2010-04-04 Stan Shebs <stan@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 bfd *symfile_bfd_open (char *);
102
103 int get_section_index (struct objfile *, char *);
104
105 static struct sym_fns *find_sym_fns (bfd *);
106
107 static void decrement_reading_symtab (void *);
108
109 static void overlay_invalidate_all (void);
110
111 void list_overlays_command (char *, int);
112
113 void map_overlay_command (char *, int);
114
115 void unmap_overlay_command (char *, int);
116
117 static void overlay_auto_command (char *, int);
118
119 static void overlay_manual_command (char *, int);
120
121 static void overlay_off_command (char *, int);
122
123 static void overlay_load_command (char *, int);
124
125 static void overlay_command (char *, int);
126
127 static void simple_free_overlay_table (void);
128
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
131
132 static int simple_read_overlay_table (void);
133
134 static int simple_overlay_update_1 (struct obj_section *);
135
136 static void add_filename_language (char *ext, enum language lang);
137
138 static void info_ext_lang_command (char *args, int from_tty);
139
140 static void init_filename_language_table (void);
141
142 static void symfile_find_segment_sections (struct objfile *objfile);
143
144 void _initialize_symfile (void);
145
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150 static struct sym_fns *symtab_fns = NULL;
151
152 /* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155 #ifdef SYMBOL_RELOADING_DEFAULT
156 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157 #else
158 int symbol_reloading = 0;
159 #endif
160 static void
161 show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file, _("\
165 Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167 }
168
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
178
179 int auto_solib_add = 1;
180
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189 int auto_solib_limit;
190 \f
191
192 /* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197 char *
198 obsavestring (const char *ptr, int size, struct obstack *obstackp)
199 {
200 char *p = (char *) obstack_alloc (obstackp, size + 1);
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
205 const char *p1 = ptr;
206 char *p2 = p;
207 const char *end = ptr + size;
208 while (p1 != end)
209 *p2++ = *p1++;
210 }
211 p[size] = 0;
212 return p;
213 }
214
215 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
216 in the obstack pointed to by OBSTACKP. */
217
218 char *
219 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
220 const char *s3)
221 {
222 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
223 char *val = (char *) obstack_alloc (obstackp, len);
224 strcpy (val, s1);
225 strcat (val, s2);
226 strcat (val, s3);
227 return val;
228 }
229
230 /* True if we are reading a symbol table. */
231
232 int currently_reading_symtab = 0;
233
234 static void
235 decrement_reading_symtab (void *dummy)
236 {
237 currently_reading_symtab--;
238 }
239
240 /* Increment currently_reading_symtab and return a cleanup that can be
241 used to decrement it. */
242 struct cleanup *
243 increment_reading_symtab (void)
244 {
245 ++currently_reading_symtab;
246 return make_cleanup (decrement_reading_symtab, NULL);
247 }
248
249 /* Remember the lowest-addressed loadable section we've seen.
250 This function is called via bfd_map_over_sections.
251
252 In case of equal vmas, the section with the largest size becomes the
253 lowest-addressed loadable section.
254
255 If the vmas and sizes are equal, the last section is considered the
256 lowest-addressed loadable section. */
257
258 void
259 find_lowest_section (bfd *abfd, asection *sect, void *obj)
260 {
261 asection **lowest = (asection **) obj;
262
263 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
264 return;
265 if (!*lowest)
266 *lowest = sect; /* First loadable section */
267 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
268 *lowest = sect; /* A lower loadable section */
269 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
270 && (bfd_section_size (abfd, (*lowest))
271 <= bfd_section_size (abfd, sect)))
272 *lowest = sect;
273 }
274
275 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
276
277 struct section_addr_info *
278 alloc_section_addr_info (size_t num_sections)
279 {
280 struct section_addr_info *sap;
281 size_t size;
282
283 size = (sizeof (struct section_addr_info)
284 + sizeof (struct other_sections) * (num_sections - 1));
285 sap = (struct section_addr_info *) xmalloc (size);
286 memset (sap, 0, size);
287 sap->num_sections = num_sections;
288
289 return sap;
290 }
291
292 /* Build (allocate and populate) a section_addr_info struct from
293 an existing section table. */
294
295 extern struct section_addr_info *
296 build_section_addr_info_from_section_table (const struct target_section *start,
297 const struct target_section *end)
298 {
299 struct section_addr_info *sap;
300 const struct target_section *stp;
301 int oidx;
302
303 sap = alloc_section_addr_info (end - start);
304
305 for (stp = start, oidx = 0; stp != end; stp++)
306 {
307 if (bfd_get_section_flags (stp->bfd,
308 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
309 && oidx < end - start)
310 {
311 sap->other[oidx].addr = stp->addr;
312 sap->other[oidx].name
313 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
314 sap->other[oidx].sectindex = stp->the_bfd_section->index;
315 oidx++;
316 }
317 }
318
319 return sap;
320 }
321
322 /* Create a section_addr_info from section offsets in ABFD. */
323
324 static struct section_addr_info *
325 build_section_addr_info_from_bfd (bfd *abfd)
326 {
327 struct section_addr_info *sap;
328 int i;
329 struct bfd_section *sec;
330
331 sap = alloc_section_addr_info (bfd_count_sections (abfd));
332 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
333 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
334 {
335 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
336 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
337 sap->other[i].sectindex = sec->index;
338 i++;
339 }
340 return sap;
341 }
342
343 /* Create a section_addr_info from section offsets in OBJFILE. */
344
345 struct section_addr_info *
346 build_section_addr_info_from_objfile (const struct objfile *objfile)
347 {
348 struct section_addr_info *sap;
349 int i;
350
351 /* Before reread_symbols gets rewritten it is not safe to call:
352 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
353 */
354 sap = build_section_addr_info_from_bfd (objfile->obfd);
355 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
356 {
357 int sectindex = sap->other[i].sectindex;
358
359 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
360 }
361 return sap;
362 }
363
364 /* Free all memory allocated by build_section_addr_info_from_section_table. */
365
366 extern void
367 free_section_addr_info (struct section_addr_info *sap)
368 {
369 int idx;
370
371 for (idx = 0; idx < sap->num_sections; idx++)
372 if (sap->other[idx].name)
373 xfree (sap->other[idx].name);
374 xfree (sap);
375 }
376
377
378 /* Initialize OBJFILE's sect_index_* members. */
379 static void
380 init_objfile_sect_indices (struct objfile *objfile)
381 {
382 asection *sect;
383 int i;
384
385 sect = bfd_get_section_by_name (objfile->obfd, ".text");
386 if (sect)
387 objfile->sect_index_text = sect->index;
388
389 sect = bfd_get_section_by_name (objfile->obfd, ".data");
390 if (sect)
391 objfile->sect_index_data = sect->index;
392
393 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
394 if (sect)
395 objfile->sect_index_bss = sect->index;
396
397 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
398 if (sect)
399 objfile->sect_index_rodata = sect->index;
400
401 /* This is where things get really weird... We MUST have valid
402 indices for the various sect_index_* members or gdb will abort.
403 So if for example, there is no ".text" section, we have to
404 accomodate that. First, check for a file with the standard
405 one or two segments. */
406
407 symfile_find_segment_sections (objfile);
408
409 /* Except when explicitly adding symbol files at some address,
410 section_offsets contains nothing but zeros, so it doesn't matter
411 which slot in section_offsets the individual sect_index_* members
412 index into. So if they are all zero, it is safe to just point
413 all the currently uninitialized indices to the first slot. But
414 beware: if this is the main executable, it may be relocated
415 later, e.g. by the remote qOffsets packet, and then this will
416 be wrong! That's why we try segments first. */
417
418 for (i = 0; i < objfile->num_sections; i++)
419 {
420 if (ANOFFSET (objfile->section_offsets, i) != 0)
421 {
422 break;
423 }
424 }
425 if (i == objfile->num_sections)
426 {
427 if (objfile->sect_index_text == -1)
428 objfile->sect_index_text = 0;
429 if (objfile->sect_index_data == -1)
430 objfile->sect_index_data = 0;
431 if (objfile->sect_index_bss == -1)
432 objfile->sect_index_bss = 0;
433 if (objfile->sect_index_rodata == -1)
434 objfile->sect_index_rodata = 0;
435 }
436 }
437
438 /* The arguments to place_section. */
439
440 struct place_section_arg
441 {
442 struct section_offsets *offsets;
443 CORE_ADDR lowest;
444 };
445
446 /* Find a unique offset to use for loadable section SECT if
447 the user did not provide an offset. */
448
449 static void
450 place_section (bfd *abfd, asection *sect, void *obj)
451 {
452 struct place_section_arg *arg = obj;
453 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
454 int done;
455 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
456
457 /* We are only interested in allocated sections. */
458 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
459 return;
460
461 /* If the user specified an offset, honor it. */
462 if (offsets[sect->index] != 0)
463 return;
464
465 /* Otherwise, let's try to find a place for the section. */
466 start_addr = (arg->lowest + align - 1) & -align;
467
468 do {
469 asection *cur_sec;
470
471 done = 1;
472
473 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
474 {
475 int indx = cur_sec->index;
476 CORE_ADDR cur_offset;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
499 break;
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
509 }
510
511 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
514
515 void
516 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
519 {
520 int i;
521
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
523
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
526 {
527 struct other_sections *osp;
528
529 osp = &addrs->other[i];
530 if (osp->addr == 0)
531 continue;
532
533 /* Record all sections in offsets */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval, a_idx, b_idx;
549
550 retval = strcmp (a->name, b->name);
551 if (retval)
552 return retval;
553
554 /* SECTINDEX is undefined iff ADDR is zero. */
555 a_idx = a->addr == 0 ? 0 : a->sectindex;
556 b_idx = b->addr == 0 ? 0 : b->sectindex;
557 return a_idx - b_idx;
558 }
559
560 /* Provide sorted array of pointers to sections of ADDRS. The array is
561 terminated by NULL. Caller is responsible to call xfree for it. */
562
563 static struct other_sections **
564 addrs_section_sort (struct section_addr_info *addrs)
565 {
566 struct other_sections **array;
567 int i;
568
569 /* `+ 1' for the NULL terminator. */
570 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
571 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
572 array[i] = &addrs->other[i];
573 array[i] = NULL;
574
575 qsort (array, i, sizeof (*array), addrs_section_compar);
576
577 return array;
578 }
579
580 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
581 also SECTINDEXes specific to ABFD there. This function can be used to
582 rebase ADDRS to start referencing different BFD than before. */
583
584 void
585 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
586 {
587 asection *lower_sect;
588 CORE_ADDR lower_offset;
589 int i;
590 struct cleanup *my_cleanup;
591 struct section_addr_info *abfd_addrs;
592 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
593 struct other_sections **addrs_to_abfd_addrs;
594
595 /* Find lowest loadable section to be used as starting point for
596 continguous sections. */
597 lower_sect = NULL;
598 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
599 if (lower_sect == NULL)
600 {
601 warning (_("no loadable sections found in added symbol-file %s"),
602 bfd_get_filename (abfd));
603 lower_offset = 0;
604 }
605 else
606 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
607
608 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
609 in ABFD. Section names are not unique - there can be multiple sections of
610 the same name. Also the sections of the same name do not have to be
611 adjacent to each other. Some sections may be present only in one of the
612 files. Even sections present in both files do not have to be in the same
613 order.
614
615 Use stable sort by name for the sections in both files. Then linearly
616 scan both lists matching as most of the entries as possible. */
617
618 addrs_sorted = addrs_section_sort (addrs);
619 my_cleanup = make_cleanup (xfree, addrs_sorted);
620
621 abfd_addrs = build_section_addr_info_from_bfd (abfd);
622 make_cleanup_free_section_addr_info (abfd_addrs);
623 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
624 make_cleanup (xfree, abfd_addrs_sorted);
625
626 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
627
628 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
629 * addrs->num_sections);
630 make_cleanup (xfree, addrs_to_abfd_addrs);
631
632 while (*addrs_sorted)
633 {
634 const char *sect_name = (*addrs_sorted)->name;
635
636 while (*abfd_addrs_sorted
637 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
638 abfd_addrs_sorted++;
639
640 if (*abfd_addrs_sorted
641 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 const char *sect_name = addrs->other[i].name;
670 struct other_sections *sect = addrs_to_abfd_addrs[i];
671
672 if (sect)
673 {
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->sectindex;
676
677 if (addrs->other[i].addr != 0)
678 {
679 addrs->other[i].addr -= sect->addr;
680 lower_offset = addrs->other[i].addr;
681 }
682 else
683 addrs->other[i].addr = lower_offset;
684 }
685 else
686 {
687 /* This section does not exist in ABFD, which is normally
688 unexpected and we want to issue a warning.
