* dwarf2read.c (read_tag_const_type, read_tag_volatile_type):
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "breakpoint.h"
33 #include "language.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "inferior.h" /* for write_pc */
37 #include "gdb-stabs.h"
38 #include "obstack.h"
39 #include "completer.h"
40
41 #include <assert.h>
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*pre_add_symbol_hook) (char *);
73 void (*post_add_symbol_hook) (void);
74 void (*target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 struct complaint oldsyms_complaint =
82 {
83 "Replacing old symbols for `%s'", 0, 0
84 };
85
86 struct complaint empty_symtab_complaint =
87 {
88 "Empty symbol table found for `%s'", 0, 0
89 };
90
91 struct complaint unknown_option_complaint =
92 {
93 "Unknown option `%s' ignored", 0, 0
94 };
95
96 /* External variables and functions referenced. */
97
98 extern int info_verbose;
99
100 extern void report_transfer_performance (unsigned long, time_t, time_t);
101
102 /* Functions this file defines */
103
104 #if 0
105 static int simple_read_overlay_region_table (void);
106 static void simple_free_overlay_region_table (void);
107 #endif
108
109 static void set_initial_language (void);
110
111 static void load_command (char *, int);
112
113 static void add_symbol_file_command (char *, int);
114
115 static void add_shared_symbol_files_command (char *, int);
116
117 static void cashier_psymtab (struct partial_symtab *);
118
119 static int compare_psymbols (const void *, const void *);
120
121 static int compare_symbols (const void *, const void *);
122
123 bfd *symfile_bfd_open (char *);
124
125 static void find_sym_fns (struct objfile *);
126
127 static void decrement_reading_symtab (void *);
128
129 static void overlay_invalidate_all (void);
130
131 static int overlay_is_mapped (struct obj_section *);
132
133 void list_overlays_command (char *, int);
134
135 void map_overlay_command (char *, int);
136
137 void unmap_overlay_command (char *, int);
138
139 static void overlay_auto_command (char *, int);
140
141 static void overlay_manual_command (char *, int);
142
143 static void overlay_off_command (char *, int);
144
145 static void overlay_load_command (char *, int);
146
147 static void overlay_command (char *, int);
148
149 static void simple_free_overlay_table (void);
150
151 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
152
153 static int simple_read_overlay_table (void);
154
155 static int simple_overlay_update_1 (struct obj_section *);
156
157 static void add_filename_language (char *ext, enum language lang);
158
159 static void set_ext_lang_command (char *args, int from_tty);
160
161 static void info_ext_lang_command (char *args, int from_tty);
162
163 static void init_filename_language_table (void);
164
165 void _initialize_symfile (void);
166
167 /* List of all available sym_fns. On gdb startup, each object file reader
168 calls add_symtab_fns() to register information on each format it is
169 prepared to read. */
170
171 static struct sym_fns *symtab_fns = NULL;
172
173 /* Flag for whether user will be reloading symbols multiple times.
174 Defaults to ON for VxWorks, otherwise OFF. */
175
176 #ifdef SYMBOL_RELOADING_DEFAULT
177 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
178 #else
179 int symbol_reloading = 0;
180 #endif
181
182 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
183 this variable is interpreted as a threshhold. If adding a new
184 library's symbol table to those already known to the debugger would
185 exceed this threshhold, then the shlib's symbols are not added.
186
187 If non-zero on other platforms, shared library symbols will be added
188 automatically when the inferior is created, new libraries are loaded,
189 or when attaching to the inferior. This is almost always what users
190 will want to have happen; but for very large programs, the startup
191 time will be excessive, and so if this is a problem, the user can
192 clear this flag and then add the shared library symbols as needed.
193 Note that there is a potential for confusion, since if the shared
194 library symbols are not loaded, commands like "info fun" will *not*
195 report all the functions that are actually present.
196
197 Note that HP-UX interprets this variable to mean, "threshhold size
198 in megabytes, where zero means never add". Other platforms interpret
199 this variable to mean, "always add if non-zero, never add if zero."
200 */
201
202 int auto_solib_add = 1;
203 \f
204
205 /* Since this function is called from within qsort, in an ANSI environment
206 it must conform to the prototype for qsort, which specifies that the
207 comparison function takes two "void *" pointers. */
208
209 static int
210 compare_symbols (const PTR s1p, const PTR s2p)
211 {
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
216 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
217 }
218
219 /*
220
221 LOCAL FUNCTION
222
223 compare_psymbols -- compare two partial symbols by name
224
225 DESCRIPTION
226
227 Given pointers to pointers to two partial symbol table entries,
228 compare them by name and return -N, 0, or +N (ala strcmp).
229 Typically used by sorting routines like qsort().
230
231 NOTES
232
233 Does direct compare of first two characters before punting
234 and passing to strcmp for longer compares. Note that the
235 original version had a bug whereby two null strings or two
236 identically named one character strings would return the
237 comparison of memory following the null byte.
238
239 */
240
241 static int
242 compare_psymbols (const PTR s1p, const PTR s2p)
243 {
244 register struct partial_symbol **s1, **s2;
245 register char *st1, *st2;
246
247 s1 = (struct partial_symbol **) s1p;
248 s2 = (struct partial_symbol **) s2p;
249 st1 = SYMBOL_SOURCE_NAME (*s1);
250 st2 = SYMBOL_SOURCE_NAME (*s2);
251
252
253 if ((st1[0] - st2[0]) || !st1[0])
254 {
255 return (st1[0] - st2[0]);
256 }
257 else if ((st1[1] - st2[1]) || !st1[1])
258 {
259 return (st1[1] - st2[1]);
260 }
261 else
262 {
263 return (strcmp (st1, st2));
264 }
265 }
266
267 void
268 sort_pst_symbols (struct partial_symtab *pst)
269 {
270 /* Sort the global list; don't sort the static list */
271
272 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
273 pst->n_global_syms, sizeof (struct partial_symbol *),
274 compare_psymbols);
275 }
276
277 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
278
279 void
280 sort_block_syms (register struct block *b)
281 {
282 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
283 sizeof (struct symbol *), compare_symbols);
284 }
285
286 /* Call sort_symtab_syms to sort alphabetically
287 the symbols of each block of one symtab. */
288
289 void
290 sort_symtab_syms (register struct symtab *s)
291 {
292 register struct blockvector *bv;
293 int nbl;
294 int i;
295 register struct block *b;
296
297 if (s == 0)
298 return;
299 bv = BLOCKVECTOR (s);
300 nbl = BLOCKVECTOR_NBLOCKS (bv);
301 for (i = 0; i < nbl; i++)
302 {
303 b = BLOCKVECTOR_BLOCK (bv, i);
304 if (BLOCK_SHOULD_SORT (b))
305 sort_block_syms (b);
306 }
307 }
308
309 /* Make a null terminated copy of the string at PTR with SIZE characters in
310 the obstack pointed to by OBSTACKP . Returns the address of the copy.
311 Note that the string at PTR does not have to be null terminated, I.E. it
312 may be part of a larger string and we are only saving a substring. */
313
314 char *
315 obsavestring (char *ptr, int size, struct obstack *obstackp)
316 {
317 register char *p = (char *) obstack_alloc (obstackp, size + 1);
318 /* Open-coded memcpy--saves function call time. These strings are usually
319 short. FIXME: Is this really still true with a compiler that can
320 inline memcpy? */
321 {
322 register char *p1 = ptr;
323 register char *p2 = p;
324 char *end = ptr + size;
325 while (p1 != end)
326 *p2++ = *p1++;
327 }
328 p[size] = 0;
329 return p;
330 }
331
332 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
333 in the obstack pointed to by OBSTACKP. */
334
335 char *
336 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
337 const char *s3)
338 {
339 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
340 register char *val = (char *) obstack_alloc (obstackp, len);
341 strcpy (val, s1);
342 strcat (val, s2);
343 strcat (val, s3);
344 return val;
345 }
346
347 /* True if we are nested inside psymtab_to_symtab. */
348
349 int currently_reading_symtab = 0;
350
351 static void
352 decrement_reading_symtab (void *dummy)
353 {
354 currently_reading_symtab--;
355 }
356
357 /* Get the symbol table that corresponds to a partial_symtab.
358 This is fast after the first time you do it. In fact, there
359 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
360 case inline. */
361
362 struct symtab *
363 psymtab_to_symtab (register struct partial_symtab *pst)
364 {
365 /* If it's been looked up before, return it. */
366 if (pst->symtab)
367 return pst->symtab;
368
369 /* If it has not yet been read in, read it. */
370 if (!pst->readin)
371 {
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
376 }
377
378 return pst->symtab;
379 }
380
381 /* Initialize entry point information for this objfile. */
382
383 void
384 init_entry_point_info (struct objfile *objfile)
385 {
386 /* Save startup file's range of PC addresses to help blockframe.c
387 decide where the bottom of the stack is. */
388
389 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
390 {
391 /* Executable file -- record its entry point so we'll recognize
392 the startup file because it contains the entry point. */
393 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
394 }
395 else
396 {
397 /* Examination of non-executable.o files. Short-circuit this stuff. */
398 objfile->ei.entry_point = INVALID_ENTRY_POINT;
399 }
400 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
404 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
405 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
406 }
407
408 /* Get current entry point address. */
409
410 CORE_ADDR
411 entry_point_address (void)
412 {
413 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
414 }
415
416 /* Remember the lowest-addressed loadable section we've seen.
417 This function is called via bfd_map_over_sections.
418
419 In case of equal vmas, the section with the largest size becomes the
420 lowest-addressed loadable section.
421
422 If the vmas and sizes are equal, the last section is considered the
423 lowest-addressed loadable section. */
424
425 void
426 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
427 {
428 asection **lowest = (asection **) obj;
429
430 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
431 return;
432 if (!*lowest)
433 *lowest = sect; /* First loadable section */
434 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
435 *lowest = sect; /* A lower loadable section */
436 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
437 && (bfd_section_size (abfd, (*lowest))
438 <= bfd_section_size (abfd, sect)))
439 *lowest = sect;
440 }
441
442
443 /* Build (allocate and populate) a section_addr_info struct from
444 an existing section table. */
445
446 extern struct section_addr_info *
447 build_section_addr_info_from_section_table (const struct section_table *start,
448 const struct section_table *end)
449 {
450 struct section_addr_info *sap;
451 const struct section_table *stp;
452 int oidx;
453
454 sap = xmalloc (sizeof (struct section_addr_info));
455 memset (sap, 0, sizeof (struct section_addr_info));
456
457 for (stp = start, oidx = 0; stp != end; stp++)
458 {
459 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
460 && oidx < MAX_SECTIONS)
461 {
462 sap->other[oidx].addr = stp->addr;
463 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
464 sap->other[oidx].sectindex = stp->the_bfd_section->index;
465 oidx++;
466 }
467 }
468
469 return sap;
470 }
471
472
473 /* Free all memory allocated by build_section_addr_info_from_section_table. */
474
475 extern void
476 free_section_addr_info (struct section_addr_info *sap)
477 {
478 int idx;
479
480 for (idx = 0; idx < MAX_SECTIONS; idx++)
481 if (sap->other[idx].name)
482 xfree (sap->other[idx].name);
483 xfree (sap);
484 }
485
486
487 /* Parse the user's idea of an offset for dynamic linking, into our idea
488 of how to represent it for fast symbol reading. This is the default
489 version of the sym_fns.sym_offsets function for symbol readers that
490 don't need to do anything special. It allocates a section_offsets table
491 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
492
493 void
494 default_symfile_offsets (struct objfile *objfile,
495 struct section_addr_info *addrs)
496 {
497 int i;
498 asection *sect = NULL;
499
500 objfile->num_sections = SECT_OFF_MAX;
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
503 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
504
505 /* Now calculate offsets for section that were specified by the
506 caller. */
507 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
508 {
509 struct other_sections *osp ;
510
511 osp = &addrs->other[i] ;
512 if (osp->addr == 0)
513 continue;
514
515 /* Record all sections in offsets */
516 /* The section_offsets in the objfile are here filled in using
517 the BFD index. */
518 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
519 }
520
521 /* Remember the bfd indexes for the .text, .data, .bss and
522 .rodata sections. */
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".text");
525 if (sect)
526 objfile->sect_index_text = sect->index;
527
528 sect = bfd_get_section_by_name (objfile->obfd, ".data");
529 if (sect)
530 objfile->sect_index_data = sect->index;
531
532 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
533 if (sect)
534 objfile->sect_index_bss = sect->index;
535
536 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
537 if (sect)
538 objfile->sect_index_rodata = sect->index;
539
540 }
541
542 /* Process a symbol file, as either the main file or as a dynamically
543 loaded file.
