* linux-nat.c (linux_nat_resume): Add more debugging messages. Do
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include "gdb_string.h"
57 #include "gdb_stat.h"
58 #include <ctype.h>
59 #include <time.h>
60 #include <sys/time.h>
61
62 #ifndef O_BINARY
63 #define O_BINARY 0
64 #endif
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74 void (*deprecated_target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void set_initial_language (void);
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void add_shared_symbol_files_command (char *, int);
101
102 static void reread_separate_symbols (struct objfile *objfile);
103
104 static void cashier_psymtab (struct partial_symtab *);
105
106 bfd *symfile_bfd_open (char *);
107
108 int get_section_index (struct objfile *, char *);
109
110 static void find_sym_fns (struct objfile *);
111
112 static void decrement_reading_symtab (void *);
113
114 static void overlay_invalidate_all (void);
115
116 static int overlay_is_mapped (struct obj_section *);
117
118 void list_overlays_command (char *, int);
119
120 void map_overlay_command (char *, int);
121
122 void unmap_overlay_command (char *, int);
123
124 static void overlay_auto_command (char *, int);
125
126 static void overlay_manual_command (char *, int);
127
128 static void overlay_off_command (char *, int);
129
130 static void overlay_load_command (char *, int);
131
132 static void overlay_command (char *, int);
133
134 static void simple_free_overlay_table (void);
135
136 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
137
138 static int simple_read_overlay_table (void);
139
140 static int simple_overlay_update_1 (struct obj_section *);
141
142 static void add_filename_language (char *ext, enum language lang);
143
144 static void info_ext_lang_command (char *args, int from_tty);
145
146 static char *find_separate_debug_file (struct objfile *objfile);
147
148 static void init_filename_language_table (void);
149
150 void _initialize_symfile (void);
151
152 /* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156 static struct sym_fns *symtab_fns = NULL;
157
158 /* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161 #ifdef SYMBOL_RELOADING_DEFAULT
162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 #else
164 int symbol_reloading = 0;
165 #endif
166 static void
167 show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("\
171 Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173 }
174
175
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
185
186 int auto_solib_add = 1;
187
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196 int auto_solib_limit;
197 \f
198
199 /* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
201
202 static int
203 compare_psymbols (const void *s1p, const void *s2p)
204 {
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
210 }
211
212 void
213 sort_pst_symbols (struct partial_symtab *pst)
214 {
215 /* Sort the global list; don't sort the static list */
216
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
219 compare_psymbols);
220 }
221
222 /* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227 char *
228 obsavestring (const char *ptr, int size, struct obstack *obstackp)
229 {
230 char *p = (char *) obstack_alloc (obstackp, size + 1);
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
235 const char *p1 = ptr;
236 char *p2 = p;
237 const char *end = ptr + size;
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243 }
244
245 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248 char *
249 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
251 {
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258 }
259
260 /* True if we are nested inside psymtab_to_symtab. */
261
262 int currently_reading_symtab = 0;
263
264 static void
265 decrement_reading_symtab (void *dummy)
266 {
267 currently_reading_symtab--;
268 }
269
270 /* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275 struct symtab *
276 psymtab_to_symtab (struct partial_symtab *pst)
277 {
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
284 {
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292 }
293
294 /* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303 void
304 find_lowest_section (bfd *abfd, asection *sect, void *obj)
305 {
306 asection **lowest = (asection **) obj;
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318 }
319
320 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322 struct section_addr_info *
323 alloc_section_addr_info (size_t num_sections)
324 {
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335 }
336
337
338 /* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340 struct section_addr_info *
341 copy_section_addr_info (struct section_addr_info *addrs)
342 {
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359 }
360
361
362
363 /* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366 extern struct section_addr_info *
367 build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369 {
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
374 sap = alloc_section_addr_info (end - start);
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
378 if (bfd_get_section_flags (stp->bfd,
379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380 && oidx < end - start)
381 {
382 sap->other[oidx].addr = stp->addr;
383 sap->other[oidx].name
384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391 }
392
393
394 /* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396 extern void
397 free_section_addr_info (struct section_addr_info *sap)
398 {
399 int idx;
400
401 for (idx = 0; idx < sap->num_sections; idx++)
402 if (sap->other[idx].name)
403 xfree (sap->other[idx].name);
404 xfree (sap);
405 }
406
407
408 /* Initialize OBJFILE's sect_index_* members. */
409 static void
410 init_objfile_sect_indices (struct objfile *objfile)
411 {
412 asection *sect;
413 int i;
414
415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
416 if (sect)
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
420 if (sect)
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424 if (sect)
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428 if (sect)
429 objfile->sect_index_rodata = sect->index;
430
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
439 first slot. */
440
441 for (i = 0; i < objfile->num_sections; i++)
442 {
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
444 {
445 break;
446 }
447 }
448 if (i == objfile->num_sections)
449 {
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
458 }
459 }
460
461 /* The arguments to place_section. */
462
463 struct place_section_arg
464 {
465 struct section_offsets *offsets;
466 CORE_ADDR lowest;
467 };
468
469 /* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
471
472 void
473 place_section (bfd *abfd, asection *sect, void *obj)
474 {
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
477 int done;
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 do {
489 asection *cur_sec;
490 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
491
492 start_addr = (arg->lowest + align - 1) & -align;
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 continue;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591 }
592
593
594 /* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
597 OBJFILE is where the symbols are to be read from.
598
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
625
626 void
627 syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
633 {
634 struct section_addr_info *local_addr = NULL;
635 struct cleanup *old_chain;
636
637 gdb_assert (! (addrs && offsets));
638
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
647 old_chain = make_cleanup_free_objfile (objfile);
648
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
654 local_addr
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
662 if (mainline)
663 {
664 /* We will modify the main symbol table, make sure that all its users
665 will be cleaned up if an error occurs during symbol reading. */
666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
680
681 (*objfile->sf->sym_new_init) (objfile);
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
686 and assume that <addr> is where that got loaded.
687
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
690 if (!mainline && addrs && addrs->other[0].name)
691 {
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
697 /* Find lowest loadable section to be used as starting point for
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
703 &lower_sect);
704 if (lower_sect == NULL)
705 warning (_("no loadable sections found in added symbol-file %s"),
706 objfile->name);
707 else
708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
709 warning (_("Lowest section in %s is %s at %s"),
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
717
718 /* Calculate offsets for the loadable sections.
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
721
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
744 warning (_("section %s not found in %s"),
745 addrs->other[i].name,
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
759 (*objfile->sf->sym_init) (objfile);
760 clear_complaints (&symfile_complaints, 1, verbo);
761
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
772 obstack_alloc (&objfile->objfile_obstack, size));
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
777
778 #ifndef DEPRECATED_IBM6000_TARGET
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
792 has a different algorithm for finding section offsets.
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
797 if (addrs)
798 {
799 struct obj_section *s;
800
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
805
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 CORE_ADDR s_addr = 0;
809 int i;
810
811 for (i = 0;
812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
813 i++)
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
816 addrs->other[i].name) == 0)
817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
818
819 s->addr -= s->offset;
820 s->addr += s_addr;
821 s->endaddr -= s->offset;
822 s->endaddr += s_addr;
823 s->offset += s_addr;
824 }
825 }
826 #endif /* not DEPRECATED_IBM6000_TARGET */
827
828 (*objfile->sf->sym_read) (objfile, mainline);
829
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
841 objfile->flags |= OBJF_SYMS;
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
846 }
847
848 /* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
851
852 void
853 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
854 {
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
872 clear_complaints (&symfile_complaints, 0, verbo);
873 }
874
875 /* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
889
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
892 static struct objfile *
893 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
898 {
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
901 char *debugfile;
902 struct section_addr_info *orig_addrs = NULL;
903 struct cleanup *my_cleanups;
904 const char *name = bfd_get_filename (abfd);
905
906 my_cleanups = make_cleanup_bfd_close (abfd);
907
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
915 error (_("Not confirmed."));
916
917 objfile = allocate_objfile (abfd, flags);
918 discard_cleanups (my_cleanups);
919
920 if (addrs)
921 {
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
924 }
925
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
930 {
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
933 else
934 {
935 printf_unfiltered (_("Reading symbols from %s..."), name);
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
939 }
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
949 {
950 if (from_tty || info_verbose)
951 {
952 printf_unfiltered (_("expanding to full symbols..."));
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
957 for (psymtab = objfile->psymtabs;
958 psymtab != NULL;
959 psymtab = psymtab->next)
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
980
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
984
985 xfree (debugfile);
986 }
987
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
991 printf_filtered (_("(no debugging symbols found)"));
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
996 wrap_here ("");
997 }
998
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
1003 else
1004 {
1005 printf_unfiltered (_("done.\n"));
1006 }
1007 }
1008
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
1014 do_cleanups (my_cleanups);
1015
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
1023
1024 bfd_cache_close_all ();
1025 return (objfile);
1026 }
1027
1028
1029 /* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034 struct objfile *
1035 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038 {
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042 }
1043
1044
1045 /* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048 struct objfile *
1049 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051 {
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
1054 }
1055
1056
1057 /* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
1064
1065 void
1066 symbol_file_add_main (char *args, int from_tty)
1067 {
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069 }
1070
1071 static void
1072 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073 {
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1081 }
1082
1083 void
1084 symbol_file_clear (int from_tty)
1085 {
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && !query ("Discard symbol table from `%s'? ",
1089 symfile_objfile->name))
1090 error (_("Not confirmed."));
1091 free_all_objfiles ();
1092
1093 /* solib descriptors may have handles to objfiles. Since their
1094 storage has just been released, we'd better wipe the solib
1095 descriptors as well.
1096 */
1097 #if defined(SOLIB_RESTART)
1098 SOLIB_RESTART ();
1099 #endif
1100
1101 symfile_objfile = NULL;
1102 if (from_tty)
1103 printf_unfiltered (_("No symbol file now.\n"));
1104 }
1105
1106 static char *
1107 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1108 {
1109 asection *sect;
1110 bfd_size_type debuglink_size;
1111 unsigned long crc32;
1112 char *contents;
1113 int crc_offset;
1114 unsigned char *p;
1115
1116 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1117
1118 if (sect == NULL)
1119 return NULL;
1120
1121 debuglink_size = bfd_section_size (objfile->obfd, sect);
1122
1123 contents = xmalloc (debuglink_size);
1124 bfd_get_section_contents (objfile->obfd, sect, contents,
1125 (file_ptr)0, (bfd_size_type)debuglink_size);
1126
1127 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1128 crc_offset = strlen (contents) + 1;
1129 crc_offset = (crc_offset + 3) & ~3;
1130
1131 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1132
1133 *crc32_out = crc32;
1134 return contents;
1135 }
1136
1137 static int
1138 separate_debug_file_exists (const char *name, unsigned long crc)
1139 {
1140 unsigned long file_crc = 0;
1141 int fd;
1142 char buffer[8*1024];
1143 int count;
1144
1145 fd = open (name, O_RDONLY | O_BINARY);
1146 if (fd < 0)
1147 return 0;
1148
1149 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1150 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1151
1152 close (fd);
1153
1154 return crc == file_crc;
1155 }
1156
1157 static char *debug_file_directory = NULL;
1158 static void
1159 show_debug_file_directory (struct ui_file *file, int from_tty,
1160 struct cmd_list_element *c, const char *value)
1161 {
1162 fprintf_filtered (file, _("\
1163 The directory where separate debug symbols are searched for is \"%s\".\n"),
1164 value);
1165 }
1166
1167 #if ! defined (DEBUG_SUBDIRECTORY)
1168 #define DEBUG_SUBDIRECTORY ".debug"
1169 #endif
1170
1171 static char *
1172 find_separate_debug_file (struct objfile *objfile)
1173 {
1174 asection *sect;
1175 char *basename;
1176 char *dir;
1177 char *debugfile;
1178 char *name_copy;
1179 bfd_size_type debuglink_size;
1180 unsigned long crc32;
1181 int i;
1182
1183 basename = get_debug_link_info (objfile, &crc32);
1184
1185 if (basename == NULL)
1186 return NULL;
1187
1188 dir = xstrdup (objfile->name);
1189
1190 /* Strip off the final filename part, leaving the directory name,
1191 followed by a slash. Objfile names should always be absolute and
1192 tilde-expanded, so there should always be a slash in there
1193 somewhere. */
1194 for (i = strlen(dir) - 1; i >= 0; i--)
1195 {
1196 if (IS_DIR_SEPARATOR (dir[i]))
1197 break;
1198 }
1199 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1200 dir[i+1] = '\0';
1201
1202 debugfile = alloca (strlen (debug_file_directory) + 1
1203 + strlen (dir)
1204 + strlen (DEBUG_SUBDIRECTORY)
1205 + strlen ("/")
1206 + strlen (basename)
1207 + 1);
1208
1209 /* First try in the same directory as the original file. */
1210 strcpy (debugfile, dir);
1211 strcat (debugfile, basename);
1212
1213 if (separate_debug_file_exists (debugfile, crc32))
1214 {
1215 xfree (basename);
1216 xfree (dir);
1217 return xstrdup (debugfile);
1218 }
1219
1220 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1221 strcpy (debugfile, dir);
1222 strcat (debugfile, DEBUG_SUBDIRECTORY);
1223 strcat (debugfile, "/");
1224 strcat (debugfile, basename);
1225
1226 if (separate_debug_file_exists (debugfile, crc32))
1227 {
1228 xfree (basename);
1229 xfree (dir);
1230 return xstrdup (debugfile);
1231 }
1232
1233 /* Then try in the global debugfile directory. */
1234 strcpy (debugfile, debug_file_directory);
1235 strcat (debugfile, "/");
1236 strcat (debugfile, dir);
1237 strcat (debugfile, basename);
1238
1239 if (separate_debug_file_exists (debugfile, crc32))
1240 {
1241 xfree (basename);
1242 xfree (dir);
1243 return xstrdup (debugfile);
1244 }
1245
1246 xfree (basename);
1247 xfree (dir);
1248 return NULL;
1249 }
1250
1251
1252 /* This is the symbol-file command. Read the file, analyze its
1253 symbols, and add a struct symtab to a symtab list. The syntax of
1254 the command is rather bizarre:
1255
1256 1. The function buildargv implements various quoting conventions
1257 which are undocumented and have little or nothing in common with
1258 the way things are quoted (or not quoted) elsewhere in GDB.
