b80ef2a93598f31490355181e36e242e3272d615
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct section_table *start,
373 const struct section_table *end)
374 {
375 struct section_addr_info *sap;
376 const struct section_table *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 MAINLINE is nonzero if this is the main symbol file, or zero if
746 it's an extra symbol file such as dynamically loaded code.
747
748 VERBO is nonzero if the caller has printed a verbose message about
749 the symbol reading (and complaints can be more terse about it). */
750
751 void
752 syms_from_objfile (struct objfile *objfile,
753 struct section_addr_info *addrs,
754 struct section_offsets *offsets,
755 int num_offsets,
756 int mainline,
757 int verbo)
758 {
759 struct section_addr_info *local_addr = NULL;
760 struct cleanup *old_chain;
761
762 gdb_assert (! (addrs && offsets));
763
764 init_entry_point_info (objfile);
765 objfile->sf = find_sym_fns (objfile->obfd);
766
767 if (objfile->sf == NULL)
768 return; /* No symbols. */
769
770 /* Make sure that partially constructed symbol tables will be cleaned up
771 if an error occurs during symbol reading. */
772 old_chain = make_cleanup_free_objfile (objfile);
773
774 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
775 list. We now establish the convention that an addr of zero means
776 no load address was specified. */
777 if (! addrs && ! offsets)
778 {
779 local_addr
780 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
781 make_cleanup (xfree, local_addr);
782 addrs = local_addr;
783 }
784
785 /* Now either addrs or offsets is non-zero. */
786
787 if (mainline)
788 {
789 /* We will modify the main symbol table, make sure that all its users
790 will be cleaned up if an error occurs during symbol reading. */
791 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
792
793 /* Since no error yet, throw away the old symbol table. */
794
795 if (symfile_objfile != NULL)
796 {
797 free_objfile (symfile_objfile);
798 symfile_objfile = NULL;
799 }
800
801 /* Currently we keep symbols from the add-symbol-file command.
802 If the user wants to get rid of them, they should do "symbol-file"
803 without arguments first. Not sure this is the best behavior
804 (PR 2207). */
805
806 (*objfile->sf->sym_new_init) (objfile);
807 }
808
809 /* Convert addr into an offset rather than an absolute address.
810 We find the lowest address of a loaded segment in the objfile,
811 and assume that <addr> is where that got loaded.
812
813 We no longer warn if the lowest section is not a text segment (as
814 happens for the PA64 port. */
815 if (!mainline && addrs && addrs->other[0].name)
816 {
817 asection *lower_sect;
818 asection *sect;
819 CORE_ADDR lower_offset;
820 int i;
821
822 /* Find lowest loadable section to be used as starting point for
823 continguous sections. FIXME!! won't work without call to find
824 .text first, but this assumes text is lowest section. */
825 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
826 if (lower_sect == NULL)
827 bfd_map_over_sections (objfile->obfd, find_lowest_section,
828 &lower_sect);
829 if (lower_sect == NULL)
830 {
831 warning (_("no loadable sections found in added symbol-file %s"),
832 objfile->name);
833 lower_offset = 0;
834 }
835 else
836 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
837
838 /* Calculate offsets for the loadable sections.
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
841
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
864 warning (_("section %s not found in %s"),
865 addrs->other[i].name,
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
879 (*objfile->sf->sym_init) (objfile);
880 clear_complaints (&symfile_complaints, 1, verbo);
881
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
892 obstack_alloc (&objfile->objfile_obstack, size));
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
897
898 #ifndef DEPRECATED_IBM6000_TARGET
899 /* This is a SVR4/SunOS specific hack, I think. In any event, it
900 screws RS/6000. sym_offsets should be doing this sort of thing,
901 because it knows the mapping between bfd sections and
902 section_offsets. */
903 /* This is a hack. As far as I can tell, section offsets are not
904 target dependent. They are all set to addr with a couple of
905 exceptions. The exceptions are sysvr4 shared libraries, whose
906 offsets are kept in solib structures anyway and rs6000 xcoff
907 which handles shared libraries in a completely unique way.
908
909 Section offsets are built similarly, except that they are built
910 by adding addr in all cases because there is no clear mapping
911 from section_offsets into actual sections. Note that solib.c
912 has a different algorithm for finding section offsets.
913
914 These should probably all be collapsed into some target
915 independent form of shared library support. FIXME. */
916
917 if (addrs)
918 {
919 struct obj_section *s;
920
921 /* Map section offsets in "addr" back to the object's
922 sections by comparing the section names with bfd's
923 section names. Then adjust the section address by
924 the offset. */ /* for gdb/13815 */
925
926 ALL_OBJFILE_OSECTIONS (objfile, s)
927 {
928 CORE_ADDR s_addr = 0;
929 int i;
930
931 for (i = 0;
932 !s_addr && i < addrs->num_sections && addrs->other[i].name;
933 i++)
934 if (strcmp (bfd_section_name (s->objfile->obfd,
935 s->the_bfd_section),
936 addrs->other[i].name) == 0)
937 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
938
939 s->addr -= s->offset;
940 s->addr += s_addr;
941 s->endaddr -= s->offset;
942 s->endaddr += s_addr;
943 s->offset += s_addr;
944 }
945 }
946 #endif /* not DEPRECATED_IBM6000_TARGET */
947
948 (*objfile->sf->sym_read) (objfile, mainline);
949
950 /* Don't allow char * to have a typename (else would get caddr_t).
951 Ditto void *. FIXME: Check whether this is now done by all the
952 symbol readers themselves (many of them now do), and if so remove
953 it from here. */
954
955 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
956 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
957
958 /* Mark the objfile has having had initial symbol read attempted. Note
959 that this does not mean we found any symbols... */
960
961 objfile->flags |= OBJF_SYMS;
962
963 /* Discard cleanups as symbol reading was successful. */
964
965 discard_cleanups (old_chain);
966 }
967
968 /* Perform required actions after either reading in the initial
969 symbols for a new objfile, or mapping in the symbols from a reusable
970 objfile. */
971
972 void
973 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
974 {
975
976 /* If this is the main symbol file we have to clean up all users of the
977 old main symbol file. Otherwise it is sufficient to fixup all the
978 breakpoints that may have been redefined by this symbol file. */
979 if (mainline)
980 {
981 /* OK, make it the "real" symbol file. */
982 symfile_objfile = objfile;
983
984 clear_symtab_users ();
985 }
986 else
987 {
988 breakpoint_re_set ();
989 }
990
991 /* We're done reading the symbol file; finish off complaints. */
992 clear_complaints (&symfile_complaints, 0, verbo);
993 }
994
995 /* Process a symbol file, as either the main file or as a dynamically
996 loaded file.
997
998 ABFD is a BFD already open on the file, as from symfile_bfd_open.
999 This BFD will be closed on error, and is always consumed by this function.
1000
1001 FROM_TTY says how verbose to be.
1002
1003 MAINLINE specifies whether this is the main symbol file, or whether
1004 it's an extra symbol file such as dynamically loaded code.
1005
1006 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1007 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1008 non-zero.
1009
1010 Upon success, returns a pointer to the objfile that was added.
1011 Upon failure, jumps back to command level (never returns). */
1012 static struct objfile *
1013 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1014 struct section_addr_info *addrs,
1015 struct section_offsets *offsets,
1016 int num_offsets,
1017 int mainline, int flags)
1018 {
1019 struct objfile *objfile;
1020 struct partial_symtab *psymtab;
1021 char *debugfile = NULL;
1022 struct section_addr_info *orig_addrs = NULL;
1023 struct cleanup *my_cleanups;
1024 const char *name = bfd_get_filename (abfd);
1025
1026 my_cleanups = make_cleanup_bfd_close (abfd);
1027
1028 /* Give user a chance to burp if we'd be
1029 interactively wiping out any existing symbols. */
1030
1031 if ((have_full_symbols () || have_partial_symbols ())
1032 && mainline
1033 && from_tty
1034 && !query ("Load new symbol table from \"%s\"? ", name))
1035 error (_("Not confirmed."));
1036
1037 objfile = allocate_objfile (abfd, flags);
1038 discard_cleanups (my_cleanups);
1039
1040 if (addrs)
1041 {
1042 orig_addrs = copy_section_addr_info (addrs);
1043 make_cleanup_free_section_addr_info (orig_addrs);
1044 }
1045
1046 /* We either created a new mapped symbol table, mapped an existing
1047 symbol table file which has not had initial symbol reading
1048 performed, or need to read an unmapped symbol table. */
1049 if (from_tty || info_verbose)
1050 {
1051 if (deprecated_pre_add_symbol_hook)
1052 deprecated_pre_add_symbol_hook (name);
1053 else
1054 {
1055 if (print_symbol_loading)
1056 {
1057 printf_unfiltered (_("Reading symbols from %s..."), name);
1058 wrap_here ("");
1059 gdb_flush (gdb_stdout);
1060 }
1061 }
1062 }
1063 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1064 mainline, from_tty);
1065
1066 /* We now have at least a partial symbol table. Check to see if the
1067 user requested that all symbols be read on initial access via either
1068 the gdb startup command line or on a per symbol file basis. Expand
1069 all partial symbol tables for this objfile if so. */
1070
1071 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1072 {
1073 if ((from_tty || info_verbose) && print_symbol_loading)
1074 {
1075 printf_unfiltered (_("expanding to full symbols..."));
1076 wrap_here ("");
1077 gdb_flush (gdb_stdout);
1078 }
1079
1080 for (psymtab = objfile->psymtabs;
1081 psymtab != NULL;
1082 psymtab = psymtab->next)
1083 {
1084 psymtab_to_symtab (psymtab);
1085 }
1086 }
1087
1088 /* If the file has its own symbol tables it has no separate debug info.
1089 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1090 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1091 if (objfile->psymtabs == NULL)
1092 debugfile = find_separate_debug_file (objfile);
1093 if (debugfile)
1094 {
1095 if (addrs != NULL)
1096 {
1097 objfile->separate_debug_objfile
1098 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1099 }
1100 else
1101 {
1102 objfile->separate_debug_objfile
1103 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1104 }
1105 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1106 = objfile;
1107
1108 /* Put the separate debug object before the normal one, this is so that
1109 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1110 put_objfile_before (objfile->separate_debug_objfile, objfile);
1111
1112 xfree (debugfile);
1113 }
1114
1115 if (!have_partial_symbols () && !have_full_symbols ()
1116 && print_symbol_loading)
1117 {
1118 wrap_here ("");
1119 printf_filtered (_("(no debugging symbols found)"));
1120 if (from_tty || info_verbose)
1121 printf_filtered ("...");
1122 else
1123 printf_filtered ("\n");
1124 wrap_here ("");
1125 }
1126
1127 if (from_tty || info_verbose)
1128 {
1129 if (deprecated_post_add_symbol_hook)
1130 deprecated_post_add_symbol_hook ();
1131 else
1132 {
1133 if (print_symbol_loading)
1134 printf_unfiltered (_("done.\n"));
1135 }
1136 }
1137
1138 /* We print some messages regardless of whether 'from_tty ||
1139 info_verbose' is true, so make sure they go out at the right
1140 time. */
1141 gdb_flush (gdb_stdout);
1142
1143 do_cleanups (my_cleanups);
1144
1145 if (objfile->sf == NULL)
1146 return objfile; /* No symbols. */
1147
1148 new_symfile_objfile (objfile, mainline, from_tty);
1149
1150 observer_notify_new_objfile (objfile);
1151
1152 bfd_cache_close_all ();
1153 return (objfile);
1154 }
1155
1156
1157 /* Process the symbol file ABFD, as either the main file or as a
1158 dynamically loaded file.
1159
1160 See symbol_file_add_with_addrs_or_offsets's comments for
1161 details. */
1162 struct objfile *
1163 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1164 struct section_addr_info *addrs,
1165 int mainline, int flags)
1166 {
1167 return symbol_file_add_with_addrs_or_offsets (abfd,
1168 from_tty, addrs, 0, 0,
1169 mainline, flags);
1170 }
1171
1172
1173 /* Process a symbol file, as either the main file or as a dynamically
1174 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1175 for details. */
1176 struct objfile *
1177 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1178 int mainline, int flags)
1179 {
1180 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1181 addrs, mainline, flags);
1182 }
1183
1184
1185 /* Call symbol_file_add() with default values and update whatever is
1186 affected by the loading of a new main().
1187 Used when the file is supplied in the gdb command line
1188 and by some targets with special loading requirements.
1189 The auxiliary function, symbol_file_add_main_1(), has the flags
1190 argument for the switches that can only be specified in the symbol_file
1191 command itself. */
1192
1193 void
1194 symbol_file_add_main (char *args, int from_tty)
1195 {
1196 symbol_file_add_main_1 (args, from_tty, 0);
1197 }
1198
1199 static void
1200 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1201 {
1202 symbol_file_add (args, from_tty, NULL, 1, flags);
1203
1204 /* Getting new symbols may change our opinion about
1205 what is frameless. */
1206 reinit_frame_cache ();
1207
1208 set_initial_language ();
1209 }
1210
1211 void
1212 symbol_file_clear (int from_tty)
1213 {
1214 if ((have_full_symbols () || have_partial_symbols ())
1215 && from_tty
1216 && (symfile_objfile
1217 ? !query (_("Discard symbol table from `%s'? "),
1218 symfile_objfile->name)
1219 : !query (_("Discard symbol table? "))))
1220 error (_("Not confirmed."));
1221 free_all_objfiles ();
1222
1223 /* solib descriptors may have handles to objfiles. Since their
1224 storage has just been released, we'd better wipe the solib
1225 descriptors as well.
