a567f6ddd29d6bb906a3f9340cc743f4737f72a5
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include <string.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef struct
134 {
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140 } registered_sym_fns;
141
142 DEF_VEC_O (registered_sym_fns);
143
144 static VEC (registered_sym_fns) *symtab_fns = NULL;
145
146 /* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
153 library symbols are not loaded, commands like "info fun" will *not*
154 report all the functions that are actually present. */
155
156 int auto_solib_add = 1;
157 \f
158
159 /* True if we are reading a symbol table. */
160
161 int currently_reading_symtab = 0;
162
163 static void
164 decrement_reading_symtab (void *dummy)
165 {
166 currently_reading_symtab--;
167 gdb_assert (currently_reading_symtab >= 0);
168 }
169
170 /* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
172
173 struct cleanup *
174 increment_reading_symtab (void)
175 {
176 ++currently_reading_symtab;
177 gdb_assert (currently_reading_symtab > 0);
178 return make_cleanup (decrement_reading_symtab, NULL);
179 }
180
181 /* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190 void
191 find_lowest_section (bfd *abfd, asection *sect, void *obj)
192 {
193 asection **lowest = (asection **) obj;
194
195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205 }
206
207 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
210
211 struct section_addr_info *
212 alloc_section_addr_info (size_t num_sections)
213 {
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
221
222 return sap;
223 }
224
225 /* Build (allocate and populate) a section_addr_info struct from
226 an existing section table. */
227
228 extern struct section_addr_info *
229 build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
231 {
232 struct section_addr_info *sap;
233 const struct target_section *stp;
234 int oidx;
235
236 sap = alloc_section_addr_info (end - start);
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
244 && oidx < end - start)
245 {
246 sap->other[oidx].addr = stp->addr;
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
249 oidx++;
250 }
251 }
252
253 sap->num_sections = oidx;
254
255 return sap;
256 }
257
258 /* Create a section_addr_info from section offsets in ABFD. */
259
260 static struct section_addr_info *
261 build_section_addr_info_from_bfd (bfd *abfd)
262 {
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
270 {
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
274 i++;
275 }
276
277 sap->num_sections = i;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in OBJFILE. */
283
284 struct section_addr_info *
285 build_section_addr_info_from_objfile (const struct objfile *objfile)
286 {
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
294 for (i = 0; i < sap->num_sections; i++)
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301 }
302
303 /* Free all memory allocated by build_section_addr_info_from_section_table. */
304
305 extern void
306 free_section_addr_info (struct section_addr_info *sap)
307 {
308 int idx;
309
310 for (idx = 0; idx < sap->num_sections; idx++)
311 xfree (sap->other[idx].name);
312 xfree (sap);
313 }
314
315 /* Initialize OBJFILE's sect_index_* members. */
316
317 static void
318 init_objfile_sect_indices (struct objfile *objfile)
319 {
320 asection *sect;
321 int i;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
324 if (sect)
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
328 if (sect)
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
332 if (sect)
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
336 if (sect)
337 objfile->sect_index_rodata = sect->index;
338
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
374 }
375
376 /* The arguments to place_section. */
377
378 struct place_section_arg
379 {
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382 };
383
384 /* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
387 static void
388 place_section (bfd *abfd, asection *sect, void *obj)
389 {
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
394
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
397 return;
398
399 /* If the user specified an offset, honor it. */
400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
404 start_addr = (arg->lowest + align - 1) & -align;
405
406 do {
407 asection *cur_sec;
408
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
436 break;
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
445 arg->lowest = start_addr + bfd_get_section_size (sect);
446 }
447
448 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
451
452 void
453 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
455 const struct section_addr_info *addrs)
456 {
457 int i;
458
459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
460
461 /* Now calculate offsets for section that were specified by the caller. */
462 for (i = 0; i < addrs->num_sections; i++)
463 {
464 const struct other_sections *osp;
465
466 osp = &addrs->other[i];
467 if (osp->sectindex == -1)
468 continue;
469
470 /* Record all sections in offsets. */
471 /* The section_offsets in the objfile are here filled in using
472 the BFD index. */
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475 }
476
477 /* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483 static const char *
484 addr_section_name (const char *s)
485 {
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492 }
493
494 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497 static int
498 addrs_section_compar (const void *ap, const void *bp)
499 {
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
502 int retval;
503
504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
505 if (retval)
506 return retval;
507
508 return a->sectindex - b->sectindex;
509 }
510
511 /* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514 static struct other_sections **
515 addrs_section_sort (struct section_addr_info *addrs)
516 {
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
522 for (i = 0; i < addrs->num_sections; i++)
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529 }
530
531 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
534
535 void
536 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537 {
538 asection *lower_sect;
539 CORE_ADDR lower_offset;
540 int i;
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
545
546 /* Find lowest loadable section to be used as starting point for
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
555 }
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
587
588 while (*abfd_addrs_sorted
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
621 for (i = 0; i < addrs->num_sections; i++)
622 {
623 struct other_sections *sect = addrs_to_abfd_addrs[i];
624
625 if (sect)
626 {
627 /* This is the index used by BFD. */
628 addrs->other[i].sectindex = sect->sectindex;
629
630 if (addrs->other[i].addr != 0)
631 {
632 addrs->other[i].addr -= sect->addr;
633 lower_offset = addrs->other[i].addr;
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
638 else
639 {
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
658 || strcmp (sect_name, ".gnu.conflict") == 0
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
670 addrs->other[i].addr = 0;
671 addrs->other[i].sectindex = -1;
672 }
673 }
674
675 do_cleanups (my_cleanup);
676 }
677
678 /* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684 void
685 default_symfile_offsets (struct objfile *objfile,
686 const struct section_addr_info *addrs)
687 {
688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
694
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
757 offsets[cur_sec->index]);
758 offsets[cur_sec->index] = 0;
759 }
760 }
761 }
762
763 /* Remember the bfd indexes for the .text, .data, .bss and
764 .rodata sections. */
765 init_objfile_sect_indices (objfile);
766 }
767
768 /* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774 struct symfile_segment_data *
775 default_symfile_segments (bfd *abfd)
776 {
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
802 data = XCNEW (struct symfile_segment_data);
803 data->num_segments = 1;
804 data->segment_bases = XCNEW (CORE_ADDR);
805 data->segment_sizes = XCNEW (CORE_ADDR);
806
807 num_sections = bfd_count_sections (abfd);
808 data->segment_info = XCNEWVEC (int, num_sections);
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830 }
831
832 /* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835 static void
836 read_symbols (struct objfile *objfile, int add_flags)
837 {
838 (*objfile->sf->sym_read) (objfile, add_flags);
839
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile)
843 && objfile->separate_debug_objfile == NULL
844 && objfile->separate_debug_objfile_backlink == NULL)
845 {
846 bfd *abfd = find_separate_debug_file_in_section (objfile);
847 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
848
849 if (abfd != NULL)
850 {
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
856 objfile);
857 }
858
859 do_cleanups (cleanup);
860 }
861 if ((add_flags & SYMFILE_NO_READ) == 0)
862 require_partial_symbols (objfile, 0);
863 }
864
865 /* Initialize entry point information for this objfile. */
866
867 static void
868 init_entry_point_info (struct objfile *objfile)
869 {
870 struct entry_info *ei = &objfile->per_bfd->ei;
871
872 if (ei->initialized)
873 return;
874 ei->initialized = 1;
875
876 /* Save startup file's range of PC addresses to help blockframe.c
877 decide where the bottom of the stack is. */
878
879 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
880 {
881 /* Executable file -- record its entry point so we'll recognize
882 the startup file because it contains the entry point. */
883 ei->entry_point = bfd_get_start_address (objfile->obfd);
884 ei->entry_point_p = 1;
885 }
886 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
887 && bfd_get_start_address (objfile->obfd) != 0)
888 {
889 /* Some shared libraries may have entry points set and be
890 runnable. There's no clear way to indicate this, so just check
891 for values other than zero. */
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
894 }
895 else
896 {
897 /* Examination of non-executable.o files. Short-circuit this stuff. */
898 ei->entry_point_p = 0;
899 }
900
901 if (ei->entry_point_p)
902 {
903 struct obj_section *osect;
904 CORE_ADDR entry_point = ei->entry_point;
905 int found;
906
907 /* Make certain that the address points at real code, and not a
908 function descriptor. */
909 entry_point
910 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
911 entry_point,
912 &current_target);
913
914 /* Remove any ISA markers, so that this matches entries in the
915 symbol table. */
916 ei->entry_point
917 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
918
919 found = 0;
920 ALL_OBJFILE_OSECTIONS (objfile, osect)
921 {
922 struct bfd_section *sect = osect->the_bfd_section;
923
924 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
925 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
926 + bfd_get_section_size (sect)))
927 {
928 ei->the_bfd_section_index
929 = gdb_bfd_section_index (objfile->obfd, sect);
930 found = 1;
931 break;
932 }
933 }
934
935 if (!found)
936 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
937 }
938 }
939
940 /* Process a symbol file, as either the main file or as a dynamically
941 loaded file.
942
943 This function does not set the OBJFILE's entry-point info.
944
945 OBJFILE is where the symbols are to be read from.
946
947 ADDRS is the list of section load addresses. If the user has given
948 an 'add-symbol-file' command, then this is the list of offsets and
949 addresses he or she provided as arguments to the command; or, if
950 we're handling a shared library, these are the actual addresses the
951 sections are loaded at, according to the inferior's dynamic linker
952 (as gleaned by GDB's shared library code). We convert each address
953 into an offset from the section VMA's as it appears in the object
954 file, and then call the file's sym_offsets function to convert this
955 into a format-specific offset table --- a `struct section_offsets'.
956
957 ADD_FLAGS encodes verbosity level, whether this is main symbol or
958 an extra symbol file such as dynamically loaded code, and wether
959 breakpoint reset should be deferred. */
960
961 static void
962 syms_from_objfile_1 (struct objfile *objfile,
963 struct section_addr_info *addrs,
964 int add_flags)
965 {
966 struct section_addr_info *local_addr = NULL;
967 struct cleanup *old_chain;
968 const int mainline = add_flags & SYMFILE_MAINLINE;
969
970 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
971
972 if (objfile->sf == NULL)
973 {
974 /* No symbols to load, but we still need to make sure
975 that the section_offsets table is allocated. */
976 int num_sections = gdb_bfd_count_sections (objfile->obfd);
977 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
978
979 objfile->num_sections = num_sections;
980 objfile->section_offsets
981 = obstack_alloc (&objfile->objfile_obstack, size);
982 memset (objfile->section_offsets, 0, size);
983 return;
984 }
985
986 /* Make sure that partially constructed symbol tables will be cleaned up
987 if an error occurs during symbol reading. */
988 old_chain = make_cleanup_free_objfile (objfile);
989
990 /* If ADDRS is NULL, put together a dummy address list.
991 We now establish the convention that an addr of zero means
992 no load address was specified. */
993 if (! addrs)
994 {
995 local_addr = alloc_section_addr_info (1);
996 make_cleanup (xfree, local_addr);
997 addrs = local_addr;
998 }
999
1000 if (mainline)
1001 {
1002 /* We will modify the main symbol table, make sure that all its users
1003 will be cleaned up if an error occurs during symbol reading. */
1004 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1005
1006 /* Since no error yet, throw away the old symbol table. */
1007
1008 if (symfile_objfile != NULL)
1009 {
1010 free_objfile (symfile_objfile);
1011 gdb_assert (symfile_objfile == NULL);
1012 }
1013
1014 /* Currently we keep symbols from the add-symbol-file command.
1015 If the user wants to get rid of them, they should do "symbol-file"
1016 without arguments first. Not sure this is the best behavior
1017 (PR 2207). */
1018
1019 (*objfile->sf->sym_new_init) (objfile);
1020 }
1021
1022 /* Convert addr into an offset rather than an absolute address.
1023 We find the lowest address of a loaded segment in the objfile,
1024 and assume that <addr> is where that got loaded.
1025
1026 We no longer warn if the lowest section is not a text segment (as
1027 happens for the PA64 port. */
1028 if (addrs->num_sections > 0)
1029 addr_info_make_relative (addrs, objfile->obfd);
1030
1031 /* Initialize symbol reading routines for this objfile, allow complaints to
1032 appear for this new file, and record how verbose to be, then do the
1033 initial symbol reading for this file. */
1034
1035 (*objfile->sf->sym_init) (objfile);
1036 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1037
1038 (*objfile->sf->sym_offsets) (objfile, addrs);
1039
1040 read_symbols (objfile, add_flags);
1041
1042 /* Discard cleanups as symbol reading was successful. */
1043
1044 discard_cleanups (old_chain);
1045 xfree (local_addr);
1046 }
1047
1048 /* Same as syms_from_objfile_1, but also initializes the objfile
1049 entry-point info. */
1050
1051 static void
1052 syms_from_objfile (struct objfile *objfile,
1053 struct section_addr_info *addrs,
1054 int add_flags)
1055 {
1056 syms_from_objfile_1 (objfile, addrs, add_flags);
1057 init_entry_point_info (objfile);
1058 }
1059
1060 /* Perform required actions after either reading in the initial
1061 symbols for a new objfile, or mapping in the symbols from a reusable
1062 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1063
1064 void
1065 new_symfile_objfile (struct objfile *objfile, int add_flags)
1066 {
1067 /* If this is the main symbol file we have to clean up all users of the
1068 old main symbol file. Otherwise it is sufficient to fixup all the
1069 breakpoints that may have been redefined by this symbol file. */
1070 if (add_flags & SYMFILE_MAINLINE)
1071 {
1072 /* OK, make it the "real" symbol file. */
1073 symfile_objfile = objfile;
1074
1075 clear_symtab_users (add_flags);
1076 }
1077 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1078 {
1079 breakpoint_re_set ();
1080 }
1081
1082 /* We're done reading the symbol file; finish off complaints. */
1083 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1084 }
1085
1086 /* Process a symbol file, as either the main file or as a dynamically
1087 loaded file.
