* bcache.c (bcache_data): Call deprecated_bcache_added function.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 static void add_shared_symbol_files_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 static int overlay_is_mapped (struct obj_section *);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. First, check for a file with the standard
434 one or two segments. */
435
436 symfile_find_segment_sections (objfile);
437
438 /* Except when explicitly adding symbol files at some address,
439 section_offsets contains nothing but zeros, so it doesn't matter
440 which slot in section_offsets the individual sect_index_* members
441 index into. So if they are all zero, it is safe to just point
442 all the currently uninitialized indices to the first slot. But
443 beware: if this is the main executable, it may be relocated
444 later, e.g. by the remote qOffsets packet, and then this will
445 be wrong! That's why we try segments first. */
446
447 for (i = 0; i < objfile->num_sections; i++)
448 {
449 if (ANOFFSET (objfile->section_offsets, i) != 0)
450 {
451 break;
452 }
453 }
454 if (i == objfile->num_sections)
455 {
456 if (objfile->sect_index_text == -1)
457 objfile->sect_index_text = 0;
458 if (objfile->sect_index_data == -1)
459 objfile->sect_index_data = 0;
460 if (objfile->sect_index_bss == -1)
461 objfile->sect_index_bss = 0;
462 if (objfile->sect_index_rodata == -1)
463 objfile->sect_index_rodata = 0;
464 }
465 }
466
467 /* The arguments to place_section. */
468
469 struct place_section_arg
470 {
471 struct section_offsets *offsets;
472 CORE_ADDR lowest;
473 };
474
475 /* Find a unique offset to use for loadable section SECT if
476 the user did not provide an offset. */
477
478 void
479 place_section (bfd *abfd, asection *sect, void *obj)
480 {
481 struct place_section_arg *arg = obj;
482 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
483 int done;
484 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
485
486 /* We are only interested in allocated sections. */
487 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
488 return;
489
490 /* If the user specified an offset, honor it. */
491 if (offsets[sect->index] != 0)
492 return;
493
494 /* Otherwise, let's try to find a place for the section. */
495 start_addr = (arg->lowest + align - 1) & -align;
496
497 do {
498 asection *cur_sec;
499
500 done = 1;
501
502 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
503 {
504 int indx = cur_sec->index;
505 CORE_ADDR cur_offset;
506
507 /* We don't need to compare against ourself. */
508 if (cur_sec == sect)
509 continue;
510
511 /* We can only conflict with allocated sections. */
512 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
528 break;
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 bfd *abfd = objfile->obfd;
584 asection *cur_sec;
585 CORE_ADDR lowest = 0;
586
587 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
588 /* We do not expect this to happen; just skip this step if the
589 relocatable file has a section with an assigned VMA. */
590 if (bfd_section_vma (abfd, cur_sec) != 0)
591 break;
592
593 if (cur_sec == NULL)
594 {
595 CORE_ADDR *offsets = objfile->section_offsets->offsets;
596
597 /* Pick non-overlapping offsets for sections the user did not
598 place explicitly. */
599 arg.offsets = objfile->section_offsets;
600 arg.lowest = 0;
601 bfd_map_over_sections (objfile->obfd, place_section, &arg);
602
603 /* Correctly filling in the section offsets is not quite
604 enough. Relocatable files have two properties that
605 (most) shared objects do not:
606
607 - Their debug information will contain relocations. Some
608 shared libraries do also, but many do not, so this can not
609 be assumed.
610
611 - If there are multiple code sections they will be loaded
612 at different relative addresses in memory than they are
613 in the objfile, since all sections in the file will start
614 at address zero.
615
616 Because GDB has very limited ability to map from an
617 address in debug info to the correct code section,
618 it relies on adding SECT_OFF_TEXT to things which might be
619 code. If we clear all the section offsets, and set the
620 section VMAs instead, then symfile_relocate_debug_section
621 will return meaningful debug information pointing at the
622 correct sections.
623
624 GDB has too many different data structures for section
625 addresses - a bfd, objfile, and so_list all have section
626 tables, as does exec_ops. Some of these could probably
627 be eliminated. */
628
629 for (cur_sec = abfd->sections; cur_sec != NULL;
630 cur_sec = cur_sec->next)
631 {
632 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
633 continue;
634
635 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
636 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
637 offsets[cur_sec->index]);
638 offsets[cur_sec->index] = 0;
639 }
640 }
641 }
642
643 /* Remember the bfd indexes for the .text, .data, .bss and
644 .rodata sections. */
645 init_objfile_sect_indices (objfile);
646 }
647
648
649 /* Divide the file into segments, which are individual relocatable units.
650 This is the default version of the sym_fns.sym_segments function for
651 symbol readers that do not have an explicit representation of segments.
652 It assumes that object files do not have segments, and fully linked
653 files have a single segment. */
654
655 struct symfile_segment_data *
656 default_symfile_segments (bfd *abfd)
657 {
658 int num_sections, i;
659 asection *sect;
660 struct symfile_segment_data *data;
661 CORE_ADDR low, high;
662
663 /* Relocatable files contain enough information to position each
664 loadable section independently; they should not be relocated
665 in segments. */
666 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
667 return NULL;
668
669 /* Make sure there is at least one loadable section in the file. */
670 for (sect = abfd->sections; sect != NULL; sect = sect->next)
671 {
672 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
673 continue;
674
675 break;
676 }
677 if (sect == NULL)
678 return NULL;
679
680 low = bfd_get_section_vma (abfd, sect);
681 high = low + bfd_get_section_size (sect);
682
683 data = XZALLOC (struct symfile_segment_data);
684 data->num_segments = 1;
685 data->segment_bases = XCALLOC (1, CORE_ADDR);
686 data->segment_sizes = XCALLOC (1, CORE_ADDR);
687
688 num_sections = bfd_count_sections (abfd);
689 data->segment_info = XCALLOC (num_sections, int);
690
691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
692 {
693 CORE_ADDR vma;
694
695 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
696 continue;
697
698 vma = bfd_get_section_vma (abfd, sect);
699 if (vma < low)
700 low = vma;
701 if (vma + bfd_get_section_size (sect) > high)
702 high = vma + bfd_get_section_size (sect);
703
704 data->segment_info[i] = 1;
705 }
706
707 data->segment_bases[0] = low;
708 data->segment_sizes[0] = high - low;
709
710 return data;
711 }
712
713 /* Process a symbol file, as either the main file or as a dynamically
714 loaded file.
715
716 OBJFILE is where the symbols are to be read from.
717
718 ADDRS is the list of section load addresses. If the user has given
719 an 'add-symbol-file' command, then this is the list of offsets and
720 addresses he or she provided as arguments to the command; or, if
721 we're handling a shared library, these are the actual addresses the
722 sections are loaded at, according to the inferior's dynamic linker
723 (as gleaned by GDB's shared library code). We convert each address
724 into an offset from the section VMA's as it appears in the object
725 file, and then call the file's sym_offsets function to convert this
726 into a format-specific offset table --- a `struct section_offsets'.
727 If ADDRS is non-zero, OFFSETS must be zero.
728
729 OFFSETS is a table of section offsets already in the right
730 format-specific representation. NUM_OFFSETS is the number of
731 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
732 assume this is the proper table the call to sym_offsets described
733 above would produce. Instead of calling sym_offsets, we just dump
734 it right into objfile->section_offsets. (When we're re-reading
735 symbols from an objfile, we don't have the original load address
736 list any more; all we have is the section offset table.) If
737 OFFSETS is non-zero, ADDRS must be zero.
738
739 MAINLINE is nonzero if this is the main symbol file, or zero if
740 it's an extra symbol file such as dynamically loaded code.
741
742 VERBO is nonzero if the caller has printed a verbose message about
743 the symbol reading (and complaints can be more terse about it). */
744
745 void
746 syms_from_objfile (struct objfile *objfile,
747 struct section_addr_info *addrs,
748 struct section_offsets *offsets,
749 int num_offsets,
750 int mainline,
751 int verbo)
752 {
753 struct section_addr_info *local_addr = NULL;
754 struct cleanup *old_chain;
755
756 gdb_assert (! (addrs && offsets));
757
758 init_entry_point_info (objfile);
759 objfile->sf = find_sym_fns (objfile->obfd);
760
761 if (objfile->sf == NULL)
762 return; /* No symbols. */
763
764 /* Make sure that partially constructed symbol tables will be cleaned up
765 if an error occurs during symbol reading. */
766 old_chain = make_cleanup_free_objfile (objfile);
767
768 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
769 list. We now establish the convention that an addr of zero means
770 no load address was specified. */
771 if (! addrs && ! offsets)
772 {
773 local_addr
774 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
775 make_cleanup (xfree, local_addr);
776 addrs = local_addr;
777 }
778
779 /* Now either addrs or offsets is non-zero. */
780
781 if (mainline)
782 {
783 /* We will modify the main symbol table, make sure that all its users
784 will be cleaned up if an error occurs during symbol reading. */
785 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
786
787 /* Since no error yet, throw away the old symbol table. */
788
789 if (symfile_objfile != NULL)
790 {
791 free_objfile (symfile_objfile);
792 symfile_objfile = NULL;
793 }
794
795 /* Currently we keep symbols from the add-symbol-file command.
796 If the user wants to get rid of them, they should do "symbol-file"
797 without arguments first. Not sure this is the best behavior
798 (PR 2207). */
799
800 (*objfile->sf->sym_new_init) (objfile);
801 }
802
803 /* Convert addr into an offset rather than an absolute address.
804 We find the lowest address of a loaded segment in the objfile,
805 and assume that <addr> is where that got loaded.
806
807 We no longer warn if the lowest section is not a text segment (as
808 happens for the PA64 port. */
809 if (!mainline && addrs && addrs->other[0].name)
810 {
811 asection *lower_sect;
812 asection *sect;
813 CORE_ADDR lower_offset;
814 int i;
815
816 /* Find lowest loadable section to be used as starting point for
817 continguous sections. FIXME!! won't work without call to find
818 .text first, but this assumes text is lowest section. */
819 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
820 if (lower_sect == NULL)
821 bfd_map_over_sections (objfile->obfd, find_lowest_section,
822 &lower_sect);
823 if (lower_sect == NULL)
824 {
825 warning (_("no loadable sections found in added symbol-file %s"),
826 objfile->name);
827 lower_offset = 0;
828 }
829 else
830 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
831
832 /* Calculate offsets for the loadable sections.
833 FIXME! Sections must be in order of increasing loadable section
834 so that contiguous sections can use the lower-offset!!!
835
836 Adjust offsets if the segments are not contiguous.
837 If the section is contiguous, its offset should be set to
838 the offset of the highest loadable section lower than it
839 (the loadable section directly below it in memory).
840 this_offset = lower_offset = lower_addr - lower_orig_addr */
841
842 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
843 {
844 if (addrs->other[i].addr != 0)
845 {
846 sect = bfd_get_section_by_name (objfile->obfd,
847 addrs->other[i].name);
848 if (sect)
849 {
850 addrs->other[i].addr
851 -= bfd_section_vma (objfile->obfd, sect);
852 lower_offset = addrs->other[i].addr;
853 /* This is the index used by BFD. */
854 addrs->other[i].sectindex = sect->index ;
855 }
856 else
857 {
858 warning (_("section %s not found in %s"),
859 addrs->other[i].name,
860 objfile->name);
861 addrs->other[i].addr = 0;
862 }
863 }
864 else
865 addrs->other[i].addr = lower_offset;
866 }
867 }
868
869 /* Initialize symbol reading routines for this objfile, allow complaints to
870 appear for this new file, and record how verbose to be, then do the
871 initial symbol reading for this file. */
872
873 (*objfile->sf->sym_init) (objfile);
874 clear_complaints (&symfile_complaints, 1, verbo);
875
876 if (addrs)
877 (*objfile->sf->sym_offsets) (objfile, addrs);
878 else
879 {
880 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
881
882 /* Just copy in the offset table directly as given to us. */
883 objfile->num_sections = num_offsets;
884 objfile->section_offsets
885 = ((struct section_offsets *)
886 obstack_alloc (&objfile->objfile_obstack, size));
887 memcpy (objfile->section_offsets, offsets, size);
888
889 init_objfile_sect_indices (objfile);
890 }
891
892 #ifndef DEPRECATED_IBM6000_TARGET
893 /* This is a SVR4/SunOS specific hack, I think. In any event, it
894 screws RS/6000. sym_offsets should be doing this sort of thing,
895 because it knows the mapping between bfd sections and
896 section_offsets. */
897 /* This is a hack. As far as I can tell, section offsets are not
898 target dependent. They are all set to addr with a couple of
899 exceptions. The exceptions are sysvr4 shared libraries, whose
900 offsets are kept in solib structures anyway and rs6000 xcoff
901 which handles shared libraries in a completely unique way.
902
903 Section offsets are built similarly, except that they are built
904 by adding addr in all cases because there is no clear mapping
905 from section_offsets into actual sections. Note that solib.c
906 has a different algorithm for finding section offsets.
907
908 These should probably all be collapsed into some target
909 independent form of shared library support. FIXME. */
910
911 if (addrs)
912 {
913 struct obj_section *s;
914
915 /* Map section offsets in "addr" back to the object's
916 sections by comparing the section names with bfd's
917 section names. Then adjust the section address by
918 the offset. */ /* for gdb/13815 */
919
920 ALL_OBJFILE_OSECTIONS (objfile, s)
921 {
922 CORE_ADDR s_addr = 0;
923 int i;
924
925 for (i = 0;
926 !s_addr && i < addrs->num_sections && addrs->other[i].name;
927 i++)
928 if (strcmp (bfd_section_name (s->objfile->obfd,
929 s->the_bfd_section),
930 addrs->other[i].name) == 0)
931 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
932
933 s->addr -= s->offset;
934 s->addr += s_addr;
935 s->endaddr -= s->offset;
936 s->endaddr += s_addr;
937 s->offset += s_addr;
938 }
939 }
940 #endif /* not DEPRECATED_IBM6000_TARGET */
941
942 (*objfile->sf->sym_read) (objfile, mainline);
943
944 /* Don't allow char * to have a typename (else would get caddr_t).
