* config/i386/tm-i386.h (PARM_BOUNDARY, CALL_DUMMY,
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h" /* for write_pc */
40 #include "gdb-stabs.h"
41 #include "obstack.h"
42 #include "completer.h"
43
44 #include <sys/types.h>
45 #include <fcntl.h>
46 #include "gdb_string.h"
47 #include "gdb_stat.h"
48 #include <ctype.h>
49 #include <time.h>
50
51 #ifndef O_BINARY
52 #define O_BINARY 0
53 #endif
54
55 #ifdef HPUXHPPA
56
57 /* Some HP-UX related globals to clear when a new "main"
58 symbol file is loaded. HP-specific. */
59
60 extern int hp_som_som_object_present;
61 extern int hp_cxx_exception_support_initialized;
62 #define RESET_HP_UX_GLOBALS() do {\
63 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
64 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
65 } while (0)
66 #endif
67
68 int (*ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*pre_add_symbol_hook) (char *);
75 void (*post_add_symbol_hook) (void);
76 void (*target_new_objfile_hook) (struct objfile *);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 struct complaint oldsyms_complaint =
84 {
85 "Replacing old symbols for `%s'", 0, 0
86 };
87
88 struct complaint empty_symtab_complaint =
89 {
90 "Empty symbol table found for `%s'", 0, 0
91 };
92
93 struct complaint unknown_option_complaint =
94 {
95 "Unknown option `%s' ignored", 0, 0
96 };
97
98 /* External variables and functions referenced. */
99
100 extern void report_transfer_performance (unsigned long, time_t, time_t);
101
102 /* Functions this file defines */
103
104 #if 0
105 static int simple_read_overlay_region_table (void);
106 static void simple_free_overlay_region_table (void);
107 #endif
108
109 static void set_initial_language (void);
110
111 static void load_command (char *, int);
112
113 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
114
115 static void add_symbol_file_command (char *, int);
116
117 static void add_shared_symbol_files_command (char *, int);
118
119 static void cashier_psymtab (struct partial_symtab *);
120
121 bfd *symfile_bfd_open (char *);
122
123 int get_section_index (struct objfile *, char *);
124
125 static void find_sym_fns (struct objfile *);
126
127 static void decrement_reading_symtab (void *);
128
129 static void overlay_invalidate_all (void);
130
131 static int overlay_is_mapped (struct obj_section *);
132
133 void list_overlays_command (char *, int);
134
135 void map_overlay_command (char *, int);
136
137 void unmap_overlay_command (char *, int);
138
139 static void overlay_auto_command (char *, int);
140
141 static void overlay_manual_command (char *, int);
142
143 static void overlay_off_command (char *, int);
144
145 static void overlay_load_command (char *, int);
146
147 static void overlay_command (char *, int);
148
149 static void simple_free_overlay_table (void);
150
151 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
152
153 static int simple_read_overlay_table (void);
154
155 static int simple_overlay_update_1 (struct obj_section *);
156
157 static void add_filename_language (char *ext, enum language lang);
158
159 static void set_ext_lang_command (char *args, int from_tty);
160
161 static void info_ext_lang_command (char *args, int from_tty);
162
163 static void init_filename_language_table (void);
164
165 void _initialize_symfile (void);
166
167 /* List of all available sym_fns. On gdb startup, each object file reader
168 calls add_symtab_fns() to register information on each format it is
169 prepared to read. */
170
171 static struct sym_fns *symtab_fns = NULL;
172
173 /* Flag for whether user will be reloading symbols multiple times.
174 Defaults to ON for VxWorks, otherwise OFF. */
175
176 #ifdef SYMBOL_RELOADING_DEFAULT
177 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
178 #else
179 int symbol_reloading = 0;
180 #endif
181
182 /* If non-zero, shared library symbols will be added automatically
183 when the inferior is created, new libraries are loaded, or when
184 attaching to the inferior. This is almost always what users will
185 want to have happen; but for very large programs, the startup time
186 will be excessive, and so if this is a problem, the user can clear
187 this flag and then add the shared library symbols as needed. Note
188 that there is a potential for confusion, since if the shared
189 library symbols are not loaded, commands like "info fun" will *not*
190 report all the functions that are actually present. */
191
192 int auto_solib_add = 1;
193
194 /* For systems that support it, a threshold size in megabytes. If
195 automatically adding a new library's symbol table to those already
196 known to the debugger would cause the total shared library symbol
197 size to exceed this threshhold, then the shlib's symbols are not
198 added. The threshold is ignored if the user explicitly asks for a
199 shlib to be added, such as when using the "sharedlibrary"
200 command. */
201
202 int auto_solib_limit;
203 \f
204
205 /* Since this function is called from within qsort, in an ANSI environment
206 it must conform to the prototype for qsort, which specifies that the
207 comparison function takes two "void *" pointers. */
208
209 static int
210 compare_symbols (const void *s1p, const void *s2p)
211 {
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
216 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
217 }
218
219 /*
220
221 LOCAL FUNCTION
222
223 compare_psymbols -- compare two partial symbols by name
224
225 DESCRIPTION
226
227 Given pointers to pointers to two partial symbol table entries,
228 compare them by name and return -N, 0, or +N (ala strcmp).
229 Typically used by sorting routines like qsort().
230
231 NOTES
232
233 Does direct compare of first two characters before punting
234 and passing to strcmp for longer compares. Note that the
235 original version had a bug whereby two null strings or two
236 identically named one character strings would return the
237 comparison of memory following the null byte.
238
239 */
240
241 static int
242 compare_psymbols (const void *s1p, const void *s2p)
243 {
244 register struct partial_symbol **s1, **s2;
245 register char *st1, *st2;
246
247 s1 = (struct partial_symbol **) s1p;
248 s2 = (struct partial_symbol **) s2p;
249 st1 = SYMBOL_SOURCE_NAME (*s1);
250 st2 = SYMBOL_SOURCE_NAME (*s2);
251
252
253 if ((st1[0] - st2[0]) || !st1[0])
254 {
255 return (st1[0] - st2[0]);
256 }
257 else if ((st1[1] - st2[1]) || !st1[1])
258 {
259 return (st1[1] - st2[1]);
260 }
261 else
262 {
263 return (strcmp (st1, st2));
264 }
265 }
266
267 void
268 sort_pst_symbols (struct partial_symtab *pst)
269 {
270 /* Sort the global list; don't sort the static list */
271
272 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
273 pst->n_global_syms, sizeof (struct partial_symbol *),
274 compare_psymbols);
275 }
276
277 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
278
279 void
280 sort_block_syms (register struct block *b)
281 {
282 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
283 sizeof (struct symbol *), compare_symbols);
284 }
285
286 /* Call sort_symtab_syms to sort alphabetically
287 the symbols of each block of one symtab. */
288
289 void
290 sort_symtab_syms (register struct symtab *s)
291 {
292 register struct blockvector *bv;
293 int nbl;
294 int i;
295 register struct block *b;
296
297 if (s == 0)
298 return;
299 bv = BLOCKVECTOR (s);
300 nbl = BLOCKVECTOR_NBLOCKS (bv);
301 for (i = 0; i < nbl; i++)
302 {
303 b = BLOCKVECTOR_BLOCK (bv, i);
304 if (BLOCK_SHOULD_SORT (b))
305 sort_block_syms (b);
306 }
307 }
308
309 /* Make a null terminated copy of the string at PTR with SIZE characters in
310 the obstack pointed to by OBSTACKP . Returns the address of the copy.
311 Note that the string at PTR does not have to be null terminated, I.E. it
312 may be part of a larger string and we are only saving a substring. */
313
314 char *
315 obsavestring (char *ptr, int size, struct obstack *obstackp)
316 {
317 register char *p = (char *) obstack_alloc (obstackp, size + 1);
318 /* Open-coded memcpy--saves function call time. These strings are usually
319 short. FIXME: Is this really still true with a compiler that can
320 inline memcpy? */
321 {
322 register char *p1 = ptr;
323 register char *p2 = p;
324 char *end = ptr + size;
325 while (p1 != end)
326 *p2++ = *p1++;
327 }
328 p[size] = 0;
329 return p;
330 }
331
332 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
333 in the obstack pointed to by OBSTACKP. */
334
335 char *
336 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
337 const char *s3)
338 {
339 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
340 register char *val = (char *) obstack_alloc (obstackp, len);
341 strcpy (val, s1);
342 strcat (val, s2);
343 strcat (val, s3);
344 return val;
345 }
346
347 /* True if we are nested inside psymtab_to_symtab. */
348
349 int currently_reading_symtab = 0;
350
351 static void
352 decrement_reading_symtab (void *dummy)
353 {
354 currently_reading_symtab--;
355 }
356
357 /* Get the symbol table that corresponds to a partial_symtab.
358 This is fast after the first time you do it. In fact, there
359 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
360 case inline. */
361
362 struct symtab *
363 psymtab_to_symtab (register struct partial_symtab *pst)
364 {
365 /* If it's been looked up before, return it. */
366 if (pst->symtab)
367 return pst->symtab;
368
369 /* If it has not yet been read in, read it. */
370 if (!pst->readin)
371 {
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
376 }
377
378 return pst->symtab;
379 }
380
381 /* Initialize entry point information for this objfile. */
382
383 void
384 init_entry_point_info (struct objfile *objfile)
385 {
386 /* Save startup file's range of PC addresses to help blockframe.c
387 decide where the bottom of the stack is. */
388
389 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
390 {
391 /* Executable file -- record its entry point so we'll recognize
392 the startup file because it contains the entry point. */
393 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
394 }
395 else
396 {
397 /* Examination of non-executable.o files. Short-circuit this stuff. */
398 objfile->ei.entry_point = INVALID_ENTRY_POINT;
399 }
400 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
404 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
405 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
406 }
407
408 /* Get current entry point address. */
409
410 CORE_ADDR
411 entry_point_address (void)
412 {
413 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
414 }
415
416 /* Remember the lowest-addressed loadable section we've seen.
417 This function is called via bfd_map_over_sections.
418
419 In case of equal vmas, the section with the largest size becomes the
420 lowest-addressed loadable section.
421
422 If the vmas and sizes are equal, the last section is considered the
423 lowest-addressed loadable section. */
424
425 void
426 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
427 {
428 asection **lowest = (asection **) obj;
429
430 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
431 return;
432 if (!*lowest)
433 *lowest = sect; /* First loadable section */
434 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
435 *lowest = sect; /* A lower loadable section */
436 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
437 && (bfd_section_size (abfd, (*lowest))
438 <= bfd_section_size (abfd, sect)))
439 *lowest = sect;
440 }
441
442
443 /* Build (allocate and populate) a section_addr_info struct from
444 an existing section table. */
445
446 extern struct section_addr_info *
447 build_section_addr_info_from_section_table (const struct section_table *start,
448 const struct section_table *end)
449 {
450 struct section_addr_info *sap;
451 const struct section_table *stp;
452 int oidx;
453
454 sap = xmalloc (sizeof (struct section_addr_info));
455 memset (sap, 0, sizeof (struct section_addr_info));
456
457 for (stp = start, oidx = 0; stp != end; stp++)
458 {
459 if (bfd_get_section_flags (stp->bfd,
460 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
461 && oidx < MAX_SECTIONS)
462 {
463 sap->other[oidx].addr = stp->addr;
464 sap->other[oidx].name
465 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
466 sap->other[oidx].sectindex = stp->the_bfd_section->index;
467 oidx++;
468 }
469 }
470
471 return sap;
472 }
473
474
475 /* Free all memory allocated by build_section_addr_info_from_section_table. */
476
477 extern void
478 free_section_addr_info (struct section_addr_info *sap)
479 {
480 int idx;
481
482 for (idx = 0; idx < MAX_SECTIONS; idx++)
483 if (sap->other[idx].name)
484 xfree (sap->other[idx].name);
485 xfree (sap);
486 }
487
488
489 /* Parse the user's idea of an offset for dynamic linking, into our idea
490 of how to represent it for fast symbol reading. This is the default
491 version of the sym_fns.sym_offsets function for symbol readers that
492 don't need to do anything special. It allocates a section_offsets table
493 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
494
495 void
496 default_symfile_offsets (struct objfile *objfile,
497 struct section_addr_info *addrs)
498 {
499 int i;
500 asection *sect = NULL;
501
502 objfile->num_sections = SECT_OFF_MAX;
503 objfile->section_offsets = (struct section_offsets *)
504 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
505 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
509 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525
526 sect = bfd_get_section_by_name (objfile->obfd, ".text");
527 if (sect)
528 objfile->sect_index_text = sect->index;
529
530 sect = bfd_get_section_by_name (objfile->obfd, ".data");
531 if (sect)
532 objfile->sect_index_data = sect->index;
533
534 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
535 if (sect)
536 objfile->sect_index_bss = sect->index;
537
538 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
539 if (sect)
540 objfile->sect_index_rodata = sect->index;
541
542 /* This is where things get really weird... We MUST have valid
543 indices for the various sect_index_* members or gdb will abort.
