* target.h (struct section_table): Rename to ...
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h"
41 #include "regcache.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53 #include "parser-defs.h"
54 #include "varobj.h"
55 #include "elf-bfd.h"
56 #include "solib.h"
57 #include "remote.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67
68 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*deprecated_show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*deprecated_pre_add_symbol_hook) (const char *);
75 void (*deprecated_post_add_symbol_hook) (void);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static struct sym_fns *find_sym_fns (bfd *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 void list_overlays_command (char *, int);
116
117 void map_overlay_command (char *, int);
118
119 void unmap_overlay_command (char *, int);
120
121 static void overlay_auto_command (char *, int);
122
123 static void overlay_manual_command (char *, int);
124
125 static void overlay_off_command (char *, int);
126
127 static void overlay_load_command (char *, int);
128
129 static void overlay_command (char *, int);
130
131 static void simple_free_overlay_table (void);
132
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
374 {
375 struct section_addr_info *sap;
376 const struct target_section *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 static void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 MAINLINE is nonzero if this is the main symbol file, or zero if
746 it's an extra symbol file such as dynamically loaded code.
747
748 VERBO is nonzero if the caller has printed a verbose message about
749 the symbol reading (and complaints can be more terse about it). */
750
751 void
752 syms_from_objfile (struct objfile *objfile,
753 struct section_addr_info *addrs,
754 struct section_offsets *offsets,
755 int num_offsets,
756 int mainline,
757 int verbo)
758 {
759 struct section_addr_info *local_addr = NULL;
760 struct cleanup *old_chain;
761
762 gdb_assert (! (addrs && offsets));
763
764 init_entry_point_info (objfile);
765 objfile->sf = find_sym_fns (objfile->obfd);
766
767 if (objfile->sf == NULL)
768 return; /* No symbols. */
769
770 /* Make sure that partially constructed symbol tables will be cleaned up
771 if an error occurs during symbol reading. */
772 old_chain = make_cleanup_free_objfile (objfile);
773
774 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
775 list. We now establish the convention that an addr of zero means
776 no load address was specified. */
777 if (! addrs && ! offsets)
778 {
779 local_addr
780 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
781 make_cleanup (xfree, local_addr);
782 addrs = local_addr;
783 }
784
785 /* Now either addrs or offsets is non-zero. */
786
787 if (mainline)
788 {
789 /* We will modify the main symbol table, make sure that all its users
790 will be cleaned up if an error occurs during symbol reading. */
791 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
792
793 /* Since no error yet, throw away the old symbol table. */
794
795 if (symfile_objfile != NULL)
796 {
797 free_objfile (symfile_objfile);
798 symfile_objfile = NULL;
799 }
800
801 /* Currently we keep symbols from the add-symbol-file command.
802 If the user wants to get rid of them, they should do "symbol-file"
803 without arguments first. Not sure this is the best behavior
804 (PR 2207). */
805
806 (*objfile->sf->sym_new_init) (objfile);
807 }
808
809 /* Convert addr into an offset rather than an absolute address.
810 We find the lowest address of a loaded segment in the objfile,
811 and assume that <addr> is where that got loaded.
812
813 We no longer warn if the lowest section is not a text segment (as
814 happens for the PA64 port. */
815 if (!mainline && addrs && addrs->other[0].name)
816 {
817 asection *lower_sect;
818 asection *sect;
819 CORE_ADDR lower_offset;
820 int i;
821
822 /* Find lowest loadable section to be used as starting point for
823 continguous sections. FIXME!! won't work without call to find
824 .text first, but this assumes text is lowest section. */
825 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
826 if (lower_sect == NULL)
827 bfd_map_over_sections (objfile->obfd, find_lowest_section,
828 &lower_sect);
829 if (lower_sect == NULL)
830 {
831 warning (_("no loadable sections found in added symbol-file %s"),
832 objfile->name);
833 lower_offset = 0;
834 }
835 else
836 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
837
838 /* Calculate offsets for the loadable sections.
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
841
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
864 warning (_("section %s not found in %s"),
865 addrs->other[i].name,
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
879 (*objfile->sf->sym_init) (objfile);
880 clear_complaints (&symfile_complaints, 1, verbo);
881
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
892 obstack_alloc (&objfile->objfile_obstack, size));
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
897
898 (*objfile->sf->sym_read) (objfile, mainline);
899
900 /* Discard cleanups as symbol reading was successful. */
901
902 discard_cleanups (old_chain);
903 xfree (local_addr);
904 }
905
906 /* Perform required actions after either reading in the initial
907 symbols for a new objfile, or mapping in the symbols from a reusable
908 objfile. */
909
910 void
911 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
912 {
913
914 /* If this is the main symbol file we have to clean up all users of the
915 old main symbol file. Otherwise it is sufficient to fixup all the
916 breakpoints that may have been redefined by this symbol file. */
917 if (mainline)
918 {
919 /* OK, make it the "real" symbol file. */
920 symfile_objfile = objfile;
921
922 clear_symtab_users ();
923 }
924 else
925 {
926 breakpoint_re_set_objfile (objfile);
927 }
928
929 /* We're done reading the symbol file; finish off complaints. */
930 clear_complaints (&symfile_complaints, 0, verbo);
931 }
932
933 /* Process a symbol file, as either the main file or as a dynamically
934 loaded file.
935
936 ABFD is a BFD already open on the file, as from symfile_bfd_open.
937 This BFD will be closed on error, and is always consumed by this function.
938
939 FROM_TTY says how verbose to be.
940
941 MAINLINE specifies whether this is the main symbol file, or whether
942 it's an extra symbol file such as dynamically loaded code.
943
944 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
945 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
946 non-zero.
947
948 Upon success, returns a pointer to the objfile that was added.
949 Upon failure, jumps back to command level (never returns). */
950 static struct objfile *
951 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
952 struct section_addr_info *addrs,
953 struct section_offsets *offsets,
954 int num_offsets,
955 int mainline, int flags)
956 {
957 struct objfile *objfile;
958 struct partial_symtab *psymtab;
959 char *debugfile = NULL;
960 struct section_addr_info *orig_addrs = NULL;
961 struct cleanup *my_cleanups;
962 const char *name = bfd_get_filename (abfd);
963
964 my_cleanups = make_cleanup_bfd_close (abfd);
965
966 /* Give user a chance to burp if we'd be
967 interactively wiping out any existing symbols. */
968
969 if ((have_full_symbols () || have_partial_symbols ())
970 && mainline
971 && from_tty
972 && !query (_("Load new symbol table from \"%s\"? "), name))
973 error (_("Not confirmed."));
974
975 objfile = allocate_objfile (abfd, flags);
976 discard_cleanups (my_cleanups);
977
978 if (addrs)
979 {
980 orig_addrs = copy_section_addr_info (addrs);
981 make_cleanup_free_section_addr_info (orig_addrs);
982 }
983
984 /* We either created a new mapped symbol table, mapped an existing
985 symbol table file which has not had initial symbol reading
986 performed, or need to read an unmapped symbol table. */
987 if (from_tty || info_verbose)
988 {
989 if (deprecated_pre_add_symbol_hook)
990 deprecated_pre_add_symbol_hook (name);
991 else
992 {
993 if (print_symbol_loading)
994 {
995 printf_unfiltered (_("Reading symbols from %s..."), name);
996 wrap_here ("");
997 gdb_flush (gdb_stdout);
998 }
999 }
1000 }
1001 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1002 mainline, from_tty);
1003
1004 /* We now have at least a partial symbol table. Check to see if the
1005 user requested that all symbols be read on initial access via either
1006 the gdb startup command line or on a per symbol file basis. Expand
1007 all partial symbol tables for this objfile if so. */
1008
1009 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1010 {
1011 if ((from_tty || info_verbose) && print_symbol_loading)
1012 {
1013 printf_unfiltered (_("expanding to full symbols..."));
1014 wrap_here ("");
1015 gdb_flush (gdb_stdout);
1016 }
1017
1018 for (psymtab = objfile->psymtabs;
1019 psymtab != NULL;
1020 psymtab = psymtab->next)
1021 {
1022 psymtab_to_symtab (psymtab);
1023 }
1024 }
1025
1026 /* If the file has its own symbol tables it has no separate debug info.
1027 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1028 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1029 if (objfile->psymtabs == NULL)
1030 debugfile = find_separate_debug_file (objfile);
1031 if (debugfile)
1032 {
1033 if (addrs != NULL)
1034 {
1035 objfile->separate_debug_objfile
1036 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1037 }
1038 else
1039 {
1040 objfile->separate_debug_objfile
1041 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1042 }
1043 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1044 = objfile;
1045
1046 /* Put the separate debug object before the normal one, this is so that
1047 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1048 put_objfile_before (objfile->separate_debug_objfile, objfile);
1049
1050 xfree (debugfile);
1051 }
1052
1053 if (!have_partial_symbols () && !have_full_symbols ()
1054 && print_symbol_loading)
1055 {
1056 wrap_here ("");
1057 printf_unfiltered (_("(no debugging symbols found)"));
1058 if (from_tty || info_verbose)
1059 printf_unfiltered ("...");
1060 else
1061 printf_unfiltered ("\n");
1062 wrap_here ("");
1063 }
1064
1065 if (from_tty || info_verbose)
1066 {
1067 if (deprecated_post_add_symbol_hook)
1068 deprecated_post_add_symbol_hook ();
1069 else
1070 {
1071 if (print_symbol_loading)
1072 printf_unfiltered (_("done.\n"));
1073 }
1074 }
1075
1076 /* We print some messages regardless of whether 'from_tty ||
1077 info_verbose' is true, so make sure they go out at the right
1078 time. */
1079 gdb_flush (gdb_stdout);
1080
1081 do_cleanups (my_cleanups);
1082
1083 if (objfile->sf == NULL)
1084 return objfile; /* No symbols. */
1085
1086 new_symfile_objfile (objfile, mainline, from_tty);
1087
1088 observer_notify_new_objfile (objfile);
1089
1090 bfd_cache_close_all ();
1091 return (objfile);
1092 }
1093
1094
1095 /* Process the symbol file ABFD, as either the main file or as a
1096 dynamically loaded file.
1097
1098 See symbol_file_add_with_addrs_or_offsets's comments for
1099 details. */
1100 struct objfile *
1101 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1102 struct section_addr_info *addrs,
1103 int mainline, int flags)
1104 {
1105 return symbol_file_add_with_addrs_or_offsets (abfd,
1106 from_tty, addrs, 0, 0,
1107 mainline, flags);
1108 }
1109
1110
1111 /* Process a symbol file, as either the main file or as a dynamically
1112 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1113 for details. */
1114 struct objfile *
1115 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1116 int mainline, int flags)
1117 {
1118 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1119 addrs, mainline, flags);
1120 }
1121
1122
1123 /* Call symbol_file_add() with default values and update whatever is
1124 affected by the loading of a new main().
1125 Used when the file is supplied in the gdb command line
1126 and by some targets with special loading requirements.