945 Ditto void *. FIXME: Check whether this is now done by all the
946 symbol readers themselves (many of them now do), and if so remove
947 it from here. */
948
949 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
950 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
951
952 /* Mark the objfile has having had initial symbol read attempted. Note
953 that this does not mean we found any symbols... */
954
955 objfile->flags |= OBJF_SYMS;
956
957 /* Discard cleanups as symbol reading was successful. */
958
959 discard_cleanups (old_chain);
960 }
961
962 /* Perform required actions after either reading in the initial
963 symbols for a new objfile, or mapping in the symbols from a reusable
964 objfile. */
965
966 void
967 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
968 {
969
970 /* If this is the main symbol file we have to clean up all users of the
971 old main symbol file. Otherwise it is sufficient to fixup all the
972 breakpoints that may have been redefined by this symbol file. */
973 if (mainline)
974 {
975 /* OK, make it the "real" symbol file. */
976 symfile_objfile = objfile;
977
978 clear_symtab_users ();
979 }
980 else
981 {
982 breakpoint_re_set ();
983 }
984
985 /* We're done reading the symbol file; finish off complaints. */
986 clear_complaints (&symfile_complaints, 0, verbo);
987 }
988
989 /* Process a symbol file, as either the main file or as a dynamically
990 loaded file.
991
992 ABFD is a BFD already open on the file, as from symfile_bfd_open.
993 This BFD will be closed on error, and is always consumed by this function.
994
995 FROM_TTY says how verbose to be.
996
997 MAINLINE specifies whether this is the main symbol file, or whether
998 it's an extra symbol file such as dynamically loaded code.
999
1000 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1001 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1002 non-zero.
1003
1004 Upon success, returns a pointer to the objfile that was added.
1005 Upon failure, jumps back to command level (never returns). */
1006 static struct objfile *
1007 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1008 struct section_addr_info *addrs,
1009 struct section_offsets *offsets,
1010 int num_offsets,
1011 int mainline, int flags)
1012 {
1013 struct objfile *objfile;
1014 struct partial_symtab *psymtab;
1015 char *debugfile = NULL;
1016 struct section_addr_info *orig_addrs = NULL;
1017 struct cleanup *my_cleanups;
1018 const char *name = bfd_get_filename (abfd);
1019
1020 my_cleanups = make_cleanup_bfd_close (abfd);
1021
1022 /* Give user a chance to burp if we'd be
1023 interactively wiping out any existing symbols. */
1024
1025 if ((have_full_symbols () || have_partial_symbols ())
1026 && mainline
1027 && from_tty
1028 && !query ("Load new symbol table from \"%s\"? ", name))
1029 error (_("Not confirmed."));
1030
1031 objfile = allocate_objfile (abfd, flags);
1032 discard_cleanups (my_cleanups);
1033
1034 if (addrs)
1035 {
1036 orig_addrs = copy_section_addr_info (addrs);
1037 make_cleanup_free_section_addr_info (orig_addrs);
1038 }
1039
1040 /* We either created a new mapped symbol table, mapped an existing
1041 symbol table file which has not had initial symbol reading
1042 performed, or need to read an unmapped symbol table. */
1043 if (from_tty || info_verbose)
1044 {
1045 if (deprecated_pre_add_symbol_hook)
1046 deprecated_pre_add_symbol_hook (name);
1047 else
1048 {
1049 printf_unfiltered (_("Reading symbols from %s..."), name);
1050 wrap_here ("");
1051 gdb_flush (gdb_stdout);
1052 }
1053 }
1054 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1055 mainline, from_tty);
1056
1057 /* We now have at least a partial symbol table. Check to see if the
1058 user requested that all symbols be read on initial access via either
1059 the gdb startup command line or on a per symbol file basis. Expand
1060 all partial symbol tables for this objfile if so. */
1061
1062 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1063 {
1064 if (from_tty || info_verbose)
1065 {
1066 printf_unfiltered (_("expanding to full symbols..."));
1067 wrap_here ("");
1068 gdb_flush (gdb_stdout);
1069 }
1070
1071 for (psymtab = objfile->psymtabs;
1072 psymtab != NULL;
1073 psymtab = psymtab->next)
1074 {
1075 psymtab_to_symtab (psymtab);
1076 }
1077 }
1078
1079 /* If the file has its own symbol tables it has no separate debug info.
1080 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1081 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1082 if (objfile->psymtabs == NULL)
1083 debugfile = find_separate_debug_file (objfile);
1084 if (debugfile)
1085 {
1086 if (addrs != NULL)
1087 {
1088 objfile->separate_debug_objfile
1089 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1090 }
1091 else
1092 {
1093 objfile->separate_debug_objfile
1094 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1095 }
1096 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1097 = objfile;
1098
1099 /* Put the separate debug object before the normal one, this is so that
1100 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1101 put_objfile_before (objfile->separate_debug_objfile, objfile);
1102
1103 xfree (debugfile);
1104 }
1105
1106 if (!have_partial_symbols () && !have_full_symbols ())
1107 {
1108 wrap_here ("");
1109 printf_filtered (_("(no debugging symbols found)"));
1110 if (from_tty || info_verbose)
1111 printf_filtered ("...");
1112 else
1113 printf_filtered ("\n");
1114 wrap_here ("");
1115 }
1116
1117 if (from_tty || info_verbose)
1118 {
1119 if (deprecated_post_add_symbol_hook)
1120 deprecated_post_add_symbol_hook ();
1121 else
1122 {
1123 printf_unfiltered (_("done.\n"));
1124 }
1125 }
1126
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
1132 do_cleanups (my_cleanups);
1133
1134 if (objfile->sf == NULL)
1135 return objfile; /* No symbols. */
1136
1137 new_symfile_objfile (objfile, mainline, from_tty);
1138
1139 observer_notify_new_objfile (objfile);
1140
1141 bfd_cache_close_all ();
1142 return (objfile);
1143 }
1144
1145
1146 /* Process the symbol file ABFD, as either the main file or as a
1147 dynamically loaded file.
1148
1149 See symbol_file_add_with_addrs_or_offsets's comments for
1150 details. */
1151 struct objfile *
1152 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1153 struct section_addr_info *addrs,
1154 int mainline, int flags)
1155 {
1156 return symbol_file_add_with_addrs_or_offsets (abfd,
1157 from_tty, addrs, 0, 0,
1158 mainline, flags);
1159 }
1160
1161
1162 /* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1164 for details. */
1165 struct objfile *
1166 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1167 int mainline, int flags)
1168 {
1169 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1170 addrs, mainline, flags);
1171 }
1172
1173
1174 /* Call symbol_file_add() with default values and update whatever is
1175 affected by the loading of a new main().
1176 Used when the file is supplied in the gdb command line
1177 and by some targets with special loading requirements.
1178 The auxiliary function, symbol_file_add_main_1(), has the flags
1179 argument for the switches that can only be specified in the symbol_file
1180 command itself. */
1181
1182 void
1183 symbol_file_add_main (char *args, int from_tty)
1184 {
1185 symbol_file_add_main_1 (args, from_tty, 0);
1186 }
1187
1188 static void
1189 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1190 {
1191 symbol_file_add (args, from_tty, NULL, 1, flags);
1192
1193 /* Getting new symbols may change our opinion about
1194 what is frameless. */
1195 reinit_frame_cache ();
1196
1197 set_initial_language ();
1198 }
1199
1200 void
1201 symbol_file_clear (int from_tty)
1202 {
1203 if ((have_full_symbols () || have_partial_symbols ())
1204 && from_tty
1205 && (symfile_objfile
1206 ? !query (_("Discard symbol table from `%s'? "),
1207 symfile_objfile->name)
1208 : !query (_("Discard symbol table? "))))
1209 error (_("Not confirmed."));
1210 free_all_objfiles ();
1211
1212 /* solib descriptors may have handles to objfiles. Since their
1213 storage has just been released, we'd better wipe the solib
1214 descriptors as well.
1215 */
1216 no_shared_libraries (NULL, from_tty);
1217
1218 symfile_objfile = NULL;
1219 if (from_tty)
1220 printf_unfiltered (_("No symbol file now.\n"));
1221 }
1222
1223 struct build_id
1224 {
1225 size_t size;
1226 gdb_byte data[1];
1227 };
1228
1229 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1230
1231 static struct build_id *
1232 build_id_bfd_get (bfd *abfd)
1233 {
1234 struct build_id *retval;
1235
1236 if (!bfd_check_format (abfd, bfd_object)
1237 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1238 || elf_tdata (abfd)->build_id == NULL)
1239 return NULL;
1240
1241 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1242 retval->size = elf_tdata (abfd)->build_id_size;
1243 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1244
1245 return retval;
1246 }
1247
1248 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1249
1250 static int
1251 build_id_verify (const char *filename, struct build_id *check)
1252 {
1253 bfd *abfd;
1254 struct build_id *found = NULL;
1255 int retval = 0;
1256
1257 /* We expect to be silent on the non-existing files. */
1258 abfd = bfd_openr (filename, gnutarget);
1259 if (abfd == NULL)
1260 return 0;
1261
1262 found = build_id_bfd_get (abfd);
1263
1264 if (found == NULL)
1265 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1266 else if (found->size != check->size
1267 || memcmp (found->data, check->data, found->size) != 0)
1268 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1269 else
1270 retval = 1;
1271
1272 if (!bfd_close (abfd))
1273 warning (_("cannot close \"%s\": %s"), filename,
1274 bfd_errmsg (bfd_get_error ()));
1275 return retval;
1276 }
1277
1278 static char *
1279 build_id_to_debug_filename (struct build_id *build_id)
1280 {
1281 char *link, *s, *retval = NULL;
1282 gdb_byte *data = build_id->data;
1283 size_t size = build_id->size;
1284
1285 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1286 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1287 + 2 * size + (sizeof ".debug" - 1) + 1);
1288 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1289 if (size > 0)
1290 {
1291 size--;
1292 s += sprintf (s, "%02x", (unsigned) *data++);
1293 }
1294 if (size > 0)
1295 *s++ = '/';
1296 while (size-- > 0)
1297 s += sprintf (s, "%02x", (unsigned) *data++);
1298 strcpy (s, ".debug");
1299
1300 /* lrealpath() is expensive even for the usually non-existent files. */
1301 if (access (link, F_OK) == 0)
1302 retval = lrealpath (link);
1303 xfree (link);
1304
1305 if (retval != NULL && !build_id_verify (retval, build_id))
1306 {
1307 xfree (retval);
1308 retval = NULL;
1309 }
1310
1311 return retval;
1312 }
1313
1314 static char *
1315 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1316 {
1317 asection *sect;
1318 bfd_size_type debuglink_size;
1319 unsigned long crc32;
1320 char *contents;
1321 int crc_offset;
1322 unsigned char *p;
1323
1324 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1325
1326 if (sect == NULL)
1327 return NULL;
1328
1329 debuglink_size = bfd_section_size (objfile->obfd, sect);
1330
1331 contents = xmalloc (debuglink_size);
1332 bfd_get_section_contents (objfile->obfd, sect, contents,
1333 (file_ptr)0, (bfd_size_type)debuglink_size);
1334
1335 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1336 crc_offset = strlen (contents) + 1;
1337 crc_offset = (crc_offset + 3) & ~3;
1338
1339 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1340
1341 *crc32_out = crc32;
1342 return contents;
1343 }
1344
1345 static int
1346 separate_debug_file_exists (const char *name, unsigned long crc)
1347 {
1348 unsigned long file_crc = 0;
1349 int fd;
1350 gdb_byte buffer[8*1024];
1351 int count;
1352
1353 fd = open (name, O_RDONLY | O_BINARY);
1354 if (fd < 0)
1355 return 0;
1356
1357 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 close (fd);
1361
1362 return crc == file_crc;
1363 }
1364
1365 char *debug_file_directory = NULL;
1366 static void
1367 show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369 {
1370 fprintf_filtered (file, _("\
1371 The directory where separate debug symbols are searched for is \"%s\".\n"),
1372 value);
1373 }
1374
1375 #if ! defined (DEBUG_SUBDIRECTORY)
1376 #define DEBUG_SUBDIRECTORY ".debug"
1377 #endif
1378
1379 static char *
1380 find_separate_debug_file (struct objfile *objfile)
1381 {
1382 asection *sect;
1383 char *basename;
1384 char *dir;
1385 char *debugfile;
1386 char *name_copy;
1387 char *canon_name;
1388 bfd_size_type debuglink_size;
1389 unsigned long crc32;
1390 int i;
1391 struct build_id *build_id;
1392
1393 build_id = build_id_bfd_get (objfile->obfd);
1394 if (build_id != NULL)
1395 {
1396 char *build_id_name;
1397
1398 build_id_name = build_id_to_debug_filename (build_id);
1399 free (build_id);
1400 /* Prevent looping on a stripped .debug file. */
1401 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1402 {
1403 warning (_("\"%s\": separate debug info file has no debug info"),
1404 build_id_name);
1405 xfree (build_id_name);
1406 }
1407 else if (build_id_name != NULL)
1408 return build_id_name;
1409 }
1410
1411 basename = get_debug_link_info (objfile, &crc32);
1412
1413 if (basename == NULL)
1414 return NULL;
1415
1416 dir = xstrdup (objfile->name);
1417
1418 /* Strip off the final filename part, leaving the directory name,
1419 followed by a slash. Objfile names should always be absolute and
1420 tilde-expanded, so there should always be a slash in there
1421 somewhere. */
1422 for (i = strlen(dir) - 1; i >= 0; i--)
1423 {
1424 if (IS_DIR_SEPARATOR (dir[i]))
1425 break;
1426 }
1427 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1428 dir[i+1] = '\0';
1429
1430 debugfile = alloca (strlen (debug_file_directory) + 1
1431 + strlen (dir)
1432 + strlen (DEBUG_SUBDIRECTORY)
1433 + strlen ("/")
1434 + strlen (basename)
1435 + 1);
1436
1437 /* First try in the same directory as the original file. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, basename);
1440
1441 if (separate_debug_file_exists (debugfile, crc32))
1442 {
1443 xfree (basename);
1444 xfree (dir);
1445 return xstrdup (debugfile);
1446 }
1447
1448 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, DEBUG_SUBDIRECTORY);
1451 strcat (debugfile, "/");
1452 strcat (debugfile, basename);
1453
1454 if (separate_debug_file_exists (debugfile, crc32))
1455 {
1456 xfree (basename);
1457 xfree (dir);
1458 return xstrdup (debugfile);
1459 }
1460
1461 /* Then try in the global debugfile directory. */
1462 strcpy (debugfile, debug_file_directory);
1463 strcat (debugfile, "/");
1464 strcat (debugfile, dir);
1465 strcat (debugfile, basename);
1466
1467 if (separate_debug_file_exists (debugfile, crc32))
1468 {
1469 xfree (basename);
1470 xfree (dir);
1471 return xstrdup (debugfile);
1472 }
1473
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1476 canon_name = lrealpath (dir);
1477 if (canon_name
1478 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1479 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1480 {
1481 strcpy (debugfile, debug_file_directory);
1482 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, basename);
1485
1486 if (separate_debug_file_exists (debugfile, crc32))
1487 {
1488 xfree (canon_name);
1489 xfree (basename);
1490 xfree (dir);
1491 return xstrdup (debugfile);
1492 }
1493 }
1494
1495 if (canon_name)
1496 xfree (canon_name);
1497
1498 xfree (basename);
1499 xfree (dir);
1500 return NULL;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 if (argv == NULL)
1535 nomem (0);
1536
1537 cleanups = make_cleanup_freeargv (argv);
1538 while (*argv != NULL)
1539 {
1540 if (strcmp (*argv, "-readnow") == 0)
1541 flags |= OBJF_READNOW;
1542 else if (**argv == '-')
1543 error (_("unknown option `%s'"), *argv);
1544 else
1545 {
1546 symbol_file_add_main_1 (*argv, from_tty, flags);
1547 name = *argv;
1548 }
1549
1550 argv++;
1551 }
1552
1553 if (name == NULL)
1554 error (_("no symbol file name was specified"));
1555
1556 do_cleanups (cleanups);
1557 }
1558 }
1559
1560 /* Set the initial language.