544 So if for example, there is no ".text" section, we have to
545 accomodate that. Except when explicitly adding symbol files at
546 some address, section_offsets contains nothing but zeros, so it
547 doesn't matter which slot in section_offsets the individual
548 sect_index_* members index into. So if they are all zero, it is
549 safe to just point all the currently uninitialized indices to the
550 first slot. */
551
552 for (i = 0; i < objfile->num_sections; i++)
553 {
554 if (ANOFFSET (objfile->section_offsets, i) != 0)
555 {
556 break;
557 }
558 }
559 if (i == objfile->num_sections)
560 {
561 if (objfile->sect_index_text == -1)
562 objfile->sect_index_text = 0;
563 if (objfile->sect_index_data == -1)
564 objfile->sect_index_data = 0;
565 if (objfile->sect_index_bss == -1)
566 objfile->sect_index_bss = 0;
567 if (objfile->sect_index_rodata == -1)
568 objfile->sect_index_rodata = 0;
569 }
570 }
571
572 /* Process a symbol file, as either the main file or as a dynamically
573 loaded file.
574
575 OBJFILE is where the symbols are to be read from.
576
577 ADDR is the address where the text segment was loaded, unless the
578 objfile is the main symbol file, in which case it is zero.
579
580 MAINLINE is nonzero if this is the main symbol file, or zero if
581 it's an extra symbol file such as dynamically loaded code.
582
583 VERBO is nonzero if the caller has printed a verbose message about
584 the symbol reading (and complaints can be more terse about it). */
585
586 void
587 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
588 int mainline, int verbo)
589 {
590 asection *lower_sect;
591 asection *sect;
592 CORE_ADDR lower_offset;
593 struct section_addr_info local_addr;
594 struct cleanup *old_chain;
595 int i;
596
597 /* If ADDRS is NULL, initialize the local section_addr_info struct and
598 point ADDRS to it. We now establish the convention that an addr of
599 zero means no load address was specified. */
600
601 if (addrs == NULL)
602 {
603 memset (&local_addr, 0, sizeof (local_addr));
604 addrs = &local_addr;
605 }
606
607 init_entry_point_info (objfile);
608 find_sym_fns (objfile);
609
610 if (objfile->sf == NULL)
611 return; /* No symbols. */
612
613 /* Make sure that partially constructed symbol tables will be cleaned up
614 if an error occurs during symbol reading. */
615 old_chain = make_cleanup_free_objfile (objfile);
616
617 if (mainline)
618 {
619 /* We will modify the main symbol table, make sure that all its users
620 will be cleaned up if an error occurs during symbol reading. */
621 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
622
623 /* Since no error yet, throw away the old symbol table. */
624
625 if (symfile_objfile != NULL)
626 {
627 free_objfile (symfile_objfile);
628 symfile_objfile = NULL;
629 }
630
631 /* Currently we keep symbols from the add-symbol-file command.
632 If the user wants to get rid of them, they should do "symbol-file"
633 without arguments first. Not sure this is the best behavior
634 (PR 2207). */
635
636 (*objfile->sf->sym_new_init) (objfile);
637 }
638
639 /* Convert addr into an offset rather than an absolute address.
640 We find the lowest address of a loaded segment in the objfile,
641 and assume that <addr> is where that got loaded.
642
643 We no longer warn if the lowest section is not a text segment (as
644 happens for the PA64 port. */
645 if (!mainline)
646 {
647 /* Find lowest loadable section to be used as starting point for
648 continguous sections. FIXME!! won't work without call to find
649 .text first, but this assumes text is lowest section. */
650 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
651 if (lower_sect == NULL)
652 bfd_map_over_sections (objfile->obfd, find_lowest_section,
653 (PTR) &lower_sect);
654 if (lower_sect == NULL)
655 warning ("no loadable sections found in added symbol-file %s",
656 objfile->name);
657 else
658 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
659 warning ("Lowest section in %s is %s at %s",
660 objfile->name,
661 bfd_section_name (objfile->obfd, lower_sect),
662 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
663 if (lower_sect != NULL)
664 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
665 else
666 lower_offset = 0;
667
668 /* Calculate offsets for the loadable sections.
669 FIXME! Sections must be in order of increasing loadable section
670 so that contiguous sections can use the lower-offset!!!
671
672 Adjust offsets if the segments are not contiguous.
673 If the section is contiguous, its offset should be set to
674 the offset of the highest loadable section lower than it
675 (the loadable section directly below it in memory).
676 this_offset = lower_offset = lower_addr - lower_orig_addr */
677
678 /* Calculate offsets for sections. */
679 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
680 {
681 if (addrs->other[i].addr != 0)
682 {
683 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
684 if (sect)
685 {
686 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
687 lower_offset = addrs->other[i].addr;
688 /* This is the index used by BFD. */
689 addrs->other[i].sectindex = sect->index ;
690 }
691 else
692 {
693 warning ("section %s not found in %s", addrs->other[i].name,
694 objfile->name);
695 addrs->other[i].addr = 0;
696 }
697 }
698 else
699 addrs->other[i].addr = lower_offset;
700 }
701 }
702
703 /* Initialize symbol reading routines for this objfile, allow complaints to
704 appear for this new file, and record how verbose to be, then do the
705 initial symbol reading for this file. */
706
707 (*objfile->sf->sym_init) (objfile);
708 clear_complaints (1, verbo);
709
710 (*objfile->sf->sym_offsets) (objfile, addrs);
711
712 #ifndef IBM6000_TARGET
713 /* This is a SVR4/SunOS specific hack, I think. In any event, it
714 screws RS/6000. sym_offsets should be doing this sort of thing,
715 because it knows the mapping between bfd sections and
716 section_offsets. */
717 /* This is a hack. As far as I can tell, section offsets are not
718 target dependent. They are all set to addr with a couple of
719 exceptions. The exceptions are sysvr4 shared libraries, whose
720 offsets are kept in solib structures anyway and rs6000 xcoff
721 which handles shared libraries in a completely unique way.
722
723 Section offsets are built similarly, except that they are built
724 by adding addr in all cases because there is no clear mapping
725 from section_offsets into actual sections. Note that solib.c
726 has a different algorithm for finding section offsets.
727
728 These should probably all be collapsed into some target
729 independent form of shared library support. FIXME. */
730
731 if (addrs)
732 {
733 struct obj_section *s;
734
735 /* Map section offsets in "addr" back to the object's
736 sections by comparing the section names with bfd's
737 section names. Then adjust the section address by
738 the offset. */ /* for gdb/13815 */
739
740 ALL_OBJFILE_OSECTIONS (objfile, s)
741 {
742 CORE_ADDR s_addr = 0;
743 int i;
744
745 for (i = 0;
746 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
747 i++)
748 if (strcmp (bfd_section_name (s->objfile->obfd,
749 s->the_bfd_section),
750 addrs->other[i].name) == 0)
751 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
752
753 s->addr -= s->offset;
754 s->addr += s_addr;
755 s->endaddr -= s->offset;
756 s->endaddr += s_addr;
757 s->offset += s_addr;
758 }
759 }
760 #endif /* not IBM6000_TARGET */
761
762 (*objfile->sf->sym_read) (objfile, mainline);
763
764 if (!have_partial_symbols () && !have_full_symbols ())
765 {
766 wrap_here ("");
767 printf_filtered ("(no debugging symbols found)...");
768 wrap_here ("");
769 }
770
771 /* Don't allow char * to have a typename (else would get caddr_t).
772 Ditto void *. FIXME: Check whether this is now done by all the
773 symbol readers themselves (many of them now do), and if so remove
774 it from here. */
775
776 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
777 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
778
779 /* Mark the objfile has having had initial symbol read attempted. Note
780 that this does not mean we found any symbols... */
781
782 objfile->flags |= OBJF_SYMS;
783
784 /* Discard cleanups as symbol reading was successful. */
785
786 discard_cleanups (old_chain);
787
788 /* Call this after reading in a new symbol table to give target
789 dependent code a crack at the new symbols. For instance, this
790 could be used to update the values of target-specific symbols GDB
791 needs to keep track of (such as _sigtramp, or whatever). */
792
793 TARGET_SYMFILE_POSTREAD (objfile);
794 }
795
796 /* Perform required actions after either reading in the initial
797 symbols for a new objfile, or mapping in the symbols from a reusable
798 objfile. */
799
800 void
801 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
802 {
803
804 /* If this is the main symbol file we have to clean up all users of the
805 old main symbol file. Otherwise it is sufficient to fixup all the
806 breakpoints that may have been redefined by this symbol file. */
807 if (mainline)
808 {
809 /* OK, make it the "real" symbol file. */
810 symfile_objfile = objfile;
811
812 clear_symtab_users ();
813 }
814 else
815 {
816 breakpoint_re_set ();
817 }
818
819 /* We're done reading the symbol file; finish off complaints. */
820 clear_complaints (0, verbo);
821 }
822
823 /* Process a symbol file, as either the main file or as a dynamically
824 loaded file.
825
826 NAME is the file name (which will be tilde-expanded and made
827 absolute herein) (but we don't free or modify NAME itself).
828 FROM_TTY says how verbose to be. MAINLINE specifies whether this
829 is the main symbol file, or whether it's an extra symbol file such
830 as dynamically loaded code. If !mainline, ADDR is the address
831 where the text segment was loaded.
832
833 Upon success, returns a pointer to the objfile that was added.
834 Upon failure, jumps back to command level (never returns). */
835
836 struct objfile *
837 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
838 int mainline, int flags)
839 {
840 struct objfile *objfile;
841 struct partial_symtab *psymtab;
842 bfd *abfd;
843
844 /* Open a bfd for the file, and give user a chance to burp if we'd be
845 interactively wiping out any existing symbols. */
846
847 abfd = symfile_bfd_open (name);
848
849 if ((have_full_symbols () || have_partial_symbols ())
850 && mainline
851 && from_tty
852 && !query ("Load new symbol table from \"%s\"? ", name))
853 error ("Not confirmed.");
854
855 objfile = allocate_objfile (abfd, flags);
856
857 /* If the objfile uses a mapped symbol file, and we have a psymtab for
858 it, then skip reading any symbols at this time. */
859
860 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
861 {
862 /* We mapped in an existing symbol table file that already has had
863 initial symbol reading performed, so we can skip that part. Notify
864 the user that instead of reading the symbols, they have been mapped.
865 */
866 if (from_tty || info_verbose)
867 {
868 printf_filtered ("Mapped symbols for %s...", name);
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872 init_entry_point_info (objfile);
873 find_sym_fns (objfile);
874 }
875 else
876 {
877 /* We either created a new mapped symbol table, mapped an existing
878 symbol table file which has not had initial symbol reading
879 performed, or need to read an unmapped symbol table. */
880 if (from_tty || info_verbose)
881 {
882 if (pre_add_symbol_hook)
883 pre_add_symbol_hook (name);
884 else
885 {
886 printf_filtered ("Reading symbols from %s...", name);
887 wrap_here ("");
888 gdb_flush (gdb_stdout);
889 }
890 }
891 syms_from_objfile (objfile, addrs, mainline, from_tty);
892 }
893
894 /* We now have at least a partial symbol table. Check to see if the
895 user requested that all symbols be read on initial access via either
896 the gdb startup command line or on a per symbol file basis. Expand
897 all partial symbol tables for this objfile if so. */
898
899 if ((flags & OBJF_READNOW) || readnow_symbol_files)
900 {
901 if (from_tty || info_verbose)
902 {
903 printf_filtered ("expanding to full symbols...");
904 wrap_here ("");
905 gdb_flush (gdb_stdout);
906 }
907
908 for (psymtab = objfile->psymtabs;
909 psymtab != NULL;
910 psymtab = psymtab->next)
911 {
912 psymtab_to_symtab (psymtab);
913 }
914 }
915
916 if (from_tty || info_verbose)
917 {
918 if (post_add_symbol_hook)
919 post_add_symbol_hook ();
920 else
921 {
922 printf_filtered ("done.\n");
923 gdb_flush (gdb_stdout);
924 }
925 }
926
927 if (objfile->sf == NULL)
928 return objfile; /* No symbols. */
929
930 new_symfile_objfile (objfile, mainline, from_tty);
931
932 if (target_new_objfile_hook)
933 target_new_objfile_hook (objfile);
934
935 return (objfile);
936 }
937
938 /* Call symbol_file_add() with default values and update whatever is
939 affected by the loading of a new main().
940 Used when the file is supplied in the gdb command line
941 and by some targets with special loading requirements.