544
545 OBJFILE is where the symbols are to be read from.
546
547 ADDR is the address where the text segment was loaded, unless the
548 objfile is the main symbol file, in which case it is zero.
549
550 MAINLINE is nonzero if this is the main symbol file, or zero if
551 it's an extra symbol file such as dynamically loaded code.
552
553 VERBO is nonzero if the caller has printed a verbose message about
554 the symbol reading (and complaints can be more terse about it). */
555
556 void
557 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
558 int mainline, int verbo)
559 {
560 asection *lower_sect;
561 asection *sect;
562 CORE_ADDR lower_offset;
563 struct section_addr_info local_addr;
564 struct cleanup *old_chain;
565 int i;
566
567 /* If ADDRS is NULL, initialize the local section_addr_info struct and
568 point ADDRS to it. We now establish the convention that an addr of
569 zero means no load address was specified. */
570
571 if (addrs == NULL)
572 {
573 memset (&local_addr, 0, sizeof (local_addr));
574 addrs = &local_addr;
575 }
576
577 init_entry_point_info (objfile);
578 find_sym_fns (objfile);
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
582 old_chain = make_cleanup_free_objfile (objfile);
583
584 if (mainline)
585 {
586 /* We will modify the main symbol table, make sure that all its users
587 will be cleaned up if an error occurs during symbol reading. */
588 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
589
590 /* Since no error yet, throw away the old symbol table. */
591
592 if (symfile_objfile != NULL)
593 {
594 free_objfile (symfile_objfile);
595 symfile_objfile = NULL;
596 }
597
598 /* Currently we keep symbols from the add-symbol-file command.
599 If the user wants to get rid of them, they should do "symbol-file"
600 without arguments first. Not sure this is the best behavior
601 (PR 2207). */
602
603 (*objfile->sf->sym_new_init) (objfile);
604 }
605
606 /* Convert addr into an offset rather than an absolute address.
607 We find the lowest address of a loaded segment in the objfile,
608 and assume that <addr> is where that got loaded.
609
610 We no longer warn if the lowest section is not a text segment (as
611 happens for the PA64 port. */
612 if (!mainline)
613 {
614 /* Find lowest loadable section to be used as starting point for
615 continguous sections. FIXME!! won't work without call to find
616 .text first, but this assumes text is lowest section. */
617 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
618 if (lower_sect == NULL)
619 bfd_map_over_sections (objfile->obfd, find_lowest_section,
620 (PTR) &lower_sect);
621 if (lower_sect == NULL)
622 warning ("no loadable sections found in added symbol-file %s",
623 objfile->name);
624 else
625 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
626 warning ("Lowest section in %s is %s at %s",
627 objfile->name,
628 bfd_section_name (objfile->obfd, lower_sect),
629 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
630 if (lower_sect != NULL)
631 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
632 else
633 lower_offset = 0;
634
635 /* Calculate offsets for the loadable sections.
636 FIXME! Sections must be in order of increasing loadable section
637 so that contiguous sections can use the lower-offset!!!
638
639 Adjust offsets if the segments are not contiguous.
640 If the section is contiguous, its offset should be set to
641 the offset of the highest loadable section lower than it
642 (the loadable section directly below it in memory).
643 this_offset = lower_offset = lower_addr - lower_orig_addr */
644
645 /* Calculate offsets for sections. */
646 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
647 {
648 if (addrs->other[i].addr != 0)
649 {
650 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
651 if (sect)
652 {
653 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
654 lower_offset = addrs->other[i].addr;
655 /* This is the index used by BFD. */
656 addrs->other[i].sectindex = sect->index ;
657 }
658 else
659 {
660 warning ("section %s not found in %s", addrs->other[i].name,
661 objfile->name);
662 addrs->other[i].addr = 0;
663 }
664 }
665 else
666 addrs->other[i].addr = lower_offset;
667 }
668 }
669
670 /* Initialize symbol reading routines for this objfile, allow complaints to
671 appear for this new file, and record how verbose to be, then do the
672 initial symbol reading for this file. */
673
674 (*objfile->sf->sym_init) (objfile);
675 clear_complaints (1, verbo);
676
677 (*objfile->sf->sym_offsets) (objfile, addrs);
678
679 #ifndef IBM6000_TARGET
680 /* This is a SVR4/SunOS specific hack, I think. In any event, it
681 screws RS/6000. sym_offsets should be doing this sort of thing,
682 because it knows the mapping between bfd sections and
683 section_offsets. */
684 /* This is a hack. As far as I can tell, section offsets are not
685 target dependent. They are all set to addr with a couple of
686 exceptions. The exceptions are sysvr4 shared libraries, whose
687 offsets are kept in solib structures anyway and rs6000 xcoff
688 which handles shared libraries in a completely unique way.
689
690 Section offsets are built similarly, except that they are built
691 by adding addr in all cases because there is no clear mapping
692 from section_offsets into actual sections. Note that solib.c
693 has a different algorithm for finding section offsets.
694
695 These should probably all be collapsed into some target
696 independent form of shared library support. FIXME. */
697
698 if (addrs)
699 {
700 struct obj_section *s;
701
702 /* Map section offsets in "addr" back to the object's
703 sections by comparing the section names with bfd's
704 section names. Then adjust the section address by
705 the offset. */ /* for gdb/13815 */
706
707 ALL_OBJFILE_OSECTIONS (objfile, s)
708 {
709 CORE_ADDR s_addr = 0;
710 int i;
711
712 for (i = 0;
713 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
714 i++)
715 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
716 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
717
718 s->addr -= s->offset;
719 s->addr += s_addr;
720 s->endaddr -= s->offset;
721 s->endaddr += s_addr;
722 s->offset += s_addr;
723 }
724 }
725 #endif /* not IBM6000_TARGET */
726
727 (*objfile->sf->sym_read) (objfile, mainline);
728
729 if (!have_partial_symbols () && !have_full_symbols ())
730 {
731 wrap_here ("");
732 printf_filtered ("(no debugging symbols found)...");
733 wrap_here ("");
734 }
735
736 /* Don't allow char * to have a typename (else would get caddr_t).
737 Ditto void *. FIXME: Check whether this is now done by all the
738 symbol readers themselves (many of them now do), and if so remove
739 it from here. */
740
741 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
742 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
743
744 /* Mark the objfile has having had initial symbol read attempted. Note
745 that this does not mean we found any symbols... */
746
747 objfile->flags |= OBJF_SYMS;
748
749 /* Discard cleanups as symbol reading was successful. */
750
751 discard_cleanups (old_chain);
752
753 /* Call this after reading in a new symbol table to give target
754 dependent code a crack at the new symbols. For instance, this
755 could be used to update the values of target-specific symbols GDB
756 needs to keep track of (such as _sigtramp, or whatever). */
757
758 TARGET_SYMFILE_POSTREAD (objfile);
759 }
760
761 /* Perform required actions after either reading in the initial
762 symbols for a new objfile, or mapping in the symbols from a reusable
763 objfile. */
764
765 void
766 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
767 {
768
769 /* If this is the main symbol file we have to clean up all users of the
770 old main symbol file. Otherwise it is sufficient to fixup all the
771 breakpoints that may have been redefined by this symbol file. */
772 if (mainline)
773 {
774 /* OK, make it the "real" symbol file. */
775 symfile_objfile = objfile;
776
777 clear_symtab_users ();
778 }
779 else
780 {
781 breakpoint_re_set ();
782 }
783
784 /* We're done reading the symbol file; finish off complaints. */
785 clear_complaints (0, verbo);
786 }
787
788 /* Process a symbol file, as either the main file or as a dynamically
789 loaded file.
790
791 NAME is the file name (which will be tilde-expanded and made
792 absolute herein) (but we don't free or modify NAME itself).
793 FROM_TTY says how verbose to be. MAINLINE specifies whether this
794 is the main symbol file, or whether it's an extra symbol file such
795 as dynamically loaded code. If !mainline, ADDR is the address
796 where the text segment was loaded.
797
798 Upon success, returns a pointer to the objfile that was added.
799 Upon failure, jumps back to command level (never returns). */
800
801 struct objfile *
802 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
803 int mainline, int flags)
804 {
805 struct objfile *objfile;
806 struct partial_symtab *psymtab;
807 bfd *abfd;
808
809 /* Open a bfd for the file, and give user a chance to burp if we'd be
810 interactively wiping out any existing symbols. */
811
812 abfd = symfile_bfd_open (name);
813
814 if ((have_full_symbols () || have_partial_symbols ())
815 && mainline
816 && from_tty
817 && !query ("Load new symbol table from \"%s\"? ", name))
818 error ("Not confirmed.");
819
820 objfile = allocate_objfile (abfd, flags);
821
822 /* If the objfile uses a mapped symbol file, and we have a psymtab for
823 it, then skip reading any symbols at this time. */
824
825 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
826 {
827 /* We mapped in an existing symbol table file that already has had
828 initial symbol reading performed, so we can skip that part. Notify
829 the user that instead of reading the symbols, they have been mapped.
830 */
831 if (from_tty || info_verbose)
832 {
833 printf_filtered ("Mapped symbols for %s...", name);
834 wrap_here ("");
835 gdb_flush (gdb_stdout);
836 }
837 init_entry_point_info (objfile);
838 find_sym_fns (objfile);
839 }
840 else
841 {
842 /* We either created a new mapped symbol table, mapped an existing
843 symbol table file which has not had initial symbol reading
844 performed, or need to read an unmapped symbol table. */
845 if (from_tty || info_verbose)
846 {
847 if (pre_add_symbol_hook)
848 pre_add_symbol_hook (name);
849 else
850 {
851 printf_filtered ("Reading symbols from %s...", name);
852 wrap_here ("");
853 gdb_flush (gdb_stdout);
854 }
855 }
856 syms_from_objfile (objfile, addrs, mainline, from_tty);
857 }
858
859 /* We now have at least a partial symbol table. Check to see if the
860 user requested that all symbols be read on initial access via either
861 the gdb startup command line or on a per symbol file basis. Expand
862 all partial symbol tables for this objfile if so. */
863
864 if ((flags & OBJF_READNOW) || readnow_symbol_files)
865 {
866 if (from_tty || info_verbose)
867 {
868 printf_filtered ("expanding to full symbols...");
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872
873 for (psymtab = objfile->psymtabs;
874 psymtab != NULL;
875 psymtab = psymtab->next)
876 {
877 psymtab_to_symtab (psymtab);
878 }
879 }
880
881 if (from_tty || info_verbose)
882 {
883 if (post_add_symbol_hook)
884 post_add_symbol_hook ();
885 else
886 {
887 printf_filtered ("done.\n");
888 gdb_flush (gdb_stdout);
889 }
890 }
891
892 new_symfile_objfile (objfile, mainline, from_tty);
893
894 if (target_new_objfile_hook)
895 target_new_objfile_hook (objfile);
896
897 return (objfile);
898 }
899
900 /* This is the symbol-file command. Read the file, analyze its
901 symbols, and add a struct symtab to a symtab list. The syntax of
902 the command is rather bizarre--(1) buildargv implements various
903 quoting conventions which are undocumented and have little or
904 nothing in common with the way things are quoted (or not quoted)
905 elsewhere in GDB, (2) options are used, which are not generally
906 used in GDB (perhaps "set mapped on", "set readnow on" would be
907 better), (3) the order of options matters, which is contrary to GNU
908 conventions (because it is confusing and inconvenient). */
909 /* Note: ezannoni 2000-04-17. This function used to have support for
910 rombug (see remote-os9k.c). It consisted of a call to target_link()
911 (target.c) to get the address of the text segment from the target,
912 and pass that to symbol_file_add(). This is no longer supported. */
913
914 void
915 symbol_file_command (char *args, int from_tty)
916 {
917 char **argv;
918 char *name = NULL;
919 struct cleanup *cleanups;
920 int flags = OBJF_USERLOADED;
921
922 dont_repeat ();
923
924 if (args == NULL)
925 {
926 if ((have_full_symbols () || have_partial_symbols ())
927 && from_tty
928 && !query ("Discard symbol table from `%s'? ",
929 symfile_objfile->name))
930 error ("Not confirmed.");
931 free_all_objfiles ();
932
933 /* solib descriptors may have handles to objfiles. Since their
934 storage has just been released, we'd better wipe the solib
935 descriptors as well.