1226 */
1227 no_shared_libraries (NULL, from_tty);
1228
1229 symfile_objfile = NULL;
1230 if (from_tty)
1231 printf_unfiltered (_("No symbol file now.\n"));
1232 }
1233
1234 struct build_id
1235 {
1236 size_t size;
1237 gdb_byte data[1];
1238 };
1239
1240 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1241
1242 static struct build_id *
1243 build_id_bfd_get (bfd *abfd)
1244 {
1245 struct build_id *retval;
1246
1247 if (!bfd_check_format (abfd, bfd_object)
1248 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1249 || elf_tdata (abfd)->build_id == NULL)
1250 return NULL;
1251
1252 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1253 retval->size = elf_tdata (abfd)->build_id_size;
1254 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1255
1256 return retval;
1257 }
1258
1259 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1260
1261 static int
1262 build_id_verify (const char *filename, struct build_id *check)
1263 {
1264 bfd *abfd;
1265 struct build_id *found = NULL;
1266 int retval = 0;
1267
1268 /* We expect to be silent on the non-existing files. */
1269 abfd = bfd_openr (filename, gnutarget);
1270 if (abfd == NULL)
1271 return 0;
1272
1273 found = build_id_bfd_get (abfd);
1274
1275 if (found == NULL)
1276 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1277 else if (found->size != check->size
1278 || memcmp (found->data, check->data, found->size) != 0)
1279 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1280 else
1281 retval = 1;
1282
1283 if (!bfd_close (abfd))
1284 warning (_("cannot close \"%s\": %s"), filename,
1285 bfd_errmsg (bfd_get_error ()));
1286 return retval;
1287 }
1288
1289 static char *
1290 build_id_to_debug_filename (struct build_id *build_id)
1291 {
1292 char *link, *s, *retval = NULL;
1293 gdb_byte *data = build_id->data;
1294 size_t size = build_id->size;
1295
1296 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1297 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1298 + 2 * size + (sizeof ".debug" - 1) + 1);
1299 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1300 if (size > 0)
1301 {
1302 size--;
1303 s += sprintf (s, "%02x", (unsigned) *data++);
1304 }
1305 if (size > 0)
1306 *s++ = '/';
1307 while (size-- > 0)
1308 s += sprintf (s, "%02x", (unsigned) *data++);
1309 strcpy (s, ".debug");
1310
1311 /* lrealpath() is expensive even for the usually non-existent files. */
1312 if (access (link, F_OK) == 0)
1313 retval = lrealpath (link);
1314 xfree (link);
1315
1316 if (retval != NULL && !build_id_verify (retval, build_id))
1317 {
1318 xfree (retval);
1319 retval = NULL;
1320 }
1321
1322 return retval;
1323 }
1324
1325 static char *
1326 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1327 {
1328 asection *sect;
1329 bfd_size_type debuglink_size;
1330 unsigned long crc32;
1331 char *contents;
1332 int crc_offset;
1333 unsigned char *p;
1334
1335 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1336
1337 if (sect == NULL)
1338 return NULL;
1339
1340 debuglink_size = bfd_section_size (objfile->obfd, sect);
1341
1342 contents = xmalloc (debuglink_size);
1343 bfd_get_section_contents (objfile->obfd, sect, contents,
1344 (file_ptr)0, (bfd_size_type)debuglink_size);
1345
1346 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1347 crc_offset = strlen (contents) + 1;
1348 crc_offset = (crc_offset + 3) & ~3;
1349
1350 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1351
1352 *crc32_out = crc32;
1353 return contents;
1354 }
1355
1356 static int
1357 separate_debug_file_exists (const char *name, unsigned long crc)
1358 {
1359 unsigned long file_crc = 0;
1360 int fd;
1361 gdb_byte buffer[8*1024];
1362 int count;
1363
1364 fd = open (name, O_RDONLY | O_BINARY);
1365 if (fd < 0)
1366 return 0;
1367
1368 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1369 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1370
1371 close (fd);
1372
1373 return crc == file_crc;
1374 }
1375
1376 char *debug_file_directory = NULL;
1377 static void
1378 show_debug_file_directory (struct ui_file *file, int from_tty,
1379 struct cmd_list_element *c, const char *value)
1380 {
1381 fprintf_filtered (file, _("\
1382 The directory where separate debug symbols are searched for is \"%s\".\n"),
1383 value);
1384 }
1385
1386 #if ! defined (DEBUG_SUBDIRECTORY)
1387 #define DEBUG_SUBDIRECTORY ".debug"
1388 #endif
1389
1390 static char *
1391 find_separate_debug_file (struct objfile *objfile)
1392 {
1393 asection *sect;
1394 char *basename;
1395 char *dir;
1396 char *debugfile;
1397 char *name_copy;
1398 char *canon_name;
1399 bfd_size_type debuglink_size;
1400 unsigned long crc32;
1401 int i;
1402 struct build_id *build_id;
1403
1404 build_id = build_id_bfd_get (objfile->obfd);
1405 if (build_id != NULL)
1406 {
1407 char *build_id_name;
1408
1409 build_id_name = build_id_to_debug_filename (build_id);
1410 free (build_id);
1411 /* Prevent looping on a stripped .debug file. */
1412 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1413 {
1414 warning (_("\"%s\": separate debug info file has no debug info"),
1415 build_id_name);
1416 xfree (build_id_name);
1417 }
1418 else if (build_id_name != NULL)
1419 return build_id_name;
1420 }
1421
1422 basename = get_debug_link_info (objfile, &crc32);
1423
1424 if (basename == NULL)
1425 return NULL;
1426
1427 dir = xstrdup (objfile->name);
1428
1429 /* Strip off the final filename part, leaving the directory name,
1430 followed by a slash. Objfile names should always be absolute and
1431 tilde-expanded, so there should always be a slash in there
1432 somewhere. */
1433 for (i = strlen(dir) - 1; i >= 0; i--)
1434 {
1435 if (IS_DIR_SEPARATOR (dir[i]))
1436 break;
1437 }
1438 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1439 dir[i+1] = '\0';
1440
1441 debugfile = alloca (strlen (debug_file_directory) + 1
1442 + strlen (dir)
1443 + strlen (DEBUG_SUBDIRECTORY)
1444 + strlen ("/")
1445 + strlen (basename)
1446 + 1);
1447
1448 /* First try in the same directory as the original file. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, basename);
1451
1452 if (separate_debug_file_exists (debugfile, crc32))
1453 {
1454 xfree (basename);
1455 xfree (dir);
1456 return xstrdup (debugfile);
1457 }
1458
1459 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1460 strcpy (debugfile, dir);
1461 strcat (debugfile, DEBUG_SUBDIRECTORY);
1462 strcat (debugfile, "/");
1463 strcat (debugfile, basename);
1464
1465 if (separate_debug_file_exists (debugfile, crc32))
1466 {
1467 xfree (basename);
1468 xfree (dir);
1469 return xstrdup (debugfile);
1470 }
1471
1472 /* Then try in the global debugfile directory. */
1473 strcpy (debugfile, debug_file_directory);
1474 strcat (debugfile, "/");
1475 strcat (debugfile, dir);
1476 strcat (debugfile, basename);
1477
1478 if (separate_debug_file_exists (debugfile, crc32))
1479 {
1480 xfree (basename);
1481 xfree (dir);
1482 return xstrdup (debugfile);
1483 }
1484
1485 /* If the file is in the sysroot, try using its base path in the
1486 global debugfile directory. */
1487 canon_name = lrealpath (dir);
1488 if (canon_name
1489 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1490 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1491 {
1492 strcpy (debugfile, debug_file_directory);
1493 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1494 strcat (debugfile, "/");
1495 strcat (debugfile, basename);
1496
1497 if (separate_debug_file_exists (debugfile, crc32))
1498 {
1499 xfree (canon_name);
1500 xfree (basename);
1501 xfree (dir);
1502 return xstrdup (debugfile);
1503 }
1504 }
1505
1506 if (canon_name)
1507 xfree (canon_name);
1508
1509 xfree (basename);
1510 xfree (dir);
1511 return NULL;
1512 }
1513
1514
1515 /* This is the symbol-file command. Read the file, analyze its
1516 symbols, and add a struct symtab to a symtab list. The syntax of
1517 the command is rather bizarre:
1518
1519 1. The function buildargv implements various quoting conventions
1520 which are undocumented and have little or nothing in common with
1521 the way things are quoted (or not quoted) elsewhere in GDB.
1522
1523 2. Options are used, which are not generally used in GDB (perhaps
1524 "set mapped on", "set readnow on" would be better)
1525
1526 3. The order of options matters, which is contrary to GNU
1527 conventions (because it is confusing and inconvenient). */
1528
1529 void
1530 symbol_file_command (char *args, int from_tty)
1531 {
1532 dont_repeat ();
1533
1534 if (args == NULL)
1535 {
1536 symbol_file_clear (from_tty);
1537 }
1538 else
1539 {
1540 char **argv = buildargv (args);
1541 int flags = OBJF_USERLOADED;
1542 struct cleanup *cleanups;
1543 char *name = NULL;
1544
1545 if (argv == NULL)
1546 nomem (0);
1547
1548 cleanups = make_cleanup_freeargv (argv);
1549 while (*argv != NULL)
1550 {
1551 if (strcmp (*argv, "-readnow") == 0)
1552 flags |= OBJF_READNOW;
1553 else if (**argv == '-')
1554 error (_("unknown option `%s'"), *argv);
1555 else
1556 {
1557 symbol_file_add_main_1 (*argv, from_tty, flags);
1558 name = *argv;
1559 }
1560
1561 argv++;
1562 }
1563
1564 if (name == NULL)
1565 error (_("no symbol file name was specified"));
1566
1567 do_cleanups (cleanups);
1568 }
1569 }
1570
1571 /* Set the initial language.
1572
1573 FIXME: A better solution would be to record the language in the
1574 psymtab when reading partial symbols, and then use it (if known) to
1575 set the language. This would be a win for formats that encode the
1576 language in an easily discoverable place, such as DWARF. For
1577 stabs, we can jump through hoops looking for specially named
1578 symbols or try to intuit the language from the specific type of
1579 stabs we find, but we can't do that until later when we read in
1580 full symbols. */
1581
1582 void
1583 set_initial_language (void)
1584 {
1585 struct partial_symtab *pst;
1586 enum language lang = language_unknown;
1587
1588 pst = find_main_psymtab ();
1589 if (pst != NULL)
1590 {
1591 if (pst->filename != NULL)
1592 lang = deduce_language_from_filename (pst->filename);
1593
1594 if (lang == language_unknown)
1595 {
1596 /* Make C the default language */
1597 lang = language_c;
1598 }
1599
1600 set_language (lang);
1601 expected_language = current_language; /* Don't warn the user. */
1602 }
1603 }
1604
1605 /* Open the file specified by NAME and hand it off to BFD for
1606 preliminary analysis. Return a newly initialized bfd *, which
1607 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1608 absolute). In case of trouble, error() is called. */
1609
1610 bfd *
1611 symfile_bfd_open (char *name)
1612 {
1613 bfd *sym_bfd;
1614 int desc;
1615 char *absolute_name;
1616
1617 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1618
1619 /* Look down path for it, allocate 2nd new malloc'd copy. */
1620 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1621 O_RDONLY | O_BINARY, 0, &absolute_name);
1622 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1623 if (desc < 0)
1624 {
1625 char *exename = alloca (strlen (name) + 5);
1626 strcat (strcpy (exename, name), ".exe");
1627 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1628 O_RDONLY | O_BINARY, 0, &absolute_name);
1629 }
1630 #endif
1631 if (desc < 0)
1632 {
1633 make_cleanup (xfree, name);
1634 perror_with_name (name);
1635 }
1636
1637 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1638 bfd. It'll be freed in free_objfile(). */
1639 xfree (name);
1640 name = absolute_name;
1641
1642 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1643 if (!sym_bfd)
1644 {
1645 close (desc);
1646 make_cleanup (xfree, name);
1647 error (_("\"%s\": can't open to read symbols: %s."), name,
1648 bfd_errmsg (bfd_get_error ()));
1649 }
1650 bfd_set_cacheable (sym_bfd, 1);
1651
1652 if (!bfd_check_format (sym_bfd, bfd_object))
1653 {
1654 /* FIXME: should be checking for errors from bfd_close (for one
1655 thing, on error it does not free all the storage associated
1656 with the bfd). */
1657 bfd_close (sym_bfd); /* This also closes desc. */
1658 make_cleanup (xfree, name);
1659 error (_("\"%s\": can't read symbols: %s."), name,
1660 bfd_errmsg (bfd_get_error ()));
1661 }
1662
1663 return sym_bfd;
1664 }
1665
1666 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1667 the section was not found. */
1668
1669 int
1670 get_section_index (struct objfile *objfile, char *section_name)
1671 {
1672 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1673
1674 if (sect)
1675 return sect->index;
1676 else
1677 return -1;
1678 }
1679
1680 /* Link SF into the global symtab_fns list. Called on startup by the
1681 _initialize routine in each object file format reader, to register
1682 information about each format the the reader is prepared to
1683 handle. */
1684
1685 void
1686 add_symtab_fns (struct sym_fns *sf)
1687 {
1688 sf->next = symtab_fns;
1689 symtab_fns = sf;
1690 }
1691
1692 /* Initialize OBJFILE to read symbols from its associated BFD. It
1693 either returns or calls error(). The result is an initialized
1694 struct sym_fns in the objfile structure, that contains cached
1695 information about the symbol file. */
1696
1697 static struct sym_fns *
1698 find_sym_fns (bfd *abfd)
1699 {
1700 struct sym_fns *sf;
1701 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1702
1703 if (our_flavour == bfd_target_srec_flavour
1704 || our_flavour == bfd_target_ihex_flavour
1705 || our_flavour == bfd_target_tekhex_flavour)
1706 return NULL; /* No symbols. */
1707
1708 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1709 if (our_flavour == sf->sym_flavour)
1710 return sf;
1711
1712 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1713 bfd_get_target (abfd));
1714 }
1715 \f
1716
1717 /* This function runs the load command of our current target. */
1718
1719 static void
1720 load_command (char *arg, int from_tty)
1721 {
1722 /* The user might be reloading because the binary has changed. Take
1723 this opportunity to check. */
1724 reopen_exec_file ();
1725 reread_symbols ();
1726
1727 if (arg == NULL)
1728 {
1729 char *parg;
1730 int count = 0;
1731
1732 parg = arg = get_exec_file (1);
1733
1734 /* Count how many \ " ' tab space there are in the name. */
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1736 {
1737 parg++;
1738 count++;
1739 }
1740
1741 if (count)
1742 {
1743 /* We need to quote this string so buildargv can pull it apart. */
1744 char *temp = xmalloc (strlen (arg) + count + 1 );
1745 char *ptemp = temp;
1746 char *prev;
1747
1748 make_cleanup (xfree, temp);
1749
1750 prev = parg = arg;
1751 while ((parg = strpbrk (parg, "\\\"'\t ")))
1752 {
1753 strncpy (ptemp, prev, parg - prev);
1754 ptemp += parg - prev;
1755 prev = parg++;
1756 *ptemp++ = '\\';
1757 }
1758 strcpy (ptemp, prev);
1759
1760 arg = temp;
1761 }
1762 }
1763
1764 target_load (arg, from_tty);
1765
1766 /* After re-loading the executable, we don't really know which
1767 overlays are mapped any more. */
1768 overlay_cache_invalid = 1;
1769 }
1770
1771 /* This version of "load" should be usable for any target. Currently
1772 it is just used for remote targets, not inftarg.c or core files,
1773 on the theory that only in that case is it useful.