942 The auxiliary function, symbol_file_add_main_1(), has the flags
943 argument for the switches that can only be specified in the symbol_file
944 command itself. */
945
946 void
947 symbol_file_add_main (char *args, int from_tty)
948 {
949 symbol_file_add_main_1 (args, from_tty, 0);
950 }
951
952 static void
953 symbol_file_add_main_1 (char *args, int from_tty, int flags)
954 {
955 symbol_file_add (args, from_tty, NULL, 1, flags);
956
957 #ifdef HPUXHPPA
958 RESET_HP_UX_GLOBALS ();
959 #endif
960
961 /* Getting new symbols may change our opinion about
962 what is frameless. */
963 reinit_frame_cache ();
964
965 set_initial_language ();
966 }
967
968 void
969 symbol_file_clear (int from_tty)
970 {
971 if ((have_full_symbols () || have_partial_symbols ())
972 && from_tty
973 && !query ("Discard symbol table from `%s'? ",
974 symfile_objfile->name))
975 error ("Not confirmed.");
976 free_all_objfiles ();
977
978 /* solib descriptors may have handles to objfiles. Since their
979 storage has just been released, we'd better wipe the solib
980 descriptors as well.
981 */
982 #if defined(SOLIB_RESTART)
983 SOLIB_RESTART ();
984 #endif
985
986 symfile_objfile = NULL;
987 if (from_tty)
988 printf_unfiltered ("No symbol file now.\n");
989 #ifdef HPUXHPPA
990 RESET_HP_UX_GLOBALS ();
991 #endif
992 }
993
994 /* This is the symbol-file command. Read the file, analyze its
995 symbols, and add a struct symtab to a symtab list. The syntax of
996 the command is rather bizarre--(1) buildargv implements various
997 quoting conventions which are undocumented and have little or
998 nothing in common with the way things are quoted (or not quoted)
999 elsewhere in GDB, (2) options are used, which are not generally
1000 used in GDB (perhaps "set mapped on", "set readnow on" would be
1001 better), (3) the order of options matters, which is contrary to GNU
1002 conventions (because it is confusing and inconvenient). */
1003 /* Note: ezannoni 2000-04-17. This function used to have support for
1004 rombug (see remote-os9k.c). It consisted of a call to target_link()
1005 (target.c) to get the address of the text segment from the target,
1006 and pass that to symbol_file_add(). This is no longer supported. */
1007
1008 void
1009 symbol_file_command (char *args, int from_tty)
1010 {
1011 char **argv;
1012 char *name = NULL;
1013 struct cleanup *cleanups;
1014 int flags = OBJF_USERLOADED;
1015
1016 dont_repeat ();
1017
1018 if (args == NULL)
1019 {
1020 symbol_file_clear (from_tty);
1021 }
1022 else
1023 {
1024 if ((argv = buildargv (args)) == NULL)
1025 {
1026 nomem (0);
1027 }
1028 cleanups = make_cleanup_freeargv (argv);
1029 while (*argv != NULL)
1030 {
1031 if (STREQ (*argv, "-mapped"))
1032 flags |= OBJF_MAPPED;
1033 else
1034 if (STREQ (*argv, "-readnow"))
1035 flags |= OBJF_READNOW;
1036 else
1037 if (**argv == '-')
1038 error ("unknown option `%s'", *argv);
1039 else
1040 {
1041 name = *argv;
1042
1043 symbol_file_add_main_1 (name, from_tty, flags);
1044 }
1045 argv++;
1046 }
1047
1048 if (name == NULL)
1049 {
1050 error ("no symbol file name was specified");
1051 }
1052 do_cleanups (cleanups);
1053 }
1054 }
1055
1056 /* Set the initial language.
1057
1058 A better solution would be to record the language in the psymtab when reading
1059 partial symbols, and then use it (if known) to set the language. This would
1060 be a win for formats that encode the language in an easily discoverable place,
1061 such as DWARF. For stabs, we can jump through hoops looking for specially
1062 named symbols or try to intuit the language from the specific type of stabs
1063 we find, but we can't do that until later when we read in full symbols.
1064 FIXME. */
1065
1066 static void
1067 set_initial_language (void)
1068 {
1069 struct partial_symtab *pst;
1070 enum language lang = language_unknown;
1071
1072 pst = find_main_psymtab ();
1073 if (pst != NULL)
1074 {
1075 if (pst->filename != NULL)
1076 {
1077 lang = deduce_language_from_filename (pst->filename);
1078 }
1079 if (lang == language_unknown)
1080 {
1081 /* Make C the default language */
1082 lang = language_c;
1083 }
1084 set_language (lang);
1085 expected_language = current_language; /* Don't warn the user */
1086 }
1087 }
1088
1089 /* Open file specified by NAME and hand it off to BFD for preliminary
1090 analysis. Result is a newly initialized bfd *, which includes a newly
1091 malloc'd` copy of NAME (tilde-expanded and made absolute).
1092 In case of trouble, error() is called. */
1093
1094 bfd *
1095 symfile_bfd_open (char *name)
1096 {
1097 bfd *sym_bfd;
1098 int desc;
1099 char *absolute_name;
1100
1101
1102
1103 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1104
1105 /* Look down path for it, allocate 2nd new malloc'd copy. */
1106 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1107 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1108 if (desc < 0)
1109 {
1110 char *exename = alloca (strlen (name) + 5);
1111 strcat (strcpy (exename, name), ".exe");
1112 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1113 0, &absolute_name);
1114 }
1115 #endif
1116 if (desc < 0)
1117 {
1118 make_cleanup (xfree, name);
1119 perror_with_name (name);
1120 }
1121 xfree (name); /* Free 1st new malloc'd copy */
1122 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1123 /* It'll be freed in free_objfile(). */
1124
1125 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1126 if (!sym_bfd)
1127 {
1128 close (desc);
1129 make_cleanup (xfree, name);
1130 error ("\"%s\": can't open to read symbols: %s.", name,
1131 bfd_errmsg (bfd_get_error ()));
1132 }
1133 sym_bfd->cacheable = 1;
1134
1135 if (!bfd_check_format (sym_bfd, bfd_object))
1136 {
1137 /* FIXME: should be checking for errors from bfd_close (for one thing,
1138 on error it does not free all the storage associated with the
1139 bfd). */
1140 bfd_close (sym_bfd); /* This also closes desc */
1141 make_cleanup (xfree, name);
1142 error ("\"%s\": can't read symbols: %s.", name,
1143 bfd_errmsg (bfd_get_error ()));
1144 }
1145 return (sym_bfd);
1146 }
1147
1148 /* Return the section index for the given section name. Return -1 if
1149 the section was not found. */
1150 int
1151 get_section_index (struct objfile *objfile, char *section_name)
1152 {
1153 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1154 if (sect)
1155 return sect->index;
1156 else
1157 return -1;
1158 }
1159
1160 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1161 startup by the _initialize routine in each object file format reader,
1162 to register information about each format the the reader is prepared
1163 to handle. */
1164
1165 void
1166 add_symtab_fns (struct sym_fns *sf)
1167 {
1168 sf->next = symtab_fns;
1169 symtab_fns = sf;
1170 }
1171
1172
1173 /* Initialize to read symbols from the symbol file sym_bfd. It either
1174 returns or calls error(). The result is an initialized struct sym_fns
1175 in the objfile structure, that contains cached information about the
1176 symbol file. */
1177
1178 static void
1179 find_sym_fns (struct objfile *objfile)
1180 {
1181 struct sym_fns *sf;
1182 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1183 char *our_target = bfd_get_target (objfile->obfd);
1184
1185 if (our_flavour == bfd_target_srec_flavour
1186 || our_flavour == bfd_target_ihex_flavour
1187 || our_flavour == bfd_target_tekhex_flavour)
1188 return; /* No symbols. */
1189
1190 /* Special kludge for apollo. See dstread.c. */
1191 if (STREQN (our_target, "apollo", 6))
1192 our_flavour = (enum bfd_flavour) -2;
1193
1194 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1195 {
1196 if (our_flavour == sf->sym_flavour)
1197 {
1198 objfile->sf = sf;
1199 return;
1200 }
1201 }
1202 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1203 bfd_get_target (objfile->obfd));
1204 }
1205 \f
1206 /* This function runs the load command of our current target. */
1207
1208 static void
1209 load_command (char *arg, int from_tty)
1210 {
1211 if (arg == NULL)
1212 arg = get_exec_file (1);
1213 target_load (arg, from_tty);
1214
1215 /* After re-loading the executable, we don't really know which
1216 overlays are mapped any more. */
1217 overlay_cache_invalid = 1;
1218 }
1219
1220 /* This version of "load" should be usable for any target. Currently
1221 it is just used for remote targets, not inftarg.c or core files,
1222 on the theory that only in that case is it useful.
1223
1224 Avoiding xmodem and the like seems like a win (a) because we don't have
1225 to worry about finding it, and (b) On VMS, fork() is very slow and so
1226 we don't want to run a subprocess. On the other hand, I'm not sure how
1227 performance compares. */
1228
1229 static int download_write_size = 512;
1230 static int validate_download = 0;
1231
1232 /* Callback service function for generic_load (bfd_map_over_sections). */
1233
1234 static void
1235 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1236 {
1237 bfd_size_type *sum = data;
1238
1239 *sum += bfd_get_section_size_before_reloc (asec);
1240 }
1241
1242 /* Opaque data for load_section_callback. */
1243 struct load_section_data {
1244 unsigned long load_offset;
1245 unsigned long write_count;
1246 unsigned long data_count;
1247 bfd_size_type total_size;
1248 };
1249
1250 /* Callback service function for generic_load (bfd_map_over_sections). */
1251
1252 static void
1253 load_section_callback (bfd *abfd, asection *asec, void *data)
1254 {
1255 struct load_section_data *args = data;
1256
1257 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1258 {
1259 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1260 if (size > 0)
1261 {
1262 char *buffer;
1263 struct cleanup *old_chain;
1264 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1265 bfd_size_type block_size;
1266 int err;
1267 const char *sect_name = bfd_get_section_name (abfd, asec);
1268 bfd_size_type sent;
1269
1270 if (download_write_size > 0 && size > download_write_size)
1271 block_size = download_write_size;
1272 else
1273 block_size = size;
1274
1275 buffer = xmalloc (size);
1276 old_chain = make_cleanup (xfree, buffer);
1277
1278 /* Is this really necessary? I guess it gives the user something
1279 to look at during a long download. */
1280 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1281 sect_name, paddr_nz (size), paddr_nz (lma));
1282
1283 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1284
1285 sent = 0;
1286 do
1287 {
1288 int len;
1289 bfd_size_type this_transfer = size - sent;
1290
1291 if (this_transfer >= block_size)
1292 this_transfer = block_size;
1293 len = target_write_memory_partial (lma, buffer,
1294 this_transfer, &err);
1295 if (err)
1296 break;
1297 if (validate_download)
1298 {
1299 /* Broken memories and broken monitors manifest
1300 themselves here when bring new computers to
1301 life. This doubles already slow downloads. */
1302 /* NOTE: cagney/1999-10-18: A more efficient
1303 implementation might add a verify_memory()
1304 method to the target vector and then use
1305 that. remote.c could implement that method
1306 using the ``qCRC'' packet. */
1307 char *check = xmalloc (len);
1308 struct cleanup *verify_cleanups =
1309 make_cleanup (xfree, check);
1310
1311 if (target_read_memory (lma, check, len) != 0)
1312 error ("Download verify read failed at 0x%s",
1313 paddr (lma));
1314 if (memcmp (buffer, check, len) != 0)
1315 error ("Download verify compare failed at 0x%s",
1316 paddr (lma));
1317 do_cleanups (verify_cleanups);
1318 }
1319 args->data_count += len;
1320 lma += len;
1321 buffer += len;
1322 args->write_count += 1;
1323 sent += len;
1324 if (quit_flag
1325 || (ui_load_progress_hook != NULL
1326 && ui_load_progress_hook (sect_name, sent)))
1327 error ("Canceled the download");
1328
1329 if (show_load_progress != NULL)
1330 show_load_progress (sect_name, sent, size,
1331 args->data_count, args->total_size);
1332 }
1333 while (sent < size);
1334
1335 if (err != 0)
1336 error ("Memory access error while loading section %s.", sect_name);
1337
1338 do_cleanups (old_chain);
1339 }
1340 }
1341 }
1342
1343 void
1344 generic_load (char *args, int from_tty)
1345 {
1346 asection *s;
1347 bfd *loadfile_bfd;
1348 time_t start_time, end_time; /* Start and end times of download */
1349 char *filename;
1350 struct cleanup *old_cleanups;
1351 char *offptr;
1352 struct load_section_data cbdata;
1353 CORE_ADDR entry;
1354
1355 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1356 cbdata.write_count = 0; /* Number of writes needed. */
1357 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1358 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1359
1360 /* Parse the input argument - the user can specify a load offset as
1361 a second argument. */
1362 filename = xmalloc (strlen (args) + 1);
1363 old_cleanups = make_cleanup (xfree, filename);
1364 strcpy (filename, args);
1365 offptr = strchr (filename, ' ');
1366 if (offptr != NULL)
1367 {
1368 char *endptr;
1369
1370 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1371 if (offptr == endptr)
1372 error ("Invalid download offset:%s\n", offptr);
1373 *offptr = '\0';
1374 }
1375 else
1376 cbdata.load_offset = 0;
1377
1378 /* Open the file for loading. */
1379 loadfile_bfd = bfd_openr (filename, gnutarget);
1380 if (loadfile_bfd == NULL)
1381 {
1382 perror_with_name (filename);
1383 return;
1384 }
1385
1386 /* FIXME: should be checking for errors from bfd_close (for one thing,
1387 on error it does not free all the storage associated with the
1388 bfd). */
1389 make_cleanup_bfd_close (loadfile_bfd);
1390
1391 if (!bfd_check_format (loadfile_bfd, bfd_object))
1392 {
1393 error ("\"%s\" is not an object file: %s", filename,
1394 bfd_errmsg (bfd_get_error ()));
1395 }
1396
1397 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1398 (void *) &cbdata.total_size);
1399
1400 start_time = time (NULL);
1401
1402 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1403
1404 end_time = time (NULL);
1405
1406 entry = bfd_get_start_address (loadfile_bfd);
1407 ui_out_text (uiout, "Start address ");
1408 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1409 ui_out_text (uiout, ", load size ");
1410 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1411 ui_out_text (uiout, "\n");
1412 /* We were doing this in remote-mips.c, I suspect it is right
1413 for other targets too. */
1414 write_pc (entry);
1415
1416 /* FIXME: are we supposed to call symbol_file_add or not? According to
1417 a comment from remote-mips.c (where a call to symbol_file_add was
1418 commented out), making the call confuses GDB if more than one file is
1419 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1420 does. */
1421
1422 print_transfer_performance (gdb_stdout, cbdata.data_count,
1423 cbdata.write_count, end_time - start_time);
1424
1425 do_cleanups (old_cleanups);
1426 }
1427
1428 /* Report how fast the transfer went. */
1429
1430 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1431 replaced by print_transfer_performance (with a very different
1432 function signature). */
1433
1434 void
1435 report_transfer_performance (unsigned long data_count, time_t start_time,
1436 time_t end_time)
1437 {
1438 print_transfer_performance (gdb_stdout, data_count,
1439 end_time - start_time, 0);
1440 }
1441
1442 void
1443 print_transfer_performance (struct ui_file *stream,
1444 unsigned long data_count,
1445 unsigned long write_count,
1446 unsigned long time_count)
1447 {
1448 ui_out_text (uiout, "Transfer rate: ");
1449 if (time_count > 0)
1450 {
1451 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1452 (data_count * 8) / time_count);
1453 ui_out_text (uiout, " bits/sec");
1454 }
1455 else
1456 {
1457 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1458 ui_out_text (uiout, " bits in <1 sec");
1459 }
1460 if (write_count > 0)
1461 {
1462 ui_out_text (uiout, ", ");
1463 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1464 ui_out_text (uiout, " bytes/write");
1465 }
1466 ui_out_text (uiout, ".\n");
1467 }
1468
1469 /* This function allows the addition of incrementally linked object files.