689
690 However, the ELF prelinker does create a few sections which are
691 marked in the main executable as loadable (they are loaded in
692 memory from the DYNAMIC segment) and yet are not present in
693 separate debug info files. This is fine, and should not cause
694 a warning. Shared libraries contain just the section
695 ".gnu.liblist" but it is not marked as loadable there. There is
696 no other way to identify them than by their name as the sections
697 created by prelink have no special flags. */
698
699 if (!(strcmp (sect_name, ".gnu.liblist") == 0
700 || strcmp (sect_name, ".gnu.conflict") == 0
701 || strcmp (sect_name, ".dynbss") == 0
702 || strcmp (sect_name, ".sdynbss") == 0))
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
706 addrs->other[i].addr = 0;
707
708 /* SECTINDEX is invalid if ADDR is zero. */
709 }
710 }
711
712 do_cleanups (my_cleanup);
713 }
714
715 /* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721 void
722 default_symfile_offsets (struct objfile *objfile,
723 struct section_addr_info *addrs)
724 {
725 objfile->num_sections = bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
731
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
742 CORE_ADDR lowest = 0;
743
744 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
745 /* We do not expect this to happen; just skip this step if the
746 relocatable file has a section with an assigned VMA. */
747 if (bfd_section_vma (abfd, cur_sec) != 0)
748 break;
749
750 if (cur_sec == NULL)
751 {
752 CORE_ADDR *offsets = objfile->section_offsets->offsets;
753
754 /* Pick non-overlapping offsets for sections the user did not
755 place explicitly. */
756 arg.offsets = objfile->section_offsets;
757 arg.lowest = 0;
758 bfd_map_over_sections (objfile->obfd, place_section, &arg);
759
760 /* Correctly filling in the section offsets is not quite
761 enough. Relocatable files have two properties that
762 (most) shared objects do not:
763
764 - Their debug information will contain relocations. Some
765 shared libraries do also, but many do not, so this can not
766 be assumed.
767
768 - If there are multiple code sections they will be loaded
769 at different relative addresses in memory than they are
770 in the objfile, since all sections in the file will start
771 at address zero.
772
773 Because GDB has very limited ability to map from an
774 address in debug info to the correct code section,
775 it relies on adding SECT_OFF_TEXT to things which might be
776 code. If we clear all the section offsets, and set the
777 section VMAs instead, then symfile_relocate_debug_section
778 will return meaningful debug information pointing at the
779 correct sections.
780
781 GDB has too many different data structures for section
782 addresses - a bfd, objfile, and so_list all have section
783 tables, as does exec_ops. Some of these could probably
784 be eliminated. */
785
786 for (cur_sec = abfd->sections; cur_sec != NULL;
787 cur_sec = cur_sec->next)
788 {
789 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
790 continue;
791
792 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
793 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
794 offsets[cur_sec->index]);
795 offsets[cur_sec->index] = 0;
796 }
797 }
798 }
799
800 /* Remember the bfd indexes for the .text, .data, .bss and
801 .rodata sections. */
802 init_objfile_sect_indices (objfile);
803 }
804
805
806 /* Divide the file into segments, which are individual relocatable units.
807 This is the default version of the sym_fns.sym_segments function for
808 symbol readers that do not have an explicit representation of segments.
809 It assumes that object files do not have segments, and fully linked
810 files have a single segment. */
811
812 struct symfile_segment_data *
813 default_symfile_segments (bfd *abfd)
814 {
815 int num_sections, i;
816 asection *sect;
817 struct symfile_segment_data *data;
818 CORE_ADDR low, high;
819
820 /* Relocatable files contain enough information to position each
821 loadable section independently; they should not be relocated
822 in segments. */
823 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
824 return NULL;
825
826 /* Make sure there is at least one loadable section in the file. */
827 for (sect = abfd->sections; sect != NULL; sect = sect->next)
828 {
829 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
830 continue;
831
832 break;
833 }
834 if (sect == NULL)
835 return NULL;
836
837 low = bfd_get_section_vma (abfd, sect);
838 high = low + bfd_get_section_size (sect);
839
840 data = XZALLOC (struct symfile_segment_data);
841 data->num_segments = 1;
842 data->segment_bases = XCALLOC (1, CORE_ADDR);
843 data->segment_sizes = XCALLOC (1, CORE_ADDR);
844
845 num_sections = bfd_count_sections (abfd);
846 data->segment_info = XCALLOC (num_sections, int);
847
848 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
849 {
850 CORE_ADDR vma;
851
852 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
853 continue;
854
855 vma = bfd_get_section_vma (abfd, sect);
856 if (vma < low)
857 low = vma;
858 if (vma + bfd_get_section_size (sect) > high)
859 high = vma + bfd_get_section_size (sect);
860
861 data->segment_info[i] = 1;
862 }
863
864 data->segment_bases[0] = low;
865 data->segment_sizes[0] = high - low;
866
867 return data;
868 }
869
870 /* Process a symbol file, as either the main file or as a dynamically
871 loaded file.
872
873 OBJFILE is where the symbols are to be read from.
874
875 ADDRS is the list of section load addresses. If the user has given
876 an 'add-symbol-file' command, then this is the list of offsets and
877 addresses he or she provided as arguments to the command; or, if
878 we're handling a shared library, these are the actual addresses the
879 sections are loaded at, according to the inferior's dynamic linker
880 (as gleaned by GDB's shared library code). We convert each address
881 into an offset from the section VMA's as it appears in the object
882 file, and then call the file's sym_offsets function to convert this
883 into a format-specific offset table --- a `struct section_offsets'.
884 If ADDRS is non-zero, OFFSETS must be zero.
885
886 OFFSETS is a table of section offsets already in the right
887 format-specific representation. NUM_OFFSETS is the number of
888 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
889 assume this is the proper table the call to sym_offsets described
890 above would produce. Instead of calling sym_offsets, we just dump
891 it right into objfile->section_offsets. (When we're re-reading
892 symbols from an objfile, we don't have the original load address
893 list any more; all we have is the section offset table.) If
894 OFFSETS is non-zero, ADDRS must be zero.
895
896 ADD_FLAGS encodes verbosity level, whether this is main symbol or
897 an extra symbol file such as dynamically loaded code, and wether
898 breakpoint reset should be deferred. */
899
900 void
901 syms_from_objfile (struct objfile *objfile,
902 struct section_addr_info *addrs,
903 struct section_offsets *offsets,
904 int num_offsets,
905 int add_flags)
906 {
907 struct section_addr_info *local_addr = NULL;
908 struct cleanup *old_chain;
909 const int mainline = add_flags & SYMFILE_MAINLINE;
910
911 gdb_assert (! (addrs && offsets));
912
913 init_entry_point_info (objfile);
914 objfile->sf = find_sym_fns (objfile->obfd);
915
916 if (objfile->sf == NULL)
917 return; /* No symbols. */
918
919 /* Make sure that partially constructed symbol tables will be cleaned up
920 if an error occurs during symbol reading. */
921 old_chain = make_cleanup_free_objfile (objfile);
922
923 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
924 list. We now establish the convention that an addr of zero means
925 no load address was specified. */
926 if (! addrs && ! offsets)
927 {
928 local_addr
929 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
930 make_cleanup (xfree, local_addr);
931 addrs = local_addr;
932 }
933
934 /* Now either addrs or offsets is non-zero. */
935
936 if (mainline)
937 {
938 /* We will modify the main symbol table, make sure that all its users
939 will be cleaned up if an error occurs during symbol reading. */
940 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
941
942 /* Since no error yet, throw away the old symbol table. */
943
944 if (symfile_objfile != NULL)
945 {
946 free_objfile (symfile_objfile);
947 gdb_assert (symfile_objfile == NULL);
948 }
949
950 /* Currently we keep symbols from the add-symbol-file command.
951 If the user wants to get rid of them, they should do "symbol-file"
952 without arguments first. Not sure this is the best behavior
953 (PR 2207). */
954
955 (*objfile->sf->sym_new_init) (objfile);
956 }
957
958 /* Convert addr into an offset rather than an absolute address.
959 We find the lowest address of a loaded segment in the objfile,
960 and assume that <addr> is where that got loaded.
961
962 We no longer warn if the lowest section is not a text segment (as
963 happens for the PA64 port. */
964 if (addrs && addrs->other[0].name)
965 addr_info_make_relative (addrs, objfile->obfd);
966
967 /* Initialize symbol reading routines for this objfile, allow complaints to
968 appear for this new file, and record how verbose to be, then do the
969 initial symbol reading for this file. */
970
971 (*objfile->sf->sym_init) (objfile);
972 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
973
974 if (addrs)
975 (*objfile->sf->sym_offsets) (objfile, addrs);
976 else
977 {
978 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
979
980 /* Just copy in the offset table directly as given to us. */
981 objfile->num_sections = num_offsets;
982 objfile->section_offsets
983 = ((struct section_offsets *)
984 obstack_alloc (&objfile->objfile_obstack, size));
985 memcpy (objfile->section_offsets, offsets, size);
986
987 init_objfile_sect_indices (objfile);
988 }
989
990 (*objfile->sf->sym_read) (objfile, add_flags);
991
992 /* Discard cleanups as symbol reading was successful. */
993
994 discard_cleanups (old_chain);
995 xfree (local_addr);
996 }
997
998 /* Perform required actions after either reading in the initial
999 symbols for a new objfile, or mapping in the symbols from a reusable
1000 objfile. */
1001
1002 void
1003 new_symfile_objfile (struct objfile *objfile, int add_flags)
1004 {
1005
1006 /* If this is the main symbol file we have to clean up all users of the
1007 old main symbol file. Otherwise it is sufficient to fixup all the
1008 breakpoints that may have been redefined by this symbol file. */
1009 if (add_flags & SYMFILE_MAINLINE)
1010 {
1011 /* OK, make it the "real" symbol file. */
1012 symfile_objfile = objfile;
1013
1014 clear_symtab_users ();
1015 }
1016 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1017 {
1018 breakpoint_re_set ();
1019 }
1020
1021 /* We're done reading the symbol file; finish off complaints. */
1022 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1023 }
1024
1025 /* Process a symbol file, as either the main file or as a dynamically
1026 loaded file.
1027
1028 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1029 This BFD will be closed on error, and is always consumed by this function.
1030
1031 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1032 extra, such as dynamically loaded code, and what to do with breakpoins.
1033
1034 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1035 syms_from_objfile, above.
