import gdb-1999-10-18 snapshot
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40
41 #include <assert.h>
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*pre_add_symbol_hook) PARAMS ((char *));
68 void (*post_add_symbol_hook) PARAMS ((void));
69
70 /* Global variables owned by this file */
71 int readnow_symbol_files; /* Read full symbols immediately */
72
73 struct complaint oldsyms_complaint =
74 {
75 "Replacing old symbols for `%s'", 0, 0
76 };
77
78 struct complaint empty_symtab_complaint =
79 {
80 "Empty symbol table found for `%s'", 0, 0
81 };
82
83 struct complaint unknown_option_complaint =
84 {
85 "Unknown option `%s' ignored", 0, 0
86 };
87
88 /* External variables and functions referenced. */
89
90 extern int info_verbose;
91
92 extern void report_transfer_performance PARAMS ((unsigned long,
93 time_t, time_t));
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table PARAMS ((void));
99 static void simple_free_overlay_region_table PARAMS ((void));
100 #endif
101
102 static void set_initial_language PARAMS ((void));
103
104 static void load_command PARAMS ((char *, int));
105
106 static void add_symbol_file_command PARAMS ((char *, int));
107
108 static void add_shared_symbol_files_command PARAMS ((char *, int));
109
110 static void cashier_psymtab PARAMS ((struct partial_symtab *));
111
112 static int compare_psymbols PARAMS ((const void *, const void *));
113
114 static int compare_symbols PARAMS ((const void *, const void *));
115
116 bfd *symfile_bfd_open PARAMS ((char *));
117
118 static void find_sym_fns PARAMS ((struct objfile *));
119
120 static void decrement_reading_symtab PARAMS ((void *));
121
122 static void overlay_invalidate_all PARAMS ((void));
123
124 static int overlay_is_mapped PARAMS ((struct obj_section *));
125
126 void list_overlays_command PARAMS ((char *, int));
127
128 void map_overlay_command PARAMS ((char *, int));
129
130 void unmap_overlay_command PARAMS ((char *, int));
131
132 static void overlay_auto_command PARAMS ((char *, int));
133
134 static void overlay_manual_command PARAMS ((char *, int));
135
136 static void overlay_off_command PARAMS ((char *, int));
137
138 static void overlay_load_command PARAMS ((char *, int));
139
140 static void overlay_command PARAMS ((char *, int));
141
142 static void simple_free_overlay_table PARAMS ((void));
143
144 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
145
146 static int simple_read_overlay_table PARAMS ((void));
147
148 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
149
150 static void add_filename_language PARAMS ((char *ext, enum language lang));
151
152 static void set_ext_lang_command PARAMS ((char *args, int from_tty));
153
154 static void info_ext_lang_command PARAMS ((char *args, int from_tty));
155
156 static void init_filename_language_table PARAMS ((void));
157
158 void _initialize_symfile PARAMS ((void));
159
160 /* List of all available sym_fns. On gdb startup, each object file reader
161 calls add_symtab_fns() to register information on each format it is
162 prepared to read. */
163
164 static struct sym_fns *symtab_fns = NULL;
165
166 /* Flag for whether user will be reloading symbols multiple times.
167 Defaults to ON for VxWorks, otherwise OFF. */
168
169 #ifdef SYMBOL_RELOADING_DEFAULT
170 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
171 #else
172 int symbol_reloading = 0;
173 #endif
174
175 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
176 this variable is interpreted as a threshhold. If adding a new
177 library's symbol table to those already known to the debugger would
178 exceed this threshhold, then the shlib's symbols are not added.
179
180 If non-zero on other platforms, shared library symbols will be added
181 automatically when the inferior is created, new libraries are loaded,
182 or when attaching to the inferior. This is almost always what users
183 will want to have happen; but for very large programs, the startup
184 time will be excessive, and so if this is a problem, the user can
185 clear this flag and then add the shared library symbols as needed.
186 Note that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present.
189
190 Note that HP-UX interprets this variable to mean, "threshhold size
191 in megabytes, where zero means never add". Other platforms interpret
192 this variable to mean, "always add if non-zero, never add if zero."
193 */
194
195 int auto_solib_add = 1;
196 \f
197
198 /* Since this function is called from within qsort, in an ANSI environment
199 it must conform to the prototype for qsort, which specifies that the
200 comparison function takes two "void *" pointers. */
201
202 static int
203 compare_symbols (s1p, s2p)
204 const PTR s1p;
205 const PTR s2p;
206 {
207 register struct symbol **s1, **s2;
208
209 s1 = (struct symbol **) s1p;
210 s2 = (struct symbol **) s2p;
211
212 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
213 }
214
215 /*
216
217 LOCAL FUNCTION
218
219 compare_psymbols -- compare two partial symbols by name
220
221 DESCRIPTION
222
223 Given pointers to pointers to two partial symbol table entries,
224 compare them by name and return -N, 0, or +N (ala strcmp).
225 Typically used by sorting routines like qsort().
226
227 NOTES
228
229 Does direct compare of first two characters before punting
230 and passing to strcmp for longer compares. Note that the
231 original version had a bug whereby two null strings or two
232 identically named one character strings would return the
233 comparison of memory following the null byte.
234
235 */
236
237 static int
238 compare_psymbols (s1p, s2p)
239 const PTR s1p;
240 const PTR s2p;
241 {
242 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
243 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
244
245 if ((st1[0] - st2[0]) || !st1[0])
246 {
247 return (st1[0] - st2[0]);
248 }
249 else if ((st1[1] - st2[1]) || !st1[1])
250 {
251 return (st1[1] - st2[1]);
252 }
253 else
254 {
255 /* Note: I replaced the STRCMP line (commented out below)
256 * with a simpler "strcmp()" which compares the 2 strings
257 * from the beginning. (STRCMP is a macro which first compares
258 * the initial characters, then falls back on strcmp).
259 * The reason is that the STRCMP line was tickling a C compiler
260 * bug on HP-UX 10.30, which is avoided with the simpler
261 * code. The performance gain from the more complicated code
262 * is negligible, given that we have already checked the
263 * initial 2 characters above. I reported the compiler bug,
264 * and once it is fixed the original line can be put back. RT
265 */
266 /* return ( STRCMP (st1 + 2, st2 + 2)); */
267 return (strcmp (st1, st2));
268 }
269 }
270
271 void
272 sort_pst_symbols (pst)
273 struct partial_symtab *pst;
274 {
275 /* Sort the global list; don't sort the static list */
276
277 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
278 pst->n_global_syms, sizeof (struct partial_symbol *),
279 compare_psymbols);
280 }
281
282 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
283
284 void
285 sort_block_syms (b)
286 register struct block *b;
287 {
288 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
289 sizeof (struct symbol *), compare_symbols);
290 }
291
292 /* Call sort_symtab_syms to sort alphabetically
293 the symbols of each block of one symtab. */
294
295 void
296 sort_symtab_syms (s)
297 register struct symtab *s;
298 {
299 register struct blockvector *bv;
300 int nbl;
301 int i;
302 register struct block *b;
303
304 if (s == 0)
305 return;
306 bv = BLOCKVECTOR (s);
307 nbl = BLOCKVECTOR_NBLOCKS (bv);
308 for (i = 0; i < nbl; i++)
309 {
310 b = BLOCKVECTOR_BLOCK (bv, i);
311 if (BLOCK_SHOULD_SORT (b))
312 sort_block_syms (b);
313 }
314 }
315
316 /* Make a null terminated copy of the string at PTR with SIZE characters in
317 the obstack pointed to by OBSTACKP . Returns the address of the copy.
318 Note that the string at PTR does not have to be null terminated, I.E. it
319 may be part of a larger string and we are only saving a substring. */
320
321 char *
322 obsavestring (ptr, size, obstackp)
323 char *ptr;
324 int size;
325 struct obstack *obstackp;
326 {
327 register char *p = (char *) obstack_alloc (obstackp, size + 1);
328 /* Open-coded memcpy--saves function call time. These strings are usually
329 short. FIXME: Is this really still true with a compiler that can
330 inline memcpy? */
331 {
332 register char *p1 = ptr;
333 register char *p2 = p;
334 char *end = ptr + size;
335 while (p1 != end)
336 *p2++ = *p1++;
337 }
338 p[size] = 0;
339 return p;
340 }
341
342 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
343 in the obstack pointed to by OBSTACKP. */
344
345 char *
346 obconcat (obstackp, s1, s2, s3)
347 struct obstack *obstackp;
348 const char *s1, *s2, *s3;
349 {
350 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
351 register char *val = (char *) obstack_alloc (obstackp, len);
352 strcpy (val, s1);
353 strcat (val, s2);
354 strcat (val, s3);
355 return val;
356 }
357
358 /* True if we are nested inside psymtab_to_symtab. */
359
360 int currently_reading_symtab = 0;
361
362 static void
363 decrement_reading_symtab (dummy)
364 void *dummy;
365 {
366 currently_reading_symtab--;
367 }
368
369 /* Get the symbol table that corresponds to a partial_symtab.
370 This is fast after the first time you do it. In fact, there
371 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
372 case inline. */
373
374 struct symtab *
375 psymtab_to_symtab (pst)
376 register struct partial_symtab *pst;
377 {
378 /* If it's been looked up before, return it. */
379 if (pst->symtab)
380 return pst->symtab;
381
382 /* If it has not yet been read in, read it. */
383 if (!pst->readin)
384 {
385 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
386 currently_reading_symtab++;
387 (*pst->read_symtab) (pst);
388 do_cleanups (back_to);
389 }
390
391 return pst->symtab;
392 }
393
394 /* Initialize entry point information for this objfile. */
395
396 void
397 init_entry_point_info (objfile)
398 struct objfile *objfile;
399 {
400 /* Save startup file's range of PC addresses to help blockframe.c
401 decide where the bottom of the stack is. */
402
403 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
404 {
405 /* Executable file -- record its entry point so we'll recognize
406 the startup file because it contains the entry point. */
407 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
408 }
409 else
410 {
411 /* Examination of non-executable.o files. Short-circuit this stuff. */
412 objfile->ei.entry_point = INVALID_ENTRY_POINT;
413 }
414 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
415 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
416 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
417 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
418 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
419 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
420 }
421
422 /* Get current entry point address. */
423
424 CORE_ADDR
425 entry_point_address ()
426 {
427 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
428 }
429
430 /* Remember the lowest-addressed loadable section we've seen.
431 This function is called via bfd_map_over_sections.
432
433 In case of equal vmas, the section with the largest size becomes the
434 lowest-addressed loadable section.
435
436 If the vmas and sizes are equal, the last section is considered the
437 lowest-addressed loadable section. */
438
439 void
440 find_lowest_section (abfd, sect, obj)
441 bfd *abfd;
442 asection *sect;
443 PTR obj;
444 {
445 asection **lowest = (asection **) obj;
446
447 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
448 return;
449 if (!*lowest)
450 *lowest = sect; /* First loadable section */
451 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
452 *lowest = sect; /* A lower loadable section */
453 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
454 && (bfd_section_size (abfd, (*lowest))
455 <= bfd_section_size (abfd, sect)))
456 *lowest = sect;
457 }
458
459 /* Parse the user's idea of an offset for dynamic linking, into our idea
460 of how to represent it for fast symbol reading. This is the default
461 version of the sym_fns.sym_offsets function for symbol readers that
462 don't need to do anything special. It allocates a section_offsets table
463 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
464
465 void
466 default_symfile_offsets (objfile, addrs)
467 struct objfile *objfile;
468 struct section_addr_info *addrs;
469 {
470 int i;
471
472 objfile->num_sections = SECT_OFF_MAX;
473 objfile->section_offsets = (struct section_offsets *)
474 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
475 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
476
477 /* If user explicitly specified values for data and bss, set them here. */
478
479 if (addrs->text_addr)
480 ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT) = addrs->text_addr;
481 if (addrs->data_addr)
482 ANOFFSET (objfile->section_offsets, SECT_OFF_DATA) = addrs->data_addr;
483 if (addrs->bss_addr)
484 ANOFFSET (objfile->section_offsets, SECT_OFF_BSS) = addrs->bss_addr;
485
486 /* Now calculate offsets for other sections. */
487 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
488 {
489 struct other_sections *osp ;
490
491 osp = &addrs->other[i] ;
492 if (addrs->other[i].addr == 0)
493 continue;
494 #if 0
495 if (strcmp (".text", osp->name) == 0)
496 SECT_OFF_TEXT = osp->sectindex ;
497 else if (strcmp (".data", osp->name) == 0)
498 SECT_OFF_DATA = osp->sectindex ;
499 else if (strcmp (".bss", osp->name) == 0)
500 SECT_OFF_BSS = osp->sectindex ;
501 #endif
502 /* Record all sections in offsets */
503 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
504 }
505 }
506
507
508 /* Process a symbol file, as either the main file or as a dynamically
509 loaded file.
510
511 OBJFILE is where the symbols are to be read from.
512
513 ADDR is the address where the text segment was loaded, unless the
514 objfile is the main symbol file, in which case it is zero.
