de0b369439031ab5d5ce698586b41ea33f01b538
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154 #ifdef SYMBOL_RELOADING_DEFAULT
155 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156 #else
157 int symbol_reloading = 0;
158 #endif
159 static void
160 show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
165 value);
166 }
167
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178 int auto_solib_add = 1;
179 \f
180
181 /* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
183 Note that the string at PTR does not have to be null terminated, I.e. it
184 may be part of a larger string and we are only saving a substring. */
185
186 char *
187 obsavestring (const char *ptr, int size, struct obstack *obstackp)
188 {
189 char *p = (char *) obstack_alloc (obstackp, size + 1);
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
192 inline memcpy? */
193 {
194 const char *p1 = ptr;
195 char *p2 = p;
196 const char *end = ptr + size;
197
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203 }
204
205 /* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
209
210 char *
211 obconcat (struct obstack *obstackp, ...)
212 {
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
229 }
230
231 /* True if we are reading a symbol table. */
232
233 int currently_reading_symtab = 0;
234
235 static void
236 decrement_reading_symtab (void *dummy)
237 {
238 currently_reading_symtab--;
239 }
240
241 /* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243 struct cleanup *
244 increment_reading_symtab (void)
245 {
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
248 }
249
250 /* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259 void
260 find_lowest_section (bfd *abfd, asection *sect, void *obj)
261 {
262 asection **lowest = (asection **) obj;
263
264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274 }
275
276 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278 struct section_addr_info *
279 alloc_section_addr_info (size_t num_sections)
280 {
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291 }
292
293 /* Build (allocate and populate) a section_addr_info struct from
294 an existing section table. */
295
296 extern struct section_addr_info *
297 build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
299 {
300 struct section_addr_info *sap;
301 const struct target_section *stp;
302 int oidx;
303
304 sap = alloc_section_addr_info (end - start);
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
308 if (bfd_get_section_flags (stp->bfd,
309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
310 && oidx < end - start)
311 {
312 sap->other[oidx].addr = stp->addr;
313 sap->other[oidx].name
314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321 }
322
323 /* Create a section_addr_info from section offsets in ABFD. */
324
325 static struct section_addr_info *
326 build_section_addr_info_from_bfd (bfd *abfd)
327 {
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
335 {
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
341 return sap;
342 }
343
344 /* Create a section_addr_info from section offsets in OBJFILE. */
345
346 struct section_addr_info *
347 build_section_addr_info_from_objfile (const struct objfile *objfile)
348 {
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363 }
364
365 /* Free all memory allocated by build_section_addr_info_from_section_table. */
366
367 extern void
368 free_section_addr_info (struct section_addr_info *sap)
369 {
370 int idx;
371
372 for (idx = 0; idx < sap->num_sections; idx++)
373 if (sap->other[idx].name)
374 xfree (sap->other[idx].name);
375 xfree (sap);
376 }
377
378
379 /* Initialize OBJFILE's sect_index_* members. */
380 static void
381 init_objfile_sect_indices (struct objfile *objfile)
382 {
383 asection *sect;
384 int i;
385
386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
387 if (sect)
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
391 if (sect)
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
395 if (sect)
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
399 if (sect)
400 objfile->sect_index_rodata = sect->index;
401
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
437 }
438
439 /* The arguments to place_section. */
440
441 struct place_section_arg
442 {
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445 };
446
447 /* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
450 static void
451 place_section (bfd *abfd, asection *sect, void *obj)
452 {
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
457
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
467 start_addr = (arg->lowest + align - 1) & -align;
468
469 do {
470 asection *cur_sec;
471
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
499 break;
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
509 }
510
511 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
514
515 void
516 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
519 {
520 int i;
521
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
523
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
526 {
527 struct other_sections *osp;
528
529 osp = &addrs->other[i];
530 if (osp->addr == 0)
531 continue;
532
533 /* Record all sections in offsets. */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538 }
539
540 /* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546 static const char *
547 addr_section_name (const char *s)
548 {
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555 }
556
557 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560 static int
561 addrs_section_compar (const void *ap, const void *bp)
562 {
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
568 if (retval)
569 return retval;
570
571 /* SECTINDEX is undefined iff ADDR is zero. */
572 a_idx = a->addr == 0 ? 0 : a->sectindex;
573 b_idx = b->addr == 0 ? 0 : b->sectindex;
574 return a_idx - b_idx;
575 }
576
577 /* Provide sorted array of pointers to sections of ADDRS. The array is
578 terminated by NULL. Caller is responsible to call xfree for it. */
579
580 static struct other_sections **
581 addrs_section_sort (struct section_addr_info *addrs)
582 {
583 struct other_sections **array;
584 int i;
585
586 /* `+ 1' for the NULL terminator. */
587 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
588 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
589 array[i] = &addrs->other[i];
590 array[i] = NULL;
591
592 qsort (array, i, sizeof (*array), addrs_section_compar);
593
594 return array;
595 }
596
597 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
598 also SECTINDEXes specific to ABFD there. This function can be used to
599 rebase ADDRS to start referencing different BFD than before. */
600
601 void
602 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
603 {
604 asection *lower_sect;
605 CORE_ADDR lower_offset;
606 int i;
607 struct cleanup *my_cleanup;
608 struct section_addr_info *abfd_addrs;
609 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
610 struct other_sections **addrs_to_abfd_addrs;
611
612 /* Find lowest loadable section to be used as starting point for
613 continguous sections. */
614 lower_sect = NULL;
615 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
616 if (lower_sect == NULL)
617 {
618 warning (_("no loadable sections found in added symbol-file %s"),
619 bfd_get_filename (abfd));
620 lower_offset = 0;
621 }
622 else
623 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
624
625 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
626 in ABFD. Section names are not unique - there can be multiple sections of
627 the same name. Also the sections of the same name do not have to be
628 adjacent to each other. Some sections may be present only in one of the
629 files. Even sections present in both files do not have to be in the same
630 order.
631
632 Use stable sort by name for the sections in both files. Then linearly
633 scan both lists matching as most of the entries as possible. */
634
635 addrs_sorted = addrs_section_sort (addrs);
636 my_cleanup = make_cleanup (xfree, addrs_sorted);
637
638 abfd_addrs = build_section_addr_info_from_bfd (abfd);
639 make_cleanup_free_section_addr_info (abfd_addrs);
640 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
641 make_cleanup (xfree, abfd_addrs_sorted);
642
643 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
644 ABFD_ADDRS_SORTED. */
645
646 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
647 * addrs->num_sections);
648 make_cleanup (xfree, addrs_to_abfd_addrs);
649
650 while (*addrs_sorted)
651 {
652 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
653
654 while (*abfd_addrs_sorted
655 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
656 sect_name) < 0)
657 abfd_addrs_sorted++;
658
659 if (*abfd_addrs_sorted
660 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
661 sect_name) == 0)
662 {
663 int index_in_addrs;
664
665 /* Make the found item directly addressable from ADDRS. */
666 index_in_addrs = *addrs_sorted - addrs->other;
667 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
668 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
669
670 /* Never use the same ABFD entry twice. */
671 abfd_addrs_sorted++;
672 }
673
674 addrs_sorted++;
675 }
676
677 /* Calculate offsets for the loadable sections.
678 FIXME! Sections must be in order of increasing loadable section
679 so that contiguous sections can use the lower-offset!!!
680
681 Adjust offsets if the segments are not contiguous.
682 If the section is contiguous, its offset should be set to
683 the offset of the highest loadable section lower than it
684 (the loadable section directly below it in memory).
685 this_offset = lower_offset = lower_addr - lower_orig_addr */
686
687 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
688 {
689 struct other_sections *sect = addrs_to_abfd_addrs[i];
690
691 if (sect)
692 {
693 /* This is the index used by BFD. */
694 addrs->other[i].sectindex = sect->sectindex;
695
696 if (addrs->other[i].addr != 0)
697 {
698 addrs->other[i].addr -= sect->addr;
699 lower_offset = addrs->other[i].addr;
700 }
701 else
702 addrs->other[i].addr = lower_offset;
703 }
704 else
705 {
706 /* addr_section_name transformation is not used for SECT_NAME. */
707 const char *sect_name = addrs->other[i].name;
708
709 /* This section does not exist in ABFD, which is normally
710 unexpected and we want to issue a warning.
711
712 However, the ELF prelinker does create a few sections which are
713 marked in the main executable as loadable (they are loaded in
714 memory from the DYNAMIC segment) and yet are not present in
715 separate debug info files. This is fine, and should not cause
716 a warning. Shared libraries contain just the section
717 ".gnu.liblist" but it is not marked as loadable there. There is
718 no other way to identify them than by their name as the sections
719 created by prelink have no special flags.
720
721 For the sections `.bss' and `.sbss' see addr_section_name. */
722
723 if (!(strcmp (sect_name, ".gnu.liblist") == 0
724 || strcmp (sect_name, ".gnu.conflict") == 0
725 || (strcmp (sect_name, ".bss") == 0
726 && i > 0
727 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
728 && addrs_to_abfd_addrs[i - 1] != NULL)
729 || (strcmp (sect_name, ".sbss") == 0
730 && i > 0
731 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
732 && addrs_to_abfd_addrs[i - 1] != NULL)))
733 warning (_("section %s not found in %s"), sect_name,
734 bfd_get_filename (abfd));
735
736 addrs->other[i].addr = 0;
737
738 /* SECTINDEX is invalid if ADDR is zero. */
739 }
740 }
741
742 do_cleanups (my_cleanup);
743 }
744
745 /* Parse the user's idea of an offset for dynamic linking, into our idea
746 of how to represent it for fast symbol reading. This is the default
747 version of the sym_fns.sym_offsets function for symbol readers that
748 don't need to do anything special. It allocates a section_offsets table
749 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
750
751 void
752 default_symfile_offsets (struct objfile *objfile,
753 struct section_addr_info *addrs)
754 {
755 objfile->num_sections = bfd_count_sections (objfile->obfd);
756 objfile->section_offsets = (struct section_offsets *)
757 obstack_alloc (&objfile->objfile_obstack,
758 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
759 relative_addr_info_to_section_offsets (objfile->section_offsets,
760 objfile->num_sections, addrs);
761
762 /* For relocatable files, all loadable sections will start at zero.
763 The zero is meaningless, so try to pick arbitrary addresses such
764 that no loadable sections overlap. This algorithm is quadratic,
765 but the number of sections in a single object file is generally
766 small. */
767 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
768 {
769 struct place_section_arg arg;
770 bfd *abfd = objfile->obfd;
771 asection *cur_sec;
772
773 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
774 /* We do not expect this to happen; just skip this step if the
775 relocatable file has a section with an assigned VMA. */
776 if (bfd_section_vma (abfd, cur_sec) != 0)
777 break;
778
779 if (cur_sec == NULL)
780 {
781 CORE_ADDR *offsets = objfile->section_offsets->offsets;
782
783 /* Pick non-overlapping offsets for sections the user did not
784 place explicitly. */
785 arg.offsets = objfile->section_offsets;
786 arg.lowest = 0;
787 bfd_map_over_sections (objfile->obfd, place_section, &arg);
788
789 /* Correctly filling in the section offsets is not quite
790 enough. Relocatable files have two properties that
791 (most) shared objects do not:
792
793 - Their debug information will contain relocations. Some
794 shared libraries do also, but many do not, so this can not
795 be assumed.
796
797 - If there are multiple code sections they will be loaded
798 at different relative addresses in memory than they are
799 in the objfile, since all sections in the file will start
800 at address zero.
801
802 Because GDB has very limited ability to map from an
803 address in debug info to the correct code section,
804 it relies on adding SECT_OFF_TEXT to things which might be
805 code. If we clear all the section offsets, and set the
806 section VMAs instead, then symfile_relocate_debug_section
807 will return meaningful debug information pointing at the
808 correct sections.
809
810 GDB has too many different data structures for section
811 addresses - a bfd, objfile, and so_list all have section
812 tables, as does exec_ops. Some of these could probably
813 be eliminated. */
814
815 for (cur_sec = abfd->sections; cur_sec != NULL;
816 cur_sec = cur_sec->next)
817 {
818 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
819 continue;
820
821 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
822 exec_set_section_address (bfd_get_filename (abfd),
823 cur_sec->index,
824 offsets[cur_sec->index]);
825 offsets[cur_sec->index] = 0;
826 }
827 }
828 }
829
830 /* Remember the bfd indexes for the .text, .data, .bss and
831 .rodata sections. */
832 init_objfile_sect_indices (objfile);
833 }
834
835
836 /* Divide the file into segments, which are individual relocatable units.
837 This is the default version of the sym_fns.sym_segments function for
838 symbol readers that do not have an explicit representation of segments.
