Replace some xmalloc-family functions with XNEW-family ones
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include "gdb_sys_time.h"
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void add_filename_language (char *ext, enum language lang);
118
119 static void info_ext_lang_command (char *args, int from_tty);
120
121 static void init_filename_language_table (void);
122
123 static void symfile_find_segment_sections (struct objfile *objfile);
124
125 void _initialize_symfile (void);
126
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131 typedef struct
132 {
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139
140 DEF_VEC_O (registered_sym_fns);
141
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144 /* Values for "set print symbol-loading". */
145
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168 int auto_solib_add = 1;
169 \f
170
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194 }
195
196 /* True if we are reading a symbol table. */
197
198 int currently_reading_symtab = 0;
199
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205 }
206
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216 }
217
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242 }
243
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260 }
261
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268 {
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in ABFD. */
296
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317 }
318
319 /* Create a section_addr_info from section offsets in OBJFILE. */
320
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338 }
339
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350 }
351
352 /* Initialize OBJFILE's sect_index_* members. */
353
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411 }
412
413 /* The arguments to place_section. */
414
415 struct place_section_arg
416 {
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419 };
420
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493 {
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512 }
513
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520 static const char *
521 addr_section_name (const char *s)
522 {
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529 }
530
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546 }
547
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566 }
567
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
618 make_cleanup (xfree, addrs_to_abfd_addrs);
619
620 while (*addrs_sorted)
621 {
622 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
623
624 while (*abfd_addrs_sorted
625 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
626 sect_name) < 0)
627 abfd_addrs_sorted++;
628
629 if (*abfd_addrs_sorted
630 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
631 sect_name) == 0)
632 {
633 int index_in_addrs;
634
635 /* Make the found item directly addressable from ADDRS. */
636 index_in_addrs = *addrs_sorted - addrs->other;
637 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
638 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
639
640 /* Never use the same ABFD entry twice. */
641 abfd_addrs_sorted++;
642 }
643
644 addrs_sorted++;
645 }
646
647 /* Calculate offsets for the loadable sections.
648 FIXME! Sections must be in order of increasing loadable section
649 so that contiguous sections can use the lower-offset!!!
650
651 Adjust offsets if the segments are not contiguous.
652 If the section is contiguous, its offset should be set to
653 the offset of the highest loadable section lower than it
654 (the loadable section directly below it in memory).
655 this_offset = lower_offset = lower_addr - lower_orig_addr */
656
657 for (i = 0; i < addrs->num_sections; i++)
658 {
659 struct other_sections *sect = addrs_to_abfd_addrs[i];
660
661 if (sect)
662 {
663 /* This is the index used by BFD. */
664 addrs->other[i].sectindex = sect->sectindex;
665
666 if (addrs->other[i].addr != 0)
667 {
668 addrs->other[i].addr -= sect->addr;
669 lower_offset = addrs->other[i].addr;
670 }
671 else
672 addrs->other[i].addr = lower_offset;
673 }
674 else
675 {
676 /* addr_section_name transformation is not used for SECT_NAME. */
677 const char *sect_name = addrs->other[i].name;
678
679 /* This section does not exist in ABFD, which is normally
680 unexpected and we want to issue a warning.
681
682 However, the ELF prelinker does create a few sections which are
683 marked in the main executable as loadable (they are loaded in
684 memory from the DYNAMIC segment) and yet are not present in
685 separate debug info files. This is fine, and should not cause
686 a warning. Shared libraries contain just the section
687 ".gnu.liblist" but it is not marked as loadable there. There is
688 no other way to identify them than by their name as the sections
689 created by prelink have no special flags.
690
691 For the sections `.bss' and `.sbss' see addr_section_name. */
692
693 if (!(strcmp (sect_name, ".gnu.liblist") == 0
694 || strcmp (sect_name, ".gnu.conflict") == 0
695 || (strcmp (sect_name, ".bss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)
699 || (strcmp (sect_name, ".sbss") == 0
700 && i > 0
701 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
702 && addrs_to_abfd_addrs[i - 1] != NULL)))
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
706 addrs->other[i].addr = 0;
707 addrs->other[i].sectindex = -1;
708 }
709 }
710
711 do_cleanups (my_cleanup);
712 }
713
714 /* Parse the user's idea of an offset for dynamic linking, into our idea
715 of how to represent it for fast symbol reading. This is the default
716 version of the sym_fns.sym_offsets function for symbol readers that
717 don't need to do anything special. It allocates a section_offsets table
718 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
719
720 void
721 default_symfile_offsets (struct objfile *objfile,
722 const struct section_addr_info *addrs)
723 {
724 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
725 objfile->section_offsets = (struct section_offsets *)
726 obstack_alloc (&objfile->objfile_obstack,
727 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
728 relative_addr_info_to_section_offsets (objfile->section_offsets,
729 objfile->num_sections, addrs);
730
731 /* For relocatable files, all loadable sections will start at zero.
732 The zero is meaningless, so try to pick arbitrary addresses such
733 that no loadable sections overlap. This algorithm is quadratic,
734 but the number of sections in a single object file is generally
735 small. */
736 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
737 {
738 struct place_section_arg arg;
739 bfd *abfd = objfile->obfd;
740 asection *cur_sec;
741
742 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
743 /* We do not expect this to happen; just skip this step if the
744 relocatable file has a section with an assigned VMA. */
745 if (bfd_section_vma (abfd, cur_sec) != 0)
746 break;
747
748 if (cur_sec == NULL)
749 {
750 CORE_ADDR *offsets = objfile->section_offsets->offsets;
751
752 /* Pick non-overlapping offsets for sections the user did not
753 place explicitly. */
754 arg.offsets = objfile->section_offsets;
755 arg.lowest = 0;
756 bfd_map_over_sections (objfile->obfd, place_section, &arg);
757
758 /* Correctly filling in the section offsets is not quite
759 enough. Relocatable files have two properties that
760 (most) shared objects do not:
761
762 - Their debug information will contain relocations. Some
763 shared libraries do also, but many do not, so this can not
764 be assumed.
765
766 - If there are multiple code sections they will be loaded
767 at different relative addresses in memory than they are
768 in the objfile, since all sections in the file will start
769 at address zero.
770
771 Because GDB has very limited ability to map from an
772 address in debug info to the correct code section,
773 it relies on adding SECT_OFF_TEXT to things which might be
774 code. If we clear all the section offsets, and set the
775 section VMAs instead, then symfile_relocate_debug_section
776 will return meaningful debug information pointing at the
777 correct sections.
778
779 GDB has too many different data structures for section
780 addresses - a bfd, objfile, and so_list all have section
781 tables, as does exec_ops. Some of these could probably
782 be eliminated. */
783
784 for (cur_sec = abfd->sections; cur_sec != NULL;
785 cur_sec = cur_sec->next)
786 {
787 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
788 continue;
789
790 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
791 exec_set_section_address (bfd_get_filename (abfd),
792 cur_sec->index,
793 offsets[cur_sec->index]);
794 offsets[cur_sec->index] = 0;
795 }
796 }
797 }
798
799 /* Remember the bfd indexes for the .text, .data, .bss and
800 .rodata sections. */
801 init_objfile_sect_indices (objfile);
802 }
803
804 /* Divide the file into segments, which are individual relocatable units.
805 This is the default version of the sym_fns.sym_segments function for
806 symbol readers that do not have an explicit representation of segments.
807 It assumes that object files do not have segments, and fully linked
808 files have a single segment. */
809
810 struct symfile_segment_data *
811 default_symfile_segments (bfd *abfd)
812 {
813 int num_sections, i;
814 asection *sect;
815 struct symfile_segment_data *data;
816 CORE_ADDR low, high;
817
818 /* Relocatable files contain enough information to position each
819 loadable section independently; they should not be relocated
820 in segments. */
821 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
822 return NULL;
823
824 /* Make sure there is at least one loadable section in the file. */
825 for (sect = abfd->sections; sect != NULL; sect = sect->next)
826 {
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 break;
831 }
832 if (sect == NULL)
833 return NULL;
834
835 low = bfd_get_section_vma (abfd, sect);
836 high = low + bfd_get_section_size (sect);
837
838 data = XCNEW (struct symfile_segment_data);
839 data->num_segments = 1;
840 data->segment_bases = XCNEW (CORE_ADDR);
841 data->segment_sizes = XCNEW (CORE_ADDR);
842
843 num_sections = bfd_count_sections (abfd);
844 data->segment_info = XCNEWVEC (int, num_sections);
845
846 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
847 {
848 CORE_ADDR vma;
849
850 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
851 continue;
852
853 vma = bfd_get_section_vma (abfd, sect);
854 if (vma < low)
855 low = vma;
856 if (vma + bfd_get_section_size (sect) > high)
857 high = vma + bfd_get_section_size (sect);
858
859 data->segment_info[i] = 1;
860 }
861
862 data->segment_bases[0] = low;
863 data->segment_sizes[0] = high - low;
864
865 return data;
866 }
867
868 /* This is a convenience function to call sym_read for OBJFILE and
869 possibly force the partial symbols to be read. */
870
871 static void
872 read_symbols (struct objfile *objfile, int add_flags)
873 {
874 (*objfile->sf->sym_read) (objfile, add_flags);
875 objfile->per_bfd->minsyms_read = 1;
876
877 /* find_separate_debug_file_in_section should be called only if there is
878 single binary with no existing separate debug info file. */
879 if (!objfile_has_partial_symbols (objfile)
880 && objfile->separate_debug_objfile == NULL
881 && objfile->separate_debug_objfile_backlink == NULL)
882 {
883 bfd *abfd = find_separate_debug_file_in_section (objfile);
884 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
885
886 if (abfd != NULL)
887 {
888 /* find_separate_debug_file_in_section uses the same filename for the
889 virtual section-as-bfd like the bfd filename containing the
890 section. Therefore use also non-canonical name form for the same
891 file containing the section. */
892 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
893 objfile);
894 }
895
896 do_cleanups (cleanup);
897 }
898 if ((add_flags & SYMFILE_NO_READ) == 0)
899 require_partial_symbols (objfile, 0);
900 }
901
902 /* Initialize entry point information for this objfile. */
903
904 static void
905 init_entry_point_info (struct objfile *objfile)
906 {
907 struct entry_info *ei = &objfile->per_bfd->ei;
908
909 if (ei->initialized)
910 return;
911 ei->initialized = 1;
912
913 /* Save startup file's range of PC addresses to help blockframe.c
914 decide where the bottom of the stack is. */
915
916 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
917 {
918 /* Executable file -- record its entry point so we'll recognize
919 the startup file because it contains the entry point. */
920 ei->entry_point = bfd_get_start_address (objfile->obfd);
921 ei->entry_point_p = 1;
922 }
923 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
924 && bfd_get_start_address (objfile->obfd) != 0)
925 {
926 /* Some shared libraries may have entry points set and be
927 runnable. There's no clear way to indicate this, so just check
928 for values other than zero. */
929 ei->entry_point = bfd_get_start_address (objfile->obfd);
930 ei->entry_point_p = 1;
931 }
932 else
933 {
934 /* Examination of non-executable.o files. Short-circuit this stuff. */
935 ei->entry_point_p = 0;
936 }
937
938 if (ei->entry_point_p)
939 {
940 struct obj_section *osect;
941 CORE_ADDR entry_point = ei->entry_point;
942 int found;
943
944 /* Make certain that the address points at real code, and not a
945 function descriptor. */
946 entry_point
947 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
948 entry_point,
949 &current_target);
950
951 /* Remove any ISA markers, so that this matches entries in the
952 symbol table. */
953 ei->entry_point
954 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
955
956 found = 0;
957 ALL_OBJFILE_OSECTIONS (objfile, osect)
958 {
959 struct bfd_section *sect = osect->the_bfd_section;
960
961 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
962 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
963 + bfd_get_section_size (sect)))
964 {
965 ei->the_bfd_section_index
966 = gdb_bfd_section_index (objfile->obfd, sect);
967 found = 1;
968 break;
969 }
970 }
971
972 if (!found)
973 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
974 }
975 }
976
977 /* Process a symbol file, as either the main file or as a dynamically
978 loaded file.
979
980 This function does not set the OBJFILE's entry-point info.
981
982 OBJFILE is where the symbols are to be read from.
983
984 ADDRS is the list of section load addresses. If the user has given
985 an 'add-symbol-file' command, then this is the list of offsets and
986 addresses he or she provided as arguments to the command; or, if
987 we're handling a shared library, these are the actual addresses the
988 sections are loaded at, according to the inferior's dynamic linker
989 (as gleaned by GDB's shared library code). We convert each address
990 into an offset from the section VMA's as it appears in the object
991 file, and then call the file's sym_offsets function to convert this
992 into a format-specific offset table --- a `struct section_offsets'.
993
994 ADD_FLAGS encodes verbosity level, whether this is main symbol or
995 an extra symbol file such as dynamically loaded code, and wether
996 breakpoint reset should be deferred. */
997
998 static void
999 syms_from_objfile_1 (struct objfile *objfile,
1000 struct section_addr_info *addrs,
1001 int add_flags)
1002 {
1003 struct section_addr_info *local_addr = NULL;
1004 struct cleanup *old_chain;
1005 const int mainline = add_flags & SYMFILE_MAINLINE;
1006
1007 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1008
1009 if (objfile->sf == NULL)
1010 {
1011 /* No symbols to load, but we still need to make sure
1012 that the section_offsets table is allocated. */
1013 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1015
1016 objfile->num_sections = num_sections;
1017 objfile->section_offsets
1018 = obstack_alloc (&objfile->objfile_obstack, size);
1019 memset (objfile->section_offsets, 0, size);
1020 return;
1021 }
1022
1023 /* Make sure that partially constructed symbol tables will be cleaned up
1024 if an error occurs during symbol reading. */
1025 old_chain = make_cleanup_free_objfile (objfile);
1026
1027 /* If ADDRS is NULL, put together a dummy address list.