1127 The auxiliary function, symbol_file_add_main_1(), has the flags
1128 argument for the switches that can only be specified in the symbol_file
1129 command itself. */
1130
1131 void
1132 symbol_file_add_main (char *args, int from_tty)
1133 {
1134 symbol_file_add_main_1 (args, from_tty, 0);
1135 }
1136
1137 static void
1138 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1139 {
1140 symbol_file_add (args, from_tty, NULL, 1, flags);
1141
1142 /* Getting new symbols may change our opinion about
1143 what is frameless. */
1144 reinit_frame_cache ();
1145
1146 set_initial_language ();
1147 }
1148
1149 void
1150 symbol_file_clear (int from_tty)
1151 {
1152 if ((have_full_symbols () || have_partial_symbols ())
1153 && from_tty
1154 && (symfile_objfile
1155 ? !query (_("Discard symbol table from `%s'? "),
1156 symfile_objfile->name)
1157 : !query (_("Discard symbol table? "))))
1158 error (_("Not confirmed."));
1159
1160 free_all_objfiles ();
1161
1162 /* solib descriptors may have handles to objfiles. Since their
1163 storage has just been released, we'd better wipe the solib
1164 descriptors as well. */
1165 no_shared_libraries (NULL, from_tty);
1166
1167 symfile_objfile = NULL;
1168 if (from_tty)
1169 printf_unfiltered (_("No symbol file now.\n"));
1170 }
1171
1172 struct build_id
1173 {
1174 size_t size;
1175 gdb_byte data[1];
1176 };
1177
1178 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1179
1180 static struct build_id *
1181 build_id_bfd_get (bfd *abfd)
1182 {
1183 struct build_id *retval;
1184
1185 if (!bfd_check_format (abfd, bfd_object)
1186 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1187 || elf_tdata (abfd)->build_id == NULL)
1188 return NULL;
1189
1190 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1191 retval->size = elf_tdata (abfd)->build_id_size;
1192 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1193
1194 return retval;
1195 }
1196
1197 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1198
1199 static int
1200 build_id_verify (const char *filename, struct build_id *check)
1201 {
1202 bfd *abfd;
1203 struct build_id *found = NULL;
1204 int retval = 0;
1205
1206 /* We expect to be silent on the non-existing files. */
1207 if (remote_filename_p (filename))
1208 abfd = remote_bfd_open (filename, gnutarget);
1209 else
1210 abfd = bfd_openr (filename, gnutarget);
1211 if (abfd == NULL)
1212 return 0;
1213
1214 found = build_id_bfd_get (abfd);
1215
1216 if (found == NULL)
1217 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1218 else if (found->size != check->size
1219 || memcmp (found->data, check->data, found->size) != 0)
1220 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1221 else
1222 retval = 1;
1223
1224 if (!bfd_close (abfd))
1225 warning (_("cannot close \"%s\": %s"), filename,
1226 bfd_errmsg (bfd_get_error ()));
1227
1228 xfree (found);
1229
1230 return retval;
1231 }
1232
1233 static char *
1234 build_id_to_debug_filename (struct build_id *build_id)
1235 {
1236 char *link, *s, *retval = NULL;
1237 gdb_byte *data = build_id->data;
1238 size_t size = build_id->size;
1239
1240 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1241 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1242 + 2 * size + (sizeof ".debug" - 1) + 1);
1243 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1244 if (size > 0)
1245 {
1246 size--;
1247 s += sprintf (s, "%02x", (unsigned) *data++);
1248 }
1249 if (size > 0)
1250 *s++ = '/';
1251 while (size-- > 0)
1252 s += sprintf (s, "%02x", (unsigned) *data++);
1253 strcpy (s, ".debug");
1254
1255 /* lrealpath() is expensive even for the usually non-existent files. */
1256 if (access (link, F_OK) == 0)
1257 retval = lrealpath (link);
1258 xfree (link);
1259
1260 if (retval != NULL && !build_id_verify (retval, build_id))
1261 {
1262 xfree (retval);
1263 retval = NULL;
1264 }
1265
1266 return retval;
1267 }
1268
1269 static char *
1270 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1271 {
1272 asection *sect;
1273 bfd_size_type debuglink_size;
1274 unsigned long crc32;
1275 char *contents;
1276 int crc_offset;
1277 unsigned char *p;
1278
1279 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1280
1281 if (sect == NULL)
1282 return NULL;
1283
1284 debuglink_size = bfd_section_size (objfile->obfd, sect);
1285
1286 contents = xmalloc (debuglink_size);
1287 bfd_get_section_contents (objfile->obfd, sect, contents,
1288 (file_ptr)0, (bfd_size_type)debuglink_size);
1289
1290 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1291 crc_offset = strlen (contents) + 1;
1292 crc_offset = (crc_offset + 3) & ~3;
1293
1294 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1295
1296 *crc32_out = crc32;
1297 return contents;
1298 }
1299
1300 static int
1301 separate_debug_file_exists (const char *name, unsigned long crc)
1302 {
1303 unsigned long file_crc = 0;
1304 bfd *abfd;
1305 gdb_byte buffer[8*1024];
1306 int count;
1307
1308 if (remote_filename_p (name))
1309 abfd = remote_bfd_open (name, gnutarget);
1310 else
1311 abfd = bfd_openr (name, gnutarget);
1312
1313 if (!abfd)
1314 return 0;
1315
1316 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1317 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1318
1319 bfd_close (abfd);
1320
1321 return crc == file_crc;
1322 }
1323
1324 char *debug_file_directory = NULL;
1325 static void
1326 show_debug_file_directory (struct ui_file *file, int from_tty,
1327 struct cmd_list_element *c, const char *value)
1328 {
1329 fprintf_filtered (file, _("\
1330 The directory where separate debug symbols are searched for is \"%s\".\n"),
1331 value);
1332 }
1333
1334 #if ! defined (DEBUG_SUBDIRECTORY)
1335 #define DEBUG_SUBDIRECTORY ".debug"
1336 #endif
1337
1338 static char *
1339 find_separate_debug_file (struct objfile *objfile)
1340 {
1341 asection *sect;
1342 char *basename;
1343 char *dir;
1344 char *debugfile;
1345 char *name_copy;
1346 char *canon_name;
1347 bfd_size_type debuglink_size;
1348 unsigned long crc32;
1349 int i;
1350 struct build_id *build_id;
1351
1352 build_id = build_id_bfd_get (objfile->obfd);
1353 if (build_id != NULL)
1354 {
1355 char *build_id_name;
1356
1357 build_id_name = build_id_to_debug_filename (build_id);
1358 xfree (build_id);
1359 /* Prevent looping on a stripped .debug file. */
1360 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1361 {
1362 warning (_("\"%s\": separate debug info file has no debug info"),
1363 build_id_name);
1364 xfree (build_id_name);
1365 }
1366 else if (build_id_name != NULL)
1367 return build_id_name;
1368 }
1369
1370 basename = get_debug_link_info (objfile, &crc32);
1371
1372 if (basename == NULL)
1373 return NULL;
1374
1375 dir = xstrdup (objfile->name);
1376
1377 /* Strip off the final filename part, leaving the directory name,
1378 followed by a slash. Objfile names should always be absolute and
1379 tilde-expanded, so there should always be a slash in there
1380 somewhere. */
1381 for (i = strlen(dir) - 1; i >= 0; i--)
1382 {
1383 if (IS_DIR_SEPARATOR (dir[i]))
1384 break;
1385 }
1386 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1387 dir[i+1] = '\0';
1388
1389 debugfile = alloca (strlen (debug_file_directory) + 1
1390 + strlen (dir)
1391 + strlen (DEBUG_SUBDIRECTORY)
1392 + strlen ("/")
1393 + strlen (basename)
1394 + 1);
1395
1396 /* First try in the same directory as the original file. */
1397 strcpy (debugfile, dir);
1398 strcat (debugfile, basename);
1399
1400 if (separate_debug_file_exists (debugfile, crc32))
1401 {
1402 xfree (basename);
1403 xfree (dir);
1404 return xstrdup (debugfile);
1405 }
1406
1407 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1408 strcpy (debugfile, dir);
1409 strcat (debugfile, DEBUG_SUBDIRECTORY);
1410 strcat (debugfile, "/");
1411 strcat (debugfile, basename);
1412
1413 if (separate_debug_file_exists (debugfile, crc32))
1414 {
1415 xfree (basename);
1416 xfree (dir);
1417 return xstrdup (debugfile);
1418 }
1419
1420 /* Then try in the global debugfile directory. */
1421 strcpy (debugfile, debug_file_directory);
1422 strcat (debugfile, "/");
1423 strcat (debugfile, dir);
1424 strcat (debugfile, basename);
1425
1426 if (separate_debug_file_exists (debugfile, crc32))
1427 {
1428 xfree (basename);
1429 xfree (dir);
1430 return xstrdup (debugfile);
1431 }
1432
1433 /* If the file is in the sysroot, try using its base path in the
1434 global debugfile directory. */
1435 canon_name = lrealpath (dir);
1436 if (canon_name
1437 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1438 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1439 {
1440 strcpy (debugfile, debug_file_directory);
1441 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1442 strcat (debugfile, "/");
1443 strcat (debugfile, basename);
1444
1445 if (separate_debug_file_exists (debugfile, crc32))
1446 {
1447 xfree (canon_name);
1448 xfree (basename);
1449 xfree (dir);
1450 return xstrdup (debugfile);
1451 }
1452 }
1453
1454 if (canon_name)
1455 xfree (canon_name);
1456
1457 xfree (basename);
1458 xfree (dir);
1459 return NULL;
1460 }
1461
1462
1463 /* This is the symbol-file command. Read the file, analyze its
1464 symbols, and add a struct symtab to a symtab list. The syntax of
1465 the command is rather bizarre:
1466
1467 1. The function buildargv implements various quoting conventions
1468 which are undocumented and have little or nothing in common with
1469 the way things are quoted (or not quoted) elsewhere in GDB.
1470
1471 2. Options are used, which are not generally used in GDB (perhaps
1472 "set mapped on", "set readnow on" would be better)
1473
1474 3. The order of options matters, which is contrary to GNU
1475 conventions (because it is confusing and inconvenient). */
1476
1477 void
1478 symbol_file_command (char *args, int from_tty)
1479 {
1480 dont_repeat ();
1481
1482 if (args == NULL)
1483 {
1484 symbol_file_clear (from_tty);
1485 }
1486 else
1487 {
1488 char **argv = gdb_buildargv (args);
1489 int flags = OBJF_USERLOADED;
1490 struct cleanup *cleanups;
1491 char *name = NULL;
1492
1493 cleanups = make_cleanup_freeargv (argv);
1494 while (*argv != NULL)
1495 {
1496 if (strcmp (*argv, "-readnow") == 0)
1497 flags |= OBJF_READNOW;
1498 else if (**argv == '-')
1499 error (_("unknown option `%s'"), *argv);
1500 else
1501 {
1502 symbol_file_add_main_1 (*argv, from_tty, flags);
1503 name = *argv;
1504 }
1505
1506 argv++;
1507 }
1508
1509 if (name == NULL)
1510 error (_("no symbol file name was specified"));
1511
1512 do_cleanups (cleanups);
1513 }
1514 }
1515
1516 /* Set the initial language.
1517
1518 FIXME: A better solution would be to record the language in the
1519 psymtab when reading partial symbols, and then use it (if known) to
1520 set the language. This would be a win for formats that encode the
1521 language in an easily discoverable place, such as DWARF. For
1522 stabs, we can jump through hoops looking for specially named
1523 symbols or try to intuit the language from the specific type of
1524 stabs we find, but we can't do that until later when we read in
1525 full symbols. */
1526
1527 void
1528 set_initial_language (void)
1529 {
1530 struct partial_symtab *pst;
1531 enum language lang = language_unknown;
1532
1533 pst = find_main_psymtab ();
1534 if (pst != NULL)
1535 {
1536 if (pst->filename != NULL)
1537 lang = deduce_language_from_filename (pst->filename);
1538
1539 if (lang == language_unknown)
1540 {
1541 /* Make C the default language */
1542 lang = language_c;
1543 }
1544
1545 set_language (lang);
1546 expected_language = current_language; /* Don't warn the user. */
1547 }
1548 }
1549
1550 /* Open the file specified by NAME and hand it off to BFD for
1551 preliminary analysis. Return a newly initialized bfd *, which
1552 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1553 absolute). In case of trouble, error() is called. */
1554
1555 bfd *
1556 symfile_bfd_open (char *name)
1557 {
1558 bfd *sym_bfd;
1559 int desc;
1560 char *absolute_name;
1561
1562 if (remote_filename_p (name))
1563 {
1564 name = xstrdup (name);
1565 sym_bfd = remote_bfd_open (name, gnutarget);
1566 if (!sym_bfd)
1567 {
1568 make_cleanup (xfree, name);
1569 error (_("`%s': can't open to read symbols: %s."), name,
1570 bfd_errmsg (bfd_get_error ()));
1571 }
1572
1573 if (!bfd_check_format (sym_bfd, bfd_object))
1574 {
1575 bfd_close (sym_bfd);
1576 make_cleanup (xfree, name);
1577 error (_("`%s': can't read symbols: %s."), name,
1578 bfd_errmsg (bfd_get_error ()));
1579 }
1580
1581 return sym_bfd;
1582 }
1583
1584 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1585
1586 /* Look down path for it, allocate 2nd new malloc'd copy. */
1587 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1588 O_RDONLY | O_BINARY, &absolute_name);
1589 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1590 if (desc < 0)
1591 {
1592 char *exename = alloca (strlen (name) + 5);
1593 strcat (strcpy (exename, name), ".exe");
1594 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1595 O_RDONLY | O_BINARY, &absolute_name);
1596 }
1597 #endif
1598 if (desc < 0)
1599 {
1600 make_cleanup (xfree, name);
1601 perror_with_name (name);
1602 }
1603
1604 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1605 bfd. It'll be freed in free_objfile(). */
1606 xfree (name);
1607 name = absolute_name;
1608
1609 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1610 if (!sym_bfd)
1611 {
1612 close (desc);
1613 make_cleanup (xfree, name);
1614 error (_("`%s': can't open to read symbols: %s."), name,
1615 bfd_errmsg (bfd_get_error ()));
1616 }
1617 bfd_set_cacheable (sym_bfd, 1);
1618
1619 if (!bfd_check_format (sym_bfd, bfd_object))
1620 {
1621 /* FIXME: should be checking for errors from bfd_close (for one
1622 thing, on error it does not free all the storage associated
1623 with the bfd). */
1624 bfd_close (sym_bfd); /* This also closes desc. */
1625 make_cleanup (xfree, name);
1626 error (_("`%s': can't read symbols: %s."), name,
1627 bfd_errmsg (bfd_get_error ()));
1628 }
1629
1630 return sym_bfd;
1631 }
1632
1633 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1634 the section was not found. */
1635
1636 int
1637 get_section_index (struct objfile *objfile, char *section_name)
1638 {
1639 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1640
1641 if (sect)
1642 return sect->index;
1643 else
1644 return -1;
1645 }
1646
1647 /* Link SF into the global symtab_fns list. Called on startup by the
1648 _initialize routine in each object file format reader, to register
1649 information about each format the the reader is prepared to
1650 handle. */
1651
1652 void
1653 add_symtab_fns (struct sym_fns *sf)
1654 {
1655 sf->next = symtab_fns;
1656 symtab_fns = sf;
1657 }
1658
1659 /* Initialize OBJFILE to read symbols from its associated BFD. It
1660 either returns or calls error(). The result is an initialized
1661 struct sym_fns in the objfile structure, that contains cached
1662 information about the symbol file. */
1663
1664 static struct sym_fns *
1665 find_sym_fns (bfd *abfd)
1666 {
1667 struct sym_fns *sf;
1668 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1669
1670 if (our_flavour == bfd_target_srec_flavour
1671 || our_flavour == bfd_target_ihex_flavour
1672 || our_flavour == bfd_target_tekhex_flavour)
1673 return NULL; /* No symbols. */
1674
1675 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1676 if (our_flavour == sf->sym_flavour)
1677 return sf;
1678
1679 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1680 bfd_get_target (abfd));
1681 }
1682 \f
1683
1684 /* This function runs the load command of our current target. */
1685
1686 static void
1687 load_command (char *arg, int from_tty)
1688 {
1689 /* The user might be reloading because the binary has changed. Take
1690 this opportunity to check. */
1691 reopen_exec_file ();
1692 reread_symbols ();
1693
1694 if (arg == NULL)
1695 {
1696 char *parg;
1697 int count = 0;
1698
1699 parg = arg = get_exec_file (1);
1700
1701 /* Count how many \ " ' tab space there are in the name. */
1702 while ((parg = strpbrk (parg, "\\\"'\t ")))
1703 {
1704 parg++;
1705 count++;
1706 }
1707
1708 if (count)
1709 {
1710 /* We need to quote this string so buildargv can pull it apart. */
1711 char *temp = xmalloc (strlen (arg) + count + 1 );
1712 char *ptemp = temp;
1713 char *prev;
1714
1715 make_cleanup (xfree, temp);
1716
1717 prev = parg = arg;
1718 while ((parg = strpbrk (parg, "\\\"'\t ")))
1719 {
1720 strncpy (ptemp, prev, parg - prev);
1721 ptemp += parg - prev;
1722 prev = parg++;
1723 *ptemp++ = '\\';
1724 }
1725 strcpy (ptemp, prev);
1726
1727 arg = temp;
1728 }
1729 }
1730
1731 target_load (arg, from_tty);
1732
1733 /* After re-loading the executable, we don't really know which
1734 overlays are mapped any more. */
1735 overlay_cache_invalid = 1;
1736 }
1737
1738 /* This version of "load" should be usable for any target. Currently
1739 it is just used for remote targets, not inftarg.c or core files,
1740 on the theory that only in that case is it useful.