1088
1089 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1090 A new reference is acquired by this function.
1091
1092 For NAME description see allocate_objfile's definition.
1093
1094 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1095 extra, such as dynamically loaded code, and what to do with breakpoins.
1096
1097 ADDRS is as described for syms_from_objfile_1, above.
1098 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1099
1100 PARENT is the original objfile if ABFD is a separate debug info file.
1101 Otherwise PARENT is NULL.
1102
1103 Upon success, returns a pointer to the objfile that was added.
1104 Upon failure, jumps back to command level (never returns). */
1105
1106 static struct objfile *
1107 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1108 struct section_addr_info *addrs,
1109 int flags, struct objfile *parent)
1110 {
1111 struct objfile *objfile;
1112 const int from_tty = add_flags & SYMFILE_VERBOSE;
1113 const int mainline = add_flags & SYMFILE_MAINLINE;
1114 const int should_print = ((from_tty || info_verbose)
1115 && (readnow_symbol_files
1116 || (add_flags & SYMFILE_NO_READ) == 0));
1117
1118 if (readnow_symbol_files)
1119 {
1120 flags |= OBJF_READNOW;
1121 add_flags &= ~SYMFILE_NO_READ;
1122 }
1123
1124 /* Give user a chance to burp if we'd be
1125 interactively wiping out any existing symbols. */
1126
1127 if ((have_full_symbols () || have_partial_symbols ())
1128 && mainline
1129 && from_tty
1130 && !query (_("Load new symbol table from \"%s\"? "), name))
1131 error (_("Not confirmed."));
1132
1133 objfile = allocate_objfile (abfd, name,
1134 flags | (mainline ? OBJF_MAINLINE : 0));
1135
1136 if (parent)
1137 add_separate_debug_objfile (objfile, parent);
1138
1139 /* We either created a new mapped symbol table, mapped an existing
1140 symbol table file which has not had initial symbol reading
1141 performed, or need to read an unmapped symbol table. */
1142 if (should_print)
1143 {
1144 if (deprecated_pre_add_symbol_hook)
1145 deprecated_pre_add_symbol_hook (name);
1146 else
1147 {
1148 printf_unfiltered (_("Reading symbols from %s..."), name);
1149 wrap_here ("");
1150 gdb_flush (gdb_stdout);
1151 }
1152 }
1153 syms_from_objfile (objfile, addrs, add_flags);
1154
1155 /* We now have at least a partial symbol table. Check to see if the
1156 user requested that all symbols be read on initial access via either
1157 the gdb startup command line or on a per symbol file basis. Expand
1158 all partial symbol tables for this objfile if so. */
1159
1160 if ((flags & OBJF_READNOW))
1161 {
1162 if (should_print)
1163 {
1164 printf_unfiltered (_("expanding to full symbols..."));
1165 wrap_here ("");
1166 gdb_flush (gdb_stdout);
1167 }
1168
1169 if (objfile->sf)
1170 objfile->sf->qf->expand_all_symtabs (objfile);
1171 }
1172
1173 if (should_print && !objfile_has_symbols (objfile))
1174 {
1175 wrap_here ("");
1176 printf_unfiltered (_("(no debugging symbols found)..."));
1177 wrap_here ("");
1178 }
1179
1180 if (should_print)
1181 {
1182 if (deprecated_post_add_symbol_hook)
1183 deprecated_post_add_symbol_hook ();
1184 else
1185 printf_unfiltered (_("done.\n"));
1186 }
1187
1188 /* We print some messages regardless of whether 'from_tty ||
1189 info_verbose' is true, so make sure they go out at the right
1190 time. */
1191 gdb_flush (gdb_stdout);
1192
1193 if (objfile->sf == NULL)
1194 {
1195 observer_notify_new_objfile (objfile);
1196 return objfile; /* No symbols. */
1197 }
1198
1199 new_symfile_objfile (objfile, add_flags);
1200
1201 observer_notify_new_objfile (objfile);
1202
1203 bfd_cache_close_all ();
1204 return (objfile);
1205 }
1206
1207 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1208 see allocate_objfile's definition. */
1209
1210 void
1211 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1212 struct objfile *objfile)
1213 {
1214 struct objfile *new_objfile;
1215 struct section_addr_info *sap;
1216 struct cleanup *my_cleanup;
1217
1218 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1219 because sections of BFD may not match sections of OBJFILE and because
1220 vma may have been modified by tools such as prelink. */
1221 sap = build_section_addr_info_from_objfile (objfile);
1222 my_cleanup = make_cleanup_free_section_addr_info (sap);
1223
1224 new_objfile = symbol_file_add_with_addrs
1225 (bfd, name, symfile_flags, sap,
1226 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1227 | OBJF_USERLOADED),
1228 objfile);
1229
1230 do_cleanups (my_cleanup);
1231 }
1232
1233 /* Process the symbol file ABFD, as either the main file or as a
1234 dynamically loaded file.
1235 See symbol_file_add_with_addrs's comments for details. */
1236
1237 struct objfile *
1238 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1239 struct section_addr_info *addrs,
1240 int flags, struct objfile *parent)
1241 {
1242 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1243 parent);
1244 }
1245
1246 /* Process a symbol file, as either the main file or as a dynamically
1247 loaded file. See symbol_file_add_with_addrs's comments for details. */
1248
1249 struct objfile *
1250 symbol_file_add (const char *name, int add_flags,
1251 struct section_addr_info *addrs, int flags)
1252 {
1253 bfd *bfd = symfile_bfd_open (name);
1254 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1255 struct objfile *objf;
1256
1257 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1258 do_cleanups (cleanup);
1259 return objf;
1260 }
1261
1262 /* Call symbol_file_add() with default values and update whatever is
1263 affected by the loading of a new main().
1264 Used when the file is supplied in the gdb command line
1265 and by some targets with special loading requirements.
1266 The auxiliary function, symbol_file_add_main_1(), has the flags
1267 argument for the switches that can only be specified in the symbol_file
1268 command itself. */
1269
1270 void
1271 symbol_file_add_main (const char *args, int from_tty)
1272 {
1273 symbol_file_add_main_1 (args, from_tty, 0);
1274 }
1275
1276 static void
1277 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1278 {
1279 const int add_flags = (current_inferior ()->symfile_flags
1280 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1281
1282 symbol_file_add (args, add_flags, NULL, flags);
1283
1284 /* Getting new symbols may change our opinion about
1285 what is frameless. */
1286 reinit_frame_cache ();
1287
1288 if ((flags & SYMFILE_NO_READ) == 0)
1289 set_initial_language ();
1290 }
1291
1292 void
1293 symbol_file_clear (int from_tty)
1294 {
1295 if ((have_full_symbols () || have_partial_symbols ())
1296 && from_tty
1297 && (symfile_objfile
1298 ? !query (_("Discard symbol table from `%s'? "),
1299 objfile_name (symfile_objfile))
1300 : !query (_("Discard symbol table? "))))
1301 error (_("Not confirmed."));
1302
1303 /* solib descriptors may have handles to objfiles. Wipe them before their
1304 objfiles get stale by free_all_objfiles. */
1305 no_shared_libraries (NULL, from_tty);
1306
1307 free_all_objfiles ();
1308
1309 gdb_assert (symfile_objfile == NULL);
1310 if (from_tty)
1311 printf_unfiltered (_("No symbol file now.\n"));
1312 }
1313
1314 static int
1315 separate_debug_file_exists (const char *name, unsigned long crc,
1316 struct objfile *parent_objfile)
1317 {
1318 unsigned long file_crc;
1319 int file_crc_p;
1320 bfd *abfd;
1321 struct stat parent_stat, abfd_stat;
1322 int verified_as_different;
1323
1324 /* Find a separate debug info file as if symbols would be present in
1325 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1326 section can contain just the basename of PARENT_OBJFILE without any
1327 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1328 the separate debug infos with the same basename can exist. */
1329
1330 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1331 return 0;
1332
1333 abfd = gdb_bfd_open_maybe_remote (name);
1334
1335 if (!abfd)
1336 return 0;
1337
1338 /* Verify symlinks were not the cause of filename_cmp name difference above.
1339
1340 Some operating systems, e.g. Windows, do not provide a meaningful
1341 st_ino; they always set it to zero. (Windows does provide a
1342 meaningful st_dev.) Do not indicate a duplicate library in that
1343 case. While there is no guarantee that a system that provides
1344 meaningful inode numbers will never set st_ino to zero, this is
1345 merely an optimization, so we do not need to worry about false
1346 negatives. */
1347
1348 if (bfd_stat (abfd, &abfd_stat) == 0
1349 && abfd_stat.st_ino != 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1351 {
1352 if (abfd_stat.st_dev == parent_stat.st_dev
1353 && abfd_stat.st_ino == parent_stat.st_ino)
1354 {
1355 gdb_bfd_unref (abfd);
1356 return 0;
1357 }
1358 verified_as_different = 1;
1359 }
1360 else
1361 verified_as_different = 0;
1362
1363 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1364
1365 gdb_bfd_unref (abfd);
1366
1367 if (!file_crc_p)
1368 return 0;
1369
1370 if (crc != file_crc)
1371 {
1372 unsigned long parent_crc;
1373
1374 /* If one (or both) the files are accessed for example the via "remote:"
1375 gdbserver way it does not support the bfd_stat operation. Verify
1376 whether those two files are not the same manually. */
1377
1378 if (!verified_as_different)
1379 {
1380 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1381 return 0;
1382 }
1383
1384 if (verified_as_different || parent_crc != file_crc)
1385 warning (_("the debug information found in \"%s\""
1386 " does not match \"%s\" (CRC mismatch).\n"),
1387 name, objfile_name (parent_objfile));
1388
1389 return 0;
1390 }
1391
1392 return 1;
1393 }
1394
1395 char *debug_file_directory = NULL;
1396 static void
1397 show_debug_file_directory (struct ui_file *file, int from_tty,
1398 struct cmd_list_element *c, const char *value)
1399 {
1400 fprintf_filtered (file,
1401 _("The directory where separate debug "
1402 "symbols are searched for is \"%s\".\n"),
1403 value);
1404 }
1405
1406 #if ! defined (DEBUG_SUBDIRECTORY)
1407 #define DEBUG_SUBDIRECTORY ".debug"
1408 #endif
1409
1410 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1411 where the original file resides (may not be the same as
1412 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1413 looking for. CANON_DIR is the "realpath" form of DIR.
1414 DIR must contain a trailing '/'.
1415 Returns the path of the file with separate debug info, of NULL. */
1416
1417 static char *
1418 find_separate_debug_file (const char *dir,
1419 const char *canon_dir,
1420 const char *debuglink,
1421 unsigned long crc32, struct objfile *objfile)
1422 {
1423 char *debugdir;
1424 char *debugfile;
1425 int i;
1426 VEC (char_ptr) *debugdir_vec;
1427 struct cleanup *back_to;
1428 int ix;
1429
1430 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1431 i = strlen (dir);
1432 if (canon_dir != NULL && strlen (canon_dir) > i)
1433 i = strlen (canon_dir);
1434
1435 debugfile = xmalloc (strlen (debug_file_directory) + 1
1436 + i
1437 + strlen (DEBUG_SUBDIRECTORY)
1438 + strlen ("/")
1439 + strlen (debuglink)
1440 + 1);
1441
1442 /* First try in the same directory as the original file. */
1443 strcpy (debugfile, dir);
1444 strcat (debugfile, debuglink);
1445
1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1447 return debugfile;
1448
1449 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1450 strcpy (debugfile, dir);
1451 strcat (debugfile, DEBUG_SUBDIRECTORY);
1452 strcat (debugfile, "/");
1453 strcat (debugfile, debuglink);
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 return debugfile;
1457
1458 /* Then try in the global debugfile directories.
1459
1460 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1461 cause "/..." lookups. */
1462
1463 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1464 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1465
1466 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1467 {
1468 strcpy (debugfile, debugdir);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, dir);
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 {
1475 do_cleanups (back_to);
1476 return debugfile;
1477 }
1478
1479 /* If the file is in the sysroot, try using its base path in the
1480 global debugfile directory. */
1481 if (canon_dir != NULL
1482 && filename_ncmp (canon_dir, gdb_sysroot,
1483 strlen (gdb_sysroot)) == 0
1484 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1485 {
1486 strcpy (debugfile, debugdir);
1487 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1488 strcat (debugfile, "/");
1489 strcat (debugfile, debuglink);
1490
1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
1496 }
1497 }
1498
1499 do_cleanups (back_to);
1500 xfree (debugfile);
1501 return NULL;
1502 }
1503
1504 /* Modify PATH to contain only "[/]directory/" part of PATH.