1028 We now establish the convention that an addr of zero means
1029 no load address was specified. */
1030 if (! addrs)
1031 {
1032 local_addr = alloc_section_addr_info (1);
1033 make_cleanup (xfree, local_addr);
1034 addrs = local_addr;
1035 }
1036
1037 if (mainline)
1038 {
1039 /* We will modify the main symbol table, make sure that all its users
1040 will be cleaned up if an error occurs during symbol reading. */
1041 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1042
1043 /* Since no error yet, throw away the old symbol table. */
1044
1045 if (symfile_objfile != NULL)
1046 {
1047 free_objfile (symfile_objfile);
1048 gdb_assert (symfile_objfile == NULL);
1049 }
1050
1051 /* Currently we keep symbols from the add-symbol-file command.
1052 If the user wants to get rid of them, they should do "symbol-file"
1053 without arguments first. Not sure this is the best behavior
1054 (PR 2207). */
1055
1056 (*objfile->sf->sym_new_init) (objfile);
1057 }
1058
1059 /* Convert addr into an offset rather than an absolute address.
1060 We find the lowest address of a loaded segment in the objfile,
1061 and assume that <addr> is where that got loaded.
1062
1063 We no longer warn if the lowest section is not a text segment (as
1064 happens for the PA64 port. */
1065 if (addrs->num_sections > 0)
1066 addr_info_make_relative (addrs, objfile->obfd);
1067
1068 /* Initialize symbol reading routines for this objfile, allow complaints to
1069 appear for this new file, and record how verbose to be, then do the
1070 initial symbol reading for this file. */
1071
1072 (*objfile->sf->sym_init) (objfile);
1073 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1074
1075 (*objfile->sf->sym_offsets) (objfile, addrs);
1076
1077 read_symbols (objfile, add_flags);
1078
1079 /* Discard cleanups as symbol reading was successful. */
1080
1081 discard_cleanups (old_chain);
1082 xfree (local_addr);
1083 }
1084
1085 /* Same as syms_from_objfile_1, but also initializes the objfile
1086 entry-point info. */
1087
1088 static void
1089 syms_from_objfile (struct objfile *objfile,
1090 struct section_addr_info *addrs,
1091 int add_flags)
1092 {
1093 syms_from_objfile_1 (objfile, addrs, add_flags);
1094 init_entry_point_info (objfile);
1095 }
1096
1097 /* Perform required actions after either reading in the initial
1098 symbols for a new objfile, or mapping in the symbols from a reusable
1099 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1100
1101 static void
1102 finish_new_objfile (struct objfile *objfile, int add_flags)
1103 {
1104 /* If this is the main symbol file we have to clean up all users of the
1105 old main symbol file. Otherwise it is sufficient to fixup all the
1106 breakpoints that may have been redefined by this symbol file. */
1107 if (add_flags & SYMFILE_MAINLINE)
1108 {
1109 /* OK, make it the "real" symbol file. */
1110 symfile_objfile = objfile;
1111
1112 clear_symtab_users (add_flags);
1113 }
1114 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1115 {
1116 breakpoint_re_set ();
1117 }
1118
1119 /* We're done reading the symbol file; finish off complaints. */
1120 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1121 }
1122
1123 /* Process a symbol file, as either the main file or as a dynamically
1124 loaded file.
1125
1126 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1127 A new reference is acquired by this function.
1128
1129 For NAME description see allocate_objfile's definition.
1130
1131 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1132 extra, such as dynamically loaded code, and what to do with breakpoins.
1133
1134 ADDRS is as described for syms_from_objfile_1, above.
1135 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1136
1137 PARENT is the original objfile if ABFD is a separate debug info file.
1138 Otherwise PARENT is NULL.
1139
1140 Upon success, returns a pointer to the objfile that was added.
1141 Upon failure, jumps back to command level (never returns). */
1142
1143 static struct objfile *
1144 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1145 struct section_addr_info *addrs,
1146 int flags, struct objfile *parent)
1147 {
1148 struct objfile *objfile;
1149 const int from_tty = add_flags & SYMFILE_VERBOSE;
1150 const int mainline = add_flags & SYMFILE_MAINLINE;
1151 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1152 && (readnow_symbol_files
1153 || (add_flags & SYMFILE_NO_READ) == 0));
1154
1155 if (readnow_symbol_files)
1156 {
1157 flags |= OBJF_READNOW;
1158 add_flags &= ~SYMFILE_NO_READ;
1159 }
1160
1161 /* Give user a chance to burp if we'd be
1162 interactively wiping out any existing symbols. */
1163
1164 if ((have_full_symbols () || have_partial_symbols ())
1165 && mainline
1166 && from_tty
1167 && !query (_("Load new symbol table from \"%s\"? "), name))
1168 error (_("Not confirmed."));
1169
1170 objfile = allocate_objfile (abfd, name,
1171 flags | (mainline ? OBJF_MAINLINE : 0));
1172
1173 if (parent)
1174 add_separate_debug_objfile (objfile, parent);
1175
1176 /* We either created a new mapped symbol table, mapped an existing
1177 symbol table file which has not had initial symbol reading
1178 performed, or need to read an unmapped symbol table. */
1179 if (should_print)
1180 {
1181 if (deprecated_pre_add_symbol_hook)
1182 deprecated_pre_add_symbol_hook (name);
1183 else
1184 {
1185 printf_unfiltered (_("Reading symbols from %s..."), name);
1186 wrap_here ("");
1187 gdb_flush (gdb_stdout);
1188 }
1189 }
1190 syms_from_objfile (objfile, addrs, add_flags);
1191
1192 /* We now have at least a partial symbol table. Check to see if the
1193 user requested that all symbols be read on initial access via either
1194 the gdb startup command line or on a per symbol file basis. Expand
1195 all partial symbol tables for this objfile if so. */
1196
1197 if ((flags & OBJF_READNOW))
1198 {
1199 if (should_print)
1200 {
1201 printf_unfiltered (_("expanding to full symbols..."));
1202 wrap_here ("");
1203 gdb_flush (gdb_stdout);
1204 }
1205
1206 if (objfile->sf)
1207 objfile->sf->qf->expand_all_symtabs (objfile);
1208 }
1209
1210 if (should_print && !objfile_has_symbols (objfile))
1211 {
1212 wrap_here ("");
1213 printf_unfiltered (_("(no debugging symbols found)..."));
1214 wrap_here ("");
1215 }
1216
1217 if (should_print)
1218 {
1219 if (deprecated_post_add_symbol_hook)
1220 deprecated_post_add_symbol_hook ();
1221 else
1222 printf_unfiltered (_("done.\n"));
1223 }
1224
1225 /* We print some messages regardless of whether 'from_tty ||
1226 info_verbose' is true, so make sure they go out at the right
1227 time. */
1228 gdb_flush (gdb_stdout);
1229
1230 if (objfile->sf == NULL)
1231 {
1232 observer_notify_new_objfile (objfile);
1233 return objfile; /* No symbols. */
1234 }
1235
1236 finish_new_objfile (objfile, add_flags);
1237
1238 observer_notify_new_objfile (objfile);
1239
1240 bfd_cache_close_all ();
1241 return (objfile);
1242 }
1243
1244 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1245 see allocate_objfile's definition. */
1246
1247 void
1248 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1249 struct objfile *objfile)
1250 {
1251 struct objfile *new_objfile;
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
1260
1261 new_objfile = symbol_file_add_with_addrs
1262 (bfd, name, symfile_flags, sap,
1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1264 | OBJF_USERLOADED),
1265 objfile);
1266
1267 do_cleanups (my_cleanup);
1268 }
1269
1270 /* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
1272 See symbol_file_add_with_addrs's comments for details. */
1273
1274 struct objfile *
1275 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1276 struct section_addr_info *addrs,
1277 int flags, struct objfile *parent)
1278 {
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1280 parent);
1281 }
1282
1283 /* Process a symbol file, as either the main file or as a dynamically
1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
1285
1286 struct objfile *
1287 symbol_file_add (const char *name, int add_flags,
1288 struct section_addr_info *addrs, int flags)
1289 {
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1293
1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1295 do_cleanups (cleanup);
1296 return objf;
1297 }
1298
1299 /* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1305 command itself. */
1306
1307 void
1308 symbol_file_add_main (const char *args, int from_tty)
1309 {
1310 symbol_file_add_main_1 (args, from_tty, 0);
1311 }
1312
1313 static void
1314 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1315 {
1316 const int add_flags = (current_inferior ()->symfile_flags
1317 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1318
1319 symbol_file_add (args, add_flags, NULL, flags);
1320
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1324
1325 if ((flags & SYMFILE_NO_READ) == 0)
1326 set_initial_language ();
1327 }
1328
1329 void
1330 symbol_file_clear (int from_tty)
1331 {
1332 if ((have_full_symbols () || have_partial_symbols ())
1333 && from_tty
1334 && (symfile_objfile
1335 ? !query (_("Discard symbol table from `%s'? "),
1336 objfile_name (symfile_objfile))
1337 : !query (_("Discard symbol table? "))))
1338 error (_("Not confirmed."));
1339
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
1342 no_shared_libraries (NULL, from_tty);
1343
1344 free_all_objfiles ();
1345
1346 gdb_assert (symfile_objfile == NULL);
1347 if (from_tty)
1348 printf_unfiltered (_("No symbol file now.\n"));
1349 }
1350
1351 static int
1352 separate_debug_file_exists (const char *name, unsigned long crc,
1353 struct objfile *parent_objfile)
1354 {
1355 unsigned long file_crc;
1356 int file_crc_p;
1357 bfd *abfd;
1358 struct stat parent_stat, abfd_stat;
1359 int verified_as_different;
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1365 the separate debug infos with the same basename can exist. */
1366
1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1368 return 0;
1369
1370 abfd = gdb_bfd_open (name, gnutarget, -1);
1371
1372 if (!abfd)
1373 return 0;
1374
1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1389 {
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
1393 gdb_bfd_unref (abfd);
1394 return 0;
1395 }
1396 verified_as_different = 1;
1397 }
1398 else
1399 verified_as_different = 0;
1400
1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1402
1403 gdb_bfd_unref (abfd);
1404
1405 if (!file_crc_p)
1406 return 0;
1407
1408 if (crc != file_crc)
1409 {
1410 unsigned long parent_crc;
1411
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
1415
1416 if (!verified_as_different)
1417 {
1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1419 return 0;
1420 }
1421
1422 if (verified_as_different || parent_crc != file_crc)
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
1425 name, objfile_name (parent_objfile));
1426
1427 return 0;
1428 }
1429
1430 return 1;
1431 }
1432
1433 char *debug_file_directory = NULL;
1434 static void
1435 show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437 {
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
1441 value);
1442 }
1443
1444 #if ! defined (DEBUG_SUBDIRECTORY)
1445 #define DEBUG_SUBDIRECTORY ".debug"
1446 #endif
1447
1448 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1454
1455 static char *
1456 find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
1460 {
1461 char *debugdir;
1462 char *debugfile;
1463 int i;
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
1467
1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1469 i = strlen (dir);
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1472
1473 debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 + i
1475 + strlen (DEBUG_SUBDIRECTORY)
1476 + strlen ("/")
1477 + strlen (debuglink)
1478 + 1);
1479
1480 /* First try in the same directory as the original file. */
1481 strcpy (debugfile, dir);
1482 strcat (debugfile, debuglink);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 return debugfile;
1486
1487 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1488 strcpy (debugfile, dir);
1489 strcat (debugfile, DEBUG_SUBDIRECTORY);
1490 strcat (debugfile, "/");
1491 strcat (debugfile, debuglink);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495
1496 /* Then try in the global debugfile directories.
1497
1498 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499 cause "/..." lookups. */
1500
1501 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1503
1504 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505 {
1506 strcpy (debugfile, debugdir);
1507 strcat (debugfile, "/");
1508 strcat (debugfile, dir);
1509 strcat (debugfile, debuglink);
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 {
1513 do_cleanups (back_to);
1514 return debugfile;
1515 }
1516
1517 /* If the file is in the sysroot, try using its base path in the
1518 global debugfile directory. */
1519 if (canon_dir != NULL
1520 && filename_ncmp (canon_dir, gdb_sysroot,
1521 strlen (gdb_sysroot)) == 0
1522 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1523 {
1524 strcpy (debugfile, debugdir);
1525 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1526 strcat (debugfile, "/");
1527 strcat (debugfile, debuglink);
1528
1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
1530 {
1531 do_cleanups (back_to);
1532 return debugfile;
1533 }
1534 }
1535 }
1536
1537 do_cleanups (back_to);
1538 xfree (debugfile);
1539 return NULL;
1540 }
1541
1542 /* Modify PATH to contain only "[/]directory/" part of PATH.