1774
1775 Avoiding xmodem and the like seems like a win (a) because we don't have
1776 to worry about finding it, and (b) On VMS, fork() is very slow and so
1777 we don't want to run a subprocess. On the other hand, I'm not sure how
1778 performance compares. */
1779
1780 static int validate_download = 0;
1781
1782 /* Callback service function for generic_load (bfd_map_over_sections). */
1783
1784 static void
1785 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1786 {
1787 bfd_size_type *sum = data;
1788
1789 *sum += bfd_get_section_size (asec);
1790 }
1791
1792 /* Opaque data for load_section_callback. */
1793 struct load_section_data {
1794 unsigned long load_offset;
1795 struct load_progress_data *progress_data;
1796 VEC(memory_write_request_s) *requests;
1797 };
1798
1799 /* Opaque data for load_progress. */
1800 struct load_progress_data {
1801 /* Cumulative data. */
1802 unsigned long write_count;
1803 unsigned long data_count;
1804 bfd_size_type total_size;
1805 };
1806
1807 /* Opaque data for load_progress for a single section. */
1808 struct load_progress_section_data {
1809 struct load_progress_data *cumulative;
1810
1811 /* Per-section data. */
1812 const char *section_name;
1813 ULONGEST section_sent;
1814 ULONGEST section_size;
1815 CORE_ADDR lma;
1816 gdb_byte *buffer;
1817 };
1818
1819 /* Target write callback routine for progress reporting. */
1820
1821 static void
1822 load_progress (ULONGEST bytes, void *untyped_arg)
1823 {
1824 struct load_progress_section_data *args = untyped_arg;
1825 struct load_progress_data *totals;
1826
1827 if (args == NULL)
1828 /* Writing padding data. No easy way to get at the cumulative
1829 stats, so just ignore this. */
1830 return;
1831
1832 totals = args->cumulative;
1833
1834 if (bytes == 0 && args->section_sent == 0)
1835 {
1836 /* The write is just starting. Let the user know we've started
1837 this section. */
1838 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1839 args->section_name, paddr_nz (args->section_size),
1840 paddr_nz (args->lma));
1841 return;
1842 }
1843
1844 if (validate_download)
1845 {
1846 /* Broken memories and broken monitors manifest themselves here
1847 when bring new computers to life. This doubles already slow
1848 downloads. */
1849 /* NOTE: cagney/1999-10-18: A more efficient implementation
1850 might add a verify_memory() method to the target vector and
1851 then use that. remote.c could implement that method using
1852 the ``qCRC'' packet. */
1853 gdb_byte *check = xmalloc (bytes);
1854 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1855
1856 if (target_read_memory (args->lma, check, bytes) != 0)
1857 error (_("Download verify read failed at 0x%s"),
1858 paddr (args->lma));
1859 if (memcmp (args->buffer, check, bytes) != 0)
1860 error (_("Download verify compare failed at 0x%s"),
1861 paddr (args->lma));
1862 do_cleanups (verify_cleanups);
1863 }
1864 totals->data_count += bytes;
1865 args->lma += bytes;
1866 args->buffer += bytes;
1867 totals->write_count += 1;
1868 args->section_sent += bytes;
1869 if (quit_flag
1870 || (deprecated_ui_load_progress_hook != NULL
1871 && deprecated_ui_load_progress_hook (args->section_name,
1872 args->section_sent)))
1873 error (_("Canceled the download"));
1874
1875 if (deprecated_show_load_progress != NULL)
1876 deprecated_show_load_progress (args->section_name,
1877 args->section_sent,
1878 args->section_size,
1879 totals->data_count,
1880 totals->total_size);
1881 }
1882
1883 /* Callback service function for generic_load (bfd_map_over_sections). */
1884
1885 static void
1886 load_section_callback (bfd *abfd, asection *asec, void *data)
1887 {
1888 struct memory_write_request *new_request;
1889 struct load_section_data *args = data;
1890 struct load_progress_section_data *section_data;
1891 bfd_size_type size = bfd_get_section_size (asec);
1892 gdb_byte *buffer;
1893 const char *sect_name = bfd_get_section_name (abfd, asec);
1894
1895 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1896 return;
1897
1898 if (size == 0)
1899 return;
1900
1901 new_request = VEC_safe_push (memory_write_request_s,
1902 args->requests, NULL);
1903 memset (new_request, 0, sizeof (struct memory_write_request));
1904 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1905 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1906 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1907 new_request->data = xmalloc (size);
1908 new_request->baton = section_data;
1909
1910 buffer = new_request->data;
1911
1912 section_data->cumulative = args->progress_data;
1913 section_data->section_name = sect_name;
1914 section_data->section_size = size;
1915 section_data->lma = new_request->begin;
1916 section_data->buffer = buffer;
1917
1918 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1919 }
1920
1921 /* Clean up an entire memory request vector, including load
1922 data and progress records. */
1923
1924 static void
1925 clear_memory_write_data (void *arg)
1926 {
1927 VEC(memory_write_request_s) **vec_p = arg;
1928 VEC(memory_write_request_s) *vec = *vec_p;
1929 int i;
1930 struct memory_write_request *mr;
1931
1932 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1933 {
1934 xfree (mr->data);
1935 xfree (mr->baton);
1936 }
1937 VEC_free (memory_write_request_s, vec);
1938 }
1939
1940 void
1941 generic_load (char *args, int from_tty)
1942 {
1943 bfd *loadfile_bfd;
1944 struct timeval start_time, end_time;
1945 char *filename;
1946 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1947 struct load_section_data cbdata;
1948 struct load_progress_data total_progress;
1949
1950 CORE_ADDR entry;
1951 char **argv;
1952
1953 memset (&cbdata, 0, sizeof (cbdata));
1954 memset (&total_progress, 0, sizeof (total_progress));
1955 cbdata.progress_data = &total_progress;
1956
1957 make_cleanup (clear_memory_write_data, &cbdata.requests);
1958
1959 argv = buildargv (args);
1960
1961 if (argv == NULL)
1962 nomem(0);
1963
1964 make_cleanup_freeargv (argv);
1965
1966 filename = tilde_expand (argv[0]);
1967 make_cleanup (xfree, filename);
1968
1969 if (argv[1] != NULL)
1970 {
1971 char *endptr;
1972
1973 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1974
1975 /* If the last word was not a valid number then
1976 treat it as a file name with spaces in. */
1977 if (argv[1] == endptr)
1978 error (_("Invalid download offset:%s."), argv[1]);
1979
1980 if (argv[2] != NULL)
1981 error (_("Too many parameters."));
1982 }
1983
1984 /* Open the file for loading. */
1985 loadfile_bfd = bfd_openr (filename, gnutarget);
1986 if (loadfile_bfd == NULL)
1987 {
1988 perror_with_name (filename);
1989 return;
1990 }
1991
1992 /* FIXME: should be checking for errors from bfd_close (for one thing,
1993 on error it does not free all the storage associated with the
1994 bfd). */
1995 make_cleanup_bfd_close (loadfile_bfd);
1996
1997 if (!bfd_check_format (loadfile_bfd, bfd_object))
1998 {
1999 error (_("\"%s\" is not an object file: %s"), filename,
2000 bfd_errmsg (bfd_get_error ()));
2001 }
2002
2003 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2004 (void *) &total_progress.total_size);
2005
2006 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2007
2008 gettimeofday (&start_time, NULL);
2009
2010 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2011 load_progress) != 0)
2012 error (_("Load failed"));
2013
2014 gettimeofday (&end_time, NULL);
2015
2016 entry = bfd_get_start_address (loadfile_bfd);
2017 ui_out_text (uiout, "Start address ");
2018 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2019 ui_out_text (uiout, ", load size ");
2020 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2021 ui_out_text (uiout, "\n");
2022 /* We were doing this in remote-mips.c, I suspect it is right
2023 for other targets too. */
2024 write_pc (entry);
2025
2026 /* FIXME: are we supposed to call symbol_file_add or not? According
2027 to a comment from remote-mips.c (where a call to symbol_file_add
2028 was commented out), making the call confuses GDB if more than one
2029 file is loaded in. Some targets do (e.g., remote-vx.c) but
2030 others don't (or didn't - perhaps they have all been deleted). */
2031
2032 print_transfer_performance (gdb_stdout, total_progress.data_count,
2033 total_progress.write_count,
2034 &start_time, &end_time);
2035
2036 do_cleanups (old_cleanups);
2037 }
2038
2039 /* Report how fast the transfer went. */
2040
2041 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2042 replaced by print_transfer_performance (with a very different
2043 function signature). */
2044
2045 void
2046 report_transfer_performance (unsigned long data_count, time_t start_time,
2047 time_t end_time)
2048 {
2049 struct timeval start, end;
2050
2051 start.tv_sec = start_time;
2052 start.tv_usec = 0;
2053 end.tv_sec = end_time;
2054 end.tv_usec = 0;
2055
2056 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2057 }
2058
2059 void
2060 print_transfer_performance (struct ui_file *stream,
2061 unsigned long data_count,
2062 unsigned long write_count,
2063 const struct timeval *start_time,
2064 const struct timeval *end_time)
2065 {
2066 ULONGEST time_count;
2067
2068 /* Compute the elapsed time in milliseconds, as a tradeoff between
2069 accuracy and overflow. */
2070 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2071 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2072
2073 ui_out_text (uiout, "Transfer rate: ");
2074 if (time_count > 0)
2075 {
2076 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2077
2078 if (ui_out_is_mi_like_p (uiout))
2079 {
2080 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2081 ui_out_text (uiout, " bits/sec");
2082 }
2083 else if (rate < 1024)
2084 {
2085 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2086 ui_out_text (uiout, " bytes/sec");
2087 }
2088 else
2089 {
2090 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2091 ui_out_text (uiout, " KB/sec");
2092 }
2093 }
2094 else
2095 {
2096 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2097 ui_out_text (uiout, " bits in <1 sec");
2098 }
2099 if (write_count > 0)
2100 {
2101 ui_out_text (uiout, ", ");
2102 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2103 ui_out_text (uiout, " bytes/write");
2104 }
2105 ui_out_text (uiout, ".\n");
2106 }
2107
2108 /* This function allows the addition of incrementally linked object files.