936 */
937 #if defined(SOLIB_RESTART)
938 SOLIB_RESTART ();
939 #endif
940
941 symfile_objfile = NULL;
942 if (from_tty)
943 printf_unfiltered ("No symbol file now.\n");
944 #ifdef HPUXHPPA
945 RESET_HP_UX_GLOBALS ();
946 #endif
947 }
948 else
949 {
950 if ((argv = buildargv (args)) == NULL)
951 {
952 nomem (0);
953 }
954 cleanups = make_cleanup_freeargv (argv);
955 while (*argv != NULL)
956 {
957 if (STREQ (*argv, "-mapped"))
958 flags |= OBJF_MAPPED;
959 else
960 if (STREQ (*argv, "-readnow"))
961 flags |= OBJF_READNOW;
962 else
963 if (**argv == '-')
964 error ("unknown option `%s'", *argv);
965 else
966 {
967 name = *argv;
968 symbol_file_add (name, from_tty, NULL, 1, flags);
969 #ifdef HPUXHPPA
970 RESET_HP_UX_GLOBALS ();
971 #endif
972 /* Getting new symbols may change our opinion about
973 what is frameless. */
974 reinit_frame_cache ();
975
976 set_initial_language ();
977 }
978 argv++;
979 }
980
981 if (name == NULL)
982 {
983 error ("no symbol file name was specified");
984 }
985 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
986 do_cleanups (cleanups);
987 }
988 }
989
990 /* Set the initial language.
991
992 A better solution would be to record the language in the psymtab when reading
993 partial symbols, and then use it (if known) to set the language. This would
994 be a win for formats that encode the language in an easily discoverable place,
995 such as DWARF. For stabs, we can jump through hoops looking for specially
996 named symbols or try to intuit the language from the specific type of stabs
997 we find, but we can't do that until later when we read in full symbols.
998 FIXME. */
999
1000 static void
1001 set_initial_language (void)
1002 {
1003 struct partial_symtab *pst;
1004 enum language lang = language_unknown;
1005
1006 pst = find_main_psymtab ();
1007 if (pst != NULL)
1008 {
1009 if (pst->filename != NULL)
1010 {
1011 lang = deduce_language_from_filename (pst->filename);
1012 }
1013 if (lang == language_unknown)
1014 {
1015 /* Make C the default language */
1016 lang = language_c;
1017 }
1018 set_language (lang);
1019 expected_language = current_language; /* Don't warn the user */
1020 }
1021 }
1022
1023 /* Open file specified by NAME and hand it off to BFD for preliminary
1024 analysis. Result is a newly initialized bfd *, which includes a newly
1025 malloc'd` copy of NAME (tilde-expanded and made absolute).
1026 In case of trouble, error() is called. */
1027
1028 bfd *
1029 symfile_bfd_open (char *name)
1030 {
1031 bfd *sym_bfd;
1032 int desc;
1033 char *absolute_name;
1034
1035
1036
1037 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1038
1039 /* Look down path for it, allocate 2nd new malloc'd copy. */
1040 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1041 #if defined(__GO32__) || defined(_WIN32)
1042 if (desc < 0)
1043 {
1044 char *exename = alloca (strlen (name) + 5);
1045 strcat (strcpy (exename, name), ".exe");
1046 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1047 0, &absolute_name);
1048 }
1049 #endif
1050 if (desc < 0)
1051 {
1052 make_cleanup (xfree, name);
1053 perror_with_name (name);
1054 }
1055 xfree (name); /* Free 1st new malloc'd copy */
1056 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1057 /* It'll be freed in free_objfile(). */
1058
1059 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1060 if (!sym_bfd)
1061 {
1062 close (desc);
1063 make_cleanup (xfree, name);
1064 error ("\"%s\": can't open to read symbols: %s.", name,
1065 bfd_errmsg (bfd_get_error ()));
1066 }
1067 sym_bfd->cacheable = true;
1068
1069 if (!bfd_check_format (sym_bfd, bfd_object))
1070 {
1071 /* FIXME: should be checking for errors from bfd_close (for one thing,
1072 on error it does not free all the storage associated with the
1073 bfd). */
1074 bfd_close (sym_bfd); /* This also closes desc */
1075 make_cleanup (xfree, name);
1076 error ("\"%s\": can't read symbols: %s.", name,
1077 bfd_errmsg (bfd_get_error ()));
1078 }
1079 return (sym_bfd);
1080 }
1081
1082 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1083 startup by the _initialize routine in each object file format reader,
1084 to register information about each format the the reader is prepared
1085 to handle. */
1086
1087 void
1088 add_symtab_fns (struct sym_fns *sf)
1089 {
1090 sf->next = symtab_fns;
1091 symtab_fns = sf;
1092 }
1093
1094
1095 /* Initialize to read symbols from the symbol file sym_bfd. It either
1096 returns or calls error(). The result is an initialized struct sym_fns
1097 in the objfile structure, that contains cached information about the
1098 symbol file. */
1099
1100 static void
1101 find_sym_fns (struct objfile *objfile)
1102 {
1103 struct sym_fns *sf;
1104 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1105 char *our_target = bfd_get_target (objfile->obfd);
1106
1107 /* Special kludge for apollo. See dstread.c. */
1108 if (STREQN (our_target, "apollo", 6))
1109 our_flavour = (enum bfd_flavour) -2;
1110
1111 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1112 {
1113 if (our_flavour == sf->sym_flavour)
1114 {
1115 objfile->sf = sf;
1116 return;
1117 }
1118 }
1119 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1120 bfd_get_target (objfile->obfd));
1121 }
1122 \f
1123 /* This function runs the load command of our current target. */
1124
1125 static void
1126 load_command (char *arg, int from_tty)
1127 {
1128 if (arg == NULL)
1129 arg = get_exec_file (1);
1130 target_load (arg, from_tty);
1131 }
1132
1133 /* This version of "load" should be usable for any target. Currently
1134 it is just used for remote targets, not inftarg.c or core files,
1135 on the theory that only in that case is it useful.
1136
1137 Avoiding xmodem and the like seems like a win (a) because we don't have
1138 to worry about finding it, and (b) On VMS, fork() is very slow and so
1139 we don't want to run a subprocess. On the other hand, I'm not sure how
1140 performance compares. */
1141
1142 static int download_write_size = 512;
1143 static int validate_download = 0;
1144
1145 void
1146 generic_load (char *args, int from_tty)
1147 {
1148 asection *s;
1149 bfd *loadfile_bfd;
1150 time_t start_time, end_time; /* Start and end times of download */
1151 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1152 unsigned long write_count = 0; /* Number of writes needed. */
1153 unsigned long load_offset; /* offset to add to vma for each section */
1154 char *filename;
1155 struct cleanup *old_cleanups;
1156 char *offptr;
1157 CORE_ADDR total_size = 0;
1158 CORE_ADDR total_sent = 0;
1159
1160 /* Parse the input argument - the user can specify a load offset as
1161 a second argument. */
1162 filename = xmalloc (strlen (args) + 1);
1163 old_cleanups = make_cleanup (xfree, filename);
1164 strcpy (filename, args);
1165 offptr = strchr (filename, ' ');
1166 if (offptr != NULL)
1167 {
1168 char *endptr;
1169 load_offset = strtoul (offptr, &endptr, 0);
1170 if (offptr == endptr)
1171 error ("Invalid download offset:%s\n", offptr);
1172 *offptr = '\0';
1173 }
1174 else
1175 load_offset = 0;
1176
1177 /* Open the file for loading. */
1178 loadfile_bfd = bfd_openr (filename, gnutarget);
1179 if (loadfile_bfd == NULL)
1180 {
1181 perror_with_name (filename);
1182 return;
1183 }
1184
1185 /* FIXME: should be checking for errors from bfd_close (for one thing,
1186 on error it does not free all the storage associated with the
1187 bfd). */
1188 make_cleanup_bfd_close (loadfile_bfd);
1189
1190 if (!bfd_check_format (loadfile_bfd, bfd_object))
1191 {
1192 error ("\"%s\" is not an object file: %s", filename,
1193 bfd_errmsg (bfd_get_error ()));
1194 }
1195
1196 for (s = loadfile_bfd->sections; s; s = s->next)
1197 if (s->flags & SEC_LOAD)
1198 total_size += bfd_get_section_size_before_reloc (s);
1199
1200 start_time = time (NULL);
1201
1202 for (s = loadfile_bfd->sections; s; s = s->next)
1203 {
1204 if (s->flags & SEC_LOAD)
1205 {
1206 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1207 if (size > 0)
1208 {
1209 char *buffer;
1210 struct cleanup *old_chain;
1211 CORE_ADDR lma = s->lma + load_offset;
1212 CORE_ADDR block_size;
1213 int err;
1214 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1215 CORE_ADDR sent;
1216
1217 if (download_write_size > 0 && size > download_write_size)
1218 block_size = download_write_size;
1219 else
1220 block_size = size;
1221
1222 buffer = xmalloc (size);
1223 old_chain = make_cleanup (xfree, buffer);
1224
1225 /* Is this really necessary? I guess it gives the user something
1226 to look at during a long download. */
1227 #ifdef UI_OUT
1228 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1229 sect_name, paddr_nz (size), paddr_nz (lma));
1230 #else
1231 fprintf_unfiltered (gdb_stdout,
1232 "Loading section %s, size 0x%s lma 0x%s\n",
1233 sect_name, paddr_nz (size), paddr_nz (lma));
1234 #endif
1235
1236 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1237
1238 sent = 0;
1239 do
1240 {
1241 CORE_ADDR len;
1242 CORE_ADDR this_transfer = size - sent;
1243 if (this_transfer >= block_size)
1244 this_transfer = block_size;
1245 len = target_write_memory_partial (lma, buffer,
1246 this_transfer, &err);
1247 if (err)
1248 break;
1249 if (validate_download)
1250 {
1251 /* Broken memories and broken monitors manifest
1252 themselves here when bring new computers to
1253 life. This doubles already slow downloads. */
1254 /* NOTE: cagney/1999-10-18: A more efficient
1255 implementation might add a verify_memory()
1256 method to the target vector and then use
1257 that. remote.c could implement that method
1258 using the ``qCRC'' packet. */
1259 char *check = xmalloc (len);
1260 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1261 if (target_read_memory (lma, check, len) != 0)
1262 error ("Download verify read failed at 0x%s",
1263 paddr (lma));
1264 if (memcmp (buffer, check, len) != 0)
1265 error ("Download verify compare failed at 0x%s",
1266 paddr (lma));
1267 do_cleanups (verify_cleanups);
1268 }
1269 data_count += len;
1270 lma += len;
1271 buffer += len;
1272 write_count += 1;
1273 sent += len;
1274 total_sent += len;
1275 if (quit_flag
1276 || (ui_load_progress_hook != NULL
1277 && ui_load_progress_hook (sect_name, sent)))
1278 error ("Canceled the download");
1279
1280 if (show_load_progress != NULL)
1281 show_load_progress (sect_name, sent, size, total_sent, total_size);
1282 }
1283 while (sent < size);
1284
1285 if (err != 0)
1286 error ("Memory access error while loading section %s.", sect_name);
1287
1288 do_cleanups (old_chain);
1289 }
1290 }
1291 }
1292
1293 end_time = time (NULL);
1294 {
1295 CORE_ADDR entry;
1296 entry = bfd_get_start_address (loadfile_bfd);
1297 #ifdef UI_OUT
1298 ui_out_text (uiout, "Start address ");
1299 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1300 ui_out_text (uiout, ", load size ");
1301 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1302 ui_out_text (uiout, "\n");
1303
1304 #else
1305 fprintf_unfiltered (gdb_stdout,
1306 "Start address 0x%s , load size %ld\n",
1307 paddr_nz (entry), data_count);
1308 #endif
1309 /* We were doing this in remote-mips.c, I suspect it is right
1310 for other targets too. */
1311 write_pc (entry);
1312 }
1313
1314 /* FIXME: are we supposed to call symbol_file_add or not? According to
1315 a comment from remote-mips.c (where a call to symbol_file_add was
1316 commented out), making the call confuses GDB if more than one file is
1317 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1318 does. */
1319
1320 print_transfer_performance (gdb_stdout, data_count, write_count,
1321 end_time - start_time);
1322
1323 do_cleanups (old_cleanups);
1324 }
1325
1326 /* Report how fast the transfer went. */
1327
1328 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1329 replaced by print_transfer_performance (with a very different
1330 function signature). */
1331
1332 void
1333 report_transfer_performance (unsigned long data_count, time_t start_time,
1334 time_t end_time)
1335 {
1336 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1337 }
1338
1339 void
1340 print_transfer_performance (struct ui_file *stream,
1341 unsigned long data_count,
1342 unsigned long write_count,
1343 unsigned long time_count)
1344 {
1345 #ifdef UI_OUT
1346 ui_out_text (uiout, "Transfer rate: ");
1347 if (time_count > 0)
1348 {
1349 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1350 (data_count * 8) / time_count);
1351 ui_out_text (uiout, " bits/sec");
1352 }
1353 else
1354 {
1355 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1356 ui_out_text (uiout, " bits in <1 sec");
1357 }
1358 if (write_count > 0)
1359 {
1360 ui_out_text (uiout, ", ");
1361 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1362 ui_out_text (uiout, " bytes/write");
1363 }
1364 ui_out_text (uiout, ".\n");
1365 #else
1366 fprintf_unfiltered (stream, "Transfer rate: ");
1367 if (time_count > 0)
1368 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1369 else
1370 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1371 if (write_count > 0)
1372 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1373 fprintf_unfiltered (stream, ".\n");
1374 #endif
1375 }
1376
1377 /* This function allows the addition of incrementally linked object files.