1741
1742 Avoiding xmodem and the like seems like a win (a) because we don't have
1743 to worry about finding it, and (b) On VMS, fork() is very slow and so
1744 we don't want to run a subprocess. On the other hand, I'm not sure how
1745 performance compares. */
1746
1747 static int validate_download = 0;
1748
1749 /* Callback service function for generic_load (bfd_map_over_sections). */
1750
1751 static void
1752 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1753 {
1754 bfd_size_type *sum = data;
1755
1756 *sum += bfd_get_section_size (asec);
1757 }
1758
1759 /* Opaque data for load_section_callback. */
1760 struct load_section_data {
1761 unsigned long load_offset;
1762 struct load_progress_data *progress_data;
1763 VEC(memory_write_request_s) *requests;
1764 };
1765
1766 /* Opaque data for load_progress. */
1767 struct load_progress_data {
1768 /* Cumulative data. */
1769 unsigned long write_count;
1770 unsigned long data_count;
1771 bfd_size_type total_size;
1772 };
1773
1774 /* Opaque data for load_progress for a single section. */
1775 struct load_progress_section_data {
1776 struct load_progress_data *cumulative;
1777
1778 /* Per-section data. */
1779 const char *section_name;
1780 ULONGEST section_sent;
1781 ULONGEST section_size;
1782 CORE_ADDR lma;
1783 gdb_byte *buffer;
1784 };
1785
1786 /* Target write callback routine for progress reporting. */
1787
1788 static void
1789 load_progress (ULONGEST bytes, void *untyped_arg)
1790 {
1791 struct load_progress_section_data *args = untyped_arg;
1792 struct load_progress_data *totals;
1793
1794 if (args == NULL)
1795 /* Writing padding data. No easy way to get at the cumulative
1796 stats, so just ignore this. */
1797 return;
1798
1799 totals = args->cumulative;
1800
1801 if (bytes == 0 && args->section_sent == 0)
1802 {
1803 /* The write is just starting. Let the user know we've started
1804 this section. */
1805 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1806 args->section_name, paddr_nz (args->section_size),
1807 paddr_nz (args->lma));
1808 return;
1809 }
1810
1811 if (validate_download)
1812 {
1813 /* Broken memories and broken monitors manifest themselves here
1814 when bring new computers to life. This doubles already slow
1815 downloads. */
1816 /* NOTE: cagney/1999-10-18: A more efficient implementation
1817 might add a verify_memory() method to the target vector and
1818 then use that. remote.c could implement that method using
1819 the ``qCRC'' packet. */
1820 gdb_byte *check = xmalloc (bytes);
1821 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1822
1823 if (target_read_memory (args->lma, check, bytes) != 0)
1824 error (_("Download verify read failed at 0x%s"),
1825 paddr (args->lma));
1826 if (memcmp (args->buffer, check, bytes) != 0)
1827 error (_("Download verify compare failed at 0x%s"),
1828 paddr (args->lma));
1829 do_cleanups (verify_cleanups);
1830 }
1831 totals->data_count += bytes;
1832 args->lma += bytes;
1833 args->buffer += bytes;
1834 totals->write_count += 1;
1835 args->section_sent += bytes;
1836 if (quit_flag
1837 || (deprecated_ui_load_progress_hook != NULL
1838 && deprecated_ui_load_progress_hook (args->section_name,
1839 args->section_sent)))
1840 error (_("Canceled the download"));
1841
1842 if (deprecated_show_load_progress != NULL)
1843 deprecated_show_load_progress (args->section_name,
1844 args->section_sent,
1845 args->section_size,
1846 totals->data_count,
1847 totals->total_size);
1848 }
1849
1850 /* Callback service function for generic_load (bfd_map_over_sections). */
1851
1852 static void
1853 load_section_callback (bfd *abfd, asection *asec, void *data)
1854 {
1855 struct memory_write_request *new_request;
1856 struct load_section_data *args = data;
1857 struct load_progress_section_data *section_data;
1858 bfd_size_type size = bfd_get_section_size (asec);
1859 gdb_byte *buffer;
1860 const char *sect_name = bfd_get_section_name (abfd, asec);
1861
1862 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1863 return;
1864
1865 if (size == 0)
1866 return;
1867
1868 new_request = VEC_safe_push (memory_write_request_s,
1869 args->requests, NULL);
1870 memset (new_request, 0, sizeof (struct memory_write_request));
1871 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1872 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1873 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1874 new_request->data = xmalloc (size);
1875 new_request->baton = section_data;
1876
1877 buffer = new_request->data;
1878
1879 section_data->cumulative = args->progress_data;
1880 section_data->section_name = sect_name;
1881 section_data->section_size = size;
1882 section_data->lma = new_request->begin;
1883 section_data->buffer = buffer;
1884
1885 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1886 }
1887
1888 /* Clean up an entire memory request vector, including load
1889 data and progress records. */
1890
1891 static void
1892 clear_memory_write_data (void *arg)
1893 {
1894 VEC(memory_write_request_s) **vec_p = arg;
1895 VEC(memory_write_request_s) *vec = *vec_p;
1896 int i;
1897 struct memory_write_request *mr;
1898
1899 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1900 {
1901 xfree (mr->data);
1902 xfree (mr->baton);
1903 }
1904 VEC_free (memory_write_request_s, vec);
1905 }
1906
1907 void
1908 generic_load (char *args, int from_tty)
1909 {
1910 bfd *loadfile_bfd;
1911 struct timeval start_time, end_time;
1912 char *filename;
1913 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1914 struct load_section_data cbdata;
1915 struct load_progress_data total_progress;
1916
1917 CORE_ADDR entry;
1918 char **argv;
1919
1920 memset (&cbdata, 0, sizeof (cbdata));
1921 memset (&total_progress, 0, sizeof (total_progress));
1922 cbdata.progress_data = &total_progress;
1923
1924 make_cleanup (clear_memory_write_data, &cbdata.requests);
1925
1926 if (args == NULL)
1927 error_no_arg (_("file to load"));
1928
1929 argv = gdb_buildargv (args);
1930 make_cleanup_freeargv (argv);
1931
1932 filename = tilde_expand (argv[0]);
1933 make_cleanup (xfree, filename);
1934
1935 if (argv[1] != NULL)
1936 {
1937 char *endptr;
1938
1939 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1940
1941 /* If the last word was not a valid number then
1942 treat it as a file name with spaces in. */
1943 if (argv[1] == endptr)
1944 error (_("Invalid download offset:%s."), argv[1]);
1945
1946 if (argv[2] != NULL)
1947 error (_("Too many parameters."));
1948 }
1949
1950 /* Open the file for loading. */
1951 loadfile_bfd = bfd_openr (filename, gnutarget);
1952 if (loadfile_bfd == NULL)
1953 {
1954 perror_with_name (filename);
1955 return;
1956 }
1957
1958 /* FIXME: should be checking for errors from bfd_close (for one thing,
1959 on error it does not free all the storage associated with the
1960 bfd). */
1961 make_cleanup_bfd_close (loadfile_bfd);
1962
1963 if (!bfd_check_format (loadfile_bfd, bfd_object))
1964 {
1965 error (_("\"%s\" is not an object file: %s"), filename,
1966 bfd_errmsg (bfd_get_error ()));
1967 }
1968
1969 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1970 (void *) &total_progress.total_size);
1971
1972 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1973
1974 gettimeofday (&start_time, NULL);
1975
1976 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1977 load_progress) != 0)
1978 error (_("Load failed"));
1979
1980 gettimeofday (&end_time, NULL);
1981
1982 entry = bfd_get_start_address (loadfile_bfd);
1983 ui_out_text (uiout, "Start address ");
1984 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1985 ui_out_text (uiout, ", load size ");
1986 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1987 ui_out_text (uiout, "\n");
1988 /* We were doing this in remote-mips.c, I suspect it is right
1989 for other targets too. */
1990 regcache_write_pc (get_current_regcache (), entry);
1991
1992 /* FIXME: are we supposed to call symbol_file_add or not? According
1993 to a comment from remote-mips.c (where a call to symbol_file_add
1994 was commented out), making the call confuses GDB if more than one
1995 file is loaded in. Some targets do (e.g., remote-vx.c) but
1996 others don't (or didn't - perhaps they have all been deleted). */
1997
1998 print_transfer_performance (gdb_stdout, total_progress.data_count,
1999 total_progress.write_count,
2000 &start_time, &end_time);
2001
2002 do_cleanups (old_cleanups);
2003 }
2004
2005 /* Report how fast the transfer went. */
2006
2007 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2008 replaced by print_transfer_performance (with a very different
2009 function signature). */
2010
2011 void
2012 report_transfer_performance (unsigned long data_count, time_t start_time,
2013 time_t end_time)
2014 {
2015 struct timeval start, end;
2016
2017 start.tv_sec = start_time;
2018 start.tv_usec = 0;
2019 end.tv_sec = end_time;
2020 end.tv_usec = 0;
2021
2022 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2023 }
2024
2025 void
2026 print_transfer_performance (struct ui_file *stream,
2027 unsigned long data_count,
2028 unsigned long write_count,
2029 const struct timeval *start_time,
2030 const struct timeval *end_time)
2031 {
2032 ULONGEST time_count;
2033
2034 /* Compute the elapsed time in milliseconds, as a tradeoff between
2035 accuracy and overflow. */
2036 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2037 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2038
2039 ui_out_text (uiout, "Transfer rate: ");
2040 if (time_count > 0)
2041 {
2042 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2043
2044 if (ui_out_is_mi_like_p (uiout))
2045 {
2046 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2047 ui_out_text (uiout, " bits/sec");
2048 }
2049 else if (rate < 1024)
2050 {
2051 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2052 ui_out_text (uiout, " bytes/sec");
2053 }
2054 else
2055 {
2056 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2057 ui_out_text (uiout, " KB/sec");
2058 }
2059 }
2060 else
2061 {
2062 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2063 ui_out_text (uiout, " bits in <1 sec");
2064 }
2065 if (write_count > 0)
2066 {
2067 ui_out_text (uiout, ", ");
2068 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2069 ui_out_text (uiout, " bytes/write");
2070 }
2071 ui_out_text (uiout, ".\n");
2072 }
2073
2074 /* This function allows the addition of incrementally linked object files.