1036 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1037
1038 Upon success, returns a pointer to the objfile that was added.
1039 Upon failure, jumps back to command level (never returns). */
1040
1041 static struct objfile *
1042 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1043 int add_flags,
1044 struct section_addr_info *addrs,
1045 struct section_offsets *offsets,
1046 int num_offsets,
1047 int flags)
1048 {
1049 struct objfile *objfile;
1050 struct cleanup *my_cleanups;
1051 const char *name = bfd_get_filename (abfd);
1052 const int from_tty = add_flags & SYMFILE_VERBOSE;
1053
1054 my_cleanups = make_cleanup_bfd_close (abfd);
1055
1056 /* Give user a chance to burp if we'd be
1057 interactively wiping out any existing symbols. */
1058
1059 if ((have_full_symbols () || have_partial_symbols ())
1060 && (add_flags & SYMFILE_MAINLINE)
1061 && from_tty
1062 && !query (_("Load new symbol table from \"%s\"? "), name))
1063 error (_("Not confirmed."));
1064
1065 objfile = allocate_objfile (abfd, flags);
1066 discard_cleanups (my_cleanups);
1067
1068 /* We either created a new mapped symbol table, mapped an existing
1069 symbol table file which has not had initial symbol reading
1070 performed, or need to read an unmapped symbol table. */
1071 if (from_tty || info_verbose)
1072 {
1073 if (deprecated_pre_add_symbol_hook)
1074 deprecated_pre_add_symbol_hook (name);
1075 else
1076 {
1077 printf_unfiltered (_("Reading symbols from %s..."), name);
1078 wrap_here ("");
1079 gdb_flush (gdb_stdout);
1080 }
1081 }
1082 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1083 add_flags);
1084
1085 /* We now have at least a partial symbol table. Check to see if the
1086 user requested that all symbols be read on initial access via either
1087 the gdb startup command line or on a per symbol file basis. Expand
1088 all partial symbol tables for this objfile if so. */
1089
1090 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1091 {
1092 if (from_tty || info_verbose)
1093 {
1094 printf_unfiltered (_("expanding to full symbols..."));
1095 wrap_here ("");
1096 gdb_flush (gdb_stdout);
1097 }
1098
1099 if (objfile->sf)
1100 objfile->sf->qf->expand_all_symtabs (objfile);
1101 }
1102
1103 if ((from_tty || info_verbose)
1104 && !objfile_has_symbols (objfile))
1105 {
1106 wrap_here ("");
1107 printf_unfiltered (_("(no debugging symbols found)..."));
1108 wrap_here ("");
1109 }
1110
1111 if (from_tty || info_verbose)
1112 {
1113 if (deprecated_post_add_symbol_hook)
1114 deprecated_post_add_symbol_hook ();
1115 else
1116 printf_unfiltered (_("done.\n"));
1117 }
1118
1119 /* We print some messages regardless of whether 'from_tty ||
1120 info_verbose' is true, so make sure they go out at the right
1121 time. */
1122 gdb_flush (gdb_stdout);
1123
1124 do_cleanups (my_cleanups);
1125
1126 if (objfile->sf == NULL)
1127 {
1128 observer_notify_new_objfile (objfile);
1129 return objfile; /* No symbols. */
1130 }
1131
1132 new_symfile_objfile (objfile, add_flags);
1133
1134 observer_notify_new_objfile (objfile);
1135
1136 bfd_cache_close_all ();
1137 return (objfile);
1138 }
1139
1140 /* Add BFD as a separate debug file for OBJFILE. */
1141
1142 void
1143 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1144 {
1145 struct objfile *new_objfile;
1146 struct section_addr_info *sap;
1147 struct cleanup *my_cleanup;
1148
1149 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1150 because sections of BFD may not match sections of OBJFILE and because
1151 vma may have been modified by tools such as prelink. */
1152 sap = build_section_addr_info_from_objfile (objfile);
1153 my_cleanup = make_cleanup_free_section_addr_info (sap);
1154
1155 new_objfile = symbol_file_add_with_addrs_or_offsets
1156 (bfd, symfile_flags,
1157 sap, NULL, 0,
1158 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1159 | OBJF_USERLOADED));
1160
1161 do_cleanups (my_cleanup);
1162
1163 add_separate_debug_objfile (new_objfile, objfile);
1164 }
1165
1166 /* Process the symbol file ABFD, as either the main file or as a
1167 dynamically loaded file.
1168
1169 See symbol_file_add_with_addrs_or_offsets's comments for
1170 details. */
1171 struct objfile *
1172 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1173 struct section_addr_info *addrs,
1174 int flags)
1175 {
1176 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1177 flags);
1178 }
1179
1180
1181 /* Process a symbol file, as either the main file or as a dynamically
1182 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1183 for details. */
1184 struct objfile *
1185 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1186 int flags)
1187 {
1188 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1189 flags);
1190 }
1191
1192
1193 /* Call symbol_file_add() with default values and update whatever is
1194 affected by the loading of a new main().
1195 Used when the file is supplied in the gdb command line
1196 and by some targets with special loading requirements.
1197 The auxiliary function, symbol_file_add_main_1(), has the flags
1198 argument for the switches that can only be specified in the symbol_file
1199 command itself. */
1200
1201 void
1202 symbol_file_add_main (char *args, int from_tty)
1203 {
1204 symbol_file_add_main_1 (args, from_tty, 0);
1205 }
1206
1207 static void
1208 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1209 {
1210 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1211 symbol_file_add (args, add_flags, NULL, flags);
1212
1213 /* Getting new symbols may change our opinion about
1214 what is frameless. */
1215 reinit_frame_cache ();
1216
1217 set_initial_language ();
1218 }
1219
1220 void
1221 symbol_file_clear (int from_tty)
1222 {
1223 if ((have_full_symbols () || have_partial_symbols ())
1224 && from_tty
1225 && (symfile_objfile
1226 ? !query (_("Discard symbol table from `%s'? "),
1227 symfile_objfile->name)
1228 : !query (_("Discard symbol table? "))))
1229 error (_("Not confirmed."));
1230
1231 free_all_objfiles ();
1232
1233 /* solib descriptors may have handles to objfiles. Since their
1234 storage has just been released, we'd better wipe the solib
1235 descriptors as well. */
1236 no_shared_libraries (NULL, from_tty);
1237
1238 gdb_assert (symfile_objfile == NULL);
1239 if (from_tty)
1240 printf_unfiltered (_("No symbol file now.\n"));
1241 }
1242
1243 static char *
1244 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1245 {
1246 asection *sect;
1247 bfd_size_type debuglink_size;
1248 unsigned long crc32;
1249 char *contents;
1250 int crc_offset;
1251 unsigned char *p;
1252
1253 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1254
1255 if (sect == NULL)
1256 return NULL;
1257
1258 debuglink_size = bfd_section_size (objfile->obfd, sect);
1259
1260 contents = xmalloc (debuglink_size);
1261 bfd_get_section_contents (objfile->obfd, sect, contents,
1262 (file_ptr)0, (bfd_size_type)debuglink_size);
1263
1264 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1265 crc_offset = strlen (contents) + 1;
1266 crc_offset = (crc_offset + 3) & ~3;
1267
1268 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1269
1270 *crc32_out = crc32;
1271 return contents;
1272 }
1273
1274 static int
1275 separate_debug_file_exists (const char *name, unsigned long crc,
1276 struct objfile *parent_objfile)
1277 {
1278 unsigned long file_crc = 0;
1279 bfd *abfd;
1280 gdb_byte buffer[8*1024];
1281 int count;
1282 struct stat parent_stat, abfd_stat;
1283
1284 /* Find a separate debug info file as if symbols would be present in
1285 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1286 section can contain just the basename of PARENT_OBJFILE without any
1287 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1288 the separate debug infos with the same basename can exist. */
1289
1290 if (strcmp (name, parent_objfile->name) == 0)
1291 return 0;
1292
1293 abfd = bfd_open_maybe_remote (name);
1294
1295 if (!abfd)
1296 return 0;
1297
1298 /* Verify symlinks were not the cause of strcmp name difference above.
1299
1300 Some operating systems, e.g. Windows, do not provide a meaningful
1301 st_ino; they always set it to zero. (Windows does provide a
1302 meaningful st_dev.) Do not indicate a duplicate library in that
1303 case. While there is no guarantee that a system that provides
1304 meaningful inode numbers will never set st_ino to zero, this is
1305 merely an optimization, so we do not need to worry about false
1306 negatives. */
1307
1308 if (bfd_stat (abfd, &abfd_stat) == 0
1309 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1310 && abfd_stat.st_dev == parent_stat.st_dev
1311 && abfd_stat.st_ino == parent_stat.st_ino
1312 && abfd_stat.st_ino != 0)
1313 {
1314 bfd_close (abfd);
1315 return 0;
1316 }
1317
1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 bfd_close (abfd);
1322
1323 if (crc != file_crc)
1324 {
1325 warning (_("the debug information found in \"%s\""
1326 " does not match \"%s\" (CRC mismatch).\n"),
1327 name, parent_objfile->name);
1328 return 0;
1329 }
1330
1331 return 1;
1332 }
1333
1334 char *debug_file_directory = NULL;
1335 static void
1336 show_debug_file_directory (struct ui_file *file, int from_tty,
1337 struct cmd_list_element *c, const char *value)
1338 {
1339 fprintf_filtered (file, _("\
1340 The directory where separate debug symbols are searched for is \"%s\".\n"),
1341 value);
1342 }
1343
1344 #if ! defined (DEBUG_SUBDIRECTORY)
1345 #define DEBUG_SUBDIRECTORY ".debug"
1346 #endif
1347
1348 char *
1349 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1350 {
1351 asection *sect;
1352 char *basename, *name_copy, *debugdir;
1353 char *dir = NULL;
1354 char *debugfile = NULL;
1355 char *canon_name = NULL;
1356 bfd_size_type debuglink_size;
1357 unsigned long crc32;
1358 int i;
1359
1360 basename = get_debug_link_info (objfile, &crc32);
1361
1362 if (basename == NULL)
1363 /* There's no separate debug info, hence there's no way we could
1364 load it => no warning. */
1365 goto cleanup_return_debugfile;
1366
1367 dir = xstrdup (objfile->name);
1368
1369 /* Strip off the final filename part, leaving the directory name,
1370 followed by a slash. Objfile names should always be absolute and
1371 tilde-expanded, so there should always be a slash in there
1372 somewhere. */
1373 for (i = strlen(dir) - 1; i >= 0; i--)
1374 {
1375 if (IS_DIR_SEPARATOR (dir[i]))
1376 break;
1377 }
1378 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1379 dir[i+1] = '\0';
1380
1381 /* Set I to max (strlen (canon_name), strlen (dir)). */
1382 canon_name = lrealpath (dir);
1383 i = strlen (dir);
1384 if (canon_name && strlen (canon_name) > i)
1385 i = strlen (canon_name);
1386
1387 debugfile = xmalloc (strlen (debug_file_directory) + 1
1388 + i
1389 + strlen (DEBUG_SUBDIRECTORY)
1390 + strlen ("/")
1391 + strlen (basename)
1392 + 1);
1393
1394 /* First try in the same directory as the original file. */
1395 strcpy (debugfile, dir);
1396 strcat (debugfile, basename);
1397
1398 if (separate_debug_file_exists (debugfile, crc32, objfile))
1399 goto cleanup_return_debugfile;
1400
1401 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1402 strcpy (debugfile, dir);
1403 strcat (debugfile, DEBUG_SUBDIRECTORY);
1404 strcat (debugfile, "/");
1405 strcat (debugfile, basename);
1406
1407 if (separate_debug_file_exists (debugfile, crc32, objfile))
1408 goto cleanup_return_debugfile;
1409
1410 /* Then try in the global debugfile directories.
1411
1412 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1413 cause "/..." lookups. */
1414
1415 debugdir = debug_file_directory;
1416 do
1417 {
1418 char *debugdir_end;
1419
1420 while (*debugdir == DIRNAME_SEPARATOR)
1421 debugdir++;
1422
1423 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1424 if (debugdir_end == NULL)
1425 debugdir_end = &debugdir[strlen (debugdir)];
1426
1427 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1428 debugfile[debugdir_end - debugdir] = 0;
1429 strcat (debugfile, "/");
1430 strcat (debugfile, dir);
1431 strcat (debugfile, basename);
1432
1433 if (separate_debug_file_exists (debugfile, crc32, objfile))
1434 goto cleanup_return_debugfile;
1435
1436 /* If the file is in the sysroot, try using its base path in the
1437 global debugfile directory. */
1438 if (canon_name
1439 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1440 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1441 {
1442 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1443 debugfile[debugdir_end - debugdir] = 0;
1444 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1445 strcat (debugfile, "/");
1446 strcat (debugfile, basename);
1447
1448 if (separate_debug_file_exists (debugfile, crc32, objfile))
1449 goto cleanup_return_debugfile;
1450 }
1451
1452 debugdir = debugdir_end;
1453 }
1454 while (*debugdir != 0);
1455
1456 xfree (debugfile);
1457 debugfile = NULL;
1458
1459 cleanup_return_debugfile:
1460 xfree (canon_name);
1461 xfree (basename);
1462 xfree (dir);
1463 return debugfile;
1464 }
1465
1466
1467 /* This is the symbol-file command. Read the file, analyze its
1468 symbols, and add a struct symtab to a symtab list. The syntax of
1469 the command is rather bizarre:
1470
1471 1. The function buildargv implements various quoting conventions
1472 which are undocumented and have little or nothing in common with
1473 the way things are quoted (or not quoted) elsewhere in GDB.
1474
1475 2. Options are used, which are not generally used in GDB (perhaps
1476 "set mapped on", "set readnow on" would be better)
1477
1478 3. The order of options matters, which is contrary to GNU
1479 conventions (because it is confusing and inconvenient). */
1480
1481 void
1482 symbol_file_command (char *args, int from_tty)
1483 {
1484 dont_repeat ();
1485
1486 if (args == NULL)
1487 {
1488 symbol_file_clear (from_tty);
1489 }
1490 else
1491 {
1492 char **argv = gdb_buildargv (args);
1493 int flags = OBJF_USERLOADED;
1494 struct cleanup *cleanups;
1495 char *name = NULL;
1496
1497 cleanups = make_cleanup_freeargv (argv);
1498 while (*argv != NULL)
1499 {
1500 if (strcmp (*argv, "-readnow") == 0)
1501 flags |= OBJF_READNOW;
1502 else if (**argv == '-')
1503 error (_("unknown option `%s'"), *argv);
1504 else
1505 {
1506 symbol_file_add_main_1 (*argv, from_tty, flags);
1507 name = *argv;
1508 }
1509
1510 argv++;
1511 }
1512
1513 if (name == NULL)
1514 error (_("no symbol file name was specified"));
1515
1516 do_cleanups (cleanups);
1517 }
1518 }
1519
1520 /* Set the initial language.