1378 It does not modify any state in the target, only in the debugger. */
1379 /* Note: ezannoni 2000-04-13 This function/command used to have a
1380 special case syntax for the rombug target (Rombug is the boot
1381 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1382 rombug case, the user doesn't need to supply a text address,
1383 instead a call to target_link() (in target.c) would supply the
1384 value to use. We are now discontinuing this type of ad hoc syntax. */
1385
1386 /* ARGSUSED */
1387 static void
1388 add_symbol_file_command (char *args, int from_tty)
1389 {
1390 char *filename = NULL;
1391 int flags = OBJF_USERLOADED;
1392 char *arg;
1393 int expecting_option = 0;
1394 int section_index = 0;
1395 int argcnt = 0;
1396 int sec_num = 0;
1397 int i;
1398 int expecting_sec_name = 0;
1399 int expecting_sec_addr = 0;
1400
1401 struct
1402 {
1403 char *name;
1404 char *value;
1405 } sect_opts[SECT_OFF_MAX];
1406
1407 struct section_addr_info section_addrs;
1408 struct cleanup *my_cleanups;
1409
1410 dont_repeat ();
1411
1412 if (args == NULL)
1413 error ("add-symbol-file takes a file name and an address");
1414
1415 /* Make a copy of the string that we can safely write into. */
1416 args = xstrdup (args);
1417
1418 /* Ensure section_addrs is initialized */
1419 memset (&section_addrs, 0, sizeof (section_addrs));
1420
1421 while (*args != '\000')
1422 {
1423 /* Any leading spaces? */
1424 while (isspace (*args))
1425 args++;
1426
1427 /* Point arg to the beginning of the argument. */
1428 arg = args;
1429
1430 /* Move args pointer over the argument. */
1431 while ((*args != '\000') && !isspace (*args))
1432 args++;
1433
1434 /* If there are more arguments, terminate arg and
1435 proceed past it. */
1436 if (*args != '\000')
1437 *args++ = '\000';
1438
1439 /* Now process the argument. */
1440 if (argcnt == 0)
1441 {
1442 /* The first argument is the file name. */
1443 filename = tilde_expand (arg);
1444 my_cleanups = make_cleanup (xfree, filename);
1445 }
1446 else
1447 if (argcnt == 1)
1448 {
1449 /* The second argument is always the text address at which
1450 to load the program. */
1451 sect_opts[section_index].name = ".text";
1452 sect_opts[section_index].value = arg;
1453 section_index++;
1454 }
1455 else
1456 {
1457 /* It's an option (starting with '-') or it's an argument
1458 to an option */
1459
1460 if (*arg == '-')
1461 {
1462 if (strcmp (arg, "-mapped") == 0)
1463 flags |= OBJF_MAPPED;
1464 else
1465 if (strcmp (arg, "-readnow") == 0)
1466 flags |= OBJF_READNOW;
1467 else
1468 if (strcmp (arg, "-s") == 0)
1469 {
1470 if (section_index >= SECT_OFF_MAX)
1471 error ("Too many sections specified.");
1472 expecting_sec_name = 1;
1473 expecting_sec_addr = 1;
1474 }
1475 }
1476 else
1477 {
1478 if (expecting_sec_name)
1479 {
1480 sect_opts[section_index].name = arg;
1481 expecting_sec_name = 0;
1482 }
1483 else
1484 if (expecting_sec_addr)
1485 {
1486 sect_opts[section_index].value = arg;
1487 expecting_sec_addr = 0;
1488 section_index++;
1489 }
1490 else
1491 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1492 }
1493 }
1494 argcnt++;
1495 }
1496
1497 /* Print the prompt for the query below. And save the arguments into
1498 a sect_addr_info structure to be passed around to other
1499 functions. We have to split this up into separate print
1500 statements because local_hex_string returns a local static
1501 string. */
1502
1503 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1504 for (i = 0; i < section_index; i++)
1505 {
1506 CORE_ADDR addr;
1507 char *val = sect_opts[i].value;
1508 char *sec = sect_opts[i].name;
1509
1510 val = sect_opts[i].value;
1511 if (val[0] == '0' && val[1] == 'x')
1512 addr = strtoul (val+2, NULL, 16);
1513 else
1514 addr = strtoul (val, NULL, 10);
1515
1516 /* Here we store the section offsets in the order they were
1517 entered on the command line. */
1518 section_addrs.other[sec_num].name = sec;
1519 section_addrs.other[sec_num].addr = addr;
1520 printf_filtered ("\t%s_addr = %s\n",
1521 sec,
1522 local_hex_string ((unsigned long)addr));
1523 sec_num++;
1524
1525 /* The object's sections are initialized when a
1526 call is made to build_objfile_section_table (objfile).
1527 This happens in reread_symbols.
1528 At this point, we don't know what file type this is,
1529 so we can't determine what section names are valid. */
1530 }
1531
1532 if (from_tty && (!query ("%s", "")))
1533 error ("Not confirmed.");
1534
1535 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1536
1537 /* Getting new symbols may change our opinion about what is
1538 frameless. */
1539 reinit_frame_cache ();
1540 do_cleanups (my_cleanups);
1541 }
1542 \f
1543 static void
1544 add_shared_symbol_files_command (char *args, int from_tty)
1545 {
1546 #ifdef ADD_SHARED_SYMBOL_FILES
1547 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1548 #else
1549 error ("This command is not available in this configuration of GDB.");
1550 #endif
1551 }
1552 \f
1553 /* Re-read symbols if a symbol-file has changed. */
1554 void
1555 reread_symbols (void)
1556 {
1557 struct objfile *objfile;
1558 long new_modtime;
1559 int reread_one = 0;
1560 struct stat new_statbuf;
1561 int res;
1562
1563 /* With the addition of shared libraries, this should be modified,
1564 the load time should be saved in the partial symbol tables, since
1565 different tables may come from different source files. FIXME.
1566 This routine should then walk down each partial symbol table
1567 and see if the symbol table that it originates from has been changed */
1568
1569 for (objfile = object_files; objfile; objfile = objfile->next)
1570 {
1571 if (objfile->obfd)
1572 {
1573 #ifdef IBM6000_TARGET
1574 /* If this object is from a shared library, then you should
1575 stat on the library name, not member name. */
1576
1577 if (objfile->obfd->my_archive)
1578 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1579 else
1580 #endif
1581 res = stat (objfile->name, &new_statbuf);
1582 if (res != 0)
1583 {
1584 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1585 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1586 objfile->name);
1587 continue;
1588 }
1589 new_modtime = new_statbuf.st_mtime;
1590 if (new_modtime != objfile->mtime)
1591 {
1592 struct cleanup *old_cleanups;
1593 struct section_offsets *offsets;
1594 int num_offsets;
1595 char *obfd_filename;
1596
1597 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1598 objfile->name);
1599
1600 /* There are various functions like symbol_file_add,
1601 symfile_bfd_open, syms_from_objfile, etc., which might
1602 appear to do what we want. But they have various other
1603 effects which we *don't* want. So we just do stuff
1604 ourselves. We don't worry about mapped files (for one thing,
1605 any mapped file will be out of date). */
1606
1607 /* If we get an error, blow away this objfile (not sure if
1608 that is the correct response for things like shared
1609 libraries). */
1610 old_cleanups = make_cleanup_free_objfile (objfile);
1611 /* We need to do this whenever any symbols go away. */
1612 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1613
1614 /* Clean up any state BFD has sitting around. We don't need
1615 to close the descriptor but BFD lacks a way of closing the
1616 BFD without closing the descriptor. */
1617 obfd_filename = bfd_get_filename (objfile->obfd);
1618 if (!bfd_close (objfile->obfd))
1619 error ("Can't close BFD for %s: %s", objfile->name,
1620 bfd_errmsg (bfd_get_error ()));
1621 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1622 if (objfile->obfd == NULL)
1623 error ("Can't open %s to read symbols.", objfile->name);
1624 /* bfd_openr sets cacheable to true, which is what we want. */
1625 if (!bfd_check_format (objfile->obfd, bfd_object))
1626 error ("Can't read symbols from %s: %s.", objfile->name,
1627 bfd_errmsg (bfd_get_error ()));
1628
1629 /* Save the offsets, we will nuke them with the rest of the
1630 psymbol_obstack. */
1631 num_offsets = objfile->num_sections;
1632 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1633 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1634
1635 /* Nuke all the state that we will re-read. Much of the following
1636 code which sets things to NULL really is necessary to tell
1637 other parts of GDB that there is nothing currently there. */
1638
1639 /* FIXME: Do we have to free a whole linked list, or is this
1640 enough? */
1641 if (objfile->global_psymbols.list)
1642 mfree (objfile->md, objfile->global_psymbols.list);
1643 memset (&objfile->global_psymbols, 0,
1644 sizeof (objfile->global_psymbols));
1645 if (objfile->static_psymbols.list)
1646 mfree (objfile->md, objfile->static_psymbols.list);
1647 memset (&objfile->static_psymbols, 0,
1648 sizeof (objfile->static_psymbols));
1649
1650 /* Free the obstacks for non-reusable objfiles */
1651 free_bcache (&objfile->psymbol_cache);
1652 obstack_free (&objfile->psymbol_obstack, 0);
1653 obstack_free (&objfile->symbol_obstack, 0);
1654 obstack_free (&objfile->type_obstack, 0);
1655 objfile->sections = NULL;
1656 objfile->symtabs = NULL;
1657 objfile->psymtabs = NULL;
1658 objfile->free_psymtabs = NULL;
1659 objfile->msymbols = NULL;
1660 objfile->minimal_symbol_count = 0;
1661 memset (&objfile->msymbol_hash, 0,
1662 sizeof (objfile->msymbol_hash));
1663 memset (&objfile->msymbol_demangled_hash, 0,
1664 sizeof (objfile->msymbol_demangled_hash));
1665 objfile->fundamental_types = NULL;
1666 if (objfile->sf != NULL)
1667 {
1668 (*objfile->sf->sym_finish) (objfile);
1669 }
1670
1671 /* We never make this a mapped file. */
1672 objfile->md = NULL;
1673 /* obstack_specify_allocation also initializes the obstack so
1674 it is empty. */
1675 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1676 xmalloc, xfree);
1677 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1678 xmalloc, xfree);
1679 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1680 xmalloc, xfree);
1681 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1682 xmalloc, xfree);
1683 if (build_objfile_section_table (objfile))
1684 {
1685 error ("Can't find the file sections in `%s': %s",
1686 objfile->name, bfd_errmsg (bfd_get_error ()));
1687 }
1688
1689 /* We use the same section offsets as from last time. I'm not
1690 sure whether that is always correct for shared libraries. */
1691 objfile->section_offsets = (struct section_offsets *)
1692 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1693 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1694 objfile->num_sections = num_offsets;
1695
1696 /* What the hell is sym_new_init for, anyway? The concept of
1697 distinguishing between the main file and additional files
1698 in this way seems rather dubious. */
1699 if (objfile == symfile_objfile)
1700 {
1701 (*objfile->sf->sym_new_init) (objfile);
1702 #ifdef HPUXHPPA
1703 RESET_HP_UX_GLOBALS ();
1704 #endif
1705 }
1706
1707 (*objfile->sf->sym_init) (objfile);
1708 clear_complaints (1, 1);
1709 /* The "mainline" parameter is a hideous hack; I think leaving it
1710 zero is OK since dbxread.c also does what it needs to do if
1711 objfile->global_psymbols.size is 0. */
1712 (*objfile->sf->sym_read) (objfile, 0);
1713 if (!have_partial_symbols () && !have_full_symbols ())
1714 {
1715 wrap_here ("");
1716 printf_filtered ("(no debugging symbols found)\n");
1717 wrap_here ("");
1718 }
1719 objfile->flags |= OBJF_SYMS;
1720
1721 /* We're done reading the symbol file; finish off complaints. */
1722 clear_complaints (0, 1);
1723
1724 /* Getting new symbols may change our opinion about what is
1725 frameless. */
1726
1727 reinit_frame_cache ();
1728
1729 /* Discard cleanups as symbol reading was successful. */
1730 discard_cleanups (old_cleanups);
1731
1732 /* If the mtime has changed between the time we set new_modtime
1733 and now, we *want* this to be out of date, so don't call stat
1734 again now. */
1735 objfile->mtime = new_modtime;
1736 reread_one = 1;
1737
1738 /* Call this after reading in a new symbol table to give target
1739 dependent code a crack at the new symbols. For instance, this
1740 could be used to update the values of target-specific symbols GDB
1741 needs to keep track of (such as _sigtramp, or whatever). */
1742
1743 TARGET_SYMFILE_POSTREAD (objfile);
1744 }
1745 }
1746 }
1747
1748 if (reread_one)
1749 clear_symtab_users ();
1750 }
1751 \f
1752
1753
1754 typedef struct
1755 {
1756 char *ext;
1757 enum language lang;
1758 }
1759 filename_language;
1760
1761 static filename_language *filename_language_table;
1762 static int fl_table_size, fl_table_next;
1763
1764 static void
1765 add_filename_language (char *ext, enum language lang)
1766 {
1767 if (fl_table_next >= fl_table_size)
1768 {
1769 fl_table_size += 10;
1770 filename_language_table = realloc (filename_language_table,
1771 fl_table_size);
1772 }
1773
1774 filename_language_table[fl_table_next].ext = strsave (ext);
1775 filename_language_table[fl_table_next].lang = lang;
1776 fl_table_next++;
1777 }
1778
1779 static char *ext_args;
1780
1781 static void
1782 set_ext_lang_command (char *args, int from_tty)
1783 {
1784 int i;
1785 char *cp = ext_args;
1786 enum language lang;
1787
1788 /* First arg is filename extension, starting with '.' */
1789 if (*cp != '.')