839 It assumes that object files do not have segments, and fully linked
840 files have a single segment. */
841
842 struct symfile_segment_data *
843 default_symfile_segments (bfd *abfd)
844 {
845 int num_sections, i;
846 asection *sect;
847 struct symfile_segment_data *data;
848 CORE_ADDR low, high;
849
850 /* Relocatable files contain enough information to position each
851 loadable section independently; they should not be relocated
852 in segments. */
853 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
854 return NULL;
855
856 /* Make sure there is at least one loadable section in the file. */
857 for (sect = abfd->sections; sect != NULL; sect = sect->next)
858 {
859 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
860 continue;
861
862 break;
863 }
864 if (sect == NULL)
865 return NULL;
866
867 low = bfd_get_section_vma (abfd, sect);
868 high = low + bfd_get_section_size (sect);
869
870 data = XZALLOC (struct symfile_segment_data);
871 data->num_segments = 1;
872 data->segment_bases = XCALLOC (1, CORE_ADDR);
873 data->segment_sizes = XCALLOC (1, CORE_ADDR);
874
875 num_sections = bfd_count_sections (abfd);
876 data->segment_info = XCALLOC (num_sections, int);
877
878 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
879 {
880 CORE_ADDR vma;
881
882 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
883 continue;
884
885 vma = bfd_get_section_vma (abfd, sect);
886 if (vma < low)
887 low = vma;
888 if (vma + bfd_get_section_size (sect) > high)
889 high = vma + bfd_get_section_size (sect);
890
891 data->segment_info[i] = 1;
892 }
893
894 data->segment_bases[0] = low;
895 data->segment_sizes[0] = high - low;
896
897 return data;
898 }
899
900 /* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
903 OBJFILE is where the symbols are to be read from.
904
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
914 If ADDRS is non-zero, OFFSETS must be zero.
915
916 OFFSETS is a table of section offsets already in the right
917 format-specific representation. NUM_OFFSETS is the number of
918 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
919 assume this is the proper table the call to sym_offsets described
920 above would produce. Instead of calling sym_offsets, we just dump
921 it right into objfile->section_offsets. (When we're re-reading
922 symbols from an objfile, we don't have the original load address
923 list any more; all we have is the section offset table.) If
924 OFFSETS is non-zero, ADDRS must be zero.
925
926 ADD_FLAGS encodes verbosity level, whether this is main symbol or
927 an extra symbol file such as dynamically loaded code, and wether
928 breakpoint reset should be deferred. */
929
930 void
931 syms_from_objfile (struct objfile *objfile,
932 struct section_addr_info *addrs,
933 struct section_offsets *offsets,
934 int num_offsets,
935 int add_flags)
936 {
937 struct section_addr_info *local_addr = NULL;
938 struct cleanup *old_chain;
939 const int mainline = add_flags & SYMFILE_MAINLINE;
940
941 gdb_assert (! (addrs && offsets));
942
943 init_entry_point_info (objfile);
944 objfile->sf = find_sym_fns (objfile->obfd);
945
946 if (objfile->sf == NULL)
947 return; /* No symbols. */
948
949 /* Make sure that partially constructed symbol tables will be cleaned up
950 if an error occurs during symbol reading. */
951 old_chain = make_cleanup_free_objfile (objfile);
952
953 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
954 list. We now establish the convention that an addr of zero means
955 no load address was specified. */
956 if (! addrs && ! offsets)
957 {
958 local_addr
959 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
960 make_cleanup (xfree, local_addr);
961 addrs = local_addr;
962 }
963
964 /* Now either addrs or offsets is non-zero. */
965
966 if (mainline)
967 {
968 /* We will modify the main symbol table, make sure that all its users
969 will be cleaned up if an error occurs during symbol reading. */
970 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
971
972 /* Since no error yet, throw away the old symbol table. */
973
974 if (symfile_objfile != NULL)
975 {
976 free_objfile (symfile_objfile);
977 gdb_assert (symfile_objfile == NULL);
978 }
979
980 /* Currently we keep symbols from the add-symbol-file command.
981 If the user wants to get rid of them, they should do "symbol-file"
982 without arguments first. Not sure this is the best behavior
983 (PR 2207). */
984
985 (*objfile->sf->sym_new_init) (objfile);
986 }
987
988 /* Convert addr into an offset rather than an absolute address.
989 We find the lowest address of a loaded segment in the objfile,
990 and assume that <addr> is where that got loaded.
991
992 We no longer warn if the lowest section is not a text segment (as
993 happens for the PA64 port. */
994 if (addrs && addrs->other[0].name)
995 addr_info_make_relative (addrs, objfile->obfd);
996
997 /* Initialize symbol reading routines for this objfile, allow complaints to
998 appear for this new file, and record how verbose to be, then do the
999 initial symbol reading for this file. */
1000
1001 (*objfile->sf->sym_init) (objfile);
1002 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1003
1004 if (addrs)
1005 (*objfile->sf->sym_offsets) (objfile, addrs);
1006 else
1007 {
1008 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1009
1010 /* Just copy in the offset table directly as given to us. */
1011 objfile->num_sections = num_offsets;
1012 objfile->section_offsets
1013 = ((struct section_offsets *)
1014 obstack_alloc (&objfile->objfile_obstack, size));
1015 memcpy (objfile->section_offsets, offsets, size);
1016
1017 init_objfile_sect_indices (objfile);
1018 }
1019
1020 (*objfile->sf->sym_read) (objfile, add_flags);
1021
1022 /* Discard cleanups as symbol reading was successful. */
1023
1024 discard_cleanups (old_chain);
1025 xfree (local_addr);
1026 }
1027
1028 /* Perform required actions after either reading in the initial
1029 symbols for a new objfile, or mapping in the symbols from a reusable
1030 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1031
1032 void
1033 new_symfile_objfile (struct objfile *objfile, int add_flags)
1034 {
1035 /* If this is the main symbol file we have to clean up all users of the
1036 old main symbol file. Otherwise it is sufficient to fixup all the
1037 breakpoints that may have been redefined by this symbol file. */
1038 if (add_flags & SYMFILE_MAINLINE)
1039 {
1040 /* OK, make it the "real" symbol file. */
1041 symfile_objfile = objfile;
1042
1043 clear_symtab_users (add_flags);
1044 }
1045 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1046 {
1047 breakpoint_re_set ();
1048 }
1049
1050 /* We're done reading the symbol file; finish off complaints. */
1051 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1052 }
1053
1054 /* Process a symbol file, as either the main file or as a dynamically
1055 loaded file.
1056
1057 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1058 This BFD will be closed on error, and is always consumed by this function.
1059
1060 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1061 extra, such as dynamically loaded code, and what to do with breakpoins.
1062
1063 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1064 syms_from_objfile, above.
1065 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1066
1067 Upon success, returns a pointer to the objfile that was added.
1068 Upon failure, jumps back to command level (never returns). */
1069
1070 static struct objfile *
1071 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1072 int add_flags,
1073 struct section_addr_info *addrs,
1074 struct section_offsets *offsets,
1075 int num_offsets,
1076 int flags)
1077 {
1078 struct objfile *objfile;
1079 struct cleanup *my_cleanups;
1080 const char *name = bfd_get_filename (abfd);
1081 const int from_tty = add_flags & SYMFILE_VERBOSE;
1082
1083 if (readnow_symbol_files)
1084 flags |= OBJF_READNOW;
1085
1086 my_cleanups = make_cleanup_bfd_close (abfd);
1087
1088 /* Give user a chance to burp if we'd be
1089 interactively wiping out any existing symbols. */
1090
1091 if ((have_full_symbols () || have_partial_symbols ())
1092 && (add_flags & SYMFILE_MAINLINE)
1093 && from_tty
1094 && !query (_("Load new symbol table from \"%s\"? "), name))
1095 error (_("Not confirmed."));
1096
1097 objfile = allocate_objfile (abfd, flags);
1098 discard_cleanups (my_cleanups);
1099
1100 /* We either created a new mapped symbol table, mapped an existing
1101 symbol table file which has not had initial symbol reading
1102 performed, or need to read an unmapped symbol table. */
1103 if (from_tty || info_verbose)
1104 {
1105 if (deprecated_pre_add_symbol_hook)
1106 deprecated_pre_add_symbol_hook (name);
1107 else
1108 {
1109 printf_unfiltered (_("Reading symbols from %s..."), name);
1110 wrap_here ("");
1111 gdb_flush (gdb_stdout);
1112 }
1113 }
1114 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1115 add_flags);
1116
1117 /* We now have at least a partial symbol table. Check to see if the
1118 user requested that all symbols be read on initial access via either
1119 the gdb startup command line or on a per symbol file basis. Expand
1120 all partial symbol tables for this objfile if so. */
1121
1122 if ((flags & OBJF_READNOW))
1123 {
1124 if (from_tty || info_verbose)
1125 {
1126 printf_unfiltered (_("expanding to full symbols..."));
1127 wrap_here ("");
1128 gdb_flush (gdb_stdout);
1129 }
1130
1131 if (objfile->sf)
1132 objfile->sf->qf->expand_all_symtabs (objfile);
1133 }
1134
1135 if ((from_tty || info_verbose)
1136 && !objfile_has_symbols (objfile))
1137 {
1138 wrap_here ("");
1139 printf_unfiltered (_("(no debugging symbols found)..."));
1140 wrap_here ("");
1141 }
1142
1143 if (from_tty || info_verbose)
1144 {
1145 if (deprecated_post_add_symbol_hook)
1146 deprecated_post_add_symbol_hook ();
1147 else
1148 printf_unfiltered (_("done.\n"));
1149 }
1150
1151 /* We print some messages regardless of whether 'from_tty ||
1152 info_verbose' is true, so make sure they go out at the right
1153 time. */
1154 gdb_flush (gdb_stdout);
1155
1156 do_cleanups (my_cleanups);
1157
1158 if (objfile->sf == NULL)
1159 {
1160 observer_notify_new_objfile (objfile);
1161 return objfile; /* No symbols. */
1162 }
1163
1164 new_symfile_objfile (objfile, add_flags);
1165
1166 observer_notify_new_objfile (objfile);
1167
1168 bfd_cache_close_all ();
1169 return (objfile);
1170 }
1171
1172 /* Add BFD as a separate debug file for OBJFILE. */
1173
1174 void
1175 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1176 {
1177 struct objfile *new_objfile;
1178 struct section_addr_info *sap;
1179 struct cleanup *my_cleanup;
1180
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 sap = build_section_addr_info_from_objfile (objfile);
1185 my_cleanup = make_cleanup_free_section_addr_info (sap);
1186
1187 new_objfile = symbol_file_add_with_addrs_or_offsets
1188 (bfd, symfile_flags,
1189 sap, NULL, 0,
1190 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1191 | OBJF_USERLOADED));
1192
1193 do_cleanups (my_cleanup);
1194
1195 add_separate_debug_objfile (new_objfile, objfile);
1196 }
1197
1198 /* Process the symbol file ABFD, as either the main file or as a
1199 dynamically loaded file.
1200
1201 See symbol_file_add_with_addrs_or_offsets's comments for
1202 details. */
1203 struct objfile *
1204 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1205 struct section_addr_info *addrs,
1206 int flags)
1207 {
1208 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1209 flags);
1210 }
1211
1212
1213 /* Process a symbol file, as either the main file or as a dynamically
1214 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1215 for details. */
1216 struct objfile *
1217 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1218 int flags)
1219 {
1220 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1221 flags);
1222 }
1223
1224
1225 /* Call symbol_file_add() with default values and update whatever is
1226 affected by the loading of a new main().
1227 Used when the file is supplied in the gdb command line
1228 and by some targets with special loading requirements.
1229 The auxiliary function, symbol_file_add_main_1(), has the flags
1230 argument for the switches that can only be specified in the symbol_file
1231 command itself. */
1232
1233 void
1234 symbol_file_add_main (char *args, int from_tty)
1235 {
1236 symbol_file_add_main_1 (args, from_tty, 0);
1237 }
1238
1239 static void
1240 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1241 {
1242 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1243 symbol_file_add (args, add_flags, NULL, flags);
1244
1245 /* Getting new symbols may change our opinion about
1246 what is frameless. */
1247 reinit_frame_cache ();
1248
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 symfile_objfile->name)
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_unfiltered (_("No symbol file now.\n"));
1272 }
1273
1274 static char *
1275 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1276 {
1277 asection *sect;
1278 bfd_size_type debuglink_size;
1279 unsigned long crc32;
1280 char *contents;
1281 int crc_offset;
1282
1283 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1284
1285 if (sect == NULL)
1286 return NULL;
1287
1288 debuglink_size = bfd_section_size (objfile->obfd, sect);
1289
1290 contents = xmalloc (debuglink_size);
1291 bfd_get_section_contents (objfile->obfd, sect, contents,
1292 (file_ptr)0, (bfd_size_type)debuglink_size);
1293
1294 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1295 crc_offset = strlen (contents) + 1;
1296 crc_offset = (crc_offset + 3) & ~3;
1297
1298 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1299
1300 *crc32_out = crc32;
1301 return contents;
1302 }
1303
1304 static int
1305 separate_debug_file_exists (const char *name, unsigned long crc,
1306 struct objfile *parent_objfile)
1307 {
1308 unsigned long file_crc = 0;
1309 bfd *abfd;
1310 gdb_byte buffer[8*1024];
1311 int count;
1312 struct stat parent_stat, abfd_stat;
1313
1314 /* Find a separate debug info file as if symbols would be present in
1315 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1316 section can contain just the basename of PARENT_OBJFILE without any
1317 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1318 the separate debug infos with the same basename can exist. */
1319
1320 if (strcmp (name, parent_objfile->name) == 0)
1321 return 0;
1322
1323 abfd = bfd_open_maybe_remote (name);
1324
1325 if (!abfd)
1326 return 0;
1327
1328 /* Verify symlinks were not the cause of strcmp name difference above.