1521
1522 FIXME: A better solution would be to record the language in the
1523 psymtab when reading partial symbols, and then use it (if known) to
1524 set the language. This would be a win for formats that encode the
1525 language in an easily discoverable place, such as DWARF. For
1526 stabs, we can jump through hoops looking for specially named
1527 symbols or try to intuit the language from the specific type of
1528 stabs we find, but we can't do that until later when we read in
1529 full symbols. */
1530
1531 void
1532 set_initial_language (void)
1533 {
1534 char *filename;
1535 enum language lang = language_unknown;
1536
1537 filename = find_main_filename ();
1538 if (filename != NULL)
1539 lang = deduce_language_from_filename (filename);
1540
1541 if (lang == language_unknown)
1542 {
1543 /* Make C the default language */
1544 lang = language_c;
1545 }
1546
1547 set_language (lang);
1548 expected_language = current_language; /* Don't warn the user. */
1549 }
1550
1551 /* If NAME is a remote name open the file using remote protocol, otherwise
1552 open it normally. */
1553
1554 bfd *
1555 bfd_open_maybe_remote (const char *name)
1556 {
1557 if (remote_filename_p (name))
1558 return remote_bfd_open (name, gnutarget);
1559 else
1560 return bfd_openr (name, gnutarget);
1561 }
1562
1563
1564 /* Open the file specified by NAME and hand it off to BFD for
1565 preliminary analysis. Return a newly initialized bfd *, which
1566 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1567 absolute). In case of trouble, error() is called. */
1568
1569 bfd *
1570 symfile_bfd_open (char *name)
1571 {
1572 bfd *sym_bfd;
1573 int desc;
1574 char *absolute_name;
1575
1576 if (remote_filename_p (name))
1577 {
1578 name = xstrdup (name);
1579 sym_bfd = remote_bfd_open (name, gnutarget);
1580 if (!sym_bfd)
1581 {
1582 make_cleanup (xfree, name);
1583 error (_("`%s': can't open to read symbols: %s."), name,
1584 bfd_errmsg (bfd_get_error ()));
1585 }
1586
1587 if (!bfd_check_format (sym_bfd, bfd_object))
1588 {
1589 bfd_close (sym_bfd);
1590 make_cleanup (xfree, name);
1591 error (_("`%s': can't read symbols: %s."), name,
1592 bfd_errmsg (bfd_get_error ()));
1593 }
1594
1595 return sym_bfd;
1596 }
1597
1598 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1599
1600 /* Look down path for it, allocate 2nd new malloc'd copy. */
1601 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1602 O_RDONLY | O_BINARY, &absolute_name);
1603 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1604 if (desc < 0)
1605 {
1606 char *exename = alloca (strlen (name) + 5);
1607 strcat (strcpy (exename, name), ".exe");
1608 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1609 O_RDONLY | O_BINARY, &absolute_name);
1610 }
1611 #endif
1612 if (desc < 0)
1613 {
1614 make_cleanup (xfree, name);
1615 perror_with_name (name);
1616 }
1617
1618 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1619 bfd. It'll be freed in free_objfile(). */
1620 xfree (name);
1621 name = absolute_name;
1622
1623 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1624 if (!sym_bfd)
1625 {
1626 close (desc);
1627 make_cleanup (xfree, name);
1628 error (_("`%s': can't open to read symbols: %s."), name,
1629 bfd_errmsg (bfd_get_error ()));
1630 }
1631 bfd_set_cacheable (sym_bfd, 1);
1632
1633 if (!bfd_check_format (sym_bfd, bfd_object))
1634 {
1635 /* FIXME: should be checking for errors from bfd_close (for one
1636 thing, on error it does not free all the storage associated
1637 with the bfd). */
1638 bfd_close (sym_bfd); /* This also closes desc. */
1639 make_cleanup (xfree, name);
1640 error (_("`%s': can't read symbols: %s."), name,
1641 bfd_errmsg (bfd_get_error ()));
1642 }
1643
1644 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1645 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1646
1647 return sym_bfd;
1648 }
1649
1650 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1651 the section was not found. */
1652
1653 int
1654 get_section_index (struct objfile *objfile, char *section_name)
1655 {
1656 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1657
1658 if (sect)
1659 return sect->index;
1660 else
1661 return -1;
1662 }
1663
1664 /* Link SF into the global symtab_fns list. Called on startup by the
1665 _initialize routine in each object file format reader, to register
1666 information about each format the the reader is prepared to
1667 handle. */
1668
1669 void
1670 add_symtab_fns (struct sym_fns *sf)
1671 {
1672 sf->next = symtab_fns;
1673 symtab_fns = sf;
1674 }
1675
1676 /* Initialize OBJFILE to read symbols from its associated BFD. It
1677 either returns or calls error(). The result is an initialized
1678 struct sym_fns in the objfile structure, that contains cached
1679 information about the symbol file. */
1680
1681 static struct sym_fns *
1682 find_sym_fns (bfd *abfd)
1683 {
1684 struct sym_fns *sf;
1685 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1686
1687 if (our_flavour == bfd_target_srec_flavour
1688 || our_flavour == bfd_target_ihex_flavour
1689 || our_flavour == bfd_target_tekhex_flavour)
1690 return NULL; /* No symbols. */
1691
1692 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1693 if (our_flavour == sf->sym_flavour)
1694 return sf;
1695
1696 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1697 bfd_get_target (abfd));
1698 }
1699 \f
1700
1701 /* This function runs the load command of our current target. */
1702
1703 static void
1704 load_command (char *arg, int from_tty)
1705 {
1706 /* The user might be reloading because the binary has changed. Take
1707 this opportunity to check. */
1708 reopen_exec_file ();
1709 reread_symbols ();
1710
1711 if (arg == NULL)
1712 {
1713 char *parg;
1714 int count = 0;
1715
1716 parg = arg = get_exec_file (1);
1717
1718 /* Count how many \ " ' tab space there are in the name. */
1719 while ((parg = strpbrk (parg, "\\\"'\t ")))
1720 {
1721 parg++;
1722 count++;
1723 }
1724
1725 if (count)
1726 {
1727 /* We need to quote this string so buildargv can pull it apart. */
1728 char *temp = xmalloc (strlen (arg) + count + 1 );
1729 char *ptemp = temp;
1730 char *prev;
1731
1732 make_cleanup (xfree, temp);
1733
1734 prev = parg = arg;
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1736 {
1737 strncpy (ptemp, prev, parg - prev);
1738 ptemp += parg - prev;
1739 prev = parg++;
1740 *ptemp++ = '\\';
1741 }
1742 strcpy (ptemp, prev);
1743
1744 arg = temp;
1745 }
1746 }
1747
1748 target_load (arg, from_tty);
1749
1750 /* After re-loading the executable, we don't really know which
1751 overlays are mapped any more. */
1752 overlay_cache_invalid = 1;
1753 }
1754
1755 /* This version of "load" should be usable for any target. Currently
1756 it is just used for remote targets, not inftarg.c or core files,
1757 on the theory that only in that case is it useful.
1758
1759 Avoiding xmodem and the like seems like a win (a) because we don't have
1760 to worry about finding it, and (b) On VMS, fork() is very slow and so
1761 we don't want to run a subprocess. On the other hand, I'm not sure how
1762 performance compares. */
1763
1764 static int validate_download = 0;
1765
1766 /* Callback service function for generic_load (bfd_map_over_sections). */
1767
1768 static void
1769 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1770 {
1771 bfd_size_type *sum = data;
1772
1773 *sum += bfd_get_section_size (asec);
1774 }
1775
1776 /* Opaque data for load_section_callback. */
1777 struct load_section_data {
1778 unsigned long load_offset;
1779 struct load_progress_data *progress_data;
1780 VEC(memory_write_request_s) *requests;
1781 };
1782
1783 /* Opaque data for load_progress. */
1784 struct load_progress_data {
1785 /* Cumulative data. */
1786 unsigned long write_count;
1787 unsigned long data_count;
1788 bfd_size_type total_size;
1789 };
1790
1791 /* Opaque data for load_progress for a single section. */
1792 struct load_progress_section_data {
1793 struct load_progress_data *cumulative;
1794
1795 /* Per-section data. */
1796 const char *section_name;
1797 ULONGEST section_sent;
1798 ULONGEST section_size;
1799 CORE_ADDR lma;
1800 gdb_byte *buffer;
1801 };
1802
1803 /* Target write callback routine for progress reporting. */
1804
1805 static void
1806 load_progress (ULONGEST bytes, void *untyped_arg)
1807 {
1808 struct load_progress_section_data *args = untyped_arg;
1809 struct load_progress_data *totals;
1810
1811 if (args == NULL)
1812 /* Writing padding data. No easy way to get at the cumulative
1813 stats, so just ignore this. */
1814 return;
1815
1816 totals = args->cumulative;
1817
1818 if (bytes == 0 && args->section_sent == 0)
1819 {
1820 /* The write is just starting. Let the user know we've started
1821 this section. */
1822 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1823 args->section_name, hex_string (args->section_size),
1824 paddress (target_gdbarch, args->lma));
1825 return;
1826 }
1827
1828 if (validate_download)
1829 {
1830 /* Broken memories and broken monitors manifest themselves here
1831 when bring new computers to life. This doubles already slow
1832 downloads. */
1833 /* NOTE: cagney/1999-10-18: A more efficient implementation
1834 might add a verify_memory() method to the target vector and
1835 then use that. remote.c could implement that method using
1836 the ``qCRC'' packet. */
1837 gdb_byte *check = xmalloc (bytes);
1838 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1839
1840 if (target_read_memory (args->lma, check, bytes) != 0)
1841 error (_("Download verify read failed at %s"),
1842 paddress (target_gdbarch, args->lma));
1843 if (memcmp (args->buffer, check, bytes) != 0)
1844 error (_("Download verify compare failed at %s"),
1845 paddress (target_gdbarch, args->lma));
1846 do_cleanups (verify_cleanups);
1847 }
1848 totals->data_count += bytes;
1849 args->lma += bytes;
1850 args->buffer += bytes;
1851 totals->write_count += 1;
1852 args->section_sent += bytes;
1853 if (quit_flag
1854 || (deprecated_ui_load_progress_hook != NULL
1855 && deprecated_ui_load_progress_hook (args->section_name,
1856 args->section_sent)))
1857 error (_("Canceled the download"));
1858
1859 if (deprecated_show_load_progress != NULL)
1860 deprecated_show_load_progress (args->section_name,
1861 args->section_sent,
1862 args->section_size,
1863 totals->data_count,
1864 totals->total_size);
1865 }
1866
1867 /* Callback service function for generic_load (bfd_map_over_sections). */
1868
1869 static void
1870 load_section_callback (bfd *abfd, asection *asec, void *data)
1871 {
1872 struct memory_write_request *new_request;
1873 struct load_section_data *args = data;
1874 struct load_progress_section_data *section_data;
1875 bfd_size_type size = bfd_get_section_size (asec);
1876 gdb_byte *buffer;
1877 const char *sect_name = bfd_get_section_name (abfd, asec);
1878
1879 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1880 return;
1881
1882 if (size == 0)
1883 return;
1884
1885 new_request = VEC_safe_push (memory_write_request_s,
1886 args->requests, NULL);
1887 memset (new_request, 0, sizeof (struct memory_write_request));
1888 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1889 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1890 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1891 new_request->data = xmalloc (size);
1892 new_request->baton = section_data;
1893
1894 buffer = new_request->data;
1895
1896 section_data->cumulative = args->progress_data;
1897 section_data->section_name = sect_name;
1898 section_data->section_size = size;