1505 If there were no directory separators in PATH, PATH will be empty
1506 string on return. */
1507
1508 static void
1509 terminate_after_last_dir_separator (char *path)
1510 {
1511 int i;
1512
1513 /* Strip off the final filename part, leaving the directory name,
1514 followed by a slash. The directory can be relative or absolute. */
1515 for (i = strlen(path) - 1; i >= 0; i--)
1516 if (IS_DIR_SEPARATOR (path[i]))
1517 break;
1518
1519 /* If I is -1 then no directory is present there and DIR will be "". */
1520 path[i + 1] = '\0';
1521 }
1522
1523 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1524 Returns pathname, or NULL. */
1525
1526 char *
1527 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1528 {
1529 char *debuglink;
1530 char *dir, *canon_dir;
1531 char *debugfile;
1532 unsigned long crc32;
1533 struct cleanup *cleanups;
1534
1535 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1536
1537 if (debuglink == NULL)
1538 {
1539 /* There's no separate debug info, hence there's no way we could
1540 load it => no warning. */
1541 return NULL;
1542 }
1543
1544 cleanups = make_cleanup (xfree, debuglink);
1545 dir = xstrdup (objfile_name (objfile));
1546 make_cleanup (xfree, dir);
1547 terminate_after_last_dir_separator (dir);
1548 canon_dir = lrealpath (dir);
1549
1550 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1551 crc32, objfile);
1552 xfree (canon_dir);
1553
1554 if (debugfile == NULL)
1555 {
1556 #ifdef HAVE_LSTAT
1557 /* For PR gdb/9538, try again with realpath (if different from the
1558 original). */
1559
1560 struct stat st_buf;
1561
1562 if (lstat (objfile_name (objfile), &st_buf) == 0
1563 && S_ISLNK (st_buf.st_mode))
1564 {
1565 char *symlink_dir;
1566
1567 symlink_dir = lrealpath (objfile_name (objfile));
1568 if (symlink_dir != NULL)
1569 {
1570 make_cleanup (xfree, symlink_dir);
1571 terminate_after_last_dir_separator (symlink_dir);
1572 if (strcmp (dir, symlink_dir) != 0)
1573 {
1574 /* Different directory, so try using it. */
1575 debugfile = find_separate_debug_file (symlink_dir,
1576 symlink_dir,
1577 debuglink,
1578 crc32,
1579 objfile);
1580 }
1581 }
1582 }
1583 #endif /* HAVE_LSTAT */
1584 }
1585
1586 do_cleanups (cleanups);
1587 return debugfile;
1588 }
1589
1590 /* This is the symbol-file command. Read the file, analyze its
1591 symbols, and add a struct symtab to a symtab list. The syntax of
1592 the command is rather bizarre:
1593
1594 1. The function buildargv implements various quoting conventions
1595 which are undocumented and have little or nothing in common with
1596 the way things are quoted (or not quoted) elsewhere in GDB.
1597
1598 2. Options are used, which are not generally used in GDB (perhaps
1599 "set mapped on", "set readnow on" would be better)
1600
1601 3. The order of options matters, which is contrary to GNU
1602 conventions (because it is confusing and inconvenient). */
1603
1604 void
1605 symbol_file_command (char *args, int from_tty)
1606 {
1607 dont_repeat ();
1608
1609 if (args == NULL)
1610 {
1611 symbol_file_clear (from_tty);
1612 }
1613 else
1614 {
1615 char **argv = gdb_buildargv (args);
1616 int flags = OBJF_USERLOADED;
1617 struct cleanup *cleanups;
1618 char *name = NULL;
1619
1620 cleanups = make_cleanup_freeargv (argv);
1621 while (*argv != NULL)
1622 {
1623 if (strcmp (*argv, "-readnow") == 0)
1624 flags |= OBJF_READNOW;
1625 else if (**argv == '-')
1626 error (_("unknown option `%s'"), *argv);
1627 else
1628 {
1629 symbol_file_add_main_1 (*argv, from_tty, flags);
1630 name = *argv;
1631 }
1632
1633 argv++;
1634 }
1635
1636 if (name == NULL)
1637 error (_("no symbol file name was specified"));
1638
1639 do_cleanups (cleanups);
1640 }
1641 }
1642
1643 /* Set the initial language.
1644
1645 FIXME: A better solution would be to record the language in the
1646 psymtab when reading partial symbols, and then use it (if known) to
1647 set the language. This would be a win for formats that encode the
1648 language in an easily discoverable place, such as DWARF. For
1649 stabs, we can jump through hoops looking for specially named
1650 symbols or try to intuit the language from the specific type of
1651 stabs we find, but we can't do that until later when we read in
1652 full symbols. */
1653
1654 void
1655 set_initial_language (void)
1656 {
1657 enum language lang = language_unknown;
1658
1659 if (language_of_main != language_unknown)
1660 lang = language_of_main;
1661 else
1662 {
1663 char *name = main_name ();
1664 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1665
1666 if (sym != NULL)
1667 lang = SYMBOL_LANGUAGE (sym);
1668 }
1669
1670 if (lang == language_unknown)
1671 {
1672 /* Make C the default language */
1673 lang = language_c;
1674 }
1675
1676 set_language (lang);
1677 expected_language = current_language; /* Don't warn the user. */
1678 }
1679
1680 /* If NAME is a remote name open the file using remote protocol, otherwise
1681 open it normally. Returns a new reference to the BFD. On error,
1682 returns NULL with the BFD error set. */
1683
1684 bfd *
1685 gdb_bfd_open_maybe_remote (const char *name)
1686 {
1687 bfd *result;
1688
1689 if (remote_filename_p (name))
1690 result = remote_bfd_open (name, gnutarget);
1691 else
1692 result = gdb_bfd_open (name, gnutarget, -1);
1693
1694 return result;
1695 }
1696
1697 /* Open the file specified by NAME and hand it off to BFD for
1698 preliminary analysis. Return a newly initialized bfd *, which
1699 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1700 absolute). In case of trouble, error() is called. */
1701
1702 bfd *
1703 symfile_bfd_open (const char *cname)
1704 {
1705 bfd *sym_bfd;
1706 int desc;
1707 char *name, *absolute_name;
1708 struct cleanup *back_to;
1709
1710 if (remote_filename_p (cname))
1711 {
1712 sym_bfd = remote_bfd_open (cname, gnutarget);
1713 if (!sym_bfd)
1714 error (_("`%s': can't open to read symbols: %s."), cname,
1715 bfd_errmsg (bfd_get_error ()));
1716
1717 if (!bfd_check_format (sym_bfd, bfd_object))
1718 {
1719 make_cleanup_bfd_unref (sym_bfd);
1720 error (_("`%s': can't read symbols: %s."), cname,
1721 bfd_errmsg (bfd_get_error ()));
1722 }
1723
1724 return sym_bfd;
1725 }
1726
1727 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1728
1729 /* Look down path for it, allocate 2nd new malloc'd copy. */
1730 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1731 O_RDONLY | O_BINARY, &absolute_name);
1732 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1733 if (desc < 0)
1734 {
1735 char *exename = alloca (strlen (name) + 5);
1736
1737 strcat (strcpy (exename, name), ".exe");
1738 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1739 exename, O_RDONLY | O_BINARY, &absolute_name);
1740 }
1741 #endif
1742 if (desc < 0)
1743 {
1744 make_cleanup (xfree, name);
1745 perror_with_name (name);
1746 }
1747
1748 xfree (name);
1749 name = absolute_name;
1750 back_to = make_cleanup (xfree, name);
1751
1752 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1753 if (!sym_bfd)
1754 error (_("`%s': can't open to read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
1756 bfd_set_cacheable (sym_bfd, 1);
1757
1758 if (!bfd_check_format (sym_bfd, bfd_object))
1759 {
1760 make_cleanup_bfd_unref (sym_bfd);
1761 error (_("`%s': can't read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1763 }
1764
1765 do_cleanups (back_to);
1766
1767 return sym_bfd;
1768 }
1769
1770 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1771 the section was not found. */
1772
1773 int
1774 get_section_index (struct objfile *objfile, char *section_name)
1775 {
1776 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1777
1778 if (sect)
1779 return sect->index;
1780 else
1781 return -1;
1782 }
1783
1784 /* Link SF into the global symtab_fns list.
1785 FLAVOUR is the file format that SF handles.
1786 Called on startup by the _initialize routine in each object file format
1787 reader, to register information about each format the reader is prepared
1788 to handle. */
1789
1790 void
1791 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1792 {
1793 registered_sym_fns fns = { flavour, sf };
1794
1795 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1796 }
1797
1798 /* Initialize OBJFILE to read symbols from its associated BFD. It
1799 either returns or calls error(). The result is an initialized
1800 struct sym_fns in the objfile structure, that contains cached
1801 information about the symbol file. */
1802
1803 static const struct sym_fns *
1804 find_sym_fns (bfd *abfd)
1805 {
1806 registered_sym_fns *rsf;
1807 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1808 int i;
1809
1810 if (our_flavour == bfd_target_srec_flavour
1811 || our_flavour == bfd_target_ihex_flavour
1812 || our_flavour == bfd_target_tekhex_flavour)
1813 return NULL; /* No symbols. */
1814
1815 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1816 if (our_flavour == rsf->sym_flavour)
1817 return rsf->sym_fns;
1818
1819 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1820 bfd_get_target (abfd));
1821 }
1822 \f
1823
1824 /* This function runs the load command of our current target. */
1825
1826 static void
1827 load_command (char *arg, int from_tty)
1828 {
1829 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1830
1831 dont_repeat ();
1832
1833 /* The user might be reloading because the binary has changed. Take
1834 this opportunity to check. */
1835 reopen_exec_file ();
1836 reread_symbols ();
1837
1838 if (arg == NULL)
1839 {
1840 char *parg;
1841 int count = 0;
1842
1843 parg = arg = get_exec_file (1);
1844
1845 /* Count how many \ " ' tab space there are in the name. */
1846 while ((parg = strpbrk (parg, "\\\"'\t ")))
1847 {
1848 parg++;
1849 count++;
1850 }
1851
1852 if (count)
1853 {
1854 /* We need to quote this string so buildargv can pull it apart. */
1855 char *temp = xmalloc (strlen (arg) + count + 1 );
1856 char *ptemp = temp;
1857 char *prev;
1858
1859 make_cleanup (xfree, temp);
1860
1861 prev = parg = arg;
1862 while ((parg = strpbrk (parg, "\\\"'\t ")))
1863 {
1864 strncpy (ptemp, prev, parg - prev);
1865 ptemp += parg - prev;
1866 prev = parg++;
1867 *ptemp++ = '\\';
1868 }
1869 strcpy (ptemp, prev);
1870
1871 arg = temp;
1872 }
1873 }
1874
1875 target_load (arg, from_tty);
1876
1877 /* After re-loading the executable, we don't really know which
1878 overlays are mapped any more. */
1879 overlay_cache_invalid = 1;
1880
1881 do_cleanups (cleanup);
1882 }
1883
1884 /* This version of "load" should be usable for any target. Currently
1885 it is just used for remote targets, not inftarg.c or core files,
1886 on the theory that only in that case is it useful.
