* objfiles.c (objfile_relocate): Use gdb_bfd_count_sections instead
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 }
164
165 /* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
167 struct cleanup *
168 increment_reading_symtab (void)
169 {
170 ++currently_reading_symtab;
171 return make_cleanup (decrement_reading_symtab, NULL);
172 }
173
174 /* Remember the lowest-addressed loadable section we've seen.
175 This function is called via bfd_map_over_sections.
176
177 In case of equal vmas, the section with the largest size becomes the
178 lowest-addressed loadable section.
179
180 If the vmas and sizes are equal, the last section is considered the
181 lowest-addressed loadable section. */
182
183 void
184 find_lowest_section (bfd *abfd, asection *sect, void *obj)
185 {
186 asection **lowest = (asection **) obj;
187
188 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
189 return;
190 if (!*lowest)
191 *lowest = sect; /* First loadable section */
192 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
193 *lowest = sect; /* A lower loadable section */
194 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
195 && (bfd_section_size (abfd, (*lowest))
196 <= bfd_section_size (abfd, sect)))
197 *lowest = sect;
198 }
199
200 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
201 new object's 'num_sections' field is set to 0; it must be updated
202 by the caller. */
203
204 struct section_addr_info *
205 alloc_section_addr_info (size_t num_sections)
206 {
207 struct section_addr_info *sap;
208 size_t size;
209
210 size = (sizeof (struct section_addr_info)
211 + sizeof (struct other_sections) * (num_sections - 1));
212 sap = (struct section_addr_info *) xmalloc (size);
213 memset (sap, 0, size);
214
215 return sap;
216 }
217
218 /* Build (allocate and populate) a section_addr_info struct from
219 an existing section table. */
220
221 extern struct section_addr_info *
222 build_section_addr_info_from_section_table (const struct target_section *start,
223 const struct target_section *end)
224 {
225 struct section_addr_info *sap;
226 const struct target_section *stp;
227 int oidx;
228
229 sap = alloc_section_addr_info (end - start);
230
231 for (stp = start, oidx = 0; stp != end; stp++)
232 {
233 if (bfd_get_section_flags (stp->bfd,
234 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
235 && oidx < end - start)
236 {
237 sap->other[oidx].addr = stp->addr;
238 sap->other[oidx].name
239 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
240 sap->other[oidx].sectindex
241 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
242 oidx++;
243 }
244 }
245
246 sap->num_sections = oidx;
247
248 return sap;
249 }
250
251 /* Create a section_addr_info from section offsets in ABFD. */
252
253 static struct section_addr_info *
254 build_section_addr_info_from_bfd (bfd *abfd)
255 {
256 struct section_addr_info *sap;
257 int i;
258 struct bfd_section *sec;
259
260 sap = alloc_section_addr_info (bfd_count_sections (abfd));
261 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
262 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
263 {
264 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
265 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
266 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
267 i++;
268 }
269
270 sap->num_sections = i;
271
272 return sap;
273 }
274
275 /* Create a section_addr_info from section offsets in OBJFILE. */
276
277 struct section_addr_info *
278 build_section_addr_info_from_objfile (const struct objfile *objfile)
279 {
280 struct section_addr_info *sap;
281 int i;
282
283 /* Before reread_symbols gets rewritten it is not safe to call:
284 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
285 */
286 sap = build_section_addr_info_from_bfd (objfile->obfd);
287 for (i = 0; i < sap->num_sections; i++)
288 {
289 int sectindex = sap->other[i].sectindex;
290
291 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
292 }
293 return sap;
294 }
295
296 /* Free all memory allocated by build_section_addr_info_from_section_table. */
297
298 extern void
299 free_section_addr_info (struct section_addr_info *sap)
300 {
301 int idx;
302
303 for (idx = 0; idx < sap->num_sections; idx++)
304 xfree (sap->other[idx].name);
305 xfree (sap);
306 }
307
308
309 /* Initialize OBJFILE's sect_index_* members. */
310 static void
311 init_objfile_sect_indices (struct objfile *objfile)
312 {
313 asection *sect;
314 int i;
315
316 sect = bfd_get_section_by_name (objfile->obfd, ".text");
317 if (sect)
318 objfile->sect_index_text = sect->index;
319
320 sect = bfd_get_section_by_name (objfile->obfd, ".data");
321 if (sect)
322 objfile->sect_index_data = sect->index;
323
324 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
325 if (sect)
326 objfile->sect_index_bss = sect->index;
327
328 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
329 if (sect)
330 objfile->sect_index_rodata = sect->index;
331
332 /* This is where things get really weird... We MUST have valid
333 indices for the various sect_index_* members or gdb will abort.
334 So if for example, there is no ".text" section, we have to
335 accomodate that. First, check for a file with the standard
336 one or two segments. */
337
338 symfile_find_segment_sections (objfile);
339
340 /* Except when explicitly adding symbol files at some address,
341 section_offsets contains nothing but zeros, so it doesn't matter
342 which slot in section_offsets the individual sect_index_* members
343 index into. So if they are all zero, it is safe to just point
344 all the currently uninitialized indices to the first slot. But
345 beware: if this is the main executable, it may be relocated
346 later, e.g. by the remote qOffsets packet, and then this will
347 be wrong! That's why we try segments first. */
348
349 for (i = 0; i < objfile->num_sections; i++)
350 {
351 if (ANOFFSET (objfile->section_offsets, i) != 0)
352 {
353 break;
354 }
355 }
356 if (i == objfile->num_sections)
357 {
358 if (objfile->sect_index_text == -1)
359 objfile->sect_index_text = 0;
360 if (objfile->sect_index_data == -1)
361 objfile->sect_index_data = 0;
362 if (objfile->sect_index_bss == -1)
363 objfile->sect_index_bss = 0;
364 if (objfile->sect_index_rodata == -1)
365 objfile->sect_index_rodata = 0;
366 }
367 }
368
369 /* The arguments to place_section. */
370
371 struct place_section_arg
372 {
373 struct section_offsets *offsets;
374 CORE_ADDR lowest;
375 };
376
377 /* Find a unique offset to use for loadable section SECT if
378 the user did not provide an offset. */
379
380 static void
381 place_section (bfd *abfd, asection *sect, void *obj)
382 {
383 struct place_section_arg *arg = obj;
384 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
385 int done;
386 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
387
388 /* We are only interested in allocated sections. */
389 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
390 return;
391
392 /* If the user specified an offset, honor it. */
393 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
394 return;
395
396 /* Otherwise, let's try to find a place for the section. */
397 start_addr = (arg->lowest + align - 1) & -align;
398
399 do {
400 asection *cur_sec;
401
402 done = 1;
403
404 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
405 {
406 int indx = cur_sec->index;
407
408 /* We don't need to compare against ourself. */
409 if (cur_sec == sect)
410 continue;
411
412 /* We can only conflict with allocated sections. */
413 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
414 continue;
415
416 /* If the section offset is 0, either the section has not been placed
417 yet, or it was the lowest section placed (in which case LOWEST
418 will be past its end). */
419 if (offsets[indx] == 0)
420 continue;
421
422 /* If this section would overlap us, then we must move up. */
423 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
424 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
425 {
426 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
427 start_addr = (start_addr + align - 1) & -align;
428 done = 0;
429 break;
430 }
431
432 /* Otherwise, we appear to be OK. So far. */
433 }
434 }
435 while (!done);
436
437 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
438 arg->lowest = start_addr + bfd_get_section_size (sect);
439 }
440
441 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
442 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
443 entries. */
444
445 void
446 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
447 int num_sections,
448 struct section_addr_info *addrs)
449 {
450 int i;
451
452 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
453
454 /* Now calculate offsets for section that were specified by the caller. */
455 for (i = 0; i < addrs->num_sections; i++)
456 {
457 struct other_sections *osp;
458
459 osp = &addrs->other[i];
460 if (osp->sectindex == -1)
461 continue;
462
463 /* Record all sections in offsets. */
464 /* The section_offsets in the objfile are here filled in using
465 the BFD index. */
466 section_offsets->offsets[osp->sectindex] = osp->addr;
467 }
468 }
469
470 /* Transform section name S for a name comparison. prelink can split section
471 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
472 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
473 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
474 (`.sbss') section has invalid (increased) virtual address. */
475
476 static const char *
477 addr_section_name (const char *s)
478 {
479 if (strcmp (s, ".dynbss") == 0)
480 return ".bss";
481 if (strcmp (s, ".sdynbss") == 0)
482 return ".sbss";
483
484 return s;
485 }
486
487 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
488 their (name, sectindex) pair. sectindex makes the sort by name stable. */
489
490 static int
491 addrs_section_compar (const void *ap, const void *bp)
492 {
493 const struct other_sections *a = *((struct other_sections **) ap);
494 const struct other_sections *b = *((struct other_sections **) bp);
495 int retval;
496
497 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
498 if (retval)
499 return retval;
500
501 return a->sectindex - b->sectindex;
502 }
503
504 /* Provide sorted array of pointers to sections of ADDRS. The array is
505 terminated by NULL. Caller is responsible to call xfree for it. */
506
507 static struct other_sections **
508 addrs_section_sort (struct section_addr_info *addrs)
509 {
510 struct other_sections **array;
511 int i;
512
513 /* `+ 1' for the NULL terminator. */
514 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
515 for (i = 0; i < addrs->num_sections; i++)
516 array[i] = &addrs->other[i];
517 array[i] = NULL;
518
519 qsort (array, i, sizeof (*array), addrs_section_compar);
520
521 return array;
522 }
523
524 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
525 also SECTINDEXes specific to ABFD there. This function can be used to
526 rebase ADDRS to start referencing different BFD than before. */
527
528 void
529 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
530 {
531 asection *lower_sect;
532 CORE_ADDR lower_offset;
533 int i;
534 struct cleanup *my_cleanup;
535 struct section_addr_info *abfd_addrs;
536 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
537 struct other_sections **addrs_to_abfd_addrs;
538
539 /* Find lowest loadable section to be used as starting point for
540 continguous sections. */
541 lower_sect = NULL;
542 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
543 if (lower_sect == NULL)
544 {
545 warning (_("no loadable sections found in added symbol-file %s"),
546 bfd_get_filename (abfd));
547 lower_offset = 0;
548 }
549 else
550 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
551
552 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
553 in ABFD. Section names are not unique - there can be multiple sections of
554 the same name. Also the sections of the same name do not have to be
555 adjacent to each other. Some sections may be present only in one of the
556 files. Even sections present in both files do not have to be in the same
557 order.
558
559 Use stable sort by name for the sections in both files. Then linearly
560 scan both lists matching as most of the entries as possible. */
561
562 addrs_sorted = addrs_section_sort (addrs);
563 my_cleanup = make_cleanup (xfree, addrs_sorted);
564
565 abfd_addrs = build_section_addr_info_from_bfd (abfd);
566 make_cleanup_free_section_addr_info (abfd_addrs);
567 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
568 make_cleanup (xfree, abfd_addrs_sorted);
569
570 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
571 ABFD_ADDRS_SORTED. */
572
573 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
574 * addrs->num_sections);
575 make_cleanup (xfree, addrs_to_abfd_addrs);
576
577 while (*addrs_sorted)
578 {
579 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
580
581 while (*abfd_addrs_sorted
582 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
583 sect_name) < 0)
584 abfd_addrs_sorted++;
585
586 if (*abfd_addrs_sorted
587 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
588 sect_name) == 0)
589 {
590 int index_in_addrs;
591
592 /* Make the found item directly addressable from ADDRS. */
593 index_in_addrs = *addrs_sorted - addrs->other;
594 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
595 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
596
597 /* Never use the same ABFD entry twice. */
598 abfd_addrs_sorted++;
599 }
600
601 addrs_sorted++;
602 }
603
604 /* Calculate offsets for the loadable sections.
605 FIXME! Sections must be in order of increasing loadable section
606 so that contiguous sections can use the lower-offset!!!
607
608 Adjust offsets if the segments are not contiguous.
609 If the section is contiguous, its offset should be set to
610 the offset of the highest loadable section lower than it
611 (the loadable section directly below it in memory).
612 this_offset = lower_offset = lower_addr - lower_orig_addr */
613
614 for (i = 0; i < addrs->num_sections; i++)
615 {
616 struct other_sections *sect = addrs_to_abfd_addrs[i];
617
618 if (sect)
619 {
620 /* This is the index used by BFD. */
621 addrs->other[i].sectindex = sect->sectindex;
622
623 if (addrs->other[i].addr != 0)
624 {
625 addrs->other[i].addr -= sect->addr;
626 lower_offset = addrs->other[i].addr;
627 }
628 else
629 addrs->other[i].addr = lower_offset;
630 }
631 else
632 {
633 /* addr_section_name transformation is not used for SECT_NAME. */
634 const char *sect_name = addrs->other[i].name;
635
636 /* This section does not exist in ABFD, which is normally
637 unexpected and we want to issue a warning.
638
639 However, the ELF prelinker does create a few sections which are
640 marked in the main executable as loadable (they are loaded in
641 memory from the DYNAMIC segment) and yet are not present in
642 separate debug info files. This is fine, and should not cause
643 a warning. Shared libraries contain just the section
644 ".gnu.liblist" but it is not marked as loadable there. There is
645 no other way to identify them than by their name as the sections
646 created by prelink have no special flags.
647
648 For the sections `.bss' and `.sbss' see addr_section_name. */
649
650 if (!(strcmp (sect_name, ".gnu.liblist") == 0
651 || strcmp (sect_name, ".gnu.conflict") == 0
652 || (strcmp (sect_name, ".bss") == 0
653 && i > 0
654 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
655 && addrs_to_abfd_addrs[i - 1] != NULL)
656 || (strcmp (sect_name, ".sbss") == 0
657 && i > 0
658 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
659 && addrs_to_abfd_addrs[i - 1] != NULL)))
660 warning (_("section %s not found in %s"), sect_name,
661 bfd_get_filename (abfd));
662
663 addrs->other[i].addr = 0;
664 addrs->other[i].sectindex = -1;
665 }
666 }
667
668 do_cleanups (my_cleanup);
669 }
670
671 /* Parse the user's idea of an offset for dynamic linking, into our idea
672 of how to represent it for fast symbol reading. This is the default
673 version of the sym_fns.sym_offsets function for symbol readers that
674 don't need to do anything special. It allocates a section_offsets table
675 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
676
677 void
678 default_symfile_offsets (struct objfile *objfile,
679 struct section_addr_info *addrs)
680 {
681 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
682 objfile->section_offsets = (struct section_offsets *)
683 obstack_alloc (&objfile->objfile_obstack,
684 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
685 relative_addr_info_to_section_offsets (objfile->section_offsets,
686 objfile->num_sections, addrs);
687
688 /* For relocatable files, all loadable sections will start at zero.