1561
1562 FIXME: A better solution would be to record the language in the
1563 psymtab when reading partial symbols, and then use it (if known) to
1564 set the language. This would be a win for formats that encode the
1565 language in an easily discoverable place, such as DWARF. For
1566 stabs, we can jump through hoops looking for specially named
1567 symbols or try to intuit the language from the specific type of
1568 stabs we find, but we can't do that until later when we read in
1569 full symbols. */
1570
1571 void
1572 set_initial_language (void)
1573 {
1574 struct partial_symtab *pst;
1575 enum language lang = language_unknown;
1576
1577 pst = find_main_psymtab ();
1578 if (pst != NULL)
1579 {
1580 if (pst->filename != NULL)
1581 lang = deduce_language_from_filename (pst->filename);
1582
1583 if (lang == language_unknown)
1584 {
1585 /* Make C the default language */
1586 lang = language_c;
1587 }
1588
1589 set_language (lang);
1590 expected_language = current_language; /* Don't warn the user. */
1591 }
1592 }
1593
1594 /* Open the file specified by NAME and hand it off to BFD for
1595 preliminary analysis. Return a newly initialized bfd *, which
1596 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1597 absolute). In case of trouble, error() is called. */
1598
1599 bfd *
1600 symfile_bfd_open (char *name)
1601 {
1602 bfd *sym_bfd;
1603 int desc;
1604 char *absolute_name;
1605
1606 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1607
1608 /* Look down path for it, allocate 2nd new malloc'd copy. */
1609 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1610 O_RDONLY | O_BINARY, 0, &absolute_name);
1611 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1612 if (desc < 0)
1613 {
1614 char *exename = alloca (strlen (name) + 5);
1615 strcat (strcpy (exename, name), ".exe");
1616 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1617 O_RDONLY | O_BINARY, 0, &absolute_name);
1618 }
1619 #endif
1620 if (desc < 0)
1621 {
1622 make_cleanup (xfree, name);
1623 perror_with_name (name);
1624 }
1625
1626 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1627 bfd. It'll be freed in free_objfile(). */
1628 xfree (name);
1629 name = absolute_name;
1630
1631 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1632 if (!sym_bfd)
1633 {
1634 close (desc);
1635 make_cleanup (xfree, name);
1636 error (_("\"%s\": can't open to read symbols: %s."), name,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
1639 bfd_set_cacheable (sym_bfd, 1);
1640
1641 if (!bfd_check_format (sym_bfd, bfd_object))
1642 {
1643 /* FIXME: should be checking for errors from bfd_close (for one
1644 thing, on error it does not free all the storage associated
1645 with the bfd). */
1646 bfd_close (sym_bfd); /* This also closes desc. */
1647 make_cleanup (xfree, name);
1648 error (_("\"%s\": can't read symbols: %s."), name,
1649 bfd_errmsg (bfd_get_error ()));
1650 }
1651
1652 return sym_bfd;
1653 }
1654
1655 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1657
1658 int
1659 get_section_index (struct objfile *objfile, char *section_name)
1660 {
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1662
1663 if (sect)
1664 return sect->index;
1665 else
1666 return -1;
1667 }
1668
1669 /* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1672 handle. */
1673
1674 void
1675 add_symtab_fns (struct sym_fns *sf)
1676 {
1677 sf->next = symtab_fns;
1678 symtab_fns = sf;
1679 }
1680
1681 /* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
1685
1686 static struct sym_fns *
1687 find_sym_fns (bfd *abfd)
1688 {
1689 struct sym_fns *sf;
1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1691
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
1695 return NULL; /* No symbols. */
1696
1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1698 if (our_flavour == sf->sym_flavour)
1699 return sf;
1700
1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1702 bfd_get_target (abfd));
1703 }
1704 \f
1705
1706 /* This function runs the load command of our current target. */
1707
1708 static void
1709 load_command (char *arg, int from_tty)
1710 {
1711 if (arg == NULL)
1712 {
1713 char *parg;
1714 int count = 0;
1715
1716 parg = arg = get_exec_file (1);
1717
1718 /* Count how many \ " ' tab space there are in the name. */
1719 while ((parg = strpbrk (parg, "\\\"'\t ")))
1720 {
1721 parg++;
1722 count++;
1723 }
1724
1725 if (count)
1726 {
1727 /* We need to quote this string so buildargv can pull it apart. */
1728 char *temp = xmalloc (strlen (arg) + count + 1 );
1729 char *ptemp = temp;
1730 char *prev;
1731
1732 make_cleanup (xfree, temp);
1733
1734 prev = parg = arg;
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1736 {
1737 strncpy (ptemp, prev, parg - prev);
1738 ptemp += parg - prev;
1739 prev = parg++;
1740 *ptemp++ = '\\';
1741 }
1742 strcpy (ptemp, prev);
1743
1744 arg = temp;
1745 }
1746 }
1747
1748 /* The user might be reloading because the binary has changed. Take
1749 this opportunity to check. */
1750 reopen_exec_file ();
1751 reread_symbols ();
1752
1753 target_load (arg, from_tty);
1754
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
1758 }
1759
1760 /* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1763
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
1768
1769 static int validate_download = 0;
1770
1771 /* Callback service function for generic_load (bfd_map_over_sections). */
1772
1773 static void
1774 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1775 {
1776 bfd_size_type *sum = data;
1777
1778 *sum += bfd_get_section_size (asec);
1779 }
1780
1781 /* Opaque data for load_section_callback. */
1782 struct load_section_data {
1783 unsigned long load_offset;
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1786 };
1787
1788 /* Opaque data for load_progress. */
1789 struct load_progress_data {
1790 /* Cumulative data. */
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
1794 };
1795
1796 /* Opaque data for load_progress for a single section. */
1797 struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
1799
1800 /* Per-section data. */
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1804 CORE_ADDR lma;
1805 gdb_byte *buffer;
1806 };
1807
1808 /* Target write callback routine for progress reporting. */
1809
1810 static void
1811 load_progress (ULONGEST bytes, void *untyped_arg)
1812 {
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1815
1816 if (args == NULL)
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1819 return;
1820
1821 totals = args->cumulative;
1822
1823 if (bytes == 0 && args->section_sent == 0)
1824 {
1825 /* The write is just starting. Let the user know we've started
1826 this section. */
1827 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1828 args->section_name, paddr_nz (args->section_size),
1829 paddr_nz (args->lma));
1830 return;
1831 }
1832
1833 if (validate_download)
1834 {
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1837 downloads. */
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1844
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at 0x%s"),
1847 paddr (args->lma));
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at 0x%s"),
1850 paddr (args->lma));
1851 do_cleanups (verify_cleanups);
1852 }
1853 totals->data_count += bytes;
1854 args->lma += bytes;
1855 args->buffer += bytes;
1856 totals->write_count += 1;
1857 args->section_sent += bytes;
1858 if (quit_flag
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1863
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1866 args->section_sent,
1867 args->section_size,
1868 totals->data_count,
1869 totals->total_size);
1870 }
1871
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874 static void
1875 load_section_callback (bfd *abfd, asection *asec, void *data)
1876 {
1877 struct memory_write_request *new_request;
1878 struct load_section_data *args = data;
1879 struct load_progress_section_data *section_data;
1880 bfd_size_type size = bfd_get_section_size (asec);
1881 gdb_byte *buffer;
1882 const char *sect_name = bfd_get_section_name (abfd, asec);
1883
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1885 return;
1886
1887 if (size == 0)
1888 return;
1889
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
1898
1899 buffer = new_request->data;
1900
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
1906
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1908 }
1909
1910 /* Clean up an entire memory request vector, including load
1911 data and progress records. */
1912
1913 static void
1914 clear_memory_write_data (void *arg)
1915 {
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1918 int i;
1919 struct memory_write_request *mr;
1920
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1922 {
1923 xfree (mr->data);
1924 xfree (mr->baton);
1925 }
1926 VEC_free (memory_write_request_s, vec);
1927 }
1928
1929 void
1930 generic_load (char *args, int from_tty)
1931 {
1932 bfd *loadfile_bfd;
1933 struct timeval start_time, end_time;
1934 char *filename;
1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1936 struct load_section_data cbdata;
1937 struct load_progress_data total_progress;
1938
1939 CORE_ADDR entry;
1940 char **argv;
1941
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1945
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
1947
1948 argv = buildargv (args);
1949
1950 if (argv == NULL)
1951 nomem(0);
1952
1953 make_cleanup_freeargv (argv);
1954
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1957
1958 if (argv[1] != NULL)
1959 {
1960 char *endptr;
1961
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1968
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
1971 }
1972
1973 /* Open the file for loading. */
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1976 {
1977 perror_with_name (filename);
1978 return;
1979 }
1980
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1983 bfd). */
1984 make_cleanup_bfd_close (loadfile_bfd);
1985
1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
1987 {
1988 error (_("\"%s\" is not an object file: %s"), filename,
1989 bfd_errmsg (bfd_get_error ()));
1990 }
1991
1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1993 (void *) &total_progress.total_size);
1994
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1996
1997 gettimeofday (&start_time, NULL);
1998
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
2002
2003 gettimeofday (&end_time, NULL);
2004
2005 entry = bfd_get_start_address (loadfile_bfd);
2006 ui_out_text (uiout, "Start address ");
2007 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2008 ui_out_text (uiout, ", load size ");
2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2010 ui_out_text (uiout, "\n");
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
2013 write_pc (entry);
2014
2015 /* FIXME: are we supposed to call symbol_file_add or not? According
2016 to a comment from remote-mips.c (where a call to symbol_file_add
2017 was commented out), making the call confuses GDB if more than one
2018 file is loaded in. Some targets do (e.g., remote-vx.c) but
2019 others don't (or didn't - perhaps they have all been deleted). */
2020
2021 print_transfer_performance (gdb_stdout, total_progress.data_count,
2022 total_progress.write_count,
2023 &start_time, &end_time);
2024
2025 do_cleanups (old_cleanups);
2026 }
2027
2028 /* Report how fast the transfer went. */
2029
2030 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2031 replaced by print_transfer_performance (with a very different
2032 function signature). */
2033
2034 void
2035 report_transfer_performance (unsigned long data_count, time_t start_time,
2036 time_t end_time)
2037 {
2038 struct timeval start, end;
2039
2040 start.tv_sec = start_time;
2041 start.tv_usec = 0;
2042 end.tv_sec = end_time;
2043 end.tv_usec = 0;
2044
2045 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2046 }
2047
2048 void
2049 print_transfer_performance (struct ui_file *stream,
2050 unsigned long data_count,
2051 unsigned long write_count,
2052 const struct timeval *start_time,
2053 const struct timeval *end_time)
2054 {
2055 ULONGEST time_count;
2056
2057 /* Compute the elapsed time in milliseconds, as a tradeoff between
2058 accuracy and overflow. */
2059 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2060 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2061
2062 ui_out_text (uiout, "Transfer rate: ");
2063 if (time_count > 0)
2064 {
2065 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2066
2067 if (ui_out_is_mi_like_p (uiout))
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2070 ui_out_text (uiout, " bits/sec");
2071 }
2072 else if (rate < 1024)
2073 {
2074 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2075 ui_out_text (uiout, " bytes/sec");
2076 }
2077 else
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2080 ui_out_text (uiout, " KB/sec");
2081 }
2082 }
2083 else
2084 {
2085 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2086 ui_out_text (uiout, " bits in <1 sec");
2087 }
2088 if (write_count > 0)
2089 {
2090 ui_out_text (uiout, ", ");
2091 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2092 ui_out_text (uiout, " bytes/write");
2093 }
2094 ui_out_text (uiout, ".\n");
2095 }
2096
2097 /* This function allows the addition of incrementally linked object files.