1543 If there were no directory separators in PATH, PATH will be empty
1544 string on return. */
1545
1546 static void
1547 terminate_after_last_dir_separator (char *path)
1548 {
1549 int i;
1550
1551 /* Strip off the final filename part, leaving the directory name,
1552 followed by a slash. The directory can be relative or absolute. */
1553 for (i = strlen(path) - 1; i >= 0; i--)
1554 if (IS_DIR_SEPARATOR (path[i]))
1555 break;
1556
1557 /* If I is -1 then no directory is present there and DIR will be "". */
1558 path[i + 1] = '\0';
1559 }
1560
1561 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1562 Returns pathname, or NULL. */
1563
1564 char *
1565 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1566 {
1567 char *debuglink;
1568 char *dir, *canon_dir;
1569 char *debugfile;
1570 unsigned long crc32;
1571 struct cleanup *cleanups;
1572
1573 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1574
1575 if (debuglink == NULL)
1576 {
1577 /* There's no separate debug info, hence there's no way we could
1578 load it => no warning. */
1579 return NULL;
1580 }
1581
1582 cleanups = make_cleanup (xfree, debuglink);
1583 dir = xstrdup (objfile_name (objfile));
1584 make_cleanup (xfree, dir);
1585 terminate_after_last_dir_separator (dir);
1586 canon_dir = lrealpath (dir);
1587
1588 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1589 crc32, objfile);
1590 xfree (canon_dir);
1591
1592 if (debugfile == NULL)
1593 {
1594 /* For PR gdb/9538, try again with realpath (if different from the
1595 original). */
1596
1597 struct stat st_buf;
1598
1599 if (lstat (objfile_name (objfile), &st_buf) == 0
1600 && S_ISLNK (st_buf.st_mode))
1601 {
1602 char *symlink_dir;
1603
1604 symlink_dir = lrealpath (objfile_name (objfile));
1605 if (symlink_dir != NULL)
1606 {
1607 make_cleanup (xfree, symlink_dir);
1608 terminate_after_last_dir_separator (symlink_dir);
1609 if (strcmp (dir, symlink_dir) != 0)
1610 {
1611 /* Different directory, so try using it. */
1612 debugfile = find_separate_debug_file (symlink_dir,
1613 symlink_dir,
1614 debuglink,
1615 crc32,
1616 objfile);
1617 }
1618 }
1619 }
1620 }
1621
1622 do_cleanups (cleanups);
1623 return debugfile;
1624 }
1625
1626 /* This is the symbol-file command. Read the file, analyze its
1627 symbols, and add a struct symtab to a symtab list. The syntax of
1628 the command is rather bizarre:
1629
1630 1. The function buildargv implements various quoting conventions
1631 which are undocumented and have little or nothing in common with
1632 the way things are quoted (or not quoted) elsewhere in GDB.
1633
1634 2. Options are used, which are not generally used in GDB (perhaps
1635 "set mapped on", "set readnow on" would be better)
1636
1637 3. The order of options matters, which is contrary to GNU
1638 conventions (because it is confusing and inconvenient). */
1639
1640 void
1641 symbol_file_command (char *args, int from_tty)
1642 {
1643 dont_repeat ();
1644
1645 if (args == NULL)
1646 {
1647 symbol_file_clear (from_tty);
1648 }
1649 else
1650 {
1651 char **argv = gdb_buildargv (args);
1652 int flags = OBJF_USERLOADED;
1653 struct cleanup *cleanups;
1654 char *name = NULL;
1655
1656 cleanups = make_cleanup_freeargv (argv);
1657 while (*argv != NULL)
1658 {
1659 if (strcmp (*argv, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
1661 else if (**argv == '-')
1662 error (_("unknown option `%s'"), *argv);
1663 else
1664 {
1665 symbol_file_add_main_1 (*argv, from_tty, flags);
1666 name = *argv;
1667 }
1668
1669 argv++;
1670 }
1671
1672 if (name == NULL)
1673 error (_("no symbol file name was specified"));
1674
1675 do_cleanups (cleanups);
1676 }
1677 }
1678
1679 /* Set the initial language.
1680
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
1689
1690 void
1691 set_initial_language (void)
1692 {
1693 enum language lang = main_language ();
1694
1695 if (lang == language_unknown)
1696 {
1697 char *name = main_name ();
1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1699
1700 if (sym != NULL)
1701 lang = SYMBOL_LANGUAGE (sym);
1702 }
1703
1704 if (lang == language_unknown)
1705 {
1706 /* Make C the default language */
1707 lang = language_c;
1708 }
1709
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
1712 }
1713
1714 /* Open the file specified by NAME and hand it off to BFD for
1715 preliminary analysis. Return a newly initialized bfd *, which
1716 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1717 absolute). In case of trouble, error() is called. */
1718
1719 bfd *
1720 symfile_bfd_open (const char *name)
1721 {
1722 bfd *sym_bfd;
1723 int desc = -1;
1724 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1725
1726 if (!is_target_filename (name))
1727 {
1728 char *expanded_name, *absolute_name;
1729
1730 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1731
1732 /* Look down path for it, allocate 2nd new malloc'd copy. */
1733 desc = openp (getenv ("PATH"),
1734 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1735 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1736 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1737 if (desc < 0)
1738 {
1739 char *exename = alloca (strlen (expanded_name) + 5);
1740
1741 strcat (strcpy (exename, expanded_name), ".exe");
1742 desc = openp (getenv ("PATH"),
1743 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1744 exename, O_RDONLY | O_BINARY, &absolute_name);
1745 }
1746 #endif
1747 if (desc < 0)
1748 {
1749 make_cleanup (xfree, expanded_name);
1750 perror_with_name (expanded_name);
1751 }
1752
1753 xfree (expanded_name);
1754 make_cleanup (xfree, absolute_name);
1755 name = absolute_name;
1756 }
1757
1758 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1759 if (!sym_bfd)
1760 error (_("`%s': can't open to read symbols: %s."), name,
1761 bfd_errmsg (bfd_get_error ()));
1762
1763 if (!gdb_bfd_has_target_filename (sym_bfd))
1764 bfd_set_cacheable (sym_bfd, 1);
1765
1766 if (!bfd_check_format (sym_bfd, bfd_object))
1767 {
1768 make_cleanup_bfd_unref (sym_bfd);
1769 error (_("`%s': can't read symbols: %s."), name,
1770 bfd_errmsg (bfd_get_error ()));
1771 }
1772
1773 do_cleanups (back_to);
1774
1775 return sym_bfd;
1776 }
1777
1778 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1779 the section was not found. */
1780
1781 int
1782 get_section_index (struct objfile *objfile, char *section_name)
1783 {
1784 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1785
1786 if (sect)
1787 return sect->index;
1788 else
1789 return -1;
1790 }
1791
1792 /* Link SF into the global symtab_fns list.
1793 FLAVOUR is the file format that SF handles.
1794 Called on startup by the _initialize routine in each object file format
1795 reader, to register information about each format the reader is prepared
1796 to handle. */
1797
1798 void
1799 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1800 {
1801 registered_sym_fns fns = { flavour, sf };
1802
1803 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1804 }
1805
1806 /* Initialize OBJFILE to read symbols from its associated BFD. It
1807 either returns or calls error(). The result is an initialized
1808 struct sym_fns in the objfile structure, that contains cached
1809 information about the symbol file. */
1810
1811 static const struct sym_fns *
1812 find_sym_fns (bfd *abfd)
1813 {
1814 registered_sym_fns *rsf;
1815 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1816 int i;
1817
1818 if (our_flavour == bfd_target_srec_flavour
1819 || our_flavour == bfd_target_ihex_flavour
1820 || our_flavour == bfd_target_tekhex_flavour)
1821 return NULL; /* No symbols. */
1822
1823 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1824 if (our_flavour == rsf->sym_flavour)
1825 return rsf->sym_fns;
1826
1827 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1828 bfd_get_target (abfd));
1829 }
1830 \f
1831
1832 /* This function runs the load command of our current target. */
1833
1834 static void
1835 load_command (char *arg, int from_tty)
1836 {
1837 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1838
1839 dont_repeat ();
1840
1841 /* The user might be reloading because the binary has changed. Take
1842 this opportunity to check. */
1843 reopen_exec_file ();
1844 reread_symbols ();
1845
1846 if (arg == NULL)
1847 {
1848 char *parg;
1849 int count = 0;
1850
1851 parg = arg = get_exec_file (1);
1852
1853 /* Count how many \ " ' tab space there are in the name. */
1854 while ((parg = strpbrk (parg, "\\\"'\t ")))
1855 {
1856 parg++;
1857 count++;
1858 }
1859
1860 if (count)
1861 {
1862 /* We need to quote this string so buildargv can pull it apart. */
1863 char *temp = xmalloc (strlen (arg) + count + 1 );
1864 char *ptemp = temp;
1865 char *prev;
1866
1867 make_cleanup (xfree, temp);
1868
1869 prev = parg = arg;
1870 while ((parg = strpbrk (parg, "\\\"'\t ")))
1871 {
1872 strncpy (ptemp, prev, parg - prev);
1873 ptemp += parg - prev;
1874 prev = parg++;
1875 *ptemp++ = '\\';
1876 }
1877 strcpy (ptemp, prev);
1878
1879 arg = temp;
1880 }
1881 }
1882
1883 target_load (arg, from_tty);
1884
1885 /* After re-loading the executable, we don't really know which
1886 overlays are mapped any more. */
1887 overlay_cache_invalid = 1;
1888
1889 do_cleanups (cleanup);
1890 }
1891
1892 /* This version of "load" should be usable for any target. Currently
1893 it is just used for remote targets, not inftarg.c or core files,
1894 on the theory that only in that case is it useful.