689 The zero is meaningless, so try to pick arbitrary addresses such
690 that no loadable sections overlap. This algorithm is quadratic,
691 but the number of sections in a single object file is generally
692 small. */
693 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
694 {
695 struct place_section_arg arg;
696 bfd *abfd = objfile->obfd;
697 asection *cur_sec;
698
699 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
700 /* We do not expect this to happen; just skip this step if the
701 relocatable file has a section with an assigned VMA. */
702 if (bfd_section_vma (abfd, cur_sec) != 0)
703 break;
704
705 if (cur_sec == NULL)
706 {
707 CORE_ADDR *offsets = objfile->section_offsets->offsets;
708
709 /* Pick non-overlapping offsets for sections the user did not
710 place explicitly. */
711 arg.offsets = objfile->section_offsets;
712 arg.lowest = 0;
713 bfd_map_over_sections (objfile->obfd, place_section, &arg);
714
715 /* Correctly filling in the section offsets is not quite
716 enough. Relocatable files have two properties that
717 (most) shared objects do not:
718
719 - Their debug information will contain relocations. Some
720 shared libraries do also, but many do not, so this can not
721 be assumed.
722
723 - If there are multiple code sections they will be loaded
724 at different relative addresses in memory than they are
725 in the objfile, since all sections in the file will start
726 at address zero.
727
728 Because GDB has very limited ability to map from an
729 address in debug info to the correct code section,
730 it relies on adding SECT_OFF_TEXT to things which might be
731 code. If we clear all the section offsets, and set the
732 section VMAs instead, then symfile_relocate_debug_section
733 will return meaningful debug information pointing at the
734 correct sections.
735
736 GDB has too many different data structures for section
737 addresses - a bfd, objfile, and so_list all have section
738 tables, as does exec_ops. Some of these could probably
739 be eliminated. */
740
741 for (cur_sec = abfd->sections; cur_sec != NULL;
742 cur_sec = cur_sec->next)
743 {
744 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
745 continue;
746
747 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
748 exec_set_section_address (bfd_get_filename (abfd),
749 cur_sec->index,
750 offsets[cur_sec->index]);
751 offsets[cur_sec->index] = 0;
752 }
753 }
754 }
755
756 /* Remember the bfd indexes for the .text, .data, .bss and
757 .rodata sections. */
758 init_objfile_sect_indices (objfile);
759 }
760
761
762 /* Divide the file into segments, which are individual relocatable units.
763 This is the default version of the sym_fns.sym_segments function for
764 symbol readers that do not have an explicit representation of segments.
765 It assumes that object files do not have segments, and fully linked
766 files have a single segment. */
767
768 struct symfile_segment_data *
769 default_symfile_segments (bfd *abfd)
770 {
771 int num_sections, i;
772 asection *sect;
773 struct symfile_segment_data *data;
774 CORE_ADDR low, high;
775
776 /* Relocatable files contain enough information to position each
777 loadable section independently; they should not be relocated
778 in segments. */
779 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
780 return NULL;
781
782 /* Make sure there is at least one loadable section in the file. */
783 for (sect = abfd->sections; sect != NULL; sect = sect->next)
784 {
785 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
786 continue;
787
788 break;
789 }
790 if (sect == NULL)
791 return NULL;
792
793 low = bfd_get_section_vma (abfd, sect);
794 high = low + bfd_get_section_size (sect);
795
796 data = XZALLOC (struct symfile_segment_data);
797 data->num_segments = 1;
798 data->segment_bases = XCALLOC (1, CORE_ADDR);
799 data->segment_sizes = XCALLOC (1, CORE_ADDR);
800
801 num_sections = bfd_count_sections (abfd);
802 data->segment_info = XCALLOC (num_sections, int);
803
804 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
805 {
806 CORE_ADDR vma;
807
808 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
809 continue;
810
811 vma = bfd_get_section_vma (abfd, sect);
812 if (vma < low)
813 low = vma;
814 if (vma + bfd_get_section_size (sect) > high)
815 high = vma + bfd_get_section_size (sect);
816
817 data->segment_info[i] = 1;
818 }
819
820 data->segment_bases[0] = low;
821 data->segment_sizes[0] = high - low;
822
823 return data;
824 }
825
826 /* This is a convenience function to call sym_read for OBJFILE and
827 possibly force the partial symbols to be read. */
828
829 static void
830 read_symbols (struct objfile *objfile, int add_flags)
831 {
832 (*objfile->sf->sym_read) (objfile, add_flags);
833
834 /* find_separate_debug_file_in_section should be called only if there is
835 single binary with no existing separate debug info file. */
836 if (!objfile_has_partial_symbols (objfile)
837 && objfile->separate_debug_objfile == NULL
838 && objfile->separate_debug_objfile_backlink == NULL)
839 {
840 bfd *abfd = find_separate_debug_file_in_section (objfile);
841 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
842
843 if (abfd != NULL)
844 symbol_file_add_separate (abfd, add_flags, objfile);
845
846 do_cleanups (cleanup);
847 }
848 if ((add_flags & SYMFILE_NO_READ) == 0)
849 require_partial_symbols (objfile, 0);
850 }
851
852 /* Initialize entry point information for this objfile. */
853
854 static void
855 init_entry_point_info (struct objfile *objfile)
856 {
857 /* Save startup file's range of PC addresses to help blockframe.c
858 decide where the bottom of the stack is. */
859
860 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
861 {
862 /* Executable file -- record its entry point so we'll recognize
863 the startup file because it contains the entry point. */
864 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
865 objfile->ei.entry_point_p = 1;
866 }
867 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
868 && bfd_get_start_address (objfile->obfd) != 0)
869 {
870 /* Some shared libraries may have entry points set and be
871 runnable. There's no clear way to indicate this, so just check
872 for values other than zero. */
873 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
874 objfile->ei.entry_point_p = 1;
875 }
876 else
877 {
878 /* Examination of non-executable.o files. Short-circuit this stuff. */
879 objfile->ei.entry_point_p = 0;
880 }
881
882 if (objfile->ei.entry_point_p)
883 {
884 CORE_ADDR entry_point = objfile->ei.entry_point;
885
886 /* Make certain that the address points at real code, and not a
887 function descriptor. */
888 entry_point
889 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
890 entry_point,
891 &current_target);
892
893 /* Remove any ISA markers, so that this matches entries in the
894 symbol table. */
895 objfile->ei.entry_point
896 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
897 }
898 }
899
900 /* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
903 This function does not set the OBJFILE's entry-point info.
904
905 OBJFILE is where the symbols are to be read from.
906
907 ADDRS is the list of section load addresses. If the user has given
908 an 'add-symbol-file' command, then this is the list of offsets and
909 addresses he or she provided as arguments to the command; or, if
910 we're handling a shared library, these are the actual addresses the
911 sections are loaded at, according to the inferior's dynamic linker
912 (as gleaned by GDB's shared library code). We convert each address
913 into an offset from the section VMA's as it appears in the object
914 file, and then call the file's sym_offsets function to convert this
915 into a format-specific offset table --- a `struct section_offsets'.
916 If ADDRS is non-zero, OFFSETS must be zero.
917
918 OFFSETS is a table of section offsets already in the right
919 format-specific representation. NUM_OFFSETS is the number of
920 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
921 assume this is the proper table the call to sym_offsets described
922 above would produce. Instead of calling sym_offsets, we just dump
923 it right into objfile->section_offsets. (When we're re-reading
924 symbols from an objfile, we don't have the original load address
925 list any more; all we have is the section offset table.) If
926 OFFSETS is non-zero, ADDRS must be zero.
927
928 ADD_FLAGS encodes verbosity level, whether this is main symbol or
929 an extra symbol file such as dynamically loaded code, and wether
930 breakpoint reset should be deferred. */
931
932 static void
933 syms_from_objfile_1 (struct objfile *objfile,
934 struct section_addr_info *addrs,
935 struct section_offsets *offsets,
936 int num_offsets,
937 int add_flags)
938 {
939 struct section_addr_info *local_addr = NULL;
940 struct cleanup *old_chain;
941 const int mainline = add_flags & SYMFILE_MAINLINE;
942
943 gdb_assert (! (addrs && offsets));
944
945 objfile->sf = find_sym_fns (objfile->obfd);
946
947 if (objfile->sf == NULL)
948 {
949 /* No symbols to load, but we still need to make sure
950 that the section_offsets table is allocated. */
951 int num_sections = gdb_bfd_count_sections (objfile->obfd);
952 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
953
954 objfile->num_sections = num_sections;
955 objfile->section_offsets
956 = obstack_alloc (&objfile->objfile_obstack, size);
957 memset (objfile->section_offsets, 0, size);
958 return;
959 }
960
961 /* Make sure that partially constructed symbol tables will be cleaned up
962 if an error occurs during symbol reading. */
963 old_chain = make_cleanup_free_objfile (objfile);
964
965 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
966 list. We now establish the convention that an addr of zero means
967 no load address was specified. */
968 if (! addrs && ! offsets)
969 {
970 local_addr = alloc_section_addr_info (1);
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
977 if (mainline)
978 {
979 /* We will modify the main symbol table, make sure that all its users
980 will be cleaned up if an error occurs during symbol reading. */
981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
988 gdb_assert (symfile_objfile == NULL);
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
995
996 (*objfile->sf->sym_new_init) (objfile);
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
1001 and assume that <addr> is where that got loaded.
1002
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
1005 if (addrs && addrs->num_sections > 0)
1006 addr_info_make_relative (addrs, objfile->obfd);
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
1010 initial symbol reading for this file. */
1011
1012 (*objfile->sf->sym_init) (objfile);
1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1014
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
1025 obstack_alloc (&objfile->objfile_obstack, size));
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
1030
1031 read_symbols (objfile, add_flags);
1032
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
1036 xfree (local_addr);
1037 }
1038
1039 /* Same as syms_from_objfile_1, but also initializes the objfile
1040 entry-point info. */
1041
1042 void
1043 syms_from_objfile (struct objfile *objfile,
1044 struct section_addr_info *addrs,
1045 struct section_offsets *offsets,
1046 int num_offsets,
1047 int add_flags)
1048 {
1049 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1050 init_entry_point_info (objfile);
1051 }
1052
1053 /* Perform required actions after either reading in the initial
1054 symbols for a new objfile, or mapping in the symbols from a reusable
1055 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1056
1057 void
1058 new_symfile_objfile (struct objfile *objfile, int add_flags)
1059 {
1060 /* If this is the main symbol file we have to clean up all users of the
1061 old main symbol file. Otherwise it is sufficient to fixup all the
1062 breakpoints that may have been redefined by this symbol file. */
1063 if (add_flags & SYMFILE_MAINLINE)
1064 {
1065 /* OK, make it the "real" symbol file. */
1066 symfile_objfile = objfile;
1067
1068 clear_symtab_users (add_flags);
1069 }
1070 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1071 {
1072 breakpoint_re_set ();
1073 }
1074
1075 /* We're done reading the symbol file; finish off complaints. */
1076 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1077 }
1078
1079 /* Process a symbol file, as either the main file or as a dynamically
1080 loaded file.
1081
1082 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1083 A new reference is acquired by this function.
1084
1085 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1086 extra, such as dynamically loaded code, and what to do with breakpoins.
1087
1088 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1089 syms_from_objfile, above.