515
516 MAINLINE is nonzero if this is the main symbol file, or zero if
517 it's an extra symbol file such as dynamically loaded code.
518
519 VERBO is nonzero if the caller has printed a verbose message about
520 the symbol reading (and complaints can be more terse about it). */
521
522 void
523 syms_from_objfile (objfile, addrs, mainline, verbo)
524 struct objfile *objfile;
525 struct section_addr_info *addrs;
526 int mainline;
527 int verbo;
528 {
529 struct section_offsets *section_offsets;
530 asection *lower_sect;
531 asection *sect;
532 CORE_ADDR lower_offset;
533 struct section_addr_info local_addr;
534 struct cleanup *old_chain;
535 int i;
536
537 /* If ADDRS is NULL, initialize the local section_addr_info struct and
538 point ADDRS to it. We now establish the convention that an addr of
539 zero means no load address was specified. */
540
541 if (addrs == NULL)
542 {
543 memset (&local_addr, 0, sizeof (local_addr));
544 addrs = &local_addr;
545 }
546
547 init_entry_point_info (objfile);
548 find_sym_fns (objfile);
549
550 /* Make sure that partially constructed symbol tables will be cleaned up
551 if an error occurs during symbol reading. */
552 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
553
554 if (mainline)
555 {
556 /* We will modify the main symbol table, make sure that all its users
557 will be cleaned up if an error occurs during symbol reading. */
558 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
559
560 /* Since no error yet, throw away the old symbol table. */
561
562 if (symfile_objfile != NULL)
563 {
564 free_objfile (symfile_objfile);
565 symfile_objfile = NULL;
566 }
567
568 /* Currently we keep symbols from the add-symbol-file command.
569 If the user wants to get rid of them, they should do "symbol-file"
570 without arguments first. Not sure this is the best behavior
571 (PR 2207). */
572
573 (*objfile->sf->sym_new_init) (objfile);
574 }
575
576 /* Convert addr into an offset rather than an absolute address.
577 We find the lowest address of a loaded segment in the objfile,
578 and assume that <addr> is where that got loaded.
579
580 We no longer warn if the lowest section is not a text segment (as
581 happens for the PA64 port. */
582 if (mainline)
583 {
584 /* No offset from objfile addresses. */
585 addrs -> text_addr = 0;
586 addrs -> data_addr = 0;
587 addrs -> bss_addr = 0;
588 }
589 else
590 {
591 /* Find lowest loadable section to be used as starting point for
592 continguous sections. FIXME!! won't work without call to find
593 .text first, but this assumes text is lowest section. */
594 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
595 if (lower_sect == NULL)
596 bfd_map_over_sections (objfile->obfd, find_lowest_section,
597 (PTR) &lower_sect);
598 if (lower_sect == NULL)
599 warning ("no loadable sections found in added symbol-file %s",
600 objfile->name);
601 else if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE)
602 == 0)
603 warning ("Lowest section in %s is %s at %s",
604 objfile->name,
605 bfd_section_name (objfile->obfd, lower_sect),
606 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
607 if (lower_sect != NULL)
608 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
609 else
610 lower_offset = 0;
611
612 /* Calculate offsets for the loadable sections.
613 FIXME! Sections must be in order of increasing loadable section
614 so that contiguous sections can use the lower-offset!!!
615
616 Adjust offsets if the segments are not contiguous.
617 If the section is contiguous, its offset should be set to
618 the offset of the highest loadable section lower than it
619 (the loadable section directly below it in memory).
620 this_offset = lower_offset = lower_addr - lower_orig_addr */
621
622 /* FIXME: These sections will not need special treatment because ALL
623 sections are in the other sections table */
624
625 if (addrs->text_addr != 0)
626 {
627 sect = bfd_get_section_by_name (objfile->obfd, ".text");
628 if (sect)
629 {
630 addrs->text_addr -= bfd_section_vma (objfile->obfd, sect);
631 lower_offset = addrs->text_addr;
632 }
633 }
634 else
635 /* ??? who's below me? */
636 addrs->text_addr = lower_offset;
637
638 if (addrs->data_addr != 0)
639 {
640 sect = bfd_get_section_by_name (objfile->obfd, ".data");
641 if (sect)
642 {
643 addrs->data_addr -= bfd_section_vma (objfile->obfd, sect);
644 lower_offset = addrs->data_addr;
645 }
646 }
647 else
648 addrs->data_addr = lower_offset;
649
650 if (addrs->bss_addr != 0)
651 {
652 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
653 if (sect)
654 {
655 addrs->bss_addr -= bfd_section_vma (objfile->obfd, sect);
656 lower_offset = addrs->bss_addr;
657 }
658 }
659 else
660 addrs->bss_addr = lower_offset;
661
662 /* Now calculate offsets for other sections. */
663 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
664 {
665
666 if (addrs->other[i].addr != 0)
667 {
668 sect=bfd_get_section_by_name(objfile->obfd, addrs->other[i].name);
669 if (sect)
670 {
671 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
672 lower_offset = addrs->other[i].addr;
673 addrs->other[i].sectindex = sect->index ;
674 }
675 else
676 {
677 warning ("section %s not found in %s", addrs->other[i].name,
678 objfile->name);
679 addrs->other[i].addr = 0;
680 }
681 }
682 else
683 addrs->other[i].addr = lower_offset;
684 }
685 }
686
687 /* Initialize symbol reading routines for this objfile, allow complaints to
688 appear for this new file, and record how verbose to be, then do the
689 initial symbol reading for this file. */
690
691 (*objfile->sf->sym_init) (objfile);
692 clear_complaints (1, verbo);
693
694 (*objfile->sf->sym_offsets) (objfile, addrs);
695
696 #ifndef IBM6000_TARGET
697 /* This is a SVR4/SunOS specific hack, I think. In any event, it
698 screws RS/6000. sym_offsets should be doing this sort of thing,
699 because it knows the mapping between bfd sections and
700 section_offsets. */
701 /* This is a hack. As far as I can tell, section offsets are not
702 target dependent. They are all set to addr with a couple of
703 exceptions. The exceptions are sysvr4 shared libraries, whose
704 offsets are kept in solib structures anyway and rs6000 xcoff
705 which handles shared libraries in a completely unique way.
706
707 Section offsets are built similarly, except that they are built
708 by adding addr in all cases because there is no clear mapping
709 from section_offsets into actual sections. Note that solib.c
710 has a different algorithm for finding section offsets.
711
712 These should probably all be collapsed into some target
713 independent form of shared library support. FIXME. */
714
715 if (addrs)
716 {
717 struct obj_section *s;
718
719 /* Map section offsets in "addr" back to the object's
720 sections by comparing the section names with bfd's
721 section names. Then adjust the section address by
722 the offset. */ /* for gdb/13815 */
723
724 ALL_OBJFILE_OSECTIONS (objfile, s)
725 {
726 CORE_ADDR s_addr = 0;
727 int i;
728
729 if (strcmp (s->the_bfd_section->name, ".text") == 0)
730 s_addr = addrs->text_addr;
731 else if (strcmp (s->the_bfd_section->name, ".data") == 0)
732 s_addr = addrs->data_addr;
733 else if (strcmp (s->the_bfd_section->name, ".bss") == 0)
734 s_addr = addrs->bss_addr;
735 else
736 for (i = 0; !s_addr && addrs->other[i].name; i++)
737 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
738 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
739
740 s->addr -= s->offset;
741 s->addr += s_addr;
742 s->endaddr -= s->offset;
743 s->endaddr += s_addr;
744 s->offset += s_addr;
745 }
746 }
747 #endif /* not IBM6000_TARGET */
748
749 (*objfile->sf->sym_read) (objfile, mainline);
750
751 if (!have_partial_symbols () && !have_full_symbols ())
752 {
753 wrap_here ("");
754 printf_filtered ("(no debugging symbols found)...");
755 wrap_here ("");
756 }
757
758 /* Don't allow char * to have a typename (else would get caddr_t).
759 Ditto void *. FIXME: Check whether this is now done by all the
760 symbol readers themselves (many of them now do), and if so remove
761 it from here. */
762
763 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
764 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
765
766 /* Mark the objfile has having had initial symbol read attempted. Note
767 that this does not mean we found any symbols... */
768
769 objfile->flags |= OBJF_SYMS;
770
771 /* Discard cleanups as symbol reading was successful. */
772
773 discard_cleanups (old_chain);
774
775 /* Call this after reading in a new symbol table to give target
776 dependant code a crack at the new symbols. For instance, this
777 could be used to update the values of target-specific symbols GDB
778 needs to keep track of (such as _sigtramp, or whatever). */
779
780 TARGET_SYMFILE_POSTREAD (objfile);
781 }
782
783 /* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
786
787 void
788 new_symfile_objfile (objfile, mainline, verbo)
789 struct objfile *objfile;
790 int mainline;
791 int verbo;
792 {
793
794 /* If this is the main symbol file we have to clean up all users of the
795 old main symbol file. Otherwise it is sufficient to fixup all the
796 breakpoints that may have been redefined by this symbol file. */
797 if (mainline)
798 {
799 /* OK, make it the "real" symbol file. */
800 symfile_objfile = objfile;
801
802 clear_symtab_users ();
803 }
804 else
805 {
806 breakpoint_re_set ();
807 }
808
809 /* We're done reading the symbol file; finish off complaints. */
810 clear_complaints (0, verbo);
811 }
812
813 /* Process a symbol file, as either the main file or as a dynamically
814 loaded file.
815
816 NAME is the file name (which will be tilde-expanded and made
817 absolute herein) (but we don't free or modify NAME itself).
818 FROM_TTY says how verbose to be. MAINLINE specifies whether this
819 is the main symbol file, or whether it's an extra symbol file such
820 as dynamically loaded code. If !mainline, ADDR is the address
821 where the text segment was loaded.
822
823 Upon success, returns a pointer to the objfile that was added.
824 Upon failure, jumps back to command level (never returns). */
825
826 struct objfile *
827 symbol_file_add (name, from_tty, addrs, mainline, flags)
828 char *name;
829 int from_tty;
830 struct section_addr_info *addrs;
831 int mainline;
832 int flags;
833 {
834 struct objfile *objfile;
835 struct partial_symtab *psymtab;
836 bfd *abfd;
837
838 /* Open a bfd for the file, and give user a chance to burp if we'd be
839 interactively wiping out any existing symbols. */
840
841 abfd = symfile_bfd_open (name);
842
843 if ((have_full_symbols () || have_partial_symbols ())
844 && mainline
845 && from_tty
846 && !query ("Load new symbol table from \"%s\"? ", name))
847 error ("Not confirmed.");
848
849 objfile = allocate_objfile (abfd, flags);
850
851 /* If the objfile uses a mapped symbol file, and we have a psymtab for
852 it, then skip reading any symbols at this time. */
853
854 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
855 {
856 /* We mapped in an existing symbol table file that already has had
857 initial symbol reading performed, so we can skip that part. Notify
858 the user that instead of reading the symbols, they have been mapped.
859 */
860 if (from_tty || info_verbose)
861 {
862 printf_filtered ("Mapped symbols for %s...", name);
863 wrap_here ("");
864 gdb_flush (gdb_stdout);
865 }
866 init_entry_point_info (objfile);
867 find_sym_fns (objfile);
868 }
869 else
870 {
871 /* We either created a new mapped symbol table, mapped an existing
872 symbol table file which has not had initial symbol reading
873 performed, or need to read an unmapped symbol table. */
874 if (from_tty || info_verbose)
875 {
876 if (pre_add_symbol_hook)
877 pre_add_symbol_hook (name);
878 else
879 {
880 printf_filtered ("Reading symbols from %s...", name);
881 wrap_here ("");
882 gdb_flush (gdb_stdout);
883 }
884 }
885 syms_from_objfile (objfile, addrs, mainline, from_tty);
886 }
887
888 /* We now have at least a partial symbol table. Check to see if the
889 user requested that all symbols be read on initial access via either
890 the gdb startup command line or on a per symbol file basis. Expand
891 all partial symbol tables for this objfile if so. */
892
893 if ((flags & OBJF_READNOW) || readnow_symbol_files)
894 {
895 if (from_tty || info_verbose)
896 {
897 printf_filtered ("expanding to full symbols...");
898 wrap_here ("");
899 gdb_flush (gdb_stdout);
900 }
901
902 for (psymtab = objfile->psymtabs;
903 psymtab != NULL;
904 psymtab = psymtab->next)
905 {
906 psymtab_to_symtab (psymtab);
907 }
908 }
909
910 if (from_tty || info_verbose)
911 {
912 if (post_add_symbol_hook)
913 post_add_symbol_hook ();
914 else
915 {
916 printf_filtered ("done.\n");
917 gdb_flush (gdb_stdout);
918 }
919 }
920
921 new_symfile_objfile (objfile, mainline, from_tty);
922
923 target_new_objfile (objfile);
924
925 return (objfile);
926 }
927
928 /* This is the symbol-file command. Read the file, analyze its
929 symbols, and add a struct symtab to a symtab list. The syntax of
930 the command is rather bizarre--(1) buildargv implements various
931 quoting conventions which are undocumented and have little or
932 nothing in common with the way things are quoted (or not quoted)
933 elsewhere in GDB, (2) options are used, which are not generally
934 used in GDB (perhaps "set mapped on", "set readnow on" would be
935 better), (3) the order of options matters, which is contrary to GNU
936 conventions (because it is confusing and inconvenient). */
937
938 void
939 symbol_file_command (args, from_tty)
940 char *args;
941 int from_tty;
942 {
943 char **argv;
944 char *name = NULL;
945 CORE_ADDR text_relocation = 0; /* text_relocation */
946 struct cleanup *cleanups;
947 int flags = OBJF_USERLOADED;
948
949 dont_repeat ();
950
951 if (args == NULL)
952 {
953 if ((have_full_symbols () || have_partial_symbols ())
954 && from_tty
955 && !query ("Discard symbol table from `%s'? ",
956 symfile_objfile->name))
957 error ("Not confirmed.");
958 free_all_objfiles ();
959
960 /* solib descriptors may have handles to objfiles. Since their
961 storage has just been released, we'd better wipe the solib
962 descriptors as well.