1329
1330 Some operating systems, e.g. Windows, do not provide a meaningful
1331 st_ino; they always set it to zero. (Windows does provide a
1332 meaningful st_dev.) Do not indicate a duplicate library in that
1333 case. While there is no guarantee that a system that provides
1334 meaningful inode numbers will never set st_ino to zero, this is
1335 merely an optimization, so we do not need to worry about false
1336 negatives. */
1337
1338 if (bfd_stat (abfd, &abfd_stat) == 0
1339 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1340 && abfd_stat.st_dev == parent_stat.st_dev
1341 && abfd_stat.st_ino == parent_stat.st_ino
1342 && abfd_stat.st_ino != 0)
1343 {
1344 bfd_close (abfd);
1345 return 0;
1346 }
1347
1348 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1349 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1350
1351 bfd_close (abfd);
1352
1353 if (crc != file_crc)
1354 {
1355 warning (_("the debug information found in \"%s\""
1356 " does not match \"%s\" (CRC mismatch).\n"),
1357 name, parent_objfile->name);
1358 return 0;
1359 }
1360
1361 return 1;
1362 }
1363
1364 char *debug_file_directory = NULL;
1365 static void
1366 show_debug_file_directory (struct ui_file *file, int from_tty,
1367 struct cmd_list_element *c, const char *value)
1368 {
1369 fprintf_filtered (file,
1370 _("The directory where separate debug "
1371 "symbols are searched for is \"%s\".\n"),
1372 value);
1373 }
1374
1375 #if ! defined (DEBUG_SUBDIRECTORY)
1376 #define DEBUG_SUBDIRECTORY ".debug"
1377 #endif
1378
1379 char *
1380 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1381 {
1382 char *basename, *debugdir;
1383 char *dir = NULL;
1384 char *debugfile = NULL;
1385 char *canon_name = NULL;
1386 unsigned long crc32;
1387 int i;
1388
1389 basename = get_debug_link_info (objfile, &crc32);
1390
1391 if (basename == NULL)
1392 /* There's no separate debug info, hence there's no way we could
1393 load it => no warning. */
1394 goto cleanup_return_debugfile;
1395
1396 dir = xstrdup (objfile->name);
1397
1398 /* Strip off the final filename part, leaving the directory name,
1399 followed by a slash. The directory can be relative or absolute. */
1400 for (i = strlen(dir) - 1; i >= 0; i--)
1401 {
1402 if (IS_DIR_SEPARATOR (dir[i]))
1403 break;
1404 }
1405 /* If I is -1 then no directory is present there and DIR will be "". */
1406 dir[i+1] = '\0';
1407
1408 /* Set I to max (strlen (canon_name), strlen (dir)). */
1409 canon_name = lrealpath (dir);
1410 i = strlen (dir);
1411 if (canon_name && strlen (canon_name) > i)
1412 i = strlen (canon_name);
1413
1414 debugfile = xmalloc (strlen (debug_file_directory) + 1
1415 + i
1416 + strlen (DEBUG_SUBDIRECTORY)
1417 + strlen ("/")
1418 + strlen (basename)
1419 + 1);
1420
1421 /* First try in the same directory as the original file. */
1422 strcpy (debugfile, dir);
1423 strcat (debugfile, basename);
1424
1425 if (separate_debug_file_exists (debugfile, crc32, objfile))
1426 goto cleanup_return_debugfile;
1427
1428 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1429 strcpy (debugfile, dir);
1430 strcat (debugfile, DEBUG_SUBDIRECTORY);
1431 strcat (debugfile, "/");
1432 strcat (debugfile, basename);
1433
1434 if (separate_debug_file_exists (debugfile, crc32, objfile))
1435 goto cleanup_return_debugfile;
1436
1437 /* Then try in the global debugfile directories.
1438
1439 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1440 cause "/..." lookups. */
1441
1442 debugdir = debug_file_directory;
1443 do
1444 {
1445 char *debugdir_end;
1446
1447 while (*debugdir == DIRNAME_SEPARATOR)
1448 debugdir++;
1449
1450 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1451 if (debugdir_end == NULL)
1452 debugdir_end = &debugdir[strlen (debugdir)];
1453
1454 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1455 debugfile[debugdir_end - debugdir] = 0;
1456 strcat (debugfile, "/");
1457 strcat (debugfile, dir);
1458 strcat (debugfile, basename);
1459
1460 if (separate_debug_file_exists (debugfile, crc32, objfile))
1461 goto cleanup_return_debugfile;
1462
1463 /* If the file is in the sysroot, try using its base path in the
1464 global debugfile directory. */
1465 if (canon_name
1466 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1467 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1468 {
1469 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1470 debugfile[debugdir_end - debugdir] = 0;
1471 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1472 strcat (debugfile, "/");
1473 strcat (debugfile, basename);
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 goto cleanup_return_debugfile;
1477 }
1478
1479 debugdir = debugdir_end;
1480 }
1481 while (*debugdir != 0);
1482
1483 xfree (debugfile);
1484 debugfile = NULL;
1485
1486 cleanup_return_debugfile:
1487 xfree (canon_name);
1488 xfree (basename);
1489 xfree (dir);
1490 return debugfile;
1491 }
1492
1493
1494 /* This is the symbol-file command. Read the file, analyze its
1495 symbols, and add a struct symtab to a symtab list. The syntax of
1496 the command is rather bizarre:
1497
1498 1. The function buildargv implements various quoting conventions
1499 which are undocumented and have little or nothing in common with
1500 the way things are quoted (or not quoted) elsewhere in GDB.
1501
1502 2. Options are used, which are not generally used in GDB (perhaps
1503 "set mapped on", "set readnow on" would be better)
1504
1505 3. The order of options matters, which is contrary to GNU
1506 conventions (because it is confusing and inconvenient). */
1507
1508 void
1509 symbol_file_command (char *args, int from_tty)
1510 {
1511 dont_repeat ();
1512
1513 if (args == NULL)
1514 {
1515 symbol_file_clear (from_tty);
1516 }
1517 else
1518 {
1519 char **argv = gdb_buildargv (args);
1520 int flags = OBJF_USERLOADED;
1521 struct cleanup *cleanups;
1522 char *name = NULL;
1523
1524 cleanups = make_cleanup_freeargv (argv);
1525 while (*argv != NULL)
1526 {
1527 if (strcmp (*argv, "-readnow") == 0)
1528 flags |= OBJF_READNOW;
1529 else if (**argv == '-')
1530 error (_("unknown option `%s'"), *argv);
1531 else
1532 {
1533 symbol_file_add_main_1 (*argv, from_tty, flags);
1534 name = *argv;
1535 }
1536
1537 argv++;
1538 }
1539
1540 if (name == NULL)
1541 error (_("no symbol file name was specified"));
1542
1543 do_cleanups (cleanups);
1544 }
1545 }
1546
1547 /* Set the initial language.
1548
1549 FIXME: A better solution would be to record the language in the
1550 psymtab when reading partial symbols, and then use it (if known) to
1551 set the language. This would be a win for formats that encode the
1552 language in an easily discoverable place, such as DWARF. For
1553 stabs, we can jump through hoops looking for specially named
1554 symbols or try to intuit the language from the specific type of
1555 stabs we find, but we can't do that until later when we read in
1556 full symbols. */
1557
1558 void
1559 set_initial_language (void)
1560 {
1561 enum language lang = language_unknown;
1562
1563 if (language_of_main != language_unknown)
1564 lang = language_of_main;
1565 else
1566 {
1567 const char *filename;
1568
1569 filename = find_main_filename ();
1570 if (filename != NULL)
1571 lang = deduce_language_from_filename (filename);
1572 }
1573
1574 if (lang == language_unknown)
1575 {
1576 /* Make C the default language */
1577 lang = language_c;
1578 }
1579
1580 set_language (lang);
1581 expected_language = current_language; /* Don't warn the user. */
1582 }
1583
1584 /* If NAME is a remote name open the file using remote protocol, otherwise
1585 open it normally. */
1586
1587 bfd *
1588 bfd_open_maybe_remote (const char *name)
1589 {
1590 if (remote_filename_p (name))
1591 return remote_bfd_open (name, gnutarget);
1592 else
1593 return bfd_openr (name, gnutarget);
1594 }
1595
1596
1597 /* Open the file specified by NAME and hand it off to BFD for
1598 preliminary analysis. Return a newly initialized bfd *, which
1599 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1600 absolute). In case of trouble, error() is called. */
1601
1602 bfd *
1603 symfile_bfd_open (char *name)
1604 {
1605 bfd *sym_bfd;
1606 int desc;
1607 char *absolute_name;
1608
1609 if (remote_filename_p (name))
1610 {
1611 name = xstrdup (name);
1612 sym_bfd = remote_bfd_open (name, gnutarget);
1613 if (!sym_bfd)
1614 {
1615 make_cleanup (xfree, name);
1616 error (_("`%s': can't open to read symbols: %s."), name,
1617 bfd_errmsg (bfd_get_error ()));
1618 }
1619
1620 if (!bfd_check_format (sym_bfd, bfd_object))
1621 {
1622 bfd_close (sym_bfd);
1623 make_cleanup (xfree, name);
1624 error (_("`%s': can't read symbols: %s."), name,
1625 bfd_errmsg (bfd_get_error ()));
1626 }
1627
1628 return sym_bfd;
1629 }
1630
1631 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1632
1633 /* Look down path for it, allocate 2nd new malloc'd copy. */
1634 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1635 O_RDONLY | O_BINARY, &absolute_name);
1636 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1637 if (desc < 0)
1638 {
1639 char *exename = alloca (strlen (name) + 5);
1640
1641 strcat (strcpy (exename, name), ".exe");
1642 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1643 O_RDONLY | O_BINARY, &absolute_name);
1644 }
1645 #endif
1646 if (desc < 0)
1647 {
1648 make_cleanup (xfree, name);
1649 perror_with_name (name);
1650 }
1651
1652 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1653 bfd. It'll be freed in free_objfile(). */
1654 xfree (name);
1655 name = absolute_name;
1656
1657 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1658 if (!sym_bfd)
1659 {
1660 close (desc);
1661 make_cleanup (xfree, name);
1662 error (_("`%s': can't open to read symbols: %s."), name,
1663 bfd_errmsg (bfd_get_error ()));
1664 }
1665 bfd_set_cacheable (sym_bfd, 1);
1666
1667 if (!bfd_check_format (sym_bfd, bfd_object))
1668 {
1669 /* FIXME: should be checking for errors from bfd_close (for one
1670 thing, on error it does not free all the storage associated
1671 with the bfd). */
1672 bfd_close (sym_bfd); /* This also closes desc. */
1673 make_cleanup (xfree, name);
1674 error (_("`%s': can't read symbols: %s."), name,
1675 bfd_errmsg (bfd_get_error ()));
1676 }
1677
1678 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1679 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1680
1681 return sym_bfd;
1682 }
1683
1684 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1685 the section was not found. */
1686
1687 int
1688 get_section_index (struct objfile *objfile, char *section_name)
1689 {
1690 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1691
1692 if (sect)
1693 return sect->index;
1694 else
1695 return -1;
1696 }
1697
1698 /* Link SF into the global symtab_fns list. Called on startup by the
1699 _initialize routine in each object file format reader, to register
1700 information about each format the reader is prepared to handle. */
1701
1702 void
1703 add_symtab_fns (const struct sym_fns *sf)
1704 {
1705 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1706 }
1707
1708 /* Initialize OBJFILE to read symbols from its associated BFD. It
1709 either returns or calls error(). The result is an initialized
1710 struct sym_fns in the objfile structure, that contains cached
1711 information about the symbol file. */
1712
1713 static const struct sym_fns *
1714 find_sym_fns (bfd *abfd)
1715 {
1716 const struct sym_fns *sf;
1717 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1718 int i;
1719
1720 if (our_flavour == bfd_target_srec_flavour
1721 || our_flavour == bfd_target_ihex_flavour
1722 || our_flavour == bfd_target_tekhex_flavour)
1723 return NULL; /* No symbols. */
1724
1725 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1726 if (our_flavour == sf->sym_flavour)
1727 return sf;
1728
1729 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1730 bfd_get_target (abfd));
1731 }
1732 \f
1733
1734 /* This function runs the load command of our current target. */
1735
1736 static void
1737 load_command (char *arg, int from_tty)
1738 {
1739 dont_repeat ();
1740
1741 /* The user might be reloading because the binary has changed. Take
1742 this opportunity to check. */
1743 reopen_exec_file ();
1744 reread_symbols ();
1745
1746 if (arg == NULL)
1747 {
1748 char *parg;
1749 int count = 0;
1750
1751 parg = arg = get_exec_file (1);
1752
1753 /* Count how many \ " ' tab space there are in the name. */
1754 while ((parg = strpbrk (parg, "\\\"'\t ")))
1755 {
1756 parg++;
1757 count++;
1758 }
1759
1760 if (count)
1761 {
1762 /* We need to quote this string so buildargv can pull it apart. */
1763 char *temp = xmalloc (strlen (arg) + count + 1 );
1764 char *ptemp = temp;
1765 char *prev;
1766
1767 make_cleanup (xfree, temp);
1768
1769 prev = parg = arg;
1770 while ((parg = strpbrk (parg, "\\\"'\t ")))
1771 {
1772 strncpy (ptemp, prev, parg - prev);
1773 ptemp += parg - prev;
1774 prev = parg++;
1775 *ptemp++ = '\\';
1776 }
1777 strcpy (ptemp, prev);
1778
1779 arg = temp;
1780 }
1781 }
1782
1783 target_load (arg, from_tty);
1784
1785 /* After re-loading the executable, we don't really know which
1786 overlays are mapped any more. */
1787 overlay_cache_invalid = 1;
1788 }
1789
1790 /* This version of "load" should be usable for any target. Currently
1791 it is just used for remote targets, not inftarg.c or core files,
1792 on the theory that only in that case is it useful.