1887
1888 Avoiding xmodem and the like seems like a win (a) because we don't have
1889 to worry about finding it, and (b) On VMS, fork() is very slow and so
1890 we don't want to run a subprocess. On the other hand, I'm not sure how
1891 performance compares. */
1892
1893 static int validate_download = 0;
1894
1895 /* Callback service function for generic_load (bfd_map_over_sections). */
1896
1897 static void
1898 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1899 {
1900 bfd_size_type *sum = data;
1901
1902 *sum += bfd_get_section_size (asec);
1903 }
1904
1905 /* Opaque data for load_section_callback. */
1906 struct load_section_data {
1907 CORE_ADDR load_offset;
1908 struct load_progress_data *progress_data;
1909 VEC(memory_write_request_s) *requests;
1910 };
1911
1912 /* Opaque data for load_progress. */
1913 struct load_progress_data {
1914 /* Cumulative data. */
1915 unsigned long write_count;
1916 unsigned long data_count;
1917 bfd_size_type total_size;
1918 };
1919
1920 /* Opaque data for load_progress for a single section. */
1921 struct load_progress_section_data {
1922 struct load_progress_data *cumulative;
1923
1924 /* Per-section data. */
1925 const char *section_name;
1926 ULONGEST section_sent;
1927 ULONGEST section_size;
1928 CORE_ADDR lma;
1929 gdb_byte *buffer;
1930 };
1931
1932 /* Target write callback routine for progress reporting. */
1933
1934 static void
1935 load_progress (ULONGEST bytes, void *untyped_arg)
1936 {
1937 struct load_progress_section_data *args = untyped_arg;
1938 struct load_progress_data *totals;
1939
1940 if (args == NULL)
1941 /* Writing padding data. No easy way to get at the cumulative
1942 stats, so just ignore this. */
1943 return;
1944
1945 totals = args->cumulative;
1946
1947 if (bytes == 0 && args->section_sent == 0)
1948 {
1949 /* The write is just starting. Let the user know we've started
1950 this section. */
1951 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1952 args->section_name, hex_string (args->section_size),
1953 paddress (target_gdbarch (), args->lma));
1954 return;
1955 }
1956
1957 if (validate_download)
1958 {
1959 /* Broken memories and broken monitors manifest themselves here
1960 when bring new computers to life. This doubles already slow
1961 downloads. */
1962 /* NOTE: cagney/1999-10-18: A more efficient implementation
1963 might add a verify_memory() method to the target vector and
1964 then use that. remote.c could implement that method using
1965 the ``qCRC'' packet. */
1966 gdb_byte *check = xmalloc (bytes);
1967 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1968
1969 if (target_read_memory (args->lma, check, bytes) != 0)
1970 error (_("Download verify read failed at %s"),
1971 paddress (target_gdbarch (), args->lma));
1972 if (memcmp (args->buffer, check, bytes) != 0)
1973 error (_("Download verify compare failed at %s"),
1974 paddress (target_gdbarch (), args->lma));
1975 do_cleanups (verify_cleanups);
1976 }
1977 totals->data_count += bytes;
1978 args->lma += bytes;
1979 args->buffer += bytes;
1980 totals->write_count += 1;
1981 args->section_sent += bytes;
1982 if (check_quit_flag ()
1983 || (deprecated_ui_load_progress_hook != NULL
1984 && deprecated_ui_load_progress_hook (args->section_name,
1985 args->section_sent)))
1986 error (_("Canceled the download"));
1987
1988 if (deprecated_show_load_progress != NULL)
1989 deprecated_show_load_progress (args->section_name,
1990 args->section_sent,
1991 args->section_size,
1992 totals->data_count,
1993 totals->total_size);
1994 }
1995
1996 /* Callback service function for generic_load (bfd_map_over_sections). */
1997
1998 static void
1999 load_section_callback (bfd *abfd, asection *asec, void *data)
2000 {
2001 struct memory_write_request *new_request;
2002 struct load_section_data *args = data;
2003 struct load_progress_section_data *section_data;
2004 bfd_size_type size = bfd_get_section_size (asec);
2005 gdb_byte *buffer;
2006 const char *sect_name = bfd_get_section_name (abfd, asec);
2007
2008 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2009 return;
2010
2011 if (size == 0)
2012 return;
2013
2014 new_request = VEC_safe_push (memory_write_request_s,
2015 args->requests, NULL);
2016 memset (new_request, 0, sizeof (struct memory_write_request));
2017 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2018 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2019 new_request->end = new_request->begin + size; /* FIXME Should size
2020 be in instead? */
2021 new_request->data = xmalloc (size);
2022 new_request->baton = section_data;
2023
2024 buffer = new_request->data;
2025
2026 section_data->cumulative = args->progress_data;
2027 section_data->section_name = sect_name;
2028 section_data->section_size = size;
2029 section_data->lma = new_request->begin;
2030 section_data->buffer = buffer;
2031
2032 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2033 }
2034
2035 /* Clean up an entire memory request vector, including load
2036 data and progress records. */
2037
2038 static void
2039 clear_memory_write_data (void *arg)
2040 {
2041 VEC(memory_write_request_s) **vec_p = arg;
2042 VEC(memory_write_request_s) *vec = *vec_p;
2043 int i;
2044 struct memory_write_request *mr;
2045
2046 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2047 {
2048 xfree (mr->data);
2049 xfree (mr->baton);
2050 }
2051 VEC_free (memory_write_request_s, vec);
2052 }
2053
2054 void
2055 generic_load (char *args, int from_tty)
2056 {
2057 bfd *loadfile_bfd;
2058 struct timeval start_time, end_time;
2059 char *filename;
2060 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2061 struct load_section_data cbdata;
2062 struct load_progress_data total_progress;
2063 struct ui_out *uiout = current_uiout;
2064
2065 CORE_ADDR entry;
2066 char **argv;
2067
2068 memset (&cbdata, 0, sizeof (cbdata));
2069 memset (&total_progress, 0, sizeof (total_progress));
2070 cbdata.progress_data = &total_progress;
2071
2072 make_cleanup (clear_memory_write_data, &cbdata.requests);
2073
2074 if (args == NULL)
2075 error_no_arg (_("file to load"));
2076
2077 argv = gdb_buildargv (args);
2078 make_cleanup_freeargv (argv);
2079
2080 filename = tilde_expand (argv[0]);
2081 make_cleanup (xfree, filename);
2082
2083 if (argv[1] != NULL)
2084 {
2085 const char *endptr;
2086
2087 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2088
2089 /* If the last word was not a valid number then
2090 treat it as a file name with spaces in. */
2091 if (argv[1] == endptr)
2092 error (_("Invalid download offset:%s."), argv[1]);
2093
2094 if (argv[2] != NULL)
2095 error (_("Too many parameters."));
2096 }
2097
2098 /* Open the file for loading. */
2099 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2100 if (loadfile_bfd == NULL)
2101 {
2102 perror_with_name (filename);
2103 return;
2104 }
2105
2106 make_cleanup_bfd_unref (loadfile_bfd);
2107
2108 if (!bfd_check_format (loadfile_bfd, bfd_object))
2109 {
2110 error (_("\"%s\" is not an object file: %s"), filename,
2111 bfd_errmsg (bfd_get_error ()));
2112 }
2113
2114 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2115 (void *) &total_progress.total_size);
2116
2117 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2118
2119 gettimeofday (&start_time, NULL);
2120
2121 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2122 load_progress) != 0)
2123 error (_("Load failed"));
2124
2125 gettimeofday (&end_time, NULL);
2126
2127 entry = bfd_get_start_address (loadfile_bfd);
2128 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2129 ui_out_text (uiout, "Start address ");
2130 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2131 ui_out_text (uiout, ", load size ");
2132 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2133 ui_out_text (uiout, "\n");
2134 /* We were doing this in remote-mips.c, I suspect it is right
2135 for other targets too. */
2136 regcache_write_pc (get_current_regcache (), entry);
2137
2138 /* Reset breakpoints, now that we have changed the load image. For
2139 instance, breakpoints may have been set (or reset, by
2140 post_create_inferior) while connected to the target but before we
2141 loaded the program. In that case, the prologue analyzer could
2142 have read instructions from the target to find the right
2143 breakpoint locations. Loading has changed the contents of that
2144 memory. */
2145
2146 breakpoint_re_set ();
2147
2148 /* FIXME: are we supposed to call symbol_file_add or not? According
2149 to a comment from remote-mips.c (where a call to symbol_file_add
2150 was commented out), making the call confuses GDB if more than one
2151 file is loaded in. Some targets do (e.g., remote-vx.c) but
2152 others don't (or didn't - perhaps they have all been deleted). */
2153
2154 print_transfer_performance (gdb_stdout, total_progress.data_count,
2155 total_progress.write_count,
2156 &start_time, &end_time);
2157
2158 do_cleanups (old_cleanups);
2159 }
2160
2161 /* Report how fast the transfer went. */
2162
2163 void
2164 print_transfer_performance (struct ui_file *stream,
2165 unsigned long data_count,
2166 unsigned long write_count,
2167 const struct timeval *start_time,
2168 const struct timeval *end_time)
2169 {
2170 ULONGEST time_count;
2171 struct ui_out *uiout = current_uiout;
2172
2173 /* Compute the elapsed time in milliseconds, as a tradeoff between
2174 accuracy and overflow. */
2175 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2176 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2177
2178 ui_out_text (uiout, "Transfer rate: ");
2179 if (time_count > 0)
2180 {
2181 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2182
2183 if (ui_out_is_mi_like_p (uiout))
2184 {
2185 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2186 ui_out_text (uiout, " bits/sec");
2187 }
2188 else if (rate < 1024)
2189 {
2190 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2191 ui_out_text (uiout, " bytes/sec");
2192 }
2193 else
2194 {
2195 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2196 ui_out_text (uiout, " KB/sec");
2197 }
2198 }
2199 else
2200 {
2201 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2202 ui_out_text (uiout, " bits in <1 sec");
2203 }
2204 if (write_count > 0)
2205 {
2206 ui_out_text (uiout, ", ");
2207 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2208 ui_out_text (uiout, " bytes/write");
2209 }
2210 ui_out_text (uiout, ".\n");
2211 }
2212
2213 /* This function allows the addition of incrementally linked object files.
2214 It does not modify any state in the target, only in the debugger. */
2215 /* Note: ezannoni 2000-04-13 This function/command used to have a
2216 special case syntax for the rombug target (Rombug is the boot
2217 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2218 rombug case, the user doesn't need to supply a text address,
2219 instead a call to target_link() (in target.c) would supply the
2220 value to use. We are now discontinuing this type of ad hoc syntax. */
2221
2222 static void
2223 add_symbol_file_command (char *args, int from_tty)
2224 {
2225 struct gdbarch *gdbarch = get_current_arch ();
2226 char *filename = NULL;
2227 int flags = OBJF_USERLOADED;
2228 char *arg;
2229 int section_index = 0;
2230 int argcnt = 0;
2231 int sec_num = 0;
2232 int i;
2233 int expecting_sec_name = 0;
2234 int expecting_sec_addr = 0;
2235 char **argv;
2236 struct objfile *objf;
2237
2238 struct sect_opt
2239 {
2240 char *name;
2241 char *value;
2242 };
2243
2244 struct section_addr_info *section_addrs;
2245 struct sect_opt *sect_opts = NULL;
2246 size_t num_sect_opts = 0;
2247 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2248
2249 num_sect_opts = 16;
2250 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2251 * sizeof (struct sect_opt));
2252
2253 dont_repeat ();
2254
2255 if (args == NULL)
2256 error (_("add-symbol-file takes a file name and an address"));
2257
2258 argv = gdb_buildargv (args);
2259 make_cleanup_freeargv (argv);
2260
2261 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2262 {
2263 /* Process the argument. */
2264 if (argcnt == 0)
2265 {
2266 /* The first argument is the file name. */
2267 filename = tilde_expand (arg);
2268 make_cleanup (xfree, filename);
2269 }
2270 else if (argcnt == 1)
2271 {
2272 /* The second argument is always the text address at which
2273 to load the program. */
2274 sect_opts[section_index].name = ".text";
2275 sect_opts[section_index].value = arg;
2276 if (++section_index >= num_sect_opts)
2277 {
2278 num_sect_opts *= 2;
2279 sect_opts = ((struct sect_opt *)
2280 xrealloc (sect_opts,
2281 num_sect_opts
2282 * sizeof (struct sect_opt)));
2283 }
2284 }
2285 else
2286 {
2287 /* It's an option (starting with '-') or it's an argument
2288 to an option. */
2289 if (expecting_sec_name)
2290 {
2291 sect_opts[section_index].name = arg;
2292 expecting_sec_name = 0;
2293 }
2294 else if (expecting_sec_addr)
2295 {
2296 sect_opts[section_index].value = arg;
2297 expecting_sec_addr = 0;
2298 if (++section_index >= num_sect_opts)
2299 {
2300 num_sect_opts *= 2;
2301 sect_opts = ((struct sect_opt *)
2302 xrealloc (sect_opts,
2303 num_sect_opts
2304 * sizeof (struct sect_opt)));
2305 }
2306 }
2307 else if (strcmp (arg, "-readnow") == 0)
2308 flags |= OBJF_READNOW;
2309 else if (strcmp (arg, "-s") == 0)
2310 {
2311 expecting_sec_name = 1;
2312 expecting_sec_addr = 1;
2313 }
2314 else
2315 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2316 " [-readnow] [-s <secname> <addr>]*"));
2317 }
2318 }
2319
2320 /* This command takes at least two arguments. The first one is a
2321 filename, and the second is the address where this file has been
2322 loaded. Abort now if this address hasn't been provided by the
2323 user. */
2324 if (section_index < 1)
2325 error (_("The address where %s has been loaded is missing"), filename);
2326
2327 /* Print the prompt for the query below. And save the arguments into
2328 a sect_addr_info structure to be passed around to other
2329 functions. We have to split this up into separate print
2330 statements because hex_string returns a local static
2331 string. */
2332
2333 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2334 section_addrs = alloc_section_addr_info (section_index);
2335 make_cleanup (xfree, section_addrs);
2336 for (i = 0; i < section_index; i++)
2337 {
2338 CORE_ADDR addr;
2339 char *val = sect_opts[i].value;
2340 char *sec = sect_opts[i].name;
2341
2342 addr = parse_and_eval_address (val);
2343
2344 /* Here we store the section offsets in the order they were
2345 entered on the command line. */
2346 section_addrs->other[sec_num].name = sec;
2347 section_addrs->other[sec_num].addr = addr;
2348 printf_unfiltered ("\t%s_addr = %s\n", sec,
2349 paddress (gdbarch, addr));
2350 sec_num++;
2351
2352 /* The object's sections are initialized when a
2353 call is made to build_objfile_section_table (objfile).