1470 It does not modify any state in the target, only in the debugger. */
1471 /* Note: ezannoni 2000-04-13 This function/command used to have a
1472 special case syntax for the rombug target (Rombug is the boot
1473 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1474 rombug case, the user doesn't need to supply a text address,
1475 instead a call to target_link() (in target.c) would supply the
1476 value to use. We are now discontinuing this type of ad hoc syntax. */
1477
1478 /* ARGSUSED */
1479 static void
1480 add_symbol_file_command (char *args, int from_tty)
1481 {
1482 char *filename = NULL;
1483 int flags = OBJF_USERLOADED;
1484 char *arg;
1485 int expecting_option = 0;
1486 int section_index = 0;
1487 int argcnt = 0;
1488 int sec_num = 0;
1489 int i;
1490 int expecting_sec_name = 0;
1491 int expecting_sec_addr = 0;
1492
1493 struct
1494 {
1495 char *name;
1496 char *value;
1497 } sect_opts[SECT_OFF_MAX];
1498
1499 struct section_addr_info section_addrs;
1500 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1501
1502 dont_repeat ();
1503
1504 if (args == NULL)
1505 error ("add-symbol-file takes a file name and an address");
1506
1507 /* Make a copy of the string that we can safely write into. */
1508 args = xstrdup (args);
1509
1510 /* Ensure section_addrs is initialized */
1511 memset (&section_addrs, 0, sizeof (section_addrs));
1512
1513 while (*args != '\000')
1514 {
1515 /* Any leading spaces? */
1516 while (isspace (*args))
1517 args++;
1518
1519 /* Point arg to the beginning of the argument. */
1520 arg = args;
1521
1522 /* Move args pointer over the argument. */
1523 while ((*args != '\000') && !isspace (*args))
1524 args++;
1525
1526 /* If there are more arguments, terminate arg and
1527 proceed past it. */
1528 if (*args != '\000')
1529 *args++ = '\000';
1530
1531 /* Now process the argument. */
1532 if (argcnt == 0)
1533 {
1534 /* The first argument is the file name. */
1535 filename = tilde_expand (arg);
1536 make_cleanup (xfree, filename);
1537 }
1538 else
1539 if (argcnt == 1)
1540 {
1541 /* The second argument is always the text address at which
1542 to load the program. */
1543 sect_opts[section_index].name = ".text";
1544 sect_opts[section_index].value = arg;
1545 section_index++;
1546 }
1547 else
1548 {
1549 /* It's an option (starting with '-') or it's an argument
1550 to an option */
1551
1552 if (*arg == '-')
1553 {
1554 if (strcmp (arg, "-mapped") == 0)
1555 flags |= OBJF_MAPPED;
1556 else
1557 if (strcmp (arg, "-readnow") == 0)
1558 flags |= OBJF_READNOW;
1559 else
1560 if (strcmp (arg, "-s") == 0)
1561 {
1562 if (section_index >= SECT_OFF_MAX)
1563 error ("Too many sections specified.");
1564 expecting_sec_name = 1;
1565 expecting_sec_addr = 1;
1566 }
1567 }
1568 else
1569 {
1570 if (expecting_sec_name)
1571 {
1572 sect_opts[section_index].name = arg;
1573 expecting_sec_name = 0;
1574 }
1575 else
1576 if (expecting_sec_addr)
1577 {
1578 sect_opts[section_index].value = arg;
1579 expecting_sec_addr = 0;
1580 section_index++;
1581 }
1582 else
1583 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1584 }
1585 }
1586 argcnt++;
1587 }
1588
1589 /* Print the prompt for the query below. And save the arguments into
1590 a sect_addr_info structure to be passed around to other
1591 functions. We have to split this up into separate print
1592 statements because local_hex_string returns a local static
1593 string. */
1594
1595 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1596 for (i = 0; i < section_index; i++)
1597 {
1598 CORE_ADDR addr;
1599 char *val = sect_opts[i].value;
1600 char *sec = sect_opts[i].name;
1601
1602 val = sect_opts[i].value;
1603 if (val[0] == '0' && val[1] == 'x')
1604 addr = strtoul (val+2, NULL, 16);
1605 else
1606 addr = strtoul (val, NULL, 10);
1607
1608 /* Here we store the section offsets in the order they were
1609 entered on the command line. */
1610 section_addrs.other[sec_num].name = sec;
1611 section_addrs.other[sec_num].addr = addr;
1612 printf_filtered ("\t%s_addr = %s\n",
1613 sec,
1614 local_hex_string ((unsigned long)addr));
1615 sec_num++;
1616
1617 /* The object's sections are initialized when a
1618 call is made to build_objfile_section_table (objfile).
1619 This happens in reread_symbols.
1620 At this point, we don't know what file type this is,
1621 so we can't determine what section names are valid. */
1622 }
1623
1624 if (from_tty && (!query ("%s", "")))
1625 error ("Not confirmed.");
1626
1627 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1628
1629 /* Getting new symbols may change our opinion about what is
1630 frameless. */
1631 reinit_frame_cache ();
1632 do_cleanups (my_cleanups);
1633 }
1634 \f
1635 static void
1636 add_shared_symbol_files_command (char *args, int from_tty)
1637 {
1638 #ifdef ADD_SHARED_SYMBOL_FILES
1639 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1640 #else
1641 error ("This command is not available in this configuration of GDB.");
1642 #endif
1643 }
1644 \f
1645 /* Re-read symbols if a symbol-file has changed. */
1646 void
1647 reread_symbols (void)
1648 {
1649 struct objfile *objfile;
1650 long new_modtime;
1651 int reread_one = 0;
1652 struct stat new_statbuf;
1653 int res;
1654
1655 /* With the addition of shared libraries, this should be modified,
1656 the load time should be saved in the partial symbol tables, since
1657 different tables may come from different source files. FIXME.
1658 This routine should then walk down each partial symbol table
1659 and see if the symbol table that it originates from has been changed */
1660
1661 for (objfile = object_files; objfile; objfile = objfile->next)
1662 {
1663 if (objfile->obfd)
1664 {
1665 #ifdef IBM6000_TARGET
1666 /* If this object is from a shared library, then you should
1667 stat on the library name, not member name. */
1668
1669 if (objfile->obfd->my_archive)
1670 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1671 else
1672 #endif
1673 res = stat (objfile->name, &new_statbuf);
1674 if (res != 0)
1675 {
1676 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1677 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1678 objfile->name);
1679 continue;
1680 }
1681 new_modtime = new_statbuf.st_mtime;
1682 if (new_modtime != objfile->mtime)
1683 {
1684 struct cleanup *old_cleanups;
1685 struct section_offsets *offsets;
1686 int num_offsets;
1687 char *obfd_filename;
1688
1689 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1690 objfile->name);
1691
1692 /* There are various functions like symbol_file_add,
1693 symfile_bfd_open, syms_from_objfile, etc., which might
1694 appear to do what we want. But they have various other
1695 effects which we *don't* want. So we just do stuff
1696 ourselves. We don't worry about mapped files (for one thing,
1697 any mapped file will be out of date). */
1698
1699 /* If we get an error, blow away this objfile (not sure if
1700 that is the correct response for things like shared
1701 libraries). */
1702 old_cleanups = make_cleanup_free_objfile (objfile);
1703 /* We need to do this whenever any symbols go away. */
1704 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1705
1706 /* Clean up any state BFD has sitting around. We don't need
1707 to close the descriptor but BFD lacks a way of closing the
1708 BFD without closing the descriptor. */
1709 obfd_filename = bfd_get_filename (objfile->obfd);
1710 if (!bfd_close (objfile->obfd))
1711 error ("Can't close BFD for %s: %s", objfile->name,
1712 bfd_errmsg (bfd_get_error ()));
1713 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1714 if (objfile->obfd == NULL)
1715 error ("Can't open %s to read symbols.", objfile->name);
1716 /* bfd_openr sets cacheable to true, which is what we want. */
1717 if (!bfd_check_format (objfile->obfd, bfd_object))
1718 error ("Can't read symbols from %s: %s.", objfile->name,
1719 bfd_errmsg (bfd_get_error ()));
1720
1721 /* Save the offsets, we will nuke them with the rest of the
1722 psymbol_obstack. */
1723 num_offsets = objfile->num_sections;
1724 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1725 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1726
1727 /* Nuke all the state that we will re-read. Much of the following
1728 code which sets things to NULL really is necessary to tell
1729 other parts of GDB that there is nothing currently there. */
1730
1731 /* FIXME: Do we have to free a whole linked list, or is this
1732 enough? */
1733 if (objfile->global_psymbols.list)
1734 xmfree (objfile->md, objfile->global_psymbols.list);
1735 memset (&objfile->global_psymbols, 0,
1736 sizeof (objfile->global_psymbols));
1737 if (objfile->static_psymbols.list)
1738 xmfree (objfile->md, objfile->static_psymbols.list);
1739 memset (&objfile->static_psymbols, 0,
1740 sizeof (objfile->static_psymbols));
1741
1742 /* Free the obstacks for non-reusable objfiles */
1743 free_bcache (&objfile->psymbol_cache);
1744 free_bcache (&objfile->macro_cache);
1745 obstack_free (&objfile->psymbol_obstack, 0);
1746 obstack_free (&objfile->symbol_obstack, 0);
1747 obstack_free (&objfile->type_obstack, 0);
1748 objfile->sections = NULL;
1749 objfile->symtabs = NULL;
1750 objfile->psymtabs = NULL;
1751 objfile->free_psymtabs = NULL;
1752 objfile->msymbols = NULL;
1753 objfile->minimal_symbol_count = 0;
1754 memset (&objfile->msymbol_hash, 0,
1755 sizeof (objfile->msymbol_hash));
1756 memset (&objfile->msymbol_demangled_hash, 0,
1757 sizeof (objfile->msymbol_demangled_hash));
1758 objfile->fundamental_types = NULL;
1759 if (objfile->sf != NULL)
1760 {
1761 (*objfile->sf->sym_finish) (objfile);
1762 }
1763
1764 /* We never make this a mapped file. */
1765 objfile->md = NULL;
1766 /* obstack_specify_allocation also initializes the obstack so
1767 it is empty. */
1768 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1769 xmalloc, xfree);
1770 obstack_specify_allocation (&objfile->macro_cache.cache, 0, 0,
1771 xmalloc, xfree);
1772 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1773 xmalloc, xfree);
1774 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1775 xmalloc, xfree);
1776 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1777 xmalloc, xfree);
1778 if (build_objfile_section_table (objfile))
1779 {
1780 error ("Can't find the file sections in `%s': %s",
1781 objfile->name, bfd_errmsg (bfd_get_error ()));
1782 }
1783
1784 /* We use the same section offsets as from last time. I'm not
1785 sure whether that is always correct for shared libraries. */
1786 objfile->section_offsets = (struct section_offsets *)
1787 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1788 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1789 objfile->num_sections = num_offsets;
1790
1791 /* What the hell is sym_new_init for, anyway? The concept of
1792 distinguishing between the main file and additional files
1793 in this way seems rather dubious. */
1794 if (objfile == symfile_objfile)
1795 {
1796 (*objfile->sf->sym_new_init) (objfile);
1797 #ifdef HPUXHPPA
1798 RESET_HP_UX_GLOBALS ();
1799 #endif
1800 }
1801
1802 (*objfile->sf->sym_init) (objfile);
1803 clear_complaints (1, 1);
1804 /* The "mainline" parameter is a hideous hack; I think leaving it
1805 zero is OK since dbxread.c also does what it needs to do if
1806 objfile->global_psymbols.size is 0. */
1807 (*objfile->sf->sym_read) (objfile, 0);
1808 if (!have_partial_symbols () && !have_full_symbols ())
1809 {
1810 wrap_here ("");
1811 printf_filtered ("(no debugging symbols found)\n");
1812 wrap_here ("");
1813 }
1814 objfile->flags |= OBJF_SYMS;
1815
1816 /* We're done reading the symbol file; finish off complaints. */
1817 clear_complaints (0, 1);
1818
1819 /* Getting new symbols may change our opinion about what is
1820 frameless. */
1821
1822 reinit_frame_cache ();
1823
1824 /* Discard cleanups as symbol reading was successful. */
1825 discard_cleanups (old_cleanups);
1826
1827 /* If the mtime has changed between the time we set new_modtime
1828 and now, we *want* this to be out of date, so don't call stat
1829 again now. */
1830 objfile->mtime = new_modtime;
1831 reread_one = 1;
1832
1833 /* Call this after reading in a new symbol table to give target
1834 dependent code a crack at the new symbols. For instance, this
1835 could be used to update the values of target-specific symbols GDB
1836 needs to keep track of (such as _sigtramp, or whatever). */
1837
1838 TARGET_SYMFILE_POSTREAD (objfile);
1839 }
1840 }
1841 }
1842
1843 if (reread_one)
1844 clear_symtab_users ();
1845 }
1846 \f
1847
1848
1849 typedef struct
1850 {
1851 char *ext;
1852 enum language lang;
1853 }
1854 filename_language;
1855
1856 static filename_language *filename_language_table;
1857 static int fl_table_size, fl_table_next;
1858
1859 static void
1860 add_filename_language (char *ext, enum language lang)
1861 {
1862 if (fl_table_next >= fl_table_size)
1863 {
1864 fl_table_size += 10;
1865 filename_language_table =
1866 xrealloc (filename_language_table,
1867 fl_table_size * sizeof (*filename_language_table));
1868 }
1869
1870 filename_language_table[fl_table_next].ext = xstrdup (ext);
1871 filename_language_table[fl_table_next].lang = lang;
1872 fl_table_next++;
1873 }
1874
1875 static char *ext_args;
1876
1877 static void
1878 set_ext_lang_command (char *args, int from_tty)
1879 {
1880 int i;
1881 char *cp = ext_args;
1882 enum language lang;
1883
1884 /* First arg is filename extension, starting with '.' */
1885 if (*cp != '.')
