec = sec->the_bfd_section;
3551 if (!section_is_overlay (bfdsec))
3552 continue; /* not an overlay section */
3553
3554 /* Mark the overlay as "mapped" */
3555 sec->ovly_mapped = 1;
3556
3557 /* Next, make a pass and unmap any sections that are
3558 overlapped by this new section: */
3559 ALL_OBJSECTIONS (objfile2, sec2)
3560 if (sec2->ovly_mapped
3561 && sec != sec2
3562 && sec->the_bfd_section != sec2->the_bfd_section
3563 && sections_overlap (sec->the_bfd_section,
3564 sec2->the_bfd_section))
3565 {
3566 if (info_verbose)
3567 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3568 bfd_section_name (objfile->obfd,
3569 sec2->the_bfd_section));
3570 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3571 }
3572 return;
3573 }
3574 error (_("No overlay section called %s"), args);
3575 }
3576
3577 /* Function: unmap_overlay_command
3578 Mark the overlay section as unmapped
3579 (ie. resident in its LMA address range, rather than the VMA range). */
3580
3581 void
3582 unmap_overlay_command (char *args, int from_tty)
3583 {
3584 struct objfile *objfile;
3585 struct obj_section *sec;
3586
3587 if (!overlay_debugging)
3588 error (_("\
3589 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3590 the 'overlay manual' command."));
3591
3592 if (args == 0 || *args == 0)
3593 error (_("Argument required: name of an overlay section"));
3594
3595 /* First, find a section matching the user supplied argument */
3596 ALL_OBJSECTIONS (objfile, sec)
3597 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3598 {
3599 if (!sec->ovly_mapped)
3600 error (_("Section %s is not mapped"), args);
3601 sec->ovly_mapped = 0;
3602 return;
3603 }
3604 error (_("No overlay section called %s"), args);
3605 }
3606
3607 /* Function: overlay_auto_command
3608 A utility command to turn on overlay debugging.
3609 Possibly this should be done via a set/show command. */
3610
3611 static void
3612 overlay_auto_command (char *args, int from_tty)
3613 {
3614 overlay_debugging = ovly_auto;
3615 enable_overlay_breakpoints ();
3616 if (info_verbose)
3617 printf_unfiltered (_("Automatic overlay debugging enabled."));
3618 }
3619
3620 /* Function: overlay_manual_command
3621 A utility command to turn on overlay debugging.
3622 Possibly this should be done via a set/show command. */
3623
3624 static void
3625 overlay_manual_command (char *args, int from_tty)
3626 {
3627 overlay_debugging = ovly_on;
3628 disable_overlay_breakpoints ();
3629 if (info_verbose)
3630 printf_unfiltered (_("Overlay debugging enabled."));
3631 }
3632
3633 /* Function: overlay_off_command
3634 A utility command to turn on overlay debugging.
3635 Possibly this should be done via a set/show command. */
3636
3637 static void
3638 overlay_off_command (char *args, int from_tty)
3639 {
3640 overlay_debugging = ovly_off;
3641 disable_overlay_breakpoints ();
3642 if (info_verbose)
3643 printf_unfiltered (_("Overlay debugging disabled."));
3644 }
3645
3646 static void
3647 overlay_load_command (char *args, int from_tty)
3648 {
3649 if (gdbarch_overlay_update_p (current_gdbarch))
3650 gdbarch_overlay_update (current_gdbarch, NULL);
3651 else
3652 error (_("This target does not know how to read its overlay state."));
3653 }
3654
3655 /* Function: overlay_command
3656 A place-holder for a mis-typed command */
3657
3658 /* Command list chain containing all defined "overlay" subcommands. */
3659 struct cmd_list_element *overlaylist;
3660
3661 static void
3662 overlay_command (char *args, int from_tty)
3663 {
3664 printf_unfiltered
3665 ("\"overlay\" must be followed by the name of an overlay command.\n");
3666 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3667 }
3668
3669
3670 /* Target Overlays for the "Simplest" overlay manager:
3671
3672 This is GDB's default target overlay layer. It works with the
3673 minimal overlay manager supplied as an example by Cygnus. The
3674 entry point is via a function pointer "gdbarch_overlay_update",
3675 so targets that use a different runtime overlay manager can
3676 substitute their own overlay_update function and take over the
3677 function pointer.