1895
1896 Avoiding xmodem and the like seems like a win (a) because we don't have
1897 to worry about finding it, and (b) On VMS, fork() is very slow and so
1898 we don't want to run a subprocess. On the other hand, I'm not sure how
1899 performance compares. */
1900
1901 static int validate_download = 0;
1902
1903 /* Callback service function for generic_load (bfd_map_over_sections). */
1904
1905 static void
1906 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1907 {
1908 bfd_size_type *sum = data;
1909
1910 *sum += bfd_get_section_size (asec);
1911 }
1912
1913 /* Opaque data for load_section_callback. */
1914 struct load_section_data {
1915 CORE_ADDR load_offset;
1916 struct load_progress_data *progress_data;
1917 VEC(memory_write_request_s) *requests;
1918 };
1919
1920 /* Opaque data for load_progress. */
1921 struct load_progress_data {
1922 /* Cumulative data. */
1923 unsigned long write_count;
1924 unsigned long data_count;
1925 bfd_size_type total_size;
1926 };
1927
1928 /* Opaque data for load_progress for a single section. */
1929 struct load_progress_section_data {
1930 struct load_progress_data *cumulative;
1931
1932 /* Per-section data. */
1933 const char *section_name;
1934 ULONGEST section_sent;
1935 ULONGEST section_size;
1936 CORE_ADDR lma;
1937 gdb_byte *buffer;
1938 };
1939
1940 /* Target write callback routine for progress reporting. */
1941
1942 static void
1943 load_progress (ULONGEST bytes, void *untyped_arg)
1944 {
1945 struct load_progress_section_data *args = untyped_arg;
1946 struct load_progress_data *totals;
1947
1948 if (args == NULL)
1949 /* Writing padding data. No easy way to get at the cumulative
1950 stats, so just ignore this. */
1951 return;
1952
1953 totals = args->cumulative;
1954
1955 if (bytes == 0 && args->section_sent == 0)
1956 {
1957 /* The write is just starting. Let the user know we've started
1958 this section. */
1959 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1960 args->section_name, hex_string (args->section_size),
1961 paddress (target_gdbarch (), args->lma));
1962 return;
1963 }
1964
1965 if (validate_download)
1966 {
1967 /* Broken memories and broken monitors manifest themselves here
1968 when bring new computers to life. This doubles already slow
1969 downloads. */
1970 /* NOTE: cagney/1999-10-18: A more efficient implementation
1971 might add a verify_memory() method to the target vector and
1972 then use that. remote.c could implement that method using
1973 the ``qCRC'' packet. */
1974 gdb_byte *check = xmalloc (bytes);
1975 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1976
1977 if (target_read_memory (args->lma, check, bytes) != 0)
1978 error (_("Download verify read failed at %s"),
1979 paddress (target_gdbarch (), args->lma));
1980 if (memcmp (args->buffer, check, bytes) != 0)
1981 error (_("Download verify compare failed at %s"),
1982 paddress (target_gdbarch (), args->lma));
1983 do_cleanups (verify_cleanups);
1984 }
1985 totals->data_count += bytes;
1986 args->lma += bytes;
1987 args->buffer += bytes;
1988 totals->write_count += 1;
1989 args->section_sent += bytes;
1990 if (check_quit_flag ()
1991 || (deprecated_ui_load_progress_hook != NULL
1992 && deprecated_ui_load_progress_hook (args->section_name,
1993 args->section_sent)))
1994 error (_("Canceled the download"));
1995
1996 if (deprecated_show_load_progress != NULL)
1997 deprecated_show_load_progress (args->section_name,
1998 args->section_sent,
1999 args->section_size,
2000 totals->data_count,
2001 totals->total_size);
2002 }
2003
2004 /* Callback service function for generic_load (bfd_map_over_sections). */
2005
2006 static void
2007 load_section_callback (bfd *abfd, asection *asec, void *data)
2008 {
2009 struct memory_write_request *new_request;
2010 struct load_section_data *args = data;
2011 struct load_progress_section_data *section_data;
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 gdb_byte *buffer;
2014 const char *sect_name = bfd_get_section_name (abfd, asec);
2015
2016 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2017 return;
2018
2019 if (size == 0)
2020 return;
2021
2022 new_request = VEC_safe_push (memory_write_request_s,
2023 args->requests, NULL);
2024 memset (new_request, 0, sizeof (struct memory_write_request));
2025 section_data = XCNEW (struct load_progress_section_data);
2026 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2027 new_request->end = new_request->begin + size; /* FIXME Should size
2028 be in instead? */
2029 new_request->data = xmalloc (size);
2030 new_request->baton = section_data;
2031
2032 buffer = new_request->data;
2033
2034 section_data->cumulative = args->progress_data;
2035 section_data->section_name = sect_name;
2036 section_data->section_size = size;
2037 section_data->lma = new_request->begin;
2038 section_data->buffer = buffer;
2039
2040 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2041 }
2042
2043 /* Clean up an entire memory request vector, including load
2044 data and progress records. */
2045
2046 static void
2047 clear_memory_write_data (void *arg)
2048 {
2049 VEC(memory_write_request_s) **vec_p = arg;
2050 VEC(memory_write_request_s) *vec = *vec_p;
2051 int i;
2052 struct memory_write_request *mr;
2053
2054 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2055 {
2056 xfree (mr->data);
2057 xfree (mr->baton);
2058 }
2059 VEC_free (memory_write_request_s, vec);
2060 }
2061
2062 void
2063 generic_load (const char *args, int from_tty)
2064 {
2065 bfd *loadfile_bfd;
2066 struct timeval start_time, end_time;
2067 char *filename;
2068 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2069 struct load_section_data cbdata;
2070 struct load_progress_data total_progress;
2071 struct ui_out *uiout = current_uiout;
2072
2073 CORE_ADDR entry;
2074 char **argv;
2075
2076 memset (&cbdata, 0, sizeof (cbdata));
2077 memset (&total_progress, 0, sizeof (total_progress));
2078 cbdata.progress_data = &total_progress;
2079
2080 make_cleanup (clear_memory_write_data, &cbdata.requests);
2081
2082 if (args == NULL)
2083 error_no_arg (_("file to load"));
2084
2085 argv = gdb_buildargv (args);
2086 make_cleanup_freeargv (argv);
2087
2088 filename = tilde_expand (argv[0]);
2089 make_cleanup (xfree, filename);
2090
2091 if (argv[1] != NULL)
2092 {
2093 const char *endptr;
2094
2095 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2096
2097 /* If the last word was not a valid number then
2098 treat it as a file name with spaces in. */
2099 if (argv[1] == endptr)
2100 error (_("Invalid download offset:%s."), argv[1]);
2101
2102 if (argv[2] != NULL)
2103 error (_("Too many parameters."));
2104 }
2105
2106 /* Open the file for loading. */
2107 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2108 if (loadfile_bfd == NULL)
2109 {
2110 perror_with_name (filename);
2111 return;
2112 }
2113
2114 make_cleanup_bfd_unref (loadfile_bfd);
2115
2116 if (!bfd_check_format (loadfile_bfd, bfd_object))
2117 {
2118 error (_("\"%s\" is not an object file: %s"), filename,
2119 bfd_errmsg (bfd_get_error ()));
2120 }
2121
2122 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2123 (void *) &total_progress.total_size);
2124
2125 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2126
2127 gettimeofday (&start_time, NULL);
2128
2129 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2130 load_progress) != 0)
2131 error (_("Load failed"));
2132
2133 gettimeofday (&end_time, NULL);
2134
2135 entry = bfd_get_start_address (loadfile_bfd);
2136 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2137 ui_out_text (uiout, "Start address ");
2138 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2139 ui_out_text (uiout, ", load size ");
2140 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2141 ui_out_text (uiout, "\n");
2142 /* We were doing this in remote-mips.c, I suspect it is right
2143 for other targets too. */
2144 regcache_write_pc (get_current_regcache (), entry);
2145
2146 /* Reset breakpoints, now that we have changed the load image. For
2147 instance, breakpoints may have been set (or reset, by
2148 post_create_inferior) while connected to the target but before we
2149 loaded the program. In that case, the prologue analyzer could
2150 have read instructions from the target to find the right
2151 breakpoint locations. Loading has changed the contents of that
2152 memory. */
2153
2154 breakpoint_re_set ();
2155
2156 /* FIXME: are we supposed to call symbol_file_add or not? According
2157 to a comment from remote-mips.c (where a call to symbol_file_add
2158 was commented out), making the call confuses GDB if more than one
2159 file is loaded in. Some targets do (e.g., remote-vx.c) but
2160 others don't (or didn't - perhaps they have all been deleted). */
2161
2162 print_transfer_performance (gdb_stdout, total_progress.data_count,
2163 total_progress.write_count,
2164 &start_time, &end_time);
2165
2166 do_cleanups (old_cleanups);
2167 }
2168
2169 /* Report how fast the transfer went. */
2170
2171 void
2172 print_transfer_performance (struct ui_file *stream,
2173 unsigned long data_count,
2174 unsigned long write_count,
2175 const struct timeval *start_time,
2176 const struct timeval *end_time)
2177 {
2178 ULONGEST time_count;
2179 struct ui_out *uiout = current_uiout;
2180
2181 /* Compute the elapsed time in milliseconds, as a tradeoff between
2182 accuracy and overflow. */
2183 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2184 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2185
2186 ui_out_text (uiout, "Transfer rate: ");
2187 if (time_count > 0)
2188 {
2189 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2190
2191 if (ui_out_is_mi_like_p (uiout))
2192 {
2193 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2194 ui_out_text (uiout, " bits/sec");
2195 }
2196 else if (rate < 1024)
2197 {
2198 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2199 ui_out_text (uiout, " bytes/sec");
2200 }
2201 else
2202 {
2203 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2204 ui_out_text (uiout, " KB/sec");
2205 }
2206 }
2207 else
2208 {
2209 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2210 ui_out_text (uiout, " bits in <1 sec");
2211 }
2212 if (write_count > 0)
2213 {
2214 ui_out_text (uiout, ", ");
2215 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2216 ui_out_text (uiout, " bytes/write");
2217 }
2218 ui_out_text (uiout, ".\n");
2219 }
2220
2221 /* This function allows the addition of incrementally linked object files.
2222 It does not modify any state in the target, only in the debugger. */
2223 /* Note: ezannoni 2000-04-13 This function/command used to have a
2224 special case syntax for the rombug target (Rombug is the boot
2225 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2226 rombug case, the user doesn't need to supply a text address,
2227 instead a call to target_link() (in target.c) would supply the
2228 value to use. We are now discontinuing this type of ad hoc syntax. */
2229
2230 static void
2231 add_symbol_file_command (char *args, int from_tty)
2232 {
2233 struct gdbarch *gdbarch = get_current_arch ();
2234 char *filename = NULL;
2235 int flags = OBJF_USERLOADED | OBJF_SHARED;
2236 char *arg;
2237 int section_index = 0;
2238 int argcnt = 0;
2239 int sec_num = 0;
2240 int i;
2241 int expecting_sec_name = 0;
2242 int expecting_sec_addr = 0;
2243 char **argv;
2244 struct objfile *objf;
2245
2246 struct sect_opt
2247 {
2248 char *name;
2249 char *value;
2250 };
2251
2252 struct section_addr_info *section_addrs;
2253 struct sect_opt *sect_opts = NULL;
2254 size_t num_sect_opts = 0;
2255 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2256
2257 num_sect_opts = 16;
2258 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2259
2260 dont_repeat ();
2261
2262 if (args == NULL)
2263 error (_("add-symbol-file takes a file name and an address"));
2264
2265 argv = gdb_buildargv (args);
2266 make_cleanup_freeargv (argv);
2267
2268 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2269 {
2270 /* Process the argument. */
2271 if (argcnt == 0)
2272 {
2273 /* The first argument is the file name. */
2274 filename = tilde_expand (arg);
2275 make_cleanup (xfree, filename);
2276 }
2277 else if (argcnt == 1)
2278 {
2279 /* The second argument is always the text address at which
2280 to load the program. */
2281 sect_opts[section_index].name = ".text";
2282 sect_opts[section_index].value = arg;
2283 if (++section_index >= num_sect_opts)
2284 {
2285 num_sect_opts *= 2;
2286 sect_opts = ((struct sect_opt *)
2287 xrealloc (sect_opts,
2288 num_sect_opts
2289 * sizeof (struct sect_opt)));
2290 }
2291 }
2292 else
2293 {
2294 /* It's an option (starting with '-') or it's an argument
2295 to an option. */
2296 if (expecting_sec_name)
2297 {
2298 sect_opts[section_index].name = arg;
2299 expecting_sec_name = 0;
2300 }
2301 else if (expecting_sec_addr)
2302 {
2303 sect_opts[section_index].value = arg;
2304 expecting_sec_addr = 0;
2305 if (++section_index >= num_sect_opts)
2306 {
2307 num_sect_opts *= 2;
2308 sect_opts = ((struct sect_opt *)
2309 xrealloc (sect_opts,
2310 num_sect_opts
2311 * sizeof (struct sect_opt)));
2312 }
2313 }
2314 else if (strcmp (arg, "-readnow") == 0)
2315 flags |= OBJF_READNOW;
2316 else if (strcmp (arg, "-s") == 0)
2317 {
2318 expecting_sec_name = 1;
2319 expecting_sec_addr = 1;
2320 }
2321 else
2322 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2323 " [-readnow] [-s <secname> <addr>]*"));
2324 }
2325 }
2326
2327 /* This command takes at least two arguments. The first one is a
2328 filename, and the second is the address where this file has been
2329 loaded. Abort now if this address hasn't been provided by the
2330 user. */
2331 if (section_index < 1)
2332 error (_("The address where %s has been loaded is missing"), filename);
2333
2334 /* Print the prompt for the query below. And save the arguments into
2335 a sect_addr_info structure to be passed around to other
2336 functions. We have to split this up into separate print
2337 statements because hex_string returns a local static
2338 string. */
2339
2340 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2341 section_addrs = alloc_section_addr_info (section_index);
2342 make_cleanup (xfree, section_addrs);
2343 for (i = 0; i < section_index; i++)
2344 {
2345 CORE_ADDR addr;
2346 char *val = sect_opts[i].value;
2347 char *sec = sect_opts[i].name;
2348
2349 addr = parse_and_eval_address (val);
2350
2351 /* Here we store the section offsets in the order they were
2352 entered on the command line. */
2353 section_addrs->other[sec_num].name = sec;
2354 section_addrs->other[sec_num].addr = addr;
2355 printf_unfiltered ("\t%s_addr = %s\n", sec,
2356 paddress (gdbarch, addr));
2357 sec_num++;
2358
2359 /* The object's sections are initialized when a
2360 call is made to build_objfile_section_table (objfile).
2361 This happens in reread_symbols.
2362 At this point, we don't know what file type this is,
2363 so we can't determine what section names are valid. */
2364 }
2365 section_addrs->num_sections = sec_num;
2366
2367 if (from_tty && (!query ("%s", "")))
2368 error (_("Not confirmed."));
2369
2370 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2371 section_addrs, flags);
2372
2373 add_target_sections_of_objfile (objf);
2374
2375 /* Getting new symbols may change our opinion about what is
2376 frameless. */
2377 reinit_frame_cache ();
2378 do_cleanups (my_cleanups);
2379 }
2380 \f
2381
2382 /* This function removes a symbol file that was added via add-symbol-file. */
2383
2384 static void
2385 remove_symbol_file_command (char *args, int from_tty)
2386 {
2387 char **argv;
2388 struct objfile *objf = NULL;
2389 struct cleanup *my_cleanups;
2390 struct program_space *pspace = current_program_space;
2391 struct gdbarch *gdbarch = get_current_arch ();
2392
2393 dont_repeat ();
2394
2395 if (args == NULL)
2396 error (_("remove-symbol-file: no symbol file provided"));
2397
2398 my_cleanups = make_cleanup (null_cleanup, NULL);
2399
2400 argv = gdb_buildargv (args);
2401
2402 if (strcmp (argv[0], "-a") == 0)
2403 {
2404 /* Interpret the next argument as an address. */
2405 CORE_ADDR addr;
2406
2407 if (argv[1] == NULL)
2408 error (_("Missing address argument"));
2409
2410 if (argv[2] != NULL)
2411 error (_("Junk after %s"), argv[1]);
2412
2413 addr = parse_and_eval_address (argv[1]);
2414
2415 ALL_OBJFILES (objf)
2416 {
2417 if ((objf->flags & OBJF_USERLOADED) != 0
2418 && (objf->flags & OBJF_SHARED) != 0
2419 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2420 break;
2421 }
2422 }
2423 else if (argv[0] != NULL)
2424 {
2425 /* Interpret the current argument as a file name. */
2426 char *filename;
2427
2428 if (argv[1] != NULL)
2429 error (_("Junk after %s"), argv[0]);
2430
2431 filename = tilde_expand (argv[0]);
2432 make_cleanup (xfree, filename);
2433
2434 ALL_OBJFILES (objf)
2435 {
2436 if ((objf->flags & OBJF_USERLOADED) != 0
2437 && (objf->flags & OBJF_SHARED) != 0
2438 && objf->pspace == pspace
2439 && filename_cmp (filename, objfile_name (objf)) == 0)
2440 break;
2441 }
2442 }
2443
2444 if (objf == NULL)
2445 error (_("No symbol file found"));
2446
2447 if (from_tty
2448 && !query (_("Remove symbol table from file \"%s\"? "),
2449 objfile_name (objf)))
2450 error (_("Not confirmed."));
2451
2452 free_objfile (objf);
2453 clear_symtab_users (0);
2454
2455 do_cleanups (my_cleanups);
2456 }
2457
2458 typedef struct objfile *objfilep;
2459
2460 DEF_VEC_P (objfilep);
2461
2462 /* Re-read symbols if a symbol-file has changed. */
2463
2464 void
2465 reread_symbols (void)
2466 {
2467 struct objfile *objfile;
2468 long new_modtime;
2469 struct stat new_statbuf;
2470 int res;
2471 VEC (objfilep) *new_objfiles = NULL;
2472 struct cleanup *all_cleanups;
2473
2474 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2475
2476 /* With the addition of shared libraries, this should be modified,
2477 the load time should be saved in the partial symbol tables, since
2478 different tables may come from different source files. FIXME.