1259
1260 2. Options are used, which are not generally used in GDB (perhaps
1261 "set mapped on", "set readnow on" would be better)
1262
1263 3. The order of options matters, which is contrary to GNU
1264 conventions (because it is confusing and inconvenient). */
1265
1266 void
1267 symbol_file_command (char *args, int from_tty)
1268 {
1269 dont_repeat ();
1270
1271 if (args == NULL)
1272 {
1273 symbol_file_clear (from_tty);
1274 }
1275 else
1276 {
1277 char **argv = buildargv (args);
1278 int flags = OBJF_USERLOADED;
1279 struct cleanup *cleanups;
1280 char *name = NULL;
1281
1282 if (argv == NULL)
1283 nomem (0);
1284
1285 cleanups = make_cleanup_freeargv (argv);
1286 while (*argv != NULL)
1287 {
1288 if (strcmp (*argv, "-readnow") == 0)
1289 flags |= OBJF_READNOW;
1290 else if (**argv == '-')
1291 error (_("unknown option `%s'"), *argv);
1292 else
1293 {
1294 symbol_file_add_main_1 (*argv, from_tty, flags);
1295 name = *argv;
1296 }
1297
1298 argv++;
1299 }
1300
1301 if (name == NULL)
1302 error (_("no symbol file name was specified"));
1303
1304 do_cleanups (cleanups);
1305 }
1306 }
1307
1308 /* Set the initial language.
1309
1310 FIXME: A better solution would be to record the language in the
1311 psymtab when reading partial symbols, and then use it (if known) to
1312 set the language. This would be a win for formats that encode the
1313 language in an easily discoverable place, such as DWARF. For
1314 stabs, we can jump through hoops looking for specially named
1315 symbols or try to intuit the language from the specific type of
1316 stabs we find, but we can't do that until later when we read in
1317 full symbols. */
1318
1319 static void
1320 set_initial_language (void)
1321 {
1322 struct partial_symtab *pst;
1323 enum language lang = language_unknown;
1324
1325 pst = find_main_psymtab ();
1326 if (pst != NULL)
1327 {
1328 if (pst->filename != NULL)
1329 lang = deduce_language_from_filename (pst->filename);
1330
1331 if (lang == language_unknown)
1332 {
1333 /* Make C the default language */
1334 lang = language_c;
1335 }
1336
1337 set_language (lang);
1338 expected_language = current_language; /* Don't warn the user. */
1339 }
1340 }
1341
1342 /* Open the file specified by NAME and hand it off to BFD for
1343 preliminary analysis. Return a newly initialized bfd *, which
1344 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1345 absolute). In case of trouble, error() is called. */
1346
1347 bfd *
1348 symfile_bfd_open (char *name)
1349 {
1350 bfd *sym_bfd;
1351 int desc;
1352 char *absolute_name;
1353
1354 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1355
1356 /* Look down path for it, allocate 2nd new malloc'd copy. */
1357 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1358 O_RDONLY | O_BINARY, 0, &absolute_name);
1359 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1360 if (desc < 0)
1361 {
1362 char *exename = alloca (strlen (name) + 5);
1363 strcat (strcpy (exename, name), ".exe");
1364 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1365 O_RDONLY | O_BINARY, 0, &absolute_name);
1366 }
1367 #endif
1368 if (desc < 0)
1369 {
1370 make_cleanup (xfree, name);
1371 perror_with_name (name);
1372 }
1373
1374 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1375 bfd. It'll be freed in free_objfile(). */
1376 xfree (name);
1377 name = absolute_name;
1378
1379 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1380 if (!sym_bfd)
1381 {
1382 close (desc);
1383 make_cleanup (xfree, name);
1384 error (_("\"%s\": can't open to read symbols: %s."), name,
1385 bfd_errmsg (bfd_get_error ()));
1386 }
1387 bfd_set_cacheable (sym_bfd, 1);
1388
1389 if (!bfd_check_format (sym_bfd, bfd_object))
1390 {
1391 /* FIXME: should be checking for errors from bfd_close (for one
1392 thing, on error it does not free all the storage associated
1393 with the bfd). */
1394 bfd_close (sym_bfd); /* This also closes desc. */
1395 make_cleanup (xfree, name);
1396 error (_("\"%s\": can't read symbols: %s."), name,
1397 bfd_errmsg (bfd_get_error ()));
1398 }
1399
1400 return sym_bfd;
1401 }
1402
1403 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1404 the section was not found. */
1405
1406 int
1407 get_section_index (struct objfile *objfile, char *section_name)
1408 {
1409 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1410
1411 if (sect)
1412 return sect->index;
1413 else
1414 return -1;
1415 }
1416
1417 /* Link SF into the global symtab_fns list. Called on startup by the
1418 _initialize routine in each object file format reader, to register
1419 information about each format the the reader is prepared to
1420 handle. */
1421
1422 void
1423 add_symtab_fns (struct sym_fns *sf)
1424 {
1425 sf->next = symtab_fns;
1426 symtab_fns = sf;
1427 }
1428
1429 /* Initialize OBJFILE to read symbols from its associated BFD. It
1430 either returns or calls error(). The result is an initialized
1431 struct sym_fns in the objfile structure, that contains cached
1432 information about the symbol file. */
1433
1434 static void
1435 find_sym_fns (struct objfile *objfile)
1436 {
1437 struct sym_fns *sf;
1438 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1439 char *our_target = bfd_get_target (objfile->obfd);
1440
1441 if (our_flavour == bfd_target_srec_flavour
1442 || our_flavour == bfd_target_ihex_flavour
1443 || our_flavour == bfd_target_tekhex_flavour)
1444 return; /* No symbols. */
1445
1446 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1447 {
1448 if (our_flavour == sf->sym_flavour)
1449 {
1450 objfile->sf = sf;
1451 return;
1452 }
1453 }
1454
1455 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1456 bfd_get_target (objfile->obfd));
1457 }
1458 \f
1459
1460 /* This function runs the load command of our current target. */
1461
1462 static void
1463 load_command (char *arg, int from_tty)
1464 {
1465 if (arg == NULL)
1466 arg = get_exec_file (1);
1467 target_load (arg, from_tty);
1468
1469 /* After re-loading the executable, we don't really know which
1470 overlays are mapped any more. */
1471 overlay_cache_invalid = 1;
1472 }
1473
1474 /* This version of "load" should be usable for any target. Currently
1475 it is just used for remote targets, not inftarg.c or core files,
1476 on the theory that only in that case is it useful.