1090 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1091
1092 PARENT is the original objfile if ABFD is a separate debug info file.
1093 Otherwise PARENT is NULL.
1094
1095 Upon success, returns a pointer to the objfile that was added.
1096 Upon failure, jumps back to command level (never returns). */
1097
1098 static struct objfile *
1099 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1100 int add_flags,
1101 struct section_addr_info *addrs,
1102 struct section_offsets *offsets,
1103 int num_offsets,
1104 int flags, struct objfile *parent)
1105 {
1106 struct objfile *objfile;
1107 const char *name = bfd_get_filename (abfd);
1108 const int from_tty = add_flags & SYMFILE_VERBOSE;
1109 const int mainline = add_flags & SYMFILE_MAINLINE;
1110 const int should_print = ((from_tty || info_verbose)
1111 && (readnow_symbol_files
1112 || (add_flags & SYMFILE_NO_READ) == 0));
1113
1114 if (readnow_symbol_files)
1115 {
1116 flags |= OBJF_READNOW;
1117 add_flags &= ~SYMFILE_NO_READ;
1118 }
1119
1120 /* Give user a chance to burp if we'd be
1121 interactively wiping out any existing symbols. */
1122
1123 if ((have_full_symbols () || have_partial_symbols ())
1124 && mainline
1125 && from_tty
1126 && !query (_("Load new symbol table from \"%s\"? "), name))
1127 error (_("Not confirmed."));
1128
1129 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1130
1131 if (parent)
1132 add_separate_debug_objfile (objfile, parent);
1133
1134 /* We either created a new mapped symbol table, mapped an existing
1135 symbol table file which has not had initial symbol reading
1136 performed, or need to read an unmapped symbol table. */
1137 if (should_print)
1138 {
1139 if (deprecated_pre_add_symbol_hook)
1140 deprecated_pre_add_symbol_hook (name);
1141 else
1142 {
1143 printf_unfiltered (_("Reading symbols from %s..."), name);
1144 wrap_here ("");
1145 gdb_flush (gdb_stdout);
1146 }
1147 }
1148 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1149 add_flags);
1150
1151 /* We now have at least a partial symbol table. Check to see if the
1152 user requested that all symbols be read on initial access via either
1153 the gdb startup command line or on a per symbol file basis. Expand
1154 all partial symbol tables for this objfile if so. */
1155
1156 if ((flags & OBJF_READNOW))
1157 {
1158 if (should_print)
1159 {
1160 printf_unfiltered (_("expanding to full symbols..."));
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164
1165 if (objfile->sf)
1166 objfile->sf->qf->expand_all_symtabs (objfile);
1167 }
1168
1169 if (should_print && !objfile_has_symbols (objfile))
1170 {
1171 wrap_here ("");
1172 printf_unfiltered (_("(no debugging symbols found)..."));
1173 wrap_here ("");
1174 }
1175
1176 if (should_print)
1177 {
1178 if (deprecated_post_add_symbol_hook)
1179 deprecated_post_add_symbol_hook ();
1180 else
1181 printf_unfiltered (_("done.\n"));
1182 }
1183
1184 /* We print some messages regardless of whether 'from_tty ||
1185 info_verbose' is true, so make sure they go out at the right
1186 time. */
1187 gdb_flush (gdb_stdout);
1188
1189 if (objfile->sf == NULL)
1190 {
1191 observer_notify_new_objfile (objfile);
1192 return objfile; /* No symbols. */
1193 }
1194
1195 new_symfile_objfile (objfile, add_flags);
1196
1197 observer_notify_new_objfile (objfile);
1198
1199 bfd_cache_close_all ();
1200 return (objfile);
1201 }
1202
1203 /* Add BFD as a separate debug file for OBJFILE. */
1204
1205 void
1206 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1207 {
1208 struct objfile *new_objfile;
1209 struct section_addr_info *sap;
1210 struct cleanup *my_cleanup;
1211
1212 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1213 because sections of BFD may not match sections of OBJFILE and because
1214 vma may have been modified by tools such as prelink. */
1215 sap = build_section_addr_info_from_objfile (objfile);
1216 my_cleanup = make_cleanup_free_section_addr_info (sap);
1217
1218 new_objfile = symbol_file_add_with_addrs_or_offsets
1219 (bfd, symfile_flags,
1220 sap, NULL, 0,
1221 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1222 | OBJF_USERLOADED),
1223 objfile);
1224
1225 do_cleanups (my_cleanup);
1226 }
1227
1228 /* Process the symbol file ABFD, as either the main file or as a
1229 dynamically loaded file.
1230
1231 See symbol_file_add_with_addrs_or_offsets's comments for
1232 details. */
1233 struct objfile *
1234 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1235 struct section_addr_info *addrs,
1236 int flags, struct objfile *parent)
1237 {
1238 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1239 flags, parent);
1240 }
1241
1242
1243 /* Process a symbol file, as either the main file or as a dynamically
1244 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1245 for details. */
1246 struct objfile *
1247 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1248 int flags)
1249 {
1250 bfd *bfd = symfile_bfd_open (name);
1251 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1252 struct objfile *objf;
1253
1254 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1255 do_cleanups (cleanup);
1256 return objf;
1257 }
1258
1259
1260 /* Call symbol_file_add() with default values and update whatever is
1261 affected by the loading of a new main().
1262 Used when the file is supplied in the gdb command line
1263 and by some targets with special loading requirements.
1264 The auxiliary function, symbol_file_add_main_1(), has the flags
1265 argument for the switches that can only be specified in the symbol_file
1266 command itself. */
1267
1268 void
1269 symbol_file_add_main (char *args, int from_tty)
1270 {
1271 symbol_file_add_main_1 (args, from_tty, 0);
1272 }
1273
1274 static void
1275 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1276 {
1277 const int add_flags = (current_inferior ()->symfile_flags
1278 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1279
1280 symbol_file_add (args, add_flags, NULL, flags);
1281
1282 /* Getting new symbols may change our opinion about
1283 what is frameless. */
1284 reinit_frame_cache ();
1285
1286 if ((flags & SYMFILE_NO_READ) == 0)
1287 set_initial_language ();
1288 }
1289
1290 void
1291 symbol_file_clear (int from_tty)
1292 {
1293 if ((have_full_symbols () || have_partial_symbols ())
1294 && from_tty
1295 && (symfile_objfile
1296 ? !query (_("Discard symbol table from `%s'? "),
1297 symfile_objfile->name)
1298 : !query (_("Discard symbol table? "))))
1299 error (_("Not confirmed."));
1300
1301 /* solib descriptors may have handles to objfiles. Wipe them before their
1302 objfiles get stale by free_all_objfiles. */
1303 no_shared_libraries (NULL, from_tty);
1304
1305 free_all_objfiles ();
1306
1307 gdb_assert (symfile_objfile == NULL);
1308 if (from_tty)
1309 printf_unfiltered (_("No symbol file now.\n"));
1310 }
1311
1312 static int
1313 separate_debug_file_exists (const char *name, unsigned long crc,
1314 struct objfile *parent_objfile)
1315 {
1316 unsigned long file_crc;
1317 int file_crc_p;
1318 bfd *abfd;
1319 struct stat parent_stat, abfd_stat;
1320 int verified_as_different;
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1326 the separate debug infos with the same basename can exist. */
1327
1328 if (filename_cmp (name, parent_objfile->name) == 0)
1329 return 0;
1330
1331 abfd = gdb_bfd_open_maybe_remote (name);
1332
1333 if (!abfd)
1334 return 0;
1335
1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && abfd_stat.st_ino != 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1349 {
1350 if (abfd_stat.st_dev == parent_stat.st_dev
1351 && abfd_stat.st_ino == parent_stat.st_ino)
1352 {
1353 gdb_bfd_unref (abfd);
1354 return 0;
1355 }
1356 verified_as_different = 1;
1357 }
1358 else
1359 verified_as_different = 0;
1360
1361 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1362
1363 gdb_bfd_unref (abfd);
1364
1365 if (!file_crc_p)
1366 return 0;
1367
1368 if (crc != file_crc)
1369 {
1370 unsigned long parent_crc;
1371
1372 /* If one (or both) the files are accessed for example the via "remote:"
1373 gdbserver way it does not support the bfd_stat operation. Verify
1374 whether those two files are not the same manually. */
1375
1376 if (!verified_as_different)
1377 {
1378 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1379 return 0;
1380 }
1381
1382 if (verified_as_different || parent_crc != file_crc)
1383 warning (_("the debug information found in \"%s\""
1384 " does not match \"%s\" (CRC mismatch).\n"),
1385 name, parent_objfile->name);
1386
1387 return 0;
1388 }
1389
1390 return 1;
1391 }
1392
1393 char *debug_file_directory = NULL;
1394 static void
1395 show_debug_file_directory (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c, const char *value)
1397 {
1398 fprintf_filtered (file,
1399 _("The directory where separate debug "
1400 "symbols are searched for is \"%s\".\n"),
1401 value);
1402 }
1403
1404 #if ! defined (DEBUG_SUBDIRECTORY)
1405 #define DEBUG_SUBDIRECTORY ".debug"
1406 #endif
1407
1408 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1409 where the original file resides (may not be the same as
1410 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1411 looking for. CANON_DIR is the "realpath" form of DIR.
1412 DIR must contain a trailing '/'.
1413 Returns the path of the file with separate debug info, of NULL. */
1414
1415 static char *
1416 find_separate_debug_file (const char *dir,
1417 const char *canon_dir,
1418 const char *debuglink,
1419 unsigned long crc32, struct objfile *objfile)
1420 {
1421 char *debugdir;
1422 char *debugfile;
1423 int i;
1424 VEC (char_ptr) *debugdir_vec;
1425 struct cleanup *back_to;
1426 int ix;
1427
1428 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1429 i = strlen (dir);
1430 if (canon_dir != NULL && strlen (canon_dir) > i)
1431 i = strlen (canon_dir);
1432
1433 debugfile = xmalloc (strlen (debug_file_directory) + 1
1434 + i
1435 + strlen (DEBUG_SUBDIRECTORY)
1436 + strlen ("/")
1437 + strlen (debuglink)
1438 + 1);
1439
1440 /* First try in the same directory as the original file. */
1441 strcpy (debugfile, dir);
1442 strcat (debugfile, debuglink);
1443
1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
1445 return debugfile;
1446
1447 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1448 strcpy (debugfile, dir);
1449 strcat (debugfile, DEBUG_SUBDIRECTORY);
1450 strcat (debugfile, "/");
1451 strcat (debugfile, debuglink);
1452
1453 if (separate_debug_file_exists (debugfile, crc32, objfile))
1454 return debugfile;
1455
1456 /* Then try in the global debugfile directories.
1457
1458 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1459 cause "/..." lookups. */
1460
1461 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1462 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1463
1464 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1465 {
1466 strcpy (debugfile, debugdir);
1467 strcat (debugfile, "/");
1468 strcat (debugfile, dir);
1469 strcat (debugfile, debuglink);
1470
1471 if (separate_debug_file_exists (debugfile, crc32, objfile))
1472 return debugfile;
1473
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1476 if (canon_dir != NULL
1477 && filename_ncmp (canon_dir, gdb_sysroot,
1478 strlen (gdb_sysroot)) == 0
1479 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1480 {
1481 strcpy (debugfile, debugdir);
1482 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, debuglink);
1485
1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1487 return debugfile;
1488 }
1489 }
1490
1491 do_cleanups (back_to);
1492 xfree (debugfile);
1493 return NULL;
1494 }
1495
1496 /* Modify PATH to contain only "[/]directory/" part of PATH.
1497 If there were no directory separators in PATH, PATH will be empty
1498 string on return. */
1499
1500 static void
1501 terminate_after_last_dir_separator (char *path)
1502 {
1503 int i;
1504
1505 /* Strip off the final filename part, leaving the directory name,
1506 followed by a slash. The directory can be relative or absolute. */
1507 for (i = strlen(path) - 1; i >= 0; i--)
1508 if (IS_DIR_SEPARATOR (path[i]))
1509 break;
1510
1511 /* If I is -1 then no directory is present there and DIR will be "". */
1512 path[i + 1] = '\0';
1513 }
1514
1515 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1516 Returns pathname, or NULL. */
1517
1518 char *
1519 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1520 {
1521 char *debuglink;
1522 char *dir, *canon_dir;
1523 char *debugfile;
1524 unsigned long crc32;
1525 struct cleanup *cleanups;
1526
1527 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1528
1529 if (debuglink == NULL)
1530 {
1531 /* There's no separate debug info, hence there's no way we could
1532 load it => no warning. */
1533 return NULL;
1534 }
1535
1536 cleanups = make_cleanup (xfree, debuglink);
1537 dir = xstrdup (objfile->name);
1538 make_cleanup (xfree, dir);
1539 terminate_after_last_dir_separator (dir);
1540 canon_dir = lrealpath (dir);
1541
1542 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1543 crc32, objfile);
1544 xfree (canon_dir);
1545
1546 if (debugfile == NULL)
1547 {
1548 #ifdef HAVE_LSTAT
1549 /* For PR gdb/9538, try again with realpath (if different from the
1550 original). */
1551
1552 struct stat st_buf;
1553
1554 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1555 {
1556 char *symlink_dir;
1557
1558 symlink_dir = lrealpath (objfile->name);
1559 if (symlink_dir != NULL)
1560 {
1561 make_cleanup (xfree, symlink_dir);
1562 terminate_after_last_dir_separator (symlink_dir);
1563 if (strcmp (dir, symlink_dir) != 0)
1564 {
1565 /* Different directory, so try using it. */
1566 debugfile = find_separate_debug_file (symlink_dir,
1567 symlink_dir,
1568 debuglink,
1569 crc32,
1570 objfile);
1571 }
1572 }
1573 }
1574 #endif /* HAVE_LSTAT */
1575 }
1576
1577 do_cleanups (cleanups);
1578 return debugfile;
1579 }
1580
1581
1582 /* This is the symbol-file command. Read the file, analyze its
1583 symbols, and add a struct symtab to a symtab list. The syntax of
1584 the command is rather bizarre:
1585
1586 1. The function buildargv implements various quoting conventions
1587 which are undocumented and have little or nothing in common with
1588 the way things are quoted (or not quoted) elsewhere in GDB.
1589
1590 2. Options are used, which are not generally used in GDB (perhaps
1591 "set mapped on", "set readnow on" would be better)
1592
1593 3. The order of options matters, which is contrary to GNU
1594 conventions (because it is confusing and inconvenient). */
1595
1596 void
1597 symbol_file_command (char *args, int from_tty)
1598 {
1599 dont_repeat ();
1600
1601 if (args == NULL)
1602 {
1603 symbol_file_clear (from_tty);
1604 }
1605 else
1606 {
1607 char **argv = gdb_buildargv (args);
1608 int flags = OBJF_USERLOADED;
1609 struct cleanup *cleanups;
1610 char *name = NULL;
1611
1612 cleanups = make_cleanup_freeargv (argv);
1613 while (*argv != NULL)
1614 {
1615 if (strcmp (*argv, "-readnow") == 0)
1616 flags |= OBJF_READNOW;
1617 else if (**argv == '-')
1618 error (_("unknown option `%s'"), *argv);
1619 else
1620 {
1621 symbol_file_add_main_1 (*argv, from_tty, flags);
1622 name = *argv;
1623 }
1624
1625 argv++;
1626 }
1627
1628 if (name == NULL)
1629 error (_("no symbol file name was specified"));
1630
1631 do_cleanups (cleanups);
1632 }
1633 }
1634
1635 /* Set the initial language.