963 */
964 #if defined(SOLIB_RESTART)
965 SOLIB_RESTART ();
966 #endif
967
968 symfile_objfile = NULL;
969 if (from_tty)
970 {
971 printf_unfiltered ("No symbol file now.\n");
972 }
973 #ifdef HPUXHPPA
974 RESET_HP_UX_GLOBALS ();
975 #endif
976 }
977 else
978 {
979 if ((argv = buildargv (args)) == NULL)
980 {
981 nomem (0);
982 }
983 cleanups = make_cleanup_freeargv (argv);
984 while (*argv != NULL)
985 {
986 if (STREQ (*argv, "-mapped"))
987 {
988 flags |= OBJF_MAPPED;
989 }
990 else if (STREQ (*argv, "-readnow"))
991 {
992 flags |= OBJF_READNOW;
993 }
994 else if (**argv == '-')
995 {
996 error ("unknown option `%s'", *argv);
997 }
998 else
999 {
1000 char *p;
1001
1002 name = *argv;
1003
1004 /* this is for rombug remote only, to get the text relocation by
1005 using link command */
1006 p = strrchr (name, '/');
1007 if (p != NULL)
1008 p++;
1009 else
1010 p = name;
1011
1012 target_link (p, &text_relocation);
1013
1014 if (text_relocation == (CORE_ADDR) 0)
1015 return;
1016 else if (text_relocation == (CORE_ADDR) -1)
1017 {
1018 symbol_file_add (name, from_tty, NULL, 1, flags);
1019 #ifdef HPUXHPPA
1020 RESET_HP_UX_GLOBALS ();
1021 #endif
1022 }
1023 else
1024 {
1025 struct section_addr_info section_addrs;
1026 memset (&section_addrs, 0, sizeof (section_addrs));
1027 section_addrs.text_addr = (CORE_ADDR) text_relocation;
1028 symbol_file_add (name, from_tty, &section_addrs, 0, flags);
1029 }
1030
1031 /* Getting new symbols may change our opinion about what is
1032 frameless. */
1033 reinit_frame_cache ();
1034
1035 set_initial_language ();
1036 }
1037 argv++;
1038 }
1039
1040 if (name == NULL)
1041 {
1042 error ("no symbol file name was specified");
1043 }
1044 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1045 do_cleanups (cleanups);
1046 }
1047 }
1048
1049 /* Set the initial language.
1050
1051 A better solution would be to record the language in the psymtab when reading
1052 partial symbols, and then use it (if known) to set the language. This would
1053 be a win for formats that encode the language in an easily discoverable place,
1054 such as DWARF. For stabs, we can jump through hoops looking for specially
1055 named symbols or try to intuit the language from the specific type of stabs
1056 we find, but we can't do that until later when we read in full symbols.
1057 FIXME. */
1058
1059 static void
1060 set_initial_language ()
1061 {
1062 struct partial_symtab *pst;
1063 enum language lang = language_unknown;
1064
1065 pst = find_main_psymtab ();
1066 if (pst != NULL)
1067 {
1068 if (pst->filename != NULL)
1069 {
1070 lang = deduce_language_from_filename (pst->filename);
1071 }
1072 if (lang == language_unknown)
1073 {
1074 /* Make C the default language */
1075 lang = language_c;
1076 }
1077 set_language (lang);
1078 expected_language = current_language; /* Don't warn the user */
1079 }
1080 }
1081
1082 /* Open file specified by NAME and hand it off to BFD for preliminary
1083 analysis. Result is a newly initialized bfd *, which includes a newly
1084 malloc'd` copy of NAME (tilde-expanded and made absolute).
1085 In case of trouble, error() is called. */
1086
1087 bfd *
1088 symfile_bfd_open (name)
1089 char *name;
1090 {
1091 bfd *sym_bfd;
1092 int desc;
1093 char *absolute_name;
1094
1095
1096
1097 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1098
1099 /* Look down path for it, allocate 2nd new malloc'd copy. */
1100 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1101 #if defined(__GO32__) || defined(_WIN32)
1102 if (desc < 0)
1103 {
1104 char *exename = alloca (strlen (name) + 5);
1105 strcat (strcpy (exename, name), ".exe");
1106 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1107 0, &absolute_name);
1108 }
1109 #endif
1110 if (desc < 0)
1111 {
1112 make_cleanup (free, name);
1113 perror_with_name (name);
1114 }
1115 free (name); /* Free 1st new malloc'd copy */
1116 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1117 /* It'll be freed in free_objfile(). */
1118
1119 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1120 if (!sym_bfd)
1121 {
1122 close (desc);
1123 make_cleanup (free, name);
1124 error ("\"%s\": can't open to read symbols: %s.", name,
1125 bfd_errmsg (bfd_get_error ()));
1126 }
1127 sym_bfd->cacheable = true;
1128
1129 if (!bfd_check_format (sym_bfd, bfd_object))
1130 {
1131 /* FIXME: should be checking for errors from bfd_close (for one thing,
1132 on error it does not free all the storage associated with the
1133 bfd). */
1134 bfd_close (sym_bfd); /* This also closes desc */
1135 make_cleanup (free, name);
1136 error ("\"%s\": can't read symbols: %s.", name,
1137 bfd_errmsg (bfd_get_error ()));
1138 }
1139 return (sym_bfd);
1140 }
1141
1142 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1143 startup by the _initialize routine in each object file format reader,
1144 to register information about each format the the reader is prepared
1145 to handle. */
1146
1147 void
1148 add_symtab_fns (sf)
1149 struct sym_fns *sf;
1150 {
1151 sf->next = symtab_fns;
1152 symtab_fns = sf;
1153 }
1154
1155
1156 /* Initialize to read symbols from the symbol file sym_bfd. It either
1157 returns or calls error(). The result is an initialized struct sym_fns
1158 in the objfile structure, that contains cached information about the
1159 symbol file. */
1160
1161 static void
1162 find_sym_fns (objfile)
1163 struct objfile *objfile;
1164 {
1165 struct sym_fns *sf;
1166 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1167 char *our_target = bfd_get_target (objfile->obfd);
1168
1169 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1170 if (STREQ (our_target, "aixcoff-rs6000") ||
1171 STREQ (our_target, "xcoff-powermac"))
1172 our_flavour = (enum bfd_flavour) -1;
1173
1174 /* Special kludge for apollo. See dstread.c. */
1175 if (STREQN (our_target, "apollo", 6))
1176 our_flavour = (enum bfd_flavour) -2;
1177
1178 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1179 {
1180 if (our_flavour == sf->sym_flavour)
1181 {
1182 objfile->sf = sf;
1183 return;
1184 }
1185 }
1186 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1187 bfd_get_target (objfile->obfd));
1188 }
1189 \f
1190 /* This function runs the load command of our current target. */
1191
1192 static void
1193 load_command (arg, from_tty)
1194 char *arg;
1195 int from_tty;
1196 {
1197 if (arg == NULL)
1198 arg = get_exec_file (1);
1199 target_load (arg, from_tty);
1200 }
1201
1202 /* This version of "load" should be usable for any target. Currently
1203 it is just used for remote targets, not inftarg.c or core files,
1204 on the theory that only in that case is it useful.
1205
1206 Avoiding xmodem and the like seems like a win (a) because we don't have
1207 to worry about finding it, and (b) On VMS, fork() is very slow and so
1208 we don't want to run a subprocess. On the other hand, I'm not sure how
1209 performance compares. */
1210
1211 static int download_write_size = 512;
1212 static int validate_download = 0;
1213
1214 void
1215 generic_load (char *args, int from_tty)
1216 {
1217 asection *s;
1218 bfd *loadfile_bfd;
1219 time_t start_time, end_time; /* Start and end times of download */
1220 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1221 unsigned long write_count = 0; /* Number of writes needed. */
1222 unsigned long load_offset; /* offset to add to vma for each section */
1223 char *filename;
1224 struct cleanup *old_cleanups;
1225 char *offptr;
1226
1227 /* Parse the input argument - the user can specify a load offset as
1228 a second argument. */
1229 filename = xmalloc (strlen (args) + 1);
1230 old_cleanups = make_cleanup (free, filename);
1231 strcpy (filename, args);
1232 offptr = strchr (filename, ' ');
1233 if (offptr != NULL)
1234 {
1235 char *endptr;
1236 load_offset = strtoul (offptr, &endptr, 0);
1237 if (offptr == endptr)
1238 error ("Invalid download offset:%s\n", offptr);
1239 *offptr = '\0';
1240 }
1241 else
1242 load_offset = 0;
1243
1244 /* Open the file for loading. */
1245 loadfile_bfd = bfd_openr (filename, gnutarget);
1246 if (loadfile_bfd == NULL)
1247 {
1248 perror_with_name (filename);
1249 return;
1250 }
1251
1252 /* FIXME: should be checking for errors from bfd_close (for one thing,
1253 on error it does not free all the storage associated with the
1254 bfd). */
1255 make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1256
1257 if (!bfd_check_format (loadfile_bfd, bfd_object))
1258 {
1259 error ("\"%s\" is not an object file: %s", filename,
1260 bfd_errmsg (bfd_get_error ()));
1261 }
1262
1263 start_time = time (NULL);
1264
1265 for (s = loadfile_bfd->sections; s; s = s->next)
1266 {
1267 if (s->flags & SEC_LOAD)
1268 {
1269 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1270 if (size > 0)
1271 {
1272 char *buffer;
1273 struct cleanup *old_chain;
1274 CORE_ADDR lma = s->lma + load_offset;
1275 CORE_ADDR block_size;
1276 int err;
1277 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1278 CORE_ADDR sent;
1279
1280 if (download_write_size > 0 && size > download_write_size)
1281 block_size = download_write_size;
1282 else
1283 block_size = size;
1284
1285 buffer = xmalloc (size);
1286 old_chain = make_cleanup (free, buffer);
1287
1288 /* Is this really necessary? I guess it gives the user something
1289 to look at during a long download. */
1290 fprintf_unfiltered (gdb_stdout,
1291 "Loading section %s, size 0x%s lma 0x%s\n",
1292 sect_name, paddr_nz (size), paddr_nz (lma));
1293
1294 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1295
1296 sent = 0;
1297 do
1298 {
1299 CORE_ADDR len;
1300 CORE_ADDR this_transfer = size - sent;
1301 if (this_transfer >= block_size)
1302 this_transfer = block_size;
1303 len = target_write_memory_partial (lma, buffer,
1304 this_transfer, &err);
1305 if (err)
1306 break;
1307 if (validate_download)
1308 {
1309 /* Broken memories and broken monitors manifest
1310 themselves here when bring new computers to
1311 life. This doubles already slow downloads. */
1312 /* NOTE: cagney/1999-10-18: A more efficient
1313 implementation might add a verify_memory()
1314 method to the target vector and then use
1315 that. remote.c could implement that method
1316 using the ``qCRC'' packet. */
1317 char *check = xmalloc (len);
1318 struct cleanup *verify_cleanups = make_cleanup (free, check);
1319 if (target_read_memory (lma, check, len) != 0)
1320 error ("Download verify read failed at 0x%s",
1321 paddr (lma));
1322 if (memcmp (buffer, check, len) != 0)
1323 error ("Download verify compare failed at 0x%s",
1324 paddr (lma));
1325 do_cleanups (verify_cleanups);
1326 }
1327 data_count += len;
1328 lma += len;
1329 buffer += len;
1330 write_count += 1;
1331 sent += len;
1332 if (quit_flag
1333 || (ui_load_progress_hook != NULL
1334 && ui_load_progress_hook (sect_name, sent)))
1335 error ("Canceled the download");
1336 }
1337 while (sent < size);
1338
1339 if (err != 0)
1340 error ("Memory access error while loading section %s.", sect_name);
1341
1342 do_cleanups (old_chain);
1343 }
1344 }
1345 }
1346
1347 end_time = time (NULL);
1348 {
1349 CORE_ADDR entry;
1350 entry = bfd_get_start_address (loadfile_bfd);
1351 fprintf_unfiltered (gdb_stdout,
1352 "Start address 0x%s , load size %ld\n",
1353 paddr_nz (entry), data_count);
1354 /* We were doing this in remote-mips.c, I suspect it is right
1355 for other targets too. */
1356 write_pc (entry);
1357 }
1358
1359 /* FIXME: are we supposed to call symbol_file_add or not? According to
1360 a comment from remote-mips.c (where a call to symbol_file_add was
1361 commented out), making the call confuses GDB if more than one file is
1362 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1363 does. */
1364
1365 print_transfer_performance (gdb_stdout, data_count, write_count,
1366 end_time - start_time);
1367
1368 do_cleanups (old_cleanups);
1369 }
1370
1371 /* Report how fast the transfer went. */
1372
1373 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1374 replaced by print_transfer_performance (with a very different
1375 function signature). */
1376
1377 void
1378 report_transfer_performance (data_count, start_time, end_time)
1379 unsigned long data_count;
1380 time_t start_time, end_time;
1381 {
1382 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1383 }
1384
1385 void
1386 print_transfer_performance (struct gdb_file *stream,
1387 unsigned long data_count,
1388 unsigned long write_count,
1389 unsigned long time_count)
1390 {
1391 fprintf_unfiltered (stream, "Transfer rate: ");
1392 if (time_count > 0)
1393 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1394 else
1395 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1396 if (write_count > 0)
1397 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1398 fprintf_unfiltered (stream, ".\n");
1399 }
1400
1401 /* This function allows the addition of incrementally linked object files.