1899 section_data->lma = new_request->begin;
1900 section_data->buffer = buffer;
1901
1902 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1903 }
1904
1905 /* Clean up an entire memory request vector, including load
1906 data and progress records. */
1907
1908 static void
1909 clear_memory_write_data (void *arg)
1910 {
1911 VEC(memory_write_request_s) **vec_p = arg;
1912 VEC(memory_write_request_s) *vec = *vec_p;
1913 int i;
1914 struct memory_write_request *mr;
1915
1916 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1917 {
1918 xfree (mr->data);
1919 xfree (mr->baton);
1920 }
1921 VEC_free (memory_write_request_s, vec);
1922 }
1923
1924 void
1925 generic_load (char *args, int from_tty)
1926 {
1927 bfd *loadfile_bfd;
1928 struct timeval start_time, end_time;
1929 char *filename;
1930 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1931 struct load_section_data cbdata;
1932 struct load_progress_data total_progress;
1933
1934 CORE_ADDR entry;
1935 char **argv;
1936
1937 memset (&cbdata, 0, sizeof (cbdata));
1938 memset (&total_progress, 0, sizeof (total_progress));
1939 cbdata.progress_data = &total_progress;
1940
1941 make_cleanup (clear_memory_write_data, &cbdata.requests);
1942
1943 if (args == NULL)
1944 error_no_arg (_("file to load"));
1945
1946 argv = gdb_buildargv (args);
1947 make_cleanup_freeargv (argv);
1948
1949 filename = tilde_expand (argv[0]);
1950 make_cleanup (xfree, filename);
1951
1952 if (argv[1] != NULL)
1953 {
1954 char *endptr;
1955
1956 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1957
1958 /* If the last word was not a valid number then
1959 treat it as a file name with spaces in. */
1960 if (argv[1] == endptr)
1961 error (_("Invalid download offset:%s."), argv[1]);
1962
1963 if (argv[2] != NULL)
1964 error (_("Too many parameters."));
1965 }
1966
1967 /* Open the file for loading. */
1968 loadfile_bfd = bfd_openr (filename, gnutarget);
1969 if (loadfile_bfd == NULL)
1970 {
1971 perror_with_name (filename);
1972 return;
1973 }
1974
1975 /* FIXME: should be checking for errors from bfd_close (for one thing,
1976 on error it does not free all the storage associated with the
1977 bfd). */
1978 make_cleanup_bfd_close (loadfile_bfd);
1979
1980 if (!bfd_check_format (loadfile_bfd, bfd_object))
1981 {
1982 error (_("\"%s\" is not an object file: %s"), filename,
1983 bfd_errmsg (bfd_get_error ()));
1984 }
1985
1986 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1987 (void *) &total_progress.total_size);
1988
1989 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1990
1991 gettimeofday (&start_time, NULL);
1992
1993 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1994 load_progress) != 0)
1995 error (_("Load failed"));
1996
1997 gettimeofday (&end_time, NULL);
1998
1999 entry = bfd_get_start_address (loadfile_bfd);
2000 ui_out_text (uiout, "Start address ");
2001 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2002 ui_out_text (uiout, ", load size ");
2003 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2004 ui_out_text (uiout, "\n");
2005 /* We were doing this in remote-mips.c, I suspect it is right
2006 for other targets too. */
2007 regcache_write_pc (get_current_regcache (), entry);
2008
2009 /* Reset breakpoints, now that we have changed the load image. For
2010 instance, breakpoints may have been set (or reset, by
2011 post_create_inferior) while connected to the target but before we
2012 loaded the program. In that case, the prologue analyzer could
2013 have read instructions from the target to find the right
2014 breakpoint locations. Loading has changed the contents of that
2015 memory. */
2016
2017 breakpoint_re_set ();
2018
2019 /* FIXME: are we supposed to call symbol_file_add or not? According
2020 to a comment from remote-mips.c (where a call to symbol_file_add
2021 was commented out), making the call confuses GDB if more than one
2022 file is loaded in. Some targets do (e.g., remote-vx.c) but
2023 others don't (or didn't - perhaps they have all been deleted). */
2024
2025 print_transfer_performance (gdb_stdout, total_progress.data_count,
2026 total_progress.write_count,
2027 &start_time, &end_time);
2028
2029 do_cleanups (old_cleanups);
2030 }
2031
2032 /* Report how fast the transfer went. */
2033
2034 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2035 replaced by print_transfer_performance (with a very different
2036 function signature). */
2037
2038 void
2039 report_transfer_performance (unsigned long data_count, time_t start_time,
2040 time_t end_time)
2041 {
2042 struct timeval start, end;
2043
2044 start.tv_sec = start_time;
2045 start.tv_usec = 0;
2046 end.tv_sec = end_time;
2047 end.tv_usec = 0;
2048
2049 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2050 }
2051
2052 void
2053 print_transfer_performance (struct ui_file *stream,
2054 unsigned long data_count,
2055 unsigned long write_count,
2056 const struct timeval *start_time,
2057 const struct timeval *end_time)
2058 {
2059 ULONGEST time_count;
2060
2061 /* Compute the elapsed time in milliseconds, as a tradeoff between
2062 accuracy and overflow. */
2063 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2064 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2065
2066 ui_out_text (uiout, "Transfer rate: ");
2067 if (time_count > 0)
2068 {
2069 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2070
2071 if (ui_out_is_mi_like_p (uiout))
2072 {
2073 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2074 ui_out_text (uiout, " bits/sec");
2075 }
2076 else if (rate < 1024)
2077 {
2078 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2079 ui_out_text (uiout, " bytes/sec");
2080 }
2081 else
2082 {
2083 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2084 ui_out_text (uiout, " KB/sec");
2085 }
2086 }
2087 else
2088 {
2089 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2090 ui_out_text (uiout, " bits in <1 sec");
2091 }
2092 if (write_count > 0)
2093 {
2094 ui_out_text (uiout, ", ");
2095 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2096 ui_out_text (uiout, " bytes/write");
2097 }
2098 ui_out_text (uiout, ".\n");
2099 }
2100
2101 /* This function allows the addition of incrementally linked object files.
2102 It does not modify any state in the target, only in the debugger. */
2103 /* Note: ezannoni 2000-04-13 This function/command used to have a
2104 special case syntax for the rombug target (Rombug is the boot
2105 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2106 rombug case, the user doesn't need to supply a text address,
2107 instead a call to target_link() (in target.c) would supply the
2108 value to use. We are now discontinuing this type of ad hoc syntax. */
2109
2110 static void
2111 add_symbol_file_command (char *args, int from_tty)
2112 {
2113 struct gdbarch *gdbarch = get_current_arch ();
2114 char *filename = NULL;
2115 int flags = OBJF_USERLOADED;
2116 char *arg;
2117 int expecting_option = 0;
2118 int section_index = 0;
2119 int argcnt = 0;
2120 int sec_num = 0;
2121 int i;
2122 int expecting_sec_name = 0;
2123 int expecting_sec_addr = 0;
2124 char **argv;
2125
2126 struct sect_opt
2127 {
2128 char *name;
2129 char *value;
2130 };
2131
2132 struct section_addr_info *section_addrs;
2133 struct sect_opt *sect_opts = NULL;
2134 size_t num_sect_opts = 0;
2135 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2136
2137 num_sect_opts = 16;
2138 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2139 * sizeof (struct sect_opt));
2140
2141 dont_repeat ();
2142
2143 if (args == NULL)
2144 error (_("add-symbol-file takes a file name and an address"));
2145
2146 argv = gdb_buildargv (args);
2147 make_cleanup_freeargv (argv);
2148
2149 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2150 {
2151 /* Process the argument. */
2152 if (argcnt == 0)
2153 {
2154 /* The first argument is the file name. */
2155 filename = tilde_expand (arg);
2156 make_cleanup (xfree, filename);
2157 }
2158 else
2159 if (argcnt == 1)
2160 {
2161 /* The second argument is always the text address at which
2162 to load the program. */
2163 sect_opts[section_index].name = ".text";
2164 sect_opts[section_index].value = arg;
2165 if (++section_index >= num_sect_opts)
2166 {
2167 num_sect_opts *= 2;
2168 sect_opts = ((struct sect_opt *)
2169 xrealloc (sect_opts,
2170 num_sect_opts
2171 * sizeof (struct sect_opt)));
2172 }
2173 }
2174 else
2175 {
2176 /* It's an option (starting with '-') or it's an argument
2177 to an option */
2178
2179 if (*arg == '-')
2180 {
2181 if (strcmp (arg, "-readnow") == 0)
2182 flags |= OBJF_READNOW;
2183 else if (strcmp (arg, "-s") == 0)
2184 {
2185 expecting_sec_name = 1;
2186 expecting_sec_addr = 1;
2187 }
2188 }
2189 else
2190 {
2191 if (expecting_sec_name)
2192 {
2193 sect_opts[section_index].name = arg;
2194 expecting_sec_name = 0;
2195 }
2196 else
2197 if (expecting_sec_addr)
2198 {
2199 sect_opts[section_index].value = arg;
2200 expecting_sec_addr = 0;
2201 if (++section_index >= num_sect_opts)
2202 {
2203 num_sect_opts *= 2;
2204 sect_opts = ((struct sect_opt *)
2205 xrealloc (sect_opts,
2206 num_sect_opts
2207 * sizeof (struct sect_opt)));
2208 }
2209 }
2210 else
2211 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2212 }
2213 }
2214 }
2215
2216 /* This command takes at least two arguments. The first one is a
2217 filename, and the second is the address where this file has been
2218 loaded. Abort now if this address hasn't been provided by the
2219 user. */
2220 if (section_index < 1)
2221 error (_("The address where %s has been loaded is missing"), filename);
2222
2223 /* Print the prompt for the query below. And save the arguments into
2224 a sect_addr_info structure to be passed around to other
2225 functions. We have to split this up into separate print
2226 statements because hex_string returns a local static
2227 string. */
2228
2229 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2230 section_addrs = alloc_section_addr_info (section_index);
2231 make_cleanup (xfree, section_addrs);
2232 for (i = 0; i < section_index; i++)
2233 {
2234 CORE_ADDR addr;
2235 char *val = sect_opts[i].value;
2236 char *sec = sect_opts[i].name;
2237
2238 addr = parse_and_eval_address (val);
2239
2240 /* Here we store the section offsets in the order they were
2241 entered on the command line. */
2242 section_addrs->other[sec_num].name = sec;
2243 section_addrs->other[sec_num].addr = addr;
2244 printf_unfiltered ("\t%s_addr = %s\n", sec,
2245 paddress (gdbarch, addr));
2246 sec_num++;
2247
2248 /* The object's sections are initialized when a
2249 call is made to build_objfile_section_table (objfile).
2250 This happens in reread_symbols.
2251 At this point, we don't know what file type this is,
2252 so we can't determine what section names are valid. */
2253 }
2254
2255 if (from_tty && (!query ("%s", "")))
2256 error (_("Not confirmed."));
2257
2258 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2259 section_addrs, flags);
2260
2261 /* Getting new symbols may change our opinion about what is
2262 frameless. */
2263 reinit_frame_cache ();
2264 do_cleanups (my_cleanups);
2265 }
2266 \f
2267
2268 /* Re-read symbols if a symbol-file has changed. */
2269 void
2270 reread_symbols (void)
2271 {
2272 struct objfile *objfile;
2273 long new_modtime;
2274 int reread_one = 0;
2275 struct stat new_statbuf;
2276 int res;
2277
2278 /* With the addition of shared libraries, this should be modified,
2279 the load time should be saved in the partial symbol tables, since
2280 different tables may come from different source files. FIXME.