1477
1478 Avoiding xmodem and the like seems like a win (a) because we don't have
1479 to worry about finding it, and (b) On VMS, fork() is very slow and so
1480 we don't want to run a subprocess. On the other hand, I'm not sure how
1481 performance compares. */
1482
1483 static int download_write_size = 512;
1484 static void
1485 show_download_write_size (struct ui_file *file, int from_tty,
1486 struct cmd_list_element *c, const char *value)
1487 {
1488 fprintf_filtered (file, _("\
1489 The write size used when downloading a program is %s.\n"),
1490 value);
1491 }
1492 static int validate_download = 0;
1493
1494 /* Callback service function for generic_load (bfd_map_over_sections). */
1495
1496 static void
1497 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1498 {
1499 bfd_size_type *sum = data;
1500
1501 *sum += bfd_get_section_size (asec);
1502 }
1503
1504 /* Opaque data for load_section_callback. */
1505 struct load_section_data {
1506 unsigned long load_offset;
1507 unsigned long write_count;
1508 unsigned long data_count;
1509 bfd_size_type total_size;
1510 };
1511
1512 /* Callback service function for generic_load (bfd_map_over_sections). */
1513
1514 static void
1515 load_section_callback (bfd *abfd, asection *asec, void *data)
1516 {
1517 struct load_section_data *args = data;
1518
1519 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1520 {
1521 bfd_size_type size = bfd_get_section_size (asec);
1522 if (size > 0)
1523 {
1524 char *buffer;
1525 struct cleanup *old_chain;
1526 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1527 bfd_size_type block_size;
1528 int err;
1529 const char *sect_name = bfd_get_section_name (abfd, asec);
1530 bfd_size_type sent;
1531
1532 if (download_write_size > 0 && size > download_write_size)
1533 block_size = download_write_size;
1534 else
1535 block_size = size;
1536
1537 buffer = xmalloc (size);
1538 old_chain = make_cleanup (xfree, buffer);
1539
1540 /* Is this really necessary? I guess it gives the user something
1541 to look at during a long download. */
1542 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1543 sect_name, paddr_nz (size), paddr_nz (lma));
1544
1545 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1546
1547 sent = 0;
1548 do
1549 {
1550 int len;
1551 bfd_size_type this_transfer = size - sent;
1552
1553 if (this_transfer >= block_size)
1554 this_transfer = block_size;
1555 len = target_write_memory_partial (lma, buffer,
1556 this_transfer, &err);
1557 if (err)
1558 break;
1559 if (validate_download)
1560 {
1561 /* Broken memories and broken monitors manifest
1562 themselves here when bring new computers to
1563 life. This doubles already slow downloads. */
1564 /* NOTE: cagney/1999-10-18: A more efficient
1565 implementation might add a verify_memory()
1566 method to the target vector and then use
1567 that. remote.c could implement that method
1568 using the ``qCRC'' packet. */
1569 char *check = xmalloc (len);
1570 struct cleanup *verify_cleanups =
1571 make_cleanup (xfree, check);
1572
1573 if (target_read_memory (lma, check, len) != 0)
1574 error (_("Download verify read failed at 0x%s"),
1575 paddr (lma));
1576 if (memcmp (buffer, check, len) != 0)
1577 error (_("Download verify compare failed at 0x%s"),
1578 paddr (lma));
1579 do_cleanups (verify_cleanups);
1580 }
1581 args->data_count += len;
1582 lma += len;
1583 buffer += len;
1584 args->write_count += 1;
1585 sent += len;
1586 if (quit_flag
1587 || (deprecated_ui_load_progress_hook != NULL
1588 && deprecated_ui_load_progress_hook (sect_name, sent)))
1589 error (_("Canceled the download"));
1590
1591 if (deprecated_show_load_progress != NULL)
1592 deprecated_show_load_progress (sect_name, sent, size,
1593 args->data_count,
1594 args->total_size);
1595 }
1596 while (sent < size);
1597
1598 if (err != 0)
1599 error (_("Memory access error while loading section %s."), sect_name);
1600
1601 do_cleanups (old_chain);
1602 }
1603 }
1604 }
1605
1606 void
1607 generic_load (char *args, int from_tty)
1608 {
1609 asection *s;
1610 bfd *loadfile_bfd;
1611 struct timeval start_time, end_time;
1612 char *filename;
1613 struct cleanup *old_cleanups;
1614 char *offptr;
1615 struct load_section_data cbdata;
1616 CORE_ADDR entry;
1617
1618 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1619 cbdata.write_count = 0; /* Number of writes needed. */
1620 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1621 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1622
1623 /* Parse the input argument - the user can specify a load offset as
1624 a second argument. */
1625 filename = xmalloc (strlen (args) + 1);
1626 old_cleanups = make_cleanup (xfree, filename);
1627 strcpy (filename, args);
1628 offptr = strchr (filename, ' ');
1629 if (offptr != NULL)
1630 {
1631 char *endptr;
1632
1633 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1634 if (offptr == endptr)
1635 error (_("Invalid download offset:%s."), offptr);
1636 *offptr = '\0';
1637 }
1638 else
1639 cbdata.load_offset = 0;
1640
1641 /* Open the file for loading. */
1642 loadfile_bfd = bfd_openr (filename, gnutarget);
1643 if (loadfile_bfd == NULL)
1644 {
1645 perror_with_name (filename);
1646 return;
1647 }
1648
1649 /* FIXME: should be checking for errors from bfd_close (for one thing,
1650 on error it does not free all the storage associated with the
1651 bfd). */
1652 make_cleanup_bfd_close (loadfile_bfd);
1653
1654 if (!bfd_check_format (loadfile_bfd, bfd_object))
1655 {
1656 error (_("\"%s\" is not an object file: %s"), filename,
1657 bfd_errmsg (bfd_get_error ()));
1658 }
1659
1660 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1661 (void *) &cbdata.total_size);
1662
1663 gettimeofday (&start_time, NULL);
1664
1665 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1666
1667 gettimeofday (&end_time, NULL);
1668
1669 entry = bfd_get_start_address (loadfile_bfd);
1670 ui_out_text (uiout, "Start address ");
1671 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1672 ui_out_text (uiout, ", load size ");
1673 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1674 ui_out_text (uiout, "\n");
1675 /* We were doing this in remote-mips.c, I suspect it is right
1676 for other targets too. */
1677 write_pc (entry);
1678
1679 /* FIXME: are we supposed to call symbol_file_add or not? According
1680 to a comment from remote-mips.c (where a call to symbol_file_add
1681 was commented out), making the call confuses GDB if more than one
1682 file is loaded in. Some targets do (e.g., remote-vx.c) but
1683 others don't (or didn't - perhaps they have all been deleted). */
1684
1685 print_transfer_performance (gdb_stdout, cbdata.data_count,
1686 cbdata.write_count, &start_time, &end_time);
1687
1688 do_cleanups (old_cleanups);
1689 }
1690
1691 /* Report how fast the transfer went. */
1692
1693 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1694 replaced by print_transfer_performance (with a very different
1695 function signature). */
1696
1697 void
1698 report_transfer_performance (unsigned long data_count, time_t start_time,
1699 time_t end_time)
1700 {
1701 struct timeval start, end;
1702
1703 start.tv_sec = start_time;
1704 start.tv_usec = 0;
1705 end.tv_sec = end_time;
1706 end.tv_usec = 0;
1707
1708 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1709 }
1710
1711 void
1712 print_transfer_performance (struct ui_file *stream,
1713 unsigned long data_count,
1714 unsigned long write_count,
1715 const struct timeval *start_time,
1716 const struct timeval *end_time)
1717 {
1718 unsigned long time_count;
1719
1720 /* Compute the elapsed time in milliseconds, as a tradeoff between
1721 accuracy and overflow. */
1722 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1723 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1724
1725 ui_out_text (uiout, "Transfer rate: ");
1726 if (time_count > 0)
1727 {
1728 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1729 1000 * (data_count * 8) / time_count);
1730 ui_out_text (uiout, " bits/sec");
1731 }
1732 else
1733 {
1734 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1735 ui_out_text (uiout, " bits in <1 sec");
1736 }
1737 if (write_count > 0)
1738 {
1739 ui_out_text (uiout, ", ");
1740 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1741 ui_out_text (uiout, " bytes/write");
1742 }
1743 ui_out_text (uiout, ".\n");
1744 }
1745
1746 /* This function allows the addition of incrementally linked object files.
1747 It does not modify any state in the target, only in the debugger. */
1748 /* Note: ezannoni 2000-04-13 This function/command used to have a
1749 special case syntax for the rombug target (Rombug is the boot
1750 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1751 rombug case, the user doesn't need to supply a text address,
1752 instead a call to target_link() (in target.c) would supply the
1753 value to use. We are now discontinuing this type of ad hoc syntax. */
1754
1755 static void
1756 add_symbol_file_command (char *args, int from_tty)
1757 {
1758 char *filename = NULL;
1759 int flags = OBJF_USERLOADED;
1760 char *arg;
1761 int expecting_option = 0;
1762 int section_index = 0;
1763 int argcnt = 0;
1764 int sec_num = 0;
1765 int i;
1766 int expecting_sec_name = 0;
1767 int expecting_sec_addr = 0;
1768
1769 struct sect_opt
1770 {
1771 char *name;
1772 char *value;
1773 };
1774
1775 struct section_addr_info *section_addrs;
1776 struct sect_opt *sect_opts = NULL;
1777 size_t num_sect_opts = 0;
1778 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1779
1780 num_sect_opts = 16;
1781 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1782 * sizeof (struct sect_opt));
1783
1784 dont_repeat ();
1785
1786 if (args == NULL)
1787 error (_("add-symbol-file takes a file name and an address"));
1788
1789 /* Make a copy of the string that we can safely write into. */
1790 args = xstrdup (args);
1791
1792 while (*args != '\000')
1793 {
1794 /* Any leading spaces? */
1795 while (isspace (*args))
1796 args++;
1797
1798 /* Point arg to the beginning of the argument. */
1799 arg = args;
1800
1801 /* Move args pointer over the argument. */
1802 while ((*args != '\000') && !isspace (*args))
1803 args++;
1804
1805 /* If there are more arguments, terminate arg and
1806 proceed past it. */
1807 if (*args != '\000')
1808 *args++ = '\000';
1809
1810 /* Now process the argument. */
1811 if (argcnt == 0)
1812 {
1813 /* The first argument is the file name. */
1814 filename = tilde_expand (arg);
1815 make_cleanup (xfree, filename);
1816 }
1817 else
1818 if (argcnt == 1)
1819 {
1820 /* The second argument is always the text address at which
1821 to load the program. */
1822 sect_opts[section_index].name = ".text";
1823 sect_opts[section_index].value = arg;
1824 if (++section_index > num_sect_opts)
1825 {
1826 num_sect_opts *= 2;
1827 sect_opts = ((struct sect_opt *)
1828 xrealloc (sect_opts,
1829 num_sect_opts
1830 * sizeof (struct sect_opt)));
1831 }
1832 }
1833 else
1834 {
1835 /* It's an option (starting with '-') or it's an argument
1836 to an option */
1837
1838 if (*arg == '-')
1839 {
1840 if (strcmp (arg, "-readnow") == 0)
1841 flags |= OBJF_READNOW;
1842 else if (strcmp (arg, "-s") == 0)
1843 {
1844 expecting_sec_name = 1;
1845 expecting_sec_addr = 1;
1846 }
1847 }
1848 else
1849 {
1850 if (expecting_sec_name)
1851 {
1852 sect_opts[section_index].name = arg;
1853 expecting_sec_name = 0;
1854 }
1855 else
1856 if (expecting_sec_addr)
1857 {
1858 sect_opts[section_index].value = arg;
1859 expecting_sec_addr = 0;
1860 if (++section_index > num_sect_opts)
1861 {
1862 num_sect_opts *= 2;
1863 sect_opts = ((struct sect_opt *)
1864 xrealloc (sect_opts,
1865 num_sect_opts
1866 * sizeof (struct sect_opt)));
1867 }
1868 }
1869 else
1870 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1871 }
1872 }
1873 argcnt++;
1874 }
1875
1876 /* Print the prompt for the query below. And save the arguments into
1877 a sect_addr_info structure to be passed around to other
1878 functions. We have to split this up into separate print
1879 statements because hex_string returns a local static
1880 string. */
1881
1882 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1883 section_addrs = alloc_section_addr_info (section_index);
1884 make_cleanup (xfree, section_addrs);
1885 for (i = 0; i < section_index; i++)
1886 {
1887 CORE_ADDR addr;
1888 char *val = sect_opts[i].value;
1889 char *sec = sect_opts[i].name;
1890
1891 addr = parse_and_eval_address (val);
1892
1893 /* Here we store the section offsets in the order they were
1894 entered on the command line. */
1895 section_addrs->other[sec_num].name = sec;
1896 section_addrs->other[sec_num].addr = addr;
1897 printf_unfiltered ("\t%s_addr = %s\n",
1898 sec, hex_string ((unsigned long)addr));
1899 sec_num++;
1900
1901 /* The object's sections are initialized when a
1902 call is made to build_objfile_section_table (objfile).
1903 This happens in reread_symbols.
1904 At this point, we don't know what file type this is,
1905 so we can't determine what section names are valid. */
1906 }
1907
1908 if (from_tty && (!query ("%s", "")))
1909 error (_("Not confirmed."));
1910
1911 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1912
1913 /* Getting new symbols may change our opinion about what is
1914 frameless. */
1915 reinit_frame_cache ();
1916 do_cleanups (my_cleanups);
1917 }
1918 \f
1919 static void
1920 add_shared_symbol_files_command (char *args, int from_tty)
1921 {
1922 #ifdef ADD_SHARED_SYMBOL_FILES
1923 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1924 #else
1925 error (_("This command is not available in this configuration of GDB."));
1926 #endif
1927 }
1928 \f
1929 /* Re-read symbols if a symbol-file has changed. */
1930 void
1931 reread_symbols (void)
1932 {
1933 struct objfile *objfile;
1934 long new_modtime;
1935 int reread_one = 0;
1936 struct stat new_statbuf;
1937 int res;
1938
1939 /* With the addition of shared libraries, this should be modified,
1940 the load time should be saved in the partial symbol tables, since
1941 different tables may come from different source files. FIXME.