1790 error ("'%s': Filename extension must begin with '.'", ext_args);
1791
1792 /* Find end of first arg. */
1793 while (*cp && !isspace (*cp))
1794 cp++;
1795
1796 if (*cp == '\0')
1797 error ("'%s': two arguments required -- filename extension and language",
1798 ext_args);
1799
1800 /* Null-terminate first arg */
1801 *cp++ = '\0';
1802
1803 /* Find beginning of second arg, which should be a source language. */
1804 while (*cp && isspace (*cp))
1805 cp++;
1806
1807 if (*cp == '\0')
1808 error ("'%s': two arguments required -- filename extension and language",
1809 ext_args);
1810
1811 /* Lookup the language from among those we know. */
1812 lang = language_enum (cp);
1813
1814 /* Now lookup the filename extension: do we already know it? */
1815 for (i = 0; i < fl_table_next; i++)
1816 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1817 break;
1818
1819 if (i >= fl_table_next)
1820 {
1821 /* new file extension */
1822 add_filename_language (ext_args, lang);
1823 }
1824 else
1825 {
1826 /* redefining a previously known filename extension */
1827
1828 /* if (from_tty) */
1829 /* query ("Really make files of type %s '%s'?", */
1830 /* ext_args, language_str (lang)); */
1831
1832 xfree (filename_language_table[i].ext);
1833 filename_language_table[i].ext = strsave (ext_args);
1834 filename_language_table[i].lang = lang;
1835 }
1836 }
1837
1838 static void
1839 info_ext_lang_command (char *args, int from_tty)
1840 {
1841 int i;
1842
1843 printf_filtered ("Filename extensions and the languages they represent:");
1844 printf_filtered ("\n\n");
1845 for (i = 0; i < fl_table_next; i++)
1846 printf_filtered ("\t%s\t- %s\n",
1847 filename_language_table[i].ext,
1848 language_str (filename_language_table[i].lang));
1849 }
1850
1851 static void
1852 init_filename_language_table (void)
1853 {
1854 if (fl_table_size == 0) /* protect against repetition */
1855 {
1856 fl_table_size = 20;
1857 fl_table_next = 0;
1858 filename_language_table =
1859 xmalloc (fl_table_size * sizeof (*filename_language_table));
1860 add_filename_language (".c", language_c);
1861 add_filename_language (".C", language_cplus);
1862 add_filename_language (".cc", language_cplus);
1863 add_filename_language (".cp", language_cplus);
1864 add_filename_language (".cpp", language_cplus);
1865 add_filename_language (".cxx", language_cplus);
1866 add_filename_language (".c++", language_cplus);
1867 add_filename_language (".java", language_java);
1868 add_filename_language (".class", language_java);
1869 add_filename_language (".ch", language_chill);
1870 add_filename_language (".c186", language_chill);
1871 add_filename_language (".c286", language_chill);
1872 add_filename_language (".f", language_fortran);
1873 add_filename_language (".F", language_fortran);
1874 add_filename_language (".s", language_asm);
1875 add_filename_language (".S", language_asm);
1876 add_filename_language (".pas", language_pascal);
1877 add_filename_language (".p", language_pascal);
1878 add_filename_language (".pp", language_pascal);
1879 }
1880 }
1881
1882 enum language
1883 deduce_language_from_filename (char *filename)
1884 {
1885 int i;
1886 char *cp;
1887
1888 if (filename != NULL)
1889 if ((cp = strrchr (filename, '.')) != NULL)
1890 for (i = 0; i < fl_table_next; i++)
1891 if (strcmp (cp, filename_language_table[i].ext) == 0)
1892 return filename_language_table[i].lang;
1893
1894 return language_unknown;
1895 }
1896 \f
1897 /* allocate_symtab:
1898
1899 Allocate and partly initialize a new symbol table. Return a pointer
1900 to it. error() if no space.
1901
1902 Caller must set these fields:
1903 LINETABLE(symtab)
1904 symtab->blockvector
1905 symtab->dirname
1906 symtab->free_code
1907 symtab->free_ptr
1908 possibly free_named_symtabs (symtab->filename);
1909 */
1910
1911 struct symtab *
1912 allocate_symtab (char *filename, struct objfile *objfile)
1913 {
1914 register struct symtab *symtab;
1915
1916 symtab = (struct symtab *)
1917 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1918 memset (symtab, 0, sizeof (*symtab));
1919 symtab->filename = obsavestring (filename, strlen (filename),
1920 &objfile->symbol_obstack);
1921 symtab->fullname = NULL;
1922 symtab->language = deduce_language_from_filename (filename);
1923 symtab->debugformat = obsavestring ("unknown", 7,
1924 &objfile->symbol_obstack);
1925
1926 /* Hook it to the objfile it comes from */
1927
1928 symtab->objfile = objfile;
1929 symtab->next = objfile->symtabs;
1930 objfile->symtabs = symtab;
1931
1932 /* FIXME: This should go away. It is only defined for the Z8000,
1933 and the Z8000 definition of this macro doesn't have anything to
1934 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1935 here for convenience. */
1936 #ifdef INIT_EXTRA_SYMTAB_INFO
1937 INIT_EXTRA_SYMTAB_INFO (symtab);
1938 #endif
1939
1940 return (symtab);
1941 }
1942
1943 struct partial_symtab *
1944 allocate_psymtab (char *filename, struct objfile *objfile)
1945 {
1946 struct partial_symtab *psymtab;
1947
1948 if (objfile->free_psymtabs)
1949 {
1950 psymtab = objfile->free_psymtabs;
1951 objfile->free_psymtabs = psymtab->next;
1952 }
1953 else
1954 psymtab = (struct partial_symtab *)
1955 obstack_alloc (&objfile->psymbol_obstack,
1956 sizeof (struct partial_symtab));
1957
1958 memset (psymtab, 0, sizeof (struct partial_symtab));
1959 psymtab->filename = obsavestring (filename, strlen (filename),
1960 &objfile->psymbol_obstack);
1961 psymtab->symtab = NULL;
1962
1963 /* Prepend it to the psymtab list for the objfile it belongs to.
1964 Psymtabs are searched in most recent inserted -> least recent
1965 inserted order. */
1966
1967 psymtab->objfile = objfile;
1968 psymtab->next = objfile->psymtabs;
1969 objfile->psymtabs = psymtab;
1970 #if 0
1971 {
1972 struct partial_symtab **prev_pst;
1973 psymtab->objfile = objfile;
1974 psymtab->next = NULL;
1975 prev_pst = &(objfile->psymtabs);
1976 while ((*prev_pst) != NULL)
1977 prev_pst = &((*prev_pst)->next);
1978 (*prev_pst) = psymtab;
1979 }
1980 #endif
1981
1982 return (psymtab);
1983 }
1984
1985 void
1986 discard_psymtab (struct partial_symtab *pst)
1987 {
1988 struct partial_symtab **prev_pst;
1989
1990 /* From dbxread.c:
1991 Empty psymtabs happen as a result of header files which don't
1992 have any symbols in them. There can be a lot of them. But this
1993 check is wrong, in that a psymtab with N_SLINE entries but
1994 nothing else is not empty, but we don't realize that. Fixing
1995 that without slowing things down might be tricky. */
1996
1997 /* First, snip it out of the psymtab chain */
1998
1999 prev_pst = &(pst->objfile->psymtabs);
2000 while ((*prev_pst) != pst)
2001 prev_pst = &((*prev_pst)->next);
2002 (*prev_pst) = pst->next;
2003
2004 /* Next, put it on a free list for recycling */
2005
2006 pst->next = pst->objfile->free_psymtabs;
2007 pst->objfile->free_psymtabs = pst;
2008 }
2009 \f
2010
2011 /* Reset all data structures in gdb which may contain references to symbol
2012 table data. */
2013
2014 void
2015 clear_symtab_users (void)
2016 {
2017 /* Someday, we should do better than this, by only blowing away
2018 the things that really need to be blown. */
2019 clear_value_history ();
2020 clear_displays ();
2021 clear_internalvars ();
2022 breakpoint_re_set ();
2023 set_default_breakpoint (0, 0, 0, 0);
2024 current_source_symtab = 0;
2025 current_source_line = 0;
2026 clear_pc_function_cache ();
2027 if (target_new_objfile_hook)
2028 target_new_objfile_hook (NULL);
2029 }
2030
2031 static void
2032 clear_symtab_users_cleanup (void *ignore)
2033 {
2034 clear_symtab_users ();
2035 }
2036
2037 /* clear_symtab_users_once:
2038
2039 This function is run after symbol reading, or from a cleanup.
2040 If an old symbol table was obsoleted, the old symbol table
2041 has been blown away, but the other GDB data structures that may
2042 reference it have not yet been cleared or re-directed. (The old
2043 symtab was zapped, and the cleanup queued, in free_named_symtab()
2044 below.)
2045
2046 This function can be queued N times as a cleanup, or called
2047 directly; it will do all the work the first time, and then will be a
2048 no-op until the next time it is queued. This works by bumping a
2049 counter at queueing time. Much later when the cleanup is run, or at
2050 the end of symbol processing (in case the cleanup is discarded), if
2051 the queued count is greater than the "done-count", we do the work
2052 and set the done-count to the queued count. If the queued count is
2053 less than or equal to the done-count, we just ignore the call. This
2054 is needed because reading a single .o file will often replace many
2055 symtabs (one per .h file, for example), and we don't want to reset
2056 the breakpoints N times in the user's face.