2281 This routine should then walk down each partial symbol table
2282 and see if the symbol table that it originates from has been changed */
2283
2284 for (objfile = object_files; objfile; objfile = objfile->next)
2285 {
2286 /* solib-sunos.c creates one objfile with obfd. */
2287 if (objfile->obfd == NULL)
2288 continue;
2289
2290 /* Separate debug objfiles are handled in the main objfile. */
2291 if (objfile->separate_debug_objfile_backlink)
2292 continue;
2293
2294 #ifdef DEPRECATED_IBM6000_TARGET
2295 /* If this object is from a shared library, then you should
2296 stat on the library name, not member name. */
2297
2298 if (objfile->obfd->my_archive)
2299 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2300 else
2301 #endif
2302 res = stat (objfile->name, &new_statbuf);
2303 if (res != 0)
2304 {
2305 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2306 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2307 objfile->name);
2308 continue;
2309 }
2310 new_modtime = new_statbuf.st_mtime;
2311 if (new_modtime != objfile->mtime)
2312 {
2313 struct cleanup *old_cleanups;
2314 struct section_offsets *offsets;
2315 int num_offsets;
2316 char *obfd_filename;
2317
2318 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2319 objfile->name);
2320
2321 /* There are various functions like symbol_file_add,
2322 symfile_bfd_open, syms_from_objfile, etc., which might
2323 appear to do what we want. But they have various other
2324 effects which we *don't* want. So we just do stuff
2325 ourselves. We don't worry about mapped files (for one thing,
2326 any mapped file will be out of date). */
2327
2328 /* If we get an error, blow away this objfile (not sure if
2329 that is the correct response for things like shared
2330 libraries). */
2331 old_cleanups = make_cleanup_free_objfile (objfile);
2332 /* We need to do this whenever any symbols go away. */
2333 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2334
2335 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2336 bfd_get_filename (exec_bfd)) == 0)
2337 {
2338 /* Reload EXEC_BFD without asking anything. */
2339
2340 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2341 }
2342
2343 /* Clean up any state BFD has sitting around. We don't need
2344 to close the descriptor but BFD lacks a way of closing the
2345 BFD without closing the descriptor. */
2346 obfd_filename = bfd_get_filename (objfile->obfd);
2347 if (!bfd_close (objfile->obfd))
2348 error (_("Can't close BFD for %s: %s"), objfile->name,
2349 bfd_errmsg (bfd_get_error ()));
2350 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2351 if (objfile->obfd == NULL)
2352 error (_("Can't open %s to read symbols."), objfile->name);
2353 else
2354 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2355 /* bfd_openr sets cacheable to true, which is what we want. */
2356 if (!bfd_check_format (objfile->obfd, bfd_object))
2357 error (_("Can't read symbols from %s: %s."), objfile->name,
2358 bfd_errmsg (bfd_get_error ()));
2359
2360 /* Save the offsets, we will nuke them with the rest of the
2361 objfile_obstack. */
2362 num_offsets = objfile->num_sections;
2363 offsets = ((struct section_offsets *)
2364 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2365 memcpy (offsets, objfile->section_offsets,
2366 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2367
2368 /* Remove any references to this objfile in the global
2369 value lists. */
2370 preserve_values (objfile);
2371
2372 /* Nuke all the state that we will re-read. Much of the following
2373 code which sets things to NULL really is necessary to tell
2374 other parts of GDB that there is nothing currently there.
2375
2376 Try to keep the freeing order compatible with free_objfile. */
2377
2378 if (objfile->sf != NULL)
2379 {
2380 (*objfile->sf->sym_finish) (objfile);
2381 }
2382
2383 clear_objfile_data (objfile);
2384
2385 /* Free the separate debug objfiles. It will be
2386 automatically recreated by sym_read. */
2387 free_objfile_separate_debug (objfile);
2388
2389 /* FIXME: Do we have to free a whole linked list, or is this
2390 enough? */
2391 if (objfile->global_psymbols.list)
2392 xfree (objfile->global_psymbols.list);
2393 memset (&objfile->global_psymbols, 0,
2394 sizeof (objfile->global_psymbols));
2395 if (objfile->static_psymbols.list)
2396 xfree (objfile->static_psymbols.list);
2397 memset (&objfile->static_psymbols, 0,
2398 sizeof (objfile->static_psymbols));
2399
2400 /* Free the obstacks for non-reusable objfiles */
2401 bcache_xfree (objfile->psymbol_cache);
2402 objfile->psymbol_cache = bcache_xmalloc ();
2403 bcache_xfree (objfile->macro_cache);
2404 objfile->macro_cache = bcache_xmalloc ();
2405 bcache_xfree (objfile->filename_cache);
2406 objfile->filename_cache = bcache_xmalloc ();
2407 if (objfile->demangled_names_hash != NULL)
2408 {
2409 htab_delete (objfile->demangled_names_hash);
2410 objfile->demangled_names_hash = NULL;
2411 }
2412 obstack_free (&objfile->objfile_obstack, 0);
2413 objfile->sections = NULL;
2414 objfile->symtabs = NULL;
2415 objfile->psymtabs = NULL;
2416 objfile->psymtabs_addrmap = NULL;
2417 objfile->free_psymtabs = NULL;
2418 objfile->cp_namespace_symtab = NULL;
2419 objfile->msymbols = NULL;
2420 objfile->deprecated_sym_private = NULL;
2421 objfile->minimal_symbol_count = 0;
2422 memset (&objfile->msymbol_hash, 0,
2423 sizeof (objfile->msymbol_hash));
2424 memset (&objfile->msymbol_demangled_hash, 0,
2425 sizeof (objfile->msymbol_demangled_hash));
2426
2427 objfile->psymbol_cache = bcache_xmalloc ();
2428 objfile->macro_cache = bcache_xmalloc ();
2429 objfile->filename_cache = bcache_xmalloc ();
2430 /* obstack_init also initializes the obstack so it is
2431 empty. We could use obstack_specify_allocation but
2432 gdb_obstack.h specifies the alloc/dealloc
2433 functions. */
2434 obstack_init (&objfile->objfile_obstack);
2435 if (build_objfile_section_table (objfile))
2436 {
2437 error (_("Can't find the file sections in `%s': %s"),
2438 objfile->name, bfd_errmsg (bfd_get_error ()));
2439 }
2440 terminate_minimal_symbol_table (objfile);
2441
2442 /* We use the same section offsets as from last time. I'm not
2443 sure whether that is always correct for shared libraries. */
2444 objfile->section_offsets = (struct section_offsets *)
2445 obstack_alloc (&objfile->objfile_obstack,
2446 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2447 memcpy (objfile->section_offsets, offsets,
2448 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2449 objfile->num_sections = num_offsets;
2450
2451 /* What the hell is sym_new_init for, anyway? The concept of
2452 distinguishing between the main file and additional files
2453 in this way seems rather dubious. */
2454 if (objfile == symfile_objfile)
2455 {
2456 (*objfile->sf->sym_new_init) (objfile);
2457 }
2458
2459 (*objfile->sf->sym_init) (objfile);
2460 clear_complaints (&symfile_complaints, 1, 1);
2461 /* Do not set flags as this is safe and we don't want to be
2462 verbose. */
2463 (*objfile->sf->sym_read) (objfile, 0);
2464 if (!objfile_has_symbols (objfile))
2465 {
2466 wrap_here ("");
2467 printf_unfiltered (_("(no debugging symbols found)\n"));
2468 wrap_here ("");
2469 }
2470
2471 /* We're done reading the symbol file; finish off complaints. */
2472 clear_complaints (&symfile_complaints, 0, 1);
2473
2474 /* Getting new symbols may change our opinion about what is
2475 frameless. */
2476
2477 reinit_frame_cache ();
2478
2479 /* Discard cleanups as symbol reading was successful. */
2480 discard_cleanups (old_cleanups);
2481
2482 /* If the mtime has changed between the time we set new_modtime
2483 and now, we *want* this to be out of date, so don't call stat
2484 again now. */
2485 objfile->mtime = new_modtime;
2486 reread_one = 1;
2487 init_entry_point_info (objfile);
2488 }
2489 }
2490
2491 if (reread_one)
2492 {
2493 /* Notify objfiles that we've modified objfile sections. */
2494 objfiles_changed ();
2495
2496 clear_symtab_users ();
2497 /* At least one objfile has changed, so we can consider that
2498 the executable we're debugging has changed too. */
2499 observer_notify_executable_changed ();
2500 }
2501 }
2502 \f
2503
2504
2505 typedef struct
2506 {
2507 char *ext;
2508 enum language lang;
2509 }
2510 filename_language;
2511
2512 static filename_language *filename_language_table;
2513 static int fl_table_size, fl_table_next;
2514
2515 static void
2516 add_filename_language (char *ext, enum language lang)
2517 {
2518 if (fl_table_next >= fl_table_size)
2519 {
2520 fl_table_size += 10;
2521 filename_language_table =
2522 xrealloc (filename_language_table,
2523 fl_table_size * sizeof (*filename_language_table));
2524 }
2525
2526 filename_language_table[fl_table_next].ext = xstrdup (ext);
2527 filename_language_table[fl_table_next].lang = lang;
2528 fl_table_next++;
2529 }
2530
2531 static char *ext_args;
2532 static void
2533 show_ext_args (struct ui_file *file, int from_tty,
2534 struct cmd_list_element *c, const char *value)
2535 {
2536 fprintf_filtered (file, _("\
2537 Mapping between filename extension and source language is \"%s\".\n"),
2538 value);
2539 }
2540
2541 static void
2542 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2543 {
2544 int i;
2545 char *cp = ext_args;
2546 enum language lang;
2547
2548 /* First arg is filename extension, starting with '.' */
2549 if (*cp != '.')
2550 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2551
2552 /* Find end of first arg. */
2553 while (*cp && !isspace (*cp))
2554 cp++;
2555
2556 if (*cp == '\0')
2557 error (_("'%s': two arguments required -- filename extension and language"),
2558 ext_args);
2559
2560 /* Null-terminate first arg */
2561 *cp++ = '\0';
2562
2563 /* Find beginning of second arg, which should be a source language. */
2564 while (*cp && isspace (*cp))
2565 cp++;
2566
2567 if (*cp == '\0')
2568 error (_("'%s': two arguments required -- filename extension and language"),
2569 ext_args);
2570
2571 /* Lookup the language from among those we know. */
2572 lang = language_enum (cp);
2573
2574 /* Now lookup the filename extension: do we already know it? */
2575 for (i = 0; i < fl_table_next; i++)
2576 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2577 break;
2578
2579 if (i >= fl_table_next)
2580 {
2581 /* new file extension */
2582 add_filename_language (ext_args, lang);
2583 }
2584 else
2585 {
2586 /* redefining a previously known filename extension */
2587
2588 /* if (from_tty) */
2589 /* query ("Really make files of type %s '%s'?", */
2590 /* ext_args, language_str (lang)); */
2591
2592 xfree (filename_language_table[i].ext);
2593 filename_language_table[i].ext = xstrdup (ext_args);
2594 filename_language_table[i].lang = lang;
2595 }
2596 }
2597
2598 static void
2599 info_ext_lang_command (char *args, int from_tty)
2600 {
2601 int i;
2602
2603 printf_filtered (_("Filename extensions and the languages they represent:"));
2604 printf_filtered ("\n\n");
2605 for (i = 0; i < fl_table_next; i++)
2606 printf_filtered ("\t%s\t- %s\n",
2607 filename_language_table[i].ext,
2608 language_str (filename_language_table[i].lang));
2609 }
2610
2611 static void
2612 init_filename_language_table (void)
2613 {
2614 if (fl_table_size == 0) /* protect against repetition */
2615 {
2616 fl_table_size = 20;
2617 fl_table_next = 0;
2618 filename_language_table =
2619 xmalloc (fl_table_size * sizeof (*filename_language_table));
2620 add_filename_language (".c", language_c);
2621 add_filename_language (".C", language_cplus);
2622 add_filename_language (".cc", language_cplus);
2623 add_filename_language (".cp", language_cplus);
2624 add_filename_language (".cpp", language_cplus);
2625 add_filename_language (".cxx", language_cplus);
2626 add_filename_language (".c++", language_cplus);
2627 add_filename_language (".java", language_java);
2628 add_filename_language (".class", language_java);
2629 add_filename_language (".m", language_objc);
2630 add_filename_language (".f", language_fortran);
2631 add_filename_language (".F", language_fortran);
2632 add_filename_language (".s", language_asm);
2633 add_filename_language (".sx", language_asm);
2634 add_filename_language (".S", language_asm);
2635 add_filename_language (".pas", language_pascal);
2636 add_filename_language (".p", language_pascal);
2637 add_filename_language (".pp", language_pascal);
2638 add_filename_language (".adb", language_ada);
2639 add_filename_language (".ads", language_ada);
2640 add_filename_language (".a", language_ada);
2641 add_filename_language (".ada", language_ada);
2642 }
2643 }
2644
2645 enum language
2646 deduce_language_from_filename (char *filename)
2647 {
2648 int i;
2649 char *cp;
2650
2651 if (filename != NULL)
2652 if ((cp = strrchr (filename, '.')) != NULL)
2653 for (i = 0; i < fl_table_next; i++)
2654 if (strcmp (cp, filename_language_table[i].ext) == 0)
2655 return filename_language_table[i].lang;
2656
2657 return language_unknown;
2658 }
2659 \f
2660 /* allocate_symtab:
2661
2662 Allocate and partly initialize a new symbol table. Return a pointer
2663 to it. error() if no space.
2664
2665 Caller must set these fields:
2666 LINETABLE(symtab)
2667 symtab->blockvector
2668 symtab->dirname
2669 symtab->free_code
2670 symtab->free_ptr
2671 */
2672
2673 struct symtab *
2674 allocate_symtab (char *filename, struct objfile *objfile)
2675 {
2676 struct symtab *symtab;
2677
2678 symtab = (struct symtab *)
2679 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2680 memset (symtab, 0, sizeof (*symtab));
2681 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2682 objfile->filename_cache);
2683 symtab->fullname = NULL;
2684 symtab->language = deduce_language_from_filename (filename);
2685 symtab->debugformat = "unknown";
2686
2687 /* Hook it to the objfile it comes from */
2688
2689 symtab->objfile = objfile;
2690 symtab->next = objfile->symtabs;
2691 objfile->symtabs = symtab;
2692
2693 return (symtab);
2694 }
2695 \f
2696
2697 /* Reset all data structures in gdb which may contain references to symbol
2698 table data. */
2699
2700 void
2701 clear_symtab_users (void)
2702 {
2703 /* Someday, we should do better than this, by only blowing away
2704 the things that really need to be blown. */
2705
2706 /* Clear the "current" symtab first, because it is no longer valid.