1886 error ("'%s': Filename extension must begin with '.'", ext_args);
1887
1888 /* Find end of first arg. */
1889 while (*cp && !isspace (*cp))
1890 cp++;
1891
1892 if (*cp == '\0')
1893 error ("'%s': two arguments required -- filename extension and language",
1894 ext_args);
1895
1896 /* Null-terminate first arg */
1897 *cp++ = '\0';
1898
1899 /* Find beginning of second arg, which should be a source language. */
1900 while (*cp && isspace (*cp))
1901 cp++;
1902
1903 if (*cp == '\0')
1904 error ("'%s': two arguments required -- filename extension and language",
1905 ext_args);
1906
1907 /* Lookup the language from among those we know. */
1908 lang = language_enum (cp);
1909
1910 /* Now lookup the filename extension: do we already know it? */
1911 for (i = 0; i < fl_table_next; i++)
1912 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1913 break;
1914
1915 if (i >= fl_table_next)
1916 {
1917 /* new file extension */
1918 add_filename_language (ext_args, lang);
1919 }
1920 else
1921 {
1922 /* redefining a previously known filename extension */
1923
1924 /* if (from_tty) */
1925 /* query ("Really make files of type %s '%s'?", */
1926 /* ext_args, language_str (lang)); */
1927
1928 xfree (filename_language_table[i].ext);
1929 filename_language_table[i].ext = xstrdup (ext_args);
1930 filename_language_table[i].lang = lang;
1931 }
1932 }
1933
1934 static void
1935 info_ext_lang_command (char *args, int from_tty)
1936 {
1937 int i;
1938
1939 printf_filtered ("Filename extensions and the languages they represent:");
1940 printf_filtered ("\n\n");
1941 for (i = 0; i < fl_table_next; i++)
1942 printf_filtered ("\t%s\t- %s\n",
1943 filename_language_table[i].ext,
1944 language_str (filename_language_table[i].lang));
1945 }
1946
1947 static void
1948 init_filename_language_table (void)
1949 {
1950 if (fl_table_size == 0) /* protect against repetition */
1951 {
1952 fl_table_size = 20;
1953 fl_table_next = 0;
1954 filename_language_table =
1955 xmalloc (fl_table_size * sizeof (*filename_language_table));
1956 add_filename_language (".c", language_c);
1957 add_filename_language (".C", language_cplus);
1958 add_filename_language (".cc", language_cplus);
1959 add_filename_language (".cp", language_cplus);
1960 add_filename_language (".cpp", language_cplus);
1961 add_filename_language (".cxx", language_cplus);
1962 add_filename_language (".c++", language_cplus);
1963 add_filename_language (".java", language_java);
1964 add_filename_language (".class", language_java);
1965 add_filename_language (".ch", language_chill);
1966 add_filename_language (".c186", language_chill);
1967 add_filename_language (".c286", language_chill);
1968 add_filename_language (".f", language_fortran);
1969 add_filename_language (".F", language_fortran);
1970 add_filename_language (".s", language_asm);
1971 add_filename_language (".S", language_asm);
1972 add_filename_language (".pas", language_pascal);
1973 add_filename_language (".p", language_pascal);
1974 add_filename_language (".pp", language_pascal);
1975 }
1976 }
1977
1978 enum language
1979 deduce_language_from_filename (char *filename)
1980 {
1981 int i;
1982 char *cp;
1983
1984 if (filename != NULL)
1985 if ((cp = strrchr (filename, '.')) != NULL)
1986 for (i = 0; i < fl_table_next; i++)
1987 if (strcmp (cp, filename_language_table[i].ext) == 0)
1988 return filename_language_table[i].lang;
1989
1990 return language_unknown;
1991 }
1992 \f
1993 /* allocate_symtab:
1994
1995 Allocate and partly initialize a new symbol table. Return a pointer
1996 to it. error() if no space.
1997
1998 Caller must set these fields:
1999 LINETABLE(symtab)
2000 symtab->blockvector
2001 symtab->dirname
2002 symtab->free_code
2003 symtab->free_ptr
2004 possibly free_named_symtabs (symtab->filename);
2005 */
2006
2007 struct symtab *
2008 allocate_symtab (char *filename, struct objfile *objfile)
2009 {
2010 register struct symtab *symtab;
2011
2012 symtab = (struct symtab *)
2013 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2014 memset (symtab, 0, sizeof (*symtab));
2015 symtab->filename = obsavestring (filename, strlen (filename),
2016 &objfile->symbol_obstack);
2017 symtab->fullname = NULL;
2018 symtab->language = deduce_language_from_filename (filename);
2019 symtab->debugformat = obsavestring ("unknown", 7,
2020 &objfile->symbol_obstack);
2021
2022 /* Hook it to the objfile it comes from */
2023
2024 symtab->objfile = objfile;
2025 symtab->next = objfile->symtabs;
2026 objfile->symtabs = symtab;
2027
2028 /* FIXME: This should go away. It is only defined for the Z8000,
2029 and the Z8000 definition of this macro doesn't have anything to
2030 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2031 here for convenience. */
2032 #ifdef INIT_EXTRA_SYMTAB_INFO
2033 INIT_EXTRA_SYMTAB_INFO (symtab);
2034 #endif
2035
2036 return (symtab);
2037 }
2038
2039 struct partial_symtab *
2040 allocate_psymtab (char *filename, struct objfile *objfile)
2041 {
2042 struct partial_symtab *psymtab;
2043
2044 if (objfile->free_psymtabs)
2045 {
2046 psymtab = objfile->free_psymtabs;
2047 objfile->free_psymtabs = psymtab->next;
2048 }
2049 else
2050 psymtab = (struct partial_symtab *)
2051 obstack_alloc (&objfile->psymbol_obstack,
2052 sizeof (struct partial_symtab));
2053
2054 memset (psymtab, 0, sizeof (struct partial_symtab));
2055 psymtab->filename = obsavestring (filename, strlen (filename),
2056 &objfile->psymbol_obstack);
2057 psymtab->symtab = NULL;
2058
2059 /* Prepend it to the psymtab list for the objfile it belongs to.
2060 Psymtabs are searched in most recent inserted -> least recent
2061 inserted order. */
2062
2063 psymtab->objfile = objfile;
2064 psymtab->next = objfile->psymtabs;
2065 objfile->psymtabs = psymtab;
2066 #if 0
2067 {
2068 struct partial_symtab **prev_pst;
2069 psymtab->objfile = objfile;
2070 psymtab->next = NULL;
2071 prev_pst = &(objfile->psymtabs);
2072 while ((*prev_pst) != NULL)
2073 prev_pst = &((*prev_pst)->next);
2074 (*prev_pst) = psymtab;
2075 }
2076 #endif
2077
2078 return (psymtab);
2079 }
2080
2081 void
2082 discard_psymtab (struct partial_symtab *pst)
2083 {
2084 struct partial_symtab **prev_pst;
2085
2086 /* From dbxread.c:
2087 Empty psymtabs happen as a result of header files which don't
2088 have any symbols in them. There can be a lot of them. But this
2089 check is wrong, in that a psymtab with N_SLINE entries but
2090 nothing else is not empty, but we don't realize that. Fixing
2091 that without slowing things down might be tricky. */
2092
2093 /* First, snip it out of the psymtab chain */
2094
2095 prev_pst = &(pst->objfile->psymtabs);
2096 while ((*prev_pst) != pst)
2097 prev_pst = &((*prev_pst)->next);
2098 (*prev_pst) = pst->next;
2099
2100 /* Next, put it on a free list for recycling */
2101
2102 pst->next = pst->objfile->free_psymtabs;
2103 pst->objfile->free_psymtabs = pst;
2104 }
2105 \f
2106
2107 /* Reset all data structures in gdb which may contain references to symbol
2108 table data. */
2109
2110 void
2111 clear_symtab_users (void)
2112 {
2113 /* Someday, we should do better than this, by only blowing away
2114 the things that really need to be blown. */
2115 clear_value_history ();
2116 clear_displays ();
2117 clear_internalvars ();
2118 breakpoint_re_set ();
2119 set_default_breakpoint (0, 0, 0, 0);
2120 current_source_symtab = 0;
2121 current_source_line = 0;
2122 clear_pc_function_cache ();
2123 if (target_new_objfile_hook)
2124 target_new_objfile_hook (NULL);
2125 }
2126
2127 static void
2128 clear_symtab_users_cleanup (void *ignore)
2129 {
2130 clear_symtab_users ();
2131 }
2132
2133 /* clear_symtab_users_once:
2134
2135 This function is run after symbol reading, or from a cleanup.
2136 If an old symbol table was obsoleted, the old symbol table
2137 has been blown away, but the other GDB data structures that may
2138 reference it have not yet been cleared or re-directed. (The old
2139 symtab was zapped, and the cleanup queued, in free_named_symtab()
2140 below.)
2141
2142 This function can be queued N times as a cleanup, or called
2143 directly; it will do all the work the first time, and then will be a
2144 no-op until the next time it is queued. This works by bumping a
2145 counter at queueing time. Much later when the cleanup is run, or at
2146 the end of symbol processing (in case the cleanup is discarded), if
2147 the queued count is greater than the "done-count", we do the work
2148 and set the done-count to the queued count. If the queued count is
2149 less than or equal to the done-count, we just ignore the call. This
2150 is needed because reading a single .o file will often replace many
2151 symtabs (one per .h file, for example), and we don't want to reset
2152 the breakpoints N times in the user's face.