2057
2058 The reason we both queue a cleanup, and call it directly after symbol
2059 reading, is because the cleanup protects us in case of errors, but is
2060 discarded if symbol reading is successful. */
2061
2062 #if 0
2063 /* FIXME: As free_named_symtabs is currently a big noop this function
2064 is no longer needed. */
2065 static void clear_symtab_users_once (void);
2066
2067 static int clear_symtab_users_queued;
2068 static int clear_symtab_users_done;
2069
2070 static void
2071 clear_symtab_users_once (void)
2072 {
2073 /* Enforce once-per-`do_cleanups'-semantics */
2074 if (clear_symtab_users_queued <= clear_symtab_users_done)
2075 return;
2076 clear_symtab_users_done = clear_symtab_users_queued;
2077
2078 clear_symtab_users ();
2079 }
2080 #endif
2081
2082 /* Delete the specified psymtab, and any others that reference it. */
2083
2084 static void
2085 cashier_psymtab (struct partial_symtab *pst)
2086 {
2087 struct partial_symtab *ps, *pprev = NULL;
2088 int i;
2089
2090 /* Find its previous psymtab in the chain */
2091 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2092 {
2093 if (ps == pst)
2094 break;
2095 pprev = ps;
2096 }
2097
2098 if (ps)
2099 {
2100 /* Unhook it from the chain. */
2101 if (ps == pst->objfile->psymtabs)
2102 pst->objfile->psymtabs = ps->next;
2103 else
2104 pprev->next = ps->next;
2105
2106 /* FIXME, we can't conveniently deallocate the entries in the
2107 partial_symbol lists (global_psymbols/static_psymbols) that
2108 this psymtab points to. These just take up space until all
2109 the psymtabs are reclaimed. Ditto the dependencies list and
2110 filename, which are all in the psymbol_obstack. */
2111
2112 /* We need to cashier any psymtab that has this one as a dependency... */
2113 again:
2114 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2115 {
2116 for (i = 0; i < ps->number_of_dependencies; i++)
2117 {
2118 if (ps->dependencies[i] == pst)
2119 {
2120 cashier_psymtab (ps);
2121 goto again; /* Must restart, chain has been munged. */
2122 }
2123 }
2124 }
2125 }
2126 }
2127
2128 /* If a symtab or psymtab for filename NAME is found, free it along
2129 with any dependent breakpoints, displays, etc.
2130 Used when loading new versions of object modules with the "add-file"
2131 command. This is only called on the top-level symtab or psymtab's name;
2132 it is not called for subsidiary files such as .h files.
2133
2134 Return value is 1 if we blew away the environment, 0 if not.
2135 FIXME. The return value appears to never be used.
2136
2137 FIXME. I think this is not the best way to do this. We should
2138 work on being gentler to the environment while still cleaning up
2139 all stray pointers into the freed symtab. */
2140
2141 int
2142 free_named_symtabs (char *name)
2143 {
2144 #if 0
2145 /* FIXME: With the new method of each objfile having it's own
2146 psymtab list, this function needs serious rethinking. In particular,
2147 why was it ever necessary to toss psymtabs with specific compilation
2148 unit filenames, as opposed to all psymtabs from a particular symbol
2149 file? -- fnf
2150 Well, the answer is that some systems permit reloading of particular
2151 compilation units. We want to blow away any old info about these
2152 compilation units, regardless of which objfiles they arrived in. --gnu. */
2153
2154 register struct symtab *s;
2155 register struct symtab *prev;
2156 register struct partial_symtab *ps;
2157 struct blockvector *bv;
2158 int blewit = 0;
2159
2160 /* We only wack things if the symbol-reload switch is set. */
2161 if (!symbol_reloading)
2162 return 0;
2163
2164 /* Some symbol formats have trouble providing file names... */
2165 if (name == 0 || *name == '\0')
2166 return 0;
2167
2168 /* Look for a psymtab with the specified name. */
2169
2170 again2:
2171 for (ps = partial_symtab_list; ps; ps = ps->next)
2172 {
2173 if (STREQ (name, ps->filename))
2174 {
2175 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2176 goto again2; /* Must restart, chain has been munged */
2177 }
2178 }
2179
2180 /* Look for a symtab with the specified name. */
2181
2182 for (s = symtab_list; s; s = s->next)
2183 {
2184 if (STREQ (name, s->filename))
2185 break;
2186 prev = s;
2187 }
2188
2189 if (s)
2190 {
2191 if (s == symtab_list)
2192 symtab_list = s->next;
2193 else
2194 prev->next = s->next;
2195
2196 /* For now, queue a delete for all breakpoints, displays, etc., whether
2197 or not they depend on the symtab being freed. This should be
2198 changed so that only those data structures affected are deleted. */
2199
2200 /* But don't delete anything if the symtab is empty.
2201 This test is necessary due to a bug in "dbxread.c" that
2202 causes empty symtabs to be created for N_SO symbols that
2203 contain the pathname of the object file. (This problem
2204 has been fixed in GDB 3.9x). */
2205
2206 bv = BLOCKVECTOR (s);
2207 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2208 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2209 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2210 {
2211 complain (&oldsyms_complaint, name);
2212
2213 clear_symtab_users_queued++;
2214 make_cleanup (clear_symtab_users_once, 0);
2215 blewit = 1;
2216 }
2217 else
2218 {
2219 complain (&empty_symtab_complaint, name);
2220 }
2221
2222 free_symtab (s);
2223 }
2224 else
2225 {
2226 /* It is still possible that some breakpoints will be affected
2227 even though no symtab was found, since the file might have
2228 been compiled without debugging, and hence not be associated
2229 with a symtab. In order to handle this correctly, we would need
2230 to keep a list of text address ranges for undebuggable files.
2231 For now, we do nothing, since this is a fairly obscure case. */
2232 ;
2233 }
2234
2235 /* FIXME, what about the minimal symbol table? */
2236 return blewit;
2237 #else
2238 return (0);
2239 #endif
2240 }
2241 \f
2242 /* Allocate and partially fill a partial symtab. It will be
2243 completely filled at the end of the symbol list.
2244
2245 FILENAME is the name of the symbol-file we are reading from. */
2246
2247 struct partial_symtab *
2248 start_psymtab_common (struct objfile *objfile,
2249 struct section_offsets *section_offsets, char *filename,
2250 CORE_ADDR textlow, struct partial_symbol **global_syms,
2251 struct partial_symbol **static_syms)
2252 {
2253 struct partial_symtab *psymtab;
2254
2255 psymtab = allocate_psymtab (filename, objfile);
2256 psymtab->section_offsets = section_offsets;
2257 psymtab->textlow = textlow;
2258 psymtab->texthigh = psymtab->textlow; /* default */
2259 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2260 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2261 return (psymtab);
2262 }
2263 \f
2264 /* Add a symbol with a long value to a psymtab.
2265 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2266
2267 void
2268 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2269 enum address_class class,
2270 struct psymbol_allocation_list *list, long val, /* Value as a long */
2271 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2272 enum language language, struct objfile *objfile)
2273 {
2274 register struct partial_symbol *psym;
2275 char *buf = alloca (namelength + 1);
2276 /* psymbol is static so that there will be no uninitialized gaps in the
2277 structure which might contain random data, causing cache misses in
2278 bcache. */
2279 static struct partial_symbol psymbol;
2280
2281 /* Create local copy of the partial symbol */
2282 memcpy (buf, name, namelength);
2283 buf[namelength] = '\0';
2284 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2285 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2286 if (val != 0)
2287 {
2288 SYMBOL_VALUE (&psymbol) = val;
2289 }
2290 else
2291 {
2292 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2293 }
2294 SYMBOL_SECTION (&psymbol) = 0;
2295 SYMBOL_LANGUAGE (&psymbol) = language;
2296 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2297 PSYMBOL_CLASS (&psymbol) = class;
2298 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2299
2300 /* Stash the partial symbol away in the cache */
2301 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2302
2303 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2304 if (list->next >= list->list + list->size)
2305 {
2306 extend_psymbol_list (list, objfile);
2307 }
2308 *list->next++ = psym;
2309 OBJSTAT (objfile, n_psyms++);
2310 }
2311
2312 /* Add a symbol with a long value to a psymtab. This differs from
2313 * add_psymbol_to_list above in taking both a mangled and a demangled
2314 * name. */
2315
2316 void
2317 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2318 int dem_namelength, namespace_enum namespace,
2319 enum address_class class,
2320 struct psymbol_allocation_list *list, long val, /* Value as a long */
2321 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2322 enum language language,
2323 struct objfile *objfile)
2324 {
2325 register struct partial_symbol *psym;
2326 char *buf = alloca (namelength + 1);
2327 /* psymbol is static so that there will be no uninitialized gaps in the
2328 structure which might contain random data, causing cache misses in
2329 bcache. */
2330 static struct partial_symbol psymbol;
2331
2332 /* Create local copy of the partial symbol */
2333
2334 memcpy (buf, name, namelength);
2335 buf[namelength] = '\0';
2336 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2337
2338 buf = alloca (dem_namelength + 1);
2339 memcpy (buf, dem_name, dem_namelength);
2340 buf[dem_namelength] = '\0';
2341
2342 switch (language)
2343 {
2344 case language_c:
2345 case language_cplus:
2346 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2347 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2348 break;
2349 case language_chill:
2350 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2351 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2352
2353 /* FIXME What should be done for the default case? Ignoring for now. */
2354 }
2355
2356 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2357 if (val != 0)
2358 {
2359 SYMBOL_VALUE (&psymbol) = val;
2360 }
2361 else
2362 {
2363 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2364 }
2365 SYMBOL_SECTION (&psymbol) = 0;
2366 SYMBOL_LANGUAGE (&psymbol) = language;
2367 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2368 PSYMBOL_CLASS (&psymbol) = class;
2369 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2370
2371 /* Stash the partial symbol away in the cache */
2372 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2373
2374 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2375 if (list->next >= list->list + list->size)
2376 {
2377 extend_psymbol_list (list, objfile);
2378 }
2379 *list->next++ = psym;
2380 OBJSTAT (objfile, n_psyms++);
2381 }
2382
2383 /* Initialize storage for partial symbols. */
2384
2385 void
2386 init_psymbol_list (struct objfile *objfile, int total_symbols)
2387 {
2388 /* Free any previously allocated psymbol lists. */
2389
2390 if (objfile->global_psymbols.list)
2391 {
2392 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2393 }
2394 if (objfile->static_psymbols.list)
2395 {
2396 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2397 }
2398
2399 /* Current best guess is that approximately a twentieth
2400 of the total symbols (in a debugging file) are global or static
2401 oriented symbols */
2402
2403 objfile->global_psymbols.size = total_symbols / 10;
2404 objfile->static_psymbols.size = total_symbols / 10;
2405
2406 if (objfile->global_psymbols.size > 0)
2407 {
2408 objfile->global_psymbols.next =
2409 objfile->global_psymbols.list = (struct partial_symbol **)
2410 xmmalloc (objfile->md, (objfile->global_psymbols.size
2411 * sizeof (struct partial_symbol *)));
2412 }
2413 if (objfile->static_psymbols.size > 0)
2414 {
2415 objfile->static_psymbols.next =
2416 objfile->static_psymbols.list = (struct partial_symbol **)
2417 xmmalloc (objfile->md, (objfile->static_psymbols.size
2418 * sizeof (struct partial_symbol *)));
2419 }
2420 }
2421
2422 /* OVERLAYS:
2423 The following code implements an abstraction for debugging overlay sections.
2424
2425 The target model is as follows:
2426 1) The gnu linker will permit multiple sections to be mapped into the
2427 same VMA, each with its own unique LMA (or load address).
2428 2) It is assumed that some runtime mechanism exists for mapping the
2429 sections, one by one, from the load address into the VMA address.
2430 3) This code provides a mechanism for gdb to keep track of which
2431 sections should be considered to be mapped from the VMA to the LMA.
2432 This information is used for symbol lookup, and memory read/write.
2433 For instance, if a section has been mapped then its contents
2434 should be read from the VMA, otherwise from the LMA.
2435
2436 Two levels of debugger support for overlays are available. One is
2437 "manual", in which the debugger relies on the user to tell it which
2438 overlays are currently mapped. This level of support is
2439 implemented entirely in the core debugger, and the information about
2440 whether a section is mapped is kept in the objfile->obj_section table.
2441
2442 The second level of support is "automatic", and is only available if
2443 the target-specific code provides functionality to read the target's
2444 overlay mapping table, and translate its contents for the debugger
2445 (by updating the mapped state information in the obj_section tables).