2098 It does not modify any state in the target, only in the debugger. */
2099 /* Note: ezannoni 2000-04-13 This function/command used to have a
2100 special case syntax for the rombug target (Rombug is the boot
2101 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2102 rombug case, the user doesn't need to supply a text address,
2103 instead a call to target_link() (in target.c) would supply the
2104 value to use. We are now discontinuing this type of ad hoc syntax. */
2105
2106 static void
2107 add_symbol_file_command (char *args, int from_tty)
2108 {
2109 char *filename = NULL;
2110 int flags = OBJF_USERLOADED;
2111 char *arg;
2112 int expecting_option = 0;
2113 int section_index = 0;
2114 int argcnt = 0;
2115 int sec_num = 0;
2116 int i;
2117 int expecting_sec_name = 0;
2118 int expecting_sec_addr = 0;
2119 char **argv;
2120
2121 struct sect_opt
2122 {
2123 char *name;
2124 char *value;
2125 };
2126
2127 struct section_addr_info *section_addrs;
2128 struct sect_opt *sect_opts = NULL;
2129 size_t num_sect_opts = 0;
2130 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2131
2132 num_sect_opts = 16;
2133 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2134 * sizeof (struct sect_opt));
2135
2136 dont_repeat ();
2137
2138 if (args == NULL)
2139 error (_("add-symbol-file takes a file name and an address"));
2140
2141 argv = buildargv (args);
2142 make_cleanup_freeargv (argv);
2143
2144 if (argv == NULL)
2145 nomem (0);
2146
2147 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2148 {
2149 /* Process the argument. */
2150 if (argcnt == 0)
2151 {
2152 /* The first argument is the file name. */
2153 filename = tilde_expand (arg);
2154 make_cleanup (xfree, filename);
2155 }
2156 else
2157 if (argcnt == 1)
2158 {
2159 /* The second argument is always the text address at which
2160 to load the program. */
2161 sect_opts[section_index].name = ".text";
2162 sect_opts[section_index].value = arg;
2163 if (++section_index >= num_sect_opts)
2164 {
2165 num_sect_opts *= 2;
2166 sect_opts = ((struct sect_opt *)
2167 xrealloc (sect_opts,
2168 num_sect_opts
2169 * sizeof (struct sect_opt)));
2170 }
2171 }
2172 else
2173 {
2174 /* It's an option (starting with '-') or it's an argument
2175 to an option */
2176
2177 if (*arg == '-')
2178 {
2179 if (strcmp (arg, "-readnow") == 0)
2180 flags |= OBJF_READNOW;
2181 else if (strcmp (arg, "-s") == 0)
2182 {
2183 expecting_sec_name = 1;
2184 expecting_sec_addr = 1;
2185 }
2186 }
2187 else
2188 {
2189 if (expecting_sec_name)
2190 {
2191 sect_opts[section_index].name = arg;
2192 expecting_sec_name = 0;
2193 }
2194 else
2195 if (expecting_sec_addr)
2196 {
2197 sect_opts[section_index].value = arg;
2198 expecting_sec_addr = 0;
2199 if (++section_index >= num_sect_opts)
2200 {
2201 num_sect_opts *= 2;
2202 sect_opts = ((struct sect_opt *)
2203 xrealloc (sect_opts,
2204 num_sect_opts
2205 * sizeof (struct sect_opt)));
2206 }
2207 }
2208 else
2209 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2210 }
2211 }
2212 }
2213
2214 /* This command takes at least two arguments. The first one is a
2215 filename, and the second is the address where this file has been
2216 loaded. Abort now if this address hasn't been provided by the
2217 user. */
2218 if (section_index < 1)
2219 error (_("The address where %s has been loaded is missing"), filename);
2220
2221 /* Print the prompt for the query below. And save the arguments into
2222 a sect_addr_info structure to be passed around to other
2223 functions. We have to split this up into separate print
2224 statements because hex_string returns a local static
2225 string. */
2226
2227 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2228 section_addrs = alloc_section_addr_info (section_index);
2229 make_cleanup (xfree, section_addrs);
2230 for (i = 0; i < section_index; i++)
2231 {
2232 CORE_ADDR addr;
2233 char *val = sect_opts[i].value;
2234 char *sec = sect_opts[i].name;
2235
2236 addr = parse_and_eval_address (val);
2237
2238 /* Here we store the section offsets in the order they were
2239 entered on the command line. */
2240 section_addrs->other[sec_num].name = sec;
2241 section_addrs->other[sec_num].addr = addr;
2242 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2243 sec_num++;
2244
2245 /* The object's sections are initialized when a
2246 call is made to build_objfile_section_table (objfile).
2247 This happens in reread_symbols.
2248 At this point, we don't know what file type this is,
2249 so we can't determine what section names are valid. */
2250 }
2251
2252 if (from_tty && (!query ("%s", "")))
2253 error (_("Not confirmed."));
2254
2255 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2256
2257 /* Getting new symbols may change our opinion about what is
2258 frameless. */
2259 reinit_frame_cache ();
2260 do_cleanups (my_cleanups);
2261 }
2262 \f
2263 static void
2264 add_shared_symbol_files_command (char *args, int from_tty)
2265 {
2266 #ifdef ADD_SHARED_SYMBOL_FILES
2267 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2268 #else
2269 error (_("This command is not available in this configuration of GDB."));
2270 #endif
2271 }
2272 \f
2273 /* Re-read symbols if a symbol-file has changed. */
2274 void
2275 reread_symbols (void)
2276 {
2277 struct objfile *objfile;
2278 long new_modtime;
2279 int reread_one = 0;
2280 struct stat new_statbuf;
2281 int res;
2282
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
2287 and see if the symbol table that it originates from has been changed */
2288
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2290 {
2291 if (objfile->obfd)
2292 {
2293 #ifdef DEPRECATED_IBM6000_TARGET
2294 /* If this object is from a shared library, then you should
2295 stat on the library name, not member name. */
2296
2297 if (objfile->obfd->my_archive)
2298 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2299 else
2300 #endif
2301 res = stat (objfile->name, &new_statbuf);
2302 if (res != 0)
2303 {
2304 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2305 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2306 objfile->name);
2307 continue;
2308 }
2309 new_modtime = new_statbuf.st_mtime;
2310 if (new_modtime != objfile->mtime)
2311 {
2312 struct cleanup *old_cleanups;
2313 struct section_offsets *offsets;
2314 int num_offsets;
2315 char *obfd_filename;
2316
2317 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2318 objfile->name);
2319
2320 /* There are various functions like symbol_file_add,
2321 symfile_bfd_open, syms_from_objfile, etc., which might
2322 appear to do what we want. But they have various other
2323 effects which we *don't* want. So we just do stuff
2324 ourselves. We don't worry about mapped files (for one thing,
2325 any mapped file will be out of date). */
2326
2327 /* If we get an error, blow away this objfile (not sure if
2328 that is the correct response for things like shared
2329 libraries). */
2330 old_cleanups = make_cleanup_free_objfile (objfile);
2331 /* We need to do this whenever any symbols go away. */
2332 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2333
2334 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2335 bfd_get_filename (exec_bfd)) == 0)
2336 {
2337 /* Reload EXEC_BFD without asking anything. */
2338
2339 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2340 }
2341
2342 /* Clean up any state BFD has sitting around. We don't need
2343 to close the descriptor but BFD lacks a way of closing the
2344 BFD without closing the descriptor. */
2345 obfd_filename = bfd_get_filename (objfile->obfd);
2346 if (!bfd_close (objfile->obfd))
2347 error (_("Can't close BFD for %s: %s"), objfile->name,
2348 bfd_errmsg (bfd_get_error ()));
2349 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2350 if (objfile->obfd == NULL)
2351 error (_("Can't open %s to read symbols."), objfile->name);
2352 /* bfd_openr sets cacheable to true, which is what we want. */
2353 if (!bfd_check_format (objfile->obfd, bfd_object))
2354 error (_("Can't read symbols from %s: %s."), objfile->name,
2355 bfd_errmsg (bfd_get_error ()));
2356
2357 /* Save the offsets, we will nuke them with the rest of the
2358 objfile_obstack. */
2359 num_offsets = objfile->num_sections;
2360 offsets = ((struct section_offsets *)
2361 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2362 memcpy (offsets, objfile->section_offsets,
2363 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2364
2365 /* Remove any references to this objfile in the global
2366 value lists. */
2367 preserve_values (objfile);
2368
2369 /* Nuke all the state that we will re-read. Much of the following
2370 code which sets things to NULL really is necessary to tell
2371 other parts of GDB that there is nothing currently there. */
2372
2373 /* FIXME: Do we have to free a whole linked list, or is this
2374 enough? */
2375 if (objfile->global_psymbols.list)
2376 xfree (objfile->global_psymbols.list);
2377 memset (&objfile->global_psymbols, 0,
2378 sizeof (objfile->global_psymbols));
2379 if (objfile->static_psymbols.list)
2380 xfree (objfile->static_psymbols.list);
2381 memset (&objfile->static_psymbols, 0,
2382 sizeof (objfile->static_psymbols));
2383
2384 /* Free the obstacks for non-reusable objfiles */
2385 bcache_xfree (objfile->psymbol_cache);
2386 objfile->psymbol_cache = bcache_xmalloc ();
2387 bcache_xfree (objfile->macro_cache);
2388 objfile->macro_cache = bcache_xmalloc ();
2389 if (objfile->demangled_names_hash != NULL)
2390 {
2391 htab_delete (objfile->demangled_names_hash);
2392 objfile->demangled_names_hash = NULL;
2393 }
2394 obstack_free (&objfile->objfile_obstack, 0);
2395 objfile->sections = NULL;
2396 objfile->symtabs = NULL;
2397 objfile->psymtabs = NULL;
2398 objfile->free_psymtabs = NULL;
2399 objfile->cp_namespace_symtab = NULL;
2400 objfile->msymbols = NULL;
2401 objfile->deprecated_sym_private = NULL;
2402 objfile->minimal_symbol_count = 0;
2403 memset (&objfile->msymbol_hash, 0,
2404 sizeof (objfile->msymbol_hash));
2405 memset (&objfile->msymbol_demangled_hash, 0,
2406 sizeof (objfile->msymbol_demangled_hash));
2407 clear_objfile_data (objfile);
2408 if (objfile->sf != NULL)
2409 {
2410 (*objfile->sf->sym_finish) (objfile);
2411 }
2412
2413 /* We never make this a mapped file. */
2414 objfile->md = NULL;
2415 objfile->psymbol_cache = bcache_xmalloc ();
2416 objfile->macro_cache = bcache_xmalloc ();
2417 /* obstack_init also initializes the obstack so it is
2418 empty. We could use obstack_specify_allocation but
2419 gdb_obstack.h specifies the alloc/dealloc
2420 functions. */
2421 obstack_init (&objfile->objfile_obstack);
2422 if (build_objfile_section_table (objfile))
2423 {
2424 error (_("Can't find the file sections in `%s': %s"),
2425 objfile->name, bfd_errmsg (bfd_get_error ()));
2426 }
2427 terminate_minimal_symbol_table (objfile);
2428
2429 /* We use the same section offsets as from last time. I'm not
2430 sure whether that is always correct for shared libraries. */
2431 objfile->section_offsets = (struct section_offsets *)
2432 obstack_alloc (&objfile->objfile_obstack,
2433 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2434 memcpy (objfile->section_offsets, offsets,
2435 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2436 objfile->num_sections = num_offsets;
2437
2438 /* What the hell is sym_new_init for, anyway? The concept of
2439 distinguishing between the main file and additional files
2440 in this way seems rather dubious. */
2441 if (objfile == symfile_objfile)
2442 {
2443 (*objfile->sf->sym_new_init) (objfile);
2444 }
2445
2446 (*objfile->sf->sym_init) (objfile);
2447 clear_complaints (&symfile_complaints, 1, 1);
2448 /* The "mainline" parameter is a hideous hack; I think leaving it
2449 zero is OK since dbxread.c also does what it needs to do if
2450 objfile->global_psymbols.size is 0. */
2451 (*objfile->sf->sym_read) (objfile, 0);
2452 if (!have_partial_symbols () && !have_full_symbols ())
2453 {
2454 wrap_here ("");
2455 printf_unfiltered (_("(no debugging symbols found)\n"));
2456 wrap_here ("");
2457 }
2458 objfile->flags |= OBJF_SYMS;
2459
2460 /* We're done reading the symbol file; finish off complaints. */
2461 clear_complaints (&symfile_complaints, 0, 1);
2462
2463 /* Getting new symbols may change our opinion about what is
2464 frameless. */
2465
2466 reinit_frame_cache ();
2467
2468 /* Discard cleanups as symbol reading was successful. */
2469 discard_cleanups (old_cleanups);
2470
2471 /* If the mtime has changed between the time we set new_modtime
2472 and now, we *want* this to be out of date, so don't call stat
2473 again now. */
2474 objfile->mtime = new_modtime;
2475 reread_one = 1;
2476 reread_separate_symbols (objfile);
2477 init_entry_point_info (objfile);
2478 }
2479 }
2480 }
2481
2482 if (reread_one)
2483 {
2484 clear_symtab_users ();
2485 /* At least one objfile has changed, so we can consider that
2486 the executable we're debugging has changed too. */
2487 observer_notify_executable_changed (NULL);
2488 }
2489
2490 }
2491
2492
2493 /* Handle separate debug info for OBJFILE, which has just been
2494 re-read:
2495 - If we had separate debug info before, but now we don't, get rid
2496 of the separated objfile.
2497 - If we didn't have separated debug info before, but now we do,
2498 read in the new separated debug info file.
2499 - If the debug link points to a different file, toss the old one
2500 and read the new one.
2501 This function does *not* handle the case where objfile is still
2502 using the same separate debug info file, but that file's timestamp
2503 has changed. That case should be handled by the loop in
2504 reread_symbols already. */
2505 static void
2506 reread_separate_symbols (struct objfile *objfile)
2507 {
2508 char *debug_file;
2509 unsigned long crc32;
2510
2511 /* Does the updated objfile's debug info live in a
2512 separate file? */
2513 debug_file = find_separate_debug_file (objfile);
2514
2515 if (objfile->separate_debug_objfile)
2516 {
2517 /* There are two cases where we need to get rid of
2518 the old separated debug info objfile:
2519 - if the new primary objfile doesn't have
2520 separated debug info, or
2521 - if the new primary objfile has separate debug
2522 info, but it's under a different filename.