1942 This routine should then walk down each partial symbol table
1943 and see if the symbol table that it originates from has been changed */
1944
1945 for (objfile = object_files; objfile; objfile = objfile->next)
1946 {
1947 if (objfile->obfd)
1948 {
1949 #ifdef DEPRECATED_IBM6000_TARGET
1950 /* If this object is from a shared library, then you should
1951 stat on the library name, not member name. */
1952
1953 if (objfile->obfd->my_archive)
1954 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1955 else
1956 #endif
1957 res = stat (objfile->name, &new_statbuf);
1958 if (res != 0)
1959 {
1960 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1961 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1962 objfile->name);
1963 continue;
1964 }
1965 new_modtime = new_statbuf.st_mtime;
1966 if (new_modtime != objfile->mtime)
1967 {
1968 struct cleanup *old_cleanups;
1969 struct section_offsets *offsets;
1970 int num_offsets;
1971 char *obfd_filename;
1972
1973 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1974 objfile->name);
1975
1976 /* There are various functions like symbol_file_add,
1977 symfile_bfd_open, syms_from_objfile, etc., which might
1978 appear to do what we want. But they have various other
1979 effects which we *don't* want. So we just do stuff
1980 ourselves. We don't worry about mapped files (for one thing,
1981 any mapped file will be out of date). */
1982
1983 /* If we get an error, blow away this objfile (not sure if
1984 that is the correct response for things like shared
1985 libraries). */
1986 old_cleanups = make_cleanup_free_objfile (objfile);
1987 /* We need to do this whenever any symbols go away. */
1988 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1989
1990 /* Clean up any state BFD has sitting around. We don't need
1991 to close the descriptor but BFD lacks a way of closing the
1992 BFD without closing the descriptor. */
1993 obfd_filename = bfd_get_filename (objfile->obfd);
1994 if (!bfd_close (objfile->obfd))
1995 error (_("Can't close BFD for %s: %s"), objfile->name,
1996 bfd_errmsg (bfd_get_error ()));
1997 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1998 if (objfile->obfd == NULL)
1999 error (_("Can't open %s to read symbols."), objfile->name);
2000 /* bfd_openr sets cacheable to true, which is what we want. */
2001 if (!bfd_check_format (objfile->obfd, bfd_object))
2002 error (_("Can't read symbols from %s: %s."), objfile->name,
2003 bfd_errmsg (bfd_get_error ()));
2004
2005 /* Save the offsets, we will nuke them with the rest of the
2006 objfile_obstack. */
2007 num_offsets = objfile->num_sections;
2008 offsets = ((struct section_offsets *)
2009 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2010 memcpy (offsets, objfile->section_offsets,
2011 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2012
2013 /* Nuke all the state that we will re-read. Much of the following
2014 code which sets things to NULL really is necessary to tell
2015 other parts of GDB that there is nothing currently there. */
2016
2017 /* FIXME: Do we have to free a whole linked list, or is this
2018 enough? */
2019 if (objfile->global_psymbols.list)
2020 xfree (objfile->global_psymbols.list);
2021 memset (&objfile->global_psymbols, 0,
2022 sizeof (objfile->global_psymbols));
2023 if (objfile->static_psymbols.list)
2024 xfree (objfile->static_psymbols.list);
2025 memset (&objfile->static_psymbols, 0,
2026 sizeof (objfile->static_psymbols));
2027
2028 /* Free the obstacks for non-reusable objfiles */
2029 bcache_xfree (objfile->psymbol_cache);
2030 objfile->psymbol_cache = bcache_xmalloc ();
2031 bcache_xfree (objfile->macro_cache);
2032 objfile->macro_cache = bcache_xmalloc ();
2033 if (objfile->demangled_names_hash != NULL)
2034 {
2035 htab_delete (objfile->demangled_names_hash);
2036 objfile->demangled_names_hash = NULL;
2037 }
2038 obstack_free (&objfile->objfile_obstack, 0);
2039 objfile->sections = NULL;
2040 objfile->symtabs = NULL;
2041 objfile->psymtabs = NULL;
2042 objfile->free_psymtabs = NULL;
2043 objfile->cp_namespace_symtab = NULL;
2044 objfile->msymbols = NULL;
2045 objfile->deprecated_sym_private = NULL;
2046 objfile->minimal_symbol_count = 0;
2047 memset (&objfile->msymbol_hash, 0,
2048 sizeof (objfile->msymbol_hash));
2049 memset (&objfile->msymbol_demangled_hash, 0,
2050 sizeof (objfile->msymbol_demangled_hash));
2051 objfile->fundamental_types = NULL;
2052 clear_objfile_data (objfile);
2053 if (objfile->sf != NULL)
2054 {
2055 (*objfile->sf->sym_finish) (objfile);
2056 }
2057
2058 /* We never make this a mapped file. */
2059 objfile->md = NULL;
2060 objfile->psymbol_cache = bcache_xmalloc ();
2061 objfile->macro_cache = bcache_xmalloc ();
2062 /* obstack_init also initializes the obstack so it is
2063 empty. We could use obstack_specify_allocation but
2064 gdb_obstack.h specifies the alloc/dealloc
2065 functions. */
2066 obstack_init (&objfile->objfile_obstack);
2067 if (build_objfile_section_table (objfile))
2068 {
2069 error (_("Can't find the file sections in `%s': %s"),
2070 objfile->name, bfd_errmsg (bfd_get_error ()));
2071 }
2072 terminate_minimal_symbol_table (objfile);
2073
2074 /* We use the same section offsets as from last time. I'm not
2075 sure whether that is always correct for shared libraries. */
2076 objfile->section_offsets = (struct section_offsets *)
2077 obstack_alloc (&objfile->objfile_obstack,
2078 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2079 memcpy (objfile->section_offsets, offsets,
2080 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2081 objfile->num_sections = num_offsets;
2082
2083 /* What the hell is sym_new_init for, anyway? The concept of
2084 distinguishing between the main file and additional files
2085 in this way seems rather dubious. */
2086 if (objfile == symfile_objfile)
2087 {
2088 (*objfile->sf->sym_new_init) (objfile);
2089 }
2090
2091 (*objfile->sf->sym_init) (objfile);
2092 clear_complaints (&symfile_complaints, 1, 1);
2093 /* The "mainline" parameter is a hideous hack; I think leaving it
2094 zero is OK since dbxread.c also does what it needs to do if
2095 objfile->global_psymbols.size is 0. */
2096 (*objfile->sf->sym_read) (objfile, 0);
2097 if (!have_partial_symbols () && !have_full_symbols ())
2098 {
2099 wrap_here ("");
2100 printf_unfiltered (_("(no debugging symbols found)\n"));
2101 wrap_here ("");
2102 }
2103 objfile->flags |= OBJF_SYMS;
2104
2105 /* We're done reading the symbol file; finish off complaints. */
2106 clear_complaints (&symfile_complaints, 0, 1);
2107
2108 /* Getting new symbols may change our opinion about what is
2109 frameless. */
2110
2111 reinit_frame_cache ();
2112
2113 /* Discard cleanups as symbol reading was successful. */
2114 discard_cleanups (old_cleanups);
2115
2116 /* If the mtime has changed between the time we set new_modtime
2117 and now, we *want* this to be out of date, so don't call stat
2118 again now. */
2119 objfile->mtime = new_modtime;
2120 reread_one = 1;
2121 reread_separate_symbols (objfile);
2122 }
2123 }
2124 }
2125
2126 if (reread_one)
2127 {
2128 clear_symtab_users ();
2129 /* At least one objfile has changed, so we can consider that
2130 the executable we're debugging has changed too. */
2131 observer_notify_executable_changed (NULL);
2132 }
2133
2134 }
2135
2136
2137 /* Handle separate debug info for OBJFILE, which has just been
2138 re-read:
2139 - If we had separate debug info before, but now we don't, get rid
2140 of the separated objfile.
2141 - If we didn't have separated debug info before, but now we do,
2142 read in the new separated debug info file.
2143 - If the debug link points to a different file, toss the old one
2144 and read the new one.
2145 This function does *not* handle the case where objfile is still
2146 using the same separate debug info file, but that file's timestamp
2147 has changed. That case should be handled by the loop in
2148 reread_symbols already. */
2149 static void
2150 reread_separate_symbols (struct objfile *objfile)
2151 {
2152 char *debug_file;
2153 unsigned long crc32;
2154
2155 /* Does the updated objfile's debug info live in a
2156 separate file? */
2157 debug_file = find_separate_debug_file (objfile);
2158
2159 if (objfile->separate_debug_objfile)
2160 {
2161 /* There are two cases where we need to get rid of
2162 the old separated debug info objfile:
2163 - if the new primary objfile doesn't have
2164 separated debug info, or
2165 - if the new primary objfile has separate debug
2166 info, but it's under a different filename.
2167
2168 If the old and new objfiles both have separate
2169 debug info, under the same filename, then we're
2170 okay --- if the separated file's contents have
2171 changed, we will have caught that when we
2172 visited it in this function's outermost
2173 loop. */
2174 if (! debug_file
2175 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2176 free_objfile (objfile->separate_debug_objfile);
2177 }
2178
2179 /* If the new objfile has separate debug info, and we
2180 haven't loaded it already, do so now. */
2181 if (debug_file
2182 && ! objfile->separate_debug_objfile)
2183 {
2184 /* Use the same section offset table as objfile itself.
2185 Preserve the flags from objfile that make sense. */
2186 objfile->separate_debug_objfile
2187 = (symbol_file_add_with_addrs_or_offsets
2188 (symfile_bfd_open (debug_file),
2189 info_verbose, /* from_tty: Don't override the default. */
2190 0, /* No addr table. */
2191 objfile->section_offsets, objfile->num_sections,
2192 0, /* Not mainline. See comments about this above. */
2193 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2194 | OBJF_USERLOADED)));
2195 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2196 = objfile;
2197 }
2198 }
2199
2200
2201 \f
2202
2203
2204 typedef struct
2205 {
2206 char *ext;
2207 enum language lang;
2208 }
2209 filename_language;
2210
2211 static filename_language *filename_language_table;
2212 static int fl_table_size, fl_table_next;
2213
2214 static void
2215 add_filename_language (char *ext, enum language lang)
2216 {
2217 if (fl_table_next >= fl_table_size)
2218 {
2219 fl_table_size += 10;
2220 filename_language_table =
2221 xrealloc (filename_language_table,
2222 fl_table_size * sizeof (*filename_language_table));
2223 }
2224
2225 filename_language_table[fl_table_next].ext = xstrdup (ext);
2226 filename_language_table[fl_table_next].lang = lang;
2227 fl_table_next++;
2228 }
2229
2230 static char *ext_args;
2231 static void
2232 show_ext_args (struct ui_file *file, int from_tty,
2233 struct cmd_list_element *c, const char *value)
2234 {
2235 fprintf_filtered (file, _("\
2236 Mapping between filename extension and source language is \"%s\".\n"),
2237 value);
2238 }
2239
2240 static void
2241 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2242 {
2243 int i;
2244 char *cp = ext_args;
2245 enum language lang;
2246
2247 /* First arg is filename extension, starting with '.' */
2248 if (*cp != '.')
2249 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2250
2251 /* Find end of first arg. */
2252 while (*cp && !isspace (*cp))
2253 cp++;
2254
2255 if (*cp == '\0')
2256 error (_("'%s': two arguments required -- filename extension and language"),
2257 ext_args);
2258
2259 /* Null-terminate first arg */
2260 *cp++ = '\0';
2261
2262 /* Find beginning of second arg, which should be a source language. */
2263 while (*cp && isspace (*cp))
2264 cp++;
2265
2266 if (*cp == '\0')
2267 error (_("'%s': two arguments required -- filename extension and language"),
2268 ext_args);
2269
2270 /* Lookup the language from among those we know. */
2271 lang = language_enum (cp);
2272
2273 /* Now lookup the filename extension: do we already know it? */
2274 for (i = 0; i < fl_table_next; i++)
2275 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2276 break;
2277
2278 if (i >= fl_table_next)
2279 {
2280 /* new file extension */
2281 add_filename_language (ext_args, lang);
2282 }
2283 else
2284 {
2285 /* redefining a previously known filename extension */
2286
2287 /* if (from_tty) */
2288 /* query ("Really make files of type %s '%s'?", */
2289 /* ext_args, language_str (lang)); */
2290
2291 xfree (filename_language_table[i].ext);
2292 filename_language_table[i].ext = xstrdup (ext_args);
2293 filename_language_table[i].lang = lang;
2294 }
2295 }
2296
2297 static void
2298 info_ext_lang_command (char *args, int from_tty)
2299 {
2300 int i;
2301
2302 printf_filtered (_("Filename extensions and the languages they represent:"));
2303 printf_filtered ("\n\n");
2304 for (i = 0; i < fl_table_next; i++)
2305 printf_filtered ("\t%s\t- %s\n",
2306 filename_language_table[i].ext,
2307 language_str (filename_language_table[i].lang));
2308 }
2309
2310 static void
2311 init_filename_language_table (void)
2312 {
2313 if (fl_table_size == 0) /* protect against repetition */
2314 {
2315 fl_table_size = 20;
2316 fl_table_next = 0;
2317 filename_language_table =
2318 xmalloc (fl_table_size * sizeof (*filename_language_table));
2319 add_filename_language (".c", language_c);
2320 add_filename_language (".C", language_cplus);
2321 add_filename_language (".cc", language_cplus);
2322 add_filename_language (".cp", language_cplus);
2323 add_filename_language (".cpp", language_cplus);
2324 add_filename_language (".cxx", language_cplus);
2325 add_filename_language (".c++", language_cplus);
2326 add_filename_language (".java", language_java);
2327 add_filename_language (".class", language_java);
2328 add_filename_language (".m", language_objc);
2329 add_filename_language (".f", language_fortran);
2330 add_filename_language (".F", language_fortran);
2331 add_filename_language (".s", language_asm);
2332 add_filename_language (".S", language_asm);
2333 add_filename_language (".pas", language_pascal);
2334 add_filename_language (".p", language_pascal);
2335 add_filename_language (".pp", language_pascal);
2336 add_filename_language (".adb", language_ada);
2337 add_filename_language (".ads", language_ada);
2338 add_filename_language (".a", language_ada);
2339 add_filename_language (".ada", language_ada);
2340 }
2341 }
2342
2343 enum language
2344 deduce_language_from_filename (char *filename)
2345 {
2346 int i;
2347 char *cp;
2348
2349 if (filename != NULL)
2350 if ((cp = strrchr (filename, '.')) != NULL)
2351 for (i = 0; i < fl_table_next; i++)
2352 if (strcmp (cp, filename_language_table[i].ext) == 0)
2353 return filename_language_table[i].lang;
2354
2355 return language_unknown;
2356 }
2357 \f
2358 /* allocate_symtab:
2359
2360 Allocate and partly initialize a new symbol table. Return a pointer
2361 to it. error() if no space.