1636
1637 FIXME: A better solution would be to record the language in the
1638 psymtab when reading partial symbols, and then use it (if known) to
1639 set the language. This would be a win for formats that encode the
1640 language in an easily discoverable place, such as DWARF. For
1641 stabs, we can jump through hoops looking for specially named
1642 symbols or try to intuit the language from the specific type of
1643 stabs we find, but we can't do that until later when we read in
1644 full symbols. */
1645
1646 void
1647 set_initial_language (void)
1648 {
1649 enum language lang = language_unknown;
1650
1651 if (language_of_main != language_unknown)
1652 lang = language_of_main;
1653 else
1654 {
1655 const char *filename;
1656
1657 filename = find_main_filename ();
1658 if (filename != NULL)
1659 lang = deduce_language_from_filename (filename);
1660 }
1661
1662 if (lang == language_unknown)
1663 {
1664 /* Make C the default language */
1665 lang = language_c;
1666 }
1667
1668 set_language (lang);
1669 expected_language = current_language; /* Don't warn the user. */
1670 }
1671
1672 /* If NAME is a remote name open the file using remote protocol, otherwise
1673 open it normally. Returns a new reference to the BFD. On error,
1674 returns NULL with the BFD error set. */
1675
1676 bfd *
1677 gdb_bfd_open_maybe_remote (const char *name)
1678 {
1679 bfd *result;
1680
1681 if (remote_filename_p (name))
1682 result = remote_bfd_open (name, gnutarget);
1683 else
1684 result = gdb_bfd_open (name, gnutarget, -1);
1685
1686 return result;
1687 }
1688
1689
1690 /* Open the file specified by NAME and hand it off to BFD for
1691 preliminary analysis. Return a newly initialized bfd *, which
1692 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1693 absolute). In case of trouble, error() is called. */
1694
1695 bfd *
1696 symfile_bfd_open (char *name)
1697 {
1698 bfd *sym_bfd;
1699 int desc;
1700 char *absolute_name;
1701
1702 if (remote_filename_p (name))
1703 {
1704 sym_bfd = remote_bfd_open (name, gnutarget);
1705 if (!sym_bfd)
1706 error (_("`%s': can't open to read symbols: %s."), name,
1707 bfd_errmsg (bfd_get_error ()));
1708
1709 if (!bfd_check_format (sym_bfd, bfd_object))
1710 {
1711 make_cleanup_bfd_unref (sym_bfd);
1712 error (_("`%s': can't read symbols: %s."), name,
1713 bfd_errmsg (bfd_get_error ()));
1714 }
1715
1716 return sym_bfd;
1717 }
1718
1719 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1720
1721 /* Look down path for it, allocate 2nd new malloc'd copy. */
1722 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1723 O_RDONLY | O_BINARY, &absolute_name);
1724 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1725 if (desc < 0)
1726 {
1727 char *exename = alloca (strlen (name) + 5);
1728
1729 strcat (strcpy (exename, name), ".exe");
1730 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1731 O_RDONLY | O_BINARY, &absolute_name);
1732 }
1733 #endif
1734 if (desc < 0)
1735 {
1736 make_cleanup (xfree, name);
1737 perror_with_name (name);
1738 }
1739
1740 xfree (name);
1741 name = absolute_name;
1742 make_cleanup (xfree, name);
1743
1744 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1745 if (!sym_bfd)
1746 {
1747 make_cleanup (xfree, name);
1748 error (_("`%s': can't open to read symbols: %s."), name,
1749 bfd_errmsg (bfd_get_error ()));
1750 }
1751 bfd_set_cacheable (sym_bfd, 1);
1752
1753 if (!bfd_check_format (sym_bfd, bfd_object))
1754 {
1755 make_cleanup_bfd_unref (sym_bfd);
1756 error (_("`%s': can't read symbols: %s."), name,
1757 bfd_errmsg (bfd_get_error ()));
1758 }
1759
1760 return sym_bfd;
1761 }
1762
1763 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1764 the section was not found. */
1765
1766 int
1767 get_section_index (struct objfile *objfile, char *section_name)
1768 {
1769 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1770
1771 if (sect)
1772 return sect->index;
1773 else
1774 return -1;
1775 }
1776
1777 /* Link SF into the global symtab_fns list. Called on startup by the
1778 _initialize routine in each object file format reader, to register
1779 information about each format the reader is prepared to handle. */
1780
1781 void
1782 add_symtab_fns (const struct sym_fns *sf)
1783 {
1784 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1785 }
1786
1787 /* Initialize OBJFILE to read symbols from its associated BFD. It
1788 either returns or calls error(). The result is an initialized
1789 struct sym_fns in the objfile structure, that contains cached
1790 information about the symbol file. */
1791
1792 static const struct sym_fns *
1793 find_sym_fns (bfd *abfd)
1794 {
1795 const struct sym_fns *sf;
1796 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1797 int i;
1798
1799 if (our_flavour == bfd_target_srec_flavour
1800 || our_flavour == bfd_target_ihex_flavour
1801 || our_flavour == bfd_target_tekhex_flavour)
1802 return NULL; /* No symbols. */
1803
1804 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1805 if (our_flavour == sf->sym_flavour)
1806 return sf;
1807
1808 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1809 bfd_get_target (abfd));
1810 }
1811 \f
1812
1813 /* This function runs the load command of our current target. */
1814
1815 static void
1816 load_command (char *arg, int from_tty)
1817 {
1818 dont_repeat ();
1819
1820 /* The user might be reloading because the binary has changed. Take
1821 this opportunity to check. */
1822 reopen_exec_file ();
1823 reread_symbols ();
1824
1825 if (arg == NULL)
1826 {
1827 char *parg;
1828 int count = 0;
1829
1830 parg = arg = get_exec_file (1);
1831
1832 /* Count how many \ " ' tab space there are in the name. */
1833 while ((parg = strpbrk (parg, "\\\"'\t ")))
1834 {
1835 parg++;
1836 count++;
1837 }
1838
1839 if (count)
1840 {
1841 /* We need to quote this string so buildargv can pull it apart. */
1842 char *temp = xmalloc (strlen (arg) + count + 1 );
1843 char *ptemp = temp;
1844 char *prev;
1845
1846 make_cleanup (xfree, temp);
1847
1848 prev = parg = arg;
1849 while ((parg = strpbrk (parg, "\\\"'\t ")))
1850 {
1851 strncpy (ptemp, prev, parg - prev);
1852 ptemp += parg - prev;
1853 prev = parg++;
1854 *ptemp++ = '\\';
1855 }
1856 strcpy (ptemp, prev);
1857
1858 arg = temp;
1859 }
1860 }
1861
1862 target_load (arg, from_tty);
1863
1864 /* After re-loading the executable, we don't really know which
1865 overlays are mapped any more. */
1866 overlay_cache_invalid = 1;
1867 }
1868
1869 /* This version of "load" should be usable for any target. Currently
1870 it is just used for remote targets, not inftarg.c or core files,
1871 on the theory that only in that case is it useful.
1872
1873 Avoiding xmodem and the like seems like a win (a) because we don't have
1874 to worry about finding it, and (b) On VMS, fork() is very slow and so
1875 we don't want to run a subprocess. On the other hand, I'm not sure how
1876 performance compares. */
1877
1878 static int validate_download = 0;
1879
1880 /* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882 static void
1883 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1884 {
1885 bfd_size_type *sum = data;
1886
1887 *sum += bfd_get_section_size (asec);
1888 }
1889
1890 /* Opaque data for load_section_callback. */
1891 struct load_section_data {
1892 CORE_ADDR load_offset;
1893 struct load_progress_data *progress_data;
1894 VEC(memory_write_request_s) *requests;
1895 };
1896
1897 /* Opaque data for load_progress. */
1898 struct load_progress_data {
1899 /* Cumulative data. */
1900 unsigned long write_count;
1901 unsigned long data_count;
1902 bfd_size_type total_size;
1903 };
1904
1905 /* Opaque data for load_progress for a single section. */
1906 struct load_progress_section_data {
1907 struct load_progress_data *cumulative;
1908
1909 /* Per-section data. */
1910 const char *section_name;
1911 ULONGEST section_sent;
1912 ULONGEST section_size;
1913 CORE_ADDR lma;
1914 gdb_byte *buffer;
1915 };
1916
1917 /* Target write callback routine for progress reporting. */
1918
1919 static void
1920 load_progress (ULONGEST bytes, void *untyped_arg)
1921 {
1922 struct load_progress_section_data *args = untyped_arg;
1923 struct load_progress_data *totals;
1924
1925 if (args == NULL)
1926 /* Writing padding data. No easy way to get at the cumulative
1927 stats, so just ignore this. */
1928 return;
1929
1930 totals = args->cumulative;
1931
1932 if (bytes == 0 && args->section_sent == 0)
1933 {
1934 /* The write is just starting. Let the user know we've started
1935 this section. */
1936 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1937 args->section_name, hex_string (args->section_size),
1938 paddress (target_gdbarch (), args->lma));
1939 return;
1940 }
1941
1942 if (validate_download)
1943 {
1944 /* Broken memories and broken monitors manifest themselves here
1945 when bring new computers to life. This doubles already slow
1946 downloads. */
1947 /* NOTE: cagney/1999-10-18: A more efficient implementation
1948 might add a verify_memory() method to the target vector and
1949 then use that. remote.c could implement that method using
1950 the ``qCRC'' packet. */
1951 gdb_byte *check = xmalloc (bytes);
1952 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1953
1954 if (target_read_memory (args->lma, check, bytes) != 0)
1955 error (_("Download verify read failed at %s"),
1956 paddress (target_gdbarch (), args->lma));
1957 if (memcmp (args->buffer, check, bytes) != 0)
1958 error (_("Download verify compare failed at %s"),
1959 paddress (target_gdbarch (), args->lma));
1960 do_cleanups (verify_cleanups);
1961 }
1962 totals->data_count += bytes;
1963 args->lma += bytes;
1964 args->buffer += bytes;
1965 totals->write_count += 1;
1966 args->section_sent += bytes;
1967 if (check_quit_flag ()
1968 || (deprecated_ui_load_progress_hook != NULL
1969 && deprecated_ui_load_progress_hook (args->section_name,
1970 args->section_sent)))
1971 error (_("Canceled the download"));
1972
1973 if (deprecated_show_load_progress != NULL)
1974 deprecated_show_load_progress (args->section_name,
1975 args->section_sent,
1976 args->section_size,
1977 totals->data_count,
1978 totals->total_size);
1979 }
1980
1981 /* Callback service function for generic_load (bfd_map_over_sections). */
1982
1983 static void
1984 load_section_callback (bfd *abfd, asection *asec, void *data)
1985 {
1986 struct memory_write_request *new_request;
1987 struct load_section_data *args = data;
1988 struct load_progress_section_data *section_data;
1989 bfd_size_type size = bfd_get_section_size (asec);
1990 gdb_byte *buffer;
1991 const char *sect_name = bfd_get_section_name (abfd, asec);
1992
1993 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1994 return;
1995
1996 if (size == 0)
1997 return;
1998
1999 new_request = VEC_safe_push (memory_write_request_s,
2000 args->requests, NULL);
2001 memset (new_request, 0, sizeof (struct memory_write_request));
2002 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2003 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2004 new_request->end = new_request->begin + size; /* FIXME Should size
2005 be in instead? */
2006 new_request->data = xmalloc (size);
2007 new_request->baton = section_data;
2008
2009 buffer = new_request->data;
2010
2011 section_data->cumulative = args->progress_data;
2012 section_data->section_name = sect_name;
2013 section_data->section_size = size;
2014 section_data->lma = new_request->begin;
2015 section_data->buffer = buffer;
2016
2017 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2018 }
2019
2020 /* Clean up an entire memory request vector, including load
2021 data and progress records. */
2022
2023 static void
2024 clear_memory_write_data (void *arg)
2025 {
2026 VEC(memory_write_request_s) **vec_p = arg;
2027 VEC(memory_write_request_s) *vec = *vec_p;
2028 int i;
2029 struct memory_write_request *mr;
2030
2031 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2032 {
2033 xfree (mr->data);
2034 xfree (mr->baton);
2035 }
2036 VEC_free (memory_write_request_s, vec);
2037 }
2038
2039 void
2040 generic_load (char *args, int from_tty)
2041 {
2042 bfd *loadfile_bfd;
2043 struct timeval start_time, end_time;
2044 char *filename;
2045 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2046 struct load_section_data cbdata;
2047 struct load_progress_data total_progress;
2048 struct ui_out *uiout = current_uiout;
2049
2050 CORE_ADDR entry;
2051 char **argv;
2052
2053 memset (&cbdata, 0, sizeof (cbdata));
2054 memset (&total_progress, 0, sizeof (total_progress));
2055 cbdata.progress_data = &total_progress;
2056
2057 make_cleanup (clear_memory_write_data, &cbdata.requests);
2058
2059 if (args == NULL)
2060 error_no_arg (_("file to load"));
2061
2062 argv = gdb_buildargv (args);
2063 make_cleanup_freeargv (argv);
2064
2065 filename = tilde_expand (argv[0]);
2066 make_cleanup (xfree, filename);
2067
2068 if (argv[1] != NULL)
2069 {
2070 const char *endptr;
2071
2072 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2073
2074 /* If the last word was not a valid number then
2075 treat it as a file name with spaces in. */
2076 if (argv[1] == endptr)
2077 error (_("Invalid download offset:%s."), argv[1]);
2078
2079 if (argv[2] != NULL)
2080 error (_("Too many parameters."));
2081 }
2082
2083 /* Open the file for loading. */
2084 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2085 if (loadfile_bfd == NULL)
2086 {
2087 perror_with_name (filename);
2088 return;
2089 }
2090
2091 make_cleanup_bfd_unref (loadfile_bfd);
2092
2093 if (!bfd_check_format (loadfile_bfd, bfd_object))
2094 {
2095 error (_("\"%s\" is not an object file: %s"), filename,
2096 bfd_errmsg (bfd_get_error ()));
2097 }
2098
2099 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2100 (void *) &total_progress.total_size);
2101
2102 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2103
2104 gettimeofday (&start_time, NULL);
2105
2106 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2107 load_progress) != 0)
2108 error (_("Load failed"));
2109
2110 gettimeofday (&end_time, NULL);
2111
2112 entry = bfd_get_start_address (loadfile_bfd);
2113 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2114 ui_out_text (uiout, "Start address ");
2115 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2116 ui_out_text (uiout, ", load size ");
2117 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2118 ui_out_text (uiout, "\n");
2119 /* We were doing this in remote-mips.c, I suspect it is right
2120 for other targets too. */
2121 regcache_write_pc (get_current_regcache (), entry);
2122
2123 /* Reset breakpoints, now that we have changed the load image. For
2124 instance, breakpoints may have been set (or reset, by
2125 post_create_inferior) while connected to the target but before we
2126 loaded the program. In that case, the prologue analyzer could
2127 have read instructions from the target to find the right
2128 breakpoint locations. Loading has changed the contents of that
2129 memory. */
2130
2131 breakpoint_re_set ();
2132
2133 /* FIXME: are we supposed to call symbol_file_add or not? According
2134 to a comment from remote-mips.c (where a call to symbol_file_add
2135 was commented out), making the call confuses GDB if more than one
2136 file is loaded in. Some targets do (e.g., remote-vx.c) but
2137 others don't (or didn't - perhaps they have all been deleted). */
2138
2139 print_transfer_performance (gdb_stdout, total_progress.data_count,
2140 total_progress.write_count,
2141 &start_time, &end_time);
2142
2143 do_cleanups (old_cleanups);
2144 }
2145
2146 /* Report how fast the transfer went. */
2147
2148 void
2149 print_transfer_performance (struct ui_file *stream,
2150 unsigned long data_count,
2151 unsigned long write_count,
2152 const struct timeval *start_time,
2153 const struct timeval *end_time)
2154 {
2155 ULONGEST time_count;
2156 struct ui_out *uiout = current_uiout;
2157
2158 /* Compute the elapsed time in milliseconds, as a tradeoff between
2159 accuracy and overflow. */
2160 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2161 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2162
2163 ui_out_text (uiout, "Transfer rate: ");
2164 if (time_count > 0)
2165 {
2166 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2167
2168 if (ui_out_is_mi_like_p (uiout))
2169 {
2170 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2171 ui_out_text (uiout, " bits/sec");
2172 }
2173 else if (rate < 1024)
2174 {
2175 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2176 ui_out_text (uiout, " bytes/sec");
2177 }
2178 else
2179 {
2180 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2181 ui_out_text (uiout, " KB/sec");
2182 }
2183 }
2184 else
2185 {
2186 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2187 ui_out_text (uiout, " bits in <1 sec");
2188 }
2189 if (write_count > 0)
2190 {
2191 ui_out_text (uiout, ", ");
2192 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2193 ui_out_text (uiout, " bytes/write");
2194 }
2195 ui_out_text (uiout, ".\n");
2196 }
2197
2198 /* This function allows the addition of incrementally linked object files.