2109 It does not modify any state in the target, only in the debugger. */
2110 /* Note: ezannoni 2000-04-13 This function/command used to have a
2111 special case syntax for the rombug target (Rombug is the boot
2112 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2113 rombug case, the user doesn't need to supply a text address,
2114 instead a call to target_link() (in target.c) would supply the
2115 value to use. We are now discontinuing this type of ad hoc syntax. */
2116
2117 static void
2118 add_symbol_file_command (char *args, int from_tty)
2119 {
2120 char *filename = NULL;
2121 int flags = OBJF_USERLOADED;
2122 char *arg;
2123 int expecting_option = 0;
2124 int section_index = 0;
2125 int argcnt = 0;
2126 int sec_num = 0;
2127 int i;
2128 int expecting_sec_name = 0;
2129 int expecting_sec_addr = 0;
2130 char **argv;
2131
2132 struct sect_opt
2133 {
2134 char *name;
2135 char *value;
2136 };
2137
2138 struct section_addr_info *section_addrs;
2139 struct sect_opt *sect_opts = NULL;
2140 size_t num_sect_opts = 0;
2141 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2142
2143 num_sect_opts = 16;
2144 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2145 * sizeof (struct sect_opt));
2146
2147 dont_repeat ();
2148
2149 if (args == NULL)
2150 error (_("add-symbol-file takes a file name and an address"));
2151
2152 argv = buildargv (args);
2153 make_cleanup_freeargv (argv);
2154
2155 if (argv == NULL)
2156 nomem (0);
2157
2158 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2159 {
2160 /* Process the argument. */
2161 if (argcnt == 0)
2162 {
2163 /* The first argument is the file name. */
2164 filename = tilde_expand (arg);
2165 make_cleanup (xfree, filename);
2166 }
2167 else
2168 if (argcnt == 1)
2169 {
2170 /* The second argument is always the text address at which
2171 to load the program. */
2172 sect_opts[section_index].name = ".text";
2173 sect_opts[section_index].value = arg;
2174 if (++section_index >= num_sect_opts)
2175 {
2176 num_sect_opts *= 2;
2177 sect_opts = ((struct sect_opt *)
2178 xrealloc (sect_opts,
2179 num_sect_opts
2180 * sizeof (struct sect_opt)));
2181 }
2182 }
2183 else
2184 {
2185 /* It's an option (starting with '-') or it's an argument
2186 to an option */
2187
2188 if (*arg == '-')
2189 {
2190 if (strcmp (arg, "-readnow") == 0)
2191 flags |= OBJF_READNOW;
2192 else if (strcmp (arg, "-s") == 0)
2193 {
2194 expecting_sec_name = 1;
2195 expecting_sec_addr = 1;
2196 }
2197 }
2198 else
2199 {
2200 if (expecting_sec_name)
2201 {
2202 sect_opts[section_index].name = arg;
2203 expecting_sec_name = 0;
2204 }
2205 else
2206 if (expecting_sec_addr)
2207 {
2208 sect_opts[section_index].value = arg;
2209 expecting_sec_addr = 0;
2210 if (++section_index >= num_sect_opts)
2211 {
2212 num_sect_opts *= 2;
2213 sect_opts = ((struct sect_opt *)
2214 xrealloc (sect_opts,
2215 num_sect_opts
2216 * sizeof (struct sect_opt)));
2217 }
2218 }
2219 else
2220 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2221 }
2222 }
2223 }
2224
2225 /* This command takes at least two arguments. The first one is a
2226 filename, and the second is the address where this file has been
2227 loaded. Abort now if this address hasn't been provided by the
2228 user. */
2229 if (section_index < 1)
2230 error (_("The address where %s has been loaded is missing"), filename);
2231
2232 /* Print the prompt for the query below. And save the arguments into
2233 a sect_addr_info structure to be passed around to other
2234 functions. We have to split this up into separate print
2235 statements because hex_string returns a local static
2236 string. */
2237
2238 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2239 section_addrs = alloc_section_addr_info (section_index);
2240 make_cleanup (xfree, section_addrs);
2241 for (i = 0; i < section_index; i++)
2242 {
2243 CORE_ADDR addr;
2244 char *val = sect_opts[i].value;
2245 char *sec = sect_opts[i].name;
2246
2247 addr = parse_and_eval_address (val);
2248
2249 /* Here we store the section offsets in the order they were
2250 entered on the command line. */
2251 section_addrs->other[sec_num].name = sec;
2252 section_addrs->other[sec_num].addr = addr;
2253 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2254 sec_num++;
2255
2256 /* The object's sections are initialized when a
2257 call is made to build_objfile_section_table (objfile).
2258 This happens in reread_symbols.
2259 At this point, we don't know what file type this is,
2260 so we can't determine what section names are valid. */
2261 }
2262
2263 if (from_tty && (!query ("%s", "")))
2264 error (_("Not confirmed."));
2265
2266 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2267
2268 /* Getting new symbols may change our opinion about what is
2269 frameless. */
2270 reinit_frame_cache ();
2271 do_cleanups (my_cleanups);
2272 }
2273 \f
2274 static void
2275 add_shared_symbol_files_command (char *args, int from_tty)
2276 {
2277 #ifdef ADD_SHARED_SYMBOL_FILES
2278 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2279 #else
2280 error (_("This command is not available in this configuration of GDB."));
2281 #endif
2282 }
2283 \f
2284 /* Re-read symbols if a symbol-file has changed. */
2285 void
2286 reread_symbols (void)
2287 {
2288 struct objfile *objfile;
2289 long new_modtime;
2290 int reread_one = 0;
2291 struct stat new_statbuf;
2292 int res;
2293
2294 /* With the addition of shared libraries, this should be modified,
2295 the load time should be saved in the partial symbol tables, since
2296 different tables may come from different source files. FIXME.
2297 This routine should then walk down each partial symbol table
2298 and see if the symbol table that it originates from has been changed */
2299
2300 for (objfile = object_files; objfile; objfile = objfile->next)
2301 {
2302 if (objfile->obfd)
2303 {
2304 #ifdef DEPRECATED_IBM6000_TARGET
2305 /* If this object is from a shared library, then you should
2306 stat on the library name, not member name. */
2307
2308 if (objfile->obfd->my_archive)
2309 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2310 else
2311 #endif
2312 res = stat (objfile->name, &new_statbuf);
2313 if (res != 0)
2314 {
2315 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2316 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2317 objfile->name);
2318 continue;
2319 }
2320 new_modtime = new_statbuf.st_mtime;
2321 if (new_modtime != objfile->mtime)
2322 {
2323 struct cleanup *old_cleanups;
2324 struct section_offsets *offsets;
2325 int num_offsets;
2326 char *obfd_filename;
2327
2328 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2329 objfile->name);
2330
2331 /* There are various functions like symbol_file_add,
2332 symfile_bfd_open, syms_from_objfile, etc., which might
2333 appear to do what we want. But they have various other
2334 effects which we *don't* want. So we just do stuff
2335 ourselves. We don't worry about mapped files (for one thing,
2336 any mapped file will be out of date). */
2337
2338 /* If we get an error, blow away this objfile (not sure if
2339 that is the correct response for things like shared
2340 libraries). */
2341 old_cleanups = make_cleanup_free_objfile (objfile);
2342 /* We need to do this whenever any symbols go away. */
2343 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2344
2345 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2346 bfd_get_filename (exec_bfd)) == 0)
2347 {
2348 /* Reload EXEC_BFD without asking anything. */
2349
2350 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2351 }
2352
2353 /* Clean up any state BFD has sitting around. We don't need
2354 to close the descriptor but BFD lacks a way of closing the
2355 BFD without closing the descriptor. */
2356 obfd_filename = bfd_get_filename (objfile->obfd);
2357 if (!bfd_close (objfile->obfd))
2358 error (_("Can't close BFD for %s: %s"), objfile->name,
2359 bfd_errmsg (bfd_get_error ()));
2360 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2361 if (objfile->obfd == NULL)
2362 error (_("Can't open %s to read symbols."), objfile->name);
2363 /* bfd_openr sets cacheable to true, which is what we want. */
2364 if (!bfd_check_format (objfile->obfd, bfd_object))
2365 error (_("Can't read symbols from %s: %s."), objfile->name,
2366 bfd_errmsg (bfd_get_error ()));
2367
2368 /* Save the offsets, we will nuke them with the rest of the
2369 objfile_obstack. */
2370 num_offsets = objfile->num_sections;
2371 offsets = ((struct section_offsets *)
2372 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2373 memcpy (offsets, objfile->section_offsets,
2374 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2375
2376 /* Remove any references to this objfile in the global
2377 value lists. */
2378 preserve_values (objfile);
2379
2380 /* Nuke all the state that we will re-read. Much of the following
2381 code which sets things to NULL really is necessary to tell
2382 other parts of GDB that there is nothing currently there. */
2383
2384 /* FIXME: Do we have to free a whole linked list, or is this
2385 enough? */
2386 if (objfile->global_psymbols.list)
2387 xfree (objfile->global_psymbols.list);
2388 memset (&objfile->global_psymbols, 0,
2389 sizeof (objfile->global_psymbols));
2390 if (objfile->static_psymbols.list)
2391 xfree (objfile->static_psymbols.list);
2392 memset (&objfile->static_psymbols, 0,
2393 sizeof (objfile->static_psymbols));
2394
2395 /* Free the obstacks for non-reusable objfiles */
2396 bcache_xfree (objfile->psymbol_cache);
2397 objfile->psymbol_cache = bcache_xmalloc ();
2398 bcache_xfree (objfile->macro_cache);
2399 objfile->macro_cache = bcache_xmalloc ();
2400 if (objfile->demangled_names_hash != NULL)
2401 {
2402 htab_delete (objfile->demangled_names_hash);
2403 objfile->demangled_names_hash = NULL;
2404 }
2405 obstack_free (&objfile->objfile_obstack, 0);
2406 objfile->sections = NULL;
2407 objfile->symtabs = NULL;
2408 objfile->psymtabs = NULL;
2409 objfile->free_psymtabs = NULL;
2410 objfile->cp_namespace_symtab = NULL;
2411 objfile->msymbols = NULL;
2412 objfile->deprecated_sym_private = NULL;
2413 objfile->minimal_symbol_count = 0;
2414 memset (&objfile->msymbol_hash, 0,
2415 sizeof (objfile->msymbol_hash));
2416 memset (&objfile->msymbol_demangled_hash, 0,
2417 sizeof (objfile->msymbol_demangled_hash));
2418 clear_objfile_data (objfile);
2419 if (objfile->sf != NULL)
2420 {
2421 (*objfile->sf->sym_finish) (objfile);
2422 }
2423
2424 objfile->psymbol_cache = bcache_xmalloc ();
2425 objfile->macro_cache = bcache_xmalloc ();
2426 /* obstack_init also initializes the obstack so it is
2427 empty. We could use obstack_specify_allocation but
2428 gdb_obstack.h specifies the alloc/dealloc
2429 functions. */
2430 obstack_init (&objfile->objfile_obstack);
2431 if (build_objfile_section_table (objfile))
2432 {
2433 error (_("Can't find the file sections in `%s': %s"),
2434 objfile->name, bfd_errmsg (bfd_get_error ()));
2435 }
2436 terminate_minimal_symbol_table (objfile);
2437
2438 /* We use the same section offsets as from last time. I'm not
2439 sure whether that is always correct for shared libraries. */
2440 objfile->section_offsets = (struct section_offsets *)
2441 obstack_alloc (&objfile->objfile_obstack,
2442 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2443 memcpy (objfile->section_offsets, offsets,
2444 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2445 objfile->num_sections = num_offsets;
2446
2447 /* What the hell is sym_new_init for, anyway? The concept of
2448 distinguishing between the main file and additional files
2449 in this way seems rather dubious. */
2450 if (objfile == symfile_objfile)
2451 {
2452 (*objfile->sf->sym_new_init) (objfile);
2453 }
2454
2455 (*objfile->sf->sym_init) (objfile);
2456 clear_complaints (&symfile_complaints, 1, 1);
2457 /* The "mainline" parameter is a hideous hack; I think leaving it
2458 zero is OK since dbxread.c also does what it needs to do if
2459 objfile->global_psymbols.size is 0. */
2460 (*objfile->sf->sym_read) (objfile, 0);
2461 if (!have_partial_symbols () && !have_full_symbols ())
2462 {
2463 wrap_here ("");
2464 printf_unfiltered (_("(no debugging symbols found)\n"));
2465 wrap_here ("");
2466 }
2467 objfile->flags |= OBJF_SYMS;
2468
2469 /* We're done reading the symbol file; finish off complaints. */
2470 clear_complaints (&symfile_complaints, 0, 1);
2471
2472 /* Getting new symbols may change our opinion about what is
2473 frameless. */
2474
2475 reinit_frame_cache ();
2476
2477 /* Discard cleanups as symbol reading was successful. */
2478 discard_cleanups (old_cleanups);
2479
2480 /* If the mtime has changed between the time we set new_modtime
2481 and now, we *want* this to be out of date, so don't call stat
2482 again now. */
2483 objfile->mtime = new_modtime;
2484 reread_one = 1;
2485 reread_separate_symbols (objfile);
2486 init_entry_point_info (objfile);
2487 }
2488 }
2489 }
2490
2491 if (reread_one)
2492 {
2493 clear_symtab_users ();
2494 /* At least one objfile has changed, so we can consider that
2495 the executable we're debugging has changed too. */
2496 observer_notify_executable_changed ();
2497 }
2498
2499 }
2500
2501
2502 /* Handle separate debug info for OBJFILE, which has just been
2503 re-read:
2504 - If we had separate debug info before, but now we don't, get rid
2505 of the separated objfile.
2506 - If we didn't have separated debug info before, but now we do,
2507 read in the new separated debug info file.
2508 - If the debug link points to a different file, toss the old one
2509 and read the new one.
2510 This function does *not* handle the case where objfile is still
2511 using the same separate debug info file, but that file's timestamp
2512 has changed. That case should be handled by the loop in
2513 reread_symbols already. */
2514 static void
2515 reread_separate_symbols (struct objfile *objfile)
2516 {
2517 char *debug_file;
2518 unsigned long crc32;
2519
2520 /* Does the updated objfile's debug info live in a
2521 separate file? */
2522 debug_file = find_separate_debug_file (objfile);
2523
2524 if (objfile->separate_debug_objfile)
2525 {
2526 /* There are two cases where we need to get rid of
2527 the old separated debug info objfile:
2528 - if the new primary objfile doesn't have
2529 separated debug info, or
2530 - if the new primary objfile has separate debug
2531 info, but it's under a different filename.
2532
2533 If the old and new objfiles both have separate
2534 debug info, under the same filename, then we're
2535 okay --- if the separated file's contents have
2536 changed, we will have caught that when we
2537 visited it in this function's outermost
2538 loop. */
2539 if (! debug_file
2540 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2541 free_objfile (objfile->separate_debug_objfile);
2542 }
2543
2544 /* If the new objfile has separate debug info, and we
2545 haven't loaded it already, do so now. */
2546 if (debug_file
2547 && ! objfile->separate_debug_objfile)
2548 {
2549 /* Use the same section offset table as objfile itself.