1402 It does not modify any state in the target, only in the debugger. */
1403
1404 /* ARGSUSED */
1405 static void
1406 add_symbol_file_command (args, from_tty)
1407 char *args;
1408 int from_tty;
1409 {
1410 char *name = NULL;
1411 CORE_ADDR text_addr;
1412 int flags = OBJF_USERLOADED;
1413 char *arg;
1414 int expecting_option = 0;
1415 int option_index = 0;
1416 int argcnt = 0;
1417 int sec_num = 0;
1418 int i;
1419 struct
1420 {
1421 enum { OPT_SECTION } type;
1422 char *name;
1423 char *value;
1424 } opt[SECT_OFF_MAX];
1425 struct section_addr_info section_addrs;
1426
1427 dont_repeat ();
1428
1429 if (args == NULL)
1430 {
1431 error ("add-symbol-file takes a file name and an address");
1432 }
1433
1434 /* Make a copy of the string that we can safely write into. */
1435
1436 args = strdup (args);
1437 make_cleanup (free, args);
1438
1439 /* Ensure section_addrs is initialized */
1440 memset (&section_addrs, 0, sizeof (section_addrs));
1441
1442 /* Pick off any -option args and the file name. */
1443
1444 while (*args != '\000')
1445 {
1446 while (isspace (*args))
1447 {
1448 args++;
1449 }
1450 arg = args;
1451 while ((*args != '\000') && !isspace (*args))
1452 {
1453 args++;
1454 }
1455 if (*args != '\000')
1456 {
1457 *args++ = '\000';
1458 }
1459 if (*arg != '-')
1460 {
1461 if (expecting_option)
1462 {
1463 opt[option_index++].value = arg;
1464 expecting_option = 0;
1465 }
1466 else
1467 {
1468 switch (argcnt)
1469 {
1470 case 0:
1471 name = arg;
1472 break;
1473 case 1:
1474 opt[option_index].type = OPT_SECTION;
1475 opt[option_index].name = ".text";
1476 opt[option_index++].value = arg;
1477 break;
1478 case 2:
1479 opt[option_index].type = OPT_SECTION;
1480 opt[option_index].name = ".data";
1481 opt[option_index++].value = arg;
1482 break;
1483 case 3:
1484 opt[option_index].type = OPT_SECTION;
1485 opt[option_index].name = ".bss";
1486 opt[option_index++].value = arg;
1487 break;
1488 default:
1489 warning ("Too many arguments entered; see \"help add-symbol-file\" for command syntax.");
1490 }
1491 argcnt++;
1492 }
1493 }
1494 else if (STREQ (arg, "-mapped"))
1495 {
1496 flags |= OBJF_MAPPED;
1497 }
1498 else if (STREQ (arg, "-readnow"))
1499 {
1500 flags |= OBJF_READNOW;
1501 }
1502 else if (STREQN (arg, "-T", 2))
1503 {
1504 if (option_index >= SECT_OFF_MAX)
1505 {
1506 warning ("Number of options exceeds maximum allowed.");
1507 }
1508 else
1509 {
1510 expecting_option = 1;
1511 opt[option_index].type = OPT_SECTION;
1512 opt[option_index].name = arg + 2;
1513 }
1514 }
1515 else
1516 {
1517 error ("Unknown option `%s'", arg);
1518 }
1519 }
1520
1521 if (name == NULL)
1522 {
1523 error ("add-symbol-file takes a file name");
1524 }
1525 name = tilde_expand (name);
1526 make_cleanup (free, name);
1527
1528 if (option_index > 0)
1529 {
1530 /* Print the prompt for the query below.
1531 We have to split this up into 3 print statements because
1532 local_hex_string returns a local static string. */
1533
1534 printf_filtered ("add symbol table from file \"%s\" at\n", name);
1535 for (i = 0; i < option_index; i++)
1536 {
1537 switch (opt[i].type)
1538 {
1539 case OPT_SECTION:
1540 {
1541 CORE_ADDR addr;
1542 char *val = opt[i].value;
1543 char *sec = opt[i].name;
1544
1545 val = opt[i].value;
1546 if (val[0] == '0' && val[1] == 'x')
1547 addr = strtoul (val+2, NULL, 16);
1548 else
1549 addr = strtoul (val, NULL, 10);
1550
1551 if (strcmp (sec, ".text") == 0)
1552 section_addrs.text_addr = addr;
1553 else if (strcmp (sec, ".data") == 0)
1554 section_addrs.data_addr = addr;
1555 else if (strcmp (sec, ".bss") == 0)
1556 section_addrs.bss_addr = addr;
1557 /* Add the section to the others even if it is a
1558 text data or bss section. This is redundent but
1559 eventually, none will be given special treatment */
1560 {
1561 section_addrs.other[sec_num].name = strdup (sec);
1562 make_cleanup (free, section_addrs.other[sec_num].name);
1563 section_addrs.other[sec_num++].addr = addr;
1564 printf_filtered ("\t%s_addr = %s\n",
1565 sec,
1566 local_hex_string ((unsigned long)addr));
1567 }
1568
1569 /* The object's sections are initialized when a
1570 call is made to build_objfile_section_table (objfile).
1571 This happens in reread_symbols.
1572 At this point, we don't know what file type this is,
1573 so we can't determine what section names are valid. */
1574 }
1575 break;
1576 default:
1577 complain (&unknown_option_complaint, opt[i].name);
1578 }
1579 }
1580 /* Eventually, these hard coded names will be obsolete */
1581 /* All the addresses will be on the others section */
1582 }
1583 else
1584 {
1585 CORE_ADDR text_addr;
1586 target_link (name, &text_addr);
1587 if (text_addr == (CORE_ADDR) -1)
1588 error("Don't know how to get text start location for this file");
1589 section_addrs.text_addr = text_addr;
1590 section_addrs.data_addr = 0;
1591 section_addrs.bss_addr = 0;
1592 printf_filtered("add symbol table from file \"%s\" at text_addr = %s?\n",
1593 name, local_hex_string ((unsigned long)text_addr));
1594 }
1595 if (from_tty && (!query ("%s", "")))
1596 error ("Not confirmed.");
1597
1598 symbol_file_add (name, from_tty, &section_addrs, 0, flags);
1599
1600 /* Getting new symbols may change our opinion about what is
1601 frameless. */
1602 reinit_frame_cache ();
1603 }
1604 \f
1605 static void
1606 add_shared_symbol_files_command (args, from_tty)
1607 char *args;
1608 int from_tty;
1609 {
1610 #ifdef ADD_SHARED_SYMBOL_FILES
1611 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1612 #else
1613 error ("This command is not available in this configuration of GDB.");
1614 #endif
1615 }
1616 \f
1617 /* Re-read symbols if a symbol-file has changed. */
1618 void
1619 reread_symbols ()
1620 {
1621 struct objfile *objfile;
1622 long new_modtime;
1623 int reread_one = 0;
1624 struct stat new_statbuf;
1625 int res;
1626
1627 /* With the addition of shared libraries, this should be modified,
1628 the load time should be saved in the partial symbol tables, since
1629 different tables may come from different source files. FIXME.
1630 This routine should then walk down each partial symbol table
1631 and see if the symbol table that it originates from has been changed */
1632
1633 for (objfile = object_files; objfile; objfile = objfile->next)
1634 {
1635 if (objfile->obfd)
1636 {
1637 #ifdef IBM6000_TARGET
1638 /* If this object is from a shared library, then you should
1639 stat on the library name, not member name. */
1640
1641 if (objfile->obfd->my_archive)
1642 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1643 else
1644 #endif
1645 res = stat (objfile->name, &new_statbuf);
1646 if (res != 0)
1647 {
1648 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1649 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1650 objfile->name);
1651 continue;
1652 }
1653 new_modtime = new_statbuf.st_mtime;
1654 if (new_modtime != objfile->mtime)
1655 {
1656 struct cleanup *old_cleanups;
1657 struct section_offsets *offsets;
1658 int num_offsets;
1659 char *obfd_filename;
1660
1661 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1662 objfile->name);
1663
1664 /* There are various functions like symbol_file_add,
1665 symfile_bfd_open, syms_from_objfile, etc., which might
1666 appear to do what we want. But they have various other
1667 effects which we *don't* want. So we just do stuff
1668 ourselves. We don't worry about mapped files (for one thing,
1669 any mapped file will be out of date). */
1670
1671 /* If we get an error, blow away this objfile (not sure if
1672 that is the correct response for things like shared
1673 libraries). */
1674 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1675 objfile);
1676 /* We need to do this whenever any symbols go away. */
1677 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1678
1679 /* Clean up any state BFD has sitting around. We don't need
1680 to close the descriptor but BFD lacks a way of closing the
1681 BFD without closing the descriptor. */
1682 obfd_filename = bfd_get_filename (objfile->obfd);
1683 if (!bfd_close (objfile->obfd))
1684 error ("Can't close BFD for %s: %s", objfile->name,
1685 bfd_errmsg (bfd_get_error ()));
1686 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1687 if (objfile->obfd == NULL)
1688 error ("Can't open %s to read symbols.", objfile->name);
1689 /* bfd_openr sets cacheable to true, which is what we want. */
1690 if (!bfd_check_format (objfile->obfd, bfd_object))
1691 error ("Can't read symbols from %s: %s.", objfile->name,
1692 bfd_errmsg (bfd_get_error ()));
1693
1694 /* Save the offsets, we will nuke them with the rest of the
1695 psymbol_obstack. */
1696 num_offsets = objfile->num_sections;
1697 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1698 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1699
1700 /* Nuke all the state that we will re-read. Much of the following
1701 code which sets things to NULL really is necessary to tell
1702 other parts of GDB that there is nothing currently there. */
1703
1704 /* FIXME: Do we have to free a whole linked list, or is this
1705 enough? */
1706 if (objfile->global_psymbols.list)
1707 mfree (objfile->md, objfile->global_psymbols.list);
1708 memset (&objfile->global_psymbols, 0,
1709 sizeof (objfile->global_psymbols));
1710 if (objfile->static_psymbols.list)
1711 mfree (objfile->md, objfile->static_psymbols.list);
1712 memset (&objfile->static_psymbols, 0,
1713 sizeof (objfile->static_psymbols));
1714
1715 /* Free the obstacks for non-reusable objfiles */
1716 obstack_free (&objfile->psymbol_cache.cache, 0);
1717 memset (&objfile->psymbol_cache, 0,
1718 sizeof (objfile->psymbol_cache));
1719 obstack_free (&objfile->psymbol_obstack, 0);
1720 obstack_free (&objfile->symbol_obstack, 0);
1721 obstack_free (&objfile->type_obstack, 0);
1722 objfile->sections = NULL;
1723 objfile->symtabs = NULL;
1724 objfile->psymtabs = NULL;
1725 objfile->free_psymtabs = NULL;
1726 objfile->msymbols = NULL;
1727 objfile->minimal_symbol_count = 0;
1728 objfile->fundamental_types = NULL;
1729 if (objfile->sf != NULL)
1730 {
1731 (*objfile->sf->sym_finish) (objfile);
1732 }
1733
1734 /* We never make this a mapped file. */
1735 objfile->md = NULL;
1736 /* obstack_specify_allocation also initializes the obstack so
1737 it is empty. */
1738 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1739 xmalloc, free);
1740 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1741 xmalloc, free);
1742 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1743 xmalloc, free);
1744 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1745 xmalloc, free);
1746 if (build_objfile_section_table (objfile))
1747 {
1748 error ("Can't find the file sections in `%s': %s",
1749 objfile->name, bfd_errmsg (bfd_get_error ()));
1750 }
1751
1752 /* We use the same section offsets as from last time. I'm not
1753 sure whether that is always correct for shared libraries. */
1754 objfile->section_offsets = (struct section_offsets *)
1755 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1756 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1757 objfile->num_sections = num_offsets;
1758
1759 /* What the hell is sym_new_init for, anyway? The concept of
1760 distinguishing between the main file and additional files
1761 in this way seems rather dubious. */
1762 if (objfile == symfile_objfile)
1763 {
1764 (*objfile->sf->sym_new_init) (objfile);
1765 #ifdef HPUXHPPA
1766 RESET_HP_UX_GLOBALS ();
1767 #endif
1768 }
1769
1770 (*objfile->sf->sym_init) (objfile);
1771 clear_complaints (1, 1);
1772 /* The "mainline" parameter is a hideous hack; I think leaving it
1773 zero is OK since dbxread.c also does what it needs to do if
1774 objfile->global_psymbols.size is 0. */
1775 (*objfile->sf->sym_read) (objfile, 0);
1776 if (!have_partial_symbols () && !have_full_symbols ())
1777 {
1778 wrap_here ("");
1779 printf_filtered ("(no debugging symbols found)\n");
1780 wrap_here ("");
1781 }
1782 objfile->flags |= OBJF_SYMS;
1783
1784 /* We're done reading the symbol file; finish off complaints. */
1785 clear_complaints (0, 1);
1786
1787 /* Getting new symbols may change our opinion about what is
1788 frameless. */
1789
1790 reinit_frame_cache ();
1791
1792 /* Discard cleanups as symbol reading was successful. */
1793 discard_cleanups (old_cleanups);
1794
1795 /* If the mtime has changed between the time we set new_modtime
1796 and now, we *want* this to be out of date, so don't call stat
1797 again now. */
1798 objfile->mtime = new_modtime;
1799 reread_one = 1;
1800
1801 /* Call this after reading in a new symbol table to give target
1802 dependant code a crack at the new symbols. For instance, this
1803 could be used to update the values of target-specific symbols GDB
1804 needs to keep track of (such as _sigtramp, or whatever). */
1805
1806 TARGET_SYMFILE_POSTREAD (objfile);
1807 }
1808 }
1809 }
1810
1811 if (reread_one)
1812 clear_symtab_users ();
1813 }
1814 \f
1815
1816
1817 typedef struct
1818 {
1819 char *ext;
1820 enum language lang;
1821 }
1822 filename_language;
1823
1824 static filename_language *filename_language_table;
1825 static int fl_table_size, fl_table_next;
1826
1827 static void
1828 add_filename_language (ext, lang)
1829 char *ext;
1830 enum language lang;
1831 {
1832 if (fl_table_next >= fl_table_size)
1833 {
1834 fl_table_size += 10;
1835 filename_language_table = realloc (filename_language_table,
1836 fl_table_size);
1837 }
1838
1839 filename_language_table[fl_table_next].ext = strsave (ext);
1840 filename_language_table[fl_table_next].lang = lang;
1841 fl_table_next++;
1842 }
1843
1844 static char *ext_args;
1845
1846 static void
1847 set_ext_lang_command (args, from_tty)
1848 char *args;
1849 int from_tty;
1850 {
1851 int i;
1852 char *cp = ext_args;
1853 enum language lang;
1854
1855 /* First arg is filename extension, starting with '.' */
1856 if (*cp != '.')