2362
2363 Caller must set these fields:
2364 LINETABLE(symtab)
2365 symtab->blockvector
2366 symtab->dirname
2367 symtab->free_code
2368 symtab->free_ptr
2369 possibly free_named_symtabs (symtab->filename);
2370 */
2371
2372 struct symtab *
2373 allocate_symtab (char *filename, struct objfile *objfile)
2374 {
2375 struct symtab *symtab;
2376
2377 symtab = (struct symtab *)
2378 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2379 memset (symtab, 0, sizeof (*symtab));
2380 symtab->filename = obsavestring (filename, strlen (filename),
2381 &objfile->objfile_obstack);
2382 symtab->fullname = NULL;
2383 symtab->language = deduce_language_from_filename (filename);
2384 symtab->debugformat = obsavestring ("unknown", 7,
2385 &objfile->objfile_obstack);
2386
2387 /* Hook it to the objfile it comes from */
2388
2389 symtab->objfile = objfile;
2390 symtab->next = objfile->symtabs;
2391 objfile->symtabs = symtab;
2392
2393 /* FIXME: This should go away. It is only defined for the Z8000,
2394 and the Z8000 definition of this macro doesn't have anything to
2395 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2396 here for convenience. */
2397 #ifdef INIT_EXTRA_SYMTAB_INFO
2398 INIT_EXTRA_SYMTAB_INFO (symtab);
2399 #endif
2400
2401 return (symtab);
2402 }
2403
2404 struct partial_symtab *
2405 allocate_psymtab (char *filename, struct objfile *objfile)
2406 {
2407 struct partial_symtab *psymtab;
2408
2409 if (objfile->free_psymtabs)
2410 {
2411 psymtab = objfile->free_psymtabs;
2412 objfile->free_psymtabs = psymtab->next;
2413 }
2414 else
2415 psymtab = (struct partial_symtab *)
2416 obstack_alloc (&objfile->objfile_obstack,
2417 sizeof (struct partial_symtab));
2418
2419 memset (psymtab, 0, sizeof (struct partial_symtab));
2420 psymtab->filename = obsavestring (filename, strlen (filename),
2421 &objfile->objfile_obstack);
2422 psymtab->symtab = NULL;
2423
2424 /* Prepend it to the psymtab list for the objfile it belongs to.
2425 Psymtabs are searched in most recent inserted -> least recent
2426 inserted order. */
2427
2428 psymtab->objfile = objfile;
2429 psymtab->next = objfile->psymtabs;
2430 objfile->psymtabs = psymtab;
2431 #if 0
2432 {
2433 struct partial_symtab **prev_pst;
2434 psymtab->objfile = objfile;
2435 psymtab->next = NULL;
2436 prev_pst = &(objfile->psymtabs);
2437 while ((*prev_pst) != NULL)
2438 prev_pst = &((*prev_pst)->next);
2439 (*prev_pst) = psymtab;
2440 }
2441 #endif
2442
2443 return (psymtab);
2444 }
2445
2446 void
2447 discard_psymtab (struct partial_symtab *pst)
2448 {
2449 struct partial_symtab **prev_pst;
2450
2451 /* From dbxread.c:
2452 Empty psymtabs happen as a result of header files which don't
2453 have any symbols in them. There can be a lot of them. But this
2454 check is wrong, in that a psymtab with N_SLINE entries but
2455 nothing else is not empty, but we don't realize that. Fixing
2456 that without slowing things down might be tricky. */
2457
2458 /* First, snip it out of the psymtab chain */
2459
2460 prev_pst = &(pst->objfile->psymtabs);
2461 while ((*prev_pst) != pst)
2462 prev_pst = &((*prev_pst)->next);
2463 (*prev_pst) = pst->next;
2464
2465 /* Next, put it on a free list for recycling */
2466
2467 pst->next = pst->objfile->free_psymtabs;
2468 pst->objfile->free_psymtabs = pst;
2469 }
2470 \f
2471
2472 /* Reset all data structures in gdb which may contain references to symbol
2473 table data. */
2474
2475 void
2476 clear_symtab_users (void)
2477 {
2478 /* Someday, we should do better than this, by only blowing away
2479 the things that really need to be blown. */
2480
2481 /* Clear the "current" symtab first, because it is no longer valid.
2482 breakpoint_re_set may try to access the current symtab. */
2483 clear_current_source_symtab_and_line ();
2484
2485 clear_value_history ();
2486 clear_displays ();
2487 clear_internalvars ();
2488 breakpoint_re_set ();
2489 set_default_breakpoint (0, 0, 0, 0);
2490 clear_pc_function_cache ();
2491 if (deprecated_target_new_objfile_hook)
2492 deprecated_target_new_objfile_hook (NULL);
2493 }
2494
2495 static void
2496 clear_symtab_users_cleanup (void *ignore)
2497 {
2498 clear_symtab_users ();
2499 }
2500
2501 /* clear_symtab_users_once:
2502
2503 This function is run after symbol reading, or from a cleanup.
2504 If an old symbol table was obsoleted, the old symbol table
2505 has been blown away, but the other GDB data structures that may
2506 reference it have not yet been cleared or re-directed. (The old
2507 symtab was zapped, and the cleanup queued, in free_named_symtab()
2508 below.)
2509
2510 This function can be queued N times as a cleanup, or called
2511 directly; it will do all the work the first time, and then will be a
2512 no-op until the next time it is queued. This works by bumping a
2513 counter at queueing time. Much later when the cleanup is run, or at
2514 the end of symbol processing (in case the cleanup is discarded), if
2515 the queued count is greater than the "done-count", we do the work
2516 and set the done-count to the queued count. If the queued count is
2517 less than or equal to the done-count, we just ignore the call. This
2518 is needed because reading a single .o file will often replace many
2519 symtabs (one per .h file, for example), and we don't want to reset
2520 the breakpoints N times in the user's face.
2521
2522 The reason we both queue a cleanup, and call it directly after symbol
2523 reading, is because the cleanup protects us in case of errors, but is
2524 discarded if symbol reading is successful. */
2525
2526 #if 0
2527 /* FIXME: As free_named_symtabs is currently a big noop this function
2528 is no longer needed. */
2529 static void clear_symtab_users_once (void);
2530
2531 static int clear_symtab_users_queued;
2532 static int clear_symtab_users_done;
2533
2534 static void
2535 clear_symtab_users_once (void)
2536 {
2537 /* Enforce once-per-`do_cleanups'-semantics */
2538 if (clear_symtab_users_queued <= clear_symtab_users_done)
2539 return;
2540 clear_symtab_users_done = clear_symtab_users_queued;
2541
2542 clear_symtab_users ();
2543 }
2544 #endif
2545
2546 /* Delete the specified psymtab, and any others that reference it. */
2547
2548 static void
2549 cashier_psymtab (struct partial_symtab *pst)
2550 {
2551 struct partial_symtab *ps, *pprev = NULL;
2552 int i;
2553
2554 /* Find its previous psymtab in the chain */
2555 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2556 {
2557 if (ps == pst)
2558 break;
2559 pprev = ps;
2560 }
2561
2562 if (ps)
2563 {
2564 /* Unhook it from the chain. */
2565 if (ps == pst->objfile->psymtabs)
2566 pst->objfile->psymtabs = ps->next;
2567 else
2568 pprev->next = ps->next;
2569
2570 /* FIXME, we can't conveniently deallocate the entries in the
2571 partial_symbol lists (global_psymbols/static_psymbols) that
2572 this psymtab points to. These just take up space until all
2573 the psymtabs are reclaimed. Ditto the dependencies list and
2574 filename, which are all in the objfile_obstack. */
2575
2576 /* We need to cashier any psymtab that has this one as a dependency... */
2577 again:
2578 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2579 {
2580 for (i = 0; i < ps->number_of_dependencies; i++)
2581 {
2582 if (ps->dependencies[i] == pst)
2583 {
2584 cashier_psymtab (ps);
2585 goto again; /* Must restart, chain has been munged. */
2586 }
2587 }
2588 }
2589 }
2590 }
2591
2592 /* If a symtab or psymtab for filename NAME is found, free it along
2593 with any dependent breakpoints, displays, etc.
2594 Used when loading new versions of object modules with the "add-file"
2595 command. This is only called on the top-level symtab or psymtab's name;
2596 it is not called for subsidiary files such as .h files.
2597
2598 Return value is 1 if we blew away the environment, 0 if not.
2599 FIXME. The return value appears to never be used.
2600
2601 FIXME. I think this is not the best way to do this. We should
2602 work on being gentler to the environment while still cleaning up
2603 all stray pointers into the freed symtab. */
2604
2605 int
2606 free_named_symtabs (char *name)
2607 {
2608 #if 0
2609 /* FIXME: With the new method of each objfile having it's own
2610 psymtab list, this function needs serious rethinking. In particular,
2611 why was it ever necessary to toss psymtabs with specific compilation
2612 unit filenames, as opposed to all psymtabs from a particular symbol
2613 file? -- fnf
2614 Well, the answer is that some systems permit reloading of particular
2615 compilation units. We want to blow away any old info about these
2616 compilation units, regardless of which objfiles they arrived in. --gnu. */
2617
2618 struct symtab *s;
2619 struct symtab *prev;
2620 struct partial_symtab *ps;
2621 struct blockvector *bv;
2622 int blewit = 0;
2623
2624 /* We only wack things if the symbol-reload switch is set. */
2625 if (!symbol_reloading)
2626 return 0;
2627
2628 /* Some symbol formats have trouble providing file names... */
2629 if (name == 0 || *name == '\0')
2630 return 0;
2631
2632 /* Look for a psymtab with the specified name. */
2633
2634 again2:
2635 for (ps = partial_symtab_list; ps; ps = ps->next)
2636 {
2637 if (strcmp (name, ps->filename) == 0)
2638 {
2639 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2640 goto again2; /* Must restart, chain has been munged */
2641 }
2642 }
2643
2644 /* Look for a symtab with the specified name. */
2645
2646 for (s = symtab_list; s; s = s->next)
2647 {
2648 if (strcmp (name, s->filename) == 0)
2649 break;
2650 prev = s;
2651 }
2652
2653 if (s)
2654 {
2655 if (s == symtab_list)
2656 symtab_list = s->next;
2657 else
2658 prev->next = s->next;
2659
2660 /* For now, queue a delete for all breakpoints, displays, etc., whether
2661 or not they depend on the symtab being freed. This should be
2662 changed so that only those data structures affected are deleted. */
2663
2664 /* But don't delete anything if the symtab is empty.