2550 Preserve the flags from objfile that make sense. */
2551 objfile->separate_debug_objfile
2552 = (symbol_file_add_with_addrs_or_offsets
2553 (symfile_bfd_open (debug_file),
2554 info_verbose, /* from_tty: Don't override the default. */
2555 0, /* No addr table. */
2556 objfile->section_offsets, objfile->num_sections,
2557 0, /* Not mainline. See comments about this above. */
2558 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2559 | OBJF_USERLOADED)));
2560 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2561 = objfile;
2562 }
2563 if (debug_file)
2564 xfree (debug_file);
2565 }
2566
2567
2568 \f
2569
2570
2571 typedef struct
2572 {
2573 char *ext;
2574 enum language lang;
2575 }
2576 filename_language;
2577
2578 static filename_language *filename_language_table;
2579 static int fl_table_size, fl_table_next;
2580
2581 static void
2582 add_filename_language (char *ext, enum language lang)
2583 {
2584 if (fl_table_next >= fl_table_size)
2585 {
2586 fl_table_size += 10;
2587 filename_language_table =
2588 xrealloc (filename_language_table,
2589 fl_table_size * sizeof (*filename_language_table));
2590 }
2591
2592 filename_language_table[fl_table_next].ext = xstrdup (ext);
2593 filename_language_table[fl_table_next].lang = lang;
2594 fl_table_next++;
2595 }
2596
2597 static char *ext_args;
2598 static void
2599 show_ext_args (struct ui_file *file, int from_tty,
2600 struct cmd_list_element *c, const char *value)
2601 {
2602 fprintf_filtered (file, _("\
2603 Mapping between filename extension and source language is \"%s\".\n"),
2604 value);
2605 }
2606
2607 static void
2608 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2609 {
2610 int i;
2611 char *cp = ext_args;
2612 enum language lang;
2613
2614 /* First arg is filename extension, starting with '.' */
2615 if (*cp != '.')
2616 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2617
2618 /* Find end of first arg. */
2619 while (*cp && !isspace (*cp))
2620 cp++;
2621
2622 if (*cp == '\0')
2623 error (_("'%s': two arguments required -- filename extension and language"),
2624 ext_args);
2625
2626 /* Null-terminate first arg */
2627 *cp++ = '\0';
2628
2629 /* Find beginning of second arg, which should be a source language. */
2630 while (*cp && isspace (*cp))
2631 cp++;
2632
2633 if (*cp == '\0')
2634 error (_("'%s': two arguments required -- filename extension and language"),
2635 ext_args);
2636
2637 /* Lookup the language from among those we know. */
2638 lang = language_enum (cp);
2639
2640 /* Now lookup the filename extension: do we already know it? */
2641 for (i = 0; i < fl_table_next; i++)
2642 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2643 break;
2644
2645 if (i >= fl_table_next)
2646 {
2647 /* new file extension */
2648 add_filename_language (ext_args, lang);
2649 }
2650 else
2651 {
2652 /* redefining a previously known filename extension */
2653
2654 /* if (from_tty) */
2655 /* query ("Really make files of type %s '%s'?", */
2656 /* ext_args, language_str (lang)); */
2657
2658 xfree (filename_language_table[i].ext);
2659 filename_language_table[i].ext = xstrdup (ext_args);
2660 filename_language_table[i].lang = lang;
2661 }
2662 }
2663
2664 static void
2665 info_ext_lang_command (char *args, int from_tty)
2666 {
2667 int i;
2668
2669 printf_filtered (_("Filename extensions and the languages they represent:"));
2670 printf_filtered ("\n\n");
2671 for (i = 0; i < fl_table_next; i++)
2672 printf_filtered ("\t%s\t- %s\n",
2673 filename_language_table[i].ext,
2674 language_str (filename_language_table[i].lang));
2675 }
2676
2677 static void
2678 init_filename_language_table (void)
2679 {
2680 if (fl_table_size == 0) /* protect against repetition */
2681 {
2682 fl_table_size = 20;
2683 fl_table_next = 0;
2684 filename_language_table =
2685 xmalloc (fl_table_size * sizeof (*filename_language_table));
2686 add_filename_language (".c", language_c);
2687 add_filename_language (".C", language_cplus);
2688 add_filename_language (".cc", language_cplus);
2689 add_filename_language (".cp", language_cplus);
2690 add_filename_language (".cpp", language_cplus);
2691 add_filename_language (".cxx", language_cplus);
2692 add_filename_language (".c++", language_cplus);
2693 add_filename_language (".java", language_java);
2694 add_filename_language (".class", language_java);
2695 add_filename_language (".m", language_objc);
2696 add_filename_language (".f", language_fortran);
2697 add_filename_language (".F", language_fortran);
2698 add_filename_language (".s", language_asm);
2699 add_filename_language (".sx", language_asm);
2700 add_filename_language (".S", language_asm);
2701 add_filename_language (".pas", language_pascal);
2702 add_filename_language (".p", language_pascal);
2703 add_filename_language (".pp", language_pascal);
2704 add_filename_language (".adb", language_ada);
2705 add_filename_language (".ads", language_ada);
2706 add_filename_language (".a", language_ada);
2707 add_filename_language (".ada", language_ada);
2708 }
2709 }
2710
2711 enum language
2712 deduce_language_from_filename (char *filename)
2713 {
2714 int i;
2715 char *cp;
2716
2717 if (filename != NULL)
2718 if ((cp = strrchr (filename, '.')) != NULL)
2719 for (i = 0; i < fl_table_next; i++)
2720 if (strcmp (cp, filename_language_table[i].ext) == 0)
2721 return filename_language_table[i].lang;
2722
2723 return language_unknown;
2724 }
2725 \f
2726 /* allocate_symtab:
2727
2728 Allocate and partly initialize a new symbol table. Return a pointer
2729 to it. error() if no space.
2730
2731 Caller must set these fields:
2732 LINETABLE(symtab)
2733 symtab->blockvector
2734 symtab->dirname
2735 symtab->free_code
2736 symtab->free_ptr
2737 possibly free_named_symtabs (symtab->filename);
2738 */
2739
2740 struct symtab *
2741 allocate_symtab (char *filename, struct objfile *objfile)
2742 {
2743 struct symtab *symtab;
2744
2745 symtab = (struct symtab *)
2746 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2747 memset (symtab, 0, sizeof (*symtab));
2748 symtab->filename = obsavestring (filename, strlen (filename),
2749 &objfile->objfile_obstack);
2750 symtab->fullname = NULL;
2751 symtab->language = deduce_language_from_filename (filename);
2752 symtab->debugformat = obsavestring ("unknown", 7,
2753 &objfile->objfile_obstack);
2754
2755 /* Hook it to the objfile it comes from */
2756
2757 symtab->objfile = objfile;
2758 symtab->next = objfile->symtabs;
2759 objfile->symtabs = symtab;
2760
2761 return (symtab);
2762 }
2763
2764 struct partial_symtab *
2765 allocate_psymtab (char *filename, struct objfile *objfile)
2766 {
2767 struct partial_symtab *psymtab;
2768
2769 if (objfile->free_psymtabs)
2770 {
2771 psymtab = objfile->free_psymtabs;
2772 objfile->free_psymtabs = psymtab->next;
2773 }
2774 else
2775 psymtab = (struct partial_symtab *)
2776 obstack_alloc (&objfile->objfile_obstack,
2777 sizeof (struct partial_symtab));
2778
2779 memset (psymtab, 0, sizeof (struct partial_symtab));
2780 psymtab->filename = obsavestring (filename, strlen (filename),
2781 &objfile->objfile_obstack);
2782 psymtab->symtab = NULL;
2783
2784 /* Prepend it to the psymtab list for the objfile it belongs to.
2785 Psymtabs are searched in most recent inserted -> least recent
2786 inserted order. */
2787
2788 psymtab->objfile = objfile;
2789 psymtab->next = objfile->psymtabs;
2790 objfile->psymtabs = psymtab;
2791 #if 0
2792 {
2793 struct partial_symtab **prev_pst;
2794 psymtab->objfile = objfile;
2795 psymtab->next = NULL;
2796 prev_pst = &(objfile->psymtabs);
2797 while ((*prev_pst) != NULL)
2798 prev_pst = &((*prev_pst)->next);
2799 (*prev_pst) = psymtab;
2800 }
2801 #endif
2802
2803 return (psymtab);
2804 }
2805
2806 void
2807 discard_psymtab (struct partial_symtab *pst)
2808 {
2809 struct partial_symtab **prev_pst;
2810
2811 /* From dbxread.c:
2812 Empty psymtabs happen as a result of header files which don't
2813 have any symbols in them. There can be a lot of them. But this
2814 check is wrong, in that a psymtab with N_SLINE entries but
2815 nothing else is not empty, but we don't realize that. Fixing
2816 that without slowing things down might be tricky. */
2817
2818 /* First, snip it out of the psymtab chain */
2819
2820 prev_pst = &(pst->objfile->psymtabs);
2821 while ((*prev_pst) != pst)
2822 prev_pst = &((*prev_pst)->next);
2823 (*prev_pst) = pst->next;
2824
2825 /* Next, put it on a free list for recycling */
2826
2827 pst->next = pst->objfile->free_psymtabs;
2828 pst->objfile->free_psymtabs = pst;
2829 }
2830 \f
2831
2832 /* Reset all data structures in gdb which may contain references to symbol
2833 table data. */
2834
2835 void
2836 clear_symtab_users (void)
2837 {
2838 /* Someday, we should do better than this, by only blowing away
2839 the things that really need to be blown. */
2840
2841 /* Clear the "current" symtab first, because it is no longer valid.
2842 breakpoint_re_set may try to access the current symtab. */
2843 clear_current_source_symtab_and_line ();
2844
2845 clear_displays ();
2846 breakpoint_re_set ();
2847 set_default_breakpoint (0, 0, 0, 0);
2848 clear_pc_function_cache ();
2849 observer_notify_new_objfile (NULL);
2850
2851 /* Clear globals which might have pointed into a removed objfile.
2852 FIXME: It's not clear which of these are supposed to persist
2853 between expressions and which ought to be reset each time. */
2854 expression_context_block = NULL;
2855 innermost_block = NULL;
2856
2857 /* Varobj may refer to old symbols, perform a cleanup. */
2858 varobj_invalidate ();
2859
2860 }
2861
2862 static void
2863 clear_symtab_users_cleanup (void *ignore)
2864 {
2865 clear_symtab_users ();
2866 }
2867
2868 /* clear_symtab_users_once:
2869
2870 This function is run after symbol reading, or from a cleanup.
2871 If an old symbol table was obsoleted, the old symbol table
2872 has been blown away, but the other GDB data structures that may
2873 reference it have not yet been cleared or re-directed. (The old
2874 symtab was zapped, and the cleanup queued, in free_named_symtab()
2875 below.)
2876
2877 This function can be queued N times as a cleanup, or called
2878 directly; it will do all the work the first time, and then will be a
2879 no-op until the next time it is queued. This works by bumping a
2880 counter at queueing time. Much later when the cleanup is run, or at
2881 the end of symbol processing (in case the cleanup is discarded), if
2882 the queued count is greater than the "done-count", we do the work
2883 and set the done-count to the queued count. If the queued count is
2884 less than or equal to the done-count, we just ignore the call. This
2885 is needed because reading a single .o file will often replace many
2886 symtabs (one per .h file, for example), and we don't want to reset
2887 the breakpoints N times in the user's face.
2888
2889 The reason we both queue a cleanup, and call it directly after symbol
2890 reading, is because the cleanup protects us in case of errors, but is
2891 discarded if symbol reading is successful. */
2892
2893 #if 0
2894 /* FIXME: As free_named_symtabs is currently a big noop this function
2895 is no longer needed. */
2896 static void clear_symtab_users_once (void);
2897
2898 static int clear_symtab_users_queued;
2899 static int clear_symtab_users_done;
2900
2901 static void
2902 clear_symtab_users_once (void)
2903 {
2904 /* Enforce once-per-`do_cleanups'-semantics */
2905 if (clear_symtab_users_queued <= clear_symtab_users_done)
2906 return;
2907 clear_symtab_users_done = clear_symtab_users_queued;
2908
2909 clear_symtab_users ();
2910 }
2911 #endif
2912
2913 /* Delete the specified psymtab, and any others that reference it. */
2914
2915 static void
2916 cashier_psymtab (struct partial_symtab *pst)
2917 {
2918 struct partial_symtab *ps, *pprev = NULL;
2919 int i;
2920
2921 /* Find its previous psymtab in the chain */
2922 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2923 {
2924 if (ps == pst)
2925 break;
2926 pprev = ps;
2927 }
2928
2929 if (ps)
2930 {
2931 /* Unhook it from the chain. */
2932 if (ps == pst->objfile->psymtabs)
2933 pst->objfile->psymtabs = ps->next;
2934 else
2935 pprev->next = ps->next;
2936
2937 /* FIXME, we can't conveniently deallocate the entries in the
2938 partial_symbol lists (global_psymbols/static_psymbols) that
2939 this psymtab points to. These just take up space until all
2940 the psymtabs are reclaimed. Ditto the dependencies list and
2941 filename, which are all in the objfile_obstack. */
2942
2943 /* We need to cashier any psymtab that has this one as a dependency... */
2944 again:
2945 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2946 {
2947 for (i = 0; i < ps->number_of_dependencies; i++)
2948 {
2949 if (ps->dependencies[i] == pst)
2950 {
2951 cashier_psymtab (ps);
2952 goto again; /* Must restart, chain has been munged. */
2953 }
2954 }
2955 }
2956 }
2957 }
2958
2959 /* If a symtab or psymtab for filename NAME is found, free it along
2960 with any dependent breakpoints, displays, etc.
2961 Used when loading new versions of object modules with the "add-file"
2962 command. This is only called on the top-level symtab or psymtab's name;
2963 it is not called for subsidiary files such as .h files.