1857 error ("'%s': Filename extension must begin with '.'", ext_args);
1858
1859 /* Find end of first arg. */
1860 while (*cp && !isspace (*cp))
1861 cp++;
1862
1863 if (*cp == '\0')
1864 error ("'%s': two arguments required -- filename extension and language",
1865 ext_args);
1866
1867 /* Null-terminate first arg */
1868 *cp++ = '\0';
1869
1870 /* Find beginning of second arg, which should be a source language. */
1871 while (*cp && isspace (*cp))
1872 cp++;
1873
1874 if (*cp == '\0')
1875 error ("'%s': two arguments required -- filename extension and language",
1876 ext_args);
1877
1878 /* Lookup the language from among those we know. */
1879 lang = language_enum (cp);
1880
1881 /* Now lookup the filename extension: do we already know it? */
1882 for (i = 0; i < fl_table_next; i++)
1883 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1884 break;
1885
1886 if (i >= fl_table_next)
1887 {
1888 /* new file extension */
1889 add_filename_language (ext_args, lang);
1890 }
1891 else
1892 {
1893 /* redefining a previously known filename extension */
1894
1895 /* if (from_tty) */
1896 /* query ("Really make files of type %s '%s'?", */
1897 /* ext_args, language_str (lang)); */
1898
1899 free (filename_language_table[i].ext);
1900 filename_language_table[i].ext = strsave (ext_args);
1901 filename_language_table[i].lang = lang;
1902 }
1903 }
1904
1905 static void
1906 info_ext_lang_command (args, from_tty)
1907 char *args;
1908 int from_tty;
1909 {
1910 int i;
1911
1912 printf_filtered ("Filename extensions and the languages they represent:");
1913 printf_filtered ("\n\n");
1914 for (i = 0; i < fl_table_next; i++)
1915 printf_filtered ("\t%s\t- %s\n",
1916 filename_language_table[i].ext,
1917 language_str (filename_language_table[i].lang));
1918 }
1919
1920 static void
1921 init_filename_language_table ()
1922 {
1923 if (fl_table_size == 0) /* protect against repetition */
1924 {
1925 fl_table_size = 20;
1926 fl_table_next = 0;
1927 filename_language_table =
1928 xmalloc (fl_table_size * sizeof (*filename_language_table));
1929 add_filename_language (".c", language_c);
1930 add_filename_language (".C", language_cplus);
1931 add_filename_language (".cc", language_cplus);
1932 add_filename_language (".cp", language_cplus);
1933 add_filename_language (".cpp", language_cplus);
1934 add_filename_language (".cxx", language_cplus);
1935 add_filename_language (".c++", language_cplus);
1936 add_filename_language (".java", language_java);
1937 add_filename_language (".class", language_java);
1938 add_filename_language (".ch", language_chill);
1939 add_filename_language (".c186", language_chill);
1940 add_filename_language (".c286", language_chill);
1941 add_filename_language (".f", language_fortran);
1942 add_filename_language (".F", language_fortran);
1943 add_filename_language (".s", language_asm);
1944 add_filename_language (".S", language_asm);
1945 }
1946 }
1947
1948 enum language
1949 deduce_language_from_filename (filename)
1950 char *filename;
1951 {
1952 int i;
1953 char *cp;
1954
1955 if (filename != NULL)
1956 if ((cp = strrchr (filename, '.')) != NULL)
1957 for (i = 0; i < fl_table_next; i++)
1958 if (strcmp (cp, filename_language_table[i].ext) == 0)
1959 return filename_language_table[i].lang;
1960
1961 return language_unknown;
1962 }
1963 \f
1964 /* allocate_symtab:
1965
1966 Allocate and partly initialize a new symbol table. Return a pointer
1967 to it. error() if no space.
1968
1969 Caller must set these fields:
1970 LINETABLE(symtab)
1971 symtab->blockvector
1972 symtab->dirname
1973 symtab->free_code
1974 symtab->free_ptr
1975 possibly free_named_symtabs (symtab->filename);
1976 */
1977
1978 struct symtab *
1979 allocate_symtab (filename, objfile)
1980 char *filename;
1981 struct objfile *objfile;
1982 {
1983 register struct symtab *symtab;
1984
1985 symtab = (struct symtab *)
1986 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1987 memset (symtab, 0, sizeof (*symtab));
1988 symtab->filename = obsavestring (filename, strlen (filename),
1989 &objfile->symbol_obstack);
1990 symtab->fullname = NULL;
1991 symtab->language = deduce_language_from_filename (filename);
1992 symtab->debugformat = obsavestring ("unknown", 7,
1993 &objfile->symbol_obstack);
1994
1995 /* Hook it to the objfile it comes from */
1996
1997 symtab->objfile = objfile;
1998 symtab->next = objfile->symtabs;
1999 objfile->symtabs = symtab;
2000
2001 /* FIXME: This should go away. It is only defined for the Z8000,
2002 and the Z8000 definition of this macro doesn't have anything to
2003 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2004 here for convenience. */
2005 #ifdef INIT_EXTRA_SYMTAB_INFO
2006 INIT_EXTRA_SYMTAB_INFO (symtab);
2007 #endif
2008
2009 return (symtab);
2010 }
2011
2012 struct partial_symtab *
2013 allocate_psymtab (filename, objfile)
2014 char *filename;
2015 struct objfile *objfile;
2016 {
2017 struct partial_symtab *psymtab;
2018
2019 if (objfile->free_psymtabs)
2020 {
2021 psymtab = objfile->free_psymtabs;
2022 objfile->free_psymtabs = psymtab->next;
2023 }
2024 else
2025 psymtab = (struct partial_symtab *)
2026 obstack_alloc (&objfile->psymbol_obstack,
2027 sizeof (struct partial_symtab));
2028
2029 memset (psymtab, 0, sizeof (struct partial_symtab));
2030 psymtab->filename = obsavestring (filename, strlen (filename),
2031 &objfile->psymbol_obstack);
2032 psymtab->symtab = NULL;
2033
2034 /* Prepend it to the psymtab list for the objfile it belongs to.
2035 Psymtabs are searched in most recent inserted -> least recent
2036 inserted order. */
2037
2038 psymtab->objfile = objfile;
2039 psymtab->next = objfile->psymtabs;
2040 objfile->psymtabs = psymtab;
2041 #if 0
2042 {
2043 struct partial_symtab **prev_pst;
2044 psymtab->objfile = objfile;
2045 psymtab->next = NULL;
2046 prev_pst = &(objfile->psymtabs);
2047 while ((*prev_pst) != NULL)
2048 prev_pst = &((*prev_pst)->next);
2049 (*prev_pst) = psymtab;
2050 }
2051 #endif
2052
2053 return (psymtab);
2054 }
2055
2056 void
2057 discard_psymtab (pst)
2058 struct partial_symtab *pst;
2059 {
2060 struct partial_symtab **prev_pst;
2061
2062 /* From dbxread.c:
2063 Empty psymtabs happen as a result of header files which don't
2064 have any symbols in them. There can be a lot of them. But this
2065 check is wrong, in that a psymtab with N_SLINE entries but
2066 nothing else is not empty, but we don't realize that. Fixing
2067 that without slowing things down might be tricky. */
2068
2069 /* First, snip it out of the psymtab chain */
2070
2071 prev_pst = &(pst->objfile->psymtabs);
2072 while ((*prev_pst) != pst)
2073 prev_pst = &((*prev_pst)->next);
2074 (*prev_pst) = pst->next;
2075
2076 /* Next, put it on a free list for recycling */
2077
2078 pst->next = pst->objfile->free_psymtabs;
2079 pst->objfile->free_psymtabs = pst;
2080 }
2081 \f
2082
2083 /* Reset all data structures in gdb which may contain references to symbol
2084 table data. */
2085
2086 void
2087 clear_symtab_users ()
2088 {
2089 /* Someday, we should do better than this, by only blowing away
2090 the things that really need to be blown. */
2091 clear_value_history ();
2092 clear_displays ();
2093 clear_internalvars ();
2094 breakpoint_re_set ();
2095 set_default_breakpoint (0, 0, 0, 0);
2096 current_source_symtab = 0;
2097 current_source_line = 0;
2098 clear_pc_function_cache ();
2099 target_new_objfile (NULL);
2100 }
2101
2102 /* clear_symtab_users_once:
2103
2104 This function is run after symbol reading, or from a cleanup.
2105 If an old symbol table was obsoleted, the old symbol table
2106 has been blown away, but the other GDB data structures that may
2107 reference it have not yet been cleared or re-directed. (The old
2108 symtab was zapped, and the cleanup queued, in free_named_symtab()
2109 below.)
2110
2111 This function can be queued N times as a cleanup, or called
2112 directly; it will do all the work the first time, and then will be a
2113 no-op until the next time it is queued. This works by bumping a
2114 counter at queueing time. Much later when the cleanup is run, or at
2115 the end of symbol processing (in case the cleanup is discarded), if
2116 the queued count is greater than the "done-count", we do the work
2117 and set the done-count to the queued count. If the queued count is
2118 less than or equal to the done-count, we just ignore the call. This
2119 is needed because reading a single .o file will often replace many
2120 symtabs (one per .h file, for example), and we don't want to reset
2121 the breakpoints N times in the user's face.