3678
3679 The overlay_update function pokes around in the target's data structures
3680 to see what overlays are mapped, and updates GDB's overlay mapping with
3681 this information.
3682
3683 In this simple implementation, the target data structures are as follows:
3684 unsigned _novlys; /# number of overlay sections #/
3685 unsigned _ovly_table[_novlys][4] = {
3686 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3687 {..., ..., ..., ...},
3688 }
3689 unsigned _novly_regions; /# number of overlay regions #/
3690 unsigned _ovly_region_table[_novly_regions][3] = {
3691 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3692 {..., ..., ...},
3693 }
3694 These functions will attempt to update GDB's mappedness state in the
3695 symbol section table, based on the target's mappedness state.
3696
3697 To do this, we keep a cached copy of the target's _ovly_table, and
3698 attempt to detect when the cached copy is invalidated. The main
3699 entry point is "simple_overlay_update(SECT), which looks up SECT in
3700 the cached table and re-reads only the entry for that section from
3701 the target (whenever possible).
3702 */
3703
3704 /* Cached, dynamically allocated copies of the target data structures: */
3705 static unsigned (*cache_ovly_table)[4] = 0;
3706 #if 0
3707 static unsigned (*cache_ovly_region_table)[3] = 0;
3708 #endif
3709 static unsigned cache_novlys = 0;
3710 #if 0
3711 static unsigned cache_novly_regions = 0;
3712 #endif
3713 static CORE_ADDR cache_ovly_table_base = 0;
3714 #if 0
3715 static CORE_ADDR cache_ovly_region_table_base = 0;
3716 #endif
3717 enum ovly_index
3718 {
3719 VMA, SIZE, LMA, MAPPED
3720 };
3721 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3722 / TARGET_CHAR_BIT)
3723
3724 /* Throw away the cached copy of _ovly_table */
3725 static void
3726 simple_free_overlay_table (void)
3727 {
3728 if (cache_ovly_table)
3729 xfree (cache_ovly_table);
3730 cache_novlys = 0;
3731 cache_ovly_table = NULL;
3732 cache_ovly_table_base = 0;
3733 }
3734
3735 #if 0
3736 /* Throw away the cached copy of _ovly_region_table */
3737 static void
3738 simple_free_overlay_region_table (void)
3739 {
3740 if (cache_ovly_region_table)
3741 xfree (cache_ovly_region_table);
3742 cache_novly_regions = 0;
3743 cache_ovly_region_table = NULL;
3744 cache_ovly_region_table_base = 0;
3745 }
3746 #endif
3747
3748 /* Read an array of ints from the target into a local buffer.
3749 Convert to host order. int LEN is number of ints */
3750 static void
3751 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3752 {
3753 /* FIXME (alloca): Not safe if array is very large. */
3754 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3755 int i;
3756
3757 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3758 for (i = 0; i < len; i++)
3759 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3760 TARGET_LONG_BYTES);
3761 }
3762
3763 /* Find and grab a copy of the target _ovly_table
3764 (and _novlys, which is needed for the table's size) */
3765 static int
3766 simple_read_overlay_table (void)
3767 {
3768 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3769
3770 simple_free_overlay_table ();
3771 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3772 if (! novlys_msym)
3773 {
3774 error (_("Error reading inferior's overlay table: "
3775 "couldn't find `_novlys' variable\n"
3776 "in inferior. Use `overlay manual' mode."));
3777 return 0;
3778 }
3779
3780 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3781 if (! ovly_table_msym)
3782 {
3783 error (_("Error reading inferior's overlay table: couldn't find "
3784 "`_ovly_table' array\n"
3785 "in inferior. Use `overlay manual' mode."));
3786 return 0;
3787 }
3788
3789 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3790 cache_ovly_table
3791 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3792 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3793 read_target_long_array (cache_ovly_table_base,
3794 (unsigned int *) cache_ovly_table,
3795 cache_novlys * 4);
3796
3797 return 1; /* SUCCESS */
3798 }
3799
3800 #if 0
3801 /* Find and grab a copy of the target _ovly_region_table
3802 (and _novly_regions, which is needed for the table's size) */
3803 static int
3804 simple_read_overlay_region_table (void)
3805 {
3806 struct minimal_symbol *msym;
3807
3808 simple_free_overlay_region_table ();
3809 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3810 if (msym != NULL)
3811 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3812 else
3813 return 0; /* failure */
3814 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3815 if (cache_ovly_region_table != NULL)
3816 {
3817 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3818 if (msym != NULL)
3819 {
3820 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3821 read_target_long_array (cache_ovly_region_table_base,
3822 (unsigned int *) cache_ovly_region_table,
3823 cache_novly_regions * 3);
3824 }
3825 else
3826 return 0; /* failure */
3827 }
3828 else
3829 return 0; /* failure */
3830 return 1; /* SUCCESS */
3831 }
3832 #endif
3833
3834 /* Function: simple_overlay_update_1
3835 A helper function for simple_overlay_update. Assuming a cached copy
3836 of _ovly_table exists, look through it to find an entry whose vma,
3837 lma and size match those of OSECT. Re-read the entry and make sure
3838 it still matches OSECT (else the table may no longer be valid).