2665 This test is necessary due to a bug in "dbxread.c" that
2666 causes empty symtabs to be created for N_SO symbols that
2667 contain the pathname of the object file. (This problem
2668 has been fixed in GDB 3.9x). */
2669
2670 bv = BLOCKVECTOR (s);
2671 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2672 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2673 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2674 {
2675 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2676 name);
2677 clear_symtab_users_queued++;
2678 make_cleanup (clear_symtab_users_once, 0);
2679 blewit = 1;
2680 }
2681 else
2682 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2683 name);
2684
2685 free_symtab (s);
2686 }
2687 else
2688 {
2689 /* It is still possible that some breakpoints will be affected
2690 even though no symtab was found, since the file might have
2691 been compiled without debugging, and hence not be associated
2692 with a symtab. In order to handle this correctly, we would need
2693 to keep a list of text address ranges for undebuggable files.
2694 For now, we do nothing, since this is a fairly obscure case. */
2695 ;
2696 }
2697
2698 /* FIXME, what about the minimal symbol table? */
2699 return blewit;
2700 #else
2701 return (0);
2702 #endif
2703 }
2704 \f
2705 /* Allocate and partially fill a partial symtab. It will be
2706 completely filled at the end of the symbol list.
2707
2708 FILENAME is the name of the symbol-file we are reading from. */
2709
2710 struct partial_symtab *
2711 start_psymtab_common (struct objfile *objfile,
2712 struct section_offsets *section_offsets, char *filename,
2713 CORE_ADDR textlow, struct partial_symbol **global_syms,
2714 struct partial_symbol **static_syms)
2715 {
2716 struct partial_symtab *psymtab;
2717
2718 psymtab = allocate_psymtab (filename, objfile);
2719 psymtab->section_offsets = section_offsets;
2720 psymtab->textlow = textlow;
2721 psymtab->texthigh = psymtab->textlow; /* default */
2722 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2723 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2724 return (psymtab);
2725 }
2726 \f
2727 /* Add a symbol with a long value to a psymtab.
2728 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2729 Return the partial symbol that has been added. */
2730
2731 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2732 symbol is so that callers can get access to the symbol's demangled
2733 name, which they don't have any cheap way to determine otherwise.
2734 (Currenly, dwarf2read.c is the only file who uses that information,
2735 though it's possible that other readers might in the future.)
2736 Elena wasn't thrilled about that, and I don't blame her, but we
2737 couldn't come up with a better way to get that information. If
2738 it's needed in other situations, we could consider breaking up
2739 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2740 cache. */
2741
2742 const struct partial_symbol *
2743 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2744 enum address_class class,
2745 struct psymbol_allocation_list *list, long val, /* Value as a long */
2746 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2747 enum language language, struct objfile *objfile)
2748 {
2749 struct partial_symbol *psym;
2750 char *buf = alloca (namelength + 1);
2751 /* psymbol is static so that there will be no uninitialized gaps in the
2752 structure which might contain random data, causing cache misses in
2753 bcache. */
2754 static struct partial_symbol psymbol;
2755
2756 /* Create local copy of the partial symbol */
2757 memcpy (buf, name, namelength);
2758 buf[namelength] = '\0';
2759 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2760 if (val != 0)
2761 {
2762 SYMBOL_VALUE (&psymbol) = val;
2763 }
2764 else
2765 {
2766 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2767 }
2768 SYMBOL_SECTION (&psymbol) = 0;
2769 SYMBOL_LANGUAGE (&psymbol) = language;
2770 PSYMBOL_DOMAIN (&psymbol) = domain;
2771 PSYMBOL_CLASS (&psymbol) = class;
2772
2773 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2774
2775 /* Stash the partial symbol away in the cache */
2776 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2777 objfile->psymbol_cache);
2778
2779 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2780 if (list->next >= list->list + list->size)
2781 {
2782 extend_psymbol_list (list, objfile);
2783 }
2784 *list->next++ = psym;
2785 OBJSTAT (objfile, n_psyms++);
2786
2787 return psym;
2788 }
2789
2790 /* Add a symbol with a long value to a psymtab. This differs from
2791 * add_psymbol_to_list above in taking both a mangled and a demangled
2792 * name. */
2793
2794 void
2795 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2796 int dem_namelength, domain_enum domain,
2797 enum address_class class,
2798 struct psymbol_allocation_list *list, long val, /* Value as a long */
2799 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2800 enum language language,
2801 struct objfile *objfile)
2802 {
2803 struct partial_symbol *psym;
2804 char *buf = alloca (namelength + 1);
2805 /* psymbol is static so that there will be no uninitialized gaps in the
2806 structure which might contain random data, causing cache misses in
2807 bcache. */
2808 static struct partial_symbol psymbol;
2809
2810 /* Create local copy of the partial symbol */
2811
2812 memcpy (buf, name, namelength);
2813 buf[namelength] = '\0';
2814 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2815 objfile->psymbol_cache);
2816
2817 buf = alloca (dem_namelength + 1);
2818 memcpy (buf, dem_name, dem_namelength);
2819 buf[dem_namelength] = '\0';
2820
2821 switch (language)
2822 {
2823 case language_c:
2824 case language_cplus:
2825 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2826 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2827 break;
2828 /* FIXME What should be done for the default case? Ignoring for now. */
2829 }
2830
2831 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2832 if (val != 0)
2833 {
2834 SYMBOL_VALUE (&psymbol) = val;
2835 }
2836 else
2837 {
2838 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2839 }
2840 SYMBOL_SECTION (&psymbol) = 0;
2841 SYMBOL_LANGUAGE (&psymbol) = language;
2842 PSYMBOL_DOMAIN (&psymbol) = domain;
2843 PSYMBOL_CLASS (&psymbol) = class;
2844 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2845
2846 /* Stash the partial symbol away in the cache */
2847 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2848 objfile->psymbol_cache);
2849
2850 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2851 if (list->next >= list->list + list->size)
2852 {
2853 extend_psymbol_list (list, objfile);
2854 }
2855 *list->next++ = psym;
2856 OBJSTAT (objfile, n_psyms++);
2857 }
2858
2859 /* Initialize storage for partial symbols. */
2860
2861 void
2862 init_psymbol_list (struct objfile *objfile, int total_symbols)
2863 {
2864 /* Free any previously allocated psymbol lists. */
2865
2866 if (objfile->global_psymbols.list)
2867 {
2868 xfree (objfile->global_psymbols.list);
2869 }
2870 if (objfile->static_psymbols.list)
2871 {
2872 xfree (objfile->static_psymbols.list);
2873 }
2874
2875 /* Current best guess is that approximately a twentieth
2876 of the total symbols (in a debugging file) are global or static
2877 oriented symbols */
2878
2879 objfile->global_psymbols.size = total_symbols / 10;
2880 objfile->static_psymbols.size = total_symbols / 10;
2881
2882 if (objfile->global_psymbols.size > 0)
2883 {
2884 objfile->global_psymbols.next =
2885 objfile->global_psymbols.list = (struct partial_symbol **)
2886 xmalloc ((objfile->global_psymbols.size
2887 * sizeof (struct partial_symbol *)));
2888 }
2889 if (objfile->static_psymbols.size > 0)
2890 {
2891 objfile->static_psymbols.next =
2892 objfile->static_psymbols.list = (struct partial_symbol **)
2893 xmalloc ((objfile->static_psymbols.size
2894 * sizeof (struct partial_symbol *)));
2895 }
2896 }
2897
2898 /* OVERLAYS:
2899 The following code implements an abstraction for debugging overlay sections.
2900
2901 The target model is as follows:
2902 1) The gnu linker will permit multiple sections to be mapped into the
2903 same VMA, each with its own unique LMA (or load address).
2904 2) It is assumed that some runtime mechanism exists for mapping the
2905 sections, one by one, from the load address into the VMA address.
2906 3) This code provides a mechanism for gdb to keep track of which
2907 sections should be considered to be mapped from the VMA to the LMA.
2908 This information is used for symbol lookup, and memory read/write.
2909 For instance, if a section has been mapped then its contents
2910 should be read from the VMA, otherwise from the LMA.
2911
2912 Two levels of debugger support for overlays are available. One is
2913 "manual", in which the debugger relies on the user to tell it which
2914 overlays are currently mapped. This level of support is
2915 implemented entirely in the core debugger, and the information about
2916 whether a section is mapped is kept in the objfile->obj_section table.
2917
2918 The second level of support is "automatic", and is only available if
2919 the target-specific code provides functionality to read the target's
2920 overlay mapping table, and translate its contents for the debugger
2921 (by updating the mapped state information in the obj_section tables).
2922
2923 The interface is as follows:
2924 User commands:
2925 overlay map <name> -- tell gdb to consider this section mapped
2926 overlay unmap <name> -- tell gdb to consider this section unmapped
2927 overlay list -- list the sections that GDB thinks are mapped
2928 overlay read-target -- get the target's state of what's mapped
2929 overlay off/manual/auto -- set overlay debugging state
2930 Functional interface:
2931 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2932 section, return that section.
2933 find_pc_overlay(pc): find any overlay section that contains
2934 the pc, either in its VMA or its LMA
2935 overlay_is_mapped(sect): true if overlay is marked as mapped
2936 section_is_overlay(sect): true if section's VMA != LMA
2937 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2938 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2939 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2940 overlay_mapped_address(...): map an address from section's LMA to VMA
2941 overlay_unmapped_address(...): map an address from section's VMA to LMA
2942 symbol_overlayed_address(...): Return a "current" address for symbol:
2943 either in VMA or LMA depending on whether
2944 the symbol's section is currently mapped
2945 */
2946
2947 /* Overlay debugging state: */
2948
2949 enum overlay_debugging_state overlay_debugging = ovly_off;
2950 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2951
2952 /* Target vector for refreshing overlay mapped state */
2953 static void simple_overlay_update (struct obj_section *);
2954 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2955
2956 /* Function: section_is_overlay (SECTION)
2957 Returns true if SECTION has VMA not equal to LMA, ie.
2958 SECTION is loaded at an address different from where it will "run". */
2959
2960 int
2961 section_is_overlay (asection *section)
2962 {
2963 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2964
2965 if (overlay_debugging)
2966 if (section && section->lma != 0 &&
2967 section->vma != section->lma)
2968 return 1;
2969
2970 return 0;
2971 }
2972
2973 /* Function: overlay_invalidate_all (void)
2974 Invalidate the mapped state of all overlay sections (mark it as stale). */
2975
2976 static void
2977 overlay_invalidate_all (void)
2978 {
2979 struct objfile *objfile;
2980 struct obj_section *sect;
2981
2982 ALL_OBJSECTIONS (objfile, sect)
2983 if (section_is_overlay (sect->the_bfd_section))
2984 sect->ovly_mapped = -1;
2985 }
2986
2987 /* Function: overlay_is_mapped (SECTION)
2988 Returns true if section is an overlay, and is currently mapped.
2989 Private: public access is thru function section_is_mapped.
2990
2991 Access to the ovly_mapped flag is restricted to this function, so
2992 that we can do automatic update. If the global flag
2993 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2994 overlay_invalidate_all. If the mapped state of the particular
2995 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2996
2997 static int
2998 overlay_is_mapped (struct obj_section *osect)
2999 {
3000 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3001 return 0;
3002
3003 switch (overlay_debugging)
3004 {
3005 default:
3006 case ovly_off:
3007 return 0; /* overlay debugging off */
3008 case ovly_auto: /* overlay debugging automatic */
3009 /* Unles there is a target_overlay_update function,
3010 there's really nothing useful to do here (can't really go auto) */
3011 if (target_overlay_update)
3012 {
3013 if (overlay_cache_invalid)
3014 {
3015 overlay_invalidate_all ();
3016 overlay_cache_invalid = 0;
3017 }
3018 if (osect->ovly_mapped == -1)
3019 (*target_overlay_update) (osect);
3020 }
3021 /* fall thru to manual case */
3022 case ovly_on: /* overlay debugging manual */
3023 return osect->ovly_mapped == 1;
3024 }
3025 }
3026
3027 /* Function: section_is_mapped
3028 Returns true if section is an overlay, and is currently mapped. */
3029
3030 int
3031 section_is_mapped (asection *section)
3032 {
3033 struct objfile *objfile;
3034 struct obj_section *osect;
3035
3036 if (overlay_debugging)
3037 if (section && section_is_overlay (section))
3038 ALL_OBJSECTIONS (objfile, osect)
3039 if (osect->the_bfd_section == section)
3040 return overlay_is_mapped (osect);
3041
3042 return 0;
3043 }
3044
3045 /* Function: pc_in_unmapped_range
3046 If PC falls into the lma range of SECTION, return true, else false. */
3047
3048 CORE_ADDR
3049 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3050 {
3051 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3052
3053 int size;
3054
3055 if (overlay_debugging)
3056 if (section && section_is_overlay (section))
3057 {
3058 size = bfd_get_section_size (section);
3059 if (section->lma <= pc && pc < section->lma + size)
3060 return 1;
3061 }
3062 return 0;
3063 }
3064
3065 /* Function: pc_in_mapped_range
3066 If PC falls into the vma range of SECTION, return true, else false. */
3067
3068 CORE_ADDR
3069 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3070 {
3071 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3072
3073 int size;
3074
3075 if (overlay_debugging)
3076 if (section && section_is_overlay (section))
3077 {
3078 size = bfd_get_section_size (section);
3079 if (section->vma <= pc && pc < section->vma + size)
3080 return 1;
3081 }
3082 return 0;
3083 }
3084
3085
3086 /* Return true if the mapped ranges of sections A and B overlap, false
3087 otherwise. */
3088 static int
3089 sections_overlap (asection *a, asection *b)
3090 {
3091 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3092
3093 CORE_ADDR a_start = a->vma;
3094 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3095 CORE_ADDR b_start = b->vma;
3096 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3097
3098 return (a_start < b_end && b_start < a_end);
3099 }
3100
3101 /* Function: overlay_unmapped_address (PC, SECTION)