2354 This happens in reread_symbols.
2355 At this point, we don't know what file type this is,
2356 so we can't determine what section names are valid. */
2357 }
2358 section_addrs->num_sections = sec_num;
2359
2360 if (from_tty && (!query ("%s", "")))
2361 error (_("Not confirmed."));
2362
2363 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2364 section_addrs, flags);
2365
2366 add_target_sections_of_objfile (objf);
2367
2368 /* Getting new symbols may change our opinion about what is
2369 frameless. */
2370 reinit_frame_cache ();
2371 do_cleanups (my_cleanups);
2372 }
2373 \f
2374
2375 /* This function removes a symbol file that was added via add-symbol-file. */
2376
2377 static void
2378 remove_symbol_file_command (char *args, int from_tty)
2379 {
2380 char **argv;
2381 struct objfile *objf = NULL;
2382 struct cleanup *my_cleanups;
2383 struct program_space *pspace = current_program_space;
2384 struct gdbarch *gdbarch = get_current_arch ();
2385
2386 dont_repeat ();
2387
2388 if (args == NULL)
2389 error (_("remove-symbol-file: no symbol file provided"));
2390
2391 my_cleanups = make_cleanup (null_cleanup, NULL);
2392
2393 argv = gdb_buildargv (args);
2394
2395 if (strcmp (argv[0], "-a") == 0)
2396 {
2397 /* Interpret the next argument as an address. */
2398 CORE_ADDR addr;
2399
2400 if (argv[1] == NULL)
2401 error (_("Missing address argument"));
2402
2403 if (argv[2] != NULL)
2404 error (_("Junk after %s"), argv[1]);
2405
2406 addr = parse_and_eval_address (argv[1]);
2407
2408 ALL_OBJFILES (objf)
2409 {
2410 if (objf != 0
2411 && objf->flags & OBJF_USERLOADED
2412 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2413 break;
2414 }
2415 }
2416 else if (argv[0] != NULL)
2417 {
2418 /* Interpret the current argument as a file name. */
2419 char *filename;
2420
2421 if (argv[1] != NULL)
2422 error (_("Junk after %s"), argv[0]);
2423
2424 filename = tilde_expand (argv[0]);
2425 make_cleanup (xfree, filename);
2426
2427 ALL_OBJFILES (objf)
2428 {
2429 if (objf != 0
2430 && objf->flags & OBJF_USERLOADED
2431 && objf->pspace == pspace
2432 && filename_cmp (filename, objfile_name (objf)) == 0)
2433 break;
2434 }
2435 }
2436
2437 if (objf == NULL)
2438 error (_("No symbol file found"));
2439
2440 if (from_tty
2441 && !query (_("Remove symbol table from file \"%s\"? "),
2442 objfile_name (objf)))
2443 error (_("Not confirmed."));
2444
2445 free_objfile (objf);
2446 clear_symtab_users (0);
2447
2448 do_cleanups (my_cleanups);
2449 }
2450
2451 typedef struct objfile *objfilep;
2452
2453 DEF_VEC_P (objfilep);
2454
2455 /* Re-read symbols if a symbol-file has changed. */
2456
2457 void
2458 reread_symbols (void)
2459 {
2460 struct objfile *objfile;
2461 long new_modtime;
2462 struct stat new_statbuf;
2463 int res;
2464 VEC (objfilep) *new_objfiles = NULL;
2465 struct cleanup *all_cleanups;
2466
2467 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2468
2469 /* With the addition of shared libraries, this should be modified,
2470 the load time should be saved in the partial symbol tables, since
2471 different tables may come from different source files. FIXME.
2472 This routine should then walk down each partial symbol table
2473 and see if the symbol table that it originates from has been changed. */
2474
2475 for (objfile = object_files; objfile; objfile = objfile->next)
2476 {
2477 if (objfile->obfd == NULL)
2478 continue;
2479
2480 /* Separate debug objfiles are handled in the main objfile. */
2481 if (objfile->separate_debug_objfile_backlink)
2482 continue;
2483
2484 /* If this object is from an archive (what you usually create with
2485 `ar', often called a `static library' on most systems, though
2486 a `shared library' on AIX is also an archive), then you should
2487 stat on the archive name, not member name. */
2488 if (objfile->obfd->my_archive)
2489 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2490 else
2491 res = stat (objfile_name (objfile), &new_statbuf);
2492 if (res != 0)
2493 {
2494 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2495 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2496 objfile_name (objfile));
2497 continue;
2498 }
2499 new_modtime = new_statbuf.st_mtime;
2500 if (new_modtime != objfile->mtime)
2501 {
2502 struct cleanup *old_cleanups;
2503 struct section_offsets *offsets;
2504 int num_offsets;
2505 char *original_name;
2506
2507 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2508 objfile_name (objfile));
2509
2510 /* There are various functions like symbol_file_add,
2511 symfile_bfd_open, syms_from_objfile, etc., which might
2512 appear to do what we want. But they have various other
2513 effects which we *don't* want. So we just do stuff
2514 ourselves. We don't worry about mapped files (for one thing,
2515 any mapped file will be out of date). */
2516
2517 /* If we get an error, blow away this objfile (not sure if
2518 that is the correct response for things like shared
2519 libraries). */
2520 old_cleanups = make_cleanup_free_objfile (objfile);
2521 /* We need to do this whenever any symbols go away. */
2522 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2523
2524 if (exec_bfd != NULL
2525 && filename_cmp (bfd_get_filename (objfile->obfd),
2526 bfd_get_filename (exec_bfd)) == 0)
2527 {
2528 /* Reload EXEC_BFD without asking anything. */
2529
2530 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2531 }
2532
2533 /* Keep the calls order approx. the same as in free_objfile. */
2534
2535 /* Free the separate debug objfiles. It will be
2536 automatically recreated by sym_read. */
2537 free_objfile_separate_debug (objfile);
2538
2539 /* Remove any references to this objfile in the global
2540 value lists. */
2541 preserve_values (objfile);
2542
2543 /* Nuke all the state that we will re-read. Much of the following
2544 code which sets things to NULL really is necessary to tell
2545 other parts of GDB that there is nothing currently there.
2546
2547 Try to keep the freeing order compatible with free_objfile. */
2548
2549 if (objfile->sf != NULL)
2550 {
2551 (*objfile->sf->sym_finish) (objfile);
2552 }
2553
2554 clear_objfile_data (objfile);
2555
2556 /* Clean up any state BFD has sitting around. */
2557 {
2558 struct bfd *obfd = objfile->obfd;
2559 char *obfd_filename;
2560
2561 obfd_filename = bfd_get_filename (objfile->obfd);
2562 /* Open the new BFD before freeing the old one, so that
2563 the filename remains live. */
2564 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2565 if (objfile->obfd == NULL)
2566 {
2567 /* We have to make a cleanup and error here, rather
2568 than erroring later, because once we unref OBFD,
2569 OBFD_FILENAME will be freed. */
2570 make_cleanup_bfd_unref (obfd);
2571 error (_("Can't open %s to read symbols."), obfd_filename);
2572 }
2573 gdb_bfd_unref (obfd);
2574 }
2575
2576 original_name = xstrdup (objfile->original_name);
2577 make_cleanup (xfree, original_name);
2578
2579 /* bfd_openr sets cacheable to true, which is what we want. */
2580 if (!bfd_check_format (objfile->obfd, bfd_object))
2581 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2582 bfd_errmsg (bfd_get_error ()));
2583
2584 /* Save the offsets, we will nuke them with the rest of the
2585 objfile_obstack. */
2586 num_offsets = objfile->num_sections;
2587 offsets = ((struct section_offsets *)
2588 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2589 memcpy (offsets, objfile->section_offsets,
2590 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2591
2592 /* FIXME: Do we have to free a whole linked list, or is this
2593 enough? */
2594 if (objfile->global_psymbols.list)
2595 xfree (objfile->global_psymbols.list);
2596 memset (&objfile->global_psymbols, 0,
2597 sizeof (objfile->global_psymbols));
2598 if (objfile->static_psymbols.list)
2599 xfree (objfile->static_psymbols.list);
2600 memset (&objfile->static_psymbols, 0,
2601 sizeof (objfile->static_psymbols));
2602
2603 /* Free the obstacks for non-reusable objfiles. */
2604 psymbol_bcache_free (objfile->psymbol_cache);
2605 objfile->psymbol_cache = psymbol_bcache_init ();
2606 obstack_free (&objfile->objfile_obstack, 0);
2607 objfile->sections = NULL;
2608 objfile->symtabs = NULL;
2609 objfile->psymtabs = NULL;
2610 objfile->psymtabs_addrmap = NULL;
2611 objfile->free_psymtabs = NULL;
2612 objfile->template_symbols = NULL;
2613 objfile->msymbols = NULL;
2614 objfile->minimal_symbol_count = 0;
2615 memset (&objfile->msymbol_hash, 0,
2616 sizeof (objfile->msymbol_hash));
2617 memset (&objfile->msymbol_demangled_hash, 0,
2618 sizeof (objfile->msymbol_demangled_hash));
2619
2620 /* obstack_init also initializes the obstack so it is
2621 empty. We could use obstack_specify_allocation but
2622 gdb_obstack.h specifies the alloc/dealloc functions. */
2623 obstack_init (&objfile->objfile_obstack);
2624
2625 /* set_objfile_per_bfd potentially allocates the per-bfd
2626 data on the objfile's obstack (if sharing data across
2627 multiple users is not possible), so it's important to
2628 do it *after* the obstack has been initialized. */
2629 set_objfile_per_bfd (objfile);
2630
2631 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2632 original_name,
2633 strlen (original_name));
2634
2635 /* Reset the sym_fns pointer. The ELF reader can change it
2636 based on whether .gdb_index is present, and we need it to
2637 start over. PR symtab/15885 */
2638 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2639
2640 build_objfile_section_table (objfile);
2641 terminate_minimal_symbol_table (objfile);
2642
2643 /* We use the same section offsets as from last time. I'm not
2644 sure whether that is always correct for shared libraries. */
2645 objfile->section_offsets = (struct section_offsets *)
2646 obstack_alloc (&objfile->objfile_obstack,
2647 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2648 memcpy (objfile->section_offsets, offsets,
2649 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2650 objfile->num_sections = num_offsets;
2651
2652 /* What the hell is sym_new_init for, anyway? The concept of
2653 distinguishing between the main file and additional files
2654 in this way seems rather dubious. */
2655 if (objfile == symfile_objfile)
2656 {
2657 (*objfile->sf->sym_new_init) (objfile);
2658 }
2659
2660 (*objfile->sf->sym_init) (objfile);
2661 clear_complaints (&symfile_complaints, 1, 1);
2662
2663 objfile->flags &= ~OBJF_PSYMTABS_READ;
2664 read_symbols (objfile, 0);
2665
2666 if (!objfile_has_symbols (objfile))
2667 {
2668 wrap_here ("");
2669 printf_unfiltered (_("(no debugging symbols found)\n"));
2670 wrap_here ("");
2671 }
2672
2673 /* We're done reading the symbol file; finish off complaints. */
2674 clear_complaints (&symfile_complaints, 0, 1);
2675
2676 /* Getting new symbols may change our opinion about what is
2677 frameless. */
2678
2679 reinit_frame_cache ();
2680
2681 /* Discard cleanups as symbol reading was successful. */
2682 discard_cleanups (old_cleanups);
2683
2684 /* If the mtime has changed between the time we set new_modtime
2685 and now, we *want* this to be out of date, so don't call stat
2686 again now. */
2687 objfile->mtime = new_modtime;
2688 init_entry_point_info (objfile);
2689
2690 VEC_safe_push (objfilep, new_objfiles, objfile);
2691 }
2692 }
2693
2694 if (new_objfiles)
2695 {
2696 int ix;
2697
2698 /* Notify objfiles that we've modified objfile sections. */
2699 objfiles_changed ();
2700
2701 clear_symtab_users (0);
2702
2703 /* clear_objfile_data for each objfile was called before freeing it and
2704 observer_notify_new_objfile (NULL) has been called by
2705 clear_symtab_users above. Notify the new files now. */
2706 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2707 observer_notify_new_objfile (objfile);
2708
2709 /* At least one objfile has changed, so we can consider that
2710 the executable we're debugging has changed too. */
2711 observer_notify_executable_changed ();
2712 }
2713
2714 do_cleanups (all_cleanups);
2715 }
2716 \f
2717
2718 typedef struct
2719 {
2720 char *ext;
2721 enum language lang;
2722 }
2723 filename_language;
2724
2725 static filename_language *filename_language_table;
2726 static int fl_table_size, fl_table_next;
2727
2728 static void
2729 add_filename_language (char *ext, enum language lang)
2730 {
2731 if (fl_table_next >= fl_table_size)
2732 {
2733 fl_table_size += 10;
2734 filename_language_table =
2735 xrealloc (filename_language_table,
2736 fl_table_size * sizeof (*filename_language_table));
2737 }
2738
2739 filename_language_table[fl_table_next].ext = xstrdup (ext);
2740 filename_language_table[fl_table_next].lang = lang;
2741 fl_table_next++;
2742 }
2743
2744 static char *ext_args;
2745 static void
2746 show_ext_args (struct ui_file *file, int from_tty,
2747 struct cmd_list_element *c, const char *value)
2748 {
2749 fprintf_filtered (file,
2750 _("Mapping between filename extension "
2751 "and source language is \"%s\".\n"),
2752 value);
2753 }
2754
2755 static void
2756 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2757 {
2758 int i;
2759 char *cp = ext_args;
2760 enum language lang;
2761
2762 /* First arg is filename extension, starting with '.' */
2763 if (*cp != '.')