1793
1794 Avoiding xmodem and the like seems like a win (a) because we don't have
1795 to worry about finding it, and (b) On VMS, fork() is very slow and so
1796 we don't want to run a subprocess. On the other hand, I'm not sure how
1797 performance compares. */
1798
1799 static int validate_download = 0;
1800
1801 /* Callback service function for generic_load (bfd_map_over_sections). */
1802
1803 static void
1804 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1805 {
1806 bfd_size_type *sum = data;
1807
1808 *sum += bfd_get_section_size (asec);
1809 }
1810
1811 /* Opaque data for load_section_callback. */
1812 struct load_section_data {
1813 unsigned long load_offset;
1814 struct load_progress_data *progress_data;
1815 VEC(memory_write_request_s) *requests;
1816 };
1817
1818 /* Opaque data for load_progress. */
1819 struct load_progress_data {
1820 /* Cumulative data. */
1821 unsigned long write_count;
1822 unsigned long data_count;
1823 bfd_size_type total_size;
1824 };
1825
1826 /* Opaque data for load_progress for a single section. */
1827 struct load_progress_section_data {
1828 struct load_progress_data *cumulative;
1829
1830 /* Per-section data. */
1831 const char *section_name;
1832 ULONGEST section_sent;
1833 ULONGEST section_size;
1834 CORE_ADDR lma;
1835 gdb_byte *buffer;
1836 };
1837
1838 /* Target write callback routine for progress reporting. */
1839
1840 static void
1841 load_progress (ULONGEST bytes, void *untyped_arg)
1842 {
1843 struct load_progress_section_data *args = untyped_arg;
1844 struct load_progress_data *totals;
1845
1846 if (args == NULL)
1847 /* Writing padding data. No easy way to get at the cumulative
1848 stats, so just ignore this. */
1849 return;
1850
1851 totals = args->cumulative;
1852
1853 if (bytes == 0 && args->section_sent == 0)
1854 {
1855 /* The write is just starting. Let the user know we've started
1856 this section. */
1857 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1858 args->section_name, hex_string (args->section_size),
1859 paddress (target_gdbarch, args->lma));
1860 return;
1861 }
1862
1863 if (validate_download)
1864 {
1865 /* Broken memories and broken monitors manifest themselves here
1866 when bring new computers to life. This doubles already slow
1867 downloads. */
1868 /* NOTE: cagney/1999-10-18: A more efficient implementation
1869 might add a verify_memory() method to the target vector and
1870 then use that. remote.c could implement that method using
1871 the ``qCRC'' packet. */
1872 gdb_byte *check = xmalloc (bytes);
1873 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1874
1875 if (target_read_memory (args->lma, check, bytes) != 0)
1876 error (_("Download verify read failed at %s"),
1877 paddress (target_gdbarch, args->lma));
1878 if (memcmp (args->buffer, check, bytes) != 0)
1879 error (_("Download verify compare failed at %s"),
1880 paddress (target_gdbarch, args->lma));
1881 do_cleanups (verify_cleanups);
1882 }
1883 totals->data_count += bytes;
1884 args->lma += bytes;
1885 args->buffer += bytes;
1886 totals->write_count += 1;
1887 args->section_sent += bytes;
1888 if (quit_flag
1889 || (deprecated_ui_load_progress_hook != NULL
1890 && deprecated_ui_load_progress_hook (args->section_name,
1891 args->section_sent)))
1892 error (_("Canceled the download"));
1893
1894 if (deprecated_show_load_progress != NULL)
1895 deprecated_show_load_progress (args->section_name,
1896 args->section_sent,
1897 args->section_size,
1898 totals->data_count,
1899 totals->total_size);
1900 }
1901
1902 /* Callback service function for generic_load (bfd_map_over_sections). */
1903
1904 static void
1905 load_section_callback (bfd *abfd, asection *asec, void *data)
1906 {
1907 struct memory_write_request *new_request;
1908 struct load_section_data *args = data;
1909 struct load_progress_section_data *section_data;
1910 bfd_size_type size = bfd_get_section_size (asec);
1911 gdb_byte *buffer;
1912 const char *sect_name = bfd_get_section_name (abfd, asec);
1913
1914 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1915 return;
1916
1917 if (size == 0)
1918 return;
1919
1920 new_request = VEC_safe_push (memory_write_request_s,
1921 args->requests, NULL);
1922 memset (new_request, 0, sizeof (struct memory_write_request));
1923 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1924 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1925 new_request->end = new_request->begin + size; /* FIXME Should size
1926 be in instead? */
1927 new_request->data = xmalloc (size);
1928 new_request->baton = section_data;
1929
1930 buffer = new_request->data;
1931
1932 section_data->cumulative = args->progress_data;
1933 section_data->section_name = sect_name;
1934 section_data->section_size = size;
1935 section_data->lma = new_request->begin;
1936 section_data->buffer = buffer;
1937
1938 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1939 }
1940
1941 /* Clean up an entire memory request vector, including load
1942 data and progress records. */
1943
1944 static void
1945 clear_memory_write_data (void *arg)
1946 {
1947 VEC(memory_write_request_s) **vec_p = arg;
1948 VEC(memory_write_request_s) *vec = *vec_p;
1949 int i;
1950 struct memory_write_request *mr;
1951
1952 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1953 {
1954 xfree (mr->data);
1955 xfree (mr->baton);
1956 }
1957 VEC_free (memory_write_request_s, vec);
1958 }
1959
1960 void
1961 generic_load (char *args, int from_tty)
1962 {
1963 bfd *loadfile_bfd;
1964 struct timeval start_time, end_time;
1965 char *filename;
1966 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1967 struct load_section_data cbdata;
1968 struct load_progress_data total_progress;
1969
1970 CORE_ADDR entry;
1971 char **argv;
1972
1973 memset (&cbdata, 0, sizeof (cbdata));
1974 memset (&total_progress, 0, sizeof (total_progress));
1975 cbdata.progress_data = &total_progress;
1976
1977 make_cleanup (clear_memory_write_data, &cbdata.requests);
1978
1979 if (args == NULL)
1980 error_no_arg (_("file to load"));
1981
1982 argv = gdb_buildargv (args);
1983 make_cleanup_freeargv (argv);
1984
1985 filename = tilde_expand (argv[0]);
1986 make_cleanup (xfree, filename);
1987
1988 if (argv[1] != NULL)
1989 {
1990 char *endptr;
1991
1992 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1993
1994 /* If the last word was not a valid number then
1995 treat it as a file name with spaces in. */
1996 if (argv[1] == endptr)
1997 error (_("Invalid download offset:%s."), argv[1]);
1998
1999 if (argv[2] != NULL)
2000 error (_("Too many parameters."));
2001 }
2002
2003 /* Open the file for loading. */
2004 loadfile_bfd = bfd_openr (filename, gnutarget);
2005 if (loadfile_bfd == NULL)
2006 {
2007 perror_with_name (filename);
2008 return;
2009 }
2010
2011 /* FIXME: should be checking for errors from bfd_close (for one thing,
2012 on error it does not free all the storage associated with the
2013 bfd). */
2014 make_cleanup_bfd_close (loadfile_bfd);
2015
2016 if (!bfd_check_format (loadfile_bfd, bfd_object))
2017 {
2018 error (_("\"%s\" is not an object file: %s"), filename,
2019 bfd_errmsg (bfd_get_error ()));
2020 }
2021
2022 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2023 (void *) &total_progress.total_size);
2024
2025 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2026
2027 gettimeofday (&start_time, NULL);
2028
2029 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2030 load_progress) != 0)
2031 error (_("Load failed"));
2032
2033 gettimeofday (&end_time, NULL);
2034
2035 entry = bfd_get_start_address (loadfile_bfd);
2036 ui_out_text (uiout, "Start address ");
2037 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2038 ui_out_text (uiout, ", load size ");
2039 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2040 ui_out_text (uiout, "\n");
2041 /* We were doing this in remote-mips.c, I suspect it is right
2042 for other targets too. */
2043 regcache_write_pc (get_current_regcache (), entry);
2044
2045 /* Reset breakpoints, now that we have changed the load image. For
2046 instance, breakpoints may have been set (or reset, by
2047 post_create_inferior) while connected to the target but before we
2048 loaded the program. In that case, the prologue analyzer could
2049 have read instructions from the target to find the right
2050 breakpoint locations. Loading has changed the contents of that
2051 memory. */
2052
2053 breakpoint_re_set ();
2054
2055 /* FIXME: are we supposed to call symbol_file_add or not? According
2056 to a comment from remote-mips.c (where a call to symbol_file_add
2057 was commented out), making the call confuses GDB if more than one
2058 file is loaded in. Some targets do (e.g., remote-vx.c) but
2059 others don't (or didn't - perhaps they have all been deleted). */
2060
2061 print_transfer_performance (gdb_stdout, total_progress.data_count,
2062 total_progress.write_count,
2063 &start_time, &end_time);
2064
2065 do_cleanups (old_cleanups);
2066 }
2067
2068 /* Report how fast the transfer went. */
2069
2070 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2071 replaced by print_transfer_performance (with a very different
2072 function signature). */
2073
2074 void
2075 report_transfer_performance (unsigned long data_count, time_t start_time,
2076 time_t end_time)
2077 {
2078 struct timeval start, end;
2079
2080 start.tv_sec = start_time;
2081 start.tv_usec = 0;
2082 end.tv_sec = end_time;
2083 end.tv_usec = 0;
2084
2085 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2086 }
2087
2088 void
2089 print_transfer_performance (struct ui_file *stream,
2090 unsigned long data_count,
2091 unsigned long write_count,
2092 const struct timeval *start_time,
2093 const struct timeval *end_time)
2094 {
2095 ULONGEST time_count;
2096
2097 /* Compute the elapsed time in milliseconds, as a tradeoff between
2098 accuracy and overflow. */
2099 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2100 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2101
2102 ui_out_text (uiout, "Transfer rate: ");
2103 if (time_count > 0)
2104 {
2105 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2106
2107 if (ui_out_is_mi_like_p (uiout))
2108 {
2109 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2110 ui_out_text (uiout, " bits/sec");
2111 }
2112 else if (rate < 1024)
2113 {
2114 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2115 ui_out_text (uiout, " bytes/sec");
2116 }
2117 else
2118 {
2119 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2120 ui_out_text (uiout, " KB/sec");
2121 }
2122 }
2123 else
2124 {
2125 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2126 ui_out_text (uiout, " bits in <1 sec");
2127 }
2128 if (write_count > 0)
2129 {
2130 ui_out_text (uiout, ", ");
2131 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2132 ui_out_text (uiout, " bytes/write");
2133 }
2134 ui_out_text (uiout, ".\n");
2135 }
2136
2137 /* This function allows the addition of incrementally linked object files.