2964
2965 Return value is 1 if we blew away the environment, 0 if not.
2966 FIXME. The return value appears to never be used.
2967
2968 FIXME. I think this is not the best way to do this. We should
2969 work on being gentler to the environment while still cleaning up
2970 all stray pointers into the freed symtab. */
2971
2972 int
2973 free_named_symtabs (char *name)
2974 {
2975 #if 0
2976 /* FIXME: With the new method of each objfile having it's own
2977 psymtab list, this function needs serious rethinking. In particular,
2978 why was it ever necessary to toss psymtabs with specific compilation
2979 unit filenames, as opposed to all psymtabs from a particular symbol
2980 file? -- fnf
2981 Well, the answer is that some systems permit reloading of particular
2982 compilation units. We want to blow away any old info about these
2983 compilation units, regardless of which objfiles they arrived in. --gnu. */
2984
2985 struct symtab *s;
2986 struct symtab *prev;
2987 struct partial_symtab *ps;
2988 struct blockvector *bv;
2989 int blewit = 0;
2990
2991 /* We only wack things if the symbol-reload switch is set. */
2992 if (!symbol_reloading)
2993 return 0;
2994
2995 /* Some symbol formats have trouble providing file names... */
2996 if (name == 0 || *name == '\0')
2997 return 0;
2998
2999 /* Look for a psymtab with the specified name. */
3000
3001 again2:
3002 for (ps = partial_symtab_list; ps; ps = ps->next)
3003 {
3004 if (strcmp (name, ps->filename) == 0)
3005 {
3006 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
3007 goto again2; /* Must restart, chain has been munged */
3008 }
3009 }
3010
3011 /* Look for a symtab with the specified name. */
3012
3013 for (s = symtab_list; s; s = s->next)
3014 {
3015 if (strcmp (name, s->filename) == 0)
3016 break;
3017 prev = s;
3018 }
3019
3020 if (s)
3021 {
3022 if (s == symtab_list)
3023 symtab_list = s->next;
3024 else
3025 prev->next = s->next;
3026
3027 /* For now, queue a delete for all breakpoints, displays, etc., whether
3028 or not they depend on the symtab being freed. This should be
3029 changed so that only those data structures affected are deleted. */
3030
3031 /* But don't delete anything if the symtab is empty.
3032 This test is necessary due to a bug in "dbxread.c" that
3033 causes empty symtabs to be created for N_SO symbols that
3034 contain the pathname of the object file. (This problem
3035 has been fixed in GDB 3.9x). */
3036
3037 bv = BLOCKVECTOR (s);
3038 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3039 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3040 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3041 {
3042 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3043 name);
3044 clear_symtab_users_queued++;
3045 make_cleanup (clear_symtab_users_once, 0);
3046 blewit = 1;
3047 }
3048 else
3049 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3050 name);
3051
3052 free_symtab (s);
3053 }
3054 else
3055 {
3056 /* It is still possible that some breakpoints will be affected
3057 even though no symtab was found, since the file might have
3058 been compiled without debugging, and hence not be associated
3059 with a symtab. In order to handle this correctly, we would need
3060 to keep a list of text address ranges for undebuggable files.
3061 For now, we do nothing, since this is a fairly obscure case. */
3062 ;
3063 }
3064
3065 /* FIXME, what about the minimal symbol table? */
3066 return blewit;
3067 #else
3068 return (0);
3069 #endif
3070 }
3071 \f
3072 /* Allocate and partially fill a partial symtab. It will be
3073 completely filled at the end of the symbol list.
3074
3075 FILENAME is the name of the symbol-file we are reading from. */
3076
3077 struct partial_symtab *
3078 start_psymtab_common (struct objfile *objfile,
3079 struct section_offsets *section_offsets, char *filename,
3080 CORE_ADDR textlow, struct partial_symbol **global_syms,
3081 struct partial_symbol **static_syms)
3082 {
3083 struct partial_symtab *psymtab;
3084
3085 psymtab = allocate_psymtab (filename, objfile);
3086 psymtab->section_offsets = section_offsets;
3087 psymtab->textlow = textlow;
3088 psymtab->texthigh = psymtab->textlow; /* default */
3089 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3090 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3091 return (psymtab);
3092 }
3093 \f
3094 /* Helper function, initialises partial symbol structure and stashes
3095 it into objfile's bcache. Note that our caching mechanism will
3096 use all fields of struct partial_symbol to determine hash value of the
3097 structure. In other words, having two symbols with the same name but
3098 different domain (or address) is possible and correct. */
3099
3100 static const struct partial_symbol *
3101 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3102 enum address_class class,
3103 long val, /* Value as a long */
3104 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3105 enum language language, struct objfile *objfile,
3106 int *added)
3107 {
3108 char *buf = name;
3109 /* psymbol is static so that there will be no uninitialized gaps in the
3110 structure which might contain random data, causing cache misses in
3111 bcache. */
3112 static struct partial_symbol psymbol;
3113
3114 if (name[namelength] != '\0')
3115 {
3116 buf = alloca (namelength + 1);
3117 /* Create local copy of the partial symbol */
3118 memcpy (buf, name, namelength);
3119 buf[namelength] = '\0';
3120 }
3121 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3122 if (val != 0)
3123 {
3124 SYMBOL_VALUE (&psymbol) = val;
3125 }
3126 else
3127 {
3128 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3129 }
3130 SYMBOL_SECTION (&psymbol) = 0;
3131 SYMBOL_LANGUAGE (&psymbol) = language;
3132 PSYMBOL_DOMAIN (&psymbol) = domain;
3133 PSYMBOL_CLASS (&psymbol) = class;
3134
3135 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3136
3137 /* Stash the partial symbol away in the cache */
3138 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3139 objfile->psymbol_cache, added);
3140 }
3141
3142 /* Helper function, adds partial symbol to the given partial symbol
3143 list. */
3144
3145 static void
3146 append_psymbol_to_list (struct psymbol_allocation_list *list,
3147 const struct partial_symbol *psym,
3148 struct objfile *objfile)
3149 {
3150 if (list->next >= list->list + list->size)
3151 extend_psymbol_list (list, objfile);
3152 *list->next++ = (struct partial_symbol *) psym;
3153 OBJSTAT (objfile, n_psyms++);
3154 }
3155
3156 /* Add a symbol with a long value to a psymtab.
3157 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3158 Return the partial symbol that has been added. */
3159
3160 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3161 symbol is so that callers can get access to the symbol's demangled
3162 name, which they don't have any cheap way to determine otherwise.
3163 (Currenly, dwarf2read.c is the only file who uses that information,
3164 though it's possible that other readers might in the future.)
3165 Elena wasn't thrilled about that, and I don't blame her, but we
3166 couldn't come up with a better way to get that information. If
3167 it's needed in other situations, we could consider breaking up
3168 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3169 cache. */
3170
3171 const struct partial_symbol *
3172 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3173 enum address_class class,
3174 struct psymbol_allocation_list *list,
3175 long val, /* Value as a long */
3176 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3177 enum language language, struct objfile *objfile)
3178 {
3179 const struct partial_symbol *psym;
3180
3181 int added;
3182
3183 /* Stash the partial symbol away in the cache */
3184 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3185 val, coreaddr, language, objfile, &added);
3186
3187 /* Do not duplicate global partial symbols. */
3188 if (list == &objfile->global_psymbols
3189 && !added)
3190 return psym;
3191
3192 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3193 append_psymbol_to_list (list, psym, objfile);
3194 return psym;
3195 }
3196
3197 /* Initialize storage for partial symbols. */
3198
3199 void
3200 init_psymbol_list (struct objfile *objfile, int total_symbols)
3201 {
3202 /* Free any previously allocated psymbol lists. */
3203
3204 if (objfile->global_psymbols.list)
3205 {
3206 xfree (objfile->global_psymbols.list);
3207 }
3208 if (objfile->static_psymbols.list)
3209 {
3210 xfree (objfile->static_psymbols.list);
3211 }
3212
3213 /* Current best guess is that approximately a twentieth
3214 of the total symbols (in a debugging file) are global or static
3215 oriented symbols */
3216
3217 objfile->global_psymbols.size = total_symbols / 10;
3218 objfile->static_psymbols.size = total_symbols / 10;
3219
3220 if (objfile->global_psymbols.size > 0)
3221 {
3222 objfile->global_psymbols.next =
3223 objfile->global_psymbols.list = (struct partial_symbol **)
3224 xmalloc ((objfile->global_psymbols.size
3225 * sizeof (struct partial_symbol *)));
3226 }
3227 if (objfile->static_psymbols.size > 0)
3228 {
3229 objfile->static_psymbols.next =
3230 objfile->static_psymbols.list = (struct partial_symbol **)
3231 xmalloc ((objfile->static_psymbols.size
3232 * sizeof (struct partial_symbol *)));
3233 }
3234 }
3235
3236 /* OVERLAYS:
3237 The following code implements an abstraction for debugging overlay sections.
3238
3239 The target model is as follows:
3240 1) The gnu linker will permit multiple sections to be mapped into the
3241 same VMA, each with its own unique LMA (or load address).
3242 2) It is assumed that some runtime mechanism exists for mapping the
3243 sections, one by one, from the load address into the VMA address.
3244 3) This code provides a mechanism for gdb to keep track of which
3245 sections should be considered to be mapped from the VMA to the LMA.
3246 This information is used for symbol lookup, and memory read/write.
3247 For instance, if a section has been mapped then its contents
3248 should be read from the VMA, otherwise from the LMA.
3249
3250 Two levels of debugger support for overlays are available. One is
3251 "manual", in which the debugger relies on the user to tell it which
3252 overlays are currently mapped. This level of support is
3253 implemented entirely in the core debugger, and the information about
3254 whether a section is mapped is kept in the objfile->obj_section table.
3255
3256 The second level of support is "automatic", and is only available if
3257 the target-specific code provides functionality to read the target's
3258 overlay mapping table, and translate its contents for the debugger
3259 (by updating the mapped state information in the obj_section tables).
3260
3261 The interface is as follows:
3262 User commands:
3263 overlay map <name> -- tell gdb to consider this section mapped
3264 overlay unmap <name> -- tell gdb to consider this section unmapped
3265 overlay list -- list the sections that GDB thinks are mapped
3266 overlay read-target -- get the target's state of what's mapped
3267 overlay off/manual/auto -- set overlay debugging state
3268 Functional interface:
3269 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3270 section, return that section.
3271 find_pc_overlay(pc): find any overlay section that contains
3272 the pc, either in its VMA or its LMA
3273 overlay_is_mapped(sect): true if overlay is marked as mapped
3274 section_is_overlay(sect): true if section's VMA != LMA
3275 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3276 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3277 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3278 overlay_mapped_address(...): map an address from section's LMA to VMA
3279 overlay_unmapped_address(...): map an address from section's VMA to LMA
3280 symbol_overlayed_address(...): Return a "current" address for symbol:
3281 either in VMA or LMA depending on whether
3282 the symbol's section is currently mapped
3283 */
3284
3285 /* Overlay debugging state: */
3286
3287 enum overlay_debugging_state overlay_debugging = ovly_off;
3288 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3289
3290 /* Function: section_is_overlay (SECTION)
3291 Returns true if SECTION has VMA not equal to LMA, ie.
3292 SECTION is loaded at an address different from where it will "run". */
3293
3294 int
3295 section_is_overlay (asection *section)
3296 {
3297 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3298
3299 if (overlay_debugging)
3300 if (section && section->lma != 0 &&
3301 section->vma != section->lma)
3302 return 1;
3303
3304 return 0;
3305 }
3306
3307 /* Function: overlay_invalidate_all (void)
3308 Invalidate the mapped state of all overlay sections (mark it as stale). */
3309
3310 static void
3311 overlay_invalidate_all (void)
3312 {
3313 struct objfile *objfile;
3314 struct obj_section *sect;
3315
3316 ALL_OBJSECTIONS (objfile, sect)
3317 if (section_is_overlay (sect->the_bfd_section))
3318 sect->ovly_mapped = -1;
3319 }
3320
3321 /* Function: overlay_is_mapped (SECTION)
3322 Returns true if section is an overlay, and is currently mapped.
3323 Private: public access is thru function section_is_mapped.
3324
3325 Access to the ovly_mapped flag is restricted to this function, so
3326 that we can do automatic update. If the global flag
3327 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3328 overlay_invalidate_all. If the mapped state of the particular
3329 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3330
3331 static int
3332 overlay_is_mapped (struct obj_section *osect)
3333 {
3334 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3335 return 0;
3336
3337 switch (overlay_debugging)
3338 {
3339 default:
3340 case ovly_off:
3341 return 0; /* overlay debugging off */
3342 case ovly_auto: /* overlay debugging automatic */
3343 /* Unles there is a gdbarch_overlay_update function,
3344 there's really nothing useful to do here (can't really go auto) */
3345 if (gdbarch_overlay_update_p (current_gdbarch))
3346 {
3347 if (overlay_cache_invalid)
3348 {
3349 overlay_invalidate_all ();
3350 overlay_cache_invalid = 0;
3351 }
3352 if (osect->ovly_mapped == -1)
3353 gdbarch_overlay_update (current_gdbarch, osect);
3354 }
3355 /* fall thru to manual case */
3356 case ovly_on: /* overlay debugging manual */
3357 return osect->ovly_mapped == 1;
3358 }
3359 }
3360
3361 /* Function: section_is_mapped
3362 Returns true if section is an overlay, and is currently mapped. */
3363
3364 int
3365 section_is_mapped (asection *section)
3366 {
3367 struct objfile *objfile;
3368 struct obj_section *osect;
3369
3370 if (overlay_debugging)
3371 if (section && section_is_overlay (section))
3372 ALL_OBJSECTIONS (objfile, osect)
3373 if (osect->the_bfd_section == section)
3374 return overlay_is_mapped (osect);
3375
3376 return 0;
3377 }
3378
3379 /* Function: pc_in_unmapped_range
3380 If PC falls into the lma range of SECTION, return true, else false. */
3381
3382 CORE_ADDR
3383 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3384 {
3385 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3386
3387 int size;
3388
3389 if (overlay_debugging)
3390 if (section && section_is_overlay (section))
3391 {
3392 size = bfd_get_section_size (section);
3393 if (section->lma <= pc && pc < section->lma + size)
3394 return 1;
3395 }
3396 return 0;
3397 }
3398
3399 /* Function: pc_in_mapped_range
3400 If PC falls into the vma range of SECTION, return true, else false. */
3401
3402 CORE_ADDR
3403 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3404 {
3405 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3406
3407 int size;
3408
3409 if (overlay_debugging)
3410 if (section && section_is_overlay (section))
3411 {
3412 size = bfd_get_section_size (section);
3413 if (section->vma <= pc && pc < section->vma + size)
3414 return 1;
3415 }
3416 return 0;
3417 }
3418
3419
3420 /* Return true if the mapped ranges of sections A and B overlap, false
3421 otherwise. */
3422 static int
3423 sections_overlap (asection *a, asection *b)
3424 {
3425 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3426
3427 CORE_ADDR a_start = a->vma;
3428 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3429 CORE_ADDR b_start = b->vma;
3430 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3431
3432 return (a_start < b_end && b_start < a_end);
3433 }
3434
3435 /* Function: overlay_unmapped_address (PC, SECTION)