2446
2447 The interface is as follows:
2448 User commands:
2449 overlay map <name> -- tell gdb to consider this section mapped
2450 overlay unmap <name> -- tell gdb to consider this section unmapped
2451 overlay list -- list the sections that GDB thinks are mapped
2452 overlay read-target -- get the target's state of what's mapped
2453 overlay off/manual/auto -- set overlay debugging state
2454 Functional interface:
2455 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2456 section, return that section.
2457 find_pc_overlay(pc): find any overlay section that contains
2458 the pc, either in its VMA or its LMA
2459 overlay_is_mapped(sect): true if overlay is marked as mapped
2460 section_is_overlay(sect): true if section's VMA != LMA
2461 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2462 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2463 overlay_mapped_address(...): map an address from section's LMA to VMA
2464 overlay_unmapped_address(...): map an address from section's VMA to LMA
2465 symbol_overlayed_address(...): Return a "current" address for symbol:
2466 either in VMA or LMA depending on whether
2467 the symbol's section is currently mapped
2468 */
2469
2470 /* Overlay debugging state: */
2471
2472 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2473 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2474
2475 /* Target vector for refreshing overlay mapped state */
2476 static void simple_overlay_update (struct obj_section *);
2477 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2478
2479 /* Function: section_is_overlay (SECTION)
2480 Returns true if SECTION has VMA not equal to LMA, ie.
2481 SECTION is loaded at an address different from where it will "run". */
2482
2483 int
2484 section_is_overlay (asection *section)
2485 {
2486 if (overlay_debugging)
2487 if (section && section->lma != 0 &&
2488 section->vma != section->lma)
2489 return 1;
2490
2491 return 0;
2492 }
2493
2494 /* Function: overlay_invalidate_all (void)
2495 Invalidate the mapped state of all overlay sections (mark it as stale). */
2496
2497 static void
2498 overlay_invalidate_all (void)
2499 {
2500 struct objfile *objfile;
2501 struct obj_section *sect;
2502
2503 ALL_OBJSECTIONS (objfile, sect)
2504 if (section_is_overlay (sect->the_bfd_section))
2505 sect->ovly_mapped = -1;
2506 }
2507
2508 /* Function: overlay_is_mapped (SECTION)
2509 Returns true if section is an overlay, and is currently mapped.
2510 Private: public access is thru function section_is_mapped.
2511
2512 Access to the ovly_mapped flag is restricted to this function, so
2513 that we can do automatic update. If the global flag
2514 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2515 overlay_invalidate_all. If the mapped state of the particular
2516 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2517
2518 static int
2519 overlay_is_mapped (struct obj_section *osect)
2520 {
2521 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2522 return 0;
2523
2524 switch (overlay_debugging)
2525 {
2526 default:
2527 case 0:
2528 return 0; /* overlay debugging off */
2529 case -1: /* overlay debugging automatic */
2530 /* Unles there is a target_overlay_update function,
2531 there's really nothing useful to do here (can't really go auto) */
2532 if (target_overlay_update)
2533 {
2534 if (overlay_cache_invalid)
2535 {
2536 overlay_invalidate_all ();
2537 overlay_cache_invalid = 0;
2538 }
2539 if (osect->ovly_mapped == -1)
2540 (*target_overlay_update) (osect);
2541 }
2542 /* fall thru to manual case */
2543 case 1: /* overlay debugging manual */
2544 return osect->ovly_mapped == 1;
2545 }
2546 }
2547
2548 /* Function: section_is_mapped
2549 Returns true if section is an overlay, and is currently mapped. */
2550
2551 int
2552 section_is_mapped (asection *section)
2553 {
2554 struct objfile *objfile;
2555 struct obj_section *osect;
2556
2557 if (overlay_debugging)
2558 if (section && section_is_overlay (section))
2559 ALL_OBJSECTIONS (objfile, osect)
2560 if (osect->the_bfd_section == section)
2561 return overlay_is_mapped (osect);
2562
2563 return 0;
2564 }
2565
2566 /* Function: pc_in_unmapped_range
2567 If PC falls into the lma range of SECTION, return true, else false. */
2568
2569 CORE_ADDR
2570 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2571 {
2572 int size;
2573
2574 if (overlay_debugging)
2575 if (section && section_is_overlay (section))
2576 {
2577 size = bfd_get_section_size_before_reloc (section);
2578 if (section->lma <= pc && pc < section->lma + size)
2579 return 1;
2580 }
2581 return 0;
2582 }
2583
2584 /* Function: pc_in_mapped_range
2585 If PC falls into the vma range of SECTION, return true, else false. */
2586
2587 CORE_ADDR
2588 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2589 {
2590 int size;
2591
2592 if (overlay_debugging)
2593 if (section && section_is_overlay (section))
2594 {
2595 size = bfd_get_section_size_before_reloc (section);
2596 if (section->vma <= pc && pc < section->vma + size)
2597 return 1;
2598 }
2599 return 0;
2600 }
2601
2602 /* Function: overlay_unmapped_address (PC, SECTION)
2603 Returns the address corresponding to PC in the unmapped (load) range.
2604 May be the same as PC. */
2605
2606 CORE_ADDR
2607 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2608 {
2609 if (overlay_debugging)
2610 if (section && section_is_overlay (section) &&
2611 pc_in_mapped_range (pc, section))
2612 return pc + section->lma - section->vma;
2613
2614 return pc;
2615 }
2616
2617 /* Function: overlay_mapped_address (PC, SECTION)
2618 Returns the address corresponding to PC in the mapped (runtime) range.
2619 May be the same as PC. */
2620
2621 CORE_ADDR
2622 overlay_mapped_address (CORE_ADDR pc, asection *section)
2623 {
2624 if (overlay_debugging)
2625 if (section && section_is_overlay (section) &&
2626 pc_in_unmapped_range (pc, section))
2627 return pc + section->vma - section->lma;
2628
2629 return pc;
2630 }
2631
2632
2633 /* Function: symbol_overlayed_address
2634 Return one of two addresses (relative to the VMA or to the LMA),
2635 depending on whether the section is mapped or not. */
2636
2637 CORE_ADDR
2638 symbol_overlayed_address (CORE_ADDR address, asection *section)
2639 {
2640 if (overlay_debugging)
2641 {
2642 /* If the symbol has no section, just return its regular address. */
2643 if (section == 0)
2644 return address;
2645 /* If the symbol's section is not an overlay, just return its address */
2646 if (!section_is_overlay (section))
2647 return address;
2648 /* If the symbol's section is mapped, just return its address */
2649 if (section_is_mapped (section))
2650 return address;
2651 /*
2652 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2653 * then return its LOADED address rather than its vma address!!
2654 */
2655 return overlay_unmapped_address (address, section);
2656 }
2657 return address;
2658 }
2659
2660 /* Function: find_pc_overlay (PC)
2661 Return the best-match overlay section for PC:
2662 If PC matches a mapped overlay section's VMA, return that section.
2663 Else if PC matches an unmapped section's VMA, return that section.
2664 Else if PC matches an unmapped section's LMA, return that section. */
2665
2666 asection *
2667 find_pc_overlay (CORE_ADDR pc)
2668 {
2669 struct objfile *objfile;
2670 struct obj_section *osect, *best_match = NULL;
2671
2672 if (overlay_debugging)
2673 ALL_OBJSECTIONS (objfile, osect)
2674 if (section_is_overlay (osect->the_bfd_section))
2675 {
2676 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2677 {
2678 if (overlay_is_mapped (osect))
2679 return osect->the_bfd_section;
2680 else
2681 best_match = osect;
2682 }
2683 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2684 best_match = osect;
2685 }
2686 return best_match ? best_match->the_bfd_section : NULL;
2687 }
2688
2689 /* Function: find_pc_mapped_section (PC)
2690 If PC falls into the VMA address range of an overlay section that is
2691 currently marked as MAPPED, return that section. Else return NULL. */
2692
2693 asection *
2694 find_pc_mapped_section (CORE_ADDR pc)
2695 {
2696 struct objfile *objfile;
2697 struct obj_section *osect;
2698
2699 if (overlay_debugging)
2700 ALL_OBJSECTIONS (objfile, osect)
2701 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2702 overlay_is_mapped (osect))
2703 return osect->the_bfd_section;
2704
2705 return NULL;
2706 }
2707
2708 /* Function: list_overlays_command
2709 Print a list of mapped sections and their PC ranges */
2710
2711 void
2712 list_overlays_command (char *args, int from_tty)
2713 {
2714 int nmapped = 0;
2715 struct objfile *objfile;
2716 struct obj_section *osect;
2717
2718 if (overlay_debugging)
2719 ALL_OBJSECTIONS (objfile, osect)
2720 if (overlay_is_mapped (osect))
2721 {
2722 const char *name;
2723 bfd_vma lma, vma;
2724 int size;
2725
2726 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2727 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2728 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2729 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2730
2731 printf_filtered ("Section %s, loaded at ", name);
2732 print_address_numeric (lma, 1, gdb_stdout);
2733 puts_filtered (" - ");
2734 print_address_numeric (lma + size, 1, gdb_stdout);
2735 printf_filtered (", mapped at ");
2736 print_address_numeric (vma, 1, gdb_stdout);
2737 puts_filtered (" - ");
2738 print_address_numeric (vma + size, 1, gdb_stdout);
2739 puts_filtered ("\n");
2740
2741 nmapped++;
2742 }
2743 if (nmapped == 0)
2744 printf_filtered ("No sections are mapped.\n");
2745 }
2746
2747 /* Function: map_overlay_command
2748 Mark the named section as mapped (ie. residing at its VMA address). */
2749
2750 void
2751 map_overlay_command (char *args, int from_tty)
2752 {
2753 struct objfile *objfile, *objfile2;
2754 struct obj_section *sec, *sec2;
2755 asection *bfdsec;
2756
2757 if (!overlay_debugging)
2758 error ("\
2759 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2760 the 'overlay manual' command.");
2761
2762 if (args == 0 || *args == 0)
2763 error ("Argument required: name of an overlay section");
2764
2765 /* First, find a section matching the user supplied argument */
2766 ALL_OBJSECTIONS (objfile, sec)
2767 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2768 {
2769 /* Now, check to see if the section is an overlay. */
2770 bfdsec = sec->the_bfd_section;
2771 if (!section_is_overlay (bfdsec))
2772 continue; /* not an overlay section */
2773
2774 /* Mark the overlay as "mapped" */
2775 sec->ovly_mapped = 1;
2776
2777 /* Next, make a pass and unmap any sections that are
2778 overlapped by this new section: */
2779 ALL_OBJSECTIONS (objfile2, sec2)
2780 if (sec2->ovly_mapped &&
2781 sec != sec2 &&
2782 sec->the_bfd_section != sec2->the_bfd_section &&
2783 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2784 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2785 {
2786 if (info_verbose)
2787 printf_filtered ("Note: section %s unmapped by overlap\n",
2788 bfd_section_name (objfile->obfd,
2789 sec2->the_bfd_section));
2790 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2791 }
2792 return;
2793 }
2794 error ("No overlay section called %s", args);
2795 }
2796
2797 /* Function: unmap_overlay_command
2798 Mark the overlay section as unmapped
2799 (ie. resident in its LMA address range, rather than the VMA range). */
2800
2801 void
2802 unmap_overlay_command (char *args, int from_tty)
2803 {
2804 struct objfile *objfile;
2805 struct obj_section *sec;
2806
2807 if (!overlay_debugging)
2808 error ("\
2809 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2810 the 'overlay manual' command.");
2811
2812 if (args == 0 || *args == 0)
2813 error ("Argument required: name of an overlay section");
2814
2815 /* First, find a section matching the user supplied argument */
2816 ALL_OBJSECTIONS (objfile, sec)
2817 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2818 {
2819 if (!sec->ovly_mapped)
2820 error ("Section %s is not mapped", args);
2821 sec->ovly_mapped = 0;
2822 return;
2823 }
2824 error ("No overlay section called %s", args);
2825 }
2826
2827 /* Function: overlay_auto_command
2828 A utility command to turn on overlay debugging.
2829 Possibly this should be done via a set/show command. */
2830
2831 static void
2832 overlay_auto_command (char *args, int from_tty)
2833 {
2834 overlay_debugging = -1;
2835 if (info_verbose)
2836 printf_filtered ("Automatic overlay debugging enabled.");
2837 }
2838
2839 /* Function: overlay_manual_command
2840 A utility command to turn on overlay debugging.
2841 Possibly this should be done via a set/show command. */
2842
2843 static void
2844 overlay_manual_command (char *args, int from_tty)
2845 {
2846 overlay_debugging = 1;
2847 if (info_verbose)
2848 printf_filtered ("Overlay debugging enabled.");
2849 }
2850
2851 /* Function: overlay_off_command
2852 A utility command to turn on overlay debugging.
2853 Possibly this should be done via a set/show command. */
2854
2855 static void
2856 overlay_off_command (char *args, int from_tty)
2857 {
2858 overlay_debugging = 0;
2859 if (info_verbose)
2860 printf_filtered ("Overlay debugging disabled.");
2861 }
2862
2863 static void
2864 overlay_load_command (char *args, int from_tty)
2865 {
2866 if (target_overlay_update)
2867 (*target_overlay_update) (NULL);
2868 else
2869 error ("This target does not know how to read its overlay state.");
2870 }
2871
2872 /* Function: overlay_command
2873 A place-holder for a mis-typed command */
2874
2875 /* Command list chain containing all defined "overlay" subcommands. */
2876 struct cmd_list_element *overlaylist;
2877
2878 static void
2879 overlay_command (char *args, int from_tty)
2880 {
2881 printf_unfiltered
2882 ("\"overlay\" must be followed by the name of an overlay command.\n");
2883 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2884 }
2885
2886
2887 /* Target Overlays for the "Simplest" overlay manager:
2888
2889 This is GDB's default target overlay layer. It works with the
2890 minimal overlay manager supplied as an example by Cygnus. The
2891 entry point is via a function pointer "target_overlay_update",
2892 so targets that use a different runtime overlay manager can
2893 substitute their own overlay_update function and take over the
2894 function pointer.