3839 Set OSECT's mapped state to match the entry. Return: 1 for
3840 success, 0 for failure. */
3841
3842 static int
3843 simple_overlay_update_1 (struct obj_section *osect)
3844 {
3845 int i, size;
3846 bfd *obfd = osect->objfile->obfd;
3847 asection *bsect = osect->the_bfd_section;
3848
3849 size = bfd_get_section_size (osect->the_bfd_section);
3850 for (i = 0; i < cache_novlys; i++)
3851 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3852 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3853 /* && cache_ovly_table[i][SIZE] == size */ )
3854 {
3855 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3856 (unsigned int *) cache_ovly_table[i], 4);
3857 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3858 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3859 /* && cache_ovly_table[i][SIZE] == size */ )
3860 {
3861 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3862 return 1;
3863 }
3864 else /* Warning! Warning! Target's ovly table has changed! */
3865 return 0;
3866 }
3867 return 0;
3868 }
3869
3870 /* Function: simple_overlay_update
3871 If OSECT is NULL, then update all sections' mapped state
3872 (after re-reading the entire target _ovly_table).
3873 If OSECT is non-NULL, then try to find a matching entry in the
3874 cached ovly_table and update only OSECT's mapped state.
3875 If a cached entry can't be found or the cache isn't valid, then
3876 re-read the entire cache, and go ahead and update all sections. */
3877
3878 void
3879 simple_overlay_update (struct obj_section *osect)
3880 {
3881 struct objfile *objfile;
3882
3883 /* Were we given an osect to look up? NULL means do all of them. */
3884 if (osect)
3885 /* Have we got a cached copy of the target's overlay table? */
3886 if (cache_ovly_table != NULL)
3887 /* Does its cached location match what's currently in the symtab? */
3888 if (cache_ovly_table_base ==
3889 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3890 /* Then go ahead and try to look up this single section in the cache */
3891 if (simple_overlay_update_1 (osect))
3892 /* Found it! We're done. */
3893 return;
3894
3895 /* Cached table no good: need to read the entire table anew.
3896 Or else we want all the sections, in which case it's actually
3897 more efficient to read the whole table in one block anyway. */
3898
3899 if (! simple_read_overlay_table ())
3900 return;
3901
3902 /* Now may as well update all sections, even if only one was requested. */
3903 ALL_OBJSECTIONS (objfile, osect)
3904 if (section_is_overlay (osect->the_bfd_section))
3905 {
3906 int i, size;
3907 bfd *obfd = osect->objfile->obfd;
3908 asection *bsect = osect->the_bfd_section;
3909
3910 size = bfd_get_section_size (bsect);
3911 for (i = 0; i < cache_novlys; i++)
3912 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3913 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3914 /* && cache_ovly_table[i][SIZE] == size */ )
3915 { /* obj_section matches i'th entry in ovly_table */
3916 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3917 break; /* finished with inner for loop: break out */
3918 }
3919 }
3920 }
3921
3922 /* Set the output sections and output offsets for section SECTP in
3923 ABFD. The relocation code in BFD will read these offsets, so we
3924 need to be sure they're initialized. We map each section to itself,
3925 with no offset; this means that SECTP->vma will be honored. */
3926
3927 static void
3928 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3929 {
3930 sectp->output_section = sectp;
3931 sectp->output_offset = 0;
3932 }
3933
3934 /* Relocate the contents of a debug section SECTP in ABFD. The
3935 contents are stored in BUF if it is non-NULL, or returned in a
3936 malloc'd buffer otherwise.