3436 Returns the address corresponding to PC in the unmapped (load) range.
3437 May be the same as PC. */
3438
3439 CORE_ADDR
3440 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3441 {
3442 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3443
3444 if (overlay_debugging)
3445 if (section && section_is_overlay (section) &&
3446 pc_in_mapped_range (pc, section))
3447 return pc + section->lma - section->vma;
3448
3449 return pc;
3450 }
3451
3452 /* Function: overlay_mapped_address (PC, SECTION)
3453 Returns the address corresponding to PC in the mapped (runtime) range.
3454 May be the same as PC. */
3455
3456 CORE_ADDR
3457 overlay_mapped_address (CORE_ADDR pc, asection *section)
3458 {
3459 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3460
3461 if (overlay_debugging)
3462 if (section && section_is_overlay (section) &&
3463 pc_in_unmapped_range (pc, section))
3464 return pc + section->vma - section->lma;
3465
3466 return pc;
3467 }
3468
3469
3470 /* Function: symbol_overlayed_address
3471 Return one of two addresses (relative to the VMA or to the LMA),
3472 depending on whether the section is mapped or not. */
3473
3474 CORE_ADDR
3475 symbol_overlayed_address (CORE_ADDR address, asection *section)
3476 {
3477 if (overlay_debugging)
3478 {
3479 /* If the symbol has no section, just return its regular address. */
3480 if (section == 0)
3481 return address;
3482 /* If the symbol's section is not an overlay, just return its address */
3483 if (!section_is_overlay (section))
3484 return address;
3485 /* If the symbol's section is mapped, just return its address */
3486 if (section_is_mapped (section))
3487 return address;
3488 /*
3489 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3490 * then return its LOADED address rather than its vma address!!
3491 */
3492 return overlay_unmapped_address (address, section);
3493 }
3494 return address;
3495 }
3496
3497 /* Function: find_pc_overlay (PC)
3498 Return the best-match overlay section for PC:
3499 If PC matches a mapped overlay section's VMA, return that section.
3500 Else if PC matches an unmapped section's VMA, return that section.
3501 Else if PC matches an unmapped section's LMA, return that section. */
3502
3503 asection *
3504 find_pc_overlay (CORE_ADDR pc)
3505 {
3506 struct objfile *objfile;
3507 struct obj_section *osect, *best_match = NULL;
3508
3509 if (overlay_debugging)
3510 ALL_OBJSECTIONS (objfile, osect)
3511 if (section_is_overlay (osect->the_bfd_section))
3512 {
3513 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3514 {
3515 if (overlay_is_mapped (osect))
3516 return osect->the_bfd_section;
3517 else
3518 best_match = osect;
3519 }
3520 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3521 best_match = osect;
3522 }
3523 return best_match ? best_match->the_bfd_section : NULL;
3524 }
3525
3526 /* Function: find_pc_mapped_section (PC)
3527 If PC falls into the VMA address range of an overlay section that is
3528 currently marked as MAPPED, return that section. Else return NULL. */
3529
3530 asection *
3531 find_pc_mapped_section (CORE_ADDR pc)
3532 {
3533 struct objfile *objfile;
3534 struct obj_section *osect;
3535
3536 if (overlay_debugging)
3537 ALL_OBJSECTIONS (objfile, osect)
3538 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3539 overlay_is_mapped (osect))
3540 return osect->the_bfd_section;
3541
3542 return NULL;
3543 }
3544
3545 /* Function: list_overlays_command
3546 Print a list of mapped sections and their PC ranges */
3547
3548 void
3549 list_overlays_command (char *args, int from_tty)
3550 {
3551 int nmapped = 0;
3552 struct objfile *objfile;
3553 struct obj_section *osect;
3554
3555 if (overlay_debugging)
3556 ALL_OBJSECTIONS (objfile, osect)
3557 if (overlay_is_mapped (osect))
3558 {
3559 const char *name;
3560 bfd_vma lma, vma;
3561 int size;
3562
3563 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3564 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3565 size = bfd_get_section_size (osect->the_bfd_section);
3566 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3567
3568 printf_filtered ("Section %s, loaded at ", name);
3569 fputs_filtered (paddress (lma), gdb_stdout);
3570 puts_filtered (" - ");
3571 fputs_filtered (paddress (lma + size), gdb_stdout);
3572 printf_filtered (", mapped at ");
3573 fputs_filtered (paddress (vma), gdb_stdout);
3574 puts_filtered (" - ");
3575 fputs_filtered (paddress (vma + size), gdb_stdout);
3576 puts_filtered ("\n");
3577
3578 nmapped++;
3579 }
3580 if (nmapped == 0)
3581 printf_filtered (_("No sections are mapped.\n"));
3582 }
3583
3584 /* Function: map_overlay_command
3585 Mark the named section as mapped (ie. residing at its VMA address). */
3586
3587 void
3588 map_overlay_command (char *args, int from_tty)
3589 {
3590 struct objfile *objfile, *objfile2;
3591 struct obj_section *sec, *sec2;
3592 asection *bfdsec;
3593
3594 if (!overlay_debugging)
3595 error (_("\
3596 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3597 the 'overlay manual' command."));
3598
3599 if (args == 0 || *args == 0)
3600 error (_("Argument required: name of an overlay section"));
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3605 {
3606 /* Now, check to see if the section is an overlay. */
3607 bfdsec = sec->the_bfd_section;
3608 if (!section_is_overlay (bfdsec))
3609 continue; /* not an overlay section */
3610
3611 /* Mark the overlay as "mapped" */
3612 sec->ovly_mapped = 1;
3613
3614 /* Next, make a pass and unmap any sections that are
3615 overlapped by this new section: */
3616 ALL_OBJSECTIONS (objfile2, sec2)
3617 if (sec2->ovly_mapped
3618 && sec != sec2
3619 && sec->the_bfd_section != sec2->the_bfd_section
3620 && sections_overlap (sec->the_bfd_section,
3621 sec2->the_bfd_section))
3622 {
3623 if (info_verbose)
3624 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3625 bfd_section_name (objfile->obfd,
3626 sec2->the_bfd_section));
3627 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3628 }
3629 return;
3630 }
3631 error (_("No overlay section called %s"), args);
3632 }
3633
3634 /* Function: unmap_overlay_command
3635 Mark the overlay section as unmapped
3636 (ie. resident in its LMA address range, rather than the VMA range). */
3637
3638 void
3639 unmap_overlay_command (char *args, int from_tty)
3640 {
3641 struct objfile *objfile;
3642 struct obj_section *sec;
3643
3644 if (!overlay_debugging)
3645 error (_("\
3646 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3647 the 'overlay manual' command."));
3648
3649 if (args == 0 || *args == 0)
3650 error (_("Argument required: name of an overlay section"));
3651
3652 /* First, find a section matching the user supplied argument */
3653 ALL_OBJSECTIONS (objfile, sec)
3654 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3655 {
3656 if (!sec->ovly_mapped)
3657 error (_("Section %s is not mapped"), args);
3658 sec->ovly_mapped = 0;
3659 return;
3660 }
3661 error (_("No overlay section called %s"), args);
3662 }
3663
3664 /* Function: overlay_auto_command
3665 A utility command to turn on overlay debugging.
3666 Possibly this should be done via a set/show command. */
3667
3668 static void
3669 overlay_auto_command (char *args, int from_tty)
3670 {
3671 overlay_debugging = ovly_auto;
3672 enable_overlay_breakpoints ();
3673 if (info_verbose)
3674 printf_unfiltered (_("Automatic overlay debugging enabled."));
3675 }
3676
3677 /* Function: overlay_manual_command
3678 A utility command to turn on overlay debugging.
3679 Possibly this should be done via a set/show command. */
3680
3681 static void
3682 overlay_manual_command (char *args, int from_tty)
3683 {
3684 overlay_debugging = ovly_on;
3685 disable_overlay_breakpoints ();
3686 if (info_verbose)
3687 printf_unfiltered (_("Overlay debugging enabled."));
3688 }
3689
3690 /* Function: overlay_off_command
3691 A utility command to turn on overlay debugging.
3692 Possibly this should be done via a set/show command. */
3693
3694 static void
3695 overlay_off_command (char *args, int from_tty)
3696 {
3697 overlay_debugging = ovly_off;
3698 disable_overlay_breakpoints ();
3699 if (info_verbose)
3700 printf_unfiltered (_("Overlay debugging disabled."));
3701 }
3702
3703 static void
3704 overlay_load_command (char *args, int from_tty)
3705 {
3706 if (gdbarch_overlay_update_p (current_gdbarch))
3707 gdbarch_overlay_update (current_gdbarch, NULL);
3708 else
3709 error (_("This target does not know how to read its overlay state."));
3710 }
3711
3712 /* Function: overlay_command
3713 A place-holder for a mis-typed command */
3714
3715 /* Command list chain containing all defined "overlay" subcommands. */
3716 struct cmd_list_element *overlaylist;
3717
3718 static void
3719 overlay_command (char *args, int from_tty)
3720 {
3721 printf_unfiltered
3722 ("\"overlay\" must be followed by the name of an overlay command.\n");
3723 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3724 }
3725
3726
3727 /* Target Overlays for the "Simplest" overlay manager:
3728
3729 This is GDB's default target overlay layer. It works with the
3730 minimal overlay manager supplied as an example by Cygnus. The
3731 entry point is via a function pointer "gdbarch_overlay_update",
3732 so targets that use a different runtime overlay manager can
3733 substitute their own overlay_update function and take over the
3734 function pointer.
3735
3736 The overlay_update function pokes around in the target's data structures
3737 to see what overlays are mapped, and updates GDB's overlay mapping with
3738 this information.
3739
3740 In this simple implementation, the target data structures are as follows:
3741 unsigned _novlys; /# number of overlay sections #/
3742 unsigned _ovly_table[_novlys][4] = {
3743 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3744 {..., ..., ..., ...},
3745 }
3746 unsigned _novly_regions; /# number of overlay regions #/
3747 unsigned _ovly_region_table[_novly_regions][3] = {
3748 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3749 {..., ..., ...},
3750 }
3751 These functions will attempt to update GDB's mappedness state in the
3752 symbol section table, based on the target's mappedness state.
3753
3754 To do this, we keep a cached copy of the target's _ovly_table, and
3755 attempt to detect when the cached copy is invalidated. The main
3756 entry point is "simple_overlay_update(SECT), which looks up SECT in
3757 the cached table and re-reads only the entry for that section from
3758 the target (whenever possible).
3759 */
3760
3761 /* Cached, dynamically allocated copies of the target data structures: */
3762 static unsigned (*cache_ovly_table)[4] = 0;
3763 #if 0
3764 static unsigned (*cache_ovly_region_table)[3] = 0;
3765 #endif
3766 static unsigned cache_novlys = 0;
3767 #if 0
3768 static unsigned cache_novly_regions = 0;
3769 #endif
3770 static CORE_ADDR cache_ovly_table_base = 0;
3771 #if 0
3772 static CORE_ADDR cache_ovly_region_table_base = 0;
3773 #endif
3774 enum ovly_index
3775 {
3776 VMA, SIZE, LMA, MAPPED
3777 };
3778 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3779 / TARGET_CHAR_BIT)
3780
3781 /* Throw away the cached copy of _ovly_table */
3782 static void
3783 simple_free_overlay_table (void)
3784 {
3785 if (cache_ovly_table)
3786 xfree (cache_ovly_table);
3787 cache_novlys = 0;
3788 cache_ovly_table = NULL;
3789 cache_ovly_table_base = 0;
3790 }
3791
3792 #if 0
3793 /* Throw away the cached copy of _ovly_region_table */
3794 static void
3795 simple_free_overlay_region_table (void)
3796 {
3797 if (cache_ovly_region_table)
3798 xfree (cache_ovly_region_table);
3799 cache_novly_regions = 0;
3800 cache_ovly_region_table = NULL;
3801 cache_ovly_region_table_base = 0;
3802 }
3803 #endif
3804
3805 /* Read an array of ints from the target into a local buffer.