2479 This routine should then walk down each partial symbol table
2480 and see if the symbol table that it originates from has been changed. */
2481
2482 for (objfile = object_files; objfile; objfile = objfile->next)
2483 {
2484 if (objfile->obfd == NULL)
2485 continue;
2486
2487 /* Separate debug objfiles are handled in the main objfile. */
2488 if (objfile->separate_debug_objfile_backlink)
2489 continue;
2490
2491 /* If this object is from an archive (what you usually create with
2492 `ar', often called a `static library' on most systems, though
2493 a `shared library' on AIX is also an archive), then you should
2494 stat on the archive name, not member name. */
2495 if (objfile->obfd->my_archive)
2496 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2497 else
2498 res = stat (objfile_name (objfile), &new_statbuf);
2499 if (res != 0)
2500 {
2501 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2502 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2503 objfile_name (objfile));
2504 continue;
2505 }
2506 new_modtime = new_statbuf.st_mtime;
2507 if (new_modtime != objfile->mtime)
2508 {
2509 struct cleanup *old_cleanups;
2510 struct section_offsets *offsets;
2511 int num_offsets;
2512 char *original_name;
2513
2514 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2515 objfile_name (objfile));
2516
2517 /* There are various functions like symbol_file_add,
2518 symfile_bfd_open, syms_from_objfile, etc., which might
2519 appear to do what we want. But they have various other
2520 effects which we *don't* want. So we just do stuff
2521 ourselves. We don't worry about mapped files (for one thing,
2522 any mapped file will be out of date). */
2523
2524 /* If we get an error, blow away this objfile (not sure if
2525 that is the correct response for things like shared
2526 libraries). */
2527 old_cleanups = make_cleanup_free_objfile (objfile);
2528 /* We need to do this whenever any symbols go away. */
2529 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2530
2531 if (exec_bfd != NULL
2532 && filename_cmp (bfd_get_filename (objfile->obfd),
2533 bfd_get_filename (exec_bfd)) == 0)
2534 {
2535 /* Reload EXEC_BFD without asking anything. */
2536
2537 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2538 }
2539
2540 /* Keep the calls order approx. the same as in free_objfile. */
2541
2542 /* Free the separate debug objfiles. It will be
2543 automatically recreated by sym_read. */
2544 free_objfile_separate_debug (objfile);
2545
2546 /* Remove any references to this objfile in the global
2547 value lists. */
2548 preserve_values (objfile);
2549
2550 /* Nuke all the state that we will re-read. Much of the following
2551 code which sets things to NULL really is necessary to tell
2552 other parts of GDB that there is nothing currently there.
2553
2554 Try to keep the freeing order compatible with free_objfile. */
2555
2556 if (objfile->sf != NULL)
2557 {
2558 (*objfile->sf->sym_finish) (objfile);
2559 }
2560
2561 clear_objfile_data (objfile);
2562
2563 /* Clean up any state BFD has sitting around. */
2564 {
2565 struct bfd *obfd = objfile->obfd;
2566 char *obfd_filename;
2567
2568 obfd_filename = bfd_get_filename (objfile->obfd);
2569 /* Open the new BFD before freeing the old one, so that
2570 the filename remains live. */
2571 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2572 if (objfile->obfd == NULL)
2573 {
2574 /* We have to make a cleanup and error here, rather
2575 than erroring later, because once we unref OBFD,
2576 OBFD_FILENAME will be freed. */
2577 make_cleanup_bfd_unref (obfd);
2578 error (_("Can't open %s to read symbols."), obfd_filename);
2579 }
2580 gdb_bfd_unref (obfd);
2581 }
2582
2583 original_name = xstrdup (objfile->original_name);
2584 make_cleanup (xfree, original_name);
2585
2586 /* bfd_openr sets cacheable to true, which is what we want. */
2587 if (!bfd_check_format (objfile->obfd, bfd_object))
2588 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2589 bfd_errmsg (bfd_get_error ()));
2590
2591 /* Save the offsets, we will nuke them with the rest of the
2592 objfile_obstack. */
2593 num_offsets = objfile->num_sections;
2594 offsets = ((struct section_offsets *)
2595 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2596 memcpy (offsets, objfile->section_offsets,
2597 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2598
2599 /* FIXME: Do we have to free a whole linked list, or is this
2600 enough? */
2601 if (objfile->global_psymbols.list)
2602 xfree (objfile->global_psymbols.list);
2603 memset (&objfile->global_psymbols, 0,
2604 sizeof (objfile->global_psymbols));
2605 if (objfile->static_psymbols.list)
2606 xfree (objfile->static_psymbols.list);
2607 memset (&objfile->static_psymbols, 0,
2608 sizeof (objfile->static_psymbols));
2609
2610 /* Free the obstacks for non-reusable objfiles. */
2611 psymbol_bcache_free (objfile->psymbol_cache);
2612 objfile->psymbol_cache = psymbol_bcache_init ();
2613 obstack_free (&objfile->objfile_obstack, 0);
2614 objfile->sections = NULL;
2615 objfile->compunit_symtabs = NULL;
2616 objfile->psymtabs = NULL;
2617 objfile->psymtabs_addrmap = NULL;
2618 objfile->free_psymtabs = NULL;
2619 objfile->template_symbols = NULL;
2620
2621 /* obstack_init also initializes the obstack so it is
2622 empty. We could use obstack_specify_allocation but
2623 gdb_obstack.h specifies the alloc/dealloc functions. */
2624 obstack_init (&objfile->objfile_obstack);
2625
2626 /* set_objfile_per_bfd potentially allocates the per-bfd
2627 data on the objfile's obstack (if sharing data across
2628 multiple users is not possible), so it's important to
2629 do it *after* the obstack has been initialized. */
2630 set_objfile_per_bfd (objfile);
2631
2632 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2633 original_name,
2634 strlen (original_name));
2635
2636 /* Reset the sym_fns pointer. The ELF reader can change it
2637 based on whether .gdb_index is present, and we need it to
2638 start over. PR symtab/15885 */
2639 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2640
2641 build_objfile_section_table (objfile);
2642 terminate_minimal_symbol_table (objfile);
2643
2644 /* We use the same section offsets as from last time. I'm not
2645 sure whether that is always correct for shared libraries. */
2646 objfile->section_offsets = (struct section_offsets *)
2647 obstack_alloc (&objfile->objfile_obstack,
2648 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2649 memcpy (objfile->section_offsets, offsets,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 objfile->num_sections = num_offsets;
2652
2653 /* What the hell is sym_new_init for, anyway? The concept of
2654 distinguishing between the main file and additional files
2655 in this way seems rather dubious. */
2656 if (objfile == symfile_objfile)
2657 {
2658 (*objfile->sf->sym_new_init) (objfile);
2659 }
2660
2661 (*objfile->sf->sym_init) (objfile);
2662 clear_complaints (&symfile_complaints, 1, 1);
2663
2664 objfile->flags &= ~OBJF_PSYMTABS_READ;
2665 read_symbols (objfile, 0);
2666
2667 if (!objfile_has_symbols (objfile))
2668 {
2669 wrap_here ("");
2670 printf_unfiltered (_("(no debugging symbols found)\n"));
2671 wrap_here ("");
2672 }
2673
2674 /* We're done reading the symbol file; finish off complaints. */
2675 clear_complaints (&symfile_complaints, 0, 1);
2676
2677 /* Getting new symbols may change our opinion about what is
2678 frameless. */
2679
2680 reinit_frame_cache ();
2681
2682 /* Discard cleanups as symbol reading was successful. */
2683 discard_cleanups (old_cleanups);
2684
2685 /* If the mtime has changed between the time we set new_modtime
2686 and now, we *want* this to be out of date, so don't call stat
2687 again now. */
2688 objfile->mtime = new_modtime;
2689 init_entry_point_info (objfile);
2690
2691 VEC_safe_push (objfilep, new_objfiles, objfile);
2692 }
2693 }
2694
2695 if (new_objfiles)
2696 {
2697 int ix;
2698
2699 /* Notify objfiles that we've modified objfile sections. */
2700 objfiles_changed ();
2701
2702 clear_symtab_users (0);
2703
2704 /* clear_objfile_data for each objfile was called before freeing it and
2705 observer_notify_new_objfile (NULL) has been called by
2706 clear_symtab_users above. Notify the new files now. */
2707 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2708 observer_notify_new_objfile (objfile);
2709
2710 /* At least one objfile has changed, so we can consider that
2711 the executable we're debugging has changed too. */
2712 observer_notify_executable_changed ();
2713 }
2714
2715 do_cleanups (all_cleanups);
2716 }
2717 \f
2718
2719 typedef struct
2720 {
2721 char *ext;
2722 enum language lang;
2723 }
2724 filename_language;
2725
2726 static filename_language *filename_language_table;
2727 static int fl_table_size, fl_table_next;
2728
2729 static void
2730 add_filename_language (char *ext, enum language lang)
2731 {
2732 if (fl_table_next >= fl_table_size)
2733 {
2734 fl_table_size += 10;
2735 filename_language_table =
2736 xrealloc (filename_language_table,
2737 fl_table_size * sizeof (*filename_language_table));
2738 }
2739
2740 filename_language_table[fl_table_next].ext = xstrdup (ext);
2741 filename_language_table[fl_table_next].lang = lang;
2742 fl_table_next++;
2743 }
2744
2745 static char *ext_args;
2746 static void
2747 show_ext_args (struct ui_file *file, int from_tty,
2748 struct cmd_list_element *c, const char *value)
2749 {
2750 fprintf_filtered (file,
2751 _("Mapping between filename extension "
2752 "and source language is \"%s\".\n"),
2753 value);
2754 }
2755
2756 static void
2757 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2758 {
2759 int i;
2760 char *cp = ext_args;
2761 enum language lang;
2762
2763 /* First arg is filename extension, starting with '.' */
2764 if (*cp != '.')
2765 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2766
2767 /* Find end of first arg. */
2768 while (*cp && !isspace (*cp))
2769 cp++;
2770
2771 if (*cp == '\0')
2772 error (_("'%s': two arguments required -- "
2773 "filename extension and language"),
2774 ext_args);
2775
2776 /* Null-terminate first arg. */
2777 *cp++ = '\0';
2778
2779 /* Find beginning of second arg, which should be a source language. */
2780 cp = skip_spaces (cp);
2781
2782 if (*cp == '\0')
2783 error (_("'%s': two arguments required -- "
2784 "filename extension and language"),
2785 ext_args);
2786
2787 /* Lookup the language from among those we know. */
2788 lang = language_enum (cp);
2789
2790 /* Now lookup the filename extension: do we already know it? */
2791 for (i = 0; i < fl_table_next; i++)
2792 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2793 break;
2794
2795 if (i >= fl_table_next)
2796 {
2797 /* New file extension. */
2798 add_filename_language (ext_args, lang);
2799 }
2800 else
2801 {
2802 /* Redefining a previously known filename extension. */
2803
2804 /* if (from_tty) */
2805 /* query ("Really make files of type %s '%s'?", */
2806 /* ext_args, language_str (lang)); */
2807
2808 xfree (filename_language_table[i].ext);
2809 filename_language_table[i].ext = xstrdup (ext_args);
2810 filename_language_table[i].lang = lang;
2811 }
2812 }
2813
2814 static void
2815 info_ext_lang_command (char *args, int from_tty)
2816 {
2817 int i;
2818
2819 printf_filtered (_("Filename extensions and the languages they represent:"));
2820 printf_filtered ("\n\n");
2821 for (i = 0; i < fl_table_next; i++)
2822 printf_filtered ("\t%s\t- %s\n",
2823 filename_language_table[i].ext,
2824 language_str (filename_language_table[i].lang));
2825 }
2826
2827 static void
2828 init_filename_language_table (void)
2829 {
2830 if (fl_table_size == 0) /* Protect against repetition. */
2831 {
2832 fl_table_size = 20;
2833 fl_table_next = 0;
2834 filename_language_table = XNEWVEC (filename_language, fl_table_size);
2835
2836 add_filename_language (".c", language_c);
2837 add_filename_language (".d", language_d);
2838 add_filename_language (".C", language_cplus);
2839 add_filename_language (".cc", language_cplus);
2840 add_filename_language (".cp", language_cplus);
2841 add_filename_language (".cpp", language_cplus);
2842 add_filename_language (".cxx", language_cplus);
2843 add_filename_language (".c++", language_cplus);
2844 add_filename_language (".java", language_java);
2845 add_filename_language (".class", language_java);
2846 add_filename_language (".m", language_objc);
2847 add_filename_language (".f", language_fortran);
2848 add_filename_language (".F", language_fortran);
2849 add_filename_language (".for", language_fortran);
2850 add_filename_language (".FOR", language_fortran);
2851 add_filename_language (".ftn", language_fortran);
2852 add_filename_language (".FTN", language_fortran);
2853 add_filename_language (".fpp", language_fortran);
2854 add_filename_language (".FPP", language_fortran);
2855 add_filename_language (".f90", language_fortran);
2856 add_filename_language (".F90", language_fortran);
2857 add_filename_language (".f95", language_fortran);
2858 add_filename_language (".F95", language_fortran);
2859 add_filename_language (".f03", language_fortran);
2860 add_filename_language (".F03", language_fortran);
2861 add_filename_language (".f08", language_fortran);
2862 add_filename_language (".F08", language_fortran);
2863 add_filename_language (".s", language_asm);
2864 add_filename_language (".sx", language_asm);
2865 add_filename_language (".S", language_asm);
2866 add_filename_language (".pas", language_pascal);
2867 add_filename_language (".p", language_pascal);
2868 add_filename_language (".pp", language_pascal);
2869 add_filename_language (".adb", language_ada);
2870 add_filename_language (".ads", language_ada);
2871 add_filename_language (".a", language_ada);
2872 add_filename_language (".ada", language_ada);
2873 add_filename_language (".dg", language_ada);
2874 }
2875 }
2876
2877 enum language
2878 deduce_language_from_filename (const char *filename)
2879 {
2880 int i;
2881 char *cp;
2882
2883 if (filename != NULL)
2884 if ((cp = strrchr (filename, '.')) != NULL)
2885 for (i = 0; i < fl_table_next; i++)
2886 if (strcmp (cp, filename_language_table[i].ext) == 0)
2887 return filename_language_table[i].lang;
2888
2889 return language_unknown;
2890 }
2891 \f
2892 /* Allocate and initialize a new symbol table.