2523
2524 If the old and new objfiles both have separate
2525 debug info, under the same filename, then we're
2526 okay --- if the separated file's contents have
2527 changed, we will have caught that when we
2528 visited it in this function's outermost
2529 loop. */
2530 if (! debug_file
2531 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2532 free_objfile (objfile->separate_debug_objfile);
2533 }
2534
2535 /* If the new objfile has separate debug info, and we
2536 haven't loaded it already, do so now. */
2537 if (debug_file
2538 && ! objfile->separate_debug_objfile)
2539 {
2540 /* Use the same section offset table as objfile itself.
2541 Preserve the flags from objfile that make sense. */
2542 objfile->separate_debug_objfile
2543 = (symbol_file_add_with_addrs_or_offsets
2544 (symfile_bfd_open (debug_file),
2545 info_verbose, /* from_tty: Don't override the default. */
2546 0, /* No addr table. */
2547 objfile->section_offsets, objfile->num_sections,
2548 0, /* Not mainline. See comments about this above. */
2549 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2550 | OBJF_USERLOADED)));
2551 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2552 = objfile;
2553 }
2554 if (debug_file)
2555 xfree (debug_file);
2556 }
2557
2558
2559 \f
2560
2561
2562 typedef struct
2563 {
2564 char *ext;
2565 enum language lang;
2566 }
2567 filename_language;
2568
2569 static filename_language *filename_language_table;
2570 static int fl_table_size, fl_table_next;
2571
2572 static void
2573 add_filename_language (char *ext, enum language lang)
2574 {
2575 if (fl_table_next >= fl_table_size)
2576 {
2577 fl_table_size += 10;
2578 filename_language_table =
2579 xrealloc (filename_language_table,
2580 fl_table_size * sizeof (*filename_language_table));
2581 }
2582
2583 filename_language_table[fl_table_next].ext = xstrdup (ext);
2584 filename_language_table[fl_table_next].lang = lang;
2585 fl_table_next++;
2586 }
2587
2588 static char *ext_args;
2589 static void
2590 show_ext_args (struct ui_file *file, int from_tty,
2591 struct cmd_list_element *c, const char *value)
2592 {
2593 fprintf_filtered (file, _("\
2594 Mapping between filename extension and source language is \"%s\".\n"),
2595 value);
2596 }
2597
2598 static void
2599 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2600 {
2601 int i;
2602 char *cp = ext_args;
2603 enum language lang;
2604
2605 /* First arg is filename extension, starting with '.' */
2606 if (*cp != '.')
2607 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2608
2609 /* Find end of first arg. */
2610 while (*cp && !isspace (*cp))
2611 cp++;
2612
2613 if (*cp == '\0')
2614 error (_("'%s': two arguments required -- filename extension and language"),
2615 ext_args);
2616
2617 /* Null-terminate first arg */
2618 *cp++ = '\0';
2619
2620 /* Find beginning of second arg, which should be a source language. */
2621 while (*cp && isspace (*cp))
2622 cp++;
2623
2624 if (*cp == '\0')
2625 error (_("'%s': two arguments required -- filename extension and language"),
2626 ext_args);
2627
2628 /* Lookup the language from among those we know. */
2629 lang = language_enum (cp);
2630
2631 /* Now lookup the filename extension: do we already know it? */
2632 for (i = 0; i < fl_table_next; i++)
2633 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2634 break;
2635
2636 if (i >= fl_table_next)
2637 {
2638 /* new file extension */
2639 add_filename_language (ext_args, lang);
2640 }
2641 else
2642 {
2643 /* redefining a previously known filename extension */
2644
2645 /* if (from_tty) */
2646 /* query ("Really make files of type %s '%s'?", */
2647 /* ext_args, language_str (lang)); */
2648
2649 xfree (filename_language_table[i].ext);
2650 filename_language_table[i].ext = xstrdup (ext_args);
2651 filename_language_table[i].lang = lang;
2652 }
2653 }
2654
2655 static void
2656 info_ext_lang_command (char *args, int from_tty)
2657 {
2658 int i;
2659
2660 printf_filtered (_("Filename extensions and the languages they represent:"));
2661 printf_filtered ("\n\n");
2662 for (i = 0; i < fl_table_next; i++)
2663 printf_filtered ("\t%s\t- %s\n",
2664 filename_language_table[i].ext,
2665 language_str (filename_language_table[i].lang));
2666 }
2667
2668 static void
2669 init_filename_language_table (void)
2670 {
2671 if (fl_table_size == 0) /* protect against repetition */
2672 {
2673 fl_table_size = 20;
2674 fl_table_next = 0;
2675 filename_language_table =
2676 xmalloc (fl_table_size * sizeof (*filename_language_table));
2677 add_filename_language (".c", language_c);
2678 add_filename_language (".C", language_cplus);
2679 add_filename_language (".cc", language_cplus);
2680 add_filename_language (".cp", language_cplus);
2681 add_filename_language (".cpp", language_cplus);
2682 add_filename_language (".cxx", language_cplus);
2683 add_filename_language (".c++", language_cplus);
2684 add_filename_language (".java", language_java);
2685 add_filename_language (".class", language_java);
2686 add_filename_language (".m", language_objc);
2687 add_filename_language (".f", language_fortran);
2688 add_filename_language (".F", language_fortran);
2689 add_filename_language (".s", language_asm);
2690 add_filename_language (".sx", language_asm);
2691 add_filename_language (".S", language_asm);
2692 add_filename_language (".pas", language_pascal);
2693 add_filename_language (".p", language_pascal);
2694 add_filename_language (".pp", language_pascal);
2695 add_filename_language (".adb", language_ada);
2696 add_filename_language (".ads", language_ada);
2697 add_filename_language (".a", language_ada);
2698 add_filename_language (".ada", language_ada);
2699 }
2700 }
2701
2702 enum language
2703 deduce_language_from_filename (char *filename)
2704 {
2705 int i;
2706 char *cp;
2707
2708 if (filename != NULL)
2709 if ((cp = strrchr (filename, '.')) != NULL)
2710 for (i = 0; i < fl_table_next; i++)
2711 if (strcmp (cp, filename_language_table[i].ext) == 0)
2712 return filename_language_table[i].lang;
2713
2714 return language_unknown;
2715 }
2716 \f
2717 /* allocate_symtab:
2718
2719 Allocate and partly initialize a new symbol table. Return a pointer
2720 to it. error() if no space.
2721
2722 Caller must set these fields:
2723 LINETABLE(symtab)
2724 symtab->blockvector
2725 symtab->dirname
2726 symtab->free_code
2727 symtab->free_ptr
2728 possibly free_named_symtabs (symtab->filename);
2729 */
2730
2731 struct symtab *
2732 allocate_symtab (char *filename, struct objfile *objfile)
2733 {
2734 struct symtab *symtab;
2735
2736 symtab = (struct symtab *)
2737 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2738 memset (symtab, 0, sizeof (*symtab));
2739 symtab->filename = obsavestring (filename, strlen (filename),
2740 &objfile->objfile_obstack);
2741 symtab->fullname = NULL;
2742 symtab->language = deduce_language_from_filename (filename);
2743 symtab->debugformat = obsavestring ("unknown", 7,
2744 &objfile->objfile_obstack);
2745
2746 /* Hook it to the objfile it comes from */
2747
2748 symtab->objfile = objfile;
2749 symtab->next = objfile->symtabs;
2750 objfile->symtabs = symtab;
2751
2752 return (symtab);
2753 }
2754
2755 struct partial_symtab *
2756 allocate_psymtab (char *filename, struct objfile *objfile)
2757 {
2758 struct partial_symtab *psymtab;
2759
2760 if (objfile->free_psymtabs)
2761 {
2762 psymtab = objfile->free_psymtabs;
2763 objfile->free_psymtabs = psymtab->next;
2764 }
2765 else
2766 psymtab = (struct partial_symtab *)
2767 obstack_alloc (&objfile->objfile_obstack,
2768 sizeof (struct partial_symtab));
2769
2770 memset (psymtab, 0, sizeof (struct partial_symtab));
2771 psymtab->filename = obsavestring (filename, strlen (filename),
2772 &objfile->objfile_obstack);
2773 psymtab->symtab = NULL;
2774
2775 /* Prepend it to the psymtab list for the objfile it belongs to.
2776 Psymtabs are searched in most recent inserted -> least recent
2777 inserted order. */
2778
2779 psymtab->objfile = objfile;
2780 psymtab->next = objfile->psymtabs;
2781 objfile->psymtabs = psymtab;
2782 #if 0
2783 {
2784 struct partial_symtab **prev_pst;
2785 psymtab->objfile = objfile;
2786 psymtab->next = NULL;
2787 prev_pst = &(objfile->psymtabs);
2788 while ((*prev_pst) != NULL)
2789 prev_pst = &((*prev_pst)->next);
2790 (*prev_pst) = psymtab;
2791 }
2792 #endif
2793
2794 return (psymtab);
2795 }
2796
2797 void
2798 discard_psymtab (struct partial_symtab *pst)
2799 {
2800 struct partial_symtab **prev_pst;
2801
2802 /* From dbxread.c:
2803 Empty psymtabs happen as a result of header files which don't
2804 have any symbols in them. There can be a lot of them. But this
2805 check is wrong, in that a psymtab with N_SLINE entries but
2806 nothing else is not empty, but we don't realize that. Fixing
2807 that without slowing things down might be tricky. */
2808
2809 /* First, snip it out of the psymtab chain */
2810
2811 prev_pst = &(pst->objfile->psymtabs);
2812 while ((*prev_pst) != pst)
2813 prev_pst = &((*prev_pst)->next);
2814 (*prev_pst) = pst->next;
2815
2816 /* Next, put it on a free list for recycling */
2817
2818 pst->next = pst->objfile->free_psymtabs;
2819 pst->objfile->free_psymtabs = pst;
2820 }
2821 \f
2822
2823 /* Reset all data structures in gdb which may contain references to symbol
2824 table data. */
2825
2826 void
2827 clear_symtab_users (void)
2828 {
2829 /* Someday, we should do better than this, by only blowing away
2830 the things that really need to be blown. */
2831
2832 /* Clear the "current" symtab first, because it is no longer valid.
2833 breakpoint_re_set may try to access the current symtab. */
2834 clear_current_source_symtab_and_line ();
2835
2836 clear_displays ();
2837 breakpoint_re_set ();
2838 set_default_breakpoint (0, 0, 0, 0);
2839 clear_pc_function_cache ();
2840 observer_notify_new_objfile (NULL);
2841
2842 /* Clear globals which might have pointed into a removed objfile.
2843 FIXME: It's not clear which of these are supposed to persist
2844 between expressions and which ought to be reset each time. */
2845 expression_context_block = NULL;
2846 innermost_block = NULL;
2847
2848 /* Varobj may refer to old symbols, perform a cleanup. */
2849 varobj_invalidate ();
2850
2851 }
2852
2853 static void
2854 clear_symtab_users_cleanup (void *ignore)
2855 {
2856 clear_symtab_users ();
2857 }
2858
2859 /* clear_symtab_users_once:
2860
2861 This function is run after symbol reading, or from a cleanup.
2862 If an old symbol table was obsoleted, the old symbol table
2863 has been blown away, but the other GDB data structures that may
2864 reference it have not yet been cleared or re-directed. (The old
2865 symtab was zapped, and the cleanup queued, in free_named_symtab()
2866 below.)
2867
2868 This function can be queued N times as a cleanup, or called
2869 directly; it will do all the work the first time, and then will be a
2870 no-op until the next time it is queued. This works by bumping a
2871 counter at queueing time. Much later when the cleanup is run, or at
2872 the end of symbol processing (in case the cleanup is discarded), if
2873 the queued count is greater than the "done-count", we do the work
2874 and set the done-count to the queued count. If the queued count is
2875 less than or equal to the done-count, we just ignore the call. This
2876 is needed because reading a single .o file will often replace many
2877 symtabs (one per .h file, for example), and we don't want to reset
2878 the breakpoints N times in the user's face.
2879
2880 The reason we both queue a cleanup, and call it directly after symbol
2881 reading, is because the cleanup protects us in case of errors, but is
2882 discarded if symbol reading is successful. */
2883
2884 #if 0
2885 /* FIXME: As free_named_symtabs is currently a big noop this function
2886 is no longer needed. */
2887 static void clear_symtab_users_once (void);
2888
2889 static int clear_symtab_users_queued;
2890 static int clear_symtab_users_done;
2891
2892 static void
2893 clear_symtab_users_once (void)
2894 {
2895 /* Enforce once-per-`do_cleanups'-semantics */
2896 if (clear_symtab_users_queued <= clear_symtab_users_done)
2897 return;
2898 clear_symtab_users_done = clear_symtab_users_queued;
2899
2900 clear_symtab_users ();
2901 }
2902 #endif
2903
2904 /* Delete the specified psymtab, and any others that reference it. */
2905
2906 static void
2907 cashier_psymtab (struct partial_symtab *pst)
2908 {
2909 struct partial_symtab *ps, *pprev = NULL;
2910 int i;
2911
2912 /* Find its previous psymtab in the chain */
2913 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2914 {
2915 if (ps == pst)
2916 break;
2917 pprev = ps;
2918 }
2919
2920 if (ps)
2921 {
2922 /* Unhook it from the chain. */
2923 if (ps == pst->objfile->psymtabs)
2924 pst->objfile->psymtabs = ps->next;
2925 else
2926 pprev->next = ps->next;
2927
2928 /* FIXME, we can't conveniently deallocate the entries in the
2929 partial_symbol lists (global_psymbols/static_psymbols) that
2930 this psymtab points to. These just take up space until all
2931 the psymtabs are reclaimed. Ditto the dependencies list and
2932 filename, which are all in the objfile_obstack. */
2933
2934 /* We need to cashier any psymtab that has this one as a dependency... */
2935 again:
2936 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2937 {
2938 for (i = 0; i < ps->number_of_dependencies; i++)
2939 {
2940 if (ps->dependencies[i] == pst)
2941 {
2942 cashier_psymtab (ps);
2943 goto again; /* Must restart, chain has been munged. */
2944 }
2945 }
2946 }
2947 }
2948 }
2949
2950 /* If a symtab or psymtab for filename NAME is found, free it along
2951 with any dependent breakpoints, displays, etc.