3102 Returns the address corresponding to PC in the unmapped (load) range.
3103 May be the same as PC. */
3104
3105 CORE_ADDR
3106 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3107 {
3108 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3109
3110 if (overlay_debugging)
3111 if (section && section_is_overlay (section) &&
3112 pc_in_mapped_range (pc, section))
3113 return pc + section->lma - section->vma;
3114
3115 return pc;
3116 }
3117
3118 /* Function: overlay_mapped_address (PC, SECTION)
3119 Returns the address corresponding to PC in the mapped (runtime) range.
3120 May be the same as PC. */
3121
3122 CORE_ADDR
3123 overlay_mapped_address (CORE_ADDR pc, asection *section)
3124 {
3125 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3126
3127 if (overlay_debugging)
3128 if (section && section_is_overlay (section) &&
3129 pc_in_unmapped_range (pc, section))
3130 return pc + section->vma - section->lma;
3131
3132 return pc;
3133 }
3134
3135
3136 /* Function: symbol_overlayed_address
3137 Return one of two addresses (relative to the VMA or to the LMA),
3138 depending on whether the section is mapped or not. */
3139
3140 CORE_ADDR
3141 symbol_overlayed_address (CORE_ADDR address, asection *section)
3142 {
3143 if (overlay_debugging)
3144 {
3145 /* If the symbol has no section, just return its regular address. */
3146 if (section == 0)
3147 return address;
3148 /* If the symbol's section is not an overlay, just return its address */
3149 if (!section_is_overlay (section))
3150 return address;
3151 /* If the symbol's section is mapped, just return its address */
3152 if (section_is_mapped (section))
3153 return address;
3154 /*
3155 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3156 * then return its LOADED address rather than its vma address!!
3157 */
3158 return overlay_unmapped_address (address, section);
3159 }
3160 return address;
3161 }
3162
3163 /* Function: find_pc_overlay (PC)
3164 Return the best-match overlay section for PC:
3165 If PC matches a mapped overlay section's VMA, return that section.
3166 Else if PC matches an unmapped section's VMA, return that section.
3167 Else if PC matches an unmapped section's LMA, return that section. */
3168
3169 asection *
3170 find_pc_overlay (CORE_ADDR pc)
3171 {
3172 struct objfile *objfile;
3173 struct obj_section *osect, *best_match = NULL;
3174
3175 if (overlay_debugging)
3176 ALL_OBJSECTIONS (objfile, osect)
3177 if (section_is_overlay (osect->the_bfd_section))
3178 {
3179 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3180 {
3181 if (overlay_is_mapped (osect))
3182 return osect->the_bfd_section;
3183 else
3184 best_match = osect;
3185 }
3186 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3187 best_match = osect;
3188 }
3189 return best_match ? best_match->the_bfd_section : NULL;
3190 }
3191
3192 /* Function: find_pc_mapped_section (PC)
3193 If PC falls into the VMA address range of an overlay section that is
3194 currently marked as MAPPED, return that section. Else return NULL. */
3195
3196 asection *
3197 find_pc_mapped_section (CORE_ADDR pc)
3198 {
3199 struct objfile *objfile;
3200 struct obj_section *osect;
3201
3202 if (overlay_debugging)
3203 ALL_OBJSECTIONS (objfile, osect)
3204 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3205 overlay_is_mapped (osect))
3206 return osect->the_bfd_section;
3207
3208 return NULL;
3209 }
3210
3211 /* Function: list_overlays_command
3212 Print a list of mapped sections and their PC ranges */
3213
3214 void
3215 list_overlays_command (char *args, int from_tty)
3216 {
3217 int nmapped = 0;
3218 struct objfile *objfile;
3219 struct obj_section *osect;
3220
3221 if (overlay_debugging)
3222 ALL_OBJSECTIONS (objfile, osect)
3223 if (overlay_is_mapped (osect))
3224 {
3225 const char *name;
3226 bfd_vma lma, vma;
3227 int size;
3228
3229 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3230 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3231 size = bfd_get_section_size (osect->the_bfd_section);
3232 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3233
3234 printf_filtered ("Section %s, loaded at ", name);
3235 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3236 puts_filtered (" - ");
3237 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3238 printf_filtered (", mapped at ");
3239 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3240 puts_filtered (" - ");
3241 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3242 puts_filtered ("\n");
3243
3244 nmapped++;
3245 }
3246 if (nmapped == 0)
3247 printf_filtered (_("No sections are mapped.\n"));
3248 }
3249
3250 /* Function: map_overlay_command
3251 Mark the named section as mapped (ie. residing at its VMA address). */
3252
3253 void
3254 map_overlay_command (char *args, int from_tty)
3255 {
3256 struct objfile *objfile, *objfile2;
3257 struct obj_section *sec, *sec2;
3258 asection *bfdsec;
3259
3260 if (!overlay_debugging)
3261 error (_("\
3262 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3263 the 'overlay manual' command."));
3264
3265 if (args == 0 || *args == 0)
3266 error (_("Argument required: name of an overlay section"));
3267
3268 /* First, find a section matching the user supplied argument */
3269 ALL_OBJSECTIONS (objfile, sec)
3270 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3271 {
3272 /* Now, check to see if the section is an overlay. */
3273 bfdsec = sec->the_bfd_section;
3274 if (!section_is_overlay (bfdsec))
3275 continue; /* not an overlay section */
3276
3277 /* Mark the overlay as "mapped" */
3278 sec->ovly_mapped = 1;
3279
3280 /* Next, make a pass and unmap any sections that are
3281 overlapped by this new section: */
3282 ALL_OBJSECTIONS (objfile2, sec2)
3283 if (sec2->ovly_mapped
3284 && sec != sec2
3285 && sec->the_bfd_section != sec2->the_bfd_section
3286 && sections_overlap (sec->the_bfd_section,
3287 sec2->the_bfd_section))
3288 {
3289 if (info_verbose)
3290 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3291 bfd_section_name (objfile->obfd,
3292 sec2->the_bfd_section));
3293 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3294 }
3295 return;
3296 }
3297 error (_("No overlay section called %s"), args);
3298 }
3299
3300 /* Function: unmap_overlay_command
3301 Mark the overlay section as unmapped
3302 (ie. resident in its LMA address range, rather than the VMA range). */
3303
3304 void
3305 unmap_overlay_command (char *args, int from_tty)
3306 {
3307 struct objfile *objfile;
3308 struct obj_section *sec;
3309
3310 if (!overlay_debugging)
3311 error (_("\
3312 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3313 the 'overlay manual' command."));
3314
3315 if (args == 0 || *args == 0)
3316 error (_("Argument required: name of an overlay section"));
3317
3318 /* First, find a section matching the user supplied argument */
3319 ALL_OBJSECTIONS (objfile, sec)
3320 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3321 {
3322 if (!sec->ovly_mapped)
3323 error (_("Section %s is not mapped"), args);
3324 sec->ovly_mapped = 0;
3325 return;
3326 }
3327 error (_("No overlay section called %s"), args);
3328 }
3329
3330 /* Function: overlay_auto_command
3331 A utility command to turn on overlay debugging.
3332 Possibly this should be done via a set/show command. */
3333
3334 static void
3335 overlay_auto_command (char *args, int from_tty)
3336 {
3337 overlay_debugging = ovly_auto;
3338 enable_overlay_breakpoints ();
3339 if (info_verbose)
3340 printf_unfiltered (_("Automatic overlay debugging enabled."));
3341 }
3342
3343 /* Function: overlay_manual_command
3344 A utility command to turn on overlay debugging.
3345 Possibly this should be done via a set/show command. */
3346
3347 static void
3348 overlay_manual_command (char *args, int from_tty)
3349 {
3350 overlay_debugging = ovly_on;
3351 disable_overlay_breakpoints ();
3352 if (info_verbose)
3353 printf_unfiltered (_("Overlay debugging enabled."));
3354 }
3355
3356 /* Function: overlay_off_command
3357 A utility command to turn on overlay debugging.
3358 Possibly this should be done via a set/show command. */
3359
3360 static void
3361 overlay_off_command (char *args, int from_tty)
3362 {
3363 overlay_debugging = ovly_off;
3364 disable_overlay_breakpoints ();
3365 if (info_verbose)
3366 printf_unfiltered (_("Overlay debugging disabled."));
3367 }
3368
3369 static void
3370 overlay_load_command (char *args, int from_tty)
3371 {
3372 if (target_overlay_update)
3373 (*target_overlay_update) (NULL);
3374 else
3375 error (_("This target does not know how to read its overlay state."));
3376 }
3377
3378 /* Function: overlay_command
3379 A place-holder for a mis-typed command */
3380
3381 /* Command list chain containing all defined "overlay" subcommands. */
3382 struct cmd_list_element *overlaylist;
3383
3384 static void
3385 overlay_command (char *args, int from_tty)
3386 {
3387 printf_unfiltered
3388 ("\"overlay\" must be followed by the name of an overlay command.\n");
3389 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3390 }
3391
3392
3393 /* Target Overlays for the "Simplest" overlay manager:
3394
3395 This is GDB's default target overlay layer. It works with the
3396 minimal overlay manager supplied as an example by Cygnus. The
3397 entry point is via a function pointer "target_overlay_update",
3398 so targets that use a different runtime overlay manager can
3399 substitute their own overlay_update function and take over the
3400 function pointer.
3401
3402 The overlay_update function pokes around in the target's data structures
3403 to see what overlays are mapped, and updates GDB's overlay mapping with
3404 this information.
3405
3406 In this simple implementation, the target data structures are as follows:
3407 unsigned _novlys; /# number of overlay sections #/
3408 unsigned _ovly_table[_novlys][4] = {
3409 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3410 {..., ..., ..., ...},
3411 }
3412 unsigned _novly_regions; /# number of overlay regions #/
3413 unsigned _ovly_region_table[_novly_regions][3] = {
3414 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3415 {..., ..., ...},
3416 }
3417 These functions will attempt to update GDB's mappedness state in the
3418 symbol section table, based on the target's mappedness state.
3419
3420 To do this, we keep a cached copy of the target's _ovly_table, and
3421 attempt to detect when the cached copy is invalidated. The main
3422 entry point is "simple_overlay_update(SECT), which looks up SECT in
3423 the cached table and re-reads only the entry for that section from
3424 the target (whenever possible).