2764 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2765
2766 /* Find end of first arg. */
2767 while (*cp && !isspace (*cp))
2768 cp++;
2769
2770 if (*cp == '\0')
2771 error (_("'%s': two arguments required -- "
2772 "filename extension and language"),
2773 ext_args);
2774
2775 /* Null-terminate first arg. */
2776 *cp++ = '\0';
2777
2778 /* Find beginning of second arg, which should be a source language. */
2779 cp = skip_spaces (cp);
2780
2781 if (*cp == '\0')
2782 error (_("'%s': two arguments required -- "
2783 "filename extension and language"),
2784 ext_args);
2785
2786 /* Lookup the language from among those we know. */
2787 lang = language_enum (cp);
2788
2789 /* Now lookup the filename extension: do we already know it? */
2790 for (i = 0; i < fl_table_next; i++)
2791 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2792 break;
2793
2794 if (i >= fl_table_next)
2795 {
2796 /* New file extension. */
2797 add_filename_language (ext_args, lang);
2798 }
2799 else
2800 {
2801 /* Redefining a previously known filename extension. */
2802
2803 /* if (from_tty) */
2804 /* query ("Really make files of type %s '%s'?", */
2805 /* ext_args, language_str (lang)); */
2806
2807 xfree (filename_language_table[i].ext);
2808 filename_language_table[i].ext = xstrdup (ext_args);
2809 filename_language_table[i].lang = lang;
2810 }
2811 }
2812
2813 static void
2814 info_ext_lang_command (char *args, int from_tty)
2815 {
2816 int i;
2817
2818 printf_filtered (_("Filename extensions and the languages they represent:"));
2819 printf_filtered ("\n\n");
2820 for (i = 0; i < fl_table_next; i++)
2821 printf_filtered ("\t%s\t- %s\n",
2822 filename_language_table[i].ext,
2823 language_str (filename_language_table[i].lang));
2824 }
2825
2826 static void
2827 init_filename_language_table (void)
2828 {
2829 if (fl_table_size == 0) /* Protect against repetition. */
2830 {
2831 fl_table_size = 20;
2832 fl_table_next = 0;
2833 filename_language_table =
2834 xmalloc (fl_table_size * sizeof (*filename_language_table));
2835 add_filename_language (".c", language_c);
2836 add_filename_language (".d", language_d);
2837 add_filename_language (".C", language_cplus);
2838 add_filename_language (".cc", language_cplus);
2839 add_filename_language (".cp", language_cplus);
2840 add_filename_language (".cpp", language_cplus);
2841 add_filename_language (".cxx", language_cplus);
2842 add_filename_language (".c++", language_cplus);
2843 add_filename_language (".java", language_java);
2844 add_filename_language (".class", language_java);
2845 add_filename_language (".m", language_objc);
2846 add_filename_language (".f", language_fortran);
2847 add_filename_language (".F", language_fortran);
2848 add_filename_language (".for", language_fortran);
2849 add_filename_language (".FOR", language_fortran);
2850 add_filename_language (".ftn", language_fortran);
2851 add_filename_language (".FTN", language_fortran);
2852 add_filename_language (".fpp", language_fortran);
2853 add_filename_language (".FPP", language_fortran);
2854 add_filename_language (".f90", language_fortran);
2855 add_filename_language (".F90", language_fortran);
2856 add_filename_language (".f95", language_fortran);
2857 add_filename_language (".F95", language_fortran);
2858 add_filename_language (".f03", language_fortran);
2859 add_filename_language (".F03", language_fortran);
2860 add_filename_language (".f08", language_fortran);
2861 add_filename_language (".F08", language_fortran);
2862 add_filename_language (".s", language_asm);
2863 add_filename_language (".sx", language_asm);
2864 add_filename_language (".S", language_asm);
2865 add_filename_language (".pas", language_pascal);
2866 add_filename_language (".p", language_pascal);
2867 add_filename_language (".pp", language_pascal);
2868 add_filename_language (".adb", language_ada);
2869 add_filename_language (".ads", language_ada);
2870 add_filename_language (".a", language_ada);
2871 add_filename_language (".ada", language_ada);
2872 add_filename_language (".dg", language_ada);
2873 }
2874 }
2875
2876 enum language
2877 deduce_language_from_filename (const char *filename)
2878 {
2879 int i;
2880 char *cp;
2881
2882 if (filename != NULL)
2883 if ((cp = strrchr (filename, '.')) != NULL)
2884 for (i = 0; i < fl_table_next; i++)
2885 if (strcmp (cp, filename_language_table[i].ext) == 0)
2886 return filename_language_table[i].lang;
2887
2888 return language_unknown;
2889 }
2890 \f
2891 /* allocate_symtab:
2892
2893 Allocate and partly initialize a new symbol table. Return a pointer
2894 to it. error() if no space.
2895
2896 Caller must set these fields:
2897 LINETABLE(symtab)
2898 symtab->blockvector
2899 symtab->dirname
2900 symtab->free_code
2901 symtab->free_ptr
2902 */
2903
2904 struct symtab *
2905 allocate_symtab (const char *filename, struct objfile *objfile)
2906 {
2907 struct symtab *symtab;
2908
2909 symtab = (struct symtab *)
2910 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2911 memset (symtab, 0, sizeof (*symtab));
2912 symtab->filename = bcache (filename, strlen (filename) + 1,
2913 objfile->per_bfd->filename_cache);
2914 symtab->fullname = NULL;
2915 symtab->language = deduce_language_from_filename (filename);
2916 symtab->debugformat = "unknown";
2917
2918 /* Hook it to the objfile it comes from. */
2919
2920 symtab->objfile = objfile;
2921 symtab->next = objfile->symtabs;
2922 objfile->symtabs = symtab;
2923
2924 /* This can be very verbose with lots of headers.
2925 Only print at higher debug levels. */
2926 if (symtab_create_debug >= 2)
2927 {
2928 /* Be a bit clever with debugging messages, and don't print objfile
2929 every time, only when it changes. */
2930 static char *last_objfile_name = NULL;
2931
2932 if (last_objfile_name == NULL
2933 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2934 {
2935 xfree (last_objfile_name);
2936 last_objfile_name = xstrdup (objfile_name (objfile));
2937 fprintf_unfiltered (gdb_stdlog,
2938 "Creating one or more symtabs for objfile %s ...\n",
2939 last_objfile_name);
2940 }
2941 fprintf_unfiltered (gdb_stdlog,
2942 "Created symtab %s for module %s.\n",
2943 host_address_to_string (symtab), filename);
2944 }
2945
2946 return (symtab);
2947 }
2948 \f
2949
2950 /* Reset all data structures in gdb which may contain references to symbol
2951 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2952
2953 void
2954 clear_symtab_users (int add_flags)
2955 {
2956 /* Someday, we should do better than this, by only blowing away
2957 the things that really need to be blown. */
2958
2959 /* Clear the "current" symtab first, because it is no longer valid.
2960 breakpoint_re_set may try to access the current symtab. */
2961 clear_current_source_symtab_and_line ();
2962
2963 clear_displays ();
2964 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2965 breakpoint_re_set ();
2966 clear_last_displayed_sal ();
2967 clear_pc_function_cache ();
2968 observer_notify_new_objfile (NULL);
2969
2970 /* Clear globals which might have pointed into a removed objfile.
2971 FIXME: It's not clear which of these are supposed to persist
2972 between expressions and which ought to be reset each time. */
2973 expression_context_block = NULL;
2974 innermost_block = NULL;
2975
2976 /* Varobj may refer to old symbols, perform a cleanup. */
2977 varobj_invalidate ();
2978
2979 }
2980
2981 static void
2982 clear_symtab_users_cleanup (void *ignore)
2983 {
2984 clear_symtab_users (0);
2985 }
2986 \f
2987 /* OVERLAYS:
2988 The following code implements an abstraction for debugging overlay sections.
2989
2990 The target model is as follows:
2991 1) The gnu linker will permit multiple sections to be mapped into the
2992 same VMA, each with its own unique LMA (or load address).
2993 2) It is assumed that some runtime mechanism exists for mapping the
2994 sections, one by one, from the load address into the VMA address.
2995 3) This code provides a mechanism for gdb to keep track of which
2996 sections should be considered to be mapped from the VMA to the LMA.
2997 This information is used for symbol lookup, and memory read/write.
2998 For instance, if a section has been mapped then its contents
2999 should be read from the VMA, otherwise from the LMA.
3000
3001 Two levels of debugger support for overlays are available. One is
3002 "manual", in which the debugger relies on the user to tell it which
3003 overlays are currently mapped. This level of support is
3004 implemented entirely in the core debugger, and the information about
3005 whether a section is mapped is kept in the objfile->obj_section table.
3006
3007 The second level of support is "automatic", and is only available if
3008 the target-specific code provides functionality to read the target's
3009 overlay mapping table, and translate its contents for the debugger
3010 (by updating the mapped state information in the obj_section tables).
3011
3012 The interface is as follows:
3013 User commands:
3014 overlay map <name> -- tell gdb to consider this section mapped
3015 overlay unmap <name> -- tell gdb to consider this section unmapped
3016 overlay list -- list the sections that GDB thinks are mapped
3017 overlay read-target -- get the target's state of what's mapped
3018 overlay off/manual/auto -- set overlay debugging state
3019 Functional interface:
3020 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3021 section, return that section.
3022 find_pc_overlay(pc): find any overlay section that contains
3023 the pc, either in its VMA or its LMA
3024 section_is_mapped(sect): true if overlay is marked as mapped
3025 section_is_overlay(sect): true if section's VMA != LMA
3026 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3027 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3028 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3029 overlay_mapped_address(...): map an address from section's LMA to VMA
3030 overlay_unmapped_address(...): map an address from section's VMA to LMA
3031 symbol_overlayed_address(...): Return a "current" address for symbol:
3032 either in VMA or LMA depending on whether
3033 the symbol's section is currently mapped. */
3034
3035 /* Overlay debugging state: */
3036
3037 enum overlay_debugging_state overlay_debugging = ovly_off;
3038 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3039
3040 /* Function: section_is_overlay (SECTION)
3041 Returns true if SECTION has VMA not equal to LMA, ie.
3042 SECTION is loaded at an address different from where it will "run". */
3043
3044 int
3045 section_is_overlay (struct obj_section *section)
3046 {
3047 if (overlay_debugging && section)
3048 {
3049 bfd *abfd = section->objfile->obfd;
3050 asection *bfd_section = section->the_bfd_section;
3051
3052 if (bfd_section_lma (abfd, bfd_section) != 0
3053 && bfd_section_lma (abfd, bfd_section)
3054 != bfd_section_vma (abfd, bfd_section))
3055 return 1;
3056 }
3057
3058 return 0;
3059 }
3060
3061 /* Function: overlay_invalidate_all (void)
3062 Invalidate the mapped state of all overlay sections (mark it as stale). */
3063
3064 static void
3065 overlay_invalidate_all (void)
3066 {
3067 struct objfile *objfile;
3068 struct obj_section *sect;
3069
3070 ALL_OBJSECTIONS (objfile, sect)
3071 if (section_is_overlay (sect))
3072 sect->ovly_mapped = -1;
3073 }
3074
3075 /* Function: section_is_mapped (SECTION)
3076 Returns true if section is an overlay, and is currently mapped.
3077
3078 Access to the ovly_mapped flag is restricted to this function, so
3079 that we can do automatic update. If the global flag
3080 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3081 overlay_invalidate_all. If the mapped state of the particular
3082 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3083
3084 int
3085 section_is_mapped (struct obj_section *osect)
3086 {
3087 struct gdbarch *gdbarch;
3088
3089 if (osect == 0 || !section_is_overlay (osect))
3090 return 0;
3091
3092 switch (overlay_debugging)
3093 {
3094 default:
3095 case ovly_off:
3096 return 0; /* overlay debugging off */
3097 case ovly_auto: /* overlay debugging automatic */
3098 /* Unles there is a gdbarch_overlay_update function,
3099 there's really nothing useful to do here (can't really go auto). */
3100 gdbarch = get_objfile_arch (osect->objfile);
3101 if (gdbarch_overlay_update_p (gdbarch))
3102 {
3103 if (overlay_cache_invalid)
3104 {
3105 overlay_invalidate_all ();
3106 overlay_cache_invalid = 0;
3107 }
3108 if (osect->ovly_mapped == -1)
3109 gdbarch_overlay_update (gdbarch, osect);
3110 }
3111 /* fall thru to manual case */
3112 case ovly_on: /* overlay debugging manual */
3113 return osect->ovly_mapped == 1;
3114 }
3115 }
3116
3117 /* Function: pc_in_unmapped_range
3118 If PC falls into the lma range of SECTION, return true, else false. */
3119
3120 CORE_ADDR
3121 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3122 {
3123 if (section_is_overlay (section))
3124 {
3125 bfd *abfd = section->objfile->obfd;
3126 asection *bfd_section = section->the_bfd_section;
3127
3128 /* We assume the LMA is relocated by the same offset as the VMA. */
3129 bfd_vma size = bfd_get_section_size (bfd_section);
3130 CORE_ADDR offset = obj_section_offset (section);
3131
3132 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3133 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3134 return 1;
3135 }
3136
3137 return 0;
3138 }
3139
3140 /* Function: pc_in_mapped_range
3141 If PC falls into the vma range of SECTION, return true, else false. */
3142
3143 CORE_ADDR
3144 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3145 {
3146 if (section_is_overlay (section))
3147 {
3148 if (obj_section_addr (section) <= pc
3149 && pc < obj_section_endaddr (section))
3150 return 1;
3151 }
3152
3153 return 0;
3154 }
3155
3156 /* Return true if the mapped ranges of sections A and B overlap, false
3157 otherwise. */
3158
3159 static int
3160 sections_overlap (struct obj_section *a, struct obj_section *b)
3161 {
3162 CORE_ADDR a_start = obj_section_addr (a);
3163 CORE_ADDR a_end = obj_section_endaddr (a);
3164 CORE_ADDR b_start = obj_section_addr (b);
3165 CORE_ADDR b_end = obj_section_endaddr (b);
3166
3167 return (a_start < b_end && b_start < a_end);
3168 }
3169
3170 /* Function: overlay_unmapped_address (PC, SECTION)
3171 Returns the address corresponding to PC in the unmapped (load) range.
3172 May be the same as PC. */
3173
3174 CORE_ADDR
3175 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3176 {
3177 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3178 {
3179 bfd *abfd = section->objfile->obfd;
3180 asection *bfd_section = section->the_bfd_section;
3181
3182 return pc + bfd_section_lma (abfd, bfd_section)
3183 - bfd_section_vma (abfd, bfd_section);
3184 }
3185
3186 return pc;
3187 }
3188
3189 /* Function: overlay_mapped_address (PC, SECTION)
3190 Returns the address corresponding to PC in the mapped (runtime) range.
3191 May be the same as PC. */
3192
3193 CORE_ADDR
3194 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3195 {
3196 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3197 {
3198 bfd *abfd = section->objfile->obfd;
3199 asection *bfd_section = section->the_bfd_section;
3200
3201 return pc + bfd_section_vma (abfd, bfd_section)
3202 - bfd_section_lma (abfd, bfd_section);
3203 }
3204
3205 return pc;
3206 }
3207
3208 /* Function: symbol_overlayed_address
3209 Return one of two addresses (relative to the VMA or to the LMA),
3210 depending on whether the section is mapped or not. */
3211
3212 CORE_ADDR
3213 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3214 {
3215 if (overlay_debugging)
3216 {
3217 /* If the symbol has no section, just return its regular address. */
3218 if (section == 0)
3219 return address;
3220 /* If the symbol's section is not an overlay, just return its
3221 address. */
3222 if (!section_is_overlay (section))
3223 return address;
3224 /* If the symbol's section is mapped, just return its address. */
3225 if (section_is_mapped (section))
3226 return address;
3227 /*
3228 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3229 * then return its LOADED address rather than its vma address!!