3806 Convert to host order. int LEN is number of ints */
3807 static void
3808 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3809 {
3810 /* FIXME (alloca): Not safe if array is very large. */
3811 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3812 int i;
3813
3814 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3815 for (i = 0; i < len; i++)
3816 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3817 TARGET_LONG_BYTES);
3818 }
3819
3820 /* Find and grab a copy of the target _ovly_table
3821 (and _novlys, which is needed for the table's size) */
3822 static int
3823 simple_read_overlay_table (void)
3824 {
3825 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3826
3827 simple_free_overlay_table ();
3828 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3829 if (! novlys_msym)
3830 {
3831 error (_("Error reading inferior's overlay table: "
3832 "couldn't find `_novlys' variable\n"
3833 "in inferior. Use `overlay manual' mode."));
3834 return 0;
3835 }
3836
3837 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3838 if (! ovly_table_msym)
3839 {
3840 error (_("Error reading inferior's overlay table: couldn't find "
3841 "`_ovly_table' array\n"
3842 "in inferior. Use `overlay manual' mode."));
3843 return 0;
3844 }
3845
3846 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3847 cache_ovly_table
3848 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3849 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3850 read_target_long_array (cache_ovly_table_base,
3851 (unsigned int *) cache_ovly_table,
3852 cache_novlys * 4);
3853
3854 return 1; /* SUCCESS */
3855 }
3856
3857 #if 0
3858 /* Find and grab a copy of the target _ovly_region_table
3859 (and _novly_regions, which is needed for the table's size) */
3860 static int
3861 simple_read_overlay_region_table (void)
3862 {
3863 struct minimal_symbol *msym;
3864
3865 simple_free_overlay_region_table ();
3866 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3867 if (msym != NULL)
3868 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3869 else
3870 return 0; /* failure */
3871 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3872 if (cache_ovly_region_table != NULL)
3873 {
3874 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3875 if (msym != NULL)
3876 {
3877 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3878 read_target_long_array (cache_ovly_region_table_base,
3879 (unsigned int *) cache_ovly_region_table,
3880 cache_novly_regions * 3);
3881 }
3882 else
3883 return 0; /* failure */
3884 }
3885 else
3886 return 0; /* failure */
3887 return 1; /* SUCCESS */
3888 }
3889 #endif
3890
3891 /* Function: simple_overlay_update_1
3892 A helper function for simple_overlay_update. Assuming a cached copy
3893 of _ovly_table exists, look through it to find an entry whose vma,
3894 lma and size match those of OSECT. Re-read the entry and make sure
3895 it still matches OSECT (else the table may no longer be valid).
3896 Set OSECT's mapped state to match the entry. Return: 1 for
3897 success, 0 for failure. */
3898
3899 static int
3900 simple_overlay_update_1 (struct obj_section *osect)
3901 {
3902 int i, size;
3903 bfd *obfd = osect->objfile->obfd;
3904 asection *bsect = osect->the_bfd_section;
3905
3906 size = bfd_get_section_size (osect->the_bfd_section);
3907 for (i = 0; i < cache_novlys; i++)
3908 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3909 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3910 /* && cache_ovly_table[i][SIZE] == size */ )
3911 {
3912 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3913 (unsigned int *) cache_ovly_table[i], 4);
3914 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3915 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3916 /* && cache_ovly_table[i][SIZE] == size */ )
3917 {
3918 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3919 return 1;
3920 }
3921 else /* Warning! Warning! Target's ovly table has changed! */
3922 return 0;
3923 }
3924 return 0;
3925 }
3926
3927 /* Function: simple_overlay_update
3928 If OSECT is NULL, then update all sections' mapped state
3929 (after re-reading the entire target _ovly_table).
3930 If OSECT is non-NULL, then try to find a matching entry in the
3931 cached ovly_table and update only OSECT's mapped state.
3932 If a cached entry can't be found or the cache isn't valid, then
3933 re-read the entire cache, and go ahead and update all sections. */
3934
3935 void
3936 simple_overlay_update (struct obj_section *osect)
3937 {
3938 struct objfile *objfile;
3939
3940 /* Were we given an osect to look up? NULL means do all of them. */
3941 if (osect)
3942 /* Have we got a cached copy of the target's overlay table? */
3943 if (cache_ovly_table != NULL)
3944 /* Does its cached location match what's currently in the symtab? */
3945 if (cache_ovly_table_base ==
3946 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3947 /* Then go ahead and try to look up this single section in the cache */
3948 if (simple_overlay_update_1 (osect))
3949 /* Found it! We're done. */
3950 return;
3951
3952 /* Cached table no good: need to read the entire table anew.
3953 Or else we want all the sections, in which case it's actually
3954 more efficient to read the whole table in one block anyway. */
3955
3956 if (! simple_read_overlay_table ())
3957 return;
3958
3959 /* Now may as well update all sections, even if only one was requested. */
3960 ALL_OBJSECTIONS (objfile, osect)
3961 if (section_is_overlay (osect->the_bfd_section))
3962 {
3963 int i, size;
3964 bfd *obfd = osect->objfile->obfd;
3965 asection *bsect = osect->the_bfd_section;
3966
3967 size = bfd_get_section_size (bsect);
3968 for (i = 0; i < cache_novlys; i++)
3969 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3970 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3971 /* && cache_ovly_table[i][SIZE] == size */ )
3972 { /* obj_section matches i'th entry in ovly_table */
3973 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3974 break; /* finished with inner for loop: break out */
3975 }
3976 }
3977 }
3978
3979 /* Set the output sections and output offsets for section SECTP in
3980 ABFD. The relocation code in BFD will read these offsets, so we
3981 need to be sure they're initialized. We map each section to itself,
3982 with no offset; this means that SECTP->vma will be honored. */
3983
3984 static void
3985 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3986 {
3987 sectp->output_section = sectp;
3988 sectp->output_offset = 0;
3989 }
3990
3991 /* Relocate the contents of a debug section SECTP in ABFD. The
3992 contents are stored in BUF if it is non-NULL, or returned in a
3993 malloc'd buffer otherwise.
3994
3995 For some platforms and debug info formats, shared libraries contain
3996 relocations against the debug sections (particularly for DWARF-2;
3997 one affected platform is PowerPC GNU/Linux, although it depends on
3998 the version of the linker in use). Also, ELF object files naturally
3999 have unresolved relocations for their debug sections. We need to apply
4000 the relocations in order to get the locations of symbols correct. */
4001
4002 bfd_byte *
4003 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
4004 {
4005 /* We're only interested in debugging sections with relocation
4006 information. */
4007 if ((sectp->flags & SEC_RELOC) == 0)
4008 return NULL;
4009 if ((sectp->flags & SEC_DEBUGGING) == 0)
4010 return NULL;
4011
4012 /* We will handle section offsets properly elsewhere, so relocate as if
4013 all sections begin at 0. */
4014 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4015
4016 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
4017 }
4018
4019 struct symfile_segment_data *
4020 get_symfile_segment_data (bfd *abfd)
4021 {
4022 struct sym_fns *sf = find_sym_fns (abfd);
4023
4024 if (sf == NULL)
4025 return NULL;
4026
4027 return sf->sym_segments (abfd);
4028 }
4029
4030 void
4031 free_symfile_segment_data (struct symfile_segment_data *data)
4032 {
4033 xfree (data->segment_bases);
4034 xfree (data->segment_sizes);
4035 xfree (data->segment_info);
4036 xfree (data);
4037 }
4038
4039
4040 /* Given:
4041 - DATA, containing segment addresses from the object file ABFD, and
4042 the mapping from ABFD's sections onto the segments that own them,
4043 and
4044 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4045 segment addresses reported by the target,
4046 store the appropriate offsets for each section in OFFSETS.
4047
4048 If there are fewer entries in SEGMENT_BASES than there are segments
4049 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4050
4051 If there are more entries, then ignore the extra. The target may
4052 not be able to distinguish between an empty data segment and a
4053 missing data segment; a missing text segment is less plausible. */
4054 int
4055 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4056 struct section_offsets *offsets,
4057 int num_segment_bases,
4058 const CORE_ADDR *segment_bases)
4059 {
4060 int i;
4061 asection *sect;
4062
4063 /* It doesn't make sense to call this function unless you have some
4064 segment base addresses. */
4065 gdb_assert (segment_bases > 0);
4066
4067 /* If we do not have segment mappings for the object file, we
4068 can not relocate it by segments. */
4069 gdb_assert (data != NULL);
4070 gdb_assert (data->num_segments > 0);
4071
4072 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4073 {
4074 int which = data->segment_info[i];
4075
4076 gdb_assert (0 <= which && which <= data->num_segments);
4077
4078 /* Don't bother computing offsets for sections that aren't
4079 loaded as part of any segment. */
4080 if (! which)
4081 continue;
4082
4083 /* Use the last SEGMENT_BASES entry as the address of any extra
4084 segments mentioned in DATA->segment_info. */
4085 if (which > num_segment_bases)
4086 which = num_segment_bases;
4087
4088 offsets->offsets[i] = (segment_bases[which - 1]
4089 - data->segment_bases[which - 1]);
4090 }
4091
4092 return 1;
4093 }
4094
4095 static void
4096 symfile_find_segment_sections (struct objfile *objfile)
4097 {
4098 bfd *abfd = objfile->obfd;
4099 int i;
4100 asection *sect;
4101 struct symfile_segment_data *data;
4102
4103 data = get_symfile_segment_data (objfile->obfd);
4104 if (data == NULL)
4105 return;
4106
4107 if (data->num_segments != 1 && data->num_segments != 2)
4108 {
4109 free_symfile_segment_data (data);
4110 return;
4111 }
4112
4113 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4114 {
4115 CORE_ADDR vma;
4116 int which = data->segment_info[i];
4117
4118 if (which == 1)
4119 {
4120 if (objfile->sect_index_text == -1)
4121 objfile->sect_index_text = sect->index;
4122
4123 if (objfile->sect_index_rodata == -1)
4124 objfile->sect_index_rodata = sect->index;
4125 }
4126 else if (which == 2)
4127 {
4128 if (objfile->sect_index_data == -1)
4129 objfile->sect_index_data = sect->index;
4130
4131 if (objfile->sect_index_bss == -1)
4132 objfile->sect_index_bss = sect->index;
4133 }
4134 }
4135
4136 free_symfile_segment_data (data);
4137 }
4138
4139 void
4140 _initialize_symfile (void)
4141 {
4142 struct cmd_list_element *c;
4143
4144 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4145 Load symbol table from executable file FILE.\n\
4146 The `file' command can also load symbol tables, as well as setting the file\n\
4147 to execute."), &cmdlist);
4148 set_cmd_completer (c, filename_completer);
4149
4150 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4151 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4152 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4153 ADDR is the starting address of the file's text.\n\
4154 The optional arguments are section-name section-address pairs and\n\
4155 should be specified if the data and bss segments are not contiguous\n\
4156 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4157 &cmdlist);
4158 set_cmd_completer (c, filename_completer);
4159
4160 c = add_cmd ("add-shared-symbol-files", class_files,
4161 add_shared_symbol_files_command, _("\
4162 Load the symbols from shared objects in the dynamic linker's link map."),
4163 &cmdlist);
4164 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4165 &cmdlist);
4166
4167 c = add_cmd ("load", class_files, load_command, _("\
4168 Dynamically load FILE into the running program, and record its symbols\n\
4169 for access from GDB.\n\
4170 A load OFFSET may also be given."), &cmdlist);
4171 set_cmd_completer (c, filename_completer);
4172
4173 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4174 &symbol_reloading, _("\
4175 Set dynamic symbol table reloading multiple times in one run."), _("\
4176 Show dynamic symbol table reloading multiple times in one run."), NULL,
4177 NULL,
4178 show_symbol_reloading,
4179 &setlist, &showlist);
4180
4181 add_prefix_cmd ("overlay", class_support, overlay_command,
4182 _("Commands for debugging overlays."), &overlaylist,
4183 "overlay ", 0, &cmdlist);
4184
4185 add_com_alias ("ovly", "overlay", class_alias, 1);
4186 add_com_alias ("ov", "overlay", class_alias, 1);
4187
4188 add_cmd ("map-overlay", class_support, map_overlay_command,
4189 _("Assert that an overlay section is mapped."), &overlaylist);
4190
4191 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4192 _("Assert that an overlay section is unmapped."), &overlaylist);
4193
4194 add_cmd ("list-overlays", class_support, list_overlays_command,
4195 _("List mappings of overlay sections."), &overlaylist);
4196
4197 add_cmd ("manual", class_support, overlay_manual_command,
4198 _("Enable overlay debugging."), &overlaylist);
4199 add_cmd ("off", class_support, overlay_off_command,
4200 _("Disable overlay debugging."), &overlaylist);
4201 add_cmd ("auto", class_support, overlay_auto_command,
4202 _("Enable automatic overlay debugging."), &overlaylist);
4203 add_cmd ("load-target", class_support, overlay_load_command,
4204 _("Read the overlay mapping state from the target."), &overlaylist);
4205
4206 /* Filename extension to source language lookup table: */
4207 init_filename_language_table ();
4208 add_setshow_string_noescape_cmd ("extension-language", class_files,
4209 &ext_args, _("\
4210 Set mapping between filename extension and source language."), _("\
4211 Show mapping between filename extension and source language."), _("\
4212 Usage: set extension-language .foo bar"),
4213 set_ext_lang_command,
4214 show_ext_args,
4215 &setlist, &showlist);
4216
4217 add_info ("extensions", info_ext_lang_command,
4218 _("All filename extensions associated with a source language."));
4219
4220 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4221 &debug_file_directory, _("\
4222 Set the directory where separate debug symbols are searched for."), _("\
4223 Show the directory where separate debug symbols are searched for."), _("\
4224 Separate debug symbols are first searched for in the same\n\
4225 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4226 and lastly at the path of the directory of the binary with\n\
4227 the global debug-file directory prepended."),
4228 NULL,
4229 show_debug_file_directory,
4230 &setlist, &showlist);
4231
4232 add_setshow_boolean_cmd ("symbol-loading", no_class,
4233 &print_symbol_loading, _("\
4234 Set printing of symbol loading messages."), _("\
4235 Show printing of symbol loading messages."), NULL,
4236 NULL,
4237 NULL,
4238 &setprintlist, &showprintlist);
4239 }
This page took 0.116948 seconds and 4 git commands to generate.