2075 It does not modify any state in the target, only in the debugger. */
2076 /* Note: ezannoni 2000-04-13 This function/command used to have a
2077 special case syntax for the rombug target (Rombug is the boot
2078 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2079 rombug case, the user doesn't need to supply a text address,
2080 instead a call to target_link() (in target.c) would supply the
2081 value to use. We are now discontinuing this type of ad hoc syntax. */
2082
2083 static void
2084 add_symbol_file_command (char *args, int from_tty)
2085 {
2086 char *filename = NULL;
2087 int flags = OBJF_USERLOADED;
2088 char *arg;
2089 int expecting_option = 0;
2090 int section_index = 0;
2091 int argcnt = 0;
2092 int sec_num = 0;
2093 int i;
2094 int expecting_sec_name = 0;
2095 int expecting_sec_addr = 0;
2096 char **argv;
2097
2098 struct sect_opt
2099 {
2100 char *name;
2101 char *value;
2102 };
2103
2104 struct section_addr_info *section_addrs;
2105 struct sect_opt *sect_opts = NULL;
2106 size_t num_sect_opts = 0;
2107 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2108
2109 num_sect_opts = 16;
2110 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2111 * sizeof (struct sect_opt));
2112
2113 dont_repeat ();
2114
2115 if (args == NULL)
2116 error (_("add-symbol-file takes a file name and an address"));
2117
2118 argv = gdb_buildargv (args);
2119 make_cleanup_freeargv (argv);
2120
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2122 {
2123 /* Process the argument. */
2124 if (argcnt == 0)
2125 {
2126 /* The first argument is the file name. */
2127 filename = tilde_expand (arg);
2128 make_cleanup (xfree, filename);
2129 }
2130 else
2131 if (argcnt == 1)
2132 {
2133 /* The second argument is always the text address at which
2134 to load the program. */
2135 sect_opts[section_index].name = ".text";
2136 sect_opts[section_index].value = arg;
2137 if (++section_index >= num_sect_opts)
2138 {
2139 num_sect_opts *= 2;
2140 sect_opts = ((struct sect_opt *)
2141 xrealloc (sect_opts,
2142 num_sect_opts
2143 * sizeof (struct sect_opt)));
2144 }
2145 }
2146 else
2147 {
2148 /* It's an option (starting with '-') or it's an argument
2149 to an option */
2150
2151 if (*arg == '-')
2152 {
2153 if (strcmp (arg, "-readnow") == 0)
2154 flags |= OBJF_READNOW;
2155 else if (strcmp (arg, "-s") == 0)
2156 {
2157 expecting_sec_name = 1;
2158 expecting_sec_addr = 1;
2159 }
2160 }
2161 else
2162 {
2163 if (expecting_sec_name)
2164 {
2165 sect_opts[section_index].name = arg;
2166 expecting_sec_name = 0;
2167 }
2168 else
2169 if (expecting_sec_addr)
2170 {
2171 sect_opts[section_index].value = arg;
2172 expecting_sec_addr = 0;
2173 if (++section_index >= num_sect_opts)
2174 {
2175 num_sect_opts *= 2;
2176 sect_opts = ((struct sect_opt *)
2177 xrealloc (sect_opts,
2178 num_sect_opts
2179 * sizeof (struct sect_opt)));
2180 }
2181 }
2182 else
2183 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2184 }
2185 }
2186 }
2187
2188 /* This command takes at least two arguments. The first one is a
2189 filename, and the second is the address where this file has been
2190 loaded. Abort now if this address hasn't been provided by the
2191 user. */
2192 if (section_index < 1)
2193 error (_("The address where %s has been loaded is missing"), filename);
2194
2195 /* Print the prompt for the query below. And save the arguments into
2196 a sect_addr_info structure to be passed around to other
2197 functions. We have to split this up into separate print
2198 statements because hex_string returns a local static
2199 string. */
2200
2201 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2202 section_addrs = alloc_section_addr_info (section_index);
2203 make_cleanup (xfree, section_addrs);
2204 for (i = 0; i < section_index; i++)
2205 {
2206 CORE_ADDR addr;
2207 char *val = sect_opts[i].value;
2208 char *sec = sect_opts[i].name;
2209
2210 addr = parse_and_eval_address (val);
2211
2212 /* Here we store the section offsets in the order they were
2213 entered on the command line. */
2214 section_addrs->other[sec_num].name = sec;
2215 section_addrs->other[sec_num].addr = addr;
2216 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2217 sec_num++;
2218
2219 /* The object's sections are initialized when a
2220 call is made to build_objfile_section_table (objfile).
2221 This happens in reread_symbols.
2222 At this point, we don't know what file type this is,
2223 so we can't determine what section names are valid. */
2224 }
2225
2226 if (from_tty && (!query ("%s", "")))
2227 error (_("Not confirmed."));
2228
2229 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2230
2231 /* Getting new symbols may change our opinion about what is
2232 frameless. */
2233 reinit_frame_cache ();
2234 do_cleanups (my_cleanups);
2235 }
2236 \f
2237 static void
2238 add_shared_symbol_files_command (char *args, int from_tty)
2239 {
2240 #ifdef ADD_SHARED_SYMBOL_FILES
2241 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2242 #else
2243 error (_("This command is not available in this configuration of GDB."));
2244 #endif
2245 }
2246 \f
2247 /* Re-read symbols if a symbol-file has changed. */
2248 void
2249 reread_symbols (void)
2250 {
2251 struct objfile *objfile;
2252 long new_modtime;
2253 int reread_one = 0;
2254 struct stat new_statbuf;
2255 int res;
2256
2257 /* With the addition of shared libraries, this should be modified,
2258 the load time should be saved in the partial symbol tables, since
2259 different tables may come from different source files. FIXME.
2260 This routine should then walk down each partial symbol table
2261 and see if the symbol table that it originates from has been changed */
2262
2263 for (objfile = object_files; objfile; objfile = objfile->next)
2264 {
2265 if (objfile->obfd)
2266 {
2267 #ifdef DEPRECATED_IBM6000_TARGET
2268 /* If this object is from a shared library, then you should
2269 stat on the library name, not member name. */
2270
2271 if (objfile->obfd->my_archive)
2272 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2273 else
2274 #endif
2275 res = stat (objfile->name, &new_statbuf);
2276 if (res != 0)
2277 {
2278 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2279 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2280 objfile->name);
2281 continue;
2282 }
2283 new_modtime = new_statbuf.st_mtime;
2284 if (new_modtime != objfile->mtime)
2285 {
2286 struct cleanup *old_cleanups;
2287 struct section_offsets *offsets;
2288 int num_offsets;
2289 char *obfd_filename;
2290
2291 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2292 objfile->name);
2293
2294 /* There are various functions like symbol_file_add,
2295 symfile_bfd_open, syms_from_objfile, etc., which might
2296 appear to do what we want. But they have various other
2297 effects which we *don't* want. So we just do stuff
2298 ourselves. We don't worry about mapped files (for one thing,
2299 any mapped file will be out of date). */
2300
2301 /* If we get an error, blow away this objfile (not sure if
2302 that is the correct response for things like shared
2303 libraries). */
2304 old_cleanups = make_cleanup_free_objfile (objfile);
2305 /* We need to do this whenever any symbols go away. */
2306 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2307
2308 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2309 bfd_get_filename (exec_bfd)) == 0)
2310 {
2311 /* Reload EXEC_BFD without asking anything. */
2312
2313 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2314 }
2315
2316 /* Clean up any state BFD has sitting around. We don't need
2317 to close the descriptor but BFD lacks a way of closing the
2318 BFD without closing the descriptor. */
2319 obfd_filename = bfd_get_filename (objfile->obfd);
2320 if (!bfd_close (objfile->obfd))
2321 error (_("Can't close BFD for %s: %s"), objfile->name,
2322 bfd_errmsg (bfd_get_error ()));
2323 if (remote_filename_p (obfd_filename))
2324 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2325 else
2326 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2327 if (objfile->obfd == NULL)
2328 error (_("Can't open %s to read symbols."), objfile->name);
2329 /* bfd_openr sets cacheable to true, which is what we want. */
2330 if (!bfd_check_format (objfile->obfd, bfd_object))
2331 error (_("Can't read symbols from %s: %s."), objfile->name,
2332 bfd_errmsg (bfd_get_error ()));
2333
2334 /* Save the offsets, we will nuke them with the rest of the
2335 objfile_obstack. */
2336 num_offsets = objfile->num_sections;
2337 offsets = ((struct section_offsets *)
2338 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2339 memcpy (offsets, objfile->section_offsets,
2340 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2341
2342 /* Remove any references to this objfile in the global
2343 value lists. */
2344 preserve_values (objfile);
2345
2346 /* Nuke all the state that we will re-read. Much of the following
2347 code which sets things to NULL really is necessary to tell
2348 other parts of GDB that there is nothing currently there. */
2349
2350 /* FIXME: Do we have to free a whole linked list, or is this
2351 enough? */
2352 if (objfile->global_psymbols.list)
2353 xfree (objfile->global_psymbols.list);
2354 memset (&objfile->global_psymbols, 0,
2355 sizeof (objfile->global_psymbols));
2356 if (objfile->static_psymbols.list)
2357 xfree (objfile->static_psymbols.list);
2358 memset (&objfile->static_psymbols, 0,
2359 sizeof (objfile->static_psymbols));
2360
2361 /* Free the obstacks for non-reusable objfiles */
2362 bcache_xfree (objfile->psymbol_cache);
2363 objfile->psymbol_cache = bcache_xmalloc ();
2364 bcache_xfree (objfile->macro_cache);
2365 objfile->macro_cache = bcache_xmalloc ();
2366 if (objfile->demangled_names_hash != NULL)
2367 {
2368 htab_delete (objfile->demangled_names_hash);
2369 objfile->demangled_names_hash = NULL;
2370 }
2371 obstack_free (&objfile->objfile_obstack, 0);
2372 objfile->sections = NULL;
2373 objfile->symtabs = NULL;
2374 objfile->psymtabs = NULL;
2375 objfile->free_psymtabs = NULL;
2376 objfile->cp_namespace_symtab = NULL;
2377 objfile->msymbols = NULL;
2378 objfile->deprecated_sym_private = NULL;
2379 objfile->minimal_symbol_count = 0;
2380 memset (&objfile->msymbol_hash, 0,
2381 sizeof (objfile->msymbol_hash));
2382 memset (&objfile->msymbol_demangled_hash, 0,
2383 sizeof (objfile->msymbol_demangled_hash));
2384 clear_objfile_data (objfile);
2385 if (objfile->sf != NULL)
2386 {
2387 (*objfile->sf->sym_finish) (objfile);
2388 }
2389
2390 objfile->psymbol_cache = bcache_xmalloc ();
2391 objfile->macro_cache = bcache_xmalloc ();
2392 /* obstack_init also initializes the obstack so it is
2393 empty. We could use obstack_specify_allocation but
2394 gdb_obstack.h specifies the alloc/dealloc
2395 functions. */
2396 obstack_init (&objfile->objfile_obstack);
2397 if (build_objfile_section_table (objfile))
2398 {
2399 error (_("Can't find the file sections in `%s': %s"),
2400 objfile->name, bfd_errmsg (bfd_get_error ()));
2401 }
2402 terminate_minimal_symbol_table (objfile);
2403
2404 /* We use the same section offsets as from last time. I'm not
2405 sure whether that is always correct for shared libraries. */
2406 objfile->section_offsets = (struct section_offsets *)
2407 obstack_alloc (&objfile->objfile_obstack,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409 memcpy (objfile->section_offsets, offsets,
2410 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2411 objfile->num_sections = num_offsets;
2412
2413 /* What the hell is sym_new_init for, anyway? The concept of
2414 distinguishing between the main file and additional files
2415 in this way seems rather dubious. */
2416 if (objfile == symfile_objfile)
2417 {
2418 (*objfile->sf->sym_new_init) (objfile);
2419 }
2420
2421 (*objfile->sf->sym_init) (objfile);
2422 clear_complaints (&symfile_complaints, 1, 1);
2423 /* The "mainline" parameter is a hideous hack; I think leaving it
2424 zero is OK since dbxread.c also does what it needs to do if
2425 objfile->global_psymbols.size is 0. */
2426 (*objfile->sf->sym_read) (objfile, 0);
2427 if (!have_partial_symbols () && !have_full_symbols ())
2428 {
2429 wrap_here ("");
2430 printf_unfiltered (_("(no debugging symbols found)\n"));
2431 wrap_here ("");
2432 }
2433
2434 /* We're done reading the symbol file; finish off complaints. */
2435 clear_complaints (&symfile_complaints, 0, 1);
2436
2437 /* Getting new symbols may change our opinion about what is
2438 frameless. */
2439
2440 reinit_frame_cache ();
2441
2442 /* Discard cleanups as symbol reading was successful. */
2443 discard_cleanups (old_cleanups);
2444
2445 /* If the mtime has changed between the time we set new_modtime
2446 and now, we *want* this to be out of date, so don't call stat
2447 again now. */
2448 objfile->mtime = new_modtime;
2449 reread_one = 1;
2450 reread_separate_symbols (objfile);
2451 init_entry_point_info (objfile);
2452 }
2453 }
2454 }
2455
2456 if (reread_one)
2457 {
2458 clear_symtab_users ();
2459 /* At least one objfile has changed, so we can consider that
2460 the executable we're debugging has changed too. */
2461 observer_notify_executable_changed ();
2462 }
2463
2464 }
2465
2466
2467 /* Handle separate debug info for OBJFILE, which has just been
2468 re-read:
2469 - If we had separate debug info before, but now we don't, get rid
2470 of the separated objfile.
2471 - If we didn't have separated debug info before, but now we do,
2472 read in the new separated debug info file.
2473 - If the debug link points to a different file, toss the old one
2474 and read the new one.
2475 This function does *not* handle the case where objfile is still
2476 using the same separate debug info file, but that file's timestamp
2477 has changed. That case should be handled by the loop in
2478 reread_symbols already. */
2479 static void
2480 reread_separate_symbols (struct objfile *objfile)
2481 {
2482 char *debug_file;
2483 unsigned long crc32;
2484
2485 /* Does the updated objfile's debug info live in a
2486 separate file? */
2487 debug_file = find_separate_debug_file (objfile);
2488
2489 if (objfile->separate_debug_objfile)
2490 {
2491 /* There are two cases where we need to get rid of
2492 the old separated debug info objfile:
2493 - if the new primary objfile doesn't have
2494 separated debug info, or
2495 - if the new primary objfile has separate debug
2496 info, but it's under a different filename.