2122
2123 The reason we both queue a cleanup, and call it directly after symbol
2124 reading, is because the cleanup protects us in case of errors, but is
2125 discarded if symbol reading is successful. */
2126
2127 #if 0
2128 /* FIXME: As free_named_symtabs is currently a big noop this function
2129 is no longer needed. */
2130 static void
2131 clear_symtab_users_once PARAMS ((void));
2132
2133 static int clear_symtab_users_queued;
2134 static int clear_symtab_users_done;
2135
2136 static void
2137 clear_symtab_users_once ()
2138 {
2139 /* Enforce once-per-`do_cleanups'-semantics */
2140 if (clear_symtab_users_queued <= clear_symtab_users_done)
2141 return;
2142 clear_symtab_users_done = clear_symtab_users_queued;
2143
2144 clear_symtab_users ();
2145 }
2146 #endif
2147
2148 /* Delete the specified psymtab, and any others that reference it. */
2149
2150 static void
2151 cashier_psymtab (pst)
2152 struct partial_symtab *pst;
2153 {
2154 struct partial_symtab *ps, *pprev = NULL;
2155 int i;
2156
2157 /* Find its previous psymtab in the chain */
2158 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2159 {
2160 if (ps == pst)
2161 break;
2162 pprev = ps;
2163 }
2164
2165 if (ps)
2166 {
2167 /* Unhook it from the chain. */
2168 if (ps == pst->objfile->psymtabs)
2169 pst->objfile->psymtabs = ps->next;
2170 else
2171 pprev->next = ps->next;
2172
2173 /* FIXME, we can't conveniently deallocate the entries in the
2174 partial_symbol lists (global_psymbols/static_psymbols) that
2175 this psymtab points to. These just take up space until all
2176 the psymtabs are reclaimed. Ditto the dependencies list and
2177 filename, which are all in the psymbol_obstack. */
2178
2179 /* We need to cashier any psymtab that has this one as a dependency... */
2180 again:
2181 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2182 {
2183 for (i = 0; i < ps->number_of_dependencies; i++)
2184 {
2185 if (ps->dependencies[i] == pst)
2186 {
2187 cashier_psymtab (ps);
2188 goto again; /* Must restart, chain has been munged. */
2189 }
2190 }
2191 }
2192 }
2193 }
2194
2195 /* If a symtab or psymtab for filename NAME is found, free it along
2196 with any dependent breakpoints, displays, etc.
2197 Used when loading new versions of object modules with the "add-file"
2198 command. This is only called on the top-level symtab or psymtab's name;
2199 it is not called for subsidiary files such as .h files.
2200
2201 Return value is 1 if we blew away the environment, 0 if not.
2202 FIXME. The return valu appears to never be used.
2203
2204 FIXME. I think this is not the best way to do this. We should
2205 work on being gentler to the environment while still cleaning up
2206 all stray pointers into the freed symtab. */
2207
2208 int
2209 free_named_symtabs (name)
2210 char *name;
2211 {
2212 #if 0
2213 /* FIXME: With the new method of each objfile having it's own
2214 psymtab list, this function needs serious rethinking. In particular,
2215 why was it ever necessary to toss psymtabs with specific compilation
2216 unit filenames, as opposed to all psymtabs from a particular symbol
2217 file? -- fnf
2218 Well, the answer is that some systems permit reloading of particular
2219 compilation units. We want to blow away any old info about these
2220 compilation units, regardless of which objfiles they arrived in. --gnu. */
2221
2222 register struct symtab *s;
2223 register struct symtab *prev;
2224 register struct partial_symtab *ps;
2225 struct blockvector *bv;
2226 int blewit = 0;
2227
2228 /* We only wack things if the symbol-reload switch is set. */
2229 if (!symbol_reloading)
2230 return 0;
2231
2232 /* Some symbol formats have trouble providing file names... */
2233 if (name == 0 || *name == '\0')
2234 return 0;
2235
2236 /* Look for a psymtab with the specified name. */
2237
2238 again2:
2239 for (ps = partial_symtab_list; ps; ps = ps->next)
2240 {
2241 if (STREQ (name, ps->filename))
2242 {
2243 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2244 goto again2; /* Must restart, chain has been munged */
2245 }
2246 }
2247
2248 /* Look for a symtab with the specified name. */
2249
2250 for (s = symtab_list; s; s = s->next)
2251 {
2252 if (STREQ (name, s->filename))
2253 break;
2254 prev = s;
2255 }
2256
2257 if (s)
2258 {
2259 if (s == symtab_list)
2260 symtab_list = s->next;
2261 else
2262 prev->next = s->next;
2263
2264 /* For now, queue a delete for all breakpoints, displays, etc., whether
2265 or not they depend on the symtab being freed. This should be
2266 changed so that only those data structures affected are deleted. */
2267
2268 /* But don't delete anything if the symtab is empty.
2269 This test is necessary due to a bug in "dbxread.c" that
2270 causes empty symtabs to be created for N_SO symbols that
2271 contain the pathname of the object file. (This problem
2272 has been fixed in GDB 3.9x). */
2273
2274 bv = BLOCKVECTOR (s);
2275 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2276 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2277 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2278 {
2279 complain (&oldsyms_complaint, name);
2280
2281 clear_symtab_users_queued++;
2282 make_cleanup (clear_symtab_users_once, 0);
2283 blewit = 1;
2284 }
2285 else
2286 {
2287 complain (&empty_symtab_complaint, name);
2288 }
2289
2290 free_symtab (s);
2291 }
2292 else
2293 {
2294 /* It is still possible that some breakpoints will be affected
2295 even though no symtab was found, since the file might have
2296 been compiled without debugging, and hence not be associated
2297 with a symtab. In order to handle this correctly, we would need
2298 to keep a list of text address ranges for undebuggable files.
2299 For now, we do nothing, since this is a fairly obscure case. */
2300 ;
2301 }
2302
2303 /* FIXME, what about the minimal symbol table? */
2304 return blewit;
2305 #else
2306 return (0);
2307 #endif
2308 }
2309 \f
2310 /* Allocate and partially fill a partial symtab. It will be
2311 completely filled at the end of the symbol list.
2312
2313 FILENAME is the name of the symbol-file we are reading from. */
2314
2315 struct partial_symtab *
2316 start_psymtab_common (objfile, section_offsets,
2317 filename, textlow, global_syms, static_syms)
2318 struct objfile *objfile;
2319 struct section_offsets *section_offsets;
2320 char *filename;
2321 CORE_ADDR textlow;
2322 struct partial_symbol **global_syms;
2323 struct partial_symbol **static_syms;
2324 {
2325 struct partial_symtab *psymtab;
2326
2327 psymtab = allocate_psymtab (filename, objfile);
2328 psymtab->section_offsets = section_offsets;
2329 psymtab->textlow = textlow;
2330 psymtab->texthigh = psymtab->textlow; /* default */
2331 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2332 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2333 return (psymtab);
2334 }
2335 \f
2336 /* Add a symbol with a long value to a psymtab.
2337 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2338
2339 void
2340 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2341 language, objfile)
2342 char *name;
2343 int namelength;
2344 namespace_enum namespace;
2345 enum address_class class;
2346 struct psymbol_allocation_list *list;
2347 long val; /* Value as a long */
2348 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2349 enum language language;
2350 struct objfile *objfile;
2351 {
2352 register struct partial_symbol *psym;
2353 char *buf = alloca (namelength + 1);
2354 /* psymbol is static so that there will be no uninitialized gaps in the
2355 structure which might contain random data, causing cache misses in
2356 bcache. */
2357 static struct partial_symbol psymbol;
2358
2359 /* Create local copy of the partial symbol */
2360 memcpy (buf, name, namelength);
2361 buf[namelength] = '\0';
2362 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2363 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2364 if (val != 0)
2365 {
2366 SYMBOL_VALUE (&psymbol) = val;
2367 }
2368 else
2369 {
2370 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2371 }
2372 SYMBOL_SECTION (&psymbol) = 0;
2373 SYMBOL_LANGUAGE (&psymbol) = language;
2374 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2375 PSYMBOL_CLASS (&psymbol) = class;
2376 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2377
2378 /* Stash the partial symbol away in the cache */
2379 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2380
2381 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2382 if (list->next >= list->list + list->size)
2383 {
2384 extend_psymbol_list (list, objfile);
2385 }
2386 *list->next++ = psym;
2387 OBJSTAT (objfile, n_psyms++);
2388 }
2389
2390 /* Add a symbol with a long value to a psymtab. This differs from
2391 * add_psymbol_to_list above in taking both a mangled and a demangled
2392 * name. */
2393
2394 void
2395 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2396 namespace, class, list, val, coreaddr, language, objfile)
2397 char *name;
2398 int namelength;
2399 char *dem_name;
2400 int dem_namelength;
2401 namespace_enum namespace;
2402 enum address_class class;
2403 struct psymbol_allocation_list *list;
2404 long val; /* Value as a long */
2405 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2406 enum language language;
2407 struct objfile *objfile;
2408 {
2409 register struct partial_symbol *psym;
2410 char *buf = alloca (namelength + 1);
2411 /* psymbol is static so that there will be no uninitialized gaps in the
2412 structure which might contain random data, causing cache misses in
2413 bcache. */
2414 static struct partial_symbol psymbol;
2415
2416 /* Create local copy of the partial symbol */
2417
2418 memcpy (buf, name, namelength);
2419 buf[namelength] = '\0';
2420 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2421
2422 buf = alloca (dem_namelength + 1);
2423 memcpy (buf, dem_name, dem_namelength);
2424 buf[dem_namelength] = '\0';
2425
2426 switch (language)
2427 {
2428 case language_c:
2429 case language_cplus:
2430 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2431 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2432 break;
2433 case language_chill:
2434 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2435 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2436
2437 /* FIXME What should be done for the default case? Ignoring for now. */
2438 }
2439
2440 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2441 if (val != 0)
2442 {
2443 SYMBOL_VALUE (&psymbol) = val;
2444 }
2445 else
2446 {
2447 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2448 }
2449 SYMBOL_SECTION (&psymbol) = 0;
2450 SYMBOL_LANGUAGE (&psymbol) = language;
2451 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2452 PSYMBOL_CLASS (&psymbol) = class;
2453 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2454
2455 /* Stash the partial symbol away in the cache */
2456 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2457
2458 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2459 if (list->next >= list->list + list->size)
2460 {
2461 extend_psymbol_list (list, objfile);
2462 }
2463 *list->next++ = psym;
2464 OBJSTAT (objfile, n_psyms++);
2465 }
2466
2467 /* Initialize storage for partial symbols. */
2468
2469 void
2470 init_psymbol_list (objfile, total_symbols)
2471 struct objfile *objfile;
2472 int total_symbols;
2473 {
2474 /* Free any previously allocated psymbol lists. */
2475
2476 if (objfile->global_psymbols.list)
2477 {
2478 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2479 }
2480 if (objfile->static_psymbols.list)
2481 {
2482 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2483 }
2484
2485 /* Current best guess is that approximately a twentieth
2486 of the total symbols (in a debugging file) are global or static
2487 oriented symbols */
2488
2489 objfile->global_psymbols.size = total_symbols / 10;
2490 objfile->static_psymbols.size = total_symbols / 10;
2491
2492 if (objfile->global_psymbols.size > 0)
2493 {
2494 objfile->global_psymbols.next =
2495 objfile->global_psymbols.list = (struct partial_symbol **)
2496 xmmalloc (objfile->md, (objfile->global_psymbols.size
2497 * sizeof (struct partial_symbol *)));
2498 }
2499 if (objfile->static_psymbols.size > 0)
2500 {
2501 objfile->static_psymbols.next =
2502 objfile->static_psymbols.list = (struct partial_symbol **)
2503 xmmalloc (objfile->md, (objfile->static_psymbols.size
2504 * sizeof (struct partial_symbol *)));
2505 }
2506 }
2507
2508 /* OVERLAYS:
2509 The following code implements an abstraction for debugging overlay sections.
2510
2511 The target model is as follows:
2512 1) The gnu linker will permit multiple sections to be mapped into the
2513 same VMA, each with its own unique LMA (or load address).
2514 2) It is assumed that some runtime mechanism exists for mapping the
2515 sections, one by one, from the load address into the VMA address.
2516 3) This code provides a mechanism for gdb to keep track of which
2517 sections should be considered to be mapped from the VMA to the LMA.
2518 This information is used for symbol lookup, and memory read/write.
2519 For instance, if a section has been mapped then its contents
2520 should be read from the VMA, otherwise from the LMA.
2521
2522 Two levels of debugger support for overlays are available. One is
2523 "manual", in which the debugger relies on the user to tell it which
2524 overlays are currently mapped. This level of support is
2525 implemented entirely in the core debugger, and the information about
2526 whether a section is mapped is kept in the objfile->obj_section table.
2527
2528 The second level of support is "automatic", and is only available if
2529 the target-specific code provides functionality to read the target's
2530 overlay mapping table, and translate its contents for the debugger
2531 (by updating the mapped state information in the obj_section tables).