2153
2154 The reason we both queue a cleanup, and call it directly after symbol
2155 reading, is because the cleanup protects us in case of errors, but is
2156 discarded if symbol reading is successful. */
2157
2158 #if 0
2159 /* FIXME: As free_named_symtabs is currently a big noop this function
2160 is no longer needed. */
2161 static void clear_symtab_users_once (void);
2162
2163 static int clear_symtab_users_queued;
2164 static int clear_symtab_users_done;
2165
2166 static void
2167 clear_symtab_users_once (void)
2168 {
2169 /* Enforce once-per-`do_cleanups'-semantics */
2170 if (clear_symtab_users_queued <= clear_symtab_users_done)
2171 return;
2172 clear_symtab_users_done = clear_symtab_users_queued;
2173
2174 clear_symtab_users ();
2175 }
2176 #endif
2177
2178 /* Delete the specified psymtab, and any others that reference it. */
2179
2180 static void
2181 cashier_psymtab (struct partial_symtab *pst)
2182 {
2183 struct partial_symtab *ps, *pprev = NULL;
2184 int i;
2185
2186 /* Find its previous psymtab in the chain */
2187 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2188 {
2189 if (ps == pst)
2190 break;
2191 pprev = ps;
2192 }
2193
2194 if (ps)
2195 {
2196 /* Unhook it from the chain. */
2197 if (ps == pst->objfile->psymtabs)
2198 pst->objfile->psymtabs = ps->next;
2199 else
2200 pprev->next = ps->next;
2201
2202 /* FIXME, we can't conveniently deallocate the entries in the
2203 partial_symbol lists (global_psymbols/static_psymbols) that
2204 this psymtab points to. These just take up space until all
2205 the psymtabs are reclaimed. Ditto the dependencies list and
2206 filename, which are all in the psymbol_obstack. */
2207
2208 /* We need to cashier any psymtab that has this one as a dependency... */
2209 again:
2210 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2211 {
2212 for (i = 0; i < ps->number_of_dependencies; i++)
2213 {
2214 if (ps->dependencies[i] == pst)
2215 {
2216 cashier_psymtab (ps);
2217 goto again; /* Must restart, chain has been munged. */
2218 }
2219 }
2220 }
2221 }
2222 }
2223
2224 /* If a symtab or psymtab for filename NAME is found, free it along
2225 with any dependent breakpoints, displays, etc.
2226 Used when loading new versions of object modules with the "add-file"
2227 command. This is only called on the top-level symtab or psymtab's name;
2228 it is not called for subsidiary files such as .h files.
2229
2230 Return value is 1 if we blew away the environment, 0 if not.
2231 FIXME. The return value appears to never be used.
2232
2233 FIXME. I think this is not the best way to do this. We should
2234 work on being gentler to the environment while still cleaning up
2235 all stray pointers into the freed symtab. */
2236
2237 int
2238 free_named_symtabs (char *name)
2239 {
2240 #if 0
2241 /* FIXME: With the new method of each objfile having it's own
2242 psymtab list, this function needs serious rethinking. In particular,
2243 why was it ever necessary to toss psymtabs with specific compilation
2244 unit filenames, as opposed to all psymtabs from a particular symbol
2245 file? -- fnf
2246 Well, the answer is that some systems permit reloading of particular
2247 compilation units. We want to blow away any old info about these
2248 compilation units, regardless of which objfiles they arrived in. --gnu. */
2249
2250 register struct symtab *s;
2251 register struct symtab *prev;
2252 register struct partial_symtab *ps;
2253 struct blockvector *bv;
2254 int blewit = 0;
2255
2256 /* We only wack things if the symbol-reload switch is set. */
2257 if (!symbol_reloading)
2258 return 0;
2259
2260 /* Some symbol formats have trouble providing file names... */
2261 if (name == 0 || *name == '\0')
2262 return 0;
2263
2264 /* Look for a psymtab with the specified name. */
2265
2266 again2:
2267 for (ps = partial_symtab_list; ps; ps = ps->next)
2268 {
2269 if (STREQ (name, ps->filename))
2270 {
2271 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2272 goto again2; /* Must restart, chain has been munged */
2273 }
2274 }
2275
2276 /* Look for a symtab with the specified name. */
2277
2278 for (s = symtab_list; s; s = s->next)
2279 {
2280 if (STREQ (name, s->filename))
2281 break;
2282 prev = s;
2283 }
2284
2285 if (s)
2286 {
2287 if (s == symtab_list)
2288 symtab_list = s->next;
2289 else
2290 prev->next = s->next;
2291
2292 /* For now, queue a delete for all breakpoints, displays, etc., whether
2293 or not they depend on the symtab being freed. This should be
2294 changed so that only those data structures affected are deleted. */
2295
2296 /* But don't delete anything if the symtab is empty.
2297 This test is necessary due to a bug in "dbxread.c" that
2298 causes empty symtabs to be created for N_SO symbols that
2299 contain the pathname of the object file. (This problem
2300 has been fixed in GDB 3.9x). */
2301
2302 bv = BLOCKVECTOR (s);
2303 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2304 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2305 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2306 {
2307 complain (&oldsyms_complaint, name);
2308
2309 clear_symtab_users_queued++;
2310 make_cleanup (clear_symtab_users_once, 0);
2311 blewit = 1;
2312 }
2313 else
2314 {
2315 complain (&empty_symtab_complaint, name);
2316 }
2317
2318 free_symtab (s);
2319 }
2320 else
2321 {
2322 /* It is still possible that some breakpoints will be affected
2323 even though no symtab was found, since the file might have
2324 been compiled without debugging, and hence not be associated
2325 with a symtab. In order to handle this correctly, we would need
2326 to keep a list of text address ranges for undebuggable files.
2327 For now, we do nothing, since this is a fairly obscure case. */
2328 ;
2329 }
2330
2331 /* FIXME, what about the minimal symbol table? */
2332 return blewit;
2333 #else
2334 return (0);
2335 #endif
2336 }
2337 \f
2338 /* Allocate and partially fill a partial symtab. It will be
2339 completely filled at the end of the symbol list.
2340
2341 FILENAME is the name of the symbol-file we are reading from. */
2342
2343 struct partial_symtab *
2344 start_psymtab_common (struct objfile *objfile,
2345 struct section_offsets *section_offsets, char *filename,
2346 CORE_ADDR textlow, struct partial_symbol **global_syms,
2347 struct partial_symbol **static_syms)
2348 {
2349 struct partial_symtab *psymtab;
2350
2351 psymtab = allocate_psymtab (filename, objfile);
2352 psymtab->section_offsets = section_offsets;
2353 psymtab->textlow = textlow;
2354 psymtab->texthigh = psymtab->textlow; /* default */
2355 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2356 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2357 return (psymtab);
2358 }
2359 \f
2360 /* Add a symbol with a long value to a psymtab.
2361 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2362
2363 void
2364 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2365 enum address_class class,
2366 struct psymbol_allocation_list *list, long val, /* Value as a long */
2367 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2368 enum language language, struct objfile *objfile)
2369 {
2370 register struct partial_symbol *psym;
2371 char *buf = alloca (namelength + 1);
2372 /* psymbol is static so that there will be no uninitialized gaps in the
2373 structure which might contain random data, causing cache misses in
2374 bcache. */
2375 static struct partial_symbol psymbol;
2376
2377 /* Create local copy of the partial symbol */
2378 memcpy (buf, name, namelength);
2379 buf[namelength] = '\0';
2380 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2381 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2382 if (val != 0)
2383 {
2384 SYMBOL_VALUE (&psymbol) = val;
2385 }
2386 else
2387 {
2388 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2389 }
2390 SYMBOL_SECTION (&psymbol) = 0;
2391 SYMBOL_LANGUAGE (&psymbol) = language;
2392 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2393 PSYMBOL_CLASS (&psymbol) = class;
2394 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2395
2396 /* Stash the partial symbol away in the cache */
2397 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2398
2399 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2400 if (list->next >= list->list + list->size)
2401 {
2402 extend_psymbol_list (list, objfile);
2403 }
2404 *list->next++ = psym;
2405 OBJSTAT (objfile, n_psyms++);
2406 }
2407
2408 /* Add a symbol with a long value to a psymtab. This differs from
2409 * add_psymbol_to_list above in taking both a mangled and a demangled
2410 * name. */
2411
2412 void
2413 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2414 int dem_namelength, namespace_enum namespace,
2415 enum address_class class,
2416 struct psymbol_allocation_list *list, long val, /* Value as a long */
2417 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2418 enum language language,
2419 struct objfile *objfile)
2420 {
2421 register struct partial_symbol *psym;
2422 char *buf = alloca (namelength + 1);
2423 /* psymbol is static so that there will be no uninitialized gaps in the
2424 structure which might contain random data, causing cache misses in
2425 bcache. */
2426 static struct partial_symbol psymbol;
2427
2428 /* Create local copy of the partial symbol */
2429
2430 memcpy (buf, name, namelength);
2431 buf[namelength] = '\0';
2432 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2433
2434 buf = alloca (dem_namelength + 1);
2435 memcpy (buf, dem_name, dem_namelength);
2436 buf[dem_namelength] = '\0';
2437
2438 switch (language)
2439 {
2440 case language_c:
2441 case language_cplus:
2442 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2443 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2444 break;
2445 case language_chill:
2446 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2447 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2448
2449 /* FIXME What should be done for the default case? Ignoring for now. */
2450 }
2451
2452 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2453 if (val != 0)
2454 {
2455 SYMBOL_VALUE (&psymbol) = val;
2456 }
2457 else
2458 {
2459 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2460 }
2461 SYMBOL_SECTION (&psymbol) = 0;
2462 SYMBOL_LANGUAGE (&psymbol) = language;
2463 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2464 PSYMBOL_CLASS (&psymbol) = class;
2465 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2466
2467 /* Stash the partial symbol away in the cache */
2468 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2469
2470 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2471 if (list->next >= list->list + list->size)
2472 {
2473 extend_psymbol_list (list, objfile);
2474 }
2475 *list->next++ = psym;
2476 OBJSTAT (objfile, n_psyms++);
2477 }
2478
2479 /* Initialize storage for partial symbols. */
2480
2481 void
2482 init_psymbol_list (struct objfile *objfile, int total_symbols)
2483 {
2484 /* Free any previously allocated psymbol lists. */
2485
2486 if (objfile->global_psymbols.list)
2487 {
2488 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2489 }
2490 if (objfile->static_psymbols.list)
2491 {
2492 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2493 }
2494
2495 /* Current best guess is that approximately a twentieth
2496 of the total symbols (in a debugging file) are global or static
2497 oriented symbols */
2498
2499 objfile->global_psymbols.size = total_symbols / 10;
2500 objfile->static_psymbols.size = total_symbols / 10;
2501
2502 if (objfile->global_psymbols.size > 0)
2503 {
2504 objfile->global_psymbols.next =
2505 objfile->global_psymbols.list = (struct partial_symbol **)
2506 xmmalloc (objfile->md, (objfile->global_psymbols.size
2507 * sizeof (struct partial_symbol *)));
2508 }
2509 if (objfile->static_psymbols.size > 0)
2510 {
2511 objfile->static_psymbols.next =
2512 objfile->static_psymbols.list = (struct partial_symbol **)
2513 xmmalloc (objfile->md, (objfile->static_psymbols.size
2514 * sizeof (struct partial_symbol *)));
2515 }
2516 }
2517
2518 /* OVERLAYS:
2519 The following code implements an abstraction for debugging overlay sections.
2520
2521 The target model is as follows:
2522 1) The gnu linker will permit multiple sections to be mapped into the
2523 same VMA, each with its own unique LMA (or load address).
2524 2) It is assumed that some runtime mechanism exists for mapping the
2525 sections, one by one, from the load address into the VMA address.
2526 3) This code provides a mechanism for gdb to keep track of which
2527 sections should be considered to be mapped from the VMA to the LMA.
2528 This information is used for symbol lookup, and memory read/write.
2529 For instance, if a section has been mapped then its contents
2530 should be read from the VMA, otherwise from the LMA.
2531
2532 Two levels of debugger support for overlays are available. One is
2533 "manual", in which the debugger relies on the user to tell it which
2534 overlays are currently mapped. This level of support is
2535 implemented entirely in the core debugger, and the information about
2536 whether a section is mapped is kept in the objfile->obj_section table.
2537
2538 The second level of support is "automatic", and is only available if
2539 the target-specific code provides functionality to read the target's
2540 overlay mapping table, and translate its contents for the debugger
2541 (by updating the mapped state information in the obj_section tables).
2542
2543 The interface is as follows:
2544 User commands:
2545 overlay map <name> -- tell gdb to consider this section mapped
2546 overlay unmap <name> -- tell gdb to consider this section unmapped
2547 overlay list -- list the sections that GDB thinks are mapped
2548 overlay read-target -- get the target's state of what's mapped
2549 overlay off/manual/auto -- set overlay debugging state
2550 Functional interface:
2551 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2552 section, return that section.