2893 CUST is from the result of allocate_compunit_symtab. */
2894
2895 struct symtab *
2896 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2897 {
2898 struct objfile *objfile = cust->objfile;
2899 struct symtab *symtab
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2901
2902 symtab->filename = bcache (filename, strlen (filename) + 1,
2903 objfile->per_bfd->filename_cache);
2904 symtab->fullname = NULL;
2905 symtab->language = deduce_language_from_filename (filename);
2906
2907 /* This can be very verbose with lots of headers.
2908 Only print at higher debug levels. */
2909 if (symtab_create_debug >= 2)
2910 {
2911 /* Be a bit clever with debugging messages, and don't print objfile
2912 every time, only when it changes. */
2913 static char *last_objfile_name = NULL;
2914
2915 if (last_objfile_name == NULL
2916 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2917 {
2918 xfree (last_objfile_name);
2919 last_objfile_name = xstrdup (objfile_name (objfile));
2920 fprintf_unfiltered (gdb_stdlog,
2921 "Creating one or more symtabs for objfile %s ...\n",
2922 last_objfile_name);
2923 }
2924 fprintf_unfiltered (gdb_stdlog,
2925 "Created symtab %s for module %s.\n",
2926 host_address_to_string (symtab), filename);
2927 }
2928
2929 /* Add it to CUST's list of symtabs. */
2930 if (cust->filetabs == NULL)
2931 {
2932 cust->filetabs = symtab;
2933 cust->last_filetab = symtab;
2934 }
2935 else
2936 {
2937 cust->last_filetab->next = symtab;
2938 cust->last_filetab = symtab;
2939 }
2940
2941 /* Backlink to the containing compunit symtab. */
2942 symtab->compunit_symtab = cust;
2943
2944 return symtab;
2945 }
2946
2947 /* Allocate and initialize a new compunit.
2948 NAME is the name of the main source file, if there is one, or some
2949 descriptive text if there are no source files. */
2950
2951 struct compunit_symtab *
2952 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2953 {
2954 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2955 struct compunit_symtab);
2956 const char *saved_name;
2957
2958 cu->objfile = objfile;
2959
2960 /* The name we record here is only for display/debugging purposes.
2961 Just save the basename to avoid path issues (too long for display,
2962 relative vs absolute, etc.). */
2963 saved_name = lbasename (name);
2964 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2965 strlen (saved_name));
2966
2967 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2968
2969 if (symtab_create_debug)
2970 {
2971 fprintf_unfiltered (gdb_stdlog,
2972 "Created compunit symtab %s for %s.\n",
2973 host_address_to_string (cu),
2974 cu->name);
2975 }
2976
2977 return cu;
2978 }
2979
2980 /* Hook CU to the objfile it comes from. */
2981
2982 void
2983 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2984 {
2985 cu->next = cu->objfile->compunit_symtabs;
2986 cu->objfile->compunit_symtabs = cu;
2987 }
2988 \f
2989
2990 /* Reset all data structures in gdb which may contain references to symbol
2991 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2992
2993 void
2994 clear_symtab_users (int add_flags)
2995 {
2996 /* Someday, we should do better than this, by only blowing away
2997 the things that really need to be blown. */
2998
2999 /* Clear the "current" symtab first, because it is no longer valid.
3000 breakpoint_re_set may try to access the current symtab. */
3001 clear_current_source_symtab_and_line ();
3002
3003 clear_displays ();
3004 clear_last_displayed_sal ();
3005 clear_pc_function_cache ();
3006 observer_notify_new_objfile (NULL);
3007
3008 /* Clear globals which might have pointed into a removed objfile.
3009 FIXME: It's not clear which of these are supposed to persist
3010 between expressions and which ought to be reset each time. */
3011 expression_context_block = NULL;
3012 innermost_block = NULL;
3013
3014 /* Varobj may refer to old symbols, perform a cleanup. */
3015 varobj_invalidate ();
3016
3017 /* Now that the various caches have been cleared, we can re_set
3018 our breakpoints without risking it using stale data. */
3019 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3020 breakpoint_re_set ();
3021 }
3022
3023 static void
3024 clear_symtab_users_cleanup (void *ignore)
3025 {
3026 clear_symtab_users (0);
3027 }
3028 \f
3029 /* OVERLAYS:
3030 The following code implements an abstraction for debugging overlay sections.
3031
3032 The target model is as follows:
3033 1) The gnu linker will permit multiple sections to be mapped into the
3034 same VMA, each with its own unique LMA (or load address).
3035 2) It is assumed that some runtime mechanism exists for mapping the
3036 sections, one by one, from the load address into the VMA address.
3037 3) This code provides a mechanism for gdb to keep track of which
3038 sections should be considered to be mapped from the VMA to the LMA.
3039 This information is used for symbol lookup, and memory read/write.
3040 For instance, if a section has been mapped then its contents
3041 should be read from the VMA, otherwise from the LMA.
3042
3043 Two levels of debugger support for overlays are available. One is
3044 "manual", in which the debugger relies on the user to tell it which
3045 overlays are currently mapped. This level of support is
3046 implemented entirely in the core debugger, and the information about
3047 whether a section is mapped is kept in the objfile->obj_section table.
3048
3049 The second level of support is "automatic", and is only available if
3050 the target-specific code provides functionality to read the target's
3051 overlay mapping table, and translate its contents for the debugger
3052 (by updating the mapped state information in the obj_section tables).
3053
3054 The interface is as follows:
3055 User commands:
3056 overlay map <name> -- tell gdb to consider this section mapped
3057 overlay unmap <name> -- tell gdb to consider this section unmapped
3058 overlay list -- list the sections that GDB thinks are mapped
3059 overlay read-target -- get the target's state of what's mapped
3060 overlay off/manual/auto -- set overlay debugging state
3061 Functional interface:
3062 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3063 section, return that section.
3064 find_pc_overlay(pc): find any overlay section that contains
3065 the pc, either in its VMA or its LMA
3066 section_is_mapped(sect): true if overlay is marked as mapped
3067 section_is_overlay(sect): true if section's VMA != LMA
3068 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3069 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3070 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3071 overlay_mapped_address(...): map an address from section's LMA to VMA
3072 overlay_unmapped_address(...): map an address from section's VMA to LMA
3073 symbol_overlayed_address(...): Return a "current" address for symbol:
3074 either in VMA or LMA depending on whether
3075 the symbol's section is currently mapped. */
3076
3077 /* Overlay debugging state: */
3078
3079 enum overlay_debugging_state overlay_debugging = ovly_off;
3080 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3081
3082 /* Function: section_is_overlay (SECTION)
3083 Returns true if SECTION has VMA not equal to LMA, ie.
3084 SECTION is loaded at an address different from where it will "run". */
3085
3086 int
3087 section_is_overlay (struct obj_section *section)
3088 {
3089 if (overlay_debugging && section)
3090 {
3091 bfd *abfd = section->objfile->obfd;
3092 asection *bfd_section = section->the_bfd_section;
3093
3094 if (bfd_section_lma (abfd, bfd_section) != 0
3095 && bfd_section_lma (abfd, bfd_section)
3096 != bfd_section_vma (abfd, bfd_section))
3097 return 1;
3098 }
3099
3100 return 0;
3101 }
3102
3103 /* Function: overlay_invalidate_all (void)
3104 Invalidate the mapped state of all overlay sections (mark it as stale). */
3105
3106 static void
3107 overlay_invalidate_all (void)
3108 {
3109 struct objfile *objfile;
3110 struct obj_section *sect;
3111
3112 ALL_OBJSECTIONS (objfile, sect)
3113 if (section_is_overlay (sect))
3114 sect->ovly_mapped = -1;
3115 }
3116
3117 /* Function: section_is_mapped (SECTION)
3118 Returns true if section is an overlay, and is currently mapped.
3119
3120 Access to the ovly_mapped flag is restricted to this function, so
3121 that we can do automatic update. If the global flag
3122 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3123 overlay_invalidate_all. If the mapped state of the particular
3124 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3125
3126 int
3127 section_is_mapped (struct obj_section *osect)
3128 {
3129 struct gdbarch *gdbarch;
3130
3131 if (osect == 0 || !section_is_overlay (osect))
3132 return 0;
3133
3134 switch (overlay_debugging)
3135 {
3136 default:
3137 case ovly_off:
3138 return 0; /* overlay debugging off */
3139 case ovly_auto: /* overlay debugging automatic */
3140 /* Unles there is a gdbarch_overlay_update function,
3141 there's really nothing useful to do here (can't really go auto). */
3142 gdbarch = get_objfile_arch (osect->objfile);
3143 if (gdbarch_overlay_update_p (gdbarch))
3144 {
3145 if (overlay_cache_invalid)
3146 {
3147 overlay_invalidate_all ();
3148 overlay_cache_invalid = 0;
3149 }
3150 if (osect->ovly_mapped == -1)
3151 gdbarch_overlay_update (gdbarch, osect);
3152 }
3153 /* fall thru to manual case */
3154 case ovly_on: /* overlay debugging manual */
3155 return osect->ovly_mapped == 1;
3156 }
3157 }
3158
3159 /* Function: pc_in_unmapped_range
3160 If PC falls into the lma range of SECTION, return true, else false. */
3161
3162 CORE_ADDR
3163 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3164 {
3165 if (section_is_overlay (section))
3166 {
3167 bfd *abfd = section->objfile->obfd;
3168 asection *bfd_section = section->the_bfd_section;
3169
3170 /* We assume the LMA is relocated by the same offset as the VMA. */
3171 bfd_vma size = bfd_get_section_size (bfd_section);
3172 CORE_ADDR offset = obj_section_offset (section);
3173
3174 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3175 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3176 return 1;
3177 }
3178
3179 return 0;
3180 }
3181
3182 /* Function: pc_in_mapped_range
3183 If PC falls into the vma range of SECTION, return true, else false. */
3184
3185 CORE_ADDR
3186 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3187 {
3188 if (section_is_overlay (section))
3189 {
3190 if (obj_section_addr (section) <= pc
3191 && pc < obj_section_endaddr (section))
3192 return 1;
3193 }
3194
3195 return 0;
3196 }
3197
3198 /* Return true if the mapped ranges of sections A and B overlap, false
3199 otherwise. */
3200
3201 static int
3202 sections_overlap (struct obj_section *a, struct obj_section *b)
3203 {
3204 CORE_ADDR a_start = obj_section_addr (a);
3205 CORE_ADDR a_end = obj_section_endaddr (a);
3206 CORE_ADDR b_start = obj_section_addr (b);
3207 CORE_ADDR b_end = obj_section_endaddr (b);
3208
3209 return (a_start < b_end && b_start < a_end);
3210 }
3211
3212 /* Function: overlay_unmapped_address (PC, SECTION)
3213 Returns the address corresponding to PC in the unmapped (load) range.
3214 May be the same as PC. */
3215
3216 CORE_ADDR
3217 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3218 {
3219 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3220 {
3221 bfd *abfd = section->objfile->obfd;
3222 asection *bfd_section = section->the_bfd_section;
3223
3224 return pc + bfd_section_lma (abfd, bfd_section)
3225 - bfd_section_vma (abfd, bfd_section);
3226 }
3227
3228 return pc;
3229 }
3230
3231 /* Function: overlay_mapped_address (PC, SECTION)
3232 Returns the address corresponding to PC in the mapped (runtime) range.
3233 May be the same as PC. */
3234
3235 CORE_ADDR
3236 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3237 {
3238 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3239 {
3240 bfd *abfd = section->objfile->obfd;
3241 asection *bfd_section = section->the_bfd_section;
3242
3243 return pc + bfd_section_vma (abfd, bfd_section)
3244 - bfd_section_lma (abfd, bfd_section);
3245 }
3246
3247 return pc;
3248 }
3249
3250 /* Function: symbol_overlayed_address
3251 Return one of two addresses (relative to the VMA or to the LMA),
3252 depending on whether the section is mapped or not. */
3253
3254 CORE_ADDR
3255 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3256 {
3257 if (overlay_debugging)
3258 {
3259 /* If the symbol has no section, just return its regular address. */
3260 if (section == 0)
3261 return address;
3262 /* If the symbol's section is not an overlay, just return its
3263 address. */
3264 if (!section_is_overlay (section))
3265 return address;
3266 /* If the symbol's section is mapped, just return its address. */
3267 if (section_is_mapped (section))
3268 return address;
3269 /*
3270 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3271 * then return its LOADED address rather than its vma address!!