2138 It does not modify any state in the target, only in the debugger. */
2139 /* Note: ezannoni 2000-04-13 This function/command used to have a
2140 special case syntax for the rombug target (Rombug is the boot
2141 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2142 rombug case, the user doesn't need to supply a text address,
2143 instead a call to target_link() (in target.c) would supply the
2144 value to use. We are now discontinuing this type of ad hoc syntax. */
2145
2146 static void
2147 add_symbol_file_command (char *args, int from_tty)
2148 {
2149 struct gdbarch *gdbarch = get_current_arch ();
2150 char *filename = NULL;
2151 int flags = OBJF_USERLOADED;
2152 char *arg;
2153 int section_index = 0;
2154 int argcnt = 0;
2155 int sec_num = 0;
2156 int i;
2157 int expecting_sec_name = 0;
2158 int expecting_sec_addr = 0;
2159 char **argv;
2160
2161 struct sect_opt
2162 {
2163 char *name;
2164 char *value;
2165 };
2166
2167 struct section_addr_info *section_addrs;
2168 struct sect_opt *sect_opts = NULL;
2169 size_t num_sect_opts = 0;
2170 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2171
2172 num_sect_opts = 16;
2173 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2174 * sizeof (struct sect_opt));
2175
2176 dont_repeat ();
2177
2178 if (args == NULL)
2179 error (_("add-symbol-file takes a file name and an address"));
2180
2181 argv = gdb_buildargv (args);
2182 make_cleanup_freeargv (argv);
2183
2184 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2185 {
2186 /* Process the argument. */
2187 if (argcnt == 0)
2188 {
2189 /* The first argument is the file name. */
2190 filename = tilde_expand (arg);
2191 make_cleanup (xfree, filename);
2192 }
2193 else
2194 if (argcnt == 1)
2195 {
2196 /* The second argument is always the text address at which
2197 to load the program. */
2198 sect_opts[section_index].name = ".text";
2199 sect_opts[section_index].value = arg;
2200 if (++section_index >= num_sect_opts)
2201 {
2202 num_sect_opts *= 2;
2203 sect_opts = ((struct sect_opt *)
2204 xrealloc (sect_opts,
2205 num_sect_opts
2206 * sizeof (struct sect_opt)));
2207 }
2208 }
2209 else
2210 {
2211 /* It's an option (starting with '-') or it's an argument
2212 to an option. */
2213
2214 if (*arg == '-')
2215 {
2216 if (strcmp (arg, "-readnow") == 0)
2217 flags |= OBJF_READNOW;
2218 else if (strcmp (arg, "-s") == 0)
2219 {
2220 expecting_sec_name = 1;
2221 expecting_sec_addr = 1;
2222 }
2223 }
2224 else
2225 {
2226 if (expecting_sec_name)
2227 {
2228 sect_opts[section_index].name = arg;
2229 expecting_sec_name = 0;
2230 }
2231 else
2232 if (expecting_sec_addr)
2233 {
2234 sect_opts[section_index].value = arg;
2235 expecting_sec_addr = 0;
2236 if (++section_index >= num_sect_opts)
2237 {
2238 num_sect_opts *= 2;
2239 sect_opts = ((struct sect_opt *)
2240 xrealloc (sect_opts,
2241 num_sect_opts
2242 * sizeof (struct sect_opt)));
2243 }
2244 }
2245 else
2246 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2247 " [-mapped] [-readnow] [-s <secname> <addr>]*"));
2248 }
2249 }
2250 }
2251
2252 /* This command takes at least two arguments. The first one is a
2253 filename, and the second is the address where this file has been
2254 loaded. Abort now if this address hasn't been provided by the
2255 user. */
2256 if (section_index < 1)
2257 error (_("The address where %s has been loaded is missing"), filename);
2258
2259 /* Print the prompt for the query below. And save the arguments into
2260 a sect_addr_info structure to be passed around to other
2261 functions. We have to split this up into separate print
2262 statements because hex_string returns a local static
2263 string. */
2264
2265 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2266 section_addrs = alloc_section_addr_info (section_index);
2267 make_cleanup (xfree, section_addrs);
2268 for (i = 0; i < section_index; i++)
2269 {
2270 CORE_ADDR addr;
2271 char *val = sect_opts[i].value;
2272 char *sec = sect_opts[i].name;
2273
2274 addr = parse_and_eval_address (val);
2275
2276 /* Here we store the section offsets in the order they were
2277 entered on the command line. */
2278 section_addrs->other[sec_num].name = sec;
2279 section_addrs->other[sec_num].addr = addr;
2280 printf_unfiltered ("\t%s_addr = %s\n", sec,
2281 paddress (gdbarch, addr));
2282 sec_num++;
2283
2284 /* The object's sections are initialized when a
2285 call is made to build_objfile_section_table (objfile).
2286 This happens in reread_symbols.
2287 At this point, we don't know what file type this is,
2288 so we can't determine what section names are valid. */
2289 }
2290
2291 if (from_tty && (!query ("%s", "")))
2292 error (_("Not confirmed."));
2293
2294 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2295 section_addrs, flags);
2296
2297 /* Getting new symbols may change our opinion about what is
2298 frameless. */
2299 reinit_frame_cache ();
2300 do_cleanups (my_cleanups);
2301 }
2302 \f
2303
2304 /* Re-read symbols if a symbol-file has changed. */
2305 void
2306 reread_symbols (void)
2307 {
2308 struct objfile *objfile;
2309 long new_modtime;
2310 int reread_one = 0;
2311 struct stat new_statbuf;
2312 int res;
2313
2314 /* With the addition of shared libraries, this should be modified,
2315 the load time should be saved in the partial symbol tables, since
2316 different tables may come from different source files. FIXME.
2317 This routine should then walk down each partial symbol table
2318 and see if the symbol table that it originates from has been changed. */
2319
2320 for (objfile = object_files; objfile; objfile = objfile->next)
2321 {
2322 /* solib-sunos.c creates one objfile with obfd. */
2323 if (objfile->obfd == NULL)
2324 continue;
2325
2326 /* Separate debug objfiles are handled in the main objfile. */
2327 if (objfile->separate_debug_objfile_backlink)
2328 continue;
2329
2330 /* If this object is from an archive (what you usually create with
2331 `ar', often called a `static library' on most systems, though
2332 a `shared library' on AIX is also an archive), then you should
2333 stat on the archive name, not member name. */
2334 if (objfile->obfd->my_archive)
2335 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2336 else
2337 res = stat (objfile->name, &new_statbuf);
2338 if (res != 0)
2339 {
2340 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2341 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2342 objfile->name);
2343 continue;
2344 }
2345 new_modtime = new_statbuf.st_mtime;
2346 if (new_modtime != objfile->mtime)
2347 {
2348 struct cleanup *old_cleanups;
2349 struct section_offsets *offsets;
2350 int num_offsets;
2351 char *obfd_filename;
2352
2353 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2354 objfile->name);
2355
2356 /* There are various functions like symbol_file_add,
2357 symfile_bfd_open, syms_from_objfile, etc., which might
2358 appear to do what we want. But they have various other
2359 effects which we *don't* want. So we just do stuff
2360 ourselves. We don't worry about mapped files (for one thing,
2361 any mapped file will be out of date). */
2362
2363 /* If we get an error, blow away this objfile (not sure if
2364 that is the correct response for things like shared
2365 libraries). */
2366 old_cleanups = make_cleanup_free_objfile (objfile);
2367 /* We need to do this whenever any symbols go away. */
2368 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2369
2370 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2371 bfd_get_filename (exec_bfd)) == 0)
2372 {
2373 /* Reload EXEC_BFD without asking anything. */
2374
2375 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2376 }
2377
2378 /* Clean up any state BFD has sitting around. We don't need
2379 to close the descriptor but BFD lacks a way of closing the
2380 BFD without closing the descriptor. */
2381 obfd_filename = bfd_get_filename (objfile->obfd);
2382 if (!bfd_close (objfile->obfd))
2383 error (_("Can't close BFD for %s: %s"), objfile->name,
2384 bfd_errmsg (bfd_get_error ()));
2385 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2386 if (objfile->obfd == NULL)
2387 error (_("Can't open %s to read symbols."), objfile->name);
2388 else
2389 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2390 /* bfd_openr sets cacheable to true, which is what we want. */
2391 if (!bfd_check_format (objfile->obfd, bfd_object))
2392 error (_("Can't read symbols from %s: %s."), objfile->name,
2393 bfd_errmsg (bfd_get_error ()));
2394
2395 /* Save the offsets, we will nuke them with the rest of the
2396 objfile_obstack. */
2397 num_offsets = objfile->num_sections;
2398 offsets = ((struct section_offsets *)
2399 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2400 memcpy (offsets, objfile->section_offsets,
2401 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2402
2403 /* Remove any references to this objfile in the global
2404 value lists. */
2405 preserve_values (objfile);
2406
2407 /* Nuke all the state that we will re-read. Much of the following
2408 code which sets things to NULL really is necessary to tell
2409 other parts of GDB that there is nothing currently there.
2410
2411 Try to keep the freeing order compatible with free_objfile. */
2412
2413 if (objfile->sf != NULL)
2414 {
2415 (*objfile->sf->sym_finish) (objfile);
2416 }
2417
2418 clear_objfile_data (objfile);
2419
2420 /* Free the separate debug objfiles. It will be
2421 automatically recreated by sym_read. */
2422 free_objfile_separate_debug (objfile);
2423
2424 /* FIXME: Do we have to free a whole linked list, or is this
2425 enough? */
2426 if (objfile->global_psymbols.list)
2427 xfree (objfile->global_psymbols.list);
2428 memset (&objfile->global_psymbols, 0,
2429 sizeof (objfile->global_psymbols));
2430 if (objfile->static_psymbols.list)
2431 xfree (objfile->static_psymbols.list);
2432 memset (&objfile->static_psymbols, 0,
2433 sizeof (objfile->static_psymbols));
2434
2435 /* Free the obstacks for non-reusable objfiles. */
2436 psymbol_bcache_free (objfile->psymbol_cache);
2437 objfile->psymbol_cache = psymbol_bcache_init ();
2438 bcache_xfree (objfile->macro_cache);
2439 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2440 bcache_xfree (objfile->filename_cache);
2441 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2442 if (objfile->demangled_names_hash != NULL)
2443 {
2444 htab_delete (objfile->demangled_names_hash);
2445 objfile->demangled_names_hash = NULL;
2446 }
2447 obstack_free (&objfile->objfile_obstack, 0);
2448 objfile->sections = NULL;
2449 objfile->symtabs = NULL;
2450 objfile->psymtabs = NULL;
2451 objfile->psymtabs_addrmap = NULL;
2452 objfile->free_psymtabs = NULL;
2453 objfile->cp_namespace_symtab = NULL;
2454 objfile->template_symbols = NULL;
2455 objfile->msymbols = NULL;
2456 objfile->deprecated_sym_private = NULL;
2457 objfile->minimal_symbol_count = 0;
2458 memset (&objfile->msymbol_hash, 0,
2459 sizeof (objfile->msymbol_hash));
2460 memset (&objfile->msymbol_demangled_hash, 0,
2461 sizeof (objfile->msymbol_demangled_hash));
2462
2463 objfile->psymbol_cache = psymbol_bcache_init ();
2464 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2465 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2466 /* obstack_init also initializes the obstack so it is
2467 empty. We could use obstack_specify_allocation but
2468 gdb_obstack.h specifies the alloc/dealloc
2469 functions. */
2470 obstack_init (&objfile->objfile_obstack);
2471 if (build_objfile_section_table (objfile))
2472 {
2473 error (_("Can't find the file sections in `%s': %s"),
2474 objfile->name, bfd_errmsg (bfd_get_error ()));
2475 }
2476 terminate_minimal_symbol_table (objfile);
2477
2478 /* We use the same section offsets as from last time. I'm not
2479 sure whether that is always correct for shared libraries. */
2480 objfile->section_offsets = (struct section_offsets *)
2481 obstack_alloc (&objfile->objfile_obstack,
2482 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2483 memcpy (objfile->section_offsets, offsets,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485 objfile->num_sections = num_offsets;
2486
2487 /* What the hell is sym_new_init for, anyway? The concept of
2488 distinguishing between the main file and additional files
2489 in this way seems rather dubious. */
2490 if (objfile == symfile_objfile)
2491 {
2492 (*objfile->sf->sym_new_init) (objfile);
2493 }
2494
2495 (*objfile->sf->sym_init) (objfile);
2496 clear_complaints (&symfile_complaints, 1, 1);
2497 /* Do not set flags as this is safe and we don't want to be
2498 verbose. */
2499 (*objfile->sf->sym_read) (objfile, 0);
2500 if (!objfile_has_symbols (objfile))
2501 {
2502 wrap_here ("");
2503 printf_unfiltered (_("(no debugging symbols found)\n"));
2504 wrap_here ("");
2505 }
2506
2507 /* We're done reading the symbol file; finish off complaints. */
2508 clear_complaints (&symfile_complaints, 0, 1);
2509
2510 /* Getting new symbols may change our opinion about what is
2511 frameless. */
2512
2513 reinit_frame_cache ();
2514
2515 /* Discard cleanups as symbol reading was successful. */
2516 discard_cleanups (old_cleanups);
2517
2518 /* If the mtime has changed between the time we set new_modtime
2519 and now, we *want* this to be out of date, so don't call stat
2520 again now. */
2521 objfile->mtime = new_modtime;
2522 reread_one = 1;
2523 init_entry_point_info (objfile);
2524 }
2525 }
2526
2527 if (reread_one)
2528 {
2529 /* Notify objfiles that we've modified objfile sections. */
2530 objfiles_changed ();
2531
2532 clear_symtab_users (0);
2533 /* At least one objfile has changed, so we can consider that
2534 the executable we're debugging has changed too. */
2535 observer_notify_executable_changed ();
2536 }
2537 }
2538 \f
2539
2540
2541 typedef struct
2542 {
2543 char *ext;
2544 enum language lang;
2545 }
2546 filename_language;
2547
2548 static filename_language *filename_language_table;
2549 static int fl_table_size, fl_table_next;
2550
2551 static void
2552 add_filename_language (char *ext, enum language lang)
2553 {
2554 if (fl_table_next >= fl_table_size)
2555 {
2556 fl_table_size += 10;
2557 filename_language_table =
2558 xrealloc (filename_language_table,
2559 fl_table_size * sizeof (*filename_language_table));
2560 }
2561
2562 filename_language_table[fl_table_next].ext = xstrdup (ext);
2563 filename_language_table[fl_table_next].lang = lang;
2564 fl_table_next++;
2565 }
2566
2567 static char *ext_args;
2568 static void
2569 show_ext_args (struct ui_file *file, int from_tty,
2570 struct cmd_list_element *c, const char *value)
2571 {
2572 fprintf_filtered (file,
2573 _("Mapping between filename extension "
2574 "and source language is \"%s\".\n"),
2575 value);
2576 }
2577
2578 static void
2579 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2580 {
2581 int i;
2582 char *cp = ext_args;
2583 enum language lang;
2584
2585 /* First arg is filename extension, starting with '.' */
2586 if (*cp != '.')