2952 Used when loading new versions of object modules with the "add-file"
2953 command. This is only called on the top-level symtab or psymtab's name;
2954 it is not called for subsidiary files such as .h files.
2955
2956 Return value is 1 if we blew away the environment, 0 if not.
2957 FIXME. The return value appears to never be used.
2958
2959 FIXME. I think this is not the best way to do this. We should
2960 work on being gentler to the environment while still cleaning up
2961 all stray pointers into the freed symtab. */
2962
2963 int
2964 free_named_symtabs (char *name)
2965 {
2966 #if 0
2967 /* FIXME: With the new method of each objfile having it's own
2968 psymtab list, this function needs serious rethinking. In particular,
2969 why was it ever necessary to toss psymtabs with specific compilation
2970 unit filenames, as opposed to all psymtabs from a particular symbol
2971 file? -- fnf
2972 Well, the answer is that some systems permit reloading of particular
2973 compilation units. We want to blow away any old info about these
2974 compilation units, regardless of which objfiles they arrived in. --gnu. */
2975
2976 struct symtab *s;
2977 struct symtab *prev;
2978 struct partial_symtab *ps;
2979 struct blockvector *bv;
2980 int blewit = 0;
2981
2982 /* We only wack things if the symbol-reload switch is set. */
2983 if (!symbol_reloading)
2984 return 0;
2985
2986 /* Some symbol formats have trouble providing file names... */
2987 if (name == 0 || *name == '\0')
2988 return 0;
2989
2990 /* Look for a psymtab with the specified name. */
2991
2992 again2:
2993 for (ps = partial_symtab_list; ps; ps = ps->next)
2994 {
2995 if (strcmp (name, ps->filename) == 0)
2996 {
2997 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2998 goto again2; /* Must restart, chain has been munged */
2999 }
3000 }
3001
3002 /* Look for a symtab with the specified name. */
3003
3004 for (s = symtab_list; s; s = s->next)
3005 {
3006 if (strcmp (name, s->filename) == 0)
3007 break;
3008 prev = s;
3009 }
3010
3011 if (s)
3012 {
3013 if (s == symtab_list)
3014 symtab_list = s->next;
3015 else
3016 prev->next = s->next;
3017
3018 /* For now, queue a delete for all breakpoints, displays, etc., whether
3019 or not they depend on the symtab being freed. This should be
3020 changed so that only those data structures affected are deleted. */
3021
3022 /* But don't delete anything if the symtab is empty.
3023 This test is necessary due to a bug in "dbxread.c" that
3024 causes empty symtabs to be created for N_SO symbols that
3025 contain the pathname of the object file. (This problem
3026 has been fixed in GDB 3.9x). */
3027
3028 bv = BLOCKVECTOR (s);
3029 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3030 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3031 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3032 {
3033 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3034 name);
3035 clear_symtab_users_queued++;
3036 make_cleanup (clear_symtab_users_once, 0);
3037 blewit = 1;
3038 }
3039 else
3040 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3041 name);
3042
3043 free_symtab (s);
3044 }
3045 else
3046 {
3047 /* It is still possible that some breakpoints will be affected
3048 even though no symtab was found, since the file might have
3049 been compiled without debugging, and hence not be associated
3050 with a symtab. In order to handle this correctly, we would need
3051 to keep a list of text address ranges for undebuggable files.
3052 For now, we do nothing, since this is a fairly obscure case. */
3053 ;
3054 }
3055
3056 /* FIXME, what about the minimal symbol table? */
3057 return blewit;
3058 #else
3059 return (0);
3060 #endif
3061 }
3062 \f
3063 /* Allocate and partially fill a partial symtab. It will be
3064 completely filled at the end of the symbol list.
3065
3066 FILENAME is the name of the symbol-file we are reading from. */
3067
3068 struct partial_symtab *
3069 start_psymtab_common (struct objfile *objfile,
3070 struct section_offsets *section_offsets, char *filename,
3071 CORE_ADDR textlow, struct partial_symbol **global_syms,
3072 struct partial_symbol **static_syms)
3073 {
3074 struct partial_symtab *psymtab;
3075
3076 psymtab = allocate_psymtab (filename, objfile);
3077 psymtab->section_offsets = section_offsets;
3078 psymtab->textlow = textlow;
3079 psymtab->texthigh = psymtab->textlow; /* default */
3080 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3081 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3082 return (psymtab);
3083 }
3084 \f
3085 /* Helper function, initialises partial symbol structure and stashes
3086 it into objfile's bcache. Note that our caching mechanism will
3087 use all fields of struct partial_symbol to determine hash value of the
3088 structure. In other words, having two symbols with the same name but
3089 different domain (or address) is possible and correct. */
3090
3091 static struct partial_symbol *
3092 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3093 enum address_class class,
3094 long val, /* Value as a long */
3095 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3096 enum language language, struct objfile *objfile,
3097 int *added)
3098 {
3099 char *buf = name;
3100 /* psymbol is static so that there will be no uninitialized gaps in the
3101 structure which might contain random data, causing cache misses in
3102 bcache. */
3103 static struct partial_symbol psymbol;
3104
3105 if (name[namelength] != '\0')
3106 {
3107 buf = alloca (namelength + 1);
3108 /* Create local copy of the partial symbol */
3109 memcpy (buf, name, namelength);
3110 buf[namelength] = '\0';
3111 }
3112 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3113 if (val != 0)
3114 {
3115 SYMBOL_VALUE (&psymbol) = val;
3116 }
3117 else
3118 {
3119 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3120 }
3121 SYMBOL_SECTION (&psymbol) = 0;
3122 SYMBOL_LANGUAGE (&psymbol) = language;
3123 PSYMBOL_DOMAIN (&psymbol) = domain;
3124 PSYMBOL_CLASS (&psymbol) = class;
3125
3126 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3127
3128 /* Stash the partial symbol away in the cache */
3129 return deprecated_bcache_added (&psymbol, sizeof (struct partial_symbol),
3130 objfile->psymbol_cache, added);
3131 }
3132
3133 /* Helper function, adds partial symbol to the given partial symbol
3134 list. */
3135
3136 static void
3137 append_psymbol_to_list (struct psymbol_allocation_list *list,
3138 struct partial_symbol *psym,
3139 struct objfile *objfile)
3140 {
3141 if (list->next >= list->list + list->size)
3142 extend_psymbol_list (list, objfile);
3143 *list->next++ = psym;
3144 OBJSTAT (objfile, n_psyms++);
3145 }
3146
3147 /* Add a symbol with a long value to a psymtab.
3148 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3149 Return the partial symbol that has been added. */
3150
3151 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3152 symbol is so that callers can get access to the symbol's demangled
3153 name, which they don't have any cheap way to determine otherwise.
3154 (Currenly, dwarf2read.c is the only file who uses that information,
3155 though it's possible that other readers might in the future.)
3156 Elena wasn't thrilled about that, and I don't blame her, but we
3157 couldn't come up with a better way to get that information. If
3158 it's needed in other situations, we could consider breaking up
3159 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3160 cache. */
3161
3162 const struct partial_symbol *
3163 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3164 enum address_class class,
3165 struct psymbol_allocation_list *list,
3166 long val, /* Value as a long */
3167 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3168 enum language language, struct objfile *objfile)
3169 {
3170 struct partial_symbol *psym;
3171
3172 int added;
3173
3174 /* Stash the partial symbol away in the cache */
3175 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3176 val, coreaddr, language, objfile, &added);
3177
3178 /* Do not duplicate global partial symbols. */
3179 if (list == &objfile->global_psymbols
3180 && !added)
3181 return psym;
3182
3183 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3184 append_psymbol_to_list (list, psym, objfile);
3185 return psym;
3186 }
3187
3188 /* Initialize storage for partial symbols. */
3189
3190 void
3191 init_psymbol_list (struct objfile *objfile, int total_symbols)
3192 {
3193 /* Free any previously allocated psymbol lists. */
3194
3195 if (objfile->global_psymbols.list)
3196 {
3197 xfree (objfile->global_psymbols.list);
3198 }
3199 if (objfile->static_psymbols.list)
3200 {
3201 xfree (objfile->static_psymbols.list);
3202 }
3203
3204 /* Current best guess is that approximately a twentieth
3205 of the total symbols (in a debugging file) are global or static
3206 oriented symbols */
3207
3208 objfile->global_psymbols.size = total_symbols / 10;
3209 objfile->static_psymbols.size = total_symbols / 10;
3210
3211 if (objfile->global_psymbols.size > 0)
3212 {
3213 objfile->global_psymbols.next =
3214 objfile->global_psymbols.list = (struct partial_symbol **)
3215 xmalloc ((objfile->global_psymbols.size
3216 * sizeof (struct partial_symbol *)));
3217 }
3218 if (objfile->static_psymbols.size > 0)
3219 {
3220 objfile->static_psymbols.next =
3221 objfile->static_psymbols.list = (struct partial_symbol **)
3222 xmalloc ((objfile->static_psymbols.size
3223 * sizeof (struct partial_symbol *)));
3224 }
3225 }
3226
3227 /* OVERLAYS:
3228 The following code implements an abstraction for debugging overlay sections.
3229
3230 The target model is as follows:
3231 1) The gnu linker will permit multiple sections to be mapped into the
3232 same VMA, each with its own unique LMA (or load address).
3233 2) It is assumed that some runtime mechanism exists for mapping the
3234 sections, one by one, from the load address into the VMA address.
3235 3) This code provides a mechanism for gdb to keep track of which
3236 sections should be considered to be mapped from the VMA to the LMA.
3237 This information is used for symbol lookup, and memory read/write.
3238 For instance, if a section has been mapped then its contents
3239 should be read from the VMA, otherwise from the LMA.
3240
3241 Two levels of debugger support for overlays are available. One is
3242 "manual", in which the debugger relies on the user to tell it which
3243 overlays are currently mapped. This level of support is
3244 implemented entirely in the core debugger, and the information about
3245 whether a section is mapped is kept in the objfile->obj_section table.
3246
3247 The second level of support is "automatic", and is only available if
3248 the target-specific code provides functionality to read the target's
3249 overlay mapping table, and translate its contents for the debugger
3250 (by updating the mapped state information in the obj_section tables).
3251
3252 The interface is as follows:
3253 User commands:
3254 overlay map <name> -- tell gdb to consider this section mapped
3255 overlay unmap <name> -- tell gdb to consider this section unmapped
3256 overlay list -- list the sections that GDB thinks are mapped
3257 overlay read-target -- get the target's state of what's mapped
3258 overlay off/manual/auto -- set overlay debugging state
3259 Functional interface:
3260 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3261 section, return that section.
3262 find_pc_overlay(pc): find any overlay section that contains
3263 the pc, either in its VMA or its LMA
3264 overlay_is_mapped(sect): true if overlay is marked as mapped
3265 section_is_overlay(sect): true if section's VMA != LMA
3266 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3267 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3268 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3269 overlay_mapped_address(...): map an address from section's LMA to VMA
3270 overlay_unmapped_address(...): map an address from section's VMA to LMA
3271 symbol_overlayed_address(...): Return a "current" address for symbol:
3272 either in VMA or LMA depending on whether
3273 the symbol's section is currently mapped
3274 */
3275
3276 /* Overlay debugging state: */
3277
3278 enum overlay_debugging_state overlay_debugging = ovly_off;
3279 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3280
3281 /* Function: section_is_overlay (SECTION)
3282 Returns true if SECTION has VMA not equal to LMA, ie.
3283 SECTION is loaded at an address different from where it will "run". */
3284
3285 int
3286 section_is_overlay (asection *section)
3287 {
3288 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3289
3290 if (overlay_debugging)
3291 if (section && section->lma != 0 &&
3292 section->vma != section->lma)
3293 return 1;
3294
3295 return 0;
3296 }
3297
3298 /* Function: overlay_invalidate_all (void)
3299 Invalidate the mapped state of all overlay sections (mark it as stale). */
3300
3301 static void
3302 overlay_invalidate_all (void)
3303 {
3304 struct objfile *objfile;
3305 struct obj_section *sect;
3306
3307 ALL_OBJSECTIONS (objfile, sect)
3308 if (section_is_overlay (sect->the_bfd_section))
3309 sect->ovly_mapped = -1;
3310 }
3311
3312 /* Function: overlay_is_mapped (SECTION)