3937
3938 For some platforms and debug info formats, shared libraries contain
3939 relocations against the debug sections (particularly for DWARF-2;
3940 one affected platform is PowerPC GNU/Linux, although it depends on
3941 the version of the linker in use). Also, ELF object files naturally
3942 have unresolved relocations for their debug sections. We need to apply
3943 the relocations in order to get the locations of symbols correct. */
3944
3945 bfd_byte *
3946 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3947 {
3948 /* We're only interested in debugging sections with relocation
3949 information. */
3950 if ((sectp->flags & SEC_RELOC) == 0)
3951 return NULL;
3952 if ((sectp->flags & SEC_DEBUGGING) == 0)
3953 return NULL;
3954
3955 /* We will handle section offsets properly elsewhere, so relocate as if
3956 all sections begin at 0. */
3957 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3958
3959 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3960 }
3961
3962 struct symfile_segment_data *
3963 get_symfile_segment_data (bfd *abfd)
3964 {
3965 struct sym_fns *sf = find_sym_fns (abfd);
3966
3967 if (sf == NULL)
3968 return NULL;
3969
3970 return sf->sym_segments (abfd);
3971 }
3972
3973 void
3974 free_symfile_segment_data (struct symfile_segment_data *data)
3975 {
3976 xfree (data->segment_bases);
3977 xfree (data->segment_sizes);
3978 xfree (data->segment_info);
3979 xfree (data);
3980 }
3981
3982
3983 /* Given:
3984 - DATA, containing segment addresses from the object file ABFD, and
3985 the mapping from ABFD's sections onto the segments that own them,
3986 and
3987 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3988 segment addresses reported by the target,
3989 store the appropriate offsets for each section in OFFSETS.
3990
3991 If there are fewer entries in SEGMENT_BASES than there are segments
3992 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3993
3994 If there are more, then verify that all the excess addresses are
3995 the same as the last legitimate one, and then ignore them. This
3996 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
3997 only a single segment. */
3998 int
3999 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4000 struct section_offsets *offsets,
4001 int num_segment_bases,
4002 const CORE_ADDR *segment_bases)
4003 {
4004 int i;
4005 asection *sect;
4006
4007 /* It doesn't make sense to call this function unless you have some
4008 segment base addresses. */
4009 gdb_assert (segment_bases > 0);
4010
4011 /* If we do not have segment mappings for the object file, we
4012 can not relocate it by segments. */
4013 gdb_assert (data != NULL);
4014 gdb_assert (data->num_segments > 0);
4015
4016 /* Check any extra SEGMENT_BASES entries. */
4017 if (num_segment_bases > data->num_segments)
4018 for (i = data->num_segments; i < num_segment_bases; i++)
4019 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4020 return 0;
4021
4022 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4023 {
4024 int which = data->segment_info[i];
4025
4026 gdb_assert (0 <= which && which <= data->num_segments);
4027
4028 /* Don't bother computing offsets for sections that aren't
4029 loaded as part of any segment. */
4030 if (! which)
4031 continue;
4032
4033 /* Use the last SEGMENT_BASES entry as the address of any extra
4034 segments mentioned in DATA->segment_info. */
4035 if (which > num_segment_bases)
4036 which = num_segment_bases;
4037
4038 offsets->offsets[i] = (segment_bases[which - 1]
4039 - data->segment_bases[which - 1]);
4040 }
4041
4042 return 1;
4043 }
4044
4045 static void
4046 symfile_find_segment_sections (struct objfile *objfile)
4047 {
4048 bfd *abfd = objfile->obfd;
4049 int i;
4050 asection *sect;
4051 struct symfile_segment_data *data;
4052
4053 data = get_symfile_segment_data (objfile->obfd);
4054 if (data == NULL)
4055 return;
4056
4057 if (data->num_segments != 1 && data->num_segments != 2)
4058 {
4059 free_symfile_segment_data (data);
4060 return;
4061 }
4062
4063 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4064 {
4065 CORE_ADDR vma;
4066 int which = data->segment_info[i];
4067
4068 if (which == 1)
4069 {
4070 if (objfile->sect_index_text == -1)
4071 objfile->sect_index_text = sect->index;
4072
4073 if (objfile->sect_index_rodata == -1)
4074 objfile->sect_index_rodata = sect->index;
4075 }
4076 else if (which == 2)