2497
2498 If the old and new objfiles both have separate
2499 debug info, under the same filename, then we're
2500 okay --- if the separated file's contents have
2501 changed, we will have caught that when we
2502 visited it in this function's outermost
2503 loop. */
2504 if (! debug_file
2505 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2506 free_objfile (objfile->separate_debug_objfile);
2507 }
2508
2509 /* If the new objfile has separate debug info, and we
2510 haven't loaded it already, do so now. */
2511 if (debug_file
2512 && ! objfile->separate_debug_objfile)
2513 {
2514 /* Use the same section offset table as objfile itself.
2515 Preserve the flags from objfile that make sense. */
2516 objfile->separate_debug_objfile
2517 = (symbol_file_add_with_addrs_or_offsets
2518 (symfile_bfd_open (debug_file),
2519 info_verbose, /* from_tty: Don't override the default. */
2520 0, /* No addr table. */
2521 objfile->section_offsets, objfile->num_sections,
2522 0, /* Not mainline. See comments about this above. */
2523 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2524 | OBJF_USERLOADED)));
2525 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2526 = objfile;
2527 }
2528 if (debug_file)
2529 xfree (debug_file);
2530 }
2531
2532
2533 \f
2534
2535
2536 typedef struct
2537 {
2538 char *ext;
2539 enum language lang;
2540 }
2541 filename_language;
2542
2543 static filename_language *filename_language_table;
2544 static int fl_table_size, fl_table_next;
2545
2546 static void
2547 add_filename_language (char *ext, enum language lang)
2548 {
2549 if (fl_table_next >= fl_table_size)
2550 {
2551 fl_table_size += 10;
2552 filename_language_table =
2553 xrealloc (filename_language_table,
2554 fl_table_size * sizeof (*filename_language_table));
2555 }
2556
2557 filename_language_table[fl_table_next].ext = xstrdup (ext);
2558 filename_language_table[fl_table_next].lang = lang;
2559 fl_table_next++;
2560 }
2561
2562 static char *ext_args;
2563 static void
2564 show_ext_args (struct ui_file *file, int from_tty,
2565 struct cmd_list_element *c, const char *value)
2566 {
2567 fprintf_filtered (file, _("\
2568 Mapping between filename extension and source language is \"%s\".\n"),
2569 value);
2570 }
2571
2572 static void
2573 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2574 {
2575 int i;
2576 char *cp = ext_args;
2577 enum language lang;
2578
2579 /* First arg is filename extension, starting with '.' */
2580 if (*cp != '.')
2581 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2582
2583 /* Find end of first arg. */
2584 while (*cp && !isspace (*cp))
2585 cp++;
2586
2587 if (*cp == '\0')
2588 error (_("'%s': two arguments required -- filename extension and language"),
2589 ext_args);
2590
2591 /* Null-terminate first arg */
2592 *cp++ = '\0';
2593
2594 /* Find beginning of second arg, which should be a source language. */
2595 while (*cp && isspace (*cp))
2596 cp++;
2597
2598 if (*cp == '\0')
2599 error (_("'%s': two arguments required -- filename extension and language"),
2600 ext_args);
2601
2602 /* Lookup the language from among those we know. */
2603 lang = language_enum (cp);
2604
2605 /* Now lookup the filename extension: do we already know it? */
2606 for (i = 0; i < fl_table_next; i++)
2607 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2608 break;
2609
2610 if (i >= fl_table_next)
2611 {
2612 /* new file extension */
2613 add_filename_language (ext_args, lang);
2614 }
2615 else
2616 {
2617 /* redefining a previously known filename extension */
2618
2619 /* if (from_tty) */
2620 /* query ("Really make files of type %s '%s'?", */
2621 /* ext_args, language_str (lang)); */
2622
2623 xfree (filename_language_table[i].ext);
2624 filename_language_table[i].ext = xstrdup (ext_args);
2625 filename_language_table[i].lang = lang;
2626 }
2627 }
2628
2629 static void
2630 info_ext_lang_command (char *args, int from_tty)
2631 {
2632 int i;
2633
2634 printf_filtered (_("Filename extensions and the languages they represent:"));
2635 printf_filtered ("\n\n");
2636 for (i = 0; i < fl_table_next; i++)
2637 printf_filtered ("\t%s\t- %s\n",
2638 filename_language_table[i].ext,
2639 language_str (filename_language_table[i].lang));
2640 }
2641
2642 static void
2643 init_filename_language_table (void)
2644 {
2645 if (fl_table_size == 0) /* protect against repetition */
2646 {
2647 fl_table_size = 20;
2648 fl_table_next = 0;
2649 filename_language_table =
2650 xmalloc (fl_table_size * sizeof (*filename_language_table));
2651 add_filename_language (".c", language_c);
2652 add_filename_language (".C", language_cplus);
2653 add_filename_language (".cc", language_cplus);
2654 add_filename_language (".cp", language_cplus);
2655 add_filename_language (".cpp", language_cplus);
2656 add_filename_language (".cxx", language_cplus);
2657 add_filename_language (".c++", language_cplus);
2658 add_filename_language (".java", language_java);
2659 add_filename_language (".class", language_java);
2660 add_filename_language (".m", language_objc);
2661 add_filename_language (".f", language_fortran);
2662 add_filename_language (".F", language_fortran);
2663 add_filename_language (".s", language_asm);
2664 add_filename_language (".sx", language_asm);
2665 add_filename_language (".S", language_asm);
2666 add_filename_language (".pas", language_pascal);
2667 add_filename_language (".p", language_pascal);
2668 add_filename_language (".pp", language_pascal);
2669 add_filename_language (".adb", language_ada);
2670 add_filename_language (".ads", language_ada);
2671 add_filename_language (".a", language_ada);
2672 add_filename_language (".ada", language_ada);
2673 }
2674 }
2675
2676 enum language
2677 deduce_language_from_filename (char *filename)
2678 {
2679 int i;
2680 char *cp;
2681
2682 if (filename != NULL)
2683 if ((cp = strrchr (filename, '.')) != NULL)
2684 for (i = 0; i < fl_table_next; i++)
2685 if (strcmp (cp, filename_language_table[i].ext) == 0)
2686 return filename_language_table[i].lang;
2687
2688 return language_unknown;
2689 }
2690 \f
2691 /* allocate_symtab:
2692
2693 Allocate and partly initialize a new symbol table. Return a pointer
2694 to it. error() if no space.
2695
2696 Caller must set these fields:
2697 LINETABLE(symtab)
2698 symtab->blockvector
2699 symtab->dirname
2700 symtab->free_code
2701 symtab->free_ptr
2702 possibly free_named_symtabs (symtab->filename);
2703 */
2704
2705 struct symtab *
2706 allocate_symtab (char *filename, struct objfile *objfile)
2707 {
2708 struct symtab *symtab;
2709
2710 symtab = (struct symtab *)
2711 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2712 memset (symtab, 0, sizeof (*symtab));
2713 symtab->filename = obsavestring (filename, strlen (filename),
2714 &objfile->objfile_obstack);
2715 symtab->fullname = NULL;
2716 symtab->language = deduce_language_from_filename (filename);
2717 symtab->debugformat = obsavestring ("unknown", 7,
2718 &objfile->objfile_obstack);
2719
2720 /* Hook it to the objfile it comes from */
2721
2722 symtab->objfile = objfile;
2723 symtab->next = objfile->symtabs;
2724 objfile->symtabs = symtab;
2725
2726 return (symtab);
2727 }
2728
2729 struct partial_symtab *
2730 allocate_psymtab (char *filename, struct objfile *objfile)
2731 {
2732 struct partial_symtab *psymtab;
2733
2734 if (objfile->free_psymtabs)
2735 {
2736 psymtab = objfile->free_psymtabs;
2737 objfile->free_psymtabs = psymtab->next;
2738 }
2739 else
2740 psymtab = (struct partial_symtab *)
2741 obstack_alloc (&objfile->objfile_obstack,
2742 sizeof (struct partial_symtab));
2743
2744 memset (psymtab, 0, sizeof (struct partial_symtab));
2745 psymtab->filename = obsavestring (filename, strlen (filename),
2746 &objfile->objfile_obstack);
2747 psymtab->symtab = NULL;
2748
2749 /* Prepend it to the psymtab list for the objfile it belongs to.
2750 Psymtabs are searched in most recent inserted -> least recent
2751 inserted order. */
2752
2753 psymtab->objfile = objfile;
2754 psymtab->next = objfile->psymtabs;
2755 objfile->psymtabs = psymtab;
2756 #if 0
2757 {
2758 struct partial_symtab **prev_pst;
2759 psymtab->objfile = objfile;
2760 psymtab->next = NULL;
2761 prev_pst = &(objfile->psymtabs);
2762 while ((*prev_pst) != NULL)
2763 prev_pst = &((*prev_pst)->next);
2764 (*prev_pst) = psymtab;
2765 }
2766 #endif
2767
2768 return (psymtab);
2769 }
2770
2771 void
2772 discard_psymtab (struct partial_symtab *pst)
2773 {
2774 struct partial_symtab **prev_pst;
2775
2776 /* From dbxread.c:
2777 Empty psymtabs happen as a result of header files which don't
2778 have any symbols in them. There can be a lot of them. But this
2779 check is wrong, in that a psymtab with N_SLINE entries but
2780 nothing else is not empty, but we don't realize that. Fixing
2781 that without slowing things down might be tricky. */
2782
2783 /* First, snip it out of the psymtab chain */
2784
2785 prev_pst = &(pst->objfile->psymtabs);
2786 while ((*prev_pst) != pst)
2787 prev_pst = &((*prev_pst)->next);
2788 (*prev_pst) = pst->next;
2789
2790 /* Next, put it on a free list for recycling */
2791
2792 pst->next = pst->objfile->free_psymtabs;
2793 pst->objfile->free_psymtabs = pst;
2794 }
2795 \f
2796
2797 /* Reset all data structures in gdb which may contain references to symbol
2798 table data. */
2799
2800 void
2801 clear_symtab_users (void)
2802 {
2803 /* Someday, we should do better than this, by only blowing away
2804 the things that really need to be blown. */
2805
2806 /* Clear the "current" symtab first, because it is no longer valid.
2807 breakpoint_re_set may try to access the current symtab. */
2808 clear_current_source_symtab_and_line ();
2809
2810 clear_displays ();
2811 breakpoint_re_set ();
2812 set_default_breakpoint (0, 0, 0, 0);
2813 clear_pc_function_cache ();
2814 observer_notify_new_objfile (NULL);
2815
2816 /* Clear globals which might have pointed into a removed objfile.
2817 FIXME: It's not clear which of these are supposed to persist
2818 between expressions and which ought to be reset each time. */
2819 expression_context_block = NULL;
2820 innermost_block = NULL;
2821
2822 /* Varobj may refer to old symbols, perform a cleanup. */
2823 varobj_invalidate ();
2824
2825 }
2826
2827 static void
2828 clear_symtab_users_cleanup (void *ignore)
2829 {
2830 clear_symtab_users ();
2831 }
2832
2833 /* clear_symtab_users_once:
2834
2835 This function is run after symbol reading, or from a cleanup.
2836 If an old symbol table was obsoleted, the old symbol table
2837 has been blown away, but the other GDB data structures that may
2838 reference it have not yet been cleared or re-directed. (The old
2839 symtab was zapped, and the cleanup queued, in free_named_symtab()
2840 below.)
2841
2842 This function can be queued N times as a cleanup, or called
2843 directly; it will do all the work the first time, and then will be a
2844 no-op until the next time it is queued. This works by bumping a
2845 counter at queueing time. Much later when the cleanup is run, or at
2846 the end of symbol processing (in case the cleanup is discarded), if
2847 the queued count is greater than the "done-count", we do the work
2848 and set the done-count to the queued count. If the queued count is
2849 less than or equal to the done-count, we just ignore the call. This
2850 is needed because reading a single .o file will often replace many
2851 symtabs (one per .h file, for example), and we don't want to reset
2852 the breakpoints N times in the user's face.
2853
2854 The reason we both queue a cleanup, and call it directly after symbol
2855 reading, is because the cleanup protects us in case of errors, but is
2856 discarded if symbol reading is successful. */
2857
2858 #if 0
2859 /* FIXME: As free_named_symtabs is currently a big noop this function
2860 is no longer needed. */
2861 static void clear_symtab_users_once (void);
2862
2863 static int clear_symtab_users_queued;
2864 static int clear_symtab_users_done;
2865
2866 static void
2867 clear_symtab_users_once (void)
2868 {
2869 /* Enforce once-per-`do_cleanups'-semantics */
2870 if (clear_symtab_users_queued <= clear_symtab_users_done)
2871 return;
2872 clear_symtab_users_done = clear_symtab_users_queued;
2873
2874 clear_symtab_users ();
2875 }
2876 #endif
2877
2878 /* Delete the specified psymtab, and any others that reference it. */
2879
2880 static void
2881 cashier_psymtab (struct partial_symtab *pst)
2882 {
2883 struct partial_symtab *ps, *pprev = NULL;
2884 int i;
2885
2886 /* Find its previous psymtab in the chain */
2887 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2888 {
2889 if (ps == pst)
2890 break;
2891 pprev = ps;
2892 }
2893
2894 if (ps)
2895 {
2896 /* Unhook it from the chain. */
2897 if (ps == pst->objfile->psymtabs)
2898 pst->objfile->psymtabs = ps->next;
2899 else
2900 pprev->next = ps->next;
2901
2902 /* FIXME, we can't conveniently deallocate the entries in the
2903 partial_symbol lists (global_psymbols/static_psymbols) that
2904 this psymtab points to. These just take up space until all
2905 the psymtabs are reclaimed. Ditto the dependencies list and
2906 filename, which are all in the objfile_obstack. */
2907
2908 /* We need to cashier any psymtab that has this one as a dependency... */
2909 again:
2910 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2911 {
2912 for (i = 0; i < ps->number_of_dependencies; i++)
2913 {
2914 if (ps->dependencies[i] == pst)
2915 {
2916 cashier_psymtab (ps);
2917 goto again; /* Must restart, chain has been munged. */
2918 }
2919 }
2920 }
2921 }
2922 }
2923
2924 /* If a symtab or psymtab for filename NAME is found, free it along
2925 with any dependent breakpoints, displays, etc.