3425 */
3426
3427 /* Cached, dynamically allocated copies of the target data structures: */
3428 static unsigned (*cache_ovly_table)[4] = 0;
3429 #if 0
3430 static unsigned (*cache_ovly_region_table)[3] = 0;
3431 #endif
3432 static unsigned cache_novlys = 0;
3433 #if 0
3434 static unsigned cache_novly_regions = 0;
3435 #endif
3436 static CORE_ADDR cache_ovly_table_base = 0;
3437 #if 0
3438 static CORE_ADDR cache_ovly_region_table_base = 0;
3439 #endif
3440 enum ovly_index
3441 {
3442 VMA, SIZE, LMA, MAPPED
3443 };
3444 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3445
3446 /* Throw away the cached copy of _ovly_table */
3447 static void
3448 simple_free_overlay_table (void)
3449 {
3450 if (cache_ovly_table)
3451 xfree (cache_ovly_table);
3452 cache_novlys = 0;
3453 cache_ovly_table = NULL;
3454 cache_ovly_table_base = 0;
3455 }
3456
3457 #if 0
3458 /* Throw away the cached copy of _ovly_region_table */
3459 static void
3460 simple_free_overlay_region_table (void)
3461 {
3462 if (cache_ovly_region_table)
3463 xfree (cache_ovly_region_table);
3464 cache_novly_regions = 0;
3465 cache_ovly_region_table = NULL;
3466 cache_ovly_region_table_base = 0;
3467 }
3468 #endif
3469
3470 /* Read an array of ints from the target into a local buffer.
3471 Convert to host order. int LEN is number of ints */
3472 static void
3473 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3474 {
3475 /* FIXME (alloca): Not safe if array is very large. */
3476 char *buf = alloca (len * TARGET_LONG_BYTES);
3477 int i;
3478
3479 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3480 for (i = 0; i < len; i++)
3481 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3482 TARGET_LONG_BYTES);
3483 }
3484
3485 /* Find and grab a copy of the target _ovly_table
3486 (and _novlys, which is needed for the table's size) */
3487 static int
3488 simple_read_overlay_table (void)
3489 {
3490 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3491
3492 simple_free_overlay_table ();
3493 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3494 if (! novlys_msym)
3495 {
3496 error (_("Error reading inferior's overlay table: "
3497 "couldn't find `_novlys' variable\n"
3498 "in inferior. Use `overlay manual' mode."));
3499 return 0;
3500 }
3501
3502 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3503 if (! ovly_table_msym)
3504 {
3505 error (_("Error reading inferior's overlay table: couldn't find "
3506 "`_ovly_table' array\n"
3507 "in inferior. Use `overlay manual' mode."));
3508 return 0;
3509 }
3510
3511 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3512 cache_ovly_table
3513 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3514 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3515 read_target_long_array (cache_ovly_table_base,
3516 (int *) cache_ovly_table,
3517 cache_novlys * 4);
3518
3519 return 1; /* SUCCESS */
3520 }
3521
3522 #if 0
3523 /* Find and grab a copy of the target _ovly_region_table
3524 (and _novly_regions, which is needed for the table's size) */
3525 static int
3526 simple_read_overlay_region_table (void)
3527 {
3528 struct minimal_symbol *msym;
3529
3530 simple_free_overlay_region_table ();
3531 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3532 if (msym != NULL)
3533 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3534 else
3535 return 0; /* failure */
3536 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3537 if (cache_ovly_region_table != NULL)
3538 {
3539 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3540 if (msym != NULL)
3541 {
3542 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3543 read_target_long_array (cache_ovly_region_table_base,
3544 (int *) cache_ovly_region_table,
3545 cache_novly_regions * 3);
3546 }
3547 else
3548 return 0; /* failure */
3549 }
3550 else
3551 return 0; /* failure */
3552 return 1; /* SUCCESS */
3553 }
3554 #endif
3555
3556 /* Function: simple_overlay_update_1
3557 A helper function for simple_overlay_update. Assuming a cached copy
3558 of _ovly_table exists, look through it to find an entry whose vma,
3559 lma and size match those of OSECT. Re-read the entry and make sure
3560 it still matches OSECT (else the table may no longer be valid).
3561 Set OSECT's mapped state to match the entry. Return: 1 for
3562 success, 0 for failure. */
3563
3564 static int
3565 simple_overlay_update_1 (struct obj_section *osect)
3566 {
3567 int i, size;
3568 bfd *obfd = osect->objfile->obfd;
3569 asection *bsect = osect->the_bfd_section;
3570
3571 size = bfd_get_section_size (osect->the_bfd_section);
3572 for (i = 0; i < cache_novlys; i++)
3573 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3574 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3575 /* && cache_ovly_table[i][SIZE] == size */ )
3576 {
3577 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3578 (int *) cache_ovly_table[i], 4);
3579 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3580 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3581 /* && cache_ovly_table[i][SIZE] == size */ )
3582 {
3583 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3584 return 1;
3585 }
3586 else /* Warning! Warning! Target's ovly table has changed! */
3587 return 0;
3588 }
3589 return 0;
3590 }
3591
3592 /* Function: simple_overlay_update
3593 If OSECT is NULL, then update all sections' mapped state
3594 (after re-reading the entire target _ovly_table).
3595 If OSECT is non-NULL, then try to find a matching entry in the
3596 cached ovly_table and update only OSECT's mapped state.
3597 If a cached entry can't be found or the cache isn't valid, then
3598 re-read the entire cache, and go ahead and update all sections. */
3599
3600 static void
3601 simple_overlay_update (struct obj_section *osect)
3602 {
3603 struct objfile *objfile;
3604
3605 /* Were we given an osect to look up? NULL means do all of them. */
3606 if (osect)
3607 /* Have we got a cached copy of the target's overlay table? */
3608 if (cache_ovly_table != NULL)
3609 /* Does its cached location match what's currently in the symtab? */
3610 if (cache_ovly_table_base ==
3611 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3612 /* Then go ahead and try to look up this single section in the cache */
3613 if (simple_overlay_update_1 (osect))
3614 /* Found it! We're done. */
3615 return;
3616
3617 /* Cached table no good: need to read the entire table anew.
3618 Or else we want all the sections, in which case it's actually
3619 more efficient to read the whole table in one block anyway. */
3620
3621 if (! simple_read_overlay_table ())
3622 return;
3623
3624 /* Now may as well update all sections, even if only one was requested. */
3625 ALL_OBJSECTIONS (objfile, osect)
3626 if (section_is_overlay (osect->the_bfd_section))
3627 {
3628 int i, size;
3629 bfd *obfd = osect->objfile->obfd;
3630 asection *bsect = osect->the_bfd_section;
3631
3632 size = bfd_get_section_size (bsect);
3633 for (i = 0; i < cache_novlys; i++)
3634 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3635 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3636 /* && cache_ovly_table[i][SIZE] == size */ )
3637 { /* obj_section matches i'th entry in ovly_table */
3638 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3639 break; /* finished with inner for loop: break out */
3640 }
3641 }
3642 }
3643
3644 /* Set the output sections and output offsets for section SECTP in
3645 ABFD. The relocation code in BFD will read these offsets, so we
3646 need to be sure they're initialized. We map each section to itself,
3647 with no offset; this means that SECTP->vma will be honored. */
3648
3649 static void
3650 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3651 {
3652 sectp->output_section = sectp;
3653 sectp->output_offset = 0;
3654 }
3655
3656 /* Relocate the contents of a debug section SECTP in ABFD. The
3657 contents are stored in BUF if it is non-NULL, or returned in a
3658 malloc'd buffer otherwise.
3659
3660 For some platforms and debug info formats, shared libraries contain
3661 relocations against the debug sections (particularly for DWARF-2;
3662 one affected platform is PowerPC GNU/Linux, although it depends on
3663 the version of the linker in use). Also, ELF object files naturally
3664 have unresolved relocations for their debug sections. We need to apply
3665 the relocations in order to get the locations of symbols correct. */
3666
3667 bfd_byte *
3668 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3669 {
3670 /* We're only interested in debugging sections with relocation
3671 information. */
3672 if ((sectp->flags & SEC_RELOC) == 0)
3673 return NULL;
3674 if ((sectp->flags & SEC_DEBUGGING) == 0)
3675 return NULL;
3676
3677 /* We will handle section offsets properly elsewhere, so relocate as if
3678 all sections begin at 0. */
3679 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3680
3681 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3682 }
3683
3684 void
3685 _initialize_symfile (void)
3686 {
3687 struct cmd_list_element *c;
3688
3689 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3690 Load symbol table from executable file FILE.\n\
3691 The `file' command can also load symbol tables, as well as setting the file\n\
3692 to execute."), &cmdlist);
3693 set_cmd_completer (c, filename_completer);
3694
3695 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3696 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3697 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3698 ADDR is the starting address of the file's text.\n\
3699 The optional arguments are section-name section-address pairs and\n\
3700 should be specified if the data and bss segments are not contiguous\n\
3701 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3702 &cmdlist);
3703 set_cmd_completer (c, filename_completer);
3704
3705 c = add_cmd ("add-shared-symbol-files", class_files,
3706 add_shared_symbol_files_command, _("\
3707 Load the symbols from shared objects in the dynamic linker's link map."),
3708 &cmdlist);
3709 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3710 &cmdlist);
3711
3712 c = add_cmd ("load", class_files, load_command, _("\
3713 Dynamically load FILE into the running program, and record its symbols\n\
3714 for access from GDB."), &cmdlist);
3715 set_cmd_completer (c, filename_completer);
3716
3717 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3718 &symbol_reloading, _("\
3719 Set dynamic symbol table reloading multiple times in one run."), _("\
3720 Show dynamic symbol table reloading multiple times in one run."), NULL,
3721 NULL,
3722 show_symbol_reloading,
3723 &setlist, &showlist);
3724
3725 add_prefix_cmd ("overlay", class_support, overlay_command,
3726 _("Commands for debugging overlays."), &overlaylist,
3727 "overlay ", 0, &cmdlist);
3728
3729 add_com_alias ("ovly", "overlay", class_alias, 1);
3730 add_com_alias ("ov", "overlay", class_alias, 1);
3731
3732 add_cmd ("map-overlay", class_support, map_overlay_command,
3733 _("Assert that an overlay section is mapped."), &overlaylist);
3734
3735 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3736 _("Assert that an overlay section is unmapped."), &overlaylist);
3737
3738 add_cmd ("list-overlays", class_support, list_overlays_command,
3739 _("List mappings of overlay sections."), &overlaylist);
3740
3741 add_cmd ("manual", class_support, overlay_manual_command,
3742 _("Enable overlay debugging."), &overlaylist);
3743 add_cmd ("off", class_support, overlay_off_command,
3744 _("Disable overlay debugging."), &overlaylist);
3745 add_cmd ("auto", class_support, overlay_auto_command,
3746 _("Enable automatic overlay debugging."), &overlaylist);
3747 add_cmd ("load-target", class_support, overlay_load_command,
3748 _("Read the overlay mapping state from the target."), &overlaylist);
3749
3750 /* Filename extension to source language lookup table: */
3751 init_filename_language_table ();
3752 add_setshow_string_noescape_cmd ("extension-language", class_files,
3753 &ext_args, _("\
3754 Set mapping between filename extension and source language."), _("\
3755 Show mapping between filename extension and source language."), _("\
3756 Usage: set extension-language .foo bar"),
3757 set_ext_lang_command,
3758 show_ext_args,
3759 &setlist, &showlist);
3760
3761 add_info ("extensions", info_ext_lang_command,
3762 _("All filename extensions associated with a source language."));
3763
3764 add_setshow_integer_cmd ("download-write-size", class_obscure,
3765 &download_write_size, _("\
3766 Set the write size used when downloading a program."), _("\
3767 Show the write size used when downloading a program."), _("\
3768 Only used when downloading a program onto a remote\n\
3769 target. Specify zero, or a negative value, to disable\n\
3770 blocked writes. The actual size of each transfer is also\n\
3771 limited by the size of the target packet and the memory\n\
3772 cache."),
3773 NULL,
3774 show_download_write_size,
3775 &setlist, &showlist);
3776
3777 debug_file_directory = xstrdup (DEBUGDIR);
3778 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3779 &debug_file_directory, _("\
3780 Set the directory where separate debug symbols are searched for."), _("\
3781 Show the directory where separate debug symbols are searched for."), _("\
3782 Separate debug symbols are first searched for in the same\n\
3783 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3784 and lastly at the path of the directory of the binary with\n\
3785 the global debug-file directory prepended."),
3786 NULL,
3787 show_debug_file_directory,
3788 &setlist, &showlist);
3789 }
This page took 0.112889 seconds and 4 git commands to generate.