4077 {
4078 if (objfile->sect_index_data == -1)
4079 objfile->sect_index_data = sect->index;
4080
4081 if (objfile->sect_index_bss == -1)
4082 objfile->sect_index_bss = sect->index;
4083 }
4084 }
4085
4086 free_symfile_segment_data (data);
4087 }
4088
4089 void
4090 _initialize_symfile (void)
4091 {
4092 struct cmd_list_element *c;
4093
4094 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4095 Load symbol table from executable file FILE.\n\
4096 The `file' command can also load symbol tables, as well as setting the file\n\
4097 to execute."), &cmdlist);
4098 set_cmd_completer (c, filename_completer);
4099
4100 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4101 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4102 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4103 ADDR is the starting address of the file's text.\n\
4104 The optional arguments are section-name section-address pairs and\n\
4105 should be specified if the data and bss segments are not contiguous\n\
4106 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4107 &cmdlist);
4108 set_cmd_completer (c, filename_completer);
4109
4110 c = add_cmd ("add-shared-symbol-files", class_files,
4111 add_shared_symbol_files_command, _("\
4112 Load the symbols from shared objects in the dynamic linker's link map."),
4113 &cmdlist);
4114 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4115 &cmdlist);
4116
4117 c = add_cmd ("load", class_files, load_command, _("\
4118 Dynamically load FILE into the running program, and record its symbols\n\
4119 for access from GDB.\n\
4120 A load OFFSET may also be given."), &cmdlist);
4121 set_cmd_completer (c, filename_completer);
4122
4123 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4124 &symbol_reloading, _("\
4125 Set dynamic symbol table reloading multiple times in one run."), _("\
4126 Show dynamic symbol table reloading multiple times in one run."), NULL,
4127 NULL,
4128 show_symbol_reloading,
4129 &setlist, &showlist);
4130
4131 add_prefix_cmd ("overlay", class_support, overlay_command,
4132 _("Commands for debugging overlays."), &overlaylist,
4133 "overlay ", 0, &cmdlist);
4134
4135 add_com_alias ("ovly", "overlay", class_alias, 1);
4136 add_com_alias ("ov", "overlay", class_alias, 1);
4137
4138 add_cmd ("map-overlay", class_support, map_overlay_command,
4139 _("Assert that an overlay section is mapped."), &overlaylist);
4140
4141 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4142 _("Assert that an overlay section is unmapped."), &overlaylist);
4143
4144 add_cmd ("list-overlays", class_support, list_overlays_command,
4145 _("List mappings of overlay sections."), &overlaylist);
4146
4147 add_cmd ("manual", class_support, overlay_manual_command,
4148 _("Enable overlay debugging."), &overlaylist);
4149 add_cmd ("off", class_support, overlay_off_command,
4150 _("Disable overlay debugging."), &overlaylist);
4151 add_cmd ("auto", class_support, overlay_auto_command,
4152 _("Enable automatic overlay debugging."), &overlaylist);
4153 add_cmd ("load-target", class_support, overlay_load_command,
4154 _("Read the overlay mapping state from the target."), &overlaylist);
4155
4156 /* Filename extension to source language lookup table: */
4157 init_filename_language_table ();
4158 add_setshow_string_noescape_cmd ("extension-language", class_files,
4159 &ext_args, _("\
4160 Set mapping between filename extension and source language."), _("\
4161 Show mapping between filename extension and source language."), _("\
4162 Usage: set extension-language .foo bar"),
4163 set_ext_lang_command,
4164 show_ext_args,
4165 &setlist, &showlist);
4166
4167 add_info ("extensions", info_ext_lang_command,
4168 _("All filename extensions associated with a source language."));
4169
4170 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4171 &debug_file_directory, _("\
4172 Set the directory where separate debug symbols are searched for."), _("\
4173 Show the directory where separate debug symbols are searched for."), _("\
4174 Separate debug symbols are first searched for in the same\n\
4175 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4176 and lastly at the path of the directory of the binary with\n\
4177 the global debug-file directory prepended."),
4178 NULL,
4179 show_debug_file_directory,
4180 &setlist, &showlist);
4181 }
This page took 0.314385 seconds and 4 git commands to generate.