2926 Used when loading new versions of object modules with the "add-file"
2927 command. This is only called on the top-level symtab or psymtab's name;
2928 it is not called for subsidiary files such as .h files.
2929
2930 Return value is 1 if we blew away the environment, 0 if not.
2931 FIXME. The return value appears to never be used.
2932
2933 FIXME. I think this is not the best way to do this. We should
2934 work on being gentler to the environment while still cleaning up
2935 all stray pointers into the freed symtab. */
2936
2937 int
2938 free_named_symtabs (char *name)
2939 {
2940 #if 0
2941 /* FIXME: With the new method of each objfile having it's own
2942 psymtab list, this function needs serious rethinking. In particular,
2943 why was it ever necessary to toss psymtabs with specific compilation
2944 unit filenames, as opposed to all psymtabs from a particular symbol
2945 file? -- fnf
2946 Well, the answer is that some systems permit reloading of particular
2947 compilation units. We want to blow away any old info about these
2948 compilation units, regardless of which objfiles they arrived in. --gnu. */
2949
2950 struct symtab *s;
2951 struct symtab *prev;
2952 struct partial_symtab *ps;
2953 struct blockvector *bv;
2954 int blewit = 0;
2955
2956 /* We only wack things if the symbol-reload switch is set. */
2957 if (!symbol_reloading)
2958 return 0;
2959
2960 /* Some symbol formats have trouble providing file names... */
2961 if (name == 0 || *name == '\0')
2962 return 0;
2963
2964 /* Look for a psymtab with the specified name. */
2965
2966 again2:
2967 for (ps = partial_symtab_list; ps; ps = ps->next)
2968 {
2969 if (strcmp (name, ps->filename) == 0)
2970 {
2971 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2972 goto again2; /* Must restart, chain has been munged */
2973 }
2974 }
2975
2976 /* Look for a symtab with the specified name. */
2977
2978 for (s = symtab_list; s; s = s->next)
2979 {
2980 if (strcmp (name, s->filename) == 0)
2981 break;
2982 prev = s;
2983 }
2984
2985 if (s)
2986 {
2987 if (s == symtab_list)
2988 symtab_list = s->next;
2989 else
2990 prev->next = s->next;
2991
2992 /* For now, queue a delete for all breakpoints, displays, etc., whether
2993 or not they depend on the symtab being freed. This should be
2994 changed so that only those data structures affected are deleted. */
2995
2996 /* But don't delete anything if the symtab is empty.
2997 This test is necessary due to a bug in "dbxread.c" that
2998 causes empty symtabs to be created for N_SO symbols that
2999 contain the pathname of the object file. (This problem
3000 has been fixed in GDB 3.9x). */
3001
3002 bv = BLOCKVECTOR (s);
3003 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3004 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3005 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3006 {
3007 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3008 name);
3009 clear_symtab_users_queued++;
3010 make_cleanup (clear_symtab_users_once, 0);
3011 blewit = 1;
3012 }
3013 else
3014 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3015 name);
3016
3017 free_symtab (s);
3018 }
3019 else
3020 {
3021 /* It is still possible that some breakpoints will be affected
3022 even though no symtab was found, since the file might have
3023 been compiled without debugging, and hence not be associated
3024 with a symtab. In order to handle this correctly, we would need
3025 to keep a list of text address ranges for undebuggable files.
3026 For now, we do nothing, since this is a fairly obscure case. */
3027 ;
3028 }
3029
3030 /* FIXME, what about the minimal symbol table? */
3031 return blewit;
3032 #else
3033 return (0);
3034 #endif
3035 }
3036 \f
3037 /* Allocate and partially fill a partial symtab. It will be
3038 completely filled at the end of the symbol list.
3039
3040 FILENAME is the name of the symbol-file we are reading from. */
3041
3042 struct partial_symtab *
3043 start_psymtab_common (struct objfile *objfile,
3044 struct section_offsets *section_offsets, char *filename,
3045 CORE_ADDR textlow, struct partial_symbol **global_syms,
3046 struct partial_symbol **static_syms)
3047 {
3048 struct partial_symtab *psymtab;
3049
3050 psymtab = allocate_psymtab (filename, objfile);
3051 psymtab->section_offsets = section_offsets;
3052 psymtab->textlow = textlow;
3053 psymtab->texthigh = psymtab->textlow; /* default */
3054 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3055 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3056 return (psymtab);
3057 }
3058 \f
3059 /* Helper function, initialises partial symbol structure and stashes
3060 it into objfile's bcache. Note that our caching mechanism will
3061 use all fields of struct partial_symbol to determine hash value of the
3062 structure. In other words, having two symbols with the same name but
3063 different domain (or address) is possible and correct. */
3064
3065 static const struct partial_symbol *
3066 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3067 enum address_class class,
3068 long val, /* Value as a long */
3069 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3070 enum language language, struct objfile *objfile,
3071 int *added)
3072 {
3073 char *buf = name;
3074 /* psymbol is static so that there will be no uninitialized gaps in the
3075 structure which might contain random data, causing cache misses in
3076 bcache. */
3077 static struct partial_symbol psymbol;
3078
3079 if (name[namelength] != '\0')
3080 {
3081 buf = alloca (namelength + 1);
3082 /* Create local copy of the partial symbol */
3083 memcpy (buf, name, namelength);
3084 buf[namelength] = '\0';
3085 }
3086 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3087 if (val != 0)
3088 {
3089 SYMBOL_VALUE (&psymbol) = val;
3090 }
3091 else
3092 {
3093 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3094 }
3095 SYMBOL_SECTION (&psymbol) = 0;
3096 SYMBOL_LANGUAGE (&psymbol) = language;
3097 PSYMBOL_DOMAIN (&psymbol) = domain;
3098 PSYMBOL_CLASS (&psymbol) = class;
3099
3100 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3101
3102 /* Stash the partial symbol away in the cache */
3103 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3104 objfile->psymbol_cache, added);
3105 }
3106
3107 /* Helper function, adds partial symbol to the given partial symbol
3108 list. */
3109
3110 static void
3111 append_psymbol_to_list (struct psymbol_allocation_list *list,
3112 const struct partial_symbol *psym,
3113 struct objfile *objfile)
3114 {
3115 if (list->next >= list->list + list->size)
3116 extend_psymbol_list (list, objfile);
3117 *list->next++ = (struct partial_symbol *) psym;
3118 OBJSTAT (objfile, n_psyms++);
3119 }
3120
3121 /* Add a symbol with a long value to a psymtab.
3122 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3123 Return the partial symbol that has been added. */
3124
3125 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3126 symbol is so that callers can get access to the symbol's demangled
3127 name, which they don't have any cheap way to determine otherwise.
3128 (Currenly, dwarf2read.c is the only file who uses that information,
3129 though it's possible that other readers might in the future.)
3130 Elena wasn't thrilled about that, and I don't blame her, but we
3131 couldn't come up with a better way to get that information. If
3132 it's needed in other situations, we could consider breaking up
3133 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3134 cache. */
3135
3136 const struct partial_symbol *
3137 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3138 enum address_class class,
3139 struct psymbol_allocation_list *list,
3140 long val, /* Value as a long */
3141 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3142 enum language language, struct objfile *objfile)
3143 {
3144 const struct partial_symbol *psym;
3145
3146 int added;
3147
3148 /* Stash the partial symbol away in the cache */
3149 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3150 val, coreaddr, language, objfile, &added);
3151
3152 /* Do not duplicate global partial symbols. */
3153 if (list == &objfile->global_psymbols
3154 && !added)
3155 return psym;
3156
3157 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3158 append_psymbol_to_list (list, psym, objfile);
3159 return psym;
3160 }
3161
3162 /* Initialize storage for partial symbols. */
3163
3164 void
3165 init_psymbol_list (struct objfile *objfile, int total_symbols)
3166 {
3167 /* Free any previously allocated psymbol lists. */
3168
3169 if (objfile->global_psymbols.list)
3170 {
3171 xfree (objfile->global_psymbols.list);
3172 }
3173 if (objfile->static_psymbols.list)
3174 {
3175 xfree (objfile->static_psymbols.list);
3176 }
3177
3178 /* Current best guess is that approximately a twentieth
3179 of the total symbols (in a debugging file) are global or static
3180 oriented symbols */
3181
3182 objfile->global_psymbols.size = total_symbols / 10;
3183 objfile->static_psymbols.size = total_symbols / 10;
3184
3185 if (objfile->global_psymbols.size > 0)
3186 {
3187 objfile->global_psymbols.next =
3188 objfile->global_psymbols.list = (struct partial_symbol **)
3189 xmalloc ((objfile->global_psymbols.size
3190 * sizeof (struct partial_symbol *)));
3191 }
3192 if (objfile->static_psymbols.size > 0)
3193 {
3194 objfile->static_psymbols.next =
3195 objfile->static_psymbols.list = (struct partial_symbol **)
3196 xmalloc ((objfile->static_psymbols.size
3197 * sizeof (struct partial_symbol *)));
3198 }
3199 }
3200
3201 /* OVERLAYS:
3202 The following code implements an abstraction for debugging overlay sections.
3203
3204 The target model is as follows:
3205 1) The gnu linker will permit multiple sections to be mapped into the
3206 same VMA, each with its own unique LMA (or load address).
3207 2) It is assumed that some runtime mechanism exists for mapping the
3208 sections, one by one, from the load address into the VMA address.
3209 3) This code provides a mechanism for gdb to keep track of which
3210 sections should be considered to be mapped from the VMA to the LMA.
3211 This information is used for symbol lookup, and memory read/write.
3212 For instance, if a section has been mapped then its contents
3213 should be read from the VMA, otherwise from the LMA.
3214
3215 Two levels of debugger support for overlays are available. One is
3216 "manual", in which the debugger relies on the user to tell it which
3217 overlays are currently mapped. This level of support is
3218 implemented entirely in the core debugger, and the information about
3219 whether a section is mapped is kept in the objfile->obj_section table.
3220
3221 The second level of support is "automatic", and is only available if
3222 the target-specific code provides functionality to read the target's
3223 overlay mapping table, and translate its contents for the debugger
3224 (by updating the mapped state information in the obj_section tables).
3225
3226 The interface is as follows:
3227 User commands:
3228 overlay map <name> -- tell gdb to consider this section mapped
3229 overlay unmap <name> -- tell gdb to consider this section unmapped
3230 overlay list -- list the sections that GDB thinks are mapped
3231 overlay read-target -- get the target's state of what's mapped
3232 overlay off/manual/auto -- set overlay debugging state
3233 Functional interface:
3234 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3235 section, return that section.
3236 find_pc_overlay(pc): find any overlay section that contains
3237 the pc, either in its VMA or its LMA
3238 section_is_mapped(sect): true if overlay is marked as mapped
3239 section_is_overlay(sect): true if section's VMA != LMA
3240 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3241 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3242 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3243 overlay_mapped_address(...): map an address from section's LMA to VMA
3244 overlay_unmapped_address(...): map an address from section's VMA to LMA
3245 symbol_overlayed_address(...): Return a "current" address for symbol:
3246 either in VMA or LMA depending on whether
3247 the symbol's section is currently mapped
3248 */
3249
3250 /* Overlay debugging state: */
3251
3252 enum overlay_debugging_state overlay_debugging = ovly_off;
3253 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3254
3255 /* Function: section_is_overlay (SECTION)
3256 Returns true if SECTION has VMA not equal to LMA, ie.
3257 SECTION is loaded at an address different from where it will "run". */
3258
3259 int
3260 section_is_overlay (struct obj_section *section)
3261 {
3262 if (overlay_debugging && section)
3263 {
3264 bfd *abfd = section->objfile->obfd;
3265 asection *bfd_section = section->the_bfd_section;
3266
3267 if (bfd_section_lma (abfd, bfd_section) != 0
3268 && bfd_section_lma (abfd, bfd_section)
3269 != bfd_section_vma (abfd, bfd_section))
3270 return 1;
3271 }
3272
3273 return 0;
3274 }
3275
3276 /* Function: overlay_invalidate_all (void)
3277 Invalidate the mapped state of all overlay sections (mark it as stale). */
3278
3279 static void
3280 overlay_invalidate_all (void)
3281 {
3282 struct objfile *objfile;
3283 struct obj_section *sect;
3284
3285 ALL_OBJSECTIONS (objfile, sect)
3286 if (section_is_overlay (sect))
3287 sect->ovly_mapped = -1;
3288 }
3289
3290 /* Function: section_is_mapped (SECTION)