3230 */
3231 return overlay_unmapped_address (address, section);
3232 }
3233 return address;
3234 }
3235
3236 /* Function: find_pc_overlay (PC)
3237 Return the best-match overlay section for PC:
3238 If PC matches a mapped overlay section's VMA, return that section.
3239 Else if PC matches an unmapped section's VMA, return that section.
3240 Else if PC matches an unmapped section's LMA, return that section. */
3241
3242 struct obj_section *
3243 find_pc_overlay (CORE_ADDR pc)
3244 {
3245 struct objfile *objfile;
3246 struct obj_section *osect, *best_match = NULL;
3247
3248 if (overlay_debugging)
3249 ALL_OBJSECTIONS (objfile, osect)
3250 if (section_is_overlay (osect))
3251 {
3252 if (pc_in_mapped_range (pc, osect))
3253 {
3254 if (section_is_mapped (osect))
3255 return osect;
3256 else
3257 best_match = osect;
3258 }
3259 else if (pc_in_unmapped_range (pc, osect))
3260 best_match = osect;
3261 }
3262 return best_match;
3263 }
3264
3265 /* Function: find_pc_mapped_section (PC)
3266 If PC falls into the VMA address range of an overlay section that is
3267 currently marked as MAPPED, return that section. Else return NULL. */
3268
3269 struct obj_section *
3270 find_pc_mapped_section (CORE_ADDR pc)
3271 {
3272 struct objfile *objfile;
3273 struct obj_section *osect;
3274
3275 if (overlay_debugging)
3276 ALL_OBJSECTIONS (objfile, osect)
3277 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3278 return osect;
3279
3280 return NULL;
3281 }
3282
3283 /* Function: list_overlays_command
3284 Print a list of mapped sections and their PC ranges. */
3285
3286 static void
3287 list_overlays_command (char *args, int from_tty)
3288 {
3289 int nmapped = 0;
3290 struct objfile *objfile;
3291 struct obj_section *osect;
3292
3293 if (overlay_debugging)
3294 ALL_OBJSECTIONS (objfile, osect)
3295 if (section_is_mapped (osect))
3296 {
3297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3298 const char *name;
3299 bfd_vma lma, vma;
3300 int size;
3301
3302 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3303 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3304 size = bfd_get_section_size (osect->the_bfd_section);
3305 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3306
3307 printf_filtered ("Section %s, loaded at ", name);
3308 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3309 puts_filtered (" - ");
3310 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3311 printf_filtered (", mapped at ");
3312 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3313 puts_filtered (" - ");
3314 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3315 puts_filtered ("\n");
3316
3317 nmapped++;
3318 }
3319 if (nmapped == 0)
3320 printf_filtered (_("No sections are mapped.\n"));
3321 }
3322
3323 /* Function: map_overlay_command
3324 Mark the named section as mapped (ie. residing at its VMA address). */
3325
3326 static void
3327 map_overlay_command (char *args, int from_tty)
3328 {
3329 struct objfile *objfile, *objfile2;
3330 struct obj_section *sec, *sec2;
3331
3332 if (!overlay_debugging)
3333 error (_("Overlay debugging not enabled. Use "
3334 "either the 'overlay auto' or\n"
3335 "the 'overlay manual' command."));
3336
3337 if (args == 0 || *args == 0)
3338 error (_("Argument required: name of an overlay section"));
3339
3340 /* First, find a section matching the user supplied argument. */
3341 ALL_OBJSECTIONS (objfile, sec)
3342 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3343 {
3344 /* Now, check to see if the section is an overlay. */
3345 if (!section_is_overlay (sec))
3346 continue; /* not an overlay section */
3347
3348 /* Mark the overlay as "mapped". */
3349 sec->ovly_mapped = 1;
3350
3351 /* Next, make a pass and unmap any sections that are
3352 overlapped by this new section: */
3353 ALL_OBJSECTIONS (objfile2, sec2)
3354 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3355 {
3356 if (info_verbose)
3357 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3358 bfd_section_name (objfile->obfd,
3359 sec2->the_bfd_section));
3360 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3361 }
3362 return;
3363 }
3364 error (_("No overlay section called %s"), args);
3365 }
3366
3367 /* Function: unmap_overlay_command
3368 Mark the overlay section as unmapped
3369 (ie. resident in its LMA address range, rather than the VMA range). */
3370
3371 static void
3372 unmap_overlay_command (char *args, int from_tty)
3373 {
3374 struct objfile *objfile;
3375 struct obj_section *sec;
3376
3377 if (!overlay_debugging)
3378 error (_("Overlay debugging not enabled. "
3379 "Use either the 'overlay auto' or\n"
3380 "the 'overlay manual' command."));
3381
3382 if (args == 0 || *args == 0)
3383 error (_("Argument required: name of an overlay section"));
3384
3385 /* First, find a section matching the user supplied argument. */
3386 ALL_OBJSECTIONS (objfile, sec)
3387 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3388 {
3389 if (!sec->ovly_mapped)
3390 error (_("Section %s is not mapped"), args);
3391 sec->ovly_mapped = 0;
3392 return;
3393 }
3394 error (_("No overlay section called %s"), args);
3395 }
3396
3397 /* Function: overlay_auto_command
3398 A utility command to turn on overlay debugging.
3399 Possibly this should be done via a set/show command. */
3400
3401 static void
3402 overlay_auto_command (char *args, int from_tty)
3403 {
3404 overlay_debugging = ovly_auto;
3405 enable_overlay_breakpoints ();
3406 if (info_verbose)
3407 printf_unfiltered (_("Automatic overlay debugging enabled."));
3408 }
3409
3410 /* Function: overlay_manual_command
3411 A utility command to turn on overlay debugging.
3412 Possibly this should be done via a set/show command. */
3413
3414 static void
3415 overlay_manual_command (char *args, int from_tty)
3416 {
3417 overlay_debugging = ovly_on;
3418 disable_overlay_breakpoints ();
3419 if (info_verbose)
3420 printf_unfiltered (_("Overlay debugging enabled."));
3421 }
3422
3423 /* Function: overlay_off_command
3424 A utility command to turn on overlay debugging.
3425 Possibly this should be done via a set/show command. */
3426
3427 static void
3428 overlay_off_command (char *args, int from_tty)
3429 {
3430 overlay_debugging = ovly_off;
3431 disable_overlay_breakpoints ();
3432 if (info_verbose)
3433 printf_unfiltered (_("Overlay debugging disabled."));
3434 }
3435
3436 static void
3437 overlay_load_command (char *args, int from_tty)
3438 {
3439 struct gdbarch *gdbarch = get_current_arch ();
3440
3441 if (gdbarch_overlay_update_p (gdbarch))
3442 gdbarch_overlay_update (gdbarch, NULL);
3443 else
3444 error (_("This target does not know how to read its overlay state."));
3445 }
3446
3447 /* Function: overlay_command
3448 A place-holder for a mis-typed command. */
3449
3450 /* Command list chain containing all defined "overlay" subcommands. */
3451 static struct cmd_list_element *overlaylist;
3452
3453 static void
3454 overlay_command (char *args, int from_tty)
3455 {
3456 printf_unfiltered
3457 ("\"overlay\" must be followed by the name of an overlay command.\n");
3458 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3459 }
3460
3461 /* Target Overlays for the "Simplest" overlay manager:
3462
3463 This is GDB's default target overlay layer. It works with the
3464 minimal overlay manager supplied as an example by Cygnus. The
3465 entry point is via a function pointer "gdbarch_overlay_update",
3466 so targets that use a different runtime overlay manager can
3467 substitute their own overlay_update function and take over the
3468 function pointer.
3469
3470 The overlay_update function pokes around in the target's data structures
3471 to see what overlays are mapped, and updates GDB's overlay mapping with
3472 this information.
3473
3474 In this simple implementation, the target data structures are as follows:
3475 unsigned _novlys; /# number of overlay sections #/
3476 unsigned _ovly_table[_novlys][4] = {
3477 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3478 {..., ..., ..., ...},
3479 }
3480 unsigned _novly_regions; /# number of overlay regions #/
3481 unsigned _ovly_region_table[_novly_regions][3] = {
3482 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3483 {..., ..., ...},
3484 }
3485 These functions will attempt to update GDB's mappedness state in the
3486 symbol section table, based on the target's mappedness state.
3487
3488 To do this, we keep a cached copy of the target's _ovly_table, and
3489 attempt to detect when the cached copy is invalidated. The main
3490 entry point is "simple_overlay_update(SECT), which looks up SECT in
3491 the cached table and re-reads only the entry for that section from
3492 the target (whenever possible). */
3493
3494 /* Cached, dynamically allocated copies of the target data structures: */
3495 static unsigned (*cache_ovly_table)[4] = 0;
3496 static unsigned cache_novlys = 0;
3497 static CORE_ADDR cache_ovly_table_base = 0;
3498 enum ovly_index
3499 {
3500 VMA, SIZE, LMA, MAPPED
3501 };
3502
3503 /* Throw away the cached copy of _ovly_table. */
3504
3505 static void
3506 simple_free_overlay_table (void)
3507 {
3508 if (cache_ovly_table)
3509 xfree (cache_ovly_table);
3510 cache_novlys = 0;
3511 cache_ovly_table = NULL;
3512 cache_ovly_table_base = 0;
3513 }
3514
3515 /* Read an array of ints of size SIZE from the target into a local buffer.
3516 Convert to host order. int LEN is number of ints. */
3517
3518 static void
3519 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3520 int len, int size, enum bfd_endian byte_order)
3521 {
3522 /* FIXME (alloca): Not safe if array is very large. */
3523 gdb_byte *buf = alloca (len * size);
3524 int i;
3525
3526 read_memory (memaddr, buf, len * size);
3527 for (i = 0; i < len; i++)
3528 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3529 }
3530
3531 /* Find and grab a copy of the target _ovly_table
3532 (and _novlys, which is needed for the table's size). */
3533
3534 static int
3535 simple_read_overlay_table (void)
3536 {
3537 struct minimal_symbol *novlys_msym;
3538 struct bound_minimal_symbol ovly_table_msym;
3539 struct gdbarch *gdbarch;
3540 int word_size;
3541 enum bfd_endian byte_order;
3542
3543 simple_free_overlay_table ();
3544 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3545 if (! novlys_msym)
3546 {
3547 error (_("Error reading inferior's overlay table: "
3548 "couldn't find `_novlys' variable\n"
3549 "in inferior. Use `overlay manual' mode."));
3550 return 0;
3551 }
3552
3553 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3554 if (! ovly_table_msym.minsym)
3555 {
3556 error (_("Error reading inferior's overlay table: couldn't find "
3557 "`_ovly_table' array\n"
3558 "in inferior. Use `overlay manual' mode."));
3559 return 0;
3560 }
3561
3562 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3563 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3564 byte_order = gdbarch_byte_order (gdbarch);
3565
3566 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3567 4, byte_order);
3568 cache_ovly_table
3569 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3570 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3571 read_target_long_array (cache_ovly_table_base,
3572 (unsigned int *) cache_ovly_table,
3573 cache_novlys * 4, word_size, byte_order);
3574
3575 return 1; /* SUCCESS */
3576 }
3577
3578 /* Function: simple_overlay_update_1
3579 A helper function for simple_overlay_update. Assuming a cached copy
3580 of _ovly_table exists, look through it to find an entry whose vma,
3581 lma and size match those of OSECT. Re-read the entry and make sure
3582 it still matches OSECT (else the table may no longer be valid).