3272 */
3273 return overlay_unmapped_address (address, section);
3274 }
3275 return address;
3276 }
3277
3278 /* Function: find_pc_overlay (PC)
3279 Return the best-match overlay section for PC:
3280 If PC matches a mapped overlay section's VMA, return that section.
3281 Else if PC matches an unmapped section's VMA, return that section.
3282 Else if PC matches an unmapped section's LMA, return that section. */
3283
3284 struct obj_section *
3285 find_pc_overlay (CORE_ADDR pc)
3286 {
3287 struct objfile *objfile;
3288 struct obj_section *osect, *best_match = NULL;
3289
3290 if (overlay_debugging)
3291 ALL_OBJSECTIONS (objfile, osect)
3292 if (section_is_overlay (osect))
3293 {
3294 if (pc_in_mapped_range (pc, osect))
3295 {
3296 if (section_is_mapped (osect))
3297 return osect;
3298 else
3299 best_match = osect;
3300 }
3301 else if (pc_in_unmapped_range (pc, osect))
3302 best_match = osect;
3303 }
3304 return best_match;
3305 }
3306
3307 /* Function: find_pc_mapped_section (PC)
3308 If PC falls into the VMA address range of an overlay section that is
3309 currently marked as MAPPED, return that section. Else return NULL. */
3310
3311 struct obj_section *
3312 find_pc_mapped_section (CORE_ADDR pc)
3313 {
3314 struct objfile *objfile;
3315 struct obj_section *osect;
3316
3317 if (overlay_debugging)
3318 ALL_OBJSECTIONS (objfile, osect)
3319 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3320 return osect;
3321
3322 return NULL;
3323 }
3324
3325 /* Function: list_overlays_command
3326 Print a list of mapped sections and their PC ranges. */
3327
3328 static void
3329 list_overlays_command (char *args, int from_tty)
3330 {
3331 int nmapped = 0;
3332 struct objfile *objfile;
3333 struct obj_section *osect;
3334
3335 if (overlay_debugging)
3336 ALL_OBJSECTIONS (objfile, osect)
3337 if (section_is_mapped (osect))
3338 {
3339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3340 const char *name;
3341 bfd_vma lma, vma;
3342 int size;
3343
3344 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3345 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3346 size = bfd_get_section_size (osect->the_bfd_section);
3347 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3348
3349 printf_filtered ("Section %s, loaded at ", name);
3350 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3351 puts_filtered (" - ");
3352 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3353 printf_filtered (", mapped at ");
3354 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3355 puts_filtered (" - ");
3356 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3357 puts_filtered ("\n");
3358
3359 nmapped++;
3360 }
3361 if (nmapped == 0)
3362 printf_filtered (_("No sections are mapped.\n"));
3363 }
3364
3365 /* Function: map_overlay_command
3366 Mark the named section as mapped (ie. residing at its VMA address). */
3367
3368 static void
3369 map_overlay_command (char *args, int from_tty)
3370 {
3371 struct objfile *objfile, *objfile2;
3372 struct obj_section *sec, *sec2;
3373
3374 if (!overlay_debugging)
3375 error (_("Overlay debugging not enabled. Use "
3376 "either the 'overlay auto' or\n"
3377 "the 'overlay manual' command."));
3378
3379 if (args == 0 || *args == 0)
3380 error (_("Argument required: name of an overlay section"));
3381
3382 /* First, find a section matching the user supplied argument. */
3383 ALL_OBJSECTIONS (objfile, sec)
3384 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3385 {
3386 /* Now, check to see if the section is an overlay. */
3387 if (!section_is_overlay (sec))
3388 continue; /* not an overlay section */
3389
3390 /* Mark the overlay as "mapped". */
3391 sec->ovly_mapped = 1;
3392
3393 /* Next, make a pass and unmap any sections that are
3394 overlapped by this new section: */
3395 ALL_OBJSECTIONS (objfile2, sec2)
3396 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3397 {
3398 if (info_verbose)
3399 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3400 bfd_section_name (objfile->obfd,
3401 sec2->the_bfd_section));
3402 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3403 }
3404 return;
3405 }
3406 error (_("No overlay section called %s"), args);
3407 }
3408
3409 /* Function: unmap_overlay_command
3410 Mark the overlay section as unmapped
3411 (ie. resident in its LMA address range, rather than the VMA range). */
3412
3413 static void
3414 unmap_overlay_command (char *args, int from_tty)
3415 {
3416 struct objfile *objfile;
3417 struct obj_section *sec = NULL;
3418
3419 if (!overlay_debugging)
3420 error (_("Overlay debugging not enabled. "
3421 "Use either the 'overlay auto' or\n"
3422 "the 'overlay manual' command."));
3423
3424 if (args == 0 || *args == 0)
3425 error (_("Argument required: name of an overlay section"));
3426
3427 /* First, find a section matching the user supplied argument. */
3428 ALL_OBJSECTIONS (objfile, sec)
3429 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3430 {
3431 if (!sec->ovly_mapped)
3432 error (_("Section %s is not mapped"), args);
3433 sec->ovly_mapped = 0;
3434 return;
3435 }
3436 error (_("No overlay section called %s"), args);
3437 }
3438
3439 /* Function: overlay_auto_command
3440 A utility command to turn on overlay debugging.
3441 Possibly this should be done via a set/show command. */
3442
3443 static void
3444 overlay_auto_command (char *args, int from_tty)
3445 {
3446 overlay_debugging = ovly_auto;
3447 enable_overlay_breakpoints ();
3448 if (info_verbose)
3449 printf_unfiltered (_("Automatic overlay debugging enabled."));
3450 }
3451
3452 /* Function: overlay_manual_command
3453 A utility command to turn on overlay debugging.
3454 Possibly this should be done via a set/show command. */
3455
3456 static void
3457 overlay_manual_command (char *args, int from_tty)
3458 {
3459 overlay_debugging = ovly_on;
3460 disable_overlay_breakpoints ();
3461 if (info_verbose)
3462 printf_unfiltered (_("Overlay debugging enabled."));
3463 }
3464
3465 /* Function: overlay_off_command
3466 A utility command to turn on overlay debugging.
3467 Possibly this should be done via a set/show command. */
3468
3469 static void
3470 overlay_off_command (char *args, int from_tty)
3471 {
3472 overlay_debugging = ovly_off;
3473 disable_overlay_breakpoints ();
3474 if (info_verbose)
3475 printf_unfiltered (_("Overlay debugging disabled."));
3476 }
3477
3478 static void
3479 overlay_load_command (char *args, int from_tty)
3480 {
3481 struct gdbarch *gdbarch = get_current_arch ();
3482
3483 if (gdbarch_overlay_update_p (gdbarch))
3484 gdbarch_overlay_update (gdbarch, NULL);
3485 else
3486 error (_("This target does not know how to read its overlay state."));
3487 }
3488
3489 /* Function: overlay_command
3490 A place-holder for a mis-typed command. */
3491
3492 /* Command list chain containing all defined "overlay" subcommands. */
3493 static struct cmd_list_element *overlaylist;
3494
3495 static void
3496 overlay_command (char *args, int from_tty)
3497 {
3498 printf_unfiltered
3499 ("\"overlay\" must be followed by the name of an overlay command.\n");
3500 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3501 }
3502
3503 /* Target Overlays for the "Simplest" overlay manager:
3504
3505 This is GDB's default target overlay layer. It works with the
3506 minimal overlay manager supplied as an example by Cygnus. The
3507 entry point is via a function pointer "gdbarch_overlay_update",
3508 so targets that use a different runtime overlay manager can
3509 substitute their own overlay_update function and take over the
3510 function pointer.
3511
3512 The overlay_update function pokes around in the target's data structures
3513 to see what overlays are mapped, and updates GDB's overlay mapping with
3514 this information.
3515
3516 In this simple implementation, the target data structures are as follows:
3517 unsigned _novlys; /# number of overlay sections #/
3518 unsigned _ovly_table[_novlys][4] = {
3519 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3520 {..., ..., ..., ...},
3521 }
3522 unsigned _novly_regions; /# number of overlay regions #/
3523 unsigned _ovly_region_table[_novly_regions][3] = {
3524 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3525 {..., ..., ...},
3526 }
3527 These functions will attempt to update GDB's mappedness state in the
3528 symbol section table, based on the target's mappedness state.
3529
3530 To do this, we keep a cached copy of the target's _ovly_table, and
3531 attempt to detect when the cached copy is invalidated. The main
3532 entry point is "simple_overlay_update(SECT), which looks up SECT in
3533 the cached table and re-reads only the entry for that section from
3534 the target (whenever possible). */
3535
3536 /* Cached, dynamically allocated copies of the target data structures: */
3537 static unsigned (*cache_ovly_table)[4] = 0;
3538 static unsigned cache_novlys = 0;
3539 static CORE_ADDR cache_ovly_table_base = 0;
3540 enum ovly_index
3541 {
3542 VMA, OSIZE, LMA, MAPPED
3543 };
3544
3545 /* Throw away the cached copy of _ovly_table. */
3546
3547 static void
3548 simple_free_overlay_table (void)
3549 {
3550 if (cache_ovly_table)
3551 xfree (cache_ovly_table);
3552 cache_novlys = 0;
3553 cache_ovly_table = NULL;
3554 cache_ovly_table_base = 0;
3555 }
3556
3557 /* Read an array of ints of size SIZE from the target into a local buffer.
3558 Convert to host order. int LEN is number of ints. */
3559
3560 static void
3561 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3562 int len, int size, enum bfd_endian byte_order)
3563 {
3564 /* FIXME (alloca): Not safe if array is very large. */
3565 gdb_byte *buf = alloca (len * size);
3566 int i;
3567
3568 read_memory (memaddr, buf, len * size);
3569 for (i = 0; i < len; i++)
3570 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3571 }
3572
3573 /* Find and grab a copy of the target _ovly_table
3574 (and _novlys, which is needed for the table's size). */
3575
3576 static int
3577 simple_read_overlay_table (void)
3578 {
3579 struct bound_minimal_symbol novlys_msym;
3580 struct bound_minimal_symbol ovly_table_msym;
3581 struct gdbarch *gdbarch;
3582 int word_size;
3583 enum bfd_endian byte_order;
3584
3585 simple_free_overlay_table ();
3586 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3587 if (! novlys_msym.minsym)
3588 {
3589 error (_("Error reading inferior's overlay table: "
3590 "couldn't find `_novlys' variable\n"
3591 "in inferior. Use `overlay manual' mode."));
3592 return 0;
3593 }
3594
3595 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3596 if (! ovly_table_msym.minsym)
3597 {
3598 error (_("Error reading inferior's overlay table: couldn't find "
3599 "`_ovly_table' array\n"
3600 "in inferior. Use `overlay manual' mode."));
3601 return 0;
3602 }
3603
3604 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3605 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3606 byte_order = gdbarch_byte_order (gdbarch);
3607
3608 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3609 4, byte_order);
3610 cache_ovly_table
3611 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3612 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3613 read_target_long_array (cache_ovly_table_base,
3614 (unsigned int *) cache_ovly_table,
3615 cache_novlys * 4, word_size, byte_order);
3616
3617 return 1; /* SUCCESS */
3618 }
3619
3620 /* Function: simple_overlay_update_1
3621 A helper function for simple_overlay_update. Assuming a cached copy
3622 of _ovly_table exists, look through it to find an entry whose vma,
3623 lma and size match those of OSECT. Re-read the entry and make sure
3624 it still matches OSECT (else the table may no longer be valid).
3625 Set OSECT's mapped state to match the entry. Return: 1 for
3626 success, 0 for failure. */
3627
3628 static int
3629 simple_overlay_update_1 (struct obj_section *osect)
3630 {
3631 int i, size;
3632 bfd *obfd = osect->objfile->obfd;
3633 asection *bsect = osect->the_bfd_section;
3634 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3635 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3637
3638 size = bfd_get_section_size (osect->the_bfd_section);
3639 for (i = 0; i < cache_novlys; i++)
3640 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3641 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3642 /* && cache_ovly_table[i][OSIZE] == size */ )
3643 {
3644 read_target_long_array (cache_ovly_table_base + i * word_size,
3645 (unsigned int *) cache_ovly_table[i],
3646 4, word_size, byte_order);
3647 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3648 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3649 /* && cache_ovly_table[i][OSIZE] == size */ )
3650 {
3651 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3652 return 1;
3653 }
3654 else /* Warning! Warning! Target's ovly table has changed! */
3655 return 0;
3656 }
3657 return 0;
3658 }
3659
3660 /* Function: simple_overlay_update
3661 If OSECT is NULL, then update all sections' mapped state
3662 (after re-reading the entire target _ovly_table).