2532
2533 The interface is as follows:
2534 User commands:
2535 overlay map <name> -- tell gdb to consider this section mapped
2536 overlay unmap <name> -- tell gdb to consider this section unmapped
2537 overlay list -- list the sections that GDB thinks are mapped
2538 overlay read-target -- get the target's state of what's mapped
2539 overlay off/manual/auto -- set overlay debugging state
2540 Functional interface:
2541 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2542 section, return that section.
2543 find_pc_overlay(pc): find any overlay section that contains
2544 the pc, either in its VMA or its LMA
2545 overlay_is_mapped(sect): true if overlay is marked as mapped
2546 section_is_overlay(sect): true if section's VMA != LMA
2547 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2548 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2549 overlay_mapped_address(...): map an address from section's LMA to VMA
2550 overlay_unmapped_address(...): map an address from section's VMA to LMA
2551 symbol_overlayed_address(...): Return a "current" address for symbol:
2552 either in VMA or LMA depending on whether
2553 the symbol's section is currently mapped
2554 */
2555
2556 /* Overlay debugging state: */
2557
2558 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2559 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2560
2561 /* Target vector for refreshing overlay mapped state */
2562 static void simple_overlay_update PARAMS ((struct obj_section *));
2563 void (*target_overlay_update) PARAMS ((struct obj_section *))
2564 = simple_overlay_update;
2565
2566 /* Function: section_is_overlay (SECTION)
2567 Returns true if SECTION has VMA not equal to LMA, ie.
2568 SECTION is loaded at an address different from where it will "run". */
2569
2570 int
2571 section_is_overlay (section)
2572 asection *section;
2573 {
2574 if (overlay_debugging)
2575 if (section && section->lma != 0 &&
2576 section->vma != section->lma)
2577 return 1;
2578
2579 return 0;
2580 }
2581
2582 /* Function: overlay_invalidate_all (void)
2583 Invalidate the mapped state of all overlay sections (mark it as stale). */
2584
2585 static void
2586 overlay_invalidate_all ()
2587 {
2588 struct objfile *objfile;
2589 struct obj_section *sect;
2590
2591 ALL_OBJSECTIONS (objfile, sect)
2592 if (section_is_overlay (sect->the_bfd_section))
2593 sect->ovly_mapped = -1;
2594 }
2595
2596 /* Function: overlay_is_mapped (SECTION)
2597 Returns true if section is an overlay, and is currently mapped.
2598 Private: public access is thru function section_is_mapped.
2599
2600 Access to the ovly_mapped flag is restricted to this function, so
2601 that we can do automatic update. If the global flag
2602 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2603 overlay_invalidate_all. If the mapped state of the particular
2604 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2605
2606 static int
2607 overlay_is_mapped (osect)
2608 struct obj_section *osect;
2609 {
2610 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2611 return 0;
2612
2613 switch (overlay_debugging)
2614 {
2615 default:
2616 case 0:
2617 return 0; /* overlay debugging off */
2618 case -1: /* overlay debugging automatic */
2619 /* Unles there is a target_overlay_update function,
2620 there's really nothing useful to do here (can't really go auto) */
2621 if (target_overlay_update)
2622 {
2623 if (overlay_cache_invalid)
2624 {
2625 overlay_invalidate_all ();
2626 overlay_cache_invalid = 0;
2627 }
2628 if (osect->ovly_mapped == -1)
2629 (*target_overlay_update) (osect);
2630 }
2631 /* fall thru to manual case */
2632 case 1: /* overlay debugging manual */
2633 return osect->ovly_mapped == 1;
2634 }
2635 }
2636
2637 /* Function: section_is_mapped
2638 Returns true if section is an overlay, and is currently mapped. */
2639
2640 int
2641 section_is_mapped (section)
2642 asection *section;
2643 {
2644 struct objfile *objfile;
2645 struct obj_section *osect;
2646
2647 if (overlay_debugging)
2648 if (section && section_is_overlay (section))
2649 ALL_OBJSECTIONS (objfile, osect)
2650 if (osect->the_bfd_section == section)
2651 return overlay_is_mapped (osect);
2652
2653 return 0;
2654 }
2655
2656 /* Function: pc_in_unmapped_range
2657 If PC falls into the lma range of SECTION, return true, else false. */
2658
2659 CORE_ADDR
2660 pc_in_unmapped_range (pc, section)
2661 CORE_ADDR pc;
2662 asection *section;
2663 {
2664 int size;
2665
2666 if (overlay_debugging)
2667 if (section && section_is_overlay (section))
2668 {
2669 size = bfd_get_section_size_before_reloc (section);
2670 if (section->lma <= pc && pc < section->lma + size)
2671 return 1;
2672 }
2673 return 0;
2674 }
2675
2676 /* Function: pc_in_mapped_range
2677 If PC falls into the vma range of SECTION, return true, else false. */
2678
2679 CORE_ADDR
2680 pc_in_mapped_range (pc, section)
2681 CORE_ADDR pc;
2682 asection *section;
2683 {
2684 int size;
2685
2686 if (overlay_debugging)
2687 if (section && section_is_overlay (section))
2688 {
2689 size = bfd_get_section_size_before_reloc (section);
2690 if (section->vma <= pc && pc < section->vma + size)
2691 return 1;
2692 }
2693 return 0;
2694 }
2695
2696 /* Function: overlay_unmapped_address (PC, SECTION)
2697 Returns the address corresponding to PC in the unmapped (load) range.
2698 May be the same as PC. */
2699
2700 CORE_ADDR
2701 overlay_unmapped_address (pc, section)
2702 CORE_ADDR pc;
2703 asection *section;
2704 {
2705 if (overlay_debugging)
2706 if (section && section_is_overlay (section) &&
2707 pc_in_mapped_range (pc, section))
2708 return pc + section->lma - section->vma;
2709
2710 return pc;
2711 }
2712
2713 /* Function: overlay_mapped_address (PC, SECTION)
2714 Returns the address corresponding to PC in the mapped (runtime) range.
2715 May be the same as PC. */
2716
2717 CORE_ADDR
2718 overlay_mapped_address (pc, section)
2719 CORE_ADDR pc;
2720 asection *section;
2721 {
2722 if (overlay_debugging)
2723 if (section && section_is_overlay (section) &&
2724 pc_in_unmapped_range (pc, section))
2725 return pc + section->vma - section->lma;
2726
2727 return pc;
2728 }
2729
2730
2731 /* Function: symbol_overlayed_address
2732 Return one of two addresses (relative to the VMA or to the LMA),
2733 depending on whether the section is mapped or not. */
2734
2735 CORE_ADDR
2736 symbol_overlayed_address (address, section)
2737 CORE_ADDR address;
2738 asection *section;
2739 {
2740 if (overlay_debugging)
2741 {
2742 /* If the symbol has no section, just return its regular address. */
2743 if (section == 0)
2744 return address;
2745 /* If the symbol's section is not an overlay, just return its address */
2746 if (!section_is_overlay (section))
2747 return address;
2748 /* If the symbol's section is mapped, just return its address */
2749 if (section_is_mapped (section))
2750 return address;
2751 /*
2752 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2753 * then return its LOADED address rather than its vma address!!
2754 */
2755 return overlay_unmapped_address (address, section);
2756 }
2757 return address;
2758 }
2759
2760 /* Function: find_pc_overlay (PC)
2761 Return the best-match overlay section for PC:
2762 If PC matches a mapped overlay section's VMA, return that section.
2763 Else if PC matches an unmapped section's VMA, return that section.
2764 Else if PC matches an unmapped section's LMA, return that section. */
2765
2766 asection *
2767 find_pc_overlay (pc)
2768 CORE_ADDR pc;
2769 {
2770 struct objfile *objfile;
2771 struct obj_section *osect, *best_match = NULL;
2772
2773 if (overlay_debugging)
2774 ALL_OBJSECTIONS (objfile, osect)
2775 if (section_is_overlay (osect->the_bfd_section))
2776 {
2777 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2778 {
2779 if (overlay_is_mapped (osect))
2780 return osect->the_bfd_section;
2781 else
2782 best_match = osect;
2783 }
2784 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2785 best_match = osect;
2786 }
2787 return best_match ? best_match->the_bfd_section : NULL;
2788 }
2789
2790 /* Function: find_pc_mapped_section (PC)
2791 If PC falls into the VMA address range of an overlay section that is
2792 currently marked as MAPPED, return that section. Else return NULL. */
2793
2794 asection *
2795 find_pc_mapped_section (pc)
2796 CORE_ADDR pc;
2797 {
2798 struct objfile *objfile;
2799 struct obj_section *osect;
2800
2801 if (overlay_debugging)
2802 ALL_OBJSECTIONS (objfile, osect)
2803 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2804 overlay_is_mapped (osect))
2805 return osect->the_bfd_section;
2806
2807 return NULL;
2808 }
2809
2810 /* Function: list_overlays_command
2811 Print a list of mapped sections and their PC ranges */
2812
2813 void
2814 list_overlays_command (args, from_tty)
2815 char *args;
2816 int from_tty;
2817 {
2818 int nmapped = 0;
2819 struct objfile *objfile;
2820 struct obj_section *osect;
2821
2822 if (overlay_debugging)
2823 ALL_OBJSECTIONS (objfile, osect)
2824 if (overlay_is_mapped (osect))
2825 {
2826 const char *name;
2827 bfd_vma lma, vma;
2828 int size;
2829
2830 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2831 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2832 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2833 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2834
2835 printf_filtered ("Section %s, loaded at ", name);
2836 print_address_numeric (lma, 1, gdb_stdout);
2837 puts_filtered (" - ");
2838 print_address_numeric (lma + size, 1, gdb_stdout);
2839 printf_filtered (", mapped at ");
2840 print_address_numeric (vma, 1, gdb_stdout);
2841 puts_filtered (" - ");
2842 print_address_numeric (vma + size, 1, gdb_stdout);
2843 puts_filtered ("\n");
2844
2845 nmapped++;
2846 }
2847 if (nmapped == 0)
2848 printf_filtered ("No sections are mapped.\n");
2849 }
2850
2851 /* Function: map_overlay_command
2852 Mark the named section as mapped (ie. residing at its VMA address). */
2853
2854 void
2855 map_overlay_command (args, from_tty)
2856 char *args;
2857 int from_tty;
2858 {
2859 struct objfile *objfile, *objfile2;
2860 struct obj_section *sec, *sec2;
2861 asection *bfdsec;
2862
2863 if (!overlay_debugging)
2864 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2865
2866 if (args == 0 || *args == 0)
2867 error ("Argument required: name of an overlay section");
2868
2869 /* First, find a section matching the user supplied argument */
2870 ALL_OBJSECTIONS (objfile, sec)
2871 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2872 {
2873 /* Now, check to see if the section is an overlay. */
2874 bfdsec = sec->the_bfd_section;
2875 if (!section_is_overlay (bfdsec))
2876 continue; /* not an overlay section */
2877
2878 /* Mark the overlay as "mapped" */
2879 sec->ovly_mapped = 1;
2880
2881 /* Next, make a pass and unmap any sections that are
2882 overlapped by this new section: */
2883 ALL_OBJSECTIONS (objfile2, sec2)
2884 if (sec2->ovly_mapped &&
2885 sec != sec2 &&
2886 sec->the_bfd_section != sec2->the_bfd_section &&
2887 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2888 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2889 {
2890 if (info_verbose)
2891 printf_filtered ("Note: section %s unmapped by overlap\n",
2892 bfd_section_name (objfile->obfd,
2893 sec2->the_bfd_section));
2894 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2895 }
2896 return;
2897 }
2898 error ("No overlay section called %s", args);
2899 }
2900
2901 /* Function: unmap_overlay_command
2902 Mark the overlay section as unmapped
2903 (ie. resident in its LMA address range, rather than the VMA range). */
2904
2905 void
2906 unmap_overlay_command (args, from_tty)
2907 char *args;
2908 int from_tty;
2909 {
2910 struct objfile *objfile;
2911 struct obj_section *sec;
2912
2913 if (!overlay_debugging)
2914 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2915
2916 if (args == 0 || *args == 0)
2917 error ("Argument required: name of an overlay section");
2918
2919 /* First, find a section matching the user supplied argument */
2920 ALL_OBJSECTIONS (objfile, sec)
2921 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2922 {
2923 if (!sec->ovly_mapped)
2924 error ("Section %s is not mapped", args);
2925 sec->ovly_mapped = 0;
2926 return;
2927 }
2928 error ("No overlay section called %s", args);
2929 }
2930
2931 /* Function: overlay_auto_command
2932 A utility command to turn on overlay debugging.
2933 Possibly this should be done via a set/show command. */
2934
2935 static void
2936 overlay_auto_command (args, from_tty)
2937 char *args;
2938 int from_tty;
2939 {
2940 overlay_debugging = -1;
2941 if (info_verbose)
2942 printf_filtered ("Automatic overlay debugging enabled.");
2943 }
2944
2945 /* Function: overlay_manual_command
2946 A utility command to turn on overlay debugging.
2947 Possibly this should be done via a set/show command. */
2948
2949 static void
2950 overlay_manual_command (args, from_tty)
2951 char *args;
2952 int from_tty;
2953 {
2954 overlay_debugging = 1;
2955 if (info_verbose)
2956 printf_filtered ("Overlay debugging enabled.");
2957 }
2958
2959 /* Function: overlay_off_command
2960 A utility command to turn on overlay debugging.
2961 Possibly this should be done via a set/show command. */
2962
2963 static void
2964 overlay_off_command (args, from_tty)
2965 char *args;
2966 int from_tty;
2967 {
2968 overlay_debugging = 0;
2969 if (info_verbose)
2970 printf_filtered ("Overlay debugging disabled.");
2971 }
2972
2973 static void
2974 overlay_load_command (args, from_tty)
2975 char *args;
2976 int from_tty;
2977 {
2978 if (target_overlay_update)
2979 (*target_overlay_update) (NULL);
2980 else
2981 error ("This target does not know how to read its overlay state.");
2982 }
2983
2984 /* Function: overlay_command
2985 A place-holder for a mis-typed command */
2986
2987 /* Command list chain containing all defined "overlay" subcommands. */
2988 struct cmd_list_element *overlaylist;
2989
2990 static void
2991 overlay_command (args, from_tty)
2992 char *args;
2993 int from_tty;
2994 {
2995 printf_unfiltered
2996 ("\"overlay\" must be followed by the name of an overlay command.\n");
2997 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2998 }
2999
3000
3001 /* Target Overlays for the "Simplest" overlay manager:
3002
3003 This is GDB's default target overlay layer. It works with the
3004 minimal overlay manager supplied as an example by Cygnus. The
3005 entry point is via a function pointer "target_overlay_update",
3006 so targets that use a different runtime overlay manager can
3007 substitute their own overlay_update function and take over the
3008 function pointer.