2553 find_pc_overlay(pc): find any overlay section that contains
2554 the pc, either in its VMA or its LMA
2555 overlay_is_mapped(sect): true if overlay is marked as mapped
2556 section_is_overlay(sect): true if section's VMA != LMA
2557 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2558 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2559 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2560 overlay_mapped_address(...): map an address from section's LMA to VMA
2561 overlay_unmapped_address(...): map an address from section's VMA to LMA
2562 symbol_overlayed_address(...): Return a "current" address for symbol:
2563 either in VMA or LMA depending on whether
2564 the symbol's section is currently mapped
2565 */
2566
2567 /* Overlay debugging state: */
2568
2569 enum overlay_debugging_state overlay_debugging = ovly_off;
2570 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2571
2572 /* Target vector for refreshing overlay mapped state */
2573 static void simple_overlay_update (struct obj_section *);
2574 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2575
2576 /* Function: section_is_overlay (SECTION)
2577 Returns true if SECTION has VMA not equal to LMA, ie.
2578 SECTION is loaded at an address different from where it will "run". */
2579
2580 int
2581 section_is_overlay (asection *section)
2582 {
2583 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2584
2585 if (overlay_debugging)
2586 if (section && section->lma != 0 &&
2587 section->vma != section->lma)
2588 return 1;
2589
2590 return 0;
2591 }
2592
2593 /* Function: overlay_invalidate_all (void)
2594 Invalidate the mapped state of all overlay sections (mark it as stale). */
2595
2596 static void
2597 overlay_invalidate_all (void)
2598 {
2599 struct objfile *objfile;
2600 struct obj_section *sect;
2601
2602 ALL_OBJSECTIONS (objfile, sect)
2603 if (section_is_overlay (sect->the_bfd_section))
2604 sect->ovly_mapped = -1;
2605 }
2606
2607 /* Function: overlay_is_mapped (SECTION)
2608 Returns true if section is an overlay, and is currently mapped.
2609 Private: public access is thru function section_is_mapped.
2610
2611 Access to the ovly_mapped flag is restricted to this function, so
2612 that we can do automatic update. If the global flag
2613 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2614 overlay_invalidate_all. If the mapped state of the particular
2615 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2616
2617 static int
2618 overlay_is_mapped (struct obj_section *osect)
2619 {
2620 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2621 return 0;
2622
2623 switch (overlay_debugging)
2624 {
2625 default:
2626 case ovly_off:
2627 return 0; /* overlay debugging off */
2628 case ovly_auto: /* overlay debugging automatic */
2629 /* Unles there is a target_overlay_update function,
2630 there's really nothing useful to do here (can't really go auto) */
2631 if (target_overlay_update)
2632 {
2633 if (overlay_cache_invalid)
2634 {
2635 overlay_invalidate_all ();
2636 overlay_cache_invalid = 0;
2637 }
2638 if (osect->ovly_mapped == -1)
2639 (*target_overlay_update) (osect);
2640 }
2641 /* fall thru to manual case */
2642 case ovly_on: /* overlay debugging manual */
2643 return osect->ovly_mapped == 1;
2644 }
2645 }
2646
2647 /* Function: section_is_mapped
2648 Returns true if section is an overlay, and is currently mapped. */
2649
2650 int
2651 section_is_mapped (asection *section)
2652 {
2653 struct objfile *objfile;
2654 struct obj_section *osect;
2655
2656 if (overlay_debugging)
2657 if (section && section_is_overlay (section))
2658 ALL_OBJSECTIONS (objfile, osect)
2659 if (osect->the_bfd_section == section)
2660 return overlay_is_mapped (osect);
2661
2662 return 0;
2663 }
2664
2665 /* Function: pc_in_unmapped_range
2666 If PC falls into the lma range of SECTION, return true, else false. */
2667
2668 CORE_ADDR
2669 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2670 {
2671 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2672
2673 int size;
2674
2675 if (overlay_debugging)
2676 if (section && section_is_overlay (section))
2677 {
2678 size = bfd_get_section_size_before_reloc (section);
2679 if (section->lma <= pc && pc < section->lma + size)
2680 return 1;
2681 }
2682 return 0;
2683 }
2684
2685 /* Function: pc_in_mapped_range
2686 If PC falls into the vma range of SECTION, return true, else false. */
2687
2688 CORE_ADDR
2689 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2690 {
2691 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2692
2693 int size;
2694
2695 if (overlay_debugging)
2696 if (section && section_is_overlay (section))
2697 {
2698 size = bfd_get_section_size_before_reloc (section);
2699 if (section->vma <= pc && pc < section->vma + size)
2700 return 1;
2701 }
2702 return 0;
2703 }
2704
2705
2706 /* Return true if the mapped ranges of sections A and B overlap, false
2707 otherwise. */
2708 int
2709 sections_overlap (asection *a, asection *b)
2710 {
2711 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2712
2713 CORE_ADDR a_start = a->vma;
2714 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2715 CORE_ADDR b_start = b->vma;
2716 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2717
2718 return (a_start < b_end && b_start < a_end);
2719 }
2720
2721 /* Function: overlay_unmapped_address (PC, SECTION)
2722 Returns the address corresponding to PC in the unmapped (load) range.
2723 May be the same as PC. */
2724
2725 CORE_ADDR
2726 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2727 {
2728 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2729
2730 if (overlay_debugging)
2731 if (section && section_is_overlay (section) &&
2732 pc_in_mapped_range (pc, section))
2733 return pc + section->lma - section->vma;
2734
2735 return pc;
2736 }
2737
2738 /* Function: overlay_mapped_address (PC, SECTION)
2739 Returns the address corresponding to PC in the mapped (runtime) range.
2740 May be the same as PC. */
2741
2742 CORE_ADDR
2743 overlay_mapped_address (CORE_ADDR pc, asection *section)
2744 {
2745 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2746
2747 if (overlay_debugging)
2748 if (section && section_is_overlay (section) &&
2749 pc_in_unmapped_range (pc, section))
2750 return pc + section->vma - section->lma;
2751
2752 return pc;
2753 }
2754
2755
2756 /* Function: symbol_overlayed_address
2757 Return one of two addresses (relative to the VMA or to the LMA),
2758 depending on whether the section is mapped or not. */
2759
2760 CORE_ADDR
2761 symbol_overlayed_address (CORE_ADDR address, asection *section)
2762 {
2763 if (overlay_debugging)
2764 {
2765 /* If the symbol has no section, just return its regular address. */
2766 if (section == 0)
2767 return address;
2768 /* If the symbol's section is not an overlay, just return its address */
2769 if (!section_is_overlay (section))
2770 return address;
2771 /* If the symbol's section is mapped, just return its address */
2772 if (section_is_mapped (section))
2773 return address;
2774 /*
2775 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2776 * then return its LOADED address rather than its vma address!!
2777 */
2778 return overlay_unmapped_address (address, section);
2779 }
2780 return address;
2781 }
2782
2783 /* Function: find_pc_overlay (PC)
2784 Return the best-match overlay section for PC:
2785 If PC matches a mapped overlay section's VMA, return that section.
2786 Else if PC matches an unmapped section's VMA, return that section.
2787 Else if PC matches an unmapped section's LMA, return that section. */
2788
2789 asection *
2790 find_pc_overlay (CORE_ADDR pc)
2791 {
2792 struct objfile *objfile;
2793 struct obj_section *osect, *best_match = NULL;
2794
2795 if (overlay_debugging)
2796 ALL_OBJSECTIONS (objfile, osect)
2797 if (section_is_overlay (osect->the_bfd_section))
2798 {
2799 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2800 {
2801 if (overlay_is_mapped (osect))
2802 return osect->the_bfd_section;
2803 else
2804 best_match = osect;
2805 }
2806 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2807 best_match = osect;
2808 }
2809 return best_match ? best_match->the_bfd_section : NULL;
2810 }
2811
2812 /* Function: find_pc_mapped_section (PC)
2813 If PC falls into the VMA address range of an overlay section that is
2814 currently marked as MAPPED, return that section. Else return NULL. */
2815
2816 asection *
2817 find_pc_mapped_section (CORE_ADDR pc)
2818 {
2819 struct objfile *objfile;
2820 struct obj_section *osect;
2821
2822 if (overlay_debugging)
2823 ALL_OBJSECTIONS (objfile, osect)
2824 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2825 overlay_is_mapped (osect))
2826 return osect->the_bfd_section;
2827
2828 return NULL;
2829 }
2830
2831 /* Function: list_overlays_command
2832 Print a list of mapped sections and their PC ranges */
2833
2834 void
2835 list_overlays_command (char *args, int from_tty)
2836 {
2837 int nmapped = 0;
2838 struct objfile *objfile;
2839 struct obj_section *osect;
2840
2841 if (overlay_debugging)
2842 ALL_OBJSECTIONS (objfile, osect)
2843 if (overlay_is_mapped (osect))
2844 {
2845 const char *name;
2846 bfd_vma lma, vma;
2847 int size;
2848
2849 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2850 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2851 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2852 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2853
2854 printf_filtered ("Section %s, loaded at ", name);
2855 print_address_numeric (lma, 1, gdb_stdout);
2856 puts_filtered (" - ");
2857 print_address_numeric (lma + size, 1, gdb_stdout);
2858 printf_filtered (", mapped at ");
2859 print_address_numeric (vma, 1, gdb_stdout);
2860 puts_filtered (" - ");
2861 print_address_numeric (vma + size, 1, gdb_stdout);
2862 puts_filtered ("\n");
2863
2864 nmapped++;
2865 }
2866 if (nmapped == 0)
2867 printf_filtered ("No sections are mapped.\n");
2868 }
2869
2870 /* Function: map_overlay_command
2871 Mark the named section as mapped (ie. residing at its VMA address). */
2872
2873 void
2874 map_overlay_command (char *args, int from_tty)
2875 {
2876 struct objfile *objfile, *objfile2;
2877 struct obj_section *sec, *sec2;
2878 asection *bfdsec;
2879
2880 if (!overlay_debugging)
2881 error ("\
2882 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2883 the 'overlay manual' command.");
2884
2885 if (args == 0 || *args == 0)
2886 error ("Argument required: name of an overlay section");
2887
2888 /* First, find a section matching the user supplied argument */
2889 ALL_OBJSECTIONS (objfile, sec)
2890 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2891 {
2892 /* Now, check to see if the section is an overlay. */
2893 bfdsec = sec->the_bfd_section;
2894 if (!section_is_overlay (bfdsec))
2895 continue; /* not an overlay section */
2896
2897 /* Mark the overlay as "mapped" */
2898 sec->ovly_mapped = 1;
2899
2900 /* Next, make a pass and unmap any sections that are
2901 overlapped by this new section: */
2902 ALL_OBJSECTIONS (objfile2, sec2)
2903 if (sec2->ovly_mapped
2904 && sec != sec2
2905 && sec->the_bfd_section != sec2->the_bfd_section
2906 && sections_overlap (sec->the_bfd_section,
2907 sec2->the_bfd_section))
2908 {
2909 if (info_verbose)
2910 printf_filtered ("Note: section %s unmapped by overlap\n",
2911 bfd_section_name (objfile->obfd,
2912 sec2->the_bfd_section));
2913 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2914 }
2915 return;
2916 }
2917 error ("No overlay section called %s", args);
2918 }
2919
2920 /* Function: unmap_overlay_command
2921 Mark the overlay section as unmapped
2922 (ie. resident in its LMA address range, rather than the VMA range). */
2923
2924 void
2925 unmap_overlay_command (char *args, int from_tty)
2926 {
2927 struct objfile *objfile;
2928 struct obj_section *sec;
2929
2930 if (!overlay_debugging)
2931 error ("\
2932 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2933 the 'overlay manual' command.");
2934
2935 if (args == 0 || *args == 0)
2936 error ("Argument required: name of an overlay section");
2937
2938 /* First, find a section matching the user supplied argument */
2939 ALL_OBJSECTIONS (objfile, sec)
2940 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2941 {
2942 if (!sec->ovly_mapped)
2943 error ("Section %s is not mapped", args);
2944 sec->ovly_mapped = 0;
2945 return;
2946 }
2947 error ("No overlay section called %s", args);
2948 }
2949
2950 /* Function: overlay_auto_command
2951 A utility command to turn on overlay debugging.
2952 Possibly this should be done via a set/show command. */
2953
2954 static void
2955 overlay_auto_command (char *args, int from_tty)
2956 {
2957 overlay_debugging = ovly_auto;
2958 enable_overlay_breakpoints ();
2959 if (info_verbose)
2960 printf_filtered ("Automatic overlay debugging enabled.");
2961 }
2962
2963 /* Function: overlay_manual_command
2964 A utility command to turn on overlay debugging.
2965 Possibly this should be done via a set/show command. */
2966
2967 static void
2968 overlay_manual_command (char *args, int from_tty)
2969 {
2970 overlay_debugging = ovly_on;
2971 disable_overlay_breakpoints ();
2972 if (info_verbose)
2973 printf_filtered ("Overlay debugging enabled.");
2974 }
2975
2976 /* Function: overlay_off_command
2977 A utility command to turn on overlay debugging.
2978 Possibly this should be done via a set/show command. */
2979
2980 static void
2981 overlay_off_command (char *args, int from_tty)
2982 {
2983 overlay_debugging = ovly_off;
2984 disable_overlay_breakpoints ();
2985 if (info_verbose)
2986 printf_filtered ("Overlay debugging disabled.");
2987 }
2988
2989 static void
2990 overlay_load_command (char *args, int from_tty)
2991 {
2992 if (target_overlay_update)
2993 (*target_overlay_update) (NULL);
2994 else
2995 error ("This target does not know how to read its overlay state.");
2996 }
2997
2998 /* Function: overlay_command
2999 A place-holder for a mis-typed command */
3000
3001 /* Command list chain containing all defined "overlay" subcommands. */
3002 struct cmd_list_element *overlaylist;
3003
3004 static void
3005 overlay_command (char *args, int from_tty)
3006 {
3007 printf_unfiltered
3008 ("\"overlay\" must be followed by the name of an overlay command.\n");
3009 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3010 }
3011
3012
3013 /* Target Overlays for the "Simplest" overlay manager:
3014
3015 This is GDB's default target overlay layer. It works with the
3016 minimal overlay manager supplied as an example by Cygnus. The
3017 entry point is via a function pointer "target_overlay_update",
3018 so targets that use a different runtime overlay manager can
3019 substitute their own overlay_update function and take over the
3020 function pointer.