3291 Returns true if section is an overlay, and is currently mapped.
3292
3293 Access to the ovly_mapped flag is restricted to this function, so
3294 that we can do automatic update. If the global flag
3295 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3296 overlay_invalidate_all. If the mapped state of the particular
3297 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3298
3299 int
3300 section_is_mapped (struct obj_section *osect)
3301 {
3302 if (osect == 0 || !section_is_overlay (osect))
3303 return 0;
3304
3305 switch (overlay_debugging)
3306 {
3307 default:
3308 case ovly_off:
3309 return 0; /* overlay debugging off */
3310 case ovly_auto: /* overlay debugging automatic */
3311 /* Unles there is a gdbarch_overlay_update function,
3312 there's really nothing useful to do here (can't really go auto) */
3313 if (gdbarch_overlay_update_p (current_gdbarch))
3314 {
3315 if (overlay_cache_invalid)
3316 {
3317 overlay_invalidate_all ();
3318 overlay_cache_invalid = 0;
3319 }
3320 if (osect->ovly_mapped == -1)
3321 gdbarch_overlay_update (current_gdbarch, osect);
3322 }
3323 /* fall thru to manual case */
3324 case ovly_on: /* overlay debugging manual */
3325 return osect->ovly_mapped == 1;
3326 }
3327 }
3328
3329 /* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332 CORE_ADDR
3333 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3334 {
3335 if (section_is_overlay (section))
3336 {
3337 bfd *abfd = section->objfile->obfd;
3338 asection *bfd_section = section->the_bfd_section;
3339
3340 /* We assume the LMA is relocated by the same offset as the VMA. */
3341 bfd_vma size = bfd_get_section_size (bfd_section);
3342 CORE_ADDR offset = obj_section_offset (section);
3343
3344 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3345 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3346 return 1;
3347 }
3348
3349 return 0;
3350 }
3351
3352 /* Function: pc_in_mapped_range
3353 If PC falls into the vma range of SECTION, return true, else false. */
3354
3355 CORE_ADDR
3356 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3357 {
3358 if (section_is_overlay (section))
3359 {
3360 if (obj_section_addr (section) <= pc
3361 && pc < obj_section_endaddr (section))
3362 return 1;
3363 }
3364
3365 return 0;
3366 }
3367
3368
3369 /* Return true if the mapped ranges of sections A and B overlap, false
3370 otherwise. */
3371 static int
3372 sections_overlap (struct obj_section *a, struct obj_section *b)
3373 {
3374 CORE_ADDR a_start = obj_section_addr (a);
3375 CORE_ADDR a_end = obj_section_endaddr (a);
3376 CORE_ADDR b_start = obj_section_addr (b);
3377 CORE_ADDR b_end = obj_section_endaddr (b);
3378
3379 return (a_start < b_end && b_start < a_end);
3380 }
3381
3382 /* Function: overlay_unmapped_address (PC, SECTION)
3383 Returns the address corresponding to PC in the unmapped (load) range.
3384 May be the same as PC. */
3385
3386 CORE_ADDR
3387 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3388 {
3389 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3390 {
3391 bfd *abfd = section->objfile->obfd;
3392 asection *bfd_section = section->the_bfd_section;
3393
3394 return pc + bfd_section_lma (abfd, bfd_section)
3395 - bfd_section_vma (abfd, bfd_section);
3396 }
3397
3398 return pc;
3399 }
3400
3401 /* Function: overlay_mapped_address (PC, SECTION)
3402 Returns the address corresponding to PC in the mapped (runtime) range.
3403 May be the same as PC. */
3404
3405 CORE_ADDR
3406 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3407 {
3408 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3409 {
3410 bfd *abfd = section->objfile->obfd;
3411 asection *bfd_section = section->the_bfd_section;
3412
3413 return pc + bfd_section_vma (abfd, bfd_section)
3414 - bfd_section_lma (abfd, bfd_section);
3415 }
3416
3417 return pc;
3418 }
3419
3420
3421 /* Function: symbol_overlayed_address
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3424
3425 CORE_ADDR
3426 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3427 {
3428 if (overlay_debugging)
3429 {
3430 /* If the symbol has no section, just return its regular address. */
3431 if (section == 0)
3432 return address;
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3435 return address;
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3438 return address;
3439 /*
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3442 */
3443 return overlay_unmapped_address (address, section);
3444 }
3445 return address;
3446 }
3447
3448 /* Function: find_pc_overlay (PC)
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3453
3454 struct obj_section *
3455 find_pc_overlay (CORE_ADDR pc)
3456 {
3457 struct objfile *objfile;
3458 struct obj_section *osect, *best_match = NULL;
3459
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
3462 if (section_is_overlay (osect))
3463 {
3464 if (pc_in_mapped_range (pc, osect))
3465 {
3466 if (section_is_mapped (osect))
3467 return osect;
3468 else
3469 best_match = osect;
3470 }
3471 else if (pc_in_unmapped_range (pc, osect))
3472 best_match = osect;
3473 }
3474 return best_match;
3475 }
3476
3477 /* Function: find_pc_mapped_section (PC)
3478 If PC falls into the VMA address range of an overlay section that is
3479 currently marked as MAPPED, return that section. Else return NULL. */
3480
3481 struct obj_section *
3482 find_pc_mapped_section (CORE_ADDR pc)
3483 {
3484 struct objfile *objfile;
3485 struct obj_section *osect;
3486
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
3489 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3490 return osect;
3491
3492 return NULL;
3493 }
3494
3495 /* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498 void
3499 list_overlays_command (char *args, int from_tty)
3500 {
3501 int nmapped = 0;
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (section_is_mapped (osect))
3508 {
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3515 size = bfd_get_section_size (osect->the_bfd_section);
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
3519 fputs_filtered (paddress (lma), gdb_stdout);
3520 puts_filtered (" - ");
3521 fputs_filtered (paddress (lma + size), gdb_stdout);
3522 printf_filtered (", mapped at ");
3523 fputs_filtered (paddress (vma), gdb_stdout);
3524 puts_filtered (" - ");
3525 fputs_filtered (paddress (vma + size), gdb_stdout);
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
3530 if (nmapped == 0)
3531 printf_filtered (_("No sections are mapped.\n"));
3532 }
3533
3534 /* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537 void
3538 map_overlay_command (char *args, int from_tty)
3539 {
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3542
3543 if (!overlay_debugging)
3544 error (_("\
3545 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3546 the 'overlay manual' command."));
3547
3548 if (args == 0 || *args == 0)
3549 error (_("Argument required: name of an overlay section"));
3550
3551 /* First, find a section matching the user supplied argument */
3552 ALL_OBJSECTIONS (objfile, sec)
3553 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3554 {
3555 /* Now, check to see if the section is an overlay. */
3556 if (!section_is_overlay (sec))
3557 continue; /* not an overlay section */
3558
3559 /* Mark the overlay as "mapped" */
3560 sec->ovly_mapped = 1;
3561
3562 /* Next, make a pass and unmap any sections that are
3563 overlapped by this new section: */
3564 ALL_OBJSECTIONS (objfile2, sec2)
3565 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3566 {
3567 if (info_verbose)
3568 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3569 bfd_section_name (objfile->obfd,
3570 sec2->the_bfd_section));
3571 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3572 }
3573 return;
3574 }
3575 error (_("No overlay section called %s"), args);
3576 }
3577
3578 /* Function: unmap_overlay_command
3579 Mark the overlay section as unmapped
3580 (ie. resident in its LMA address range, rather than the VMA range). */
3581
3582 void
3583 unmap_overlay_command (char *args, int from_tty)
3584 {
3585 struct objfile *objfile;
3586 struct obj_section *sec;
3587
3588 if (!overlay_debugging)
3589 error (_("\
3590 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3591 the 'overlay manual' command."));
3592
3593 if (args == 0 || *args == 0)
3594 error (_("Argument required: name of an overlay section"));
3595
3596 /* First, find a section matching the user supplied argument */
3597 ALL_OBJSECTIONS (objfile, sec)
3598 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3599 {
3600 if (!sec->ovly_mapped)
3601 error (_("Section %s is not mapped"), args);
3602 sec->ovly_mapped = 0;
3603 return;
3604 }
3605 error (_("No overlay section called %s"), args);
3606 }
3607
3608 /* Function: overlay_auto_command
3609 A utility command to turn on overlay debugging.
3610 Possibly this should be done via a set/show command. */
3611
3612 static void
3613 overlay_auto_command (char *args, int from_tty)
3614 {
3615 overlay_debugging = ovly_auto;
3616 enable_overlay_breakpoints ();
3617 if (info_verbose)
3618 printf_unfiltered (_("Automatic overlay debugging enabled."));
3619 }
3620
3621 /* Function: overlay_manual_command
3622 A utility command to turn on overlay debugging.
3623 Possibly this should be done via a set/show command. */
3624
3625 static void
3626 overlay_manual_command (char *args, int from_tty)
3627 {
3628 overlay_debugging = ovly_on;
3629 disable_overlay_breakpoints ();
3630 if (info_verbose)
3631 printf_unfiltered (_("Overlay debugging enabled."));
3632 }
3633
3634 /* Function: overlay_off_command
3635 A utility command to turn on overlay debugging.
3636 Possibly this should be done via a set/show command. */
3637
3638 static void
3639 overlay_off_command (char *args, int from_tty)
3640 {
3641 overlay_debugging = ovly_off;
3642 disable_overlay_breakpoints ();
3643 if (info_verbose)
3644 printf_unfiltered (_("Overlay debugging disabled."));
3645 }
3646
3647 static void
3648 overlay_load_command (char *args, int from_tty)
3649 {
3650 if (gdbarch_overlay_update_p (current_gdbarch))
3651 gdbarch_overlay_update (current_gdbarch, NULL);
3652 else
3653 error (_("This target does not know how to read its overlay state."));
3654 }
3655
3656 /* Function: overlay_command
3657 A place-holder for a mis-typed command */
3658
3659 /* Command list chain containing all defined "overlay" subcommands. */
3660 struct cmd_list_element *overlaylist;
3661
3662 static void
3663 overlay_command (char *args, int from_tty)
3664 {
3665 printf_unfiltered
3666 ("\"overlay\" must be followed by the name of an overlay command.\n");
3667 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3668 }
3669
3670
3671 /* Target Overlays for the "Simplest" overlay manager:
3672
3673 This is GDB's default target overlay layer. It works with the
3674 minimal overlay manager supplied as an example by Cygnus. The
3675 entry point is via a function pointer "gdbarch_overlay_update",
3676 so targets that use a different runtime overlay manager can
3677 substitute their own overlay_update function and take over the
3678 function pointer.
3679
3680 The overlay_update function pokes around in the target's data structures
3681 to see what overlays are mapped, and updates GDB's overlay mapping with
3682 this information.
3683
3684 In this simple implementation, the target data structures are as follows:
3685 unsigned _novlys; /# number of overlay sections #/
3686 unsigned _ovly_table[_novlys][4] = {
3687 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3688 {..., ..., ..., ...},
3689 }
3690 unsigned _novly_regions; /# number of overlay regions #/
3691 unsigned _ovly_region_table[_novly_regions][3] = {
3692 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3693 {..., ..., ...},
3694 }
3695 These functions will attempt to update GDB's mappedness state in the
3696 symbol section table, based on the target's mappedness state.
3697
3698 To do this, we keep a cached copy of the target's _ovly_table, and
3699 attempt to detect when the cached copy is invalidated. The main
3700 entry point is "simple_overlay_update(SECT), which looks up SECT in
3701 the cached table and re-reads only the entry for that section from
3702 the target (whenever possible).
3703 */
3704
3705 /* Cached, dynamically allocated copies of the target data structures: */
3706 static unsigned (*cache_ovly_table)[4] = 0;
3707 #if 0
3708 static unsigned (*cache_ovly_region_table)[3] = 0;
3709 #endif
3710 static unsigned cache_novlys = 0;
3711 #if 0
3712 static unsigned cache_novly_regions = 0;
3713 #endif
3714 static CORE_ADDR cache_ovly_table_base = 0;
3715 #if 0
3716 static CORE_ADDR cache_ovly_region_table_base = 0;
3717 #endif
3718 enum ovly_index
3719 {
3720 VMA, SIZE, LMA, MAPPED
3721 };
3722 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3723 / TARGET_CHAR_BIT)
3724
3725 /* Throw away the cached copy of _ovly_table */
3726 static void
3727 simple_free_overlay_table (void)
3728 {
3729 if (cache_ovly_table)
3730 xfree (cache_ovly_table);
3731 cache_novlys = 0;
3732 cache_ovly_table = NULL;
3733 cache_ovly_table_base = 0;
3734 }
3735
3736 #if 0
3737 /* Throw away the cached copy of _ovly_region_table */
3738 static void
3739 simple_free_overlay_region_table (void)
3740 {
3741 if (cache_ovly_region_table)
3742 xfree (cache_ovly_region_table);
3743 cache_novly_regions = 0;
3744 cache_ovly_region_table = NULL;
3745 cache_ovly_region_table_base = 0;
3746 }
3747 #endif
3748
3749 /* Read an array of ints from the target into a local buffer.