2895
2896 The overlay_update function pokes around in the target's data structures
2897 to see what overlays are mapped, and updates GDB's overlay mapping with
2898 this information.
2899
2900 In this simple implementation, the target data structures are as follows:
2901 unsigned _novlys; /# number of overlay sections #/
2902 unsigned _ovly_table[_novlys][4] = {
2903 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2904 {..., ..., ..., ...},
2905 }
2906 unsigned _novly_regions; /# number of overlay regions #/
2907 unsigned _ovly_region_table[_novly_regions][3] = {
2908 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2909 {..., ..., ...},
2910 }
2911 These functions will attempt to update GDB's mappedness state in the
2912 symbol section table, based on the target's mappedness state.
2913
2914 To do this, we keep a cached copy of the target's _ovly_table, and
2915 attempt to detect when the cached copy is invalidated. The main
2916 entry point is "simple_overlay_update(SECT), which looks up SECT in
2917 the cached table and re-reads only the entry for that section from
2918 the target (whenever possible).
2919 */
2920
2921 /* Cached, dynamically allocated copies of the target data structures: */
2922 static unsigned (*cache_ovly_table)[4] = 0;
2923 #if 0
2924 static unsigned (*cache_ovly_region_table)[3] = 0;
2925 #endif
2926 static unsigned cache_novlys = 0;
2927 #if 0
2928 static unsigned cache_novly_regions = 0;
2929 #endif
2930 static CORE_ADDR cache_ovly_table_base = 0;
2931 #if 0
2932 static CORE_ADDR cache_ovly_region_table_base = 0;
2933 #endif
2934 enum ovly_index
2935 {
2936 VMA, SIZE, LMA, MAPPED
2937 };
2938 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2939
2940 /* Throw away the cached copy of _ovly_table */
2941 static void
2942 simple_free_overlay_table (void)
2943 {
2944 if (cache_ovly_table)
2945 xfree (cache_ovly_table);
2946 cache_novlys = 0;
2947 cache_ovly_table = NULL;
2948 cache_ovly_table_base = 0;
2949 }
2950
2951 #if 0
2952 /* Throw away the cached copy of _ovly_region_table */
2953 static void
2954 simple_free_overlay_region_table (void)
2955 {
2956 if (cache_ovly_region_table)
2957 xfree (cache_ovly_region_table);
2958 cache_novly_regions = 0;
2959 cache_ovly_region_table = NULL;
2960 cache_ovly_region_table_base = 0;
2961 }
2962 #endif
2963
2964 /* Read an array of ints from the target into a local buffer.
2965 Convert to host order. int LEN is number of ints */
2966 static void
2967 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
2968 {
2969 char *buf = alloca (len * TARGET_LONG_BYTES);
2970 int i;
2971
2972 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2973 for (i = 0; i < len; i++)
2974 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
2975 TARGET_LONG_BYTES);
2976 }
2977
2978 /* Find and grab a copy of the target _ovly_table
2979 (and _novlys, which is needed for the table's size) */
2980 static int
2981 simple_read_overlay_table (void)
2982 {
2983 struct minimal_symbol *msym;
2984
2985 simple_free_overlay_table ();
2986 msym = lookup_minimal_symbol ("_novlys", 0, 0);
2987 if (msym != NULL)
2988 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
2989 else
2990 return 0; /* failure */
2991 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
2992 if (cache_ovly_table != NULL)
2993 {
2994 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
2995 if (msym != NULL)
2996 {
2997 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
2998 read_target_long_array (cache_ovly_table_base,
2999 (int *) cache_ovly_table,
3000 cache_novlys * 4);
3001 }
3002 else
3003 return 0; /* failure */
3004 }
3005 else
3006 return 0; /* failure */
3007 return 1; /* SUCCESS */
3008 }
3009
3010 #if 0
3011 /* Find and grab a copy of the target _ovly_region_table
3012 (and _novly_regions, which is needed for the table's size) */
3013 static int
3014 simple_read_overlay_region_table (void)
3015 {
3016 struct minimal_symbol *msym;
3017
3018 simple_free_overlay_region_table ();
3019 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3020 if (msym != NULL)
3021 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3022 else
3023 return 0; /* failure */
3024 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3025 if (cache_ovly_region_table != NULL)
3026 {
3027 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3028 if (msym != NULL)
3029 {
3030 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3031 read_target_long_array (cache_ovly_region_table_base,
3032 (int *) cache_ovly_region_table,
3033 cache_novly_regions * 3);
3034 }
3035 else
3036 return 0; /* failure */
3037 }
3038 else
3039 return 0; /* failure */
3040 return 1; /* SUCCESS */
3041 }
3042 #endif
3043
3044 /* Function: simple_overlay_update_1
3045 A helper function for simple_overlay_update. Assuming a cached copy
3046 of _ovly_table exists, look through it to find an entry whose vma,
3047 lma and size match those of OSECT. Re-read the entry and make sure
3048 it still matches OSECT (else the table may no longer be valid).
3049 Set OSECT's mapped state to match the entry. Return: 1 for
3050 success, 0 for failure. */
3051
3052 static int
3053 simple_overlay_update_1 (struct obj_section *osect)
3054 {
3055 int i, size;
3056
3057 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3058 for (i = 0; i < cache_novlys; i++)
3059 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3060 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3061 cache_ovly_table[i][SIZE] == size */ )
3062 {
3063 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3064 (int *) cache_ovly_table[i], 4);
3065 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3066 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3067 cache_ovly_table[i][SIZE] == size */ )
3068 {
3069 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3070 return 1;
3071 }
3072 else /* Warning! Warning! Target's ovly table has changed! */
3073 return 0;
3074 }
3075 return 0;
3076 }
3077
3078 /* Function: simple_overlay_update
3079 If OSECT is NULL, then update all sections' mapped state
3080 (after re-reading the entire target _ovly_table).
3081 If OSECT is non-NULL, then try to find a matching entry in the
3082 cached ovly_table and update only OSECT's mapped state.
3083 If a cached entry can't be found or the cache isn't valid, then
3084 re-read the entire cache, and go ahead and update all sections. */
3085
3086 static void
3087 simple_overlay_update (struct obj_section *osect)
3088 {
3089 struct objfile *objfile;
3090
3091 /* Were we given an osect to look up? NULL means do all of them. */
3092 if (osect)
3093 /* Have we got a cached copy of the target's overlay table? */
3094 if (cache_ovly_table != NULL)
3095 /* Does its cached location match what's currently in the symtab? */
3096 if (cache_ovly_table_base ==
3097 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3098 /* Then go ahead and try to look up this single section in the cache */
3099 if (simple_overlay_update_1 (osect))
3100 /* Found it! We're done. */
3101 return;
3102
3103 /* Cached table no good: need to read the entire table anew.
3104 Or else we want all the sections, in which case it's actually
3105 more efficient to read the whole table in one block anyway. */
3106
3107 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3108 {
3109 warning ("Failed to read the target overlay mapping table.");
3110 return;
3111 }
3112 /* Now may as well update all sections, even if only one was requested. */
3113 ALL_OBJSECTIONS (objfile, osect)
3114 if (section_is_overlay (osect->the_bfd_section))
3115 {
3116 int i, size;
3117
3118 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3119 for (i = 0; i < cache_novlys; i++)
3120 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3121 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3122 cache_ovly_table[i][SIZE] == size */ )
3123 { /* obj_section matches i'th entry in ovly_table */
3124 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3125 break; /* finished with inner for loop: break out */
3126 }
3127 }
3128 }
3129
3130
3131 void
3132 _initialize_symfile (void)
3133 {
3134 struct cmd_list_element *c;
3135
3136 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3137 "Load symbol table from executable file FILE.\n\
3138 The `file' command can also load symbol tables, as well as setting the file\n\
3139 to execute.", &cmdlist);
3140 c->completer = filename_completer;
3141
3142 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3143 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3144 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3145 ADDR is the starting address of the file's text.\n\
3146 The optional arguments are section-name section-address pairs and\n\
3147 should be specified if the data and bss segments are not contiguous\n\
3148 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3149 &cmdlist);
3150 c->completer = filename_completer;
3151
3152 c = add_cmd ("add-shared-symbol-files", class_files,
3153 add_shared_symbol_files_command,
3154 "Load the symbols from shared objects in the dynamic linker's link map.",
3155 &cmdlist);
3156 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3157 &cmdlist);
3158
3159 c = add_cmd ("load", class_files, load_command,
3160 "Dynamically load FILE into the running program, and record its symbols\n\
3161 for access from GDB.", &cmdlist);
3162 c->completer = filename_completer;
3163
3164 add_show_from_set
3165 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3166 (char *) &symbol_reloading,
3167 "Set dynamic symbol table reloading multiple times in one run.",
3168 &setlist),
3169 &showlist);
3170
3171 add_prefix_cmd ("overlay", class_support, overlay_command,
3172 "Commands for debugging overlays.", &overlaylist,
3173 "overlay ", 0, &cmdlist);
3174
3175 add_com_alias ("ovly", "overlay", class_alias, 1);
3176 add_com_alias ("ov", "overlay", class_alias, 1);
3177
3178 add_cmd ("map-overlay", class_support, map_overlay_command,
3179 "Assert that an overlay section is mapped.", &overlaylist);
3180
3181 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3182 "Assert that an overlay section is unmapped.", &overlaylist);
3183
3184 add_cmd ("list-overlays", class_support, list_overlays_command,
3185 "List mappings of overlay sections.", &overlaylist);
3186
3187 add_cmd ("manual", class_support, overlay_manual_command,
3188 "Enable overlay debugging.", &overlaylist);
3189 add_cmd ("off", class_support, overlay_off_command,
3190 "Disable overlay debugging.", &overlaylist);
3191 add_cmd ("auto", class_support, overlay_auto_command,
3192 "Enable automatic overlay debugging.", &overlaylist);
3193 add_cmd ("load-target", class_support, overlay_load_command,
3194 "Read the overlay mapping state from the target.", &overlaylist);
3195
3196 /* Filename extension to source language lookup table: */
3197 init_filename_language_table ();
3198 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3199 (char *) &ext_args,
3200 "Set mapping between filename extension and source language.\n\
3201 Usage: set extension-language .foo bar",
3202 &setlist);
3203 c->function.cfunc = set_ext_lang_command;
3204
3205 add_info ("extensions", info_ext_lang_command,
3206 "All filename extensions associated with a source language.");
3207
3208 add_show_from_set
3209 (add_set_cmd ("download-write-size", class_obscure,
3210 var_integer, (char *) &download_write_size,
3211 "Set the write size used when downloading a program.\n"
3212 "Only used when downloading a program onto a remote\n"
3213 "target. Specify zero, or a negative value, to disable\n"
3214 "blocked writes. The actual size of each transfer is also\n"
3215 "limited by the size of the target packet and the memory\n"
3216 "cache.\n",
3217 &setlist),
3218 &showlist);
3219 }
This page took 0.095417 seconds and 4 git commands to generate.