3313 Returns true if section is an overlay, and is currently mapped.
3314 Private: public access is thru function section_is_mapped.
3315
3316 Access to the ovly_mapped flag is restricted to this function, so
3317 that we can do automatic update. If the global flag
3318 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3319 overlay_invalidate_all. If the mapped state of the particular
3320 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3321
3322 static int
3323 overlay_is_mapped (struct obj_section *osect)
3324 {
3325 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3326 return 0;
3327
3328 switch (overlay_debugging)
3329 {
3330 default:
3331 case ovly_off:
3332 return 0; /* overlay debugging off */
3333 case ovly_auto: /* overlay debugging automatic */
3334 /* Unles there is a gdbarch_overlay_update function,
3335 there's really nothing useful to do here (can't really go auto) */
3336 if (gdbarch_overlay_update_p (current_gdbarch))
3337 {
3338 if (overlay_cache_invalid)
3339 {
3340 overlay_invalidate_all ();
3341 overlay_cache_invalid = 0;
3342 }
3343 if (osect->ovly_mapped == -1)
3344 gdbarch_overlay_update (current_gdbarch, osect);
3345 }
3346 /* fall thru to manual case */
3347 case ovly_on: /* overlay debugging manual */
3348 return osect->ovly_mapped == 1;
3349 }
3350 }
3351
3352 /* Function: section_is_mapped
3353 Returns true if section is an overlay, and is currently mapped. */
3354
3355 int
3356 section_is_mapped (asection *section)
3357 {
3358 struct objfile *objfile;
3359 struct obj_section *osect;
3360
3361 if (overlay_debugging)
3362 if (section && section_is_overlay (section))
3363 ALL_OBJSECTIONS (objfile, osect)
3364 if (osect->the_bfd_section == section)
3365 return overlay_is_mapped (osect);
3366
3367 return 0;
3368 }
3369
3370 /* Function: pc_in_unmapped_range
3371 If PC falls into the lma range of SECTION, return true, else false. */
3372
3373 CORE_ADDR
3374 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3375 {
3376 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3377
3378 int size;
3379
3380 if (overlay_debugging)
3381 if (section && section_is_overlay (section))
3382 {
3383 size = bfd_get_section_size (section);
3384 if (section->lma <= pc && pc < section->lma + size)
3385 return 1;
3386 }
3387 return 0;
3388 }
3389
3390 /* Function: pc_in_mapped_range
3391 If PC falls into the vma range of SECTION, return true, else false. */
3392
3393 CORE_ADDR
3394 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3395 {
3396 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3397
3398 int size;
3399
3400 if (overlay_debugging)
3401 if (section && section_is_overlay (section))
3402 {
3403 size = bfd_get_section_size (section);
3404 if (section->vma <= pc && pc < section->vma + size)
3405 return 1;
3406 }
3407 return 0;
3408 }
3409
3410
3411 /* Return true if the mapped ranges of sections A and B overlap, false
3412 otherwise. */
3413 static int
3414 sections_overlap (asection *a, asection *b)
3415 {
3416 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3417
3418 CORE_ADDR a_start = a->vma;
3419 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3420 CORE_ADDR b_start = b->vma;
3421 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3422
3423 return (a_start < b_end && b_start < a_end);
3424 }
3425
3426 /* Function: overlay_unmapped_address (PC, SECTION)
3427 Returns the address corresponding to PC in the unmapped (load) range.
3428 May be the same as PC. */
3429
3430 CORE_ADDR
3431 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3432 {
3433 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3434
3435 if (overlay_debugging)
3436 if (section && section_is_overlay (section) &&
3437 pc_in_mapped_range (pc, section))
3438 return pc + section->lma - section->vma;
3439
3440 return pc;
3441 }
3442
3443 /* Function: overlay_mapped_address (PC, SECTION)
3444 Returns the address corresponding to PC in the mapped (runtime) range.
3445 May be the same as PC. */
3446
3447 CORE_ADDR
3448 overlay_mapped_address (CORE_ADDR pc, asection *section)
3449 {
3450 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3451
3452 if (overlay_debugging)
3453 if (section && section_is_overlay (section) &&
3454 pc_in_unmapped_range (pc, section))
3455 return pc + section->vma - section->lma;
3456
3457 return pc;
3458 }
3459
3460
3461 /* Function: symbol_overlayed_address
3462 Return one of two addresses (relative to the VMA or to the LMA),
3463 depending on whether the section is mapped or not. */
3464
3465 CORE_ADDR
3466 symbol_overlayed_address (CORE_ADDR address, asection *section)
3467 {
3468 if (overlay_debugging)
3469 {
3470 /* If the symbol has no section, just return its regular address. */
3471 if (section == 0)
3472 return address;
3473 /* If the symbol's section is not an overlay, just return its address */
3474 if (!section_is_overlay (section))
3475 return address;
3476 /* If the symbol's section is mapped, just return its address */
3477 if (section_is_mapped (section))
3478 return address;
3479 /*
3480 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3481 * then return its LOADED address rather than its vma address!!
3482 */
3483 return overlay_unmapped_address (address, section);
3484 }
3485 return address;
3486 }
3487
3488 /* Function: find_pc_overlay (PC)
3489 Return the best-match overlay section for PC:
3490 If PC matches a mapped overlay section's VMA, return that section.
3491 Else if PC matches an unmapped section's VMA, return that section.
3492 Else if PC matches an unmapped section's LMA, return that section. */
3493
3494 asection *
3495 find_pc_overlay (CORE_ADDR pc)
3496 {
3497 struct objfile *objfile;
3498 struct obj_section *osect, *best_match = NULL;
3499
3500 if (overlay_debugging)
3501 ALL_OBJSECTIONS (objfile, osect)
3502 if (section_is_overlay (osect->the_bfd_section))
3503 {
3504 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3505 {
3506 if (overlay_is_mapped (osect))
3507 return osect->the_bfd_section;
3508 else
3509 best_match = osect;
3510 }
3511 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3512 best_match = osect;
3513 }
3514 return best_match ? best_match->the_bfd_section : NULL;
3515 }
3516
3517 /* Function: find_pc_mapped_section (PC)
3518 If PC falls into the VMA address range of an overlay section that is
3519 currently marked as MAPPED, return that section. Else return NULL. */
3520
3521 asection *
3522 find_pc_mapped_section (CORE_ADDR pc)
3523 {
3524 struct objfile *objfile;
3525 struct obj_section *osect;
3526
3527 if (overlay_debugging)
3528 ALL_OBJSECTIONS (objfile, osect)
3529 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3530 overlay_is_mapped (osect))
3531 return osect->the_bfd_section;
3532
3533 return NULL;
3534 }
3535
3536 /* Function: list_overlays_command
3537 Print a list of mapped sections and their PC ranges */
3538
3539 void
3540 list_overlays_command (char *args, int from_tty)
3541 {
3542 int nmapped = 0;
3543 struct objfile *objfile;
3544 struct obj_section *osect;
3545
3546 if (overlay_debugging)
3547 ALL_OBJSECTIONS (objfile, osect)
3548 if (overlay_is_mapped (osect))
3549 {
3550 const char *name;
3551 bfd_vma lma, vma;
3552 int size;
3553
3554 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3555 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3556 size = bfd_get_section_size (osect->the_bfd_section);
3557 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3558
3559 printf_filtered ("Section %s, loaded at ", name);
3560 fputs_filtered (paddress (lma), gdb_stdout);
3561 puts_filtered (" - ");
3562 fputs_filtered (paddress (lma + size), gdb_stdout);
3563 printf_filtered (", mapped at ");
3564 fputs_filtered (paddress (vma), gdb_stdout);
3565 puts_filtered (" - ");
3566 fputs_filtered (paddress (vma + size), gdb_stdout);
3567 puts_filtered ("\n");
3568
3569 nmapped++;
3570 }
3571 if (nmapped == 0)
3572 printf_filtered (_("No sections are mapped.\n"));
3573 }
3574
3575 /* Function: map_overlay_command
3576 Mark the named section as mapped (ie. residing at its VMA address). */
3577
3578 void
3579 map_overlay_command (char *args, int from_tty)
3580 {
3581 struct objfile *objfile, *objfile2;
3582 struct obj_section *sec, *sec2;
3583 asection *bfdsec;
3584
3585 if (!overlay_debugging)
3586 error (_("\
3587 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3588 the 'overlay manual' command."));
3589
3590 if (args == 0 || *args == 0)
3591 error (_("Argument required: name of an overlay section"));
3592
3593 /* First, find a section matching the user supplied argument */
3594 ALL_OBJSECTIONS (objfile, sec)
3595 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3596 {
3597 /* Now, check to see if the section is an overlay. */
3598 bfdsec = sec->the_bfd_section;
3599 if (!section_is_overlay (bfdsec))
3600 continue; /* not an overlay section */
3601
3602 /* Mark the overlay as "mapped" */
3603 sec->ovly_mapped = 1;
3604
3605 /* Next, make a pass and unmap any sections that are
3606 overlapped by this new section: */
3607 ALL_OBJSECTIONS (objfile2, sec2)
3608 if (sec2->ovly_mapped
3609 && sec != sec2
3610 && sec->the_bfd_section != sec2->the_bfd_section
3611 && sections_overlap (sec->the_bfd_section,
3612 sec2->the_bfd_section))
3613 {
3614 if (info_verbose)
3615 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3616 bfd_section_name (objfile->obfd,
3617 sec2->the_bfd_section));
3618 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3619 }
3620 return;
3621 }
3622 error (_("No overlay section called %s"), args);
3623 }
3624
3625 /* Function: unmap_overlay_command
3626 Mark the overlay section as unmapped
3627 (ie. resident in its LMA address range, rather than the VMA range). */
3628
3629 void
3630 unmap_overlay_command (char *args, int from_tty)
3631 {
3632 struct objfile *objfile;
3633 struct obj_section *sec;
3634
3635 if (!overlay_debugging)
3636 error (_("\
3637 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3638 the 'overlay manual' command."));
3639
3640 if (args == 0 || *args == 0)
3641 error (_("Argument required: name of an overlay section"));
3642
3643 /* First, find a section matching the user supplied argument */
3644 ALL_OBJSECTIONS (objfile, sec)
3645 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3646 {
3647 if (!sec->ovly_mapped)
3648 error (_("Section %s is not mapped"), args);
3649 sec->ovly_mapped = 0;
3650 return;
3651 }
3652 error (_("No overlay section called %s"), args);
3653 }
3654
3655 /* Function: overlay_auto_command
3656 A utility command to turn on overlay debugging.
3657 Possibly this should be done via a set/show command. */
3658
3659 static void
3660 overlay_auto_command (char *args, int from_tty)
3661 {
3662 overlay_debugging = ovly_auto;
3663 enable_overlay_breakpoints ();
3664 if (info_verbose)
3665 printf_unfiltered (_("Automatic overlay debugging enabled."));
3666 }
3667
3668 /* Function: overlay_manual_command
3669 A utility command to turn on overlay debugging.
3670 Possibly this should be done via a set/show command. */
3671
3672 static void
3673 overlay_manual_command (char *args, int from_tty)
3674 {
3675 overlay_debugging = ovly_on;
3676 disable_overlay_breakpoints ();
3677 if (info_verbose)
3678 printf_unfiltered (_("Overlay debugging enabled."));
3679 }
3680
3681 /* Function: overlay_off_command
3682 A utility command to turn on overlay debugging.
3683 Possibly this should be done via a set/show command. */
3684
3685 static void
3686 overlay_off_command (char *args, int from_tty)
3687 {
3688 overlay_debugging = ovly_off;
3689 disable_overlay_breakpoints ();
3690 if (info_verbose)
3691 printf_unfiltered (_("Overlay debugging disabled."));
3692 }
3693
3694 static void
3695 overlay_load_command (char *args, int from_tty)
3696 {
3697 if (gdbarch_overlay_update_p (current_gdbarch))
3698 gdbarch_overlay_update (current_gdbarch, NULL);
3699 else
3700 error (_("This target does not know how to read its overlay state."));
3701 }
3702
3703 /* Function: overlay_command
3704 A place-holder for a mis-typed command */
3705
3706 /* Command list chain containing all defined "overlay" subcommands. */
3707 struct cmd_list_element *overlaylist;
3708
3709 static void
3710 overlay_command (char *args, int from_tty)
3711 {
3712 printf_unfiltered
3713 ("\"overlay\" must be followed by the name of an overlay command.\n");
3714 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3715 }
3716
3717
3718 /* Target Overlays for the "Simplest" overlay manager:
3719
3720 This is GDB's default target overlay layer. It works with the
3721 minimal overlay manager supplied as an example by Cygnus. The
3722 entry point is via a function pointer "gdbarch_overlay_update",
3723 so targets that use a different runtime overlay manager can
3724 substitute their own overlay_update function and take over the
3725 function pointer.
3726
3727 The overlay_update function pokes around in the target's data structures
3728 to see what overlays are mapped, and updates GDB's overlay mapping with
3729 this information.
3730
3731 In this simple implementation, the target data structures are as follows:
3732 unsigned _novlys; /# number of overlay sections #/
3733 unsigned _ovly_table[_novlys][4] = {
3734 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3735 {..., ..., ..., ...},
3736 }
3737 unsigned _novly_regions; /# number of overlay regions #/
3738 unsigned _ovly_region_table[_novly_regions][3] = {
3739 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3740 {..., ..., ...},
3741 }
3742 These functions will attempt to update GDB's mappedness state in the
3743 symbol section table, based on the target's mappedness state.
3744
3745 To do this, we keep a cached copy of the target's _ovly_table, and
3746 attempt to detect when the cached copy is invalidated. The main
3747 entry point is "simple_overlay_update(SECT), which looks up SECT in
3748 the cached table and re-reads only the entry for that section from
3749 the target (whenever possible).
3750 */
3751
3752 /* Cached, dynamically allocated copies of the target data structures: */
3753 static unsigned (*cache_ovly_table)[4] = 0;
3754 #if 0
3755 static unsigned (*cache_ovly_region_table)[3] = 0;
3756 #endif
3757 static unsigned cache_novlys = 0;
3758 #if 0
3759 static unsigned cache_novly_regions = 0;
3760 #endif
3761 static CORE_ADDR cache_ovly_table_base = 0;
3762 #if 0
3763 static CORE_ADDR cache_ovly_region_table_base = 0;
3764 #endif
3765 enum ovly_index
3766 {
3767 VMA, SIZE, LMA, MAPPED
3768 };
3769 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3770 / TARGET_CHAR_BIT)
3771
3772 /* Throw away the cached copy of _ovly_table */
3773 static void
3774 simple_free_overlay_table (void)
3775 {
3776 if (cache_ovly_table)
3777 xfree (cache_ovly_table);
3778 cache_novlys = 0;
3779 cache_ovly_table = NULL;
3780 cache_ovly_table_base = 0;
3781 }
3782
3783 #if 0
3784 /* Throw away the cached copy of _ovly_region_table */
3785 static void
3786 simple_free_overlay_region_table (void)
3787 {
3788 if (cache_ovly_region_table)
3789 xfree (cache_ovly_region_table);
3790 cache_novly_regions = 0;
3791 cache_ovly_region_table = NULL;
3792 cache_ovly_region_table_base = 0;
3793 }
3794 #endif
3795
3796 /* Read an array of ints from the target into a local buffer.