2587 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2588
2589 /* Find end of first arg. */
2590 while (*cp && !isspace (*cp))
2591 cp++;
2592
2593 if (*cp == '\0')
2594 error (_("'%s': two arguments required -- "
2595 "filename extension and language"),
2596 ext_args);
2597
2598 /* Null-terminate first arg. */
2599 *cp++ = '\0';
2600
2601 /* Find beginning of second arg, which should be a source language. */
2602 while (*cp && isspace (*cp))
2603 cp++;
2604
2605 if (*cp == '\0')
2606 error (_("'%s': two arguments required -- "
2607 "filename extension and language"),
2608 ext_args);
2609
2610 /* Lookup the language from among those we know. */
2611 lang = language_enum (cp);
2612
2613 /* Now lookup the filename extension: do we already know it? */
2614 for (i = 0; i < fl_table_next; i++)
2615 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2616 break;
2617
2618 if (i >= fl_table_next)
2619 {
2620 /* New file extension. */
2621 add_filename_language (ext_args, lang);
2622 }
2623 else
2624 {
2625 /* Redefining a previously known filename extension. */
2626
2627 /* if (from_tty) */
2628 /* query ("Really make files of type %s '%s'?", */
2629 /* ext_args, language_str (lang)); */
2630
2631 xfree (filename_language_table[i].ext);
2632 filename_language_table[i].ext = xstrdup (ext_args);
2633 filename_language_table[i].lang = lang;
2634 }
2635 }
2636
2637 static void
2638 info_ext_lang_command (char *args, int from_tty)
2639 {
2640 int i;
2641
2642 printf_filtered (_("Filename extensions and the languages they represent:"));
2643 printf_filtered ("\n\n");
2644 for (i = 0; i < fl_table_next; i++)
2645 printf_filtered ("\t%s\t- %s\n",
2646 filename_language_table[i].ext,
2647 language_str (filename_language_table[i].lang));
2648 }
2649
2650 static void
2651 init_filename_language_table (void)
2652 {
2653 if (fl_table_size == 0) /* Protect against repetition. */
2654 {
2655 fl_table_size = 20;
2656 fl_table_next = 0;
2657 filename_language_table =
2658 xmalloc (fl_table_size * sizeof (*filename_language_table));
2659 add_filename_language (".c", language_c);
2660 add_filename_language (".d", language_d);
2661 add_filename_language (".C", language_cplus);
2662 add_filename_language (".cc", language_cplus);
2663 add_filename_language (".cp", language_cplus);
2664 add_filename_language (".cpp", language_cplus);
2665 add_filename_language (".cxx", language_cplus);
2666 add_filename_language (".c++", language_cplus);
2667 add_filename_language (".java", language_java);
2668 add_filename_language (".class", language_java);
2669 add_filename_language (".m", language_objc);
2670 add_filename_language (".f", language_fortran);
2671 add_filename_language (".F", language_fortran);
2672 add_filename_language (".for", language_fortran);
2673 add_filename_language (".FOR", language_fortran);
2674 add_filename_language (".ftn", language_fortran);
2675 add_filename_language (".FTN", language_fortran);
2676 add_filename_language (".fpp", language_fortran);
2677 add_filename_language (".FPP", language_fortran);
2678 add_filename_language (".f90", language_fortran);
2679 add_filename_language (".F90", language_fortran);
2680 add_filename_language (".f95", language_fortran);
2681 add_filename_language (".F95", language_fortran);
2682 add_filename_language (".f03", language_fortran);
2683 add_filename_language (".F03", language_fortran);
2684 add_filename_language (".f08", language_fortran);
2685 add_filename_language (".F08", language_fortran);
2686 add_filename_language (".s", language_asm);
2687 add_filename_language (".sx", language_asm);
2688 add_filename_language (".S", language_asm);
2689 add_filename_language (".pas", language_pascal);
2690 add_filename_language (".p", language_pascal);
2691 add_filename_language (".pp", language_pascal);
2692 add_filename_language (".adb", language_ada);
2693 add_filename_language (".ads", language_ada);
2694 add_filename_language (".a", language_ada);
2695 add_filename_language (".ada", language_ada);
2696 add_filename_language (".dg", language_ada);
2697 }
2698 }
2699
2700 enum language
2701 deduce_language_from_filename (const char *filename)
2702 {
2703 int i;
2704 char *cp;
2705
2706 if (filename != NULL)
2707 if ((cp = strrchr (filename, '.')) != NULL)
2708 for (i = 0; i < fl_table_next; i++)
2709 if (strcmp (cp, filename_language_table[i].ext) == 0)
2710 return filename_language_table[i].lang;
2711
2712 return language_unknown;
2713 }
2714 \f
2715 /* allocate_symtab:
2716
2717 Allocate and partly initialize a new symbol table. Return a pointer
2718 to it. error() if no space.
2719
2720 Caller must set these fields:
2721 LINETABLE(symtab)
2722 symtab->blockvector
2723 symtab->dirname
2724 symtab->free_code
2725 symtab->free_ptr
2726 */
2727
2728 struct symtab *
2729 allocate_symtab (const char *filename, struct objfile *objfile)
2730 {
2731 struct symtab *symtab;
2732
2733 symtab = (struct symtab *)
2734 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2735 memset (symtab, 0, sizeof (*symtab));
2736 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2737 objfile->filename_cache);
2738 symtab->fullname = NULL;
2739 symtab->language = deduce_language_from_filename (filename);
2740 symtab->debugformat = "unknown";
2741
2742 /* Hook it to the objfile it comes from. */
2743
2744 symtab->objfile = objfile;
2745 symtab->next = objfile->symtabs;
2746 objfile->symtabs = symtab;
2747
2748 return (symtab);
2749 }
2750 \f
2751
2752 /* Reset all data structures in gdb which may contain references to symbol
2753 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2754
2755 void
2756 clear_symtab_users (int add_flags)
2757 {
2758 /* Someday, we should do better than this, by only blowing away
2759 the things that really need to be blown. */
2760
2761 /* Clear the "current" symtab first, because it is no longer valid.
2762 breakpoint_re_set may try to access the current symtab. */
2763 clear_current_source_symtab_and_line ();
2764
2765 clear_displays ();
2766 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2767 breakpoint_re_set ();
2768 set_default_breakpoint (0, NULL, 0, 0, 0);
2769 clear_pc_function_cache ();
2770 observer_notify_new_objfile (NULL);
2771
2772 /* Clear globals which might have pointed into a removed objfile.
2773 FIXME: It's not clear which of these are supposed to persist
2774 between expressions and which ought to be reset each time. */
2775 expression_context_block = NULL;
2776 innermost_block = NULL;
2777
2778 /* Varobj may refer to old symbols, perform a cleanup. */
2779 varobj_invalidate ();
2780
2781 }
2782
2783 static void
2784 clear_symtab_users_cleanup (void *ignore)
2785 {
2786 clear_symtab_users (0);
2787 }
2788 \f
2789 /* OVERLAYS:
2790 The following code implements an abstraction for debugging overlay sections.
2791
2792 The target model is as follows:
2793 1) The gnu linker will permit multiple sections to be mapped into the
2794 same VMA, each with its own unique LMA (or load address).
2795 2) It is assumed that some runtime mechanism exists for mapping the
2796 sections, one by one, from the load address into the VMA address.
2797 3) This code provides a mechanism for gdb to keep track of which
2798 sections should be considered to be mapped from the VMA to the LMA.
2799 This information is used for symbol lookup, and memory read/write.
2800 For instance, if a section has been mapped then its contents
2801 should be read from the VMA, otherwise from the LMA.
2802
2803 Two levels of debugger support for overlays are available. One is
2804 "manual", in which the debugger relies on the user to tell it which
2805 overlays are currently mapped. This level of support is
2806 implemented entirely in the core debugger, and the information about
2807 whether a section is mapped is kept in the objfile->obj_section table.
2808
2809 The second level of support is "automatic", and is only available if
2810 the target-specific code provides functionality to read the target's
2811 overlay mapping table, and translate its contents for the debugger
2812 (by updating the mapped state information in the obj_section tables).
2813
2814 The interface is as follows:
2815 User commands:
2816 overlay map <name> -- tell gdb to consider this section mapped
2817 overlay unmap <name> -- tell gdb to consider this section unmapped
2818 overlay list -- list the sections that GDB thinks are mapped
2819 overlay read-target -- get the target's state of what's mapped
2820 overlay off/manual/auto -- set overlay debugging state
2821 Functional interface:
2822 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2823 section, return that section.
2824 find_pc_overlay(pc): find any overlay section that contains
2825 the pc, either in its VMA or its LMA
2826 section_is_mapped(sect): true if overlay is marked as mapped
2827 section_is_overlay(sect): true if section's VMA != LMA
2828 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2829 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2830 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2831 overlay_mapped_address(...): map an address from section's LMA to VMA
2832 overlay_unmapped_address(...): map an address from section's VMA to LMA
2833 symbol_overlayed_address(...): Return a "current" address for symbol:
2834 either in VMA or LMA depending on whether
2835 the symbol's section is currently mapped. */
2836
2837 /* Overlay debugging state: */
2838
2839 enum overlay_debugging_state overlay_debugging = ovly_off;
2840 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2841
2842 /* Function: section_is_overlay (SECTION)
2843 Returns true if SECTION has VMA not equal to LMA, ie.
2844 SECTION is loaded at an address different from where it will "run". */
2845
2846 int
2847 section_is_overlay (struct obj_section *section)
2848 {
2849 if (overlay_debugging && section)
2850 {
2851 bfd *abfd = section->objfile->obfd;
2852 asection *bfd_section = section->the_bfd_section;
2853
2854 if (bfd_section_lma (abfd, bfd_section) != 0
2855 && bfd_section_lma (abfd, bfd_section)
2856 != bfd_section_vma (abfd, bfd_section))
2857 return 1;
2858 }
2859
2860 return 0;
2861 }
2862
2863 /* Function: overlay_invalidate_all (void)
2864 Invalidate the mapped state of all overlay sections (mark it as stale). */
2865
2866 static void
2867 overlay_invalidate_all (void)
2868 {
2869 struct objfile *objfile;
2870 struct obj_section *sect;
2871
2872 ALL_OBJSECTIONS (objfile, sect)
2873 if (section_is_overlay (sect))
2874 sect->ovly_mapped = -1;
2875 }
2876
2877 /* Function: section_is_mapped (SECTION)
2878 Returns true if section is an overlay, and is currently mapped.
2879
2880 Access to the ovly_mapped flag is restricted to this function, so
2881 that we can do automatic update. If the global flag
2882 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2883 overlay_invalidate_all. If the mapped state of the particular
2884 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2885
2886 int
2887 section_is_mapped (struct obj_section *osect)
2888 {
2889 struct gdbarch *gdbarch;
2890
2891 if (osect == 0 || !section_is_overlay (osect))
2892 return 0;
2893
2894 switch (overlay_debugging)
2895 {
2896 default:
2897 case ovly_off:
2898 return 0; /* overlay debugging off */
2899 case ovly_auto: /* overlay debugging automatic */
2900 /* Unles there is a gdbarch_overlay_update function,
2901 there's really nothing useful to do here (can't really go auto). */
2902 gdbarch = get_objfile_arch (osect->objfile);
2903 if (gdbarch_overlay_update_p (gdbarch))
2904 {
2905 if (overlay_cache_invalid)
2906 {
2907 overlay_invalidate_all ();
2908 overlay_cache_invalid = 0;
2909 }
2910 if (osect->ovly_mapped == -1)
2911 gdbarch_overlay_update (gdbarch, osect);
2912 }
2913 /* fall thru to manual case */
2914 case ovly_on: /* overlay debugging manual */
2915 return osect->ovly_mapped == 1;
2916 }
2917 }
2918
2919 /* Function: pc_in_unmapped_range
2920 If PC falls into the lma range of SECTION, return true, else false. */
2921
2922 CORE_ADDR
2923 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2924 {
2925 if (section_is_overlay (section))
2926 {
2927 bfd *abfd = section->objfile->obfd;
2928 asection *bfd_section = section->the_bfd_section;
2929
2930 /* We assume the LMA is relocated by the same offset as the VMA. */
2931 bfd_vma size = bfd_get_section_size (bfd_section);
2932 CORE_ADDR offset = obj_section_offset (section);
2933
2934 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2935 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2936 return 1;
2937 }
2938
2939 return 0;
2940 }
2941
2942 /* Function: pc_in_mapped_range
2943 If PC falls into the vma range of SECTION, return true, else false. */
2944
2945 CORE_ADDR
2946 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2947 {
2948 if (section_is_overlay (section))
2949 {
2950 if (obj_section_addr (section) <= pc
2951 && pc < obj_section_endaddr (section))
2952 return 1;
2953 }
2954
2955 return 0;
2956 }
2957
2958
2959 /* Return true if the mapped ranges of sections A and B overlap, false
2960 otherwise. */
2961 static int
2962 sections_overlap (struct obj_section *a, struct obj_section *b)
2963 {
2964 CORE_ADDR a_start = obj_section_addr (a);
2965 CORE_ADDR a_end = obj_section_endaddr (a);
2966 CORE_ADDR b_start = obj_section_addr (b);
2967 CORE_ADDR b_end = obj_section_endaddr (b);
2968
2969 return (a_start < b_end && b_start < a_end);
2970 }
2971
2972 /* Function: overlay_unmapped_address (PC, SECTION)