3663 If OSECT is non-NULL, then try to find a matching entry in the
3664 cached ovly_table and update only OSECT's mapped state.
3665 If a cached entry can't be found or the cache isn't valid, then
3666 re-read the entire cache, and go ahead and update all sections. */
3667
3668 void
3669 simple_overlay_update (struct obj_section *osect)
3670 {
3671 struct objfile *objfile;
3672
3673 /* Were we given an osect to look up? NULL means do all of them. */
3674 if (osect)
3675 /* Have we got a cached copy of the target's overlay table? */
3676 if (cache_ovly_table != NULL)
3677 {
3678 /* Does its cached location match what's currently in the
3679 symtab? */
3680 struct bound_minimal_symbol minsym
3681 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3682
3683 if (minsym.minsym == NULL)
3684 error (_("Error reading inferior's overlay table: couldn't "
3685 "find `_ovly_table' array\n"
3686 "in inferior. Use `overlay manual' mode."));
3687
3688 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3689 /* Then go ahead and try to look up this single section in
3690 the cache. */
3691 if (simple_overlay_update_1 (osect))
3692 /* Found it! We're done. */
3693 return;
3694 }
3695
3696 /* Cached table no good: need to read the entire table anew.
3697 Or else we want all the sections, in which case it's actually
3698 more efficient to read the whole table in one block anyway. */
3699
3700 if (! simple_read_overlay_table ())
3701 return;
3702
3703 /* Now may as well update all sections, even if only one was requested. */
3704 ALL_OBJSECTIONS (objfile, osect)
3705 if (section_is_overlay (osect))
3706 {
3707 int i, size;
3708 bfd *obfd = osect->objfile->obfd;
3709 asection *bsect = osect->the_bfd_section;
3710
3711 size = bfd_get_section_size (bsect);
3712 for (i = 0; i < cache_novlys; i++)
3713 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3714 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3715 /* && cache_ovly_table[i][OSIZE] == size */ )
3716 { /* obj_section matches i'th entry in ovly_table. */
3717 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3718 break; /* finished with inner for loop: break out. */
3719 }
3720 }
3721 }
3722
3723 /* Set the output sections and output offsets for section SECTP in
3724 ABFD. The relocation code in BFD will read these offsets, so we
3725 need to be sure they're initialized. We map each section to itself,
3726 with no offset; this means that SECTP->vma will be honored. */
3727
3728 static void
3729 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3730 {
3731 sectp->output_section = sectp;
3732 sectp->output_offset = 0;
3733 }
3734
3735 /* Default implementation for sym_relocate. */
3736
3737 bfd_byte *
3738 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3739 bfd_byte *buf)
3740 {
3741 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3742 DWO file. */
3743 bfd *abfd = sectp->owner;
3744
3745 /* We're only interested in sections with relocation
3746 information. */
3747 if ((sectp->flags & SEC_RELOC) == 0)
3748 return NULL;
3749
3750 /* We will handle section offsets properly elsewhere, so relocate as if
3751 all sections begin at 0. */
3752 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3753
3754 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3755 }
3756
3757 /* Relocate the contents of a debug section SECTP in ABFD. The
3758 contents are stored in BUF if it is non-NULL, or returned in a
3759 malloc'd buffer otherwise.
3760
3761 For some platforms and debug info formats, shared libraries contain
3762 relocations against the debug sections (particularly for DWARF-2;
3763 one affected platform is PowerPC GNU/Linux, although it depends on
3764 the version of the linker in use). Also, ELF object files naturally
3765 have unresolved relocations for their debug sections. We need to apply
3766 the relocations in order to get the locations of symbols correct.
3767 Another example that may require relocation processing, is the
3768 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3769 debug section. */
3770
3771 bfd_byte *
3772 symfile_relocate_debug_section (struct objfile *objfile,
3773 asection *sectp, bfd_byte *buf)
3774 {
3775 gdb_assert (objfile->sf->sym_relocate);
3776
3777 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3778 }
3779
3780 struct symfile_segment_data *
3781 get_symfile_segment_data (bfd *abfd)
3782 {
3783 const struct sym_fns *sf = find_sym_fns (abfd);
3784
3785 if (sf == NULL)
3786 return NULL;
3787
3788 return sf->sym_segments (abfd);
3789 }
3790
3791 void
3792 free_symfile_segment_data (struct symfile_segment_data *data)
3793 {
3794 xfree (data->segment_bases);
3795 xfree (data->segment_sizes);
3796 xfree (data->segment_info);
3797 xfree (data);
3798 }
3799
3800 /* Given:
3801 - DATA, containing segment addresses from the object file ABFD, and
3802 the mapping from ABFD's sections onto the segments that own them,
3803 and
3804 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3805 segment addresses reported by the target,
3806 store the appropriate offsets for each section in OFFSETS.
3807
3808 If there are fewer entries in SEGMENT_BASES than there are segments
3809 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3810
3811 If there are more entries, then ignore the extra. The target may
3812 not be able to distinguish between an empty data segment and a
3813 missing data segment; a missing text segment is less plausible. */
3814
3815 int
3816 symfile_map_offsets_to_segments (bfd *abfd,
3817 const struct symfile_segment_data *data,
3818 struct section_offsets *offsets,
3819 int num_segment_bases,
3820 const CORE_ADDR *segment_bases)
3821 {
3822 int i;
3823 asection *sect;
3824
3825 /* It doesn't make sense to call this function unless you have some
3826 segment base addresses. */
3827 gdb_assert (num_segment_bases > 0);
3828
3829 /* If we do not have segment mappings for the object file, we
3830 can not relocate it by segments. */
3831 gdb_assert (data != NULL);
3832 gdb_assert (data->num_segments > 0);
3833
3834 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3835 {
3836 int which = data->segment_info[i];
3837
3838 gdb_assert (0 <= which && which <= data->num_segments);
3839
3840 /* Don't bother computing offsets for sections that aren't
3841 loaded as part of any segment. */
3842 if (! which)
3843 continue;
3844
3845 /* Use the last SEGMENT_BASES entry as the address of any extra
3846 segments mentioned in DATA->segment_info. */
3847 if (which > num_segment_bases)
3848 which = num_segment_bases;
3849
3850 offsets->offsets[i] = (segment_bases[which - 1]
3851 - data->segment_bases[which - 1]);
3852 }
3853
3854 return 1;
3855 }
3856
3857 static void
3858 symfile_find_segment_sections (struct objfile *objfile)
3859 {
3860 bfd *abfd = objfile->obfd;
3861 int i;
3862 asection *sect;
3863 struct symfile_segment_data *data;
3864
3865 data = get_symfile_segment_data (objfile->obfd);
3866 if (data == NULL)
3867 return;
3868
3869 if (data->num_segments != 1 && data->num_segments != 2)
3870 {
3871 free_symfile_segment_data (data);
3872 return;
3873 }
3874
3875 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3876 {
3877 int which = data->segment_info[i];
3878
3879 if (which == 1)
3880 {
3881 if (objfile->sect_index_text == -1)
3882 objfile->sect_index_text = sect->index;
3883
3884 if (objfile->sect_index_rodata == -1)
3885 objfile->sect_index_rodata = sect->index;
3886 }
3887 else if (which == 2)
3888 {
3889 if (objfile->sect_index_data == -1)
3890 objfile->sect_index_data = sect->index;
3891
3892 if (objfile->sect_index_bss == -1)
3893 objfile->sect_index_bss = sect->index;
3894 }
3895 }
3896
3897 free_symfile_segment_data (data);
3898 }
3899
3900 /* Listen for free_objfile events. */
3901
3902 static void
3903 symfile_free_objfile (struct objfile *objfile)
3904 {
3905 /* Remove the target sections owned by this objfile. */
3906 if (objfile != NULL)
3907 remove_target_sections ((void *) objfile);
3908 }
3909
3910 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3911 Expand all symtabs that match the specified criteria.
3912 See quick_symbol_functions.expand_symtabs_matching for details. */
3913
3914 void
3915 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3916 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3917 expand_symtabs_exp_notify_ftype *expansion_notify,
3918 enum search_domain kind,
3919 void *data)
3920 {
3921 struct objfile *objfile;
3922
3923 ALL_OBJFILES (objfile)
3924 {
3925 if (objfile->sf)
3926 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3927 symbol_matcher,
3928 expansion_notify, kind,
3929 data);
3930 }
3931 }
3932
3933 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3934 Map function FUN over every file.
3935 See quick_symbol_functions.map_symbol_filenames for details. */
3936
3937 void
3938 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3939 int need_fullname)
3940 {
3941 struct objfile *objfile;
3942
3943 ALL_OBJFILES (objfile)
3944 {
3945 if (objfile->sf)
3946 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3947 need_fullname);
3948 }
3949 }
3950
3951 void
3952 _initialize_symfile (void)
3953 {
3954 struct cmd_list_element *c;
3955
3956 observer_attach_free_objfile (symfile_free_objfile);
3957
3958 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3959 Load symbol table from executable file FILE.\n\
3960 The `file' command can also load symbol tables, as well as setting the file\n\
3961 to execute."), &cmdlist);
3962 set_cmd_completer (c, filename_completer);
3963
3964 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3965 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3966 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3967 ...]\nADDR is the starting address of the file's text.\n\
3968 The optional arguments are section-name section-address pairs and\n\
3969 should be specified if the data and bss segments are not contiguous\n\
3970 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3971 &cmdlist);
3972 set_cmd_completer (c, filename_completer);
3973
3974 c = add_cmd ("remove-symbol-file", class_files,
3975 remove_symbol_file_command, _("\
3976 Remove a symbol file added via the add-symbol-file command.\n\
3977 Usage: remove-symbol-file FILENAME\n\
3978 remove-symbol-file -a ADDRESS\n\
3979 The file to remove can be identified by its filename or by an address\n\
3980 that lies within the boundaries of this symbol file in memory."),
3981 &cmdlist);
3982
3983 c = add_cmd ("load", class_files, load_command, _("\
3984 Dynamically load FILE into the running program, and record its symbols\n\
3985 for access from GDB.\n\
3986 A load OFFSET may also be given."), &cmdlist);
3987 set_cmd_completer (c, filename_completer);
3988
3989 add_prefix_cmd ("overlay", class_support, overlay_command,
3990 _("Commands for debugging overlays."), &overlaylist,
3991 "overlay ", 0, &cmdlist);
3992
3993 add_com_alias ("ovly", "overlay", class_alias, 1);
3994 add_com_alias ("ov", "overlay", class_alias, 1);
3995
3996 add_cmd ("map-overlay", class_support, map_overlay_command,
3997 _("Assert that an overlay section is mapped."), &overlaylist);
3998
3999 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4000 _("Assert that an overlay section is unmapped."), &overlaylist);
4001
4002 add_cmd ("list-overlays", class_support, list_overlays_command,
4003 _("List mappings of overlay sections."), &overlaylist);
4004
4005 add_cmd ("manual", class_support, overlay_manual_command,
4006 _("Enable overlay debugging."), &overlaylist);
4007 add_cmd ("off", class_support, overlay_off_command,
4008 _("Disable overlay debugging."), &overlaylist);
4009 add_cmd ("auto", class_support, overlay_auto_command,
4010 _("Enable automatic overlay debugging."), &overlaylist);
4011 add_cmd ("load-target", class_support, overlay_load_command,
4012 _("Read the overlay mapping state from the target."), &overlaylist);
4013
4014 /* Filename extension to source language lookup table: */
4015 init_filename_language_table ();
4016 add_setshow_string_noescape_cmd ("extension-language", class_files,
4017 &ext_args, _("\
4018 Set mapping between filename extension and source language."), _("\
4019 Show mapping between filename extension and source language."), _("\
4020 Usage: set extension-language .foo bar"),
4021 set_ext_lang_command,
4022 show_ext_args,
4023 &setlist, &showlist);
4024
4025 add_info ("extensions", info_ext_lang_command,
4026 _("All filename extensions associated with a source language."));
4027
4028 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4029 &debug_file_directory, _("\
4030 Set the directories where separate debug symbols are searched for."), _("\
4031 Show the directories where separate debug symbols are searched for."), _("\
4032 Separate debug symbols are first searched for in the same\n\
4033 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4034 and lastly at the path of the directory of the binary with\n\
4035 each global debug-file-directory component prepended."),
4036 NULL,
4037 show_debug_file_directory,
4038 &setlist, &showlist);
4039
4040 add_setshow_enum_cmd ("symbol-loading", no_class,
4041 print_symbol_loading_enums, &print_symbol_loading,
4042 _("\
4043 Set printing of symbol loading messages."), _("\
4044 Show printing of symbol loading messages."), _("\
4045 off == turn all messages off\n\
4046 brief == print messages for the executable,\n\
4047 and brief messages for shared libraries\n\
4048 full == print messages for the executable,\n\
4049 and messages for each shared library."),
4050 NULL,
4051 NULL,
4052 &setprintlist, &showprintlist);
4053 }
This page took 0.150282 seconds and 4 git commands to generate.