3009
3010 The overlay_update function pokes around in the target's data structures
3011 to see what overlays are mapped, and updates GDB's overlay mapping with
3012 this information.
3013
3014 In this simple implementation, the target data structures are as follows:
3015 unsigned _novlys; /# number of overlay sections #/
3016 unsigned _ovly_table[_novlys][4] = {
3017 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3018 {..., ..., ..., ...},
3019 }
3020 unsigned _novly_regions; /# number of overlay regions #/
3021 unsigned _ovly_region_table[_novly_regions][3] = {
3022 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3023 {..., ..., ...},
3024 }
3025 These functions will attempt to update GDB's mappedness state in the
3026 symbol section table, based on the target's mappedness state.
3027
3028 To do this, we keep a cached copy of the target's _ovly_table, and
3029 attempt to detect when the cached copy is invalidated. The main
3030 entry point is "simple_overlay_update(SECT), which looks up SECT in
3031 the cached table and re-reads only the entry for that section from
3032 the target (whenever possible).
3033 */
3034
3035 /* Cached, dynamically allocated copies of the target data structures: */
3036 static unsigned (*cache_ovly_table)[4] = 0;
3037 #if 0
3038 static unsigned (*cache_ovly_region_table)[3] = 0;
3039 #endif
3040 static unsigned cache_novlys = 0;
3041 #if 0
3042 static unsigned cache_novly_regions = 0;
3043 #endif
3044 static CORE_ADDR cache_ovly_table_base = 0;
3045 #if 0
3046 static CORE_ADDR cache_ovly_region_table_base = 0;
3047 #endif
3048 enum ovly_index
3049 {
3050 VMA, SIZE, LMA, MAPPED
3051 };
3052 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3053
3054 /* Throw away the cached copy of _ovly_table */
3055 static void
3056 simple_free_overlay_table ()
3057 {
3058 if (cache_ovly_table)
3059 free (cache_ovly_table);
3060 cache_novlys = 0;
3061 cache_ovly_table = NULL;
3062 cache_ovly_table_base = 0;
3063 }
3064
3065 #if 0
3066 /* Throw away the cached copy of _ovly_region_table */
3067 static void
3068 simple_free_overlay_region_table ()
3069 {
3070 if (cache_ovly_region_table)
3071 free (cache_ovly_region_table);
3072 cache_novly_regions = 0;
3073 cache_ovly_region_table = NULL;
3074 cache_ovly_region_table_base = 0;
3075 }
3076 #endif
3077
3078 /* Read an array of ints from the target into a local buffer.
3079 Convert to host order. int LEN is number of ints */
3080 static void
3081 read_target_long_array (memaddr, myaddr, len)
3082 CORE_ADDR memaddr;
3083 unsigned int *myaddr;
3084 int len;
3085 {
3086 char *buf = alloca (len * TARGET_LONG_BYTES);
3087 int i;
3088
3089 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3090 for (i = 0; i < len; i++)
3091 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3092 TARGET_LONG_BYTES);
3093 }
3094
3095 /* Find and grab a copy of the target _ovly_table
3096 (and _novlys, which is needed for the table's size) */
3097 static int
3098 simple_read_overlay_table ()
3099 {
3100 struct minimal_symbol *msym;
3101
3102 simple_free_overlay_table ();
3103 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3104 if (msym != NULL)
3105 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3106 else
3107 return 0; /* failure */
3108 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3109 if (cache_ovly_table != NULL)
3110 {
3111 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3112 if (msym != NULL)
3113 {
3114 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3115 read_target_long_array (cache_ovly_table_base,
3116 (int *) cache_ovly_table,
3117 cache_novlys * 4);
3118 }
3119 else
3120 return 0; /* failure */
3121 }
3122 else
3123 return 0; /* failure */
3124 return 1; /* SUCCESS */
3125 }
3126
3127 #if 0
3128 /* Find and grab a copy of the target _ovly_region_table
3129 (and _novly_regions, which is needed for the table's size) */
3130 static int
3131 simple_read_overlay_region_table ()
3132 {
3133 struct minimal_symbol *msym;
3134
3135 simple_free_overlay_region_table ();
3136 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3137 if (msym != NULL)
3138 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3139 else
3140 return 0; /* failure */
3141 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3142 if (cache_ovly_region_table != NULL)
3143 {
3144 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3145 if (msym != NULL)
3146 {
3147 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3148 read_target_long_array (cache_ovly_region_table_base,
3149 (int *) cache_ovly_region_table,
3150 cache_novly_regions * 3);
3151 }
3152 else
3153 return 0; /* failure */
3154 }
3155 else
3156 return 0; /* failure */
3157 return 1; /* SUCCESS */
3158 }
3159 #endif
3160
3161 /* Function: simple_overlay_update_1
3162 A helper function for simple_overlay_update. Assuming a cached copy
3163 of _ovly_table exists, look through it to find an entry whose vma,
3164 lma and size match those of OSECT. Re-read the entry and make sure
3165 it still matches OSECT (else the table may no longer be valid).
3166 Set OSECT's mapped state to match the entry. Return: 1 for
3167 success, 0 for failure. */
3168
3169 static int
3170 simple_overlay_update_1 (osect)
3171 struct obj_section *osect;
3172 {
3173 int i, size;
3174
3175 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3176 for (i = 0; i < cache_novlys; i++)
3177 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3178 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3179 cache_ovly_table[i][SIZE] == size */ )
3180 {
3181 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3182 (int *) cache_ovly_table[i], 4);
3183 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3184 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3185 cache_ovly_table[i][SIZE] == size */ )
3186 {
3187 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3188 return 1;
3189 }
3190 else /* Warning! Warning! Target's ovly table has changed! */
3191 return 0;
3192 }
3193 return 0;
3194 }
3195
3196 /* Function: simple_overlay_update
3197 If OSECT is NULL, then update all sections' mapped state
3198 (after re-reading the entire target _ovly_table).
3199 If OSECT is non-NULL, then try to find a matching entry in the
3200 cached ovly_table and update only OSECT's mapped state.
3201 If a cached entry can't be found or the cache isn't valid, then
3202 re-read the entire cache, and go ahead and update all sections. */
3203
3204 static void
3205 simple_overlay_update (osect)
3206 struct obj_section *osect;
3207 {
3208 struct objfile *objfile;
3209
3210 /* Were we given an osect to look up? NULL means do all of them. */
3211 if (osect)
3212 /* Have we got a cached copy of the target's overlay table? */
3213 if (cache_ovly_table != NULL)
3214 /* Does its cached location match what's currently in the symtab? */
3215 if (cache_ovly_table_base ==
3216 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3217 /* Then go ahead and try to look up this single section in the cache */
3218 if (simple_overlay_update_1 (osect))
3219 /* Found it! We're done. */
3220 return;
3221
3222 /* Cached table no good: need to read the entire table anew.
3223 Or else we want all the sections, in which case it's actually
3224 more efficient to read the whole table in one block anyway. */
3225
3226 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3227 {
3228 warning ("Failed to read the target overlay mapping table.");
3229 return;
3230 }
3231 /* Now may as well update all sections, even if only one was requested. */
3232 ALL_OBJSECTIONS (objfile, osect)
3233 if (section_is_overlay (osect->the_bfd_section))
3234 {
3235 int i, size;
3236
3237 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3238 for (i = 0; i < cache_novlys; i++)
3239 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3240 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3241 cache_ovly_table[i][SIZE] == size */ )
3242 { /* obj_section matches i'th entry in ovly_table */
3243 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3244 break; /* finished with inner for loop: break out */
3245 }
3246 }
3247 }
3248
3249
3250 void
3251 _initialize_symfile ()
3252 {
3253 struct cmd_list_element *c;
3254
3255 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3256 "Load symbol table from executable file FILE.\n\
3257 The `file' command can also load symbol tables, as well as setting the file\n\
3258 to execute.", &cmdlist);
3259 c->completer = filename_completer;
3260
3261 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3262 "Usage: add-symbol-file FILE ADDR [DATA_ADDR [BSS_ADDR]]\n\
3263 or: add-symbol-file FILE -T<SECT> <SECT_ADDR> -T<SECT> <SECT_ADDR> ...\n\
3264 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3265 ADDR is the starting address of the file's text.\n\
3266 The optional arguments, DATA_ADDR and BSS_ADDR, should be specified\n\
3267 if the data and bss segments are not contiguous with the text.\n\
3268 For complicated cases, SECT is a section name to be loaded at SECT_ADDR.",
3269 &cmdlist);
3270 c->completer = filename_completer;
3271
3272 c = add_cmd ("add-shared-symbol-files", class_files,
3273 add_shared_symbol_files_command,
3274 "Load the symbols from shared objects in the dynamic linker's link map.",
3275 &cmdlist);
3276 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3277 &cmdlist);
3278
3279 c = add_cmd ("load", class_files, load_command,
3280 "Dynamically load FILE into the running program, and record its symbols\n\
3281 for access from GDB.", &cmdlist);
3282 c->completer = filename_completer;
3283
3284 add_show_from_set
3285 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3286 (char *) &symbol_reloading,
3287 "Set dynamic symbol table reloading multiple times in one run.",
3288 &setlist),
3289 &showlist);
3290
3291 add_prefix_cmd ("overlay", class_support, overlay_command,
3292 "Commands for debugging overlays.", &overlaylist,
3293 "overlay ", 0, &cmdlist);
3294
3295 add_com_alias ("ovly", "overlay", class_alias, 1);
3296 add_com_alias ("ov", "overlay", class_alias, 1);
3297
3298 add_cmd ("map-overlay", class_support, map_overlay_command,
3299 "Assert that an overlay section is mapped.", &overlaylist);
3300
3301 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3302 "Assert that an overlay section is unmapped.", &overlaylist);
3303
3304 add_cmd ("list-overlays", class_support, list_overlays_command,
3305 "List mappings of overlay sections.", &overlaylist);
3306
3307 add_cmd ("manual", class_support, overlay_manual_command,
3308 "Enable overlay debugging.", &overlaylist);
3309 add_cmd ("off", class_support, overlay_off_command,
3310 "Disable overlay debugging.", &overlaylist);
3311 add_cmd ("auto", class_support, overlay_auto_command,
3312 "Enable automatic overlay debugging.", &overlaylist);
3313 add_cmd ("load-target", class_support, overlay_load_command,
3314 "Read the overlay mapping state from the target.", &overlaylist);
3315
3316 /* Filename extension to source language lookup table: */
3317 init_filename_language_table ();
3318 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3319 (char *) &ext_args,
3320 "Set mapping between filename extension and source language.\n\
3321 Usage: set extension-language .foo bar",
3322 &setlist);
3323 c->function.cfunc = set_ext_lang_command;
3324
3325 add_info ("extensions", info_ext_lang_command,
3326 "All filename extensions associated with a source language.");
3327
3328 add_show_from_set
3329 (add_set_cmd ("download-write-size", class_obscure,
3330 var_integer, (char *) &download_write_size,
3331 "Set the write size used when downloading a program.\n"
3332 "Only used when downloading a program onto a remote\n"
3333 "target. Specify zero, or a negative value, to disable\n"
3334 "blocked writes. The actual size of each transfer is also\n"
3335 "limited by the size of the target packet and the memory\n"
3336 "cache.\n",
3337 &setlist),
3338 &showlist);
3339 }
This page took 0.145305 seconds and 4 git commands to generate.