2707 breakpoint_re_set may try to access the current symtab. */
2708 clear_current_source_symtab_and_line ();
2709
2710 clear_displays ();
2711 breakpoint_re_set ();
2712 set_default_breakpoint (0, NULL, 0, 0, 0);
2713 clear_pc_function_cache ();
2714 observer_notify_new_objfile (NULL);
2715
2716 /* Clear globals which might have pointed into a removed objfile.
2717 FIXME: It's not clear which of these are supposed to persist
2718 between expressions and which ought to be reset each time. */
2719 expression_context_block = NULL;
2720 innermost_block = NULL;
2721
2722 /* Varobj may refer to old symbols, perform a cleanup. */
2723 varobj_invalidate ();
2724
2725 }
2726
2727 static void
2728 clear_symtab_users_cleanup (void *ignore)
2729 {
2730 clear_symtab_users ();
2731 }
2732 \f
2733 /* OVERLAYS:
2734 The following code implements an abstraction for debugging overlay sections.
2735
2736 The target model is as follows:
2737 1) The gnu linker will permit multiple sections to be mapped into the
2738 same VMA, each with its own unique LMA (or load address).
2739 2) It is assumed that some runtime mechanism exists for mapping the
2740 sections, one by one, from the load address into the VMA address.
2741 3) This code provides a mechanism for gdb to keep track of which
2742 sections should be considered to be mapped from the VMA to the LMA.
2743 This information is used for symbol lookup, and memory read/write.
2744 For instance, if a section has been mapped then its contents
2745 should be read from the VMA, otherwise from the LMA.
2746
2747 Two levels of debugger support for overlays are available. One is
2748 "manual", in which the debugger relies on the user to tell it which
2749 overlays are currently mapped. This level of support is
2750 implemented entirely in the core debugger, and the information about
2751 whether a section is mapped is kept in the objfile->obj_section table.
2752
2753 The second level of support is "automatic", and is only available if
2754 the target-specific code provides functionality to read the target's
2755 overlay mapping table, and translate its contents for the debugger
2756 (by updating the mapped state information in the obj_section tables).
2757
2758 The interface is as follows:
2759 User commands:
2760 overlay map <name> -- tell gdb to consider this section mapped
2761 overlay unmap <name> -- tell gdb to consider this section unmapped
2762 overlay list -- list the sections that GDB thinks are mapped
2763 overlay read-target -- get the target's state of what's mapped
2764 overlay off/manual/auto -- set overlay debugging state
2765 Functional interface:
2766 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2767 section, return that section.
2768 find_pc_overlay(pc): find any overlay section that contains
2769 the pc, either in its VMA or its LMA
2770 section_is_mapped(sect): true if overlay is marked as mapped
2771 section_is_overlay(sect): true if section's VMA != LMA
2772 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2773 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2774 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2775 overlay_mapped_address(...): map an address from section's LMA to VMA
2776 overlay_unmapped_address(...): map an address from section's VMA to LMA
2777 symbol_overlayed_address(...): Return a "current" address for symbol:
2778 either in VMA or LMA depending on whether
2779 the symbol's section is currently mapped
2780 */
2781
2782 /* Overlay debugging state: */
2783
2784 enum overlay_debugging_state overlay_debugging = ovly_off;
2785 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2786
2787 /* Function: section_is_overlay (SECTION)
2788 Returns true if SECTION has VMA not equal to LMA, ie.
2789 SECTION is loaded at an address different from where it will "run". */
2790
2791 int
2792 section_is_overlay (struct obj_section *section)
2793 {
2794 if (overlay_debugging && section)
2795 {
2796 bfd *abfd = section->objfile->obfd;
2797 asection *bfd_section = section->the_bfd_section;
2798
2799 if (bfd_section_lma (abfd, bfd_section) != 0
2800 && bfd_section_lma (abfd, bfd_section)
2801 != bfd_section_vma (abfd, bfd_section))
2802 return 1;
2803 }
2804
2805 return 0;
2806 }
2807
2808 /* Function: overlay_invalidate_all (void)
2809 Invalidate the mapped state of all overlay sections (mark it as stale). */
2810
2811 static void
2812 overlay_invalidate_all (void)
2813 {
2814 struct objfile *objfile;
2815 struct obj_section *sect;
2816
2817 ALL_OBJSECTIONS (objfile, sect)
2818 if (section_is_overlay (sect))
2819 sect->ovly_mapped = -1;
2820 }
2821
2822 /* Function: section_is_mapped (SECTION)
2823 Returns true if section is an overlay, and is currently mapped.
2824
2825 Access to the ovly_mapped flag is restricted to this function, so
2826 that we can do automatic update. If the global flag
2827 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2828 overlay_invalidate_all. If the mapped state of the particular
2829 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2830
2831 int
2832 section_is_mapped (struct obj_section *osect)
2833 {
2834 struct gdbarch *gdbarch;
2835
2836 if (osect == 0 || !section_is_overlay (osect))
2837 return 0;
2838
2839 switch (overlay_debugging)
2840 {
2841 default:
2842 case ovly_off:
2843 return 0; /* overlay debugging off */
2844 case ovly_auto: /* overlay debugging automatic */
2845 /* Unles there is a gdbarch_overlay_update function,
2846 there's really nothing useful to do here (can't really go auto) */
2847 gdbarch = get_objfile_arch (osect->objfile);
2848 if (gdbarch_overlay_update_p (gdbarch))
2849 {
2850 if (overlay_cache_invalid)
2851 {
2852 overlay_invalidate_all ();
2853 overlay_cache_invalid = 0;
2854 }
2855 if (osect->ovly_mapped == -1)
2856 gdbarch_overlay_update (gdbarch, osect);
2857 }
2858 /* fall thru to manual case */
2859 case ovly_on: /* overlay debugging manual */
2860 return osect->ovly_mapped == 1;
2861 }
2862 }
2863
2864 /* Function: pc_in_unmapped_range
2865 If PC falls into the lma range of SECTION, return true, else false. */
2866
2867 CORE_ADDR
2868 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2869 {
2870 if (section_is_overlay (section))
2871 {
2872 bfd *abfd = section->objfile->obfd;
2873 asection *bfd_section = section->the_bfd_section;
2874
2875 /* We assume the LMA is relocated by the same offset as the VMA. */
2876 bfd_vma size = bfd_get_section_size (bfd_section);
2877 CORE_ADDR offset = obj_section_offset (section);
2878
2879 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2880 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2881 return 1;
2882 }
2883
2884 return 0;
2885 }
2886
2887 /* Function: pc_in_mapped_range
2888 If PC falls into the vma range of SECTION, return true, else false. */
2889
2890 CORE_ADDR
2891 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2892 {
2893 if (section_is_overlay (section))
2894 {
2895 if (obj_section_addr (section) <= pc
2896 && pc < obj_section_endaddr (section))
2897 return 1;
2898 }
2899
2900 return 0;
2901 }
2902
2903
2904 /* Return true if the mapped ranges of sections A and B overlap, false
2905 otherwise. */
2906 static int
2907 sections_overlap (struct obj_section *a, struct obj_section *b)
2908 {
2909 CORE_ADDR a_start = obj_section_addr (a);
2910 CORE_ADDR a_end = obj_section_endaddr (a);
2911 CORE_ADDR b_start = obj_section_addr (b);
2912 CORE_ADDR b_end = obj_section_endaddr (b);
2913
2914 return (a_start < b_end && b_start < a_end);
2915 }
2916
2917 /* Function: overlay_unmapped_address (PC, SECTION)
2918 Returns the address corresponding to PC in the unmapped (load) range.
2919 May be the same as PC. */
2920
2921 CORE_ADDR
2922 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2923 {
2924 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2925 {
2926 bfd *abfd = section->objfile->obfd;
2927 asection *bfd_section = section->the_bfd_section;
2928
2929 return pc + bfd_section_lma (abfd, bfd_section)
2930 - bfd_section_vma (abfd, bfd_section);
2931 }
2932
2933 return pc;
2934 }
2935
2936 /* Function: overlay_mapped_address (PC, SECTION)
2937 Returns the address corresponding to PC in the mapped (runtime) range.
2938 May be the same as PC. */
2939
2940 CORE_ADDR
2941 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2942 {
2943 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2944 {
2945 bfd *abfd = section->objfile->obfd;
2946 asection *bfd_section = section->the_bfd_section;
2947
2948 return pc + bfd_section_vma (abfd, bfd_section)
2949 - bfd_section_lma (abfd, bfd_section);
2950 }
2951
2952 return pc;
2953 }
2954
2955
2956 /* Function: symbol_overlayed_address
2957 Return one of two addresses (relative to the VMA or to the LMA),
2958 depending on whether the section is mapped or not. */
2959
2960 CORE_ADDR
2961 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
2962 {
2963 if (overlay_debugging)
2964 {
2965 /* If the symbol has no section, just return its regular address. */
2966 if (section == 0)
2967 return address;
2968 /* If the symbol's section is not an overlay, just return its address */
2969 if (!section_is_overlay (section))
2970 return address;
2971 /* If the symbol's section is mapped, just return its address */
2972 if (section_is_mapped (section))
2973 return address;
2974 /*
2975 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2976 * then return its LOADED address rather than its vma address!!
2977 */
2978 return overlay_unmapped_address (address, section);
2979 }
2980 return address;
2981 }
2982
2983 /* Function: find_pc_overlay (PC)
2984 Return the best-match overlay section for PC:
2985 If PC matches a mapped overlay section's VMA, return that section.
2986 Else if PC matches an unmapped section's VMA, return that section.
2987 Else if PC matches an unmapped section's LMA, return that section. */
2988
2989 struct obj_section *
2990 find_pc_overlay (CORE_ADDR pc)
2991 {
2992 struct objfile *objfile;
2993 struct obj_section *osect, *best_match = NULL;
2994
2995 if (overlay_debugging)
2996 ALL_OBJSECTIONS (objfile, osect)
2997 if (section_is_overlay (osect))
2998 {
2999 if (pc_in_mapped_range (pc, osect))
3000 {
3001 if (section_is_mapped (osect))
3002 return osect;
3003 else
3004 best_match = osect;
3005 }
3006 else if (pc_in_unmapped_range (pc, osect))
3007 best_match = osect;
3008 }
3009 return best_match;
3010 }
3011
3012 /* Function: find_pc_mapped_section (PC)
3013 If PC falls into the VMA address range of an overlay section that is
3014 currently marked as MAPPED, return that section. Else return NULL. */
3015
3016 struct obj_section *
3017 find_pc_mapped_section (CORE_ADDR pc)
3018 {
3019 struct objfile *objfile;
3020 struct obj_section *osect;
3021
3022 if (overlay_debugging)
3023 ALL_OBJSECTIONS (objfile, osect)
3024 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3025 return osect;
3026
3027 return NULL;
3028 }
3029
3030 /* Function: list_overlays_command
3031 Print a list of mapped sections and their PC ranges */
3032
3033 void
3034 list_overlays_command (char *args, int from_tty)
3035 {
3036 int nmapped = 0;
3037 struct objfile *objfile;
3038 struct obj_section *osect;
3039
3040 if (overlay_debugging)
3041 ALL_OBJSECTIONS (objfile, osect)
3042 if (section_is_mapped (osect))
3043 {
3044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3045 const char *name;
3046 bfd_vma lma, vma;
3047 int size;
3048
3049 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3050 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3051 size = bfd_get_section_size (osect->the_bfd_section);
3052 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3053
3054 printf_filtered ("Section %s, loaded at ", name);
3055 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3056 puts_filtered (" - ");
3057 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3058 printf_filtered (", mapped at ");
3059 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3060 puts_filtered (" - ");
3061 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3062 puts_filtered ("\n");
3063
3064 nmapped++;
3065 }
3066 if (nmapped == 0)
3067 printf_filtered (_("No sections are mapped.\n"));
3068 }
3069
3070 /* Function: map_overlay_command
3071 Mark the named section as mapped (ie. residing at its VMA address). */
3072
3073 void
3074 map_overlay_command (char *args, int from_tty)
3075 {
3076 struct objfile *objfile, *objfile2;
3077 struct obj_section *sec, *sec2;
3078
3079 if (!overlay_debugging)
3080 error (_("\
3081 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3082 the 'overlay manual' command."));
3083
3084 if (args == 0 || *args == 0)
3085 error (_("Argument required: name of an overlay section"));
3086
3087 /* First, find a section matching the user supplied argument */
3088 ALL_OBJSECTIONS (objfile, sec)
3089 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3090 {
3091 /* Now, check to see if the section is an overlay. */
3092 if (!section_is_overlay (sec))
3093 continue; /* not an overlay section */
3094
3095 /* Mark the overlay as "mapped" */
3096 sec->ovly_mapped = 1;
3097
3098 /* Next, make a pass and unmap any sections that are
3099 overlapped by this new section: */
3100 ALL_OBJSECTIONS (objfile2, sec2)
3101 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3102 {
3103 if (info_verbose)
3104 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3105 bfd_section_name (objfile->obfd,
3106 sec2->the_bfd_section));
3107 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3108 }
3109 return;
3110 }
3111 error (_("No overlay section called %s"), args);
3112 }
3113
3114 /* Function: unmap_overlay_command
3115 Mark the overlay section as unmapped
3116 (ie. resident in its LMA address range, rather than the VMA range). */
3117
3118 void
3119 unmap_overlay_command (char *args, int from_tty)
3120 {
3121 struct objfile *objfile;
3122 struct obj_section *sec;
3123
3124 if (!overlay_debugging)
3125 error (_("\
3126 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3127 the 'overlay manual' command."));
3128
3129 if (args == 0 || *args == 0)
3130 error (_("Argument required: name of an overlay section"));
3131
3132 /* First, find a section matching the user supplied argument */
3133 ALL_OBJSECTIONS (objfile, sec)
3134 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3135 {
3136 if (!sec->ovly_mapped)
3137 error (_("Section %s is not mapped"), args);
3138 sec->ovly_mapped = 0;
3139 return;
3140 }
3141 error (_("No overlay section called %s"), args);