2199 It does not modify any state in the target, only in the debugger. */
2200 /* Note: ezannoni 2000-04-13 This function/command used to have a
2201 special case syntax for the rombug target (Rombug is the boot
2202 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2203 rombug case, the user doesn't need to supply a text address,
2204 instead a call to target_link() (in target.c) would supply the
2205 value to use. We are now discontinuing this type of ad hoc syntax. */
2206
2207 static void
2208 add_symbol_file_command (char *args, int from_tty)
2209 {
2210 struct gdbarch *gdbarch = get_current_arch ();
2211 char *filename = NULL;
2212 int flags = OBJF_USERLOADED;
2213 char *arg;
2214 int section_index = 0;
2215 int argcnt = 0;
2216 int sec_num = 0;
2217 int i;
2218 int expecting_sec_name = 0;
2219 int expecting_sec_addr = 0;
2220 char **argv;
2221
2222 struct sect_opt
2223 {
2224 char *name;
2225 char *value;
2226 };
2227
2228 struct section_addr_info *section_addrs;
2229 struct sect_opt *sect_opts = NULL;
2230 size_t num_sect_opts = 0;
2231 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2232
2233 num_sect_opts = 16;
2234 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2235 * sizeof (struct sect_opt));
2236
2237 dont_repeat ();
2238
2239 if (args == NULL)
2240 error (_("add-symbol-file takes a file name and an address"));
2241
2242 argv = gdb_buildargv (args);
2243 make_cleanup_freeargv (argv);
2244
2245 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2246 {
2247 /* Process the argument. */
2248 if (argcnt == 0)
2249 {
2250 /* The first argument is the file name. */
2251 filename = tilde_expand (arg);
2252 make_cleanup (xfree, filename);
2253 }
2254 else
2255 if (argcnt == 1)
2256 {
2257 /* The second argument is always the text address at which
2258 to load the program. */
2259 sect_opts[section_index].name = ".text";
2260 sect_opts[section_index].value = arg;
2261 if (++section_index >= num_sect_opts)
2262 {
2263 num_sect_opts *= 2;
2264 sect_opts = ((struct sect_opt *)
2265 xrealloc (sect_opts,
2266 num_sect_opts
2267 * sizeof (struct sect_opt)));
2268 }
2269 }
2270 else
2271 {
2272 /* It's an option (starting with '-') or it's an argument
2273 to an option. */
2274
2275 if (*arg == '-')
2276 {
2277 if (strcmp (arg, "-readnow") == 0)
2278 flags |= OBJF_READNOW;
2279 else if (strcmp (arg, "-s") == 0)
2280 {
2281 expecting_sec_name = 1;
2282 expecting_sec_addr = 1;
2283 }
2284 }
2285 else
2286 {
2287 if (expecting_sec_name)
2288 {
2289 sect_opts[section_index].name = arg;
2290 expecting_sec_name = 0;
2291 }
2292 else
2293 if (expecting_sec_addr)
2294 {
2295 sect_opts[section_index].value = arg;
2296 expecting_sec_addr = 0;
2297 if (++section_index >= num_sect_opts)
2298 {
2299 num_sect_opts *= 2;
2300 sect_opts = ((struct sect_opt *)
2301 xrealloc (sect_opts,
2302 num_sect_opts
2303 * sizeof (struct sect_opt)));
2304 }
2305 }
2306 else
2307 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2308 " [-readnow] [-s <secname> <addr>]*"));
2309 }
2310 }
2311 }
2312
2313 /* This command takes at least two arguments. The first one is a
2314 filename, and the second is the address where this file has been
2315 loaded. Abort now if this address hasn't been provided by the
2316 user. */
2317 if (section_index < 1)
2318 error (_("The address where %s has been loaded is missing"), filename);
2319
2320 /* Print the prompt for the query below. And save the arguments into
2321 a sect_addr_info structure to be passed around to other
2322 functions. We have to split this up into separate print
2323 statements because hex_string returns a local static
2324 string. */
2325
2326 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2327 section_addrs = alloc_section_addr_info (section_index);
2328 make_cleanup (xfree, section_addrs);
2329 for (i = 0; i < section_index; i++)
2330 {
2331 CORE_ADDR addr;
2332 char *val = sect_opts[i].value;
2333 char *sec = sect_opts[i].name;
2334
2335 addr = parse_and_eval_address (val);
2336
2337 /* Here we store the section offsets in the order they were
2338 entered on the command line. */
2339 section_addrs->other[sec_num].name = sec;
2340 section_addrs->other[sec_num].addr = addr;
2341 printf_unfiltered ("\t%s_addr = %s\n", sec,
2342 paddress (gdbarch, addr));
2343 sec_num++;
2344
2345 /* The object's sections are initialized when a
2346 call is made to build_objfile_section_table (objfile).
2347 This happens in reread_symbols.
2348 At this point, we don't know what file type this is,
2349 so we can't determine what section names are valid. */
2350 }
2351 section_addrs->num_sections = sec_num;
2352
2353 if (from_tty && (!query ("%s", "")))
2354 error (_("Not confirmed."));
2355
2356 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2357 section_addrs, flags);
2358
2359 /* Getting new symbols may change our opinion about what is
2360 frameless. */
2361 reinit_frame_cache ();
2362 do_cleanups (my_cleanups);
2363 }
2364 \f
2365
2366 typedef struct objfile *objfilep;
2367
2368 DEF_VEC_P (objfilep);
2369
2370 /* Re-read symbols if a symbol-file has changed. */
2371 void
2372 reread_symbols (void)
2373 {
2374 struct objfile *objfile;
2375 long new_modtime;
2376 struct stat new_statbuf;
2377 int res;
2378 VEC (objfilep) *new_objfiles = NULL;
2379 struct cleanup *all_cleanups;
2380
2381 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2382
2383 /* With the addition of shared libraries, this should be modified,
2384 the load time should be saved in the partial symbol tables, since
2385 different tables may come from different source files. FIXME.
2386 This routine should then walk down each partial symbol table
2387 and see if the symbol table that it originates from has been changed. */
2388
2389 for (objfile = object_files; objfile; objfile = objfile->next)
2390 {
2391 /* solib-sunos.c creates one objfile with obfd. */
2392 if (objfile->obfd == NULL)
2393 continue;
2394
2395 /* Separate debug objfiles are handled in the main objfile. */
2396 if (objfile->separate_debug_objfile_backlink)
2397 continue;
2398
2399 /* If this object is from an archive (what you usually create with
2400 `ar', often called a `static library' on most systems, though
2401 a `shared library' on AIX is also an archive), then you should
2402 stat on the archive name, not member name. */
2403 if (objfile->obfd->my_archive)
2404 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2405 else
2406 res = stat (objfile->name, &new_statbuf);
2407 if (res != 0)
2408 {
2409 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2410 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2411 objfile->name);
2412 continue;
2413 }
2414 new_modtime = new_statbuf.st_mtime;
2415 if (new_modtime != objfile->mtime)
2416 {
2417 struct cleanup *old_cleanups;
2418 struct section_offsets *offsets;
2419 int num_offsets;
2420 char *obfd_filename;
2421
2422 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2423 objfile->name);
2424
2425 /* There are various functions like symbol_file_add,
2426 symfile_bfd_open, syms_from_objfile, etc., which might
2427 appear to do what we want. But they have various other
2428 effects which we *don't* want. So we just do stuff
2429 ourselves. We don't worry about mapped files (for one thing,
2430 any mapped file will be out of date). */
2431
2432 /* If we get an error, blow away this objfile (not sure if
2433 that is the correct response for things like shared
2434 libraries). */
2435 old_cleanups = make_cleanup_free_objfile (objfile);
2436 /* We need to do this whenever any symbols go away. */
2437 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2438
2439 if (exec_bfd != NULL
2440 && filename_cmp (bfd_get_filename (objfile->obfd),
2441 bfd_get_filename (exec_bfd)) == 0)
2442 {
2443 /* Reload EXEC_BFD without asking anything. */
2444
2445 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2446 }
2447
2448 /* Keep the calls order approx. the same as in free_objfile. */
2449
2450 /* Free the separate debug objfiles. It will be
2451 automatically recreated by sym_read. */
2452 free_objfile_separate_debug (objfile);
2453
2454 /* Remove any references to this objfile in the global
2455 value lists. */
2456 preserve_values (objfile);
2457
2458 /* Nuke all the state that we will re-read. Much of the following
2459 code which sets things to NULL really is necessary to tell
2460 other parts of GDB that there is nothing currently there.
2461
2462 Try to keep the freeing order compatible with free_objfile. */
2463
2464 if (objfile->sf != NULL)
2465 {
2466 (*objfile->sf->sym_finish) (objfile);
2467 }
2468
2469 clear_objfile_data (objfile);
2470
2471 /* Clean up any state BFD has sitting around. */
2472 {
2473 struct bfd *obfd = objfile->obfd;
2474
2475 obfd_filename = bfd_get_filename (objfile->obfd);
2476 /* Open the new BFD before freeing the old one, so that
2477 the filename remains live. */
2478 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2479 if (objfile->obfd == NULL)
2480 {
2481 /* We have to make a cleanup and error here, rather
2482 than erroring later, because once we unref OBFD,
2483 OBFD_FILENAME will be freed. */
2484 make_cleanup_bfd_unref (obfd);
2485 error (_("Can't open %s to read symbols."), obfd_filename);
2486 }
2487 gdb_bfd_unref (obfd);
2488 }
2489
2490 objfile->name = bfd_get_filename (objfile->obfd);
2491 /* bfd_openr sets cacheable to true, which is what we want. */
2492 if (!bfd_check_format (objfile->obfd, bfd_object))
2493 error (_("Can't read symbols from %s: %s."), objfile->name,
2494 bfd_errmsg (bfd_get_error ()));
2495
2496 /* Save the offsets, we will nuke them with the rest of the
2497 objfile_obstack. */
2498 num_offsets = objfile->num_sections;
2499 offsets = ((struct section_offsets *)
2500 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2501 memcpy (offsets, objfile->section_offsets,
2502 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2503
2504 /* FIXME: Do we have to free a whole linked list, or is this
2505 enough? */
2506 if (objfile->global_psymbols.list)
2507 xfree (objfile->global_psymbols.list);
2508 memset (&objfile->global_psymbols, 0,
2509 sizeof (objfile->global_psymbols));
2510 if (objfile->static_psymbols.list)
2511 xfree (objfile->static_psymbols.list);
2512 memset (&objfile->static_psymbols, 0,
2513 sizeof (objfile->static_psymbols));
2514
2515 /* Free the obstacks for non-reusable objfiles. */
2516 psymbol_bcache_free (objfile->psymbol_cache);
2517 objfile->psymbol_cache = psymbol_bcache_init ();
2518 if (objfile->demangled_names_hash != NULL)
2519 {
2520 htab_delete (objfile->demangled_names_hash);
2521 objfile->demangled_names_hash = NULL;
2522 }
2523 obstack_free (&objfile->objfile_obstack, 0);
2524 objfile->sections = NULL;
2525 objfile->symtabs = NULL;
2526 objfile->psymtabs = NULL;
2527 objfile->psymtabs_addrmap = NULL;
2528 objfile->free_psymtabs = NULL;
2529 objfile->template_symbols = NULL;
2530 objfile->msymbols = NULL;
2531 objfile->minimal_symbol_count = 0;
2532 memset (&objfile->msymbol_hash, 0,
2533 sizeof (objfile->msymbol_hash));
2534 memset (&objfile->msymbol_demangled_hash, 0,
2535 sizeof (objfile->msymbol_demangled_hash));
2536
2537 set_objfile_per_bfd (objfile);
2538
2539 /* obstack_init also initializes the obstack so it is
2540 empty. We could use obstack_specify_allocation but
2541 gdb_obstack.h specifies the alloc/dealloc functions. */
2542 obstack_init (&objfile->objfile_obstack);
2543 build_objfile_section_table (objfile);
2544 terminate_minimal_symbol_table (objfile);
2545
2546 /* We use the same section offsets as from last time. I'm not
2547 sure whether that is always correct for shared libraries. */
2548 objfile->section_offsets = (struct section_offsets *)
2549 obstack_alloc (&objfile->objfile_obstack,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 memcpy (objfile->section_offsets, offsets,
2552 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2553 objfile->num_sections = num_offsets;
2554
2555 /* What the hell is sym_new_init for, anyway? The concept of
2556 distinguishing between the main file and additional files
2557 in this way seems rather dubious. */
2558 if (objfile == symfile_objfile)
2559 {
2560 (*objfile->sf->sym_new_init) (objfile);
2561 }
2562
2563 (*objfile->sf->sym_init) (objfile);
2564 clear_complaints (&symfile_complaints, 1, 1);
2565
2566 objfile->flags &= ~OBJF_PSYMTABS_READ;
2567 read_symbols (objfile, 0);
2568
2569 if (!objfile_has_symbols (objfile))
2570 {
2571 wrap_here ("");
2572 printf_unfiltered (_("(no debugging symbols found)\n"));
2573 wrap_here ("");
2574 }
2575
2576 /* We're done reading the symbol file; finish off complaints. */
2577 clear_complaints (&symfile_complaints, 0, 1);
2578
2579 /* Getting new symbols may change our opinion about what is
2580 frameless. */
2581
2582 reinit_frame_cache ();
2583
2584 /* Discard cleanups as symbol reading was successful. */
2585 discard_cleanups (old_cleanups);
2586
2587 /* If the mtime has changed between the time we set new_modtime
2588 and now, we *want* this to be out of date, so don't call stat
2589 again now. */
2590 objfile->mtime = new_modtime;
2591 init_entry_point_info (objfile);
2592
2593 VEC_safe_push (objfilep, new_objfiles, objfile);
2594 }
2595 }
2596
2597 if (new_objfiles)
2598 {
2599 int ix;
2600
2601 /* Notify objfiles that we've modified objfile sections. */
2602 objfiles_changed ();
2603
2604 clear_symtab_users (0);
2605
2606 /* clear_objfile_data for each objfile was called before freeing it and
2607 observer_notify_new_objfile (NULL) has been called by
2608 clear_symtab_users above. Notify the new files now. */
2609 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2610 observer_notify_new_objfile (objfile);
2611
2612 /* At least one objfile has changed, so we can consider that
2613 the executable we're debugging has changed too. */
2614 observer_notify_executable_changed ();
2615 }
2616
2617 do_cleanups (all_cleanups);
2618 }
2619 \f
2620
2621
2622 typedef struct
2623 {
2624 char *ext;
2625 enum language lang;
2626 }
2627 filename_language;
2628
2629 static filename_language *filename_language_table;
2630 static int fl_table_size, fl_table_next;
2631
2632 static void
2633 add_filename_language (char *ext, enum language lang)
2634 {
2635 if (fl_table_next >= fl_table_size)
2636 {
2637 fl_table_size += 10;
2638 filename_language_table =
2639 xrealloc (filename_language_table,
2640 fl_table_size * sizeof (*filename_language_table));
2641 }
2642
2643 filename_language_table[fl_table_next].ext = xstrdup (ext);
2644 filename_language_table[fl_table_next].lang = lang;
2645 fl_table_next++;
2646 }
2647
2648 static char *ext_args;
2649 static void
2650 show_ext_args (struct ui_file *file, int from_tty,
2651 struct cmd_list_element *c, const char *value)
2652 {
2653 fprintf_filtered (file,
2654 _("Mapping between filename extension "
2655 "and source language is \"%s\".\n"),
2656 value);
2657 }
2658
2659 static void
2660 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2661 {
2662 int i;
2663 char *cp = ext_args;
2664 enum language lang;
2665
2666 /* First arg is filename extension, starting with '.' */
2667 if (*cp != '.')