3750 Convert to host order. int LEN is number of ints */
3751 static void
3752 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3753 {
3754 /* FIXME (alloca): Not safe if array is very large. */
3755 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3756 int i;
3757
3758 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3759 for (i = 0; i < len; i++)
3760 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3761 TARGET_LONG_BYTES);
3762 }
3763
3764 /* Find and grab a copy of the target _ovly_table
3765 (and _novlys, which is needed for the table's size) */
3766 static int
3767 simple_read_overlay_table (void)
3768 {
3769 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3770
3771 simple_free_overlay_table ();
3772 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3773 if (! novlys_msym)
3774 {
3775 error (_("Error reading inferior's overlay table: "
3776 "couldn't find `_novlys' variable\n"
3777 "in inferior. Use `overlay manual' mode."));
3778 return 0;
3779 }
3780
3781 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3782 if (! ovly_table_msym)
3783 {
3784 error (_("Error reading inferior's overlay table: couldn't find "
3785 "`_ovly_table' array\n"
3786 "in inferior. Use `overlay manual' mode."));
3787 return 0;
3788 }
3789
3790 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3791 cache_ovly_table
3792 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3793 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3794 read_target_long_array (cache_ovly_table_base,
3795 (unsigned int *) cache_ovly_table,
3796 cache_novlys * 4);
3797
3798 return 1; /* SUCCESS */
3799 }
3800
3801 #if 0
3802 /* Find and grab a copy of the target _ovly_region_table
3803 (and _novly_regions, which is needed for the table's size) */
3804 static int
3805 simple_read_overlay_region_table (void)
3806 {
3807 struct minimal_symbol *msym;
3808
3809 simple_free_overlay_region_table ();
3810 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3811 if (msym != NULL)
3812 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3813 else
3814 return 0; /* failure */
3815 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3816 if (cache_ovly_region_table != NULL)
3817 {
3818 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3819 if (msym != NULL)
3820 {
3821 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3822 read_target_long_array (cache_ovly_region_table_base,
3823 (unsigned int *) cache_ovly_region_table,
3824 cache_novly_regions * 3);
3825 }
3826 else
3827 return 0; /* failure */
3828 }
3829 else
3830 return 0; /* failure */
3831 return 1; /* SUCCESS */
3832 }
3833 #endif
3834
3835 /* Function: simple_overlay_update_1
3836 A helper function for simple_overlay_update. Assuming a cached copy
3837 of _ovly_table exists, look through it to find an entry whose vma,
3838 lma and size match those of OSECT. Re-read the entry and make sure
3839 it still matches OSECT (else the table may no longer be valid).
3840 Set OSECT's mapped state to match the entry. Return: 1 for
3841 success, 0 for failure. */
3842
3843 static int
3844 simple_overlay_update_1 (struct obj_section *osect)
3845 {
3846 int i, size;
3847 bfd *obfd = osect->objfile->obfd;
3848 asection *bsect = osect->the_bfd_section;
3849
3850 size = bfd_get_section_size (osect->the_bfd_section);
3851 for (i = 0; i < cache_novlys; i++)
3852 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3853 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3854 /* && cache_ovly_table[i][SIZE] == size */ )
3855 {
3856 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3857 (unsigned int *) cache_ovly_table[i], 4);
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
3861 {
3862 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3863 return 1;
3864 }
3865 else /* Warning! Warning! Target's ovly table has changed! */
3866 return 0;
3867 }
3868 return 0;
3869 }
3870
3871 /* Function: simple_overlay_update
3872 If OSECT is NULL, then update all sections' mapped state
3873 (after re-reading the entire target _ovly_table).
3874 If OSECT is non-NULL, then try to find a matching entry in the
3875 cached ovly_table and update only OSECT's mapped state.
3876 If a cached entry can't be found or the cache isn't valid, then
3877 re-read the entire cache, and go ahead and update all sections. */
3878
3879 void
3880 simple_overlay_update (struct obj_section *osect)
3881 {
3882 struct objfile *objfile;
3883
3884 /* Were we given an osect to look up? NULL means do all of them. */
3885 if (osect)
3886 /* Have we got a cached copy of the target's overlay table? */
3887 if (cache_ovly_table != NULL)
3888 /* Does its cached location match what's currently in the symtab? */
3889 if (cache_ovly_table_base ==
3890 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3891 /* Then go ahead and try to look up this single section in the cache */
3892 if (simple_overlay_update_1 (osect))
3893 /* Found it! We're done. */
3894 return;
3895
3896 /* Cached table no good: need to read the entire table anew.
3897 Or else we want all the sections, in which case it's actually
3898 more efficient to read the whole table in one block anyway. */
3899
3900 if (! simple_read_overlay_table ())
3901 return;
3902
3903 /* Now may as well update all sections, even if only one was requested. */
3904 ALL_OBJSECTIONS (objfile, osect)
3905 if (section_is_overlay (osect))
3906 {
3907 int i, size;
3908 bfd *obfd = osect->objfile->obfd;
3909 asection *bsect = osect->the_bfd_section;
3910
3911 size = bfd_get_section_size (bsect);
3912 for (i = 0; i < cache_novlys; i++)
3913 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3914 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3915 /* && cache_ovly_table[i][SIZE] == size */ )
3916 { /* obj_section matches i'th entry in ovly_table */
3917 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3918 break; /* finished with inner for loop: break out */
3919 }
3920 }
3921 }
3922
3923 /* Set the output sections and output offsets for section SECTP in
3924 ABFD. The relocation code in BFD will read these offsets, so we
3925 need to be sure they're initialized. We map each section to itself,
3926 with no offset; this means that SECTP->vma will be honored. */
3927
3928 static void
3929 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3930 {
3931 sectp->output_section = sectp;
3932 sectp->output_offset = 0;
3933 }
3934
3935 /* Relocate the contents of a debug section SECTP in ABFD. The
3936 contents are stored in BUF if it is non-NULL, or returned in a
3937 malloc'd buffer otherwise.
3938
3939 For some platforms and debug info formats, shared libraries contain
3940 relocations against the debug sections (particularly for DWARF-2;
3941 one affected platform is PowerPC GNU/Linux, although it depends on
3942 the version of the linker in use). Also, ELF object files naturally
3943 have unresolved relocations for their debug sections. We need to apply
3944 the relocations in order to get the locations of symbols correct.
3945 Another example that may require relocation processing, is the
3946 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3947 debug section. */
3948
3949 bfd_byte *
3950 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3951 {
3952 /* We're only interested in sections with relocation
3953 information. */
3954 if ((sectp->flags & SEC_RELOC) == 0)
3955 return NULL;
3956
3957 /* We will handle section offsets properly elsewhere, so relocate as if
3958 all sections begin at 0. */
3959 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3960
3961 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3962 }
3963
3964 struct symfile_segment_data *
3965 get_symfile_segment_data (bfd *abfd)
3966 {
3967 struct sym_fns *sf = find_sym_fns (abfd);
3968
3969 if (sf == NULL)
3970 return NULL;
3971
3972 return sf->sym_segments (abfd);
3973 }
3974
3975 void
3976 free_symfile_segment_data (struct symfile_segment_data *data)
3977 {
3978 xfree (data->segment_bases);
3979 xfree (data->segment_sizes);
3980 xfree (data->segment_info);
3981 xfree (data);
3982 }
3983
3984
3985 /* Given:
3986 - DATA, containing segment addresses from the object file ABFD, and
3987 the mapping from ABFD's sections onto the segments that own them,
3988 and
3989 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3990 segment addresses reported by the target,
3991 store the appropriate offsets for each section in OFFSETS.
3992
3993 If there are fewer entries in SEGMENT_BASES than there are segments
3994 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3995
3996 If there are more entries, then ignore the extra. The target may
3997 not be able to distinguish between an empty data segment and a
3998 missing data segment; a missing text segment is less plausible. */
3999 int
4000 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4001 struct section_offsets *offsets,
4002 int num_segment_bases,
4003 const CORE_ADDR *segment_bases)
4004 {
4005 int i;
4006 asection *sect;
4007
4008 /* It doesn't make sense to call this function unless you have some
4009 segment base addresses. */
4010 gdb_assert (segment_bases > 0);
4011
4012 /* If we do not have segment mappings for the object file, we
4013 can not relocate it by segments. */
4014 gdb_assert (data != NULL);
4015 gdb_assert (data->num_segments > 0);
4016
4017 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4018 {
4019 int which = data->segment_info[i];
4020
4021 gdb_assert (0 <= which && which <= data->num_segments);
4022
4023 /* Don't bother computing offsets for sections that aren't
4024 loaded as part of any segment. */
4025 if (! which)
4026 continue;
4027
4028 /* Use the last SEGMENT_BASES entry as the address of any extra
4029 segments mentioned in DATA->segment_info. */
4030 if (which > num_segment_bases)
4031 which = num_segment_bases;
4032
4033 offsets->offsets[i] = (segment_bases[which - 1]
4034 - data->segment_bases[which - 1]);
4035 }
4036
4037 return 1;
4038 }
4039
4040 static void
4041 symfile_find_segment_sections (struct objfile *objfile)
4042 {
4043 bfd *abfd = objfile->obfd;
4044 int i;
4045 asection *sect;
4046 struct symfile_segment_data *data;
4047
4048 data = get_symfile_segment_data (objfile->obfd);
4049 if (data == NULL)
4050 return;
4051
4052 if (data->num_segments != 1 && data->num_segments != 2)
4053 {
4054 free_symfile_segment_data (data);
4055 return;
4056 }
4057
4058 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4059 {
4060 CORE_ADDR vma;
4061 int which = data->segment_info[i];
4062
4063 if (which == 1)
4064 {
4065 if (objfile->sect_index_text == -1)
4066 objfile->sect_index_text = sect->index;
4067
4068 if (objfile->sect_index_rodata == -1)
4069 objfile->sect_index_rodata = sect->index;
4070 }
4071 else if (which == 2)
4072 {
4073 if (objfile->sect_index_data == -1)
4074 objfile->sect_index_data = sect->index;
4075
4076 if (objfile->sect_index_bss == -1)
4077 objfile->sect_index_bss = sect->index;
4078 }
4079 }
4080
4081 free_symfile_segment_data (data);
4082 }
4083
4084 void
4085 _initialize_symfile (void)
4086 {
4087 struct cmd_list_element *c;
4088
4089 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4090 Load symbol table from executable file FILE.\n\
4091 The `file' command can also load symbol tables, as well as setting the file\n\
4092 to execute."), &cmdlist);
4093 set_cmd_completer (c, filename_completer);
4094
4095 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4096 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4097 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4098 ADDR is the starting address of the file's text.\n\
4099 The optional arguments are section-name section-address pairs and\n\
4100 should be specified if the data and bss segments are not contiguous\n\
4101 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4102 &cmdlist);
4103 set_cmd_completer (c, filename_completer);
4104
4105 c = add_cmd ("add-shared-symbol-files", class_files,
4106 add_shared_symbol_files_command, _("\
4107 Load the symbols from shared objects in the dynamic linker's link map."),
4108 &cmdlist);
4109 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4110 &cmdlist);
4111
4112 c = add_cmd ("load", class_files, load_command, _("\
4113 Dynamically load FILE into the running program, and record its symbols\n\
4114 for access from GDB.\n\
4115 A load OFFSET may also be given."), &cmdlist);
4116 set_cmd_completer (c, filename_completer);
4117
4118 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4119 &symbol_reloading, _("\
4120 Set dynamic symbol table reloading multiple times in one run."), _("\
4121 Show dynamic symbol table reloading multiple times in one run."), NULL,
4122 NULL,
4123 show_symbol_reloading,
4124 &setlist, &showlist);
4125
4126 add_prefix_cmd ("overlay", class_support, overlay_command,
4127 _("Commands for debugging overlays."), &overlaylist,
4128 "overlay ", 0, &cmdlist);
4129
4130 add_com_alias ("ovly", "overlay", class_alias, 1);
4131 add_com_alias ("ov", "overlay", class_alias, 1);
4132
4133 add_cmd ("map-overlay", class_support, map_overlay_command,
4134 _("Assert that an overlay section is mapped."), &overlaylist);
4135
4136 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4137 _("Assert that an overlay section is unmapped."), &overlaylist);
4138
4139 add_cmd ("list-overlays", class_support, list_overlays_command,
4140 _("List mappings of overlay sections."), &overlaylist);
4141
4142 add_cmd ("manual", class_support, overlay_manual_command,
4143 _("Enable overlay debugging."), &overlaylist);
4144 add_cmd ("off", class_support, overlay_off_command,
4145 _("Disable overlay debugging."), &overlaylist);
4146 add_cmd ("auto", class_support, overlay_auto_command,
4147 _("Enable automatic overlay debugging."), &overlaylist);
4148 add_cmd ("load-target", class_support, overlay_load_command,
4149 _("Read the overlay mapping state from the target."), &overlaylist);
4150
4151 /* Filename extension to source language lookup table: */
4152 init_filename_language_table ();
4153 add_setshow_string_noescape_cmd ("extension-language", class_files,
4154 &ext_args, _("\
4155 Set mapping between filename extension and source language."), _("\
4156 Show mapping between filename extension and source language."), _("\
4157 Usage: set extension-language .foo bar"),
4158 set_ext_lang_command,
4159 show_ext_args,
4160 &setlist, &showlist);
4161
4162 add_info ("extensions", info_ext_lang_command,
4163 _("All filename extensions associated with a source language."));
4164
4165 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4166 &debug_file_directory, _("\
4167 Set the directory where separate debug symbols are searched for."), _("\
4168 Show the directory where separate debug symbols are searched for."), _("\
4169 Separate debug symbols are first searched for in the same\n\
4170 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4171 and lastly at the path of the directory of the binary with\n\
4172 the global debug-file directory prepended."),
4173 NULL,
4174 show_debug_file_directory,
4175 &setlist, &showlist);
4176
4177 add_setshow_boolean_cmd ("symbol-loading", no_class,
4178 &print_symbol_loading, _("\
4179 Set printing of symbol loading messages."), _("\
4180 Show printing of symbol loading messages."), NULL,
4181 NULL,
4182 NULL,
4183 &setprintlist, &showprintlist);
4184 }
This page took 0.117957 seconds and 4 git commands to generate.