3583 Set OSECT's mapped state to match the entry. Return: 1 for
3584 success, 0 for failure. */
3585
3586 static int
3587 simple_overlay_update_1 (struct obj_section *osect)
3588 {
3589 int i, size;
3590 bfd *obfd = osect->objfile->obfd;
3591 asection *bsect = osect->the_bfd_section;
3592 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3593 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3594 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3595
3596 size = bfd_get_section_size (osect->the_bfd_section);
3597 for (i = 0; i < cache_novlys; i++)
3598 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3599 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3600 /* && cache_ovly_table[i][SIZE] == size */ )
3601 {
3602 read_target_long_array (cache_ovly_table_base + i * word_size,
3603 (unsigned int *) cache_ovly_table[i],
3604 4, word_size, byte_order);
3605 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3606 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3607 /* && cache_ovly_table[i][SIZE] == size */ )
3608 {
3609 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3610 return 1;
3611 }
3612 else /* Warning! Warning! Target's ovly table has changed! */
3613 return 0;
3614 }
3615 return 0;
3616 }
3617
3618 /* Function: simple_overlay_update
3619 If OSECT is NULL, then update all sections' mapped state
3620 (after re-reading the entire target _ovly_table).
3621 If OSECT is non-NULL, then try to find a matching entry in the
3622 cached ovly_table and update only OSECT's mapped state.
3623 If a cached entry can't be found or the cache isn't valid, then
3624 re-read the entire cache, and go ahead and update all sections. */
3625
3626 void
3627 simple_overlay_update (struct obj_section *osect)
3628 {
3629 struct objfile *objfile;
3630
3631 /* Were we given an osect to look up? NULL means do all of them. */
3632 if (osect)
3633 /* Have we got a cached copy of the target's overlay table? */
3634 if (cache_ovly_table != NULL)
3635 {
3636 /* Does its cached location match what's currently in the
3637 symtab? */
3638 struct minimal_symbol *minsym
3639 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3640
3641 if (minsym == NULL)
3642 error (_("Error reading inferior's overlay table: couldn't "
3643 "find `_ovly_table' array\n"
3644 "in inferior. Use `overlay manual' mode."));
3645
3646 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3647 /* Then go ahead and try to look up this single section in
3648 the cache. */
3649 if (simple_overlay_update_1 (osect))
3650 /* Found it! We're done. */
3651 return;
3652 }
3653
3654 /* Cached table no good: need to read the entire table anew.
3655 Or else we want all the sections, in which case it's actually
3656 more efficient to read the whole table in one block anyway. */
3657
3658 if (! simple_read_overlay_table ())
3659 return;
3660
3661 /* Now may as well update all sections, even if only one was requested. */
3662 ALL_OBJSECTIONS (objfile, osect)
3663 if (section_is_overlay (osect))
3664 {
3665 int i, size;
3666 bfd *obfd = osect->objfile->obfd;
3667 asection *bsect = osect->the_bfd_section;
3668
3669 size = bfd_get_section_size (bsect);
3670 for (i = 0; i < cache_novlys; i++)
3671 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3672 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3673 /* && cache_ovly_table[i][SIZE] == size */ )
3674 { /* obj_section matches i'th entry in ovly_table. */
3675 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3676 break; /* finished with inner for loop: break out. */
3677 }
3678 }
3679 }
3680
3681 /* Set the output sections and output offsets for section SECTP in
3682 ABFD. The relocation code in BFD will read these offsets, so we
3683 need to be sure they're initialized. We map each section to itself,
3684 with no offset; this means that SECTP->vma will be honored. */
3685
3686 static void
3687 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3688 {
3689 sectp->output_section = sectp;
3690 sectp->output_offset = 0;
3691 }
3692
3693 /* Default implementation for sym_relocate. */
3694
3695 bfd_byte *
3696 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3697 bfd_byte *buf)
3698 {
3699 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3700 DWO file. */
3701 bfd *abfd = sectp->owner;
3702
3703 /* We're only interested in sections with relocation
3704 information. */
3705 if ((sectp->flags & SEC_RELOC) == 0)
3706 return NULL;
3707
3708 /* We will handle section offsets properly elsewhere, so relocate as if
3709 all sections begin at 0. */
3710 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3711
3712 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3713 }
3714
3715 /* Relocate the contents of a debug section SECTP in ABFD. The
3716 contents are stored in BUF if it is non-NULL, or returned in a
3717 malloc'd buffer otherwise.
3718
3719 For some platforms and debug info formats, shared libraries contain
3720 relocations against the debug sections (particularly for DWARF-2;
3721 one affected platform is PowerPC GNU/Linux, although it depends on
3722 the version of the linker in use). Also, ELF object files naturally
3723 have unresolved relocations for their debug sections. We need to apply
3724 the relocations in order to get the locations of symbols correct.
3725 Another example that may require relocation processing, is the
3726 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3727 debug section. */
3728
3729 bfd_byte *
3730 symfile_relocate_debug_section (struct objfile *objfile,
3731 asection *sectp, bfd_byte *buf)
3732 {
3733 gdb_assert (objfile->sf->sym_relocate);
3734
3735 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3736 }
3737
3738 struct symfile_segment_data *
3739 get_symfile_segment_data (bfd *abfd)
3740 {
3741 const struct sym_fns *sf = find_sym_fns (abfd);
3742
3743 if (sf == NULL)
3744 return NULL;
3745
3746 return sf->sym_segments (abfd);
3747 }
3748
3749 void
3750 free_symfile_segment_data (struct symfile_segment_data *data)
3751 {
3752 xfree (data->segment_bases);
3753 xfree (data->segment_sizes);
3754 xfree (data->segment_info);
3755 xfree (data);
3756 }
3757
3758 /* Given:
3759 - DATA, containing segment addresses from the object file ABFD, and
3760 the mapping from ABFD's sections onto the segments that own them,
3761 and
3762 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3763 segment addresses reported by the target,
3764 store the appropriate offsets for each section in OFFSETS.
3765
3766 If there are fewer entries in SEGMENT_BASES than there are segments
3767 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3768
3769 If there are more entries, then ignore the extra. The target may
3770 not be able to distinguish between an empty data segment and a
3771 missing data segment; a missing text segment is less plausible. */
3772
3773 int
3774 symfile_map_offsets_to_segments (bfd *abfd,
3775 const struct symfile_segment_data *data,
3776 struct section_offsets *offsets,
3777 int num_segment_bases,
3778 const CORE_ADDR *segment_bases)
3779 {
3780 int i;
3781 asection *sect;
3782
3783 /* It doesn't make sense to call this function unless you have some
3784 segment base addresses. */
3785 gdb_assert (num_segment_bases > 0);
3786
3787 /* If we do not have segment mappings for the object file, we
3788 can not relocate it by segments. */
3789 gdb_assert (data != NULL);
3790 gdb_assert (data->num_segments > 0);
3791
3792 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3793 {
3794 int which = data->segment_info[i];
3795
3796 gdb_assert (0 <= which && which <= data->num_segments);
3797
3798 /* Don't bother computing offsets for sections that aren't
3799 loaded as part of any segment. */
3800 if (! which)
3801 continue;
3802
3803 /* Use the last SEGMENT_BASES entry as the address of any extra
3804 segments mentioned in DATA->segment_info. */
3805 if (which > num_segment_bases)
3806 which = num_segment_bases;
3807
3808 offsets->offsets[i] = (segment_bases[which - 1]
3809 - data->segment_bases[which - 1]);
3810 }
3811
3812 return 1;
3813 }
3814
3815 static void
3816 symfile_find_segment_sections (struct objfile *objfile)
3817 {
3818 bfd *abfd = objfile->obfd;
3819 int i;
3820 asection *sect;
3821 struct symfile_segment_data *data;
3822
3823 data = get_symfile_segment_data (objfile->obfd);
3824 if (data == NULL)
3825 return;
3826
3827 if (data->num_segments != 1 && data->num_segments != 2)
3828 {
3829 free_symfile_segment_data (data);
3830 return;
3831 }
3832
3833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3834 {
3835 int which = data->segment_info[i];
3836
3837 if (which == 1)
3838 {
3839 if (objfile->sect_index_text == -1)
3840 objfile->sect_index_text = sect->index;
3841
3842 if (objfile->sect_index_rodata == -1)
3843 objfile->sect_index_rodata = sect->index;
3844 }
3845 else if (which == 2)
3846 {
3847 if (objfile->sect_index_data == -1)
3848 objfile->sect_index_data = sect->index;
3849
3850 if (objfile->sect_index_bss == -1)
3851 objfile->sect_index_bss = sect->index;
3852 }
3853 }
3854
3855 free_symfile_segment_data (data);
3856 }
3857
3858 /* Listen for free_objfile events. */
3859
3860 static void
3861 symfile_free_objfile (struct objfile *objfile)
3862 {
3863 /* Remove the target sections of user-added objfiles. */
3864 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3865 remove_target_sections ((void *) objfile);
3866 }
3867
3868 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3869 Expand all symtabs that match the specified criteria.
3870 See quick_symbol_functions.expand_symtabs_matching for details. */
3871
3872 void
3873 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3874 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3875 enum search_domain kind,
3876 void *data)
3877 {
3878 struct objfile *objfile;
3879
3880 ALL_OBJFILES (objfile)
3881 {
3882 if (objfile->sf)
3883 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3884 symbol_matcher, kind,
3885 data);
3886 }
3887 }
3888
3889 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3890 Map function FUN over every file.
3891 See quick_symbol_functions.map_symbol_filenames for details. */
3892
3893 void
3894 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3895 int need_fullname)
3896 {
3897 struct objfile *objfile;
3898
3899 ALL_OBJFILES (objfile)
3900 {
3901 if (objfile->sf)
3902 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3903 need_fullname);
3904 }
3905 }
3906
3907 void
3908 _initialize_symfile (void)
3909 {
3910 struct cmd_list_element *c;
3911
3912 observer_attach_free_objfile (symfile_free_objfile);
3913
3914 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3915 Load symbol table from executable file FILE.\n\
3916 The `file' command can also load symbol tables, as well as setting the file\n\
3917 to execute."), &cmdlist);
3918 set_cmd_completer (c, filename_completer);
3919
3920 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3921 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3922 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3923 ...]\nADDR is the starting address of the file's text.\n\
3924 The optional arguments are section-name section-address pairs and\n\
3925 should be specified if the data and bss segments are not contiguous\n\
3926 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3927 &cmdlist);
3928 set_cmd_completer (c, filename_completer);
3929
3930 c = add_cmd ("remove-symbol-file", class_files,
3931 remove_symbol_file_command, _("\
3932 Remove a symbol file added via the add-symbol-file command.\n\
3933 Usage: remove-symbol-file FILENAME\n\
3934 remove-symbol-file -a ADDRESS\n\
3935 The file to remove can be identified by its filename or by an address\n\
3936 that lies within the boundaries of this symbol file in memory."),
3937 &cmdlist);
3938
3939 c = add_cmd ("load", class_files, load_command, _("\
3940 Dynamically load FILE into the running program, and record its symbols\n\
3941 for access from GDB.\n\
3942 A load OFFSET may also be given."), &cmdlist);
3943 set_cmd_completer (c, filename_completer);
3944
3945 add_prefix_cmd ("overlay", class_support, overlay_command,
3946 _("Commands for debugging overlays."), &overlaylist,
3947 "overlay ", 0, &cmdlist);
3948
3949 add_com_alias ("ovly", "overlay", class_alias, 1);
3950 add_com_alias ("ov", "overlay", class_alias, 1);
3951
3952 add_cmd ("map-overlay", class_support, map_overlay_command,
3953 _("Assert that an overlay section is mapped."), &overlaylist);
3954
3955 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3956 _("Assert that an overlay section is unmapped."), &overlaylist);
3957
3958 add_cmd ("list-overlays", class_support, list_overlays_command,
3959 _("List mappings of overlay sections."), &overlaylist);
3960
3961 add_cmd ("manual", class_support, overlay_manual_command,
3962 _("Enable overlay debugging."), &overlaylist);
3963 add_cmd ("off", class_support, overlay_off_command,
3964 _("Disable overlay debugging."), &overlaylist);
3965 add_cmd ("auto", class_support, overlay_auto_command,
3966 _("Enable automatic overlay debugging."), &overlaylist);
3967 add_cmd ("load-target", class_support, overlay_load_command,
3968 _("Read the overlay mapping state from the target."), &overlaylist);
3969
3970 /* Filename extension to source language lookup table: */
3971 init_filename_language_table ();
3972 add_setshow_string_noescape_cmd ("extension-language", class_files,
3973 &ext_args, _("\
3974 Set mapping between filename extension and source language."), _("\
3975 Show mapping between filename extension and source language."), _("\
3976 Usage: set extension-language .foo bar"),
3977 set_ext_lang_command,
3978 show_ext_args,
3979 &setlist, &showlist);
3980
3981 add_info ("extensions", info_ext_lang_command,
3982 _("All filename extensions associated with a source language."));
3983
3984 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3985 &debug_file_directory, _("\
3986 Set the directories where separate debug symbols are searched for."), _("\
3987 Show the directories where separate debug symbols are searched for."), _("\
3988 Separate debug symbols are first searched for in the same\n\
3989 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3990 and lastly at the path of the directory of the binary with\n\
3991 each global debug-file-directory component prepended."),
3992 NULL,
3993 show_debug_file_directory,
3994 &setlist, &showlist);
3995 }
This page took 0.17495 seconds and 3 git commands to generate.