2973 Returns the address corresponding to PC in the unmapped (load) range.
2974 May be the same as PC. */
2975
2976 CORE_ADDR
2977 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2978 {
2979 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2980 {
2981 bfd *abfd = section->objfile->obfd;
2982 asection *bfd_section = section->the_bfd_section;
2983
2984 return pc + bfd_section_lma (abfd, bfd_section)
2985 - bfd_section_vma (abfd, bfd_section);
2986 }
2987
2988 return pc;
2989 }
2990
2991 /* Function: overlay_mapped_address (PC, SECTION)
2992 Returns the address corresponding to PC in the mapped (runtime) range.
2993 May be the same as PC. */
2994
2995 CORE_ADDR
2996 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2997 {
2998 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2999 {
3000 bfd *abfd = section->objfile->obfd;
3001 asection *bfd_section = section->the_bfd_section;
3002
3003 return pc + bfd_section_vma (abfd, bfd_section)
3004 - bfd_section_lma (abfd, bfd_section);
3005 }
3006
3007 return pc;
3008 }
3009
3010
3011 /* Function: symbol_overlayed_address
3012 Return one of two addresses (relative to the VMA or to the LMA),
3013 depending on whether the section is mapped or not. */
3014
3015 CORE_ADDR
3016 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3017 {
3018 if (overlay_debugging)
3019 {
3020 /* If the symbol has no section, just return its regular address. */
3021 if (section == 0)
3022 return address;
3023 /* If the symbol's section is not an overlay, just return its
3024 address. */
3025 if (!section_is_overlay (section))
3026 return address;
3027 /* If the symbol's section is mapped, just return its address. */
3028 if (section_is_mapped (section))
3029 return address;
3030 /*
3031 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3032 * then return its LOADED address rather than its vma address!!
3033 */
3034 return overlay_unmapped_address (address, section);
3035 }
3036 return address;
3037 }
3038
3039 /* Function: find_pc_overlay (PC)
3040 Return the best-match overlay section for PC:
3041 If PC matches a mapped overlay section's VMA, return that section.
3042 Else if PC matches an unmapped section's VMA, return that section.
3043 Else if PC matches an unmapped section's LMA, return that section. */
3044
3045 struct obj_section *
3046 find_pc_overlay (CORE_ADDR pc)
3047 {
3048 struct objfile *objfile;
3049 struct obj_section *osect, *best_match = NULL;
3050
3051 if (overlay_debugging)
3052 ALL_OBJSECTIONS (objfile, osect)
3053 if (section_is_overlay (osect))
3054 {
3055 if (pc_in_mapped_range (pc, osect))
3056 {
3057 if (section_is_mapped (osect))
3058 return osect;
3059 else
3060 best_match = osect;
3061 }
3062 else if (pc_in_unmapped_range (pc, osect))
3063 best_match = osect;
3064 }
3065 return best_match;
3066 }
3067
3068 /* Function: find_pc_mapped_section (PC)
3069 If PC falls into the VMA address range of an overlay section that is
3070 currently marked as MAPPED, return that section. Else return NULL. */
3071
3072 struct obj_section *
3073 find_pc_mapped_section (CORE_ADDR pc)
3074 {
3075 struct objfile *objfile;
3076 struct obj_section *osect;
3077
3078 if (overlay_debugging)
3079 ALL_OBJSECTIONS (objfile, osect)
3080 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3081 return osect;
3082
3083 return NULL;
3084 }
3085
3086 /* Function: list_overlays_command
3087 Print a list of mapped sections and their PC ranges. */
3088
3089 void
3090 list_overlays_command (char *args, int from_tty)
3091 {
3092 int nmapped = 0;
3093 struct objfile *objfile;
3094 struct obj_section *osect;
3095
3096 if (overlay_debugging)
3097 ALL_OBJSECTIONS (objfile, osect)
3098 if (section_is_mapped (osect))
3099 {
3100 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3101 const char *name;
3102 bfd_vma lma, vma;
3103 int size;
3104
3105 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3106 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3107 size = bfd_get_section_size (osect->the_bfd_section);
3108 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3109
3110 printf_filtered ("Section %s, loaded at ", name);
3111 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3112 puts_filtered (" - ");
3113 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3114 printf_filtered (", mapped at ");
3115 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3116 puts_filtered (" - ");
3117 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3118 puts_filtered ("\n");
3119
3120 nmapped++;
3121 }
3122 if (nmapped == 0)
3123 printf_filtered (_("No sections are mapped.\n"));
3124 }
3125
3126 /* Function: map_overlay_command
3127 Mark the named section as mapped (ie. residing at its VMA address). */
3128
3129 void
3130 map_overlay_command (char *args, int from_tty)
3131 {
3132 struct objfile *objfile, *objfile2;
3133 struct obj_section *sec, *sec2;
3134
3135 if (!overlay_debugging)
3136 error (_("Overlay debugging not enabled. Use "
3137 "either the 'overlay auto' or\n"
3138 "the 'overlay manual' command."));
3139
3140 if (args == 0 || *args == 0)
3141 error (_("Argument required: name of an overlay section"));
3142
3143 /* First, find a section matching the user supplied argument. */
3144 ALL_OBJSECTIONS (objfile, sec)
3145 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3146 {
3147 /* Now, check to see if the section is an overlay. */
3148 if (!section_is_overlay (sec))
3149 continue; /* not an overlay section */
3150
3151 /* Mark the overlay as "mapped". */
3152 sec->ovly_mapped = 1;
3153
3154 /* Next, make a pass and unmap any sections that are
3155 overlapped by this new section: */
3156 ALL_OBJSECTIONS (objfile2, sec2)
3157 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3158 {
3159 if (info_verbose)
3160 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3161 bfd_section_name (objfile->obfd,
3162 sec2->the_bfd_section));
3163 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3164 }
3165 return;
3166 }
3167 error (_("No overlay section called %s"), args);
3168 }
3169
3170 /* Function: unmap_overlay_command
3171 Mark the overlay section as unmapped
3172 (ie. resident in its LMA address range, rather than the VMA range). */
3173
3174 void
3175 unmap_overlay_command (char *args, int from_tty)
3176 {
3177 struct objfile *objfile;
3178 struct obj_section *sec;
3179
3180 if (!overlay_debugging)
3181 error (_("Overlay debugging not enabled. "
3182 "Use either the 'overlay auto' or\n"
3183 "the 'overlay manual' command."));
3184
3185 if (args == 0 || *args == 0)
3186 error (_("Argument required: name of an overlay section"));
3187
3188 /* First, find a section matching the user supplied argument. */
3189 ALL_OBJSECTIONS (objfile, sec)
3190 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3191 {
3192 if (!sec->ovly_mapped)
3193 error (_("Section %s is not mapped"), args);
3194 sec->ovly_mapped = 0;
3195 return;
3196 }
3197 error (_("No overlay section called %s"), args);
3198 }
3199
3200 /* Function: overlay_auto_command
3201 A utility command to turn on overlay debugging.
3202 Possibly this should be done via a set/show command. */
3203
3204 static void
3205 overlay_auto_command (char *args, int from_tty)
3206 {
3207 overlay_debugging = ovly_auto;
3208 enable_overlay_breakpoints ();
3209 if (info_verbose)
3210 printf_unfiltered (_("Automatic overlay debugging enabled."));
3211 }
3212
3213 /* Function: overlay_manual_command
3214 A utility command to turn on overlay debugging.
3215 Possibly this should be done via a set/show command. */
3216
3217 static void
3218 overlay_manual_command (char *args, int from_tty)
3219 {
3220 overlay_debugging = ovly_on;
3221 disable_overlay_breakpoints ();
3222 if (info_verbose)
3223 printf_unfiltered (_("Overlay debugging enabled."));
3224 }
3225
3226 /* Function: overlay_off_command
3227 A utility command to turn on overlay debugging.
3228 Possibly this should be done via a set/show command. */
3229
3230 static void
3231 overlay_off_command (char *args, int from_tty)
3232 {
3233 overlay_debugging = ovly_off;
3234 disable_overlay_breakpoints ();
3235 if (info_verbose)
3236 printf_unfiltered (_("Overlay debugging disabled."));
3237 }
3238
3239 static void
3240 overlay_load_command (char *args, int from_tty)
3241 {
3242 struct gdbarch *gdbarch = get_current_arch ();
3243
3244 if (gdbarch_overlay_update_p (gdbarch))
3245 gdbarch_overlay_update (gdbarch, NULL);
3246 else
3247 error (_("This target does not know how to read its overlay state."));
3248 }
3249
3250 /* Function: overlay_command
3251 A place-holder for a mis-typed command. */
3252
3253 /* Command list chain containing all defined "overlay" subcommands. */
3254 struct cmd_list_element *overlaylist;
3255
3256 static void
3257 overlay_command (char *args, int from_tty)
3258 {
3259 printf_unfiltered
3260 ("\"overlay\" must be followed by the name of an overlay command.\n");
3261 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3262 }
3263
3264
3265 /* Target Overlays for the "Simplest" overlay manager:
3266
3267 This is GDB's default target overlay layer. It works with the
3268 minimal overlay manager supplied as an example by Cygnus. The
3269 entry point is via a function pointer "gdbarch_overlay_update",
3270 so targets that use a different runtime overlay manager can
3271 substitute their own overlay_update function and take over the
3272 function pointer.
3273
3274 The overlay_update function pokes around in the target's data structures
3275 to see what overlays are mapped, and updates GDB's overlay mapping with
3276 this information.
3277
3278 In this simple implementation, the target data structures are as follows:
3279 unsigned _novlys; /# number of overlay sections #/
3280 unsigned _ovly_table[_novlys][4] = {
3281 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3282 {..., ..., ..., ...},
3283 }
3284 unsigned _novly_regions; /# number of overlay regions #/
3285 unsigned _ovly_region_table[_novly_regions][3] = {
3286 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3287 {..., ..., ...},
3288 }
3289 These functions will attempt to update GDB's mappedness state in the
3290 symbol section table, based on the target's mappedness state.
3291
3292 To do this, we keep a cached copy of the target's _ovly_table, and
3293 attempt to detect when the cached copy is invalidated. The main
3294 entry point is "simple_overlay_update(SECT), which looks up SECT in
3295 the cached table and re-reads only the entry for that section from
3296 the target (whenever possible). */
3297
3298 /* Cached, dynamically allocated copies of the target data structures: */
3299 static unsigned (*cache_ovly_table)[4] = 0;
3300 static unsigned cache_novlys = 0;
3301 static CORE_ADDR cache_ovly_table_base = 0;
3302 enum ovly_index
3303 {
3304 VMA, SIZE, LMA, MAPPED
3305 };
3306
3307 /* Throw away the cached copy of _ovly_table. */
3308 static void
3309 simple_free_overlay_table (void)
3310 {
3311 if (cache_ovly_table)
3312 xfree (cache_ovly_table);
3313 cache_novlys = 0;
3314 cache_ovly_table = NULL;
3315 cache_ovly_table_base = 0;
3316 }
3317
3318 /* Read an array of ints of size SIZE from the target into a local buffer.