2668 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2669
2670 /* Find end of first arg. */
2671 while (*cp && !isspace (*cp))
2672 cp++;
2673
2674 if (*cp == '\0')
2675 error (_("'%s': two arguments required -- "
2676 "filename extension and language"),
2677 ext_args);
2678
2679 /* Null-terminate first arg. */
2680 *cp++ = '\0';
2681
2682 /* Find beginning of second arg, which should be a source language. */
2683 cp = skip_spaces (cp);
2684
2685 if (*cp == '\0')
2686 error (_("'%s': two arguments required -- "
2687 "filename extension and language"),
2688 ext_args);
2689
2690 /* Lookup the language from among those we know. */
2691 lang = language_enum (cp);
2692
2693 /* Now lookup the filename extension: do we already know it? */
2694 for (i = 0; i < fl_table_next; i++)
2695 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2696 break;
2697
2698 if (i >= fl_table_next)
2699 {
2700 /* New file extension. */
2701 add_filename_language (ext_args, lang);
2702 }
2703 else
2704 {
2705 /* Redefining a previously known filename extension. */
2706
2707 /* if (from_tty) */
2708 /* query ("Really make files of type %s '%s'?", */
2709 /* ext_args, language_str (lang)); */
2710
2711 xfree (filename_language_table[i].ext);
2712 filename_language_table[i].ext = xstrdup (ext_args);
2713 filename_language_table[i].lang = lang;
2714 }
2715 }
2716
2717 static void
2718 info_ext_lang_command (char *args, int from_tty)
2719 {
2720 int i;
2721
2722 printf_filtered (_("Filename extensions and the languages they represent:"));
2723 printf_filtered ("\n\n");
2724 for (i = 0; i < fl_table_next; i++)
2725 printf_filtered ("\t%s\t- %s\n",
2726 filename_language_table[i].ext,
2727 language_str (filename_language_table[i].lang));
2728 }
2729
2730 static void
2731 init_filename_language_table (void)
2732 {
2733 if (fl_table_size == 0) /* Protect against repetition. */
2734 {
2735 fl_table_size = 20;
2736 fl_table_next = 0;
2737 filename_language_table =
2738 xmalloc (fl_table_size * sizeof (*filename_language_table));
2739 add_filename_language (".c", language_c);
2740 add_filename_language (".d", language_d);
2741 add_filename_language (".C", language_cplus);
2742 add_filename_language (".cc", language_cplus);
2743 add_filename_language (".cp", language_cplus);
2744 add_filename_language (".cpp", language_cplus);
2745 add_filename_language (".cxx", language_cplus);
2746 add_filename_language (".c++", language_cplus);
2747 add_filename_language (".java", language_java);
2748 add_filename_language (".class", language_java);
2749 add_filename_language (".m", language_objc);
2750 add_filename_language (".f", language_fortran);
2751 add_filename_language (".F", language_fortran);
2752 add_filename_language (".for", language_fortran);
2753 add_filename_language (".FOR", language_fortran);
2754 add_filename_language (".ftn", language_fortran);
2755 add_filename_language (".FTN", language_fortran);
2756 add_filename_language (".fpp", language_fortran);
2757 add_filename_language (".FPP", language_fortran);
2758 add_filename_language (".f90", language_fortran);
2759 add_filename_language (".F90", language_fortran);
2760 add_filename_language (".f95", language_fortran);
2761 add_filename_language (".F95", language_fortran);
2762 add_filename_language (".f03", language_fortran);
2763 add_filename_language (".F03", language_fortran);
2764 add_filename_language (".f08", language_fortran);
2765 add_filename_language (".F08", language_fortran);
2766 add_filename_language (".s", language_asm);
2767 add_filename_language (".sx", language_asm);
2768 add_filename_language (".S", language_asm);
2769 add_filename_language (".pas", language_pascal);
2770 add_filename_language (".p", language_pascal);
2771 add_filename_language (".pp", language_pascal);
2772 add_filename_language (".adb", language_ada);
2773 add_filename_language (".ads", language_ada);
2774 add_filename_language (".a", language_ada);
2775 add_filename_language (".ada", language_ada);
2776 add_filename_language (".dg", language_ada);
2777 }
2778 }
2779
2780 enum language
2781 deduce_language_from_filename (const char *filename)
2782 {
2783 int i;
2784 char *cp;
2785
2786 if (filename != NULL)
2787 if ((cp = strrchr (filename, '.')) != NULL)
2788 for (i = 0; i < fl_table_next; i++)
2789 if (strcmp (cp, filename_language_table[i].ext) == 0)
2790 return filename_language_table[i].lang;
2791
2792 return language_unknown;
2793 }
2794 \f
2795 /* allocate_symtab:
2796
2797 Allocate and partly initialize a new symbol table. Return a pointer
2798 to it. error() if no space.
2799
2800 Caller must set these fields:
2801 LINETABLE(symtab)
2802 symtab->blockvector
2803 symtab->dirname
2804 symtab->free_code
2805 symtab->free_ptr
2806 */
2807
2808 struct symtab *
2809 allocate_symtab (const char *filename, struct objfile *objfile)
2810 {
2811 struct symtab *symtab;
2812
2813 symtab = (struct symtab *)
2814 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2815 memset (symtab, 0, sizeof (*symtab));
2816 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2817 objfile->per_bfd->filename_cache);
2818 symtab->fullname = NULL;
2819 symtab->language = deduce_language_from_filename (filename);
2820 symtab->debugformat = "unknown";
2821
2822 /* Hook it to the objfile it comes from. */
2823
2824 symtab->objfile = objfile;
2825 symtab->next = objfile->symtabs;
2826 objfile->symtabs = symtab;
2827
2828 if (symtab_create_debug)
2829 {
2830 /* Be a bit clever with debugging messages, and don't print objfile
2831 every time, only when it changes. */
2832 static char *last_objfile_name = NULL;
2833
2834 if (last_objfile_name == NULL
2835 || strcmp (last_objfile_name, objfile->name) != 0)
2836 {
2837 xfree (last_objfile_name);
2838 last_objfile_name = xstrdup (objfile->name);
2839 fprintf_unfiltered (gdb_stdlog,
2840 "Creating one or more symtabs for objfile %s ...\n",
2841 last_objfile_name);
2842 }
2843 fprintf_unfiltered (gdb_stdlog,
2844 "Created symtab %s for module %s.\n",
2845 host_address_to_string (symtab), filename);
2846 }
2847
2848 return (symtab);
2849 }
2850 \f
2851
2852 /* Reset all data structures in gdb which may contain references to symbol
2853 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2854
2855 void
2856 clear_symtab_users (int add_flags)
2857 {
2858 /* Someday, we should do better than this, by only blowing away
2859 the things that really need to be blown. */
2860
2861 /* Clear the "current" symtab first, because it is no longer valid.
2862 breakpoint_re_set may try to access the current symtab. */
2863 clear_current_source_symtab_and_line ();
2864
2865 clear_displays ();
2866 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2867 breakpoint_re_set ();
2868 clear_last_displayed_sal ();
2869 clear_pc_function_cache ();
2870 observer_notify_new_objfile (NULL);
2871
2872 /* Clear globals which might have pointed into a removed objfile.
2873 FIXME: It's not clear which of these are supposed to persist
2874 between expressions and which ought to be reset each time. */
2875 expression_context_block = NULL;
2876 innermost_block = NULL;
2877
2878 /* Varobj may refer to old symbols, perform a cleanup. */
2879 varobj_invalidate ();
2880
2881 }
2882
2883 static void
2884 clear_symtab_users_cleanup (void *ignore)
2885 {
2886 clear_symtab_users (0);
2887 }
2888 \f
2889 /* OVERLAYS:
2890 The following code implements an abstraction for debugging overlay sections.
2891
2892 The target model is as follows:
2893 1) The gnu linker will permit multiple sections to be mapped into the
2894 same VMA, each with its own unique LMA (or load address).
2895 2) It is assumed that some runtime mechanism exists for mapping the
2896 sections, one by one, from the load address into the VMA address.
2897 3) This code provides a mechanism for gdb to keep track of which
2898 sections should be considered to be mapped from the VMA to the LMA.
2899 This information is used for symbol lookup, and memory read/write.
2900 For instance, if a section has been mapped then its contents
2901 should be read from the VMA, otherwise from the LMA.
2902
2903 Two levels of debugger support for overlays are available. One is
2904 "manual", in which the debugger relies on the user to tell it which
2905 overlays are currently mapped. This level of support is
2906 implemented entirely in the core debugger, and the information about
2907 whether a section is mapped is kept in the objfile->obj_section table.
2908
2909 The second level of support is "automatic", and is only available if
2910 the target-specific code provides functionality to read the target's
2911 overlay mapping table, and translate its contents for the debugger
2912 (by updating the mapped state information in the obj_section tables).
2913
2914 The interface is as follows:
2915 User commands:
2916 overlay map <name> -- tell gdb to consider this section mapped
2917 overlay unmap <name> -- tell gdb to consider this section unmapped
2918 overlay list -- list the sections that GDB thinks are mapped
2919 overlay read-target -- get the target's state of what's mapped
2920 overlay off/manual/auto -- set overlay debugging state
2921 Functional interface:
2922 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2923 section, return that section.