3797 Convert to host order. int LEN is number of ints */
3798 static void
3799 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3800 {
3801 /* FIXME (alloca): Not safe if array is very large. */
3802 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3803 int i;
3804
3805 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3806 for (i = 0; i < len; i++)
3807 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3808 TARGET_LONG_BYTES);
3809 }
3810
3811 /* Find and grab a copy of the target _ovly_table
3812 (and _novlys, which is needed for the table's size) */
3813 static int
3814 simple_read_overlay_table (void)
3815 {
3816 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3817
3818 simple_free_overlay_table ();
3819 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3820 if (! novlys_msym)
3821 {
3822 error (_("Error reading inferior's overlay table: "
3823 "couldn't find `_novlys' variable\n"
3824 "in inferior. Use `overlay manual' mode."));
3825 return 0;
3826 }
3827
3828 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3829 if (! ovly_table_msym)
3830 {
3831 error (_("Error reading inferior's overlay table: couldn't find "
3832 "`_ovly_table' array\n"
3833 "in inferior. Use `overlay manual' mode."));
3834 return 0;
3835 }
3836
3837 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3838 cache_ovly_table
3839 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3840 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3841 read_target_long_array (cache_ovly_table_base,
3842 (unsigned int *) cache_ovly_table,
3843 cache_novlys * 4);
3844
3845 return 1; /* SUCCESS */
3846 }
3847
3848 #if 0
3849 /* Find and grab a copy of the target _ovly_region_table
3850 (and _novly_regions, which is needed for the table's size) */
3851 static int
3852 simple_read_overlay_region_table (void)
3853 {
3854 struct minimal_symbol *msym;
3855
3856 simple_free_overlay_region_table ();
3857 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3858 if (msym != NULL)
3859 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3860 else
3861 return 0; /* failure */
3862 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3863 if (cache_ovly_region_table != NULL)
3864 {
3865 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3866 if (msym != NULL)
3867 {
3868 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3869 read_target_long_array (cache_ovly_region_table_base,
3870 (unsigned int *) cache_ovly_region_table,
3871 cache_novly_regions * 3);
3872 }
3873 else
3874 return 0; /* failure */
3875 }
3876 else
3877 return 0; /* failure */
3878 return 1; /* SUCCESS */
3879 }
3880 #endif
3881
3882 /* Function: simple_overlay_update_1
3883 A helper function for simple_overlay_update. Assuming a cached copy
3884 of _ovly_table exists, look through it to find an entry whose vma,
3885 lma and size match those of OSECT. Re-read the entry and make sure
3886 it still matches OSECT (else the table may no longer be valid).
3887 Set OSECT's mapped state to match the entry. Return: 1 for
3888 success, 0 for failure. */
3889
3890 static int
3891 simple_overlay_update_1 (struct obj_section *osect)
3892 {
3893 int i, size;
3894 bfd *obfd = osect->objfile->obfd;
3895 asection *bsect = osect->the_bfd_section;
3896
3897 size = bfd_get_section_size (osect->the_bfd_section);
3898 for (i = 0; i < cache_novlys; i++)
3899 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3900 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3901 /* && cache_ovly_table[i][SIZE] == size */ )
3902 {
3903 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3904 (unsigned int *) cache_ovly_table[i], 4);
3905 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3906 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3907 /* && cache_ovly_table[i][SIZE] == size */ )
3908 {
3909 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3910 return 1;
3911 }
3912 else /* Warning! Warning! Target's ovly table has changed! */
3913 return 0;
3914 }
3915 return 0;
3916 }
3917
3918 /* Function: simple_overlay_update
3919 If OSECT is NULL, then update all sections' mapped state
3920 (after re-reading the entire target _ovly_table).
3921 If OSECT is non-NULL, then try to find a matching entry in the
3922 cached ovly_table and update only OSECT's mapped state.
3923 If a cached entry can't be found or the cache isn't valid, then
3924 re-read the entire cache, and go ahead and update all sections. */
3925
3926 void
3927 simple_overlay_update (struct obj_section *osect)
3928 {
3929 struct objfile *objfile;
3930
3931 /* Were we given an osect to look up? NULL means do all of them. */
3932 if (osect)
3933 /* Have we got a cached copy of the target's overlay table? */
3934 if (cache_ovly_table != NULL)
3935 /* Does its cached location match what's currently in the symtab? */
3936 if (cache_ovly_table_base ==
3937 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3938 /* Then go ahead and try to look up this single section in the cache */
3939 if (simple_overlay_update_1 (osect))
3940 /* Found it! We're done. */
3941 return;
3942
3943 /* Cached table no good: need to read the entire table anew.
3944 Or else we want all the sections, in which case it's actually
3945 more efficient to read the whole table in one block anyway. */
3946
3947 if (! simple_read_overlay_table ())
3948 return;
3949
3950 /* Now may as well update all sections, even if only one was requested. */
3951 ALL_OBJSECTIONS (objfile, osect)
3952 if (section_is_overlay (osect->the_bfd_section))
3953 {
3954 int i, size;
3955 bfd *obfd = osect->objfile->obfd;
3956 asection *bsect = osect->the_bfd_section;
3957
3958 size = bfd_get_section_size (bsect);
3959 for (i = 0; i < cache_novlys; i++)
3960 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3961 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3962 /* && cache_ovly_table[i][SIZE] == size */ )
3963 { /* obj_section matches i'th entry in ovly_table */
3964 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3965 break; /* finished with inner for loop: break out */
3966 }
3967 }
3968 }
3969
3970 /* Set the output sections and output offsets for section SECTP in
3971 ABFD. The relocation code in BFD will read these offsets, so we
3972 need to be sure they're initialized. We map each section to itself,
3973 with no offset; this means that SECTP->vma will be honored. */
3974
3975 static void
3976 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3977 {
3978 sectp->output_section = sectp;
3979 sectp->output_offset = 0;
3980 }
3981
3982 /* Relocate the contents of a debug section SECTP in ABFD. The
3983 contents are stored in BUF if it is non-NULL, or returned in a
3984 malloc'd buffer otherwise.
3985
3986 For some platforms and debug info formats, shared libraries contain
3987 relocations against the debug sections (particularly for DWARF-2;
3988 one affected platform is PowerPC GNU/Linux, although it depends on
3989 the version of the linker in use). Also, ELF object files naturally
3990 have unresolved relocations for their debug sections. We need to apply
3991 the relocations in order to get the locations of symbols correct. */
3992
3993 bfd_byte *
3994 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3995 {
3996 /* We're only interested in debugging sections with relocation
3997 information. */
3998 if ((sectp->flags & SEC_RELOC) == 0)
3999 return NULL;
4000 if ((sectp->flags & SEC_DEBUGGING) == 0)
4001 return NULL;
4002
4003 /* We will handle section offsets properly elsewhere, so relocate as if
4004 all sections begin at 0. */
4005 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4006
4007 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
4008 }
4009
4010 struct symfile_segment_data *
4011 get_symfile_segment_data (bfd *abfd)
4012 {
4013 struct sym_fns *sf = find_sym_fns (abfd);
4014
4015 if (sf == NULL)
4016 return NULL;
4017
4018 return sf->sym_segments (abfd);
4019 }
4020
4021 void
4022 free_symfile_segment_data (struct symfile_segment_data *data)
4023 {
4024 xfree (data->segment_bases);
4025 xfree (data->segment_sizes);
4026 xfree (data->segment_info);
4027 xfree (data);
4028 }
4029
4030
4031 /* Given:
4032 - DATA, containing segment addresses from the object file ABFD, and
4033 the mapping from ABFD's sections onto the segments that own them,
4034 and
4035 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4036 segment addresses reported by the target,
4037 store the appropriate offsets for each section in OFFSETS.
4038
4039 If there are fewer entries in SEGMENT_BASES than there are segments
4040 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4041
4042 If there are more entries, then ignore the extra. The target may
4043 not be able to distinguish between an empty data segment and a
4044 missing data segment; a missing text segment is less plausible. */
4045 int
4046 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4047 struct section_offsets *offsets,
4048 int num_segment_bases,
4049 const CORE_ADDR *segment_bases)
4050 {
4051 int i;
4052 asection *sect;
4053
4054 /* It doesn't make sense to call this function unless you have some
4055 segment base addresses. */
4056 gdb_assert (segment_bases > 0);
4057
4058 /* If we do not have segment mappings for the object file, we
4059 can not relocate it by segments. */
4060 gdb_assert (data != NULL);
4061 gdb_assert (data->num_segments > 0);
4062
4063 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4064 {
4065 int which = data->segment_info[i];
4066
4067 gdb_assert (0 <= which && which <= data->num_segments);
4068
4069 /* Don't bother computing offsets for sections that aren't
4070 loaded as part of any segment. */
4071 if (! which)
4072 continue;
4073
4074 /* Use the last SEGMENT_BASES entry as the address of any extra
4075 segments mentioned in DATA->segment_info. */
4076 if (which > num_segment_bases)
4077 which = num_segment_bases;
4078
4079 offsets->offsets[i] = (segment_bases[which - 1]
4080 - data->segment_bases[which - 1]);
4081 }
4082
4083 return 1;
4084 }
4085
4086 static void
4087 symfile_find_segment_sections (struct objfile *objfile)
4088 {
4089 bfd *abfd = objfile->obfd;
4090 int i;
4091 asection *sect;
4092 struct symfile_segment_data *data;
4093
4094 data = get_symfile_segment_data (objfile->obfd);
4095 if (data == NULL)
4096 return;
4097
4098 if (data->num_segments != 1 && data->num_segments != 2)
4099 {
4100 free_symfile_segment_data (data);
4101 return;
4102 }
4103
4104 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4105 {
4106 CORE_ADDR vma;
4107 int which = data->segment_info[i];
4108
4109 if (which == 1)
4110 {
4111 if (objfile->sect_index_text == -1)
4112 objfile->sect_index_text = sect->index;
4113
4114 if (objfile->sect_index_rodata == -1)
4115 objfile->sect_index_rodata = sect->index;
4116 }
4117 else if (which == 2)
4118 {
4119 if (objfile->sect_index_data == -1)
4120 objfile->sect_index_data = sect->index;
4121
4122 if (objfile->sect_index_bss == -1)
4123 objfile->sect_index_bss = sect->index;
4124 }
4125 }
4126
4127 free_symfile_segment_data (data);
4128 }
4129
4130 void
4131 _initialize_symfile (void)
4132 {
4133 struct cmd_list_element *c;
4134
4135 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4136 Load symbol table from executable file FILE.\n\
4137 The `file' command can also load symbol tables, as well as setting the file\n\
4138 to execute."), &cmdlist);
4139 set_cmd_completer (c, filename_completer);
4140
4141 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4142 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4143 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4144 ADDR is the starting address of the file's text.\n\
4145 The optional arguments are section-name section-address pairs and\n\
4146 should be specified if the data and bss segments are not contiguous\n\
4147 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4148 &cmdlist);
4149 set_cmd_completer (c, filename_completer);
4150
4151 c = add_cmd ("add-shared-symbol-files", class_files,
4152 add_shared_symbol_files_command, _("\
4153 Load the symbols from shared objects in the dynamic linker's link map."),
4154 &cmdlist);
4155 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4156 &cmdlist);
4157
4158 c = add_cmd ("load", class_files, load_command, _("\
4159 Dynamically load FILE into the running program, and record its symbols\n\
4160 for access from GDB.\n\
4161 A load OFFSET may also be given."), &cmdlist);
4162 set_cmd_completer (c, filename_completer);
4163
4164 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4165 &symbol_reloading, _("\
4166 Set dynamic symbol table reloading multiple times in one run."), _("\
4167 Show dynamic symbol table reloading multiple times in one run."), NULL,
4168 NULL,
4169 show_symbol_reloading,
4170 &setlist, &showlist);
4171
4172 add_prefix_cmd ("overlay", class_support, overlay_command,
4173 _("Commands for debugging overlays."), &overlaylist,
4174 "overlay ", 0, &cmdlist);
4175
4176 add_com_alias ("ovly", "overlay", class_alias, 1);
4177 add_com_alias ("ov", "overlay", class_alias, 1);
4178
4179 add_cmd ("map-overlay", class_support, map_overlay_command,
4180 _("Assert that an overlay section is mapped."), &overlaylist);
4181
4182 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4183 _("Assert that an overlay section is unmapped."), &overlaylist);
4184
4185 add_cmd ("list-overlays", class_support, list_overlays_command,
4186 _("List mappings of overlay sections."), &overlaylist);
4187
4188 add_cmd ("manual", class_support, overlay_manual_command,
4189 _("Enable overlay debugging."), &overlaylist);
4190 add_cmd ("off", class_support, overlay_off_command,
4191 _("Disable overlay debugging."), &overlaylist);
4192 add_cmd ("auto", class_support, overlay_auto_command,
4193 _("Enable automatic overlay debugging."), &overlaylist);
4194 add_cmd ("load-target", class_support, overlay_load_command,
4195 _("Read the overlay mapping state from the target."), &overlaylist);
4196
4197 /* Filename extension to source language lookup table: */
4198 init_filename_language_table ();
4199 add_setshow_string_noescape_cmd ("extension-language", class_files,
4200 &ext_args, _("\
4201 Set mapping between filename extension and source language."), _("\
4202 Show mapping between filename extension and source language."), _("\
4203 Usage: set extension-language .foo bar"),
4204 set_ext_lang_command,
4205 show_ext_args,
4206 &setlist, &showlist);
4207
4208 add_info ("extensions", info_ext_lang_command,
4209 _("All filename extensions associated with a source language."));
4210
4211 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4212 &debug_file_directory, _("\
4213 Set the directory where separate debug symbols are searched for."), _("\
4214 Show the directory where separate debug symbols are searched for."), _("\
4215 Separate debug symbols are first searched for in the same\n\
4216 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4217 and lastly at the path of the directory of the binary with\n\
4218 the global debug-file directory prepended."),
4219 NULL,
4220 show_debug_file_directory,
4221 &setlist, &showlist);
4222 }
This page took 0.11939 seconds and 4 git commands to generate.