3319 Convert to host order. int LEN is number of ints. */
3320 static void
3321 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3322 int len, int size, enum bfd_endian byte_order)
3323 {
3324 /* FIXME (alloca): Not safe if array is very large. */
3325 gdb_byte *buf = alloca (len * size);
3326 int i;
3327
3328 read_memory (memaddr, buf, len * size);
3329 for (i = 0; i < len; i++)
3330 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3331 }
3332
3333 /* Find and grab a copy of the target _ovly_table
3334 (and _novlys, which is needed for the table's size). */
3335 static int
3336 simple_read_overlay_table (void)
3337 {
3338 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3339 struct gdbarch *gdbarch;
3340 int word_size;
3341 enum bfd_endian byte_order;
3342
3343 simple_free_overlay_table ();
3344 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3345 if (! novlys_msym)
3346 {
3347 error (_("Error reading inferior's overlay table: "
3348 "couldn't find `_novlys' variable\n"
3349 "in inferior. Use `overlay manual' mode."));
3350 return 0;
3351 }
3352
3353 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3354 if (! ovly_table_msym)
3355 {
3356 error (_("Error reading inferior's overlay table: couldn't find "
3357 "`_ovly_table' array\n"
3358 "in inferior. Use `overlay manual' mode."));
3359 return 0;
3360 }
3361
3362 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3363 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3364 byte_order = gdbarch_byte_order (gdbarch);
3365
3366 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3367 4, byte_order);
3368 cache_ovly_table
3369 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3370 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3371 read_target_long_array (cache_ovly_table_base,
3372 (unsigned int *) cache_ovly_table,
3373 cache_novlys * 4, word_size, byte_order);
3374
3375 return 1; /* SUCCESS */
3376 }
3377
3378 /* Function: simple_overlay_update_1
3379 A helper function for simple_overlay_update. Assuming a cached copy
3380 of _ovly_table exists, look through it to find an entry whose vma,
3381 lma and size match those of OSECT. Re-read the entry and make sure
3382 it still matches OSECT (else the table may no longer be valid).
3383 Set OSECT's mapped state to match the entry. Return: 1 for
3384 success, 0 for failure. */
3385
3386 static int
3387 simple_overlay_update_1 (struct obj_section *osect)
3388 {
3389 int i, size;
3390 bfd *obfd = osect->objfile->obfd;
3391 asection *bsect = osect->the_bfd_section;
3392 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3393 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3394 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3395
3396 size = bfd_get_section_size (osect->the_bfd_section);
3397 for (i = 0; i < cache_novlys; i++)
3398 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3399 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3400 /* && cache_ovly_table[i][SIZE] == size */ )
3401 {
3402 read_target_long_array (cache_ovly_table_base + i * word_size,
3403 (unsigned int *) cache_ovly_table[i],
3404 4, word_size, byte_order);
3405 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3406 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3407 /* && cache_ovly_table[i][SIZE] == size */ )
3408 {
3409 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3410 return 1;
3411 }
3412 else /* Warning! Warning! Target's ovly table has changed! */
3413 return 0;
3414 }
3415 return 0;
3416 }
3417
3418 /* Function: simple_overlay_update
3419 If OSECT is NULL, then update all sections' mapped state
3420 (after re-reading the entire target _ovly_table).
3421 If OSECT is non-NULL, then try to find a matching entry in the
3422 cached ovly_table and update only OSECT's mapped state.
3423 If a cached entry can't be found or the cache isn't valid, then
3424 re-read the entire cache, and go ahead and update all sections. */
3425
3426 void
3427 simple_overlay_update (struct obj_section *osect)
3428 {
3429 struct objfile *objfile;
3430
3431 /* Were we given an osect to look up? NULL means do all of them. */
3432 if (osect)
3433 /* Have we got a cached copy of the target's overlay table? */
3434 if (cache_ovly_table != NULL)
3435 {
3436 /* Does its cached location match what's currently in the
3437 symtab? */
3438 struct minimal_symbol *minsym
3439 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3440
3441 if (minsym == NULL)
3442 error (_("Error reading inferior's overlay table: couldn't "
3443 "find `_ovly_table' array\n"
3444 "in inferior. Use `overlay manual' mode."));
3445
3446 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3447 /* Then go ahead and try to look up this single section in
3448 the cache. */
3449 if (simple_overlay_update_1 (osect))
3450 /* Found it! We're done. */
3451 return;
3452 }
3453
3454 /* Cached table no good: need to read the entire table anew.
3455 Or else we want all the sections, in which case it's actually
3456 more efficient to read the whole table in one block anyway. */
3457
3458 if (! simple_read_overlay_table ())
3459 return;
3460
3461 /* Now may as well update all sections, even if only one was requested. */
3462 ALL_OBJSECTIONS (objfile, osect)
3463 if (section_is_overlay (osect))
3464 {
3465 int i, size;
3466 bfd *obfd = osect->objfile->obfd;
3467 asection *bsect = osect->the_bfd_section;
3468
3469 size = bfd_get_section_size (bsect);
3470 for (i = 0; i < cache_novlys; i++)
3471 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3472 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3473 /* && cache_ovly_table[i][SIZE] == size */ )
3474 { /* obj_section matches i'th entry in ovly_table. */
3475 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3476 break; /* finished with inner for loop: break out. */
3477 }
3478 }
3479 }
3480
3481 /* Set the output sections and output offsets for section SECTP in
3482 ABFD. The relocation code in BFD will read these offsets, so we
3483 need to be sure they're initialized. We map each section to itself,
3484 with no offset; this means that SECTP->vma will be honored. */
3485
3486 static void
3487 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3488 {
3489 sectp->output_section = sectp;
3490 sectp->output_offset = 0;
3491 }
3492
3493 /* Default implementation for sym_relocate. */
3494
3495
3496 bfd_byte *
3497 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3498 bfd_byte *buf)
3499 {
3500 bfd *abfd = objfile->obfd;
3501
3502 /* We're only interested in sections with relocation
3503 information. */
3504 if ((sectp->flags & SEC_RELOC) == 0)
3505 return NULL;
3506
3507 /* We will handle section offsets properly elsewhere, so relocate as if
3508 all sections begin at 0. */
3509 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3510
3511 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3512 }
3513
3514 /* Relocate the contents of a debug section SECTP in ABFD. The
3515 contents are stored in BUF if it is non-NULL, or returned in a
3516 malloc'd buffer otherwise.
3517
3518 For some platforms and debug info formats, shared libraries contain
3519 relocations against the debug sections (particularly for DWARF-2;
3520 one affected platform is PowerPC GNU/Linux, although it depends on
3521 the version of the linker in use). Also, ELF object files naturally
3522 have unresolved relocations for their debug sections. We need to apply
3523 the relocations in order to get the locations of symbols correct.
3524 Another example that may require relocation processing, is the
3525 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3526 debug section. */
3527
3528 bfd_byte *
3529 symfile_relocate_debug_section (struct objfile *objfile,
3530 asection *sectp, bfd_byte *buf)
3531 {
3532 gdb_assert (objfile->sf->sym_relocate);
3533
3534 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3535 }
3536
3537 struct symfile_segment_data *
3538 get_symfile_segment_data (bfd *abfd)
3539 {
3540 const struct sym_fns *sf = find_sym_fns (abfd);
3541
3542 if (sf == NULL)
3543 return NULL;
3544
3545 return sf->sym_segments (abfd);
3546 }
3547
3548 void
3549 free_symfile_segment_data (struct symfile_segment_data *data)
3550 {
3551 xfree (data->segment_bases);
3552 xfree (data->segment_sizes);
3553 xfree (data->segment_info);
3554 xfree (data);
3555 }
3556
3557
3558 /* Given:
3559 - DATA, containing segment addresses from the object file ABFD, and
3560 the mapping from ABFD's sections onto the segments that own them,
3561 and
3562 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3563 segment addresses reported by the target,
3564 store the appropriate offsets for each section in OFFSETS.
3565
3566 If there are fewer entries in SEGMENT_BASES than there are segments
3567 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3568
3569 If there are more entries, then ignore the extra. The target may
3570 not be able to distinguish between an empty data segment and a
3571 missing data segment; a missing text segment is less plausible. */
3572 int
3573 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3574 struct section_offsets *offsets,
3575 int num_segment_bases,
3576 const CORE_ADDR *segment_bases)
3577 {
3578 int i;
3579 asection *sect;
3580
3581 /* It doesn't make sense to call this function unless you have some
3582 segment base addresses. */
3583 gdb_assert (num_segment_bases > 0);
3584
3585 /* If we do not have segment mappings for the object file, we
3586 can not relocate it by segments. */
3587 gdb_assert (data != NULL);
3588 gdb_assert (data->num_segments > 0);
3589
3590 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3591 {
3592 int which = data->segment_info[i];
3593
3594 gdb_assert (0 <= which && which <= data->num_segments);
3595
3596 /* Don't bother computing offsets for sections that aren't
3597 loaded as part of any segment. */
3598 if (! which)
3599 continue;
3600
3601 /* Use the last SEGMENT_BASES entry as the address of any extra
3602 segments mentioned in DATA->segment_info. */
3603 if (which > num_segment_bases)
3604 which = num_segment_bases;
3605
3606 offsets->offsets[i] = (segment_bases[which - 1]
3607 - data->segment_bases[which - 1]);
3608 }
3609
3610 return 1;
3611 }
3612
3613 static void
3614 symfile_find_segment_sections (struct objfile *objfile)
3615 {
3616 bfd *abfd = objfile->obfd;
3617 int i;
3618 asection *sect;
3619 struct symfile_segment_data *data;
3620
3621 data = get_symfile_segment_data (objfile->obfd);
3622 if (data == NULL)
3623 return;
3624
3625 if (data->num_segments != 1 && data->num_segments != 2)
3626 {
3627 free_symfile_segment_data (data);
3628 return;
3629 }
3630
3631 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3632 {
3633 int which = data->segment_info[i];
3634
3635 if (which == 1)
3636 {
3637 if (objfile->sect_index_text == -1)
3638 objfile->sect_index_text = sect->index;
3639
3640 if (objfile->sect_index_rodata == -1)
3641 objfile->sect_index_rodata = sect->index;
3642 }
3643 else if (which == 2)
3644 {
3645 if (objfile->sect_index_data == -1)
3646 objfile->sect_index_data = sect->index;
3647
3648 if (objfile->sect_index_bss == -1)
3649 objfile->sect_index_bss = sect->index;
3650 }
3651 }
3652
3653 free_symfile_segment_data (data);
3654 }
3655
3656 void
3657 _initialize_symfile (void)
3658 {
3659 struct cmd_list_element *c;
3660
3661 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3662 Load symbol table from executable file FILE.\n\
3663 The `file' command can also load symbol tables, as well as setting the file\n\
3664 to execute."), &cmdlist);
3665 set_cmd_completer (c, filename_completer);
3666
3667 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3668 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3669 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3670 ...]\nADDR is the starting address of the file's text.\n\
3671 The optional arguments are section-name section-address pairs and\n\
3672 should be specified if the data and bss segments are not contiguous\n\
3673 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3674 &cmdlist);
3675 set_cmd_completer (c, filename_completer);
3676
3677 c = add_cmd ("load", class_files, load_command, _("\
3678 Dynamically load FILE into the running program, and record its symbols\n\
3679 for access from GDB.\n\
3680 A load OFFSET may also be given."), &cmdlist);
3681 set_cmd_completer (c, filename_completer);
3682
3683 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3684 &symbol_reloading, _("\
3685 Set dynamic symbol table reloading multiple times in one run."), _("\
3686 Show dynamic symbol table reloading multiple times in one run."), NULL,
3687 NULL,
3688 show_symbol_reloading,
3689 &setlist, &showlist);
3690
3691 add_prefix_cmd ("overlay", class_support, overlay_command,
3692 _("Commands for debugging overlays."), &overlaylist,
3693 "overlay ", 0, &cmdlist);
3694
3695 add_com_alias ("ovly", "overlay", class_alias, 1);
3696 add_com_alias ("ov", "overlay", class_alias, 1);
3697
3698 add_cmd ("map-overlay", class_support, map_overlay_command,
3699 _("Assert that an overlay section is mapped."), &overlaylist);
3700
3701 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3702 _("Assert that an overlay section is unmapped."), &overlaylist);
3703
3704 add_cmd ("list-overlays", class_support, list_overlays_command,
3705 _("List mappings of overlay sections."), &overlaylist);
3706
3707 add_cmd ("manual", class_support, overlay_manual_command,
3708 _("Enable overlay debugging."), &overlaylist);
3709 add_cmd ("off", class_support, overlay_off_command,
3710 _("Disable overlay debugging."), &overlaylist);
3711 add_cmd ("auto", class_support, overlay_auto_command,
3712 _("Enable automatic overlay debugging."), &overlaylist);
3713 add_cmd ("load-target", class_support, overlay_load_command,
3714 _("Read the overlay mapping state from the target."), &overlaylist);
3715
3716 /* Filename extension to source language lookup table: */
3717 init_filename_language_table ();
3718 add_setshow_string_noescape_cmd ("extension-language", class_files,
3719 &ext_args, _("\
3720 Set mapping between filename extension and source language."), _("\
3721 Show mapping between filename extension and source language."), _("\
3722 Usage: set extension-language .foo bar"),
3723 set_ext_lang_command,
3724 show_ext_args,
3725 &setlist, &showlist);
3726
3727 add_info ("extensions", info_ext_lang_command,
3728 _("All filename extensions associated with a source language."));
3729
3730 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3731 &debug_file_directory, _("\
3732 Set the directories where separate debug symbols are searched for."), _("\
3733 Show the directories where separate debug symbols are searched for."), _("\
3734 Separate debug symbols are first searched for in the same\n\
3735 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3736 and lastly at the path of the directory of the binary with\n\
3737 each global debug-file-directory component prepended."),
3738 NULL,
3739 show_debug_file_directory,
3740 &setlist, &showlist);
3741 }
This page took 0.102406 seconds and 3 git commands to generate.