2924 find_pc_overlay(pc): find any overlay section that contains
2925 the pc, either in its VMA or its LMA
2926 section_is_mapped(sect): true if overlay is marked as mapped
2927 section_is_overlay(sect): true if section's VMA != LMA
2928 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2929 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2930 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2931 overlay_mapped_address(...): map an address from section's LMA to VMA
2932 overlay_unmapped_address(...): map an address from section's VMA to LMA
2933 symbol_overlayed_address(...): Return a "current" address for symbol:
2934 either in VMA or LMA depending on whether
2935 the symbol's section is currently mapped. */
2936
2937 /* Overlay debugging state: */
2938
2939 enum overlay_debugging_state overlay_debugging = ovly_off;
2940 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2941
2942 /* Function: section_is_overlay (SECTION)
2943 Returns true if SECTION has VMA not equal to LMA, ie.
2944 SECTION is loaded at an address different from where it will "run". */
2945
2946 int
2947 section_is_overlay (struct obj_section *section)
2948 {
2949 if (overlay_debugging && section)
2950 {
2951 bfd *abfd = section->objfile->obfd;
2952 asection *bfd_section = section->the_bfd_section;
2953
2954 if (bfd_section_lma (abfd, bfd_section) != 0
2955 && bfd_section_lma (abfd, bfd_section)
2956 != bfd_section_vma (abfd, bfd_section))
2957 return 1;
2958 }
2959
2960 return 0;
2961 }
2962
2963 /* Function: overlay_invalidate_all (void)
2964 Invalidate the mapped state of all overlay sections (mark it as stale). */
2965
2966 static void
2967 overlay_invalidate_all (void)
2968 {
2969 struct objfile *objfile;
2970 struct obj_section *sect;
2971
2972 ALL_OBJSECTIONS (objfile, sect)
2973 if (section_is_overlay (sect))
2974 sect->ovly_mapped = -1;
2975 }
2976
2977 /* Function: section_is_mapped (SECTION)
2978 Returns true if section is an overlay, and is currently mapped.
2979
2980 Access to the ovly_mapped flag is restricted to this function, so
2981 that we can do automatic update. If the global flag
2982 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2983 overlay_invalidate_all. If the mapped state of the particular
2984 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2985
2986 int
2987 section_is_mapped (struct obj_section *osect)
2988 {
2989 struct gdbarch *gdbarch;
2990
2991 if (osect == 0 || !section_is_overlay (osect))
2992 return 0;
2993
2994 switch (overlay_debugging)
2995 {
2996 default:
2997 case ovly_off:
2998 return 0; /* overlay debugging off */
2999 case ovly_auto: /* overlay debugging automatic */
3000 /* Unles there is a gdbarch_overlay_update function,
3001 there's really nothing useful to do here (can't really go auto). */
3002 gdbarch = get_objfile_arch (osect->objfile);
3003 if (gdbarch_overlay_update_p (gdbarch))
3004 {
3005 if (overlay_cache_invalid)
3006 {
3007 overlay_invalidate_all ();
3008 overlay_cache_invalid = 0;
3009 }
3010 if (osect->ovly_mapped == -1)
3011 gdbarch_overlay_update (gdbarch, osect);
3012 }
3013 /* fall thru to manual case */
3014 case ovly_on: /* overlay debugging manual */
3015 return osect->ovly_mapped == 1;
3016 }
3017 }
3018
3019 /* Function: pc_in_unmapped_range
3020 If PC falls into the lma range of SECTION, return true, else false. */
3021
3022 CORE_ADDR
3023 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3024 {
3025 if (section_is_overlay (section))
3026 {
3027 bfd *abfd = section->objfile->obfd;
3028 asection *bfd_section = section->the_bfd_section;
3029
3030 /* We assume the LMA is relocated by the same offset as the VMA. */
3031 bfd_vma size = bfd_get_section_size (bfd_section);
3032 CORE_ADDR offset = obj_section_offset (section);
3033
3034 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3035 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3036 return 1;
3037 }
3038
3039 return 0;
3040 }
3041
3042 /* Function: pc_in_mapped_range
3043 If PC falls into the vma range of SECTION, return true, else false. */
3044
3045 CORE_ADDR
3046 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3047 {
3048 if (section_is_overlay (section))
3049 {
3050 if (obj_section_addr (section) <= pc
3051 && pc < obj_section_endaddr (section))
3052 return 1;
3053 }
3054
3055 return 0;
3056 }
3057
3058
3059 /* Return true if the mapped ranges of sections A and B overlap, false
3060 otherwise. */
3061 static int
3062 sections_overlap (struct obj_section *a, struct obj_section *b)
3063 {
3064 CORE_ADDR a_start = obj_section_addr (a);
3065 CORE_ADDR a_end = obj_section_endaddr (a);
3066 CORE_ADDR b_start = obj_section_addr (b);
3067 CORE_ADDR b_end = obj_section_endaddr (b);
3068
3069 return (a_start < b_end && b_start < a_end);
3070 }
3071
3072 /* Function: overlay_unmapped_address (PC, SECTION)
3073 Returns the address corresponding to PC in the unmapped (load) range.
3074 May be the same as PC. */
3075
3076 CORE_ADDR
3077 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3078 {
3079 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3080 {
3081 bfd *abfd = section->objfile->obfd;
3082 asection *bfd_section = section->the_bfd_section;
3083
3084 return pc + bfd_section_lma (abfd, bfd_section)
3085 - bfd_section_vma (abfd, bfd_section);
3086 }
3087
3088 return pc;
3089 }
3090
3091 /* Function: overlay_mapped_address (PC, SECTION)
3092 Returns the address corresponding to PC in the mapped (runtime) range.
3093 May be the same as PC. */
3094
3095 CORE_ADDR
3096 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3097 {
3098 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3099 {
3100 bfd *abfd = section->objfile->obfd;
3101 asection *bfd_section = section->the_bfd_section;
3102
3103 return pc + bfd_section_vma (abfd, bfd_section)
3104 - bfd_section_lma (abfd, bfd_section);
3105 }
3106
3107 return pc;
3108 }
3109
3110
3111 /* Function: symbol_overlayed_address
3112 Return one of two addresses (relative to the VMA or to the LMA),
3113 depending on whether the section is mapped or not. */
3114
3115 CORE_ADDR
3116 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3117 {
3118 if (overlay_debugging)
3119 {
3120 /* If the symbol has no section, just return its regular address. */
3121 if (section == 0)
3122 return address;
3123 /* If the symbol's section is not an overlay, just return its
3124 address. */
3125 if (!section_is_overlay (section))
3126 return address;
3127 /* If the symbol's section is mapped, just return its address. */
3128 if (section_is_mapped (section))
3129 return address;
3130 /*
3131 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3132 * then return its LOADED address rather than its vma address!!
3133 */
3134 return overlay_unmapped_address (address, section);
3135 }
3136 return address;
3137 }
3138
3139 /* Function: find_pc_overlay (PC)
3140 Return the best-match overlay section for PC:
3141 If PC matches a mapped overlay section's VMA, return that section.
3142 Else if PC matches an unmapped section's VMA, return that section.
3143 Else if PC matches an unmapped section's LMA, return that section. */
3144
3145 struct obj_section *
3146 find_pc_overlay (CORE_ADDR pc)
3147 {
3148 struct objfile *objfile;
3149 struct obj_section *osect, *best_match = NULL;
3150
3151 if (overlay_debugging)
3152 ALL_OBJSECTIONS (objfile, osect)
3153 if (section_is_overlay (osect))
3154 {
3155 if (pc_in_mapped_range (pc, osect))
3156 {
3157 if (section_is_mapped (osect))
3158 return osect;
3159 else
3160 best_match = osect;
3161 }
3162 else if (pc_in_unmapped_range (pc, osect))
3163 best_match = osect;
3164 }
3165 return best_match;
3166 }
3167
3168 /* Function: find_pc_mapped_section (PC)
3169 If PC falls into the VMA address range of an overlay section that is
3170 currently marked as MAPPED, return that section. Else return NULL. */
3171
3172 struct obj_section *
3173 find_pc_mapped_section (CORE_ADDR pc)
3174 {
3175 struct objfile *objfile;
3176 struct obj_section *osect;
3177
3178 if (overlay_debugging)
3179 ALL_OBJSECTIONS (objfile, osect)
3180 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3181 return osect;
3182
3183 return NULL;
3184 }
3185
3186 /* Function: list_overlays_command
3187 Print a list of mapped sections and their PC ranges. */
3188
3189 static void
3190 list_overlays_command (char *args, int from_tty)
3191 {
3192 int nmapped = 0;
3193 struct objfile *objfile;
3194 struct obj_section *osect;
3195
3196 if (overlay_debugging)
3197 ALL_OBJSECTIONS (objfile, osect)
3198 if (section_is_mapped (osect))
3199 {
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const char *name;
3202 bfd_vma lma, vma;
3203 int size;
3204
3205 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3206 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3207 size = bfd_get_section_size (osect->the_bfd_section);
3208 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3209
3210 printf_filtered ("Section %s, loaded at ", name);
3211 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3212 puts_filtered (" - ");
3213 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3214 printf_filtered (", mapped at ");
3215 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3216 puts_filtered (" - ");
3217 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3218 puts_filtered ("\n");
3219
3220 nmapped++;
3221 }
3222 if (nmapped == 0)
3223 printf_filtered (_("No sections are mapped.\n"));
3224 }
3225
3226 /* Function: map_overlay_command
3227 Mark the named section as mapped (ie. residing at its VMA address). */
3228
3229 static void
3230 map_overlay_command (char *args, int from_tty)
3231 {
3232 struct objfile *objfile, *objfile2;
3233 struct obj_section *sec, *sec2;
3234
3235 if (!overlay_debugging)
3236 error (_("Overlay debugging not enabled. Use "
3237 "either the 'overlay auto' or\n"
3238 "the 'overlay manual' command."));
3239
3240 if (args == 0 || *args == 0)
3241 error (_("Argument required: name of an overlay section"));
3242
3243 /* First, find a section matching the user supplied argument. */
3244 ALL_OBJSECTIONS (objfile, sec)
3245 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3246 {
3247 /* Now, check to see if the section is an overlay. */
3248 if (!section_is_overlay (sec))
3249 continue; /* not an overlay section */
3250
3251 /* Mark the overlay as "mapped". */
3252 sec->ovly_mapped = 1;
3253
3254 /* Next, make a pass and unmap any sections that are
3255 overlapped by this new section: */
3256 ALL_OBJSECTIONS (objfile2, sec2)
3257 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3258 {
3259 if (info_verbose)
3260 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3261 bfd_section_name (objfile->obfd,
3262 sec2->the_bfd_section));
3263 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3264 }
3265 return;
3266 }
3267 error (_("No overlay section called %s"), args);
3268 }
3269
3270 /* Function: unmap_overlay_command
3271 Mark the overlay section as unmapped
3272 (ie. resident in its LMA address range, rather than the VMA range). */
3273
3274 static void
3275 unmap_overlay_command (char *args, int from_tty)
3276 {
3277 struct objfile *objfile;
3278 struct obj_section *sec;
3279
3280 if (!overlay_debugging)
3281 error (_("Overlay debugging not enabled. "
3282 "Use either the 'overlay auto' or\n"
3283 "the 'overlay manual' command."));
3284
3285 if (args == 0 || *args == 0)
3286 error (_("Argument required: name of an overlay section"));
3287
3288 /* First, find a section matching the user supplied argument. */
3289 ALL_OBJSECTIONS (objfile, sec)
3290 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3291 {
3292 if (!sec->ovly_mapped)
3293 error (_("Section %s is not mapped"), args);
3294 sec->ovly_mapped = 0;
3295 return;
3296 }
3297 error (_("No overlay section called %s"), args);
3298 }
3299
3300 /* Function: overlay_auto_command
3301 A utility command to turn on overlay debugging.
3302 Possibly this should be done via a set/show command. */
3303
3304 static void
3305 overlay_auto_command (char *args, int from_tty)
3306 {
3307 overlay_debugging = ovly_auto;
3308 enable_overlay_breakpoints ();
3309 if (info_verbose)
3310 printf_unfiltered (_("Automatic overlay debugging enabled."));
3311 }
3312
3313 /* Function: overlay_manual_command
3314 A utility command to turn on overlay debugging.
3315 Possibly this should be done via a set/show command. */
3316
3317 static void
3318 overlay_manual_command (char *args, int from_tty)
3319 {
3320 overlay_debugging = ovly_on;
3321 disable_overlay_breakpoints ();
3322 if (info_verbose)
3323 printf_unfiltered (_("Overlay debugging enabled."));
3324 }
3325
3326 /* Function: overlay_off_command
3327 A utility command to turn on overlay debugging.
3328 Possibly this should be done via a set/show command. */
3329
3330 static void
3331 overlay_off_command (char *args, int from_tty)
3332 {
3333 overlay_debugging = ovly_off;
3334 disable_overlay_breakpoints ();
3335 if (info_verbose)
3336 printf_unfiltered (_("Overlay debugging disabled."));
3337 }
3338
3339 static void
3340 overlay_load_command (char *args, int from_tty)
3341 {
3342 struct gdbarch *gdbarch = get_current_arch ();
3343
3344 if (gdbarch_overlay_update_p (gdbarch))
3345 gdbarch_overlay_update (gdbarch, NULL);
3346 else
3347 error (_("This target does not know how to read its overlay state."));
3348 }
3349
3350 /* Function: overlay_command
3351 A place-holder for a mis-typed command. */
3352
3353 /* Command list chain containing all defined "overlay" subcommands. */
3354 static struct cmd_list_element *overlaylist;
3355
3356 static void
3357 overlay_command (char *args, int from_tty)
3358 {
3359 printf_unfiltered
3360 ("\"overlay\" must be followed by the name of an overlay command.\n");
3361 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3362 }
3363
3364
3365 /* Target Overlays for the "Simplest" overlay manager:
3366
3367 This is GDB's default target overlay layer. It works with the
3368 minimal overlay manager supplied as an example by Cygnus. The
3369 entry point is via a function pointer "gdbarch_overlay_update",
3370 so targets that use a different runtime overlay manager can
3371 substitute their own overlay_update function and take over the
3372 function pointer.
3373
3374 The overlay_update function pokes around in the target's data structures
3375 to see what overlays are mapped, and updates GDB's overlay mapping with
3376 this information.
3377
3378 In this simple implementation, the target data structures are as follows:
3379 unsigned _novlys; /# number of overlay sections #/
3380 unsigned _ovly_table[_novlys][4] = {
3381 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3382 {..., ..., ..., ...},
3383 }
3384 unsigned _novly_regions; /# number of overlay regions #/
3385 unsigned _ovly_region_table[_novly_regions][3] = {
3386 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3387 {..., ..., ...},
3388 }
3389 These functions will attempt to update GDB's mappedness state in the
3390 symbol section table, based on the target's mappedness state.
3391
3392 To do this, we keep a cached copy of the target's _ovly_table, and
3393 attempt to detect when the cached copy is invalidated. The main
3394 entry point is "simple_overlay_update(SECT), which looks up SECT in
3395 the cached table and re-reads only the entry for that section from
3396 the target (whenever possible). */
3397
3398 /* Cached, dynamically allocated copies of the target data structures: */
3399 static unsigned (*cache_ovly_table)[4] = 0;
3400 static unsigned cache_novlys = 0;
3401 static CORE_ADDR cache_ovly_table_base = 0;
3402 enum ovly_index
3403 {
3404 VMA, SIZE, LMA, MAPPED
3405 };
3406
3407 /* Throw away the cached copy of _ovly_table. */
3408 static void
3409 simple_free_overlay_table (void)
3410 {
3411 if (cache_ovly_table)
3412 xfree (cache_ovly_table);
3413 cache_novlys = 0;
3414 cache_ovly_table = NULL;
3415 cache_ovly_table_base = 0;
3416 }
3417
3418 /* Read an array of ints of size SIZE from the target into a local buffer.