3021
3022 The overlay_update function pokes around in the target's data structures
3023 to see what overlays are mapped, and updates GDB's overlay mapping with
3024 this information.
3025
3026 In this simple implementation, the target data structures are as follows:
3027 unsigned _novlys; /# number of overlay sections #/
3028 unsigned _ovly_table[_novlys][4] = {
3029 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3030 {..., ..., ..., ...},
3031 }
3032 unsigned _novly_regions; /# number of overlay regions #/
3033 unsigned _ovly_region_table[_novly_regions][3] = {
3034 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3035 {..., ..., ...},
3036 }
3037 These functions will attempt to update GDB's mappedness state in the
3038 symbol section table, based on the target's mappedness state.
3039
3040 To do this, we keep a cached copy of the target's _ovly_table, and
3041 attempt to detect when the cached copy is invalidated. The main
3042 entry point is "simple_overlay_update(SECT), which looks up SECT in
3043 the cached table and re-reads only the entry for that section from
3044 the target (whenever possible).
3045 */
3046
3047 /* Cached, dynamically allocated copies of the target data structures: */
3048 static unsigned (*cache_ovly_table)[4] = 0;
3049 #if 0
3050 static unsigned (*cache_ovly_region_table)[3] = 0;
3051 #endif
3052 static unsigned cache_novlys = 0;
3053 #if 0
3054 static unsigned cache_novly_regions = 0;
3055 #endif
3056 static CORE_ADDR cache_ovly_table_base = 0;
3057 #if 0
3058 static CORE_ADDR cache_ovly_region_table_base = 0;
3059 #endif
3060 enum ovly_index
3061 {
3062 VMA, SIZE, LMA, MAPPED
3063 };
3064 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3065
3066 /* Throw away the cached copy of _ovly_table */
3067 static void
3068 simple_free_overlay_table (void)
3069 {
3070 if (cache_ovly_table)
3071 xfree (cache_ovly_table);
3072 cache_novlys = 0;
3073 cache_ovly_table = NULL;
3074 cache_ovly_table_base = 0;
3075 }
3076
3077 #if 0
3078 /* Throw away the cached copy of _ovly_region_table */
3079 static void
3080 simple_free_overlay_region_table (void)
3081 {
3082 if (cache_ovly_region_table)
3083 xfree (cache_ovly_region_table);
3084 cache_novly_regions = 0;
3085 cache_ovly_region_table = NULL;
3086 cache_ovly_region_table_base = 0;
3087 }
3088 #endif
3089
3090 /* Read an array of ints from the target into a local buffer.
3091 Convert to host order. int LEN is number of ints */
3092 static void
3093 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3094 {
3095 /* FIXME (alloca): Not safe if array is very large. */
3096 char *buf = alloca (len * TARGET_LONG_BYTES);
3097 int i;
3098
3099 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3100 for (i = 0; i < len; i++)
3101 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3102 TARGET_LONG_BYTES);
3103 }
3104
3105 /* Find and grab a copy of the target _ovly_table
3106 (and _novlys, which is needed for the table's size) */
3107 static int
3108 simple_read_overlay_table (void)
3109 {
3110 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3111
3112 simple_free_overlay_table ();
3113 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3114 if (! novlys_msym)
3115 {
3116 error ("Error reading inferior's overlay table: "
3117 "couldn't find `_novlys' variable\n"
3118 "in inferior. Use `overlay manual' mode.");
3119 return 0;
3120 }
3121
3122 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3123 if (! ovly_table_msym)
3124 {
3125 error ("Error reading inferior's overlay table: couldn't find "
3126 "`_ovly_table' array\n"
3127 "in inferior. Use `overlay manual' mode.");
3128 return 0;
3129 }
3130
3131 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3132 cache_ovly_table
3133 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3134 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3135 read_target_long_array (cache_ovly_table_base,
3136 (int *) cache_ovly_table,
3137 cache_novlys * 4);
3138
3139 return 1; /* SUCCESS */
3140 }
3141
3142 #if 0
3143 /* Find and grab a copy of the target _ovly_region_table
3144 (and _novly_regions, which is needed for the table's size) */
3145 static int
3146 simple_read_overlay_region_table (void)
3147 {
3148 struct minimal_symbol *msym;
3149
3150 simple_free_overlay_region_table ();
3151 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3152 if (msym != NULL)
3153 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3154 else
3155 return 0; /* failure */
3156 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3157 if (cache_ovly_region_table != NULL)
3158 {
3159 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3160 if (msym != NULL)
3161 {
3162 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3163 read_target_long_array (cache_ovly_region_table_base,
3164 (int *) cache_ovly_region_table,
3165 cache_novly_regions * 3);
3166 }
3167 else
3168 return 0; /* failure */
3169 }
3170 else
3171 return 0; /* failure */
3172 return 1; /* SUCCESS */
3173 }
3174 #endif
3175
3176 /* Function: simple_overlay_update_1
3177 A helper function for simple_overlay_update. Assuming a cached copy
3178 of _ovly_table exists, look through it to find an entry whose vma,
3179 lma and size match those of OSECT. Re-read the entry and make sure
3180 it still matches OSECT (else the table may no longer be valid).
3181 Set OSECT's mapped state to match the entry. Return: 1 for
3182 success, 0 for failure. */
3183
3184 static int
3185 simple_overlay_update_1 (struct obj_section *osect)
3186 {
3187 int i, size;
3188 bfd *obfd = osect->objfile->obfd;
3189 asection *bsect = osect->the_bfd_section;
3190
3191 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3192 for (i = 0; i < cache_novlys; i++)
3193 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3194 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3195 /* && cache_ovly_table[i][SIZE] == size */ )
3196 {
3197 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3198 (int *) cache_ovly_table[i], 4);
3199 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3200 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3201 /* && cache_ovly_table[i][SIZE] == size */ )
3202 {
3203 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3204 return 1;
3205 }
3206 else /* Warning! Warning! Target's ovly table has changed! */
3207 return 0;
3208 }
3209 return 0;
3210 }
3211
3212 /* Function: simple_overlay_update
3213 If OSECT is NULL, then update all sections' mapped state
3214 (after re-reading the entire target _ovly_table).
3215 If OSECT is non-NULL, then try to find a matching entry in the
3216 cached ovly_table and update only OSECT's mapped state.
3217 If a cached entry can't be found or the cache isn't valid, then
3218 re-read the entire cache, and go ahead and update all sections. */
3219
3220 static void
3221 simple_overlay_update (struct obj_section *osect)
3222 {
3223 struct objfile *objfile;
3224
3225 /* Were we given an osect to look up? NULL means do all of them. */
3226 if (osect)
3227 /* Have we got a cached copy of the target's overlay table? */
3228 if (cache_ovly_table != NULL)
3229 /* Does its cached location match what's currently in the symtab? */
3230 if (cache_ovly_table_base ==
3231 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3232 /* Then go ahead and try to look up this single section in the cache */
3233 if (simple_overlay_update_1 (osect))
3234 /* Found it! We're done. */
3235 return;
3236
3237 /* Cached table no good: need to read the entire table anew.
3238 Or else we want all the sections, in which case it's actually
3239 more efficient to read the whole table in one block anyway. */
3240
3241 if (! simple_read_overlay_table ())
3242 return;
3243
3244 /* Now may as well update all sections, even if only one was requested. */
3245 ALL_OBJSECTIONS (objfile, osect)
3246 if (section_is_overlay (osect->the_bfd_section))
3247 {
3248 int i, size;
3249 bfd *obfd = osect->objfile->obfd;
3250 asection *bsect = osect->the_bfd_section;
3251
3252 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3253 for (i = 0; i < cache_novlys; i++)
3254 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3255 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3256 /* && cache_ovly_table[i][SIZE] == size */ )
3257 { /* obj_section matches i'th entry in ovly_table */
3258 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3259 break; /* finished with inner for loop: break out */
3260 }
3261 }
3262 }
3263
3264
3265 void
3266 _initialize_symfile (void)
3267 {
3268 struct cmd_list_element *c;
3269
3270 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3271 "Load symbol table from executable file FILE.\n\
3272 The `file' command can also load symbol tables, as well as setting the file\n\
3273 to execute.", &cmdlist);
3274 set_cmd_completer (c, filename_completer);
3275
3276 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3277 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3278 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3279 ADDR is the starting address of the file's text.\n\
3280 The optional arguments are section-name section-address pairs and\n\
3281 should be specified if the data and bss segments are not contiguous\n\
3282 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3283 &cmdlist);
3284 set_cmd_completer (c, filename_completer);
3285
3286 c = add_cmd ("add-shared-symbol-files", class_files,
3287 add_shared_symbol_files_command,
3288 "Load the symbols from shared objects in the dynamic linker's link map.",
3289 &cmdlist);
3290 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3291 &cmdlist);
3292
3293 c = add_cmd ("load", class_files, load_command,
3294 "Dynamically load FILE into the running program, and record its symbols\n\
3295 for access from GDB.", &cmdlist);
3296 set_cmd_completer (c, filename_completer);
3297
3298 add_show_from_set
3299 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3300 (char *) &symbol_reloading,
3301 "Set dynamic symbol table reloading multiple times in one run.",
3302 &setlist),
3303 &showlist);
3304
3305 add_prefix_cmd ("overlay", class_support, overlay_command,
3306 "Commands for debugging overlays.", &overlaylist,
3307 "overlay ", 0, &cmdlist);
3308
3309 add_com_alias ("ovly", "overlay", class_alias, 1);
3310 add_com_alias ("ov", "overlay", class_alias, 1);
3311
3312 add_cmd ("map-overlay", class_support, map_overlay_command,
3313 "Assert that an overlay section is mapped.", &overlaylist);
3314
3315 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3316 "Assert that an overlay section is unmapped.", &overlaylist);
3317
3318 add_cmd ("list-overlays", class_support, list_overlays_command,
3319 "List mappings of overlay sections.", &overlaylist);
3320
3321 add_cmd ("manual", class_support, overlay_manual_command,
3322 "Enable overlay debugging.", &overlaylist);
3323 add_cmd ("off", class_support, overlay_off_command,
3324 "Disable overlay debugging.", &overlaylist);
3325 add_cmd ("auto", class_support, overlay_auto_command,
3326 "Enable automatic overlay debugging.", &overlaylist);
3327 add_cmd ("load-target", class_support, overlay_load_command,
3328 "Read the overlay mapping state from the target.", &overlaylist);
3329
3330 /* Filename extension to source language lookup table: */
3331 init_filename_language_table ();
3332 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3333 (char *) &ext_args,
3334 "Set mapping between filename extension and source language.\n\
3335 Usage: set extension-language .foo bar",
3336 &setlist);
3337 set_cmd_cfunc (c, set_ext_lang_command);
3338
3339 add_info ("extensions", info_ext_lang_command,
3340 "All filename extensions associated with a source language.");
3341
3342 add_show_from_set
3343 (add_set_cmd ("download-write-size", class_obscure,
3344 var_integer, (char *) &download_write_size,
3345 "Set the write size used when downloading a program.\n"
3346 "Only used when downloading a program onto a remote\n"
3347 "target. Specify zero, or a negative value, to disable\n"
3348 "blocked writes. The actual size of each transfer is also\n"
3349 "limited by the size of the target packet and the memory\n"
3350 "cache.\n",
3351 &setlist),
3352 &showlist);
3353 }
This page took 0.228779 seconds and 4 git commands to generate.