3419 Convert to host order. int LEN is number of ints. */
3420 static void
3421 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3422 int len, int size, enum bfd_endian byte_order)
3423 {
3424 /* FIXME (alloca): Not safe if array is very large. */
3425 gdb_byte *buf = alloca (len * size);
3426 int i;
3427
3428 read_memory (memaddr, buf, len * size);
3429 for (i = 0; i < len; i++)
3430 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3431 }
3432
3433 /* Find and grab a copy of the target _ovly_table
3434 (and _novlys, which is needed for the table's size). */
3435 static int
3436 simple_read_overlay_table (void)
3437 {
3438 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3439 struct gdbarch *gdbarch;
3440 int word_size;
3441 enum bfd_endian byte_order;
3442
3443 simple_free_overlay_table ();
3444 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3445 if (! novlys_msym)
3446 {
3447 error (_("Error reading inferior's overlay table: "
3448 "couldn't find `_novlys' variable\n"
3449 "in inferior. Use `overlay manual' mode."));
3450 return 0;
3451 }
3452
3453 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3454 if (! ovly_table_msym)
3455 {
3456 error (_("Error reading inferior's overlay table: couldn't find "
3457 "`_ovly_table' array\n"
3458 "in inferior. Use `overlay manual' mode."));
3459 return 0;
3460 }
3461
3462 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3463 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3464 byte_order = gdbarch_byte_order (gdbarch);
3465
3466 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3467 4, byte_order);
3468 cache_ovly_table
3469 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3470 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3471 read_target_long_array (cache_ovly_table_base,
3472 (unsigned int *) cache_ovly_table,
3473 cache_novlys * 4, word_size, byte_order);
3474
3475 return 1; /* SUCCESS */
3476 }
3477
3478 /* Function: simple_overlay_update_1
3479 A helper function for simple_overlay_update. Assuming a cached copy
3480 of _ovly_table exists, look through it to find an entry whose vma,
3481 lma and size match those of OSECT. Re-read the entry and make sure
3482 it still matches OSECT (else the table may no longer be valid).
3483 Set OSECT's mapped state to match the entry. Return: 1 for
3484 success, 0 for failure. */
3485
3486 static int
3487 simple_overlay_update_1 (struct obj_section *osect)
3488 {
3489 int i, size;
3490 bfd *obfd = osect->objfile->obfd;
3491 asection *bsect = osect->the_bfd_section;
3492 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3493 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3495
3496 size = bfd_get_section_size (osect->the_bfd_section);
3497 for (i = 0; i < cache_novlys; i++)
3498 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3499 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3500 /* && cache_ovly_table[i][SIZE] == size */ )
3501 {
3502 read_target_long_array (cache_ovly_table_base + i * word_size,
3503 (unsigned int *) cache_ovly_table[i],
3504 4, word_size, byte_order);
3505 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3506 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3507 /* && cache_ovly_table[i][SIZE] == size */ )
3508 {
3509 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3510 return 1;
3511 }
3512 else /* Warning! Warning! Target's ovly table has changed! */
3513 return 0;
3514 }
3515 return 0;
3516 }
3517
3518 /* Function: simple_overlay_update
3519 If OSECT is NULL, then update all sections' mapped state
3520 (after re-reading the entire target _ovly_table).
3521 If OSECT is non-NULL, then try to find a matching entry in the
3522 cached ovly_table and update only OSECT's mapped state.
3523 If a cached entry can't be found or the cache isn't valid, then
3524 re-read the entire cache, and go ahead and update all sections. */
3525
3526 void
3527 simple_overlay_update (struct obj_section *osect)
3528 {
3529 struct objfile *objfile;
3530
3531 /* Were we given an osect to look up? NULL means do all of them. */
3532 if (osect)
3533 /* Have we got a cached copy of the target's overlay table? */
3534 if (cache_ovly_table != NULL)
3535 {
3536 /* Does its cached location match what's currently in the
3537 symtab? */
3538 struct minimal_symbol *minsym
3539 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3540
3541 if (minsym == NULL)
3542 error (_("Error reading inferior's overlay table: couldn't "
3543 "find `_ovly_table' array\n"
3544 "in inferior. Use `overlay manual' mode."));
3545
3546 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3547 /* Then go ahead and try to look up this single section in
3548 the cache. */
3549 if (simple_overlay_update_1 (osect))
3550 /* Found it! We're done. */
3551 return;
3552 }
3553
3554 /* Cached table no good: need to read the entire table anew.
3555 Or else we want all the sections, in which case it's actually
3556 more efficient to read the whole table in one block anyway. */
3557
3558 if (! simple_read_overlay_table ())
3559 return;
3560
3561 /* Now may as well update all sections, even if only one was requested. */
3562 ALL_OBJSECTIONS (objfile, osect)
3563 if (section_is_overlay (osect))
3564 {
3565 int i, size;
3566 bfd *obfd = osect->objfile->obfd;
3567 asection *bsect = osect->the_bfd_section;
3568
3569 size = bfd_get_section_size (bsect);
3570 for (i = 0; i < cache_novlys; i++)
3571 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3572 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3573 /* && cache_ovly_table[i][SIZE] == size */ )
3574 { /* obj_section matches i'th entry in ovly_table. */
3575 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3576 break; /* finished with inner for loop: break out. */
3577 }
3578 }
3579 }
3580
3581 /* Set the output sections and output offsets for section SECTP in
3582 ABFD. The relocation code in BFD will read these offsets, so we
3583 need to be sure they're initialized. We map each section to itself,
3584 with no offset; this means that SECTP->vma will be honored. */
3585
3586 static void
3587 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3588 {
3589 sectp->output_section = sectp;
3590 sectp->output_offset = 0;
3591 }
3592
3593 /* Default implementation for sym_relocate. */
3594
3595
3596 bfd_byte *
3597 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3598 bfd_byte *buf)
3599 {
3600 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3601 DWO file. */
3602 bfd *abfd = sectp->owner;
3603
3604 /* We're only interested in sections with relocation
3605 information. */
3606 if ((sectp->flags & SEC_RELOC) == 0)
3607 return NULL;
3608
3609 /* We will handle section offsets properly elsewhere, so relocate as if
3610 all sections begin at 0. */
3611 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3612
3613 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3614 }
3615
3616 /* Relocate the contents of a debug section SECTP in ABFD. The
3617 contents are stored in BUF if it is non-NULL, or returned in a
3618 malloc'd buffer otherwise.
3619
3620 For some platforms and debug info formats, shared libraries contain
3621 relocations against the debug sections (particularly for DWARF-2;
3622 one affected platform is PowerPC GNU/Linux, although it depends on
3623 the version of the linker in use). Also, ELF object files naturally
3624 have unresolved relocations for their debug sections. We need to apply
3625 the relocations in order to get the locations of symbols correct.
3626 Another example that may require relocation processing, is the
3627 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3628 debug section. */
3629
3630 bfd_byte *
3631 symfile_relocate_debug_section (struct objfile *objfile,
3632 asection *sectp, bfd_byte *buf)
3633 {
3634 gdb_assert (objfile->sf->sym_relocate);
3635
3636 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3637 }
3638
3639 struct symfile_segment_data *
3640 get_symfile_segment_data (bfd *abfd)
3641 {
3642 const struct sym_fns *sf = find_sym_fns (abfd);
3643
3644 if (sf == NULL)
3645 return NULL;
3646
3647 return sf->sym_segments (abfd);
3648 }
3649
3650 void
3651 free_symfile_segment_data (struct symfile_segment_data *data)
3652 {
3653 xfree (data->segment_bases);
3654 xfree (data->segment_sizes);
3655 xfree (data->segment_info);
3656 xfree (data);
3657 }
3658
3659
3660 /* Given:
3661 - DATA, containing segment addresses from the object file ABFD, and
3662 the mapping from ABFD's sections onto the segments that own them,
3663 and
3664 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3665 segment addresses reported by the target,
3666 store the appropriate offsets for each section in OFFSETS.
3667
3668 If there are fewer entries in SEGMENT_BASES than there are segments
3669 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3670
3671 If there are more entries, then ignore the extra. The target may
3672 not be able to distinguish between an empty data segment and a
3673 missing data segment; a missing text segment is less plausible. */
3674 int
3675 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3676 struct section_offsets *offsets,
3677 int num_segment_bases,
3678 const CORE_ADDR *segment_bases)
3679 {
3680 int i;
3681 asection *sect;
3682
3683 /* It doesn't make sense to call this function unless you have some
3684 segment base addresses. */
3685 gdb_assert (num_segment_bases > 0);
3686
3687 /* If we do not have segment mappings for the object file, we
3688 can not relocate it by segments. */
3689 gdb_assert (data != NULL);
3690 gdb_assert (data->num_segments > 0);
3691
3692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3693 {
3694 int which = data->segment_info[i];
3695
3696 gdb_assert (0 <= which && which <= data->num_segments);
3697
3698 /* Don't bother computing offsets for sections that aren't
3699 loaded as part of any segment. */
3700 if (! which)
3701 continue;
3702
3703 /* Use the last SEGMENT_BASES entry as the address of any extra
3704 segments mentioned in DATA->segment_info. */
3705 if (which > num_segment_bases)
3706 which = num_segment_bases;
3707
3708 offsets->offsets[i] = (segment_bases[which - 1]
3709 - data->segment_bases[which - 1]);
3710 }
3711
3712 return 1;
3713 }
3714
3715 static void
3716 symfile_find_segment_sections (struct objfile *objfile)
3717 {
3718 bfd *abfd = objfile->obfd;
3719 int i;
3720 asection *sect;
3721 struct symfile_segment_data *data;
3722
3723 data = get_symfile_segment_data (objfile->obfd);
3724 if (data == NULL)
3725 return;
3726
3727 if (data->num_segments != 1 && data->num_segments != 2)
3728 {
3729 free_symfile_segment_data (data);
3730 return;
3731 }
3732
3733 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3734 {
3735 int which = data->segment_info[i];
3736
3737 if (which == 1)
3738 {
3739 if (objfile->sect_index_text == -1)
3740 objfile->sect_index_text = sect->index;
3741
3742 if (objfile->sect_index_rodata == -1)
3743 objfile->sect_index_rodata = sect->index;
3744 }
3745 else if (which == 2)
3746 {
3747 if (objfile->sect_index_data == -1)
3748 objfile->sect_index_data = sect->index;
3749
3750 if (objfile->sect_index_bss == -1)
3751 objfile->sect_index_bss = sect->index;
3752 }
3753 }
3754
3755 free_symfile_segment_data (data);
3756 }
3757
3758 void
3759 _initialize_symfile (void)
3760 {
3761 struct cmd_list_element *c;
3762
3763 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3764 Load symbol table from executable file FILE.\n\
3765 The `file' command can also load symbol tables, as well as setting the file\n\
3766 to execute."), &cmdlist);
3767 set_cmd_completer (c, filename_completer);
3768
3769 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3770 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3771 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3772 ...]\nADDR is the starting address of the file's text.\n\
3773 The optional arguments are section-name section-address pairs and\n\
3774 should be specified if the data and bss segments are not contiguous\n\
3775 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3776 &cmdlist);
3777 set_cmd_completer (c, filename_completer);
3778
3779 c = add_cmd ("load", class_files, load_command, _("\
3780 Dynamically load FILE into the running program, and record its symbols\n\
3781 for access from GDB.\n\
3782 A load OFFSET may also be given."), &cmdlist);
3783 set_cmd_completer (c, filename_completer);
3784
3785 add_prefix_cmd ("overlay", class_support, overlay_command,
3786 _("Commands for debugging overlays."), &overlaylist,
3787 "overlay ", 0, &cmdlist);
3788
3789 add_com_alias ("ovly", "overlay", class_alias, 1);
3790 add_com_alias ("ov", "overlay", class_alias, 1);
3791
3792 add_cmd ("map-overlay", class_support, map_overlay_command,
3793 _("Assert that an overlay section is mapped."), &overlaylist);
3794
3795 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3796 _("Assert that an overlay section is unmapped."), &overlaylist);
3797
3798 add_cmd ("list-overlays", class_support, list_overlays_command,
3799 _("List mappings of overlay sections."), &overlaylist);
3800
3801 add_cmd ("manual", class_support, overlay_manual_command,
3802 _("Enable overlay debugging."), &overlaylist);
3803 add_cmd ("off", class_support, overlay_off_command,
3804 _("Disable overlay debugging."), &overlaylist);
3805 add_cmd ("auto", class_support, overlay_auto_command,
3806 _("Enable automatic overlay debugging."), &overlaylist);
3807 add_cmd ("load-target", class_support, overlay_load_command,
3808 _("Read the overlay mapping state from the target."), &overlaylist);
3809
3810 /* Filename extension to source language lookup table: */
3811 init_filename_language_table ();
3812 add_setshow_string_noescape_cmd ("extension-language", class_files,
3813 &ext_args, _("\
3814 Set mapping between filename extension and source language."), _("\
3815 Show mapping between filename extension and source language."), _("\
3816 Usage: set extension-language .foo bar"),
3817 set_ext_lang_command,
3818 show_ext_args,
3819 &setlist, &showlist);
3820
3821 add_info ("extensions", info_ext_lang_command,
3822 _("All filename extensions associated with a source language."));
3823
3824 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3825 &debug_file_directory, _("\
3826 Set the directories where separate debug symbols are searched for."), _("\
3827 Show the directories where separate debug symbols are searched for."), _("\
3828 Separate debug symbols are first searched for in the same\n\
3829 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3830 and lastly at the path of the directory of the binary with\n\
3831 each global debug-file-directory component prepended."),
3832 NULL,
3833 show_debug_file_directory,
3834 &setlist, &showlist);
3835 }
This page took 0.157805 seconds and 4 git commands to generate.