3142 }
3143
3144 /* Function: overlay_auto_command
3145 A utility command to turn on overlay debugging.
3146 Possibly this should be done via a set/show command. */
3147
3148 static void
3149 overlay_auto_command (char *args, int from_tty)
3150 {
3151 overlay_debugging = ovly_auto;
3152 enable_overlay_breakpoints ();
3153 if (info_verbose)
3154 printf_unfiltered (_("Automatic overlay debugging enabled."));
3155 }
3156
3157 /* Function: overlay_manual_command
3158 A utility command to turn on overlay debugging.
3159 Possibly this should be done via a set/show command. */
3160
3161 static void
3162 overlay_manual_command (char *args, int from_tty)
3163 {
3164 overlay_debugging = ovly_on;
3165 disable_overlay_breakpoints ();
3166 if (info_verbose)
3167 printf_unfiltered (_("Overlay debugging enabled."));
3168 }
3169
3170 /* Function: overlay_off_command
3171 A utility command to turn on overlay debugging.
3172 Possibly this should be done via a set/show command. */
3173
3174 static void
3175 overlay_off_command (char *args, int from_tty)
3176 {
3177 overlay_debugging = ovly_off;
3178 disable_overlay_breakpoints ();
3179 if (info_verbose)
3180 printf_unfiltered (_("Overlay debugging disabled."));
3181 }
3182
3183 static void
3184 overlay_load_command (char *args, int from_tty)
3185 {
3186 struct gdbarch *gdbarch = get_current_arch ();
3187
3188 if (gdbarch_overlay_update_p (gdbarch))
3189 gdbarch_overlay_update (gdbarch, NULL);
3190 else
3191 error (_("This target does not know how to read its overlay state."));
3192 }
3193
3194 /* Function: overlay_command
3195 A place-holder for a mis-typed command */
3196
3197 /* Command list chain containing all defined "overlay" subcommands. */
3198 struct cmd_list_element *overlaylist;
3199
3200 static void
3201 overlay_command (char *args, int from_tty)
3202 {
3203 printf_unfiltered
3204 ("\"overlay\" must be followed by the name of an overlay command.\n");
3205 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3206 }
3207
3208
3209 /* Target Overlays for the "Simplest" overlay manager:
3210
3211 This is GDB's default target overlay layer. It works with the
3212 minimal overlay manager supplied as an example by Cygnus. The
3213 entry point is via a function pointer "gdbarch_overlay_update",
3214 so targets that use a different runtime overlay manager can
3215 substitute their own overlay_update function and take over the
3216 function pointer.
3217
3218 The overlay_update function pokes around in the target's data structures
3219 to see what overlays are mapped, and updates GDB's overlay mapping with
3220 this information.
3221
3222 In this simple implementation, the target data structures are as follows:
3223 unsigned _novlys; /# number of overlay sections #/
3224 unsigned _ovly_table[_novlys][4] = {
3225 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3226 {..., ..., ..., ...},
3227 }
3228 unsigned _novly_regions; /# number of overlay regions #/
3229 unsigned _ovly_region_table[_novly_regions][3] = {
3230 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3231 {..., ..., ...},
3232 }
3233 These functions will attempt to update GDB's mappedness state in the
3234 symbol section table, based on the target's mappedness state.
3235
3236 To do this, we keep a cached copy of the target's _ovly_table, and
3237 attempt to detect when the cached copy is invalidated. The main
3238 entry point is "simple_overlay_update(SECT), which looks up SECT in
3239 the cached table and re-reads only the entry for that section from
3240 the target (whenever possible).
3241 */
3242
3243 /* Cached, dynamically allocated copies of the target data structures: */
3244 static unsigned (*cache_ovly_table)[4] = 0;
3245 #if 0
3246 static unsigned (*cache_ovly_region_table)[3] = 0;
3247 #endif
3248 static unsigned cache_novlys = 0;
3249 #if 0
3250 static unsigned cache_novly_regions = 0;
3251 #endif
3252 static CORE_ADDR cache_ovly_table_base = 0;
3253 #if 0
3254 static CORE_ADDR cache_ovly_region_table_base = 0;
3255 #endif
3256 enum ovly_index
3257 {
3258 VMA, SIZE, LMA, MAPPED
3259 };
3260
3261 /* Throw away the cached copy of _ovly_table */
3262 static void
3263 simple_free_overlay_table (void)
3264 {
3265 if (cache_ovly_table)
3266 xfree (cache_ovly_table);
3267 cache_novlys = 0;
3268 cache_ovly_table = NULL;
3269 cache_ovly_table_base = 0;
3270 }
3271
3272 #if 0
3273 /* Throw away the cached copy of _ovly_region_table */
3274 static void
3275 simple_free_overlay_region_table (void)
3276 {
3277 if (cache_ovly_region_table)
3278 xfree (cache_ovly_region_table);
3279 cache_novly_regions = 0;
3280 cache_ovly_region_table = NULL;
3281 cache_ovly_region_table_base = 0;
3282 }
3283 #endif
3284
3285 /* Read an array of ints of size SIZE from the target into a local buffer.
3286 Convert to host order. int LEN is number of ints */
3287 static void
3288 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3289 int len, int size, enum bfd_endian byte_order)
3290 {
3291 /* FIXME (alloca): Not safe if array is very large. */
3292 gdb_byte *buf = alloca (len * size);
3293 int i;
3294
3295 read_memory (memaddr, buf, len * size);
3296 for (i = 0; i < len; i++)
3297 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3298 }
3299
3300 /* Find and grab a copy of the target _ovly_table
3301 (and _novlys, which is needed for the table's size) */
3302 static int
3303 simple_read_overlay_table (void)
3304 {
3305 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3306 struct gdbarch *gdbarch;
3307 int word_size;
3308 enum bfd_endian byte_order;
3309
3310 simple_free_overlay_table ();
3311 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3312 if (! novlys_msym)
3313 {
3314 error (_("Error reading inferior's overlay table: "
3315 "couldn't find `_novlys' variable\n"
3316 "in inferior. Use `overlay manual' mode."));
3317 return 0;
3318 }
3319
3320 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3321 if (! ovly_table_msym)
3322 {
3323 error (_("Error reading inferior's overlay table: couldn't find "
3324 "`_ovly_table' array\n"
3325 "in inferior. Use `overlay manual' mode."));
3326 return 0;
3327 }
3328
3329 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3330 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3331 byte_order = gdbarch_byte_order (gdbarch);
3332
3333 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3334 4, byte_order);
3335 cache_ovly_table
3336 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3337 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3338 read_target_long_array (cache_ovly_table_base,
3339 (unsigned int *) cache_ovly_table,
3340 cache_novlys * 4, word_size, byte_order);
3341
3342 return 1; /* SUCCESS */
3343 }
3344
3345 #if 0
3346 /* Find and grab a copy of the target _ovly_region_table
3347 (and _novly_regions, which is needed for the table's size) */
3348 static int
3349 simple_read_overlay_region_table (void)
3350 {
3351 struct minimal_symbol *msym;
3352 struct gdbarch *gdbarch;
3353 int word_size;
3354 enum bfd_endian byte_order;
3355
3356 simple_free_overlay_region_table ();
3357 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3358 if (msym == NULL)
3359 return 0; /* failure */
3360
3361 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3362 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3363 byte_order = gdbarch_byte_order (gdbarch);
3364
3365 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3366 4, byte_order);
3367
3368 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3369 if (cache_ovly_region_table != NULL)
3370 {
3371 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3372 if (msym != NULL)
3373 {
3374 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3375 read_target_long_array (cache_ovly_region_table_base,
3376 (unsigned int *) cache_ovly_region_table,
3377 cache_novly_regions * 3,
3378 word_size, byte_order);
3379 }
3380 else
3381 return 0; /* failure */
3382 }
3383 else
3384 return 0; /* failure */
3385 return 1; /* SUCCESS */
3386 }
3387 #endif
3388
3389 /* Function: simple_overlay_update_1
3390 A helper function for simple_overlay_update. Assuming a cached copy
3391 of _ovly_table exists, look through it to find an entry whose vma,
3392 lma and size match those of OSECT. Re-read the entry and make sure
3393 it still matches OSECT (else the table may no longer be valid).
3394 Set OSECT's mapped state to match the entry. Return: 1 for
3395 success, 0 for failure. */
3396
3397 static int
3398 simple_overlay_update_1 (struct obj_section *osect)
3399 {
3400 int i, size;
3401 bfd *obfd = osect->objfile->obfd;
3402 asection *bsect = osect->the_bfd_section;
3403 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3404 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3406
3407 size = bfd_get_section_size (osect->the_bfd_section);
3408 for (i = 0; i < cache_novlys; i++)
3409 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3410 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3411 /* && cache_ovly_table[i][SIZE] == size */ )
3412 {
3413 read_target_long_array (cache_ovly_table_base + i * word_size,
3414 (unsigned int *) cache_ovly_table[i],
3415 4, word_size, byte_order);
3416 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3417 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3418 /* && cache_ovly_table[i][SIZE] == size */ )
3419 {
3420 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3421 return 1;
3422 }
3423 else /* Warning! Warning! Target's ovly table has changed! */
3424 return 0;
3425 }
3426 return 0;
3427 }
3428
3429 /* Function: simple_overlay_update
3430 If OSECT is NULL, then update all sections' mapped state
3431 (after re-reading the entire target _ovly_table).
3432 If OSECT is non-NULL, then try to find a matching entry in the
3433 cached ovly_table and update only OSECT's mapped state.
3434 If a cached entry can't be found or the cache isn't valid, then
3435 re-read the entire cache, and go ahead and update all sections. */
3436
3437 void
3438 simple_overlay_update (struct obj_section *osect)
3439 {
3440 struct objfile *objfile;
3441
3442 /* Were we given an osect to look up? NULL means do all of them. */
3443 if (osect)
3444 /* Have we got a cached copy of the target's overlay table? */
3445 if (cache_ovly_table != NULL)
3446 /* Does its cached location match what's currently in the symtab? */
3447 if (cache_ovly_table_base ==
3448 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3449 /* Then go ahead and try to look up this single section in the cache */
3450 if (simple_overlay_update_1 (osect))
3451 /* Found it! We're done. */
3452 return;
3453
3454 /* Cached table no good: need to read the entire table anew.
3455 Or else we want all the sections, in which case it's actually
3456 more efficient to read the whole table in one block anyway. */
3457
3458 if (! simple_read_overlay_table ())
3459 return;
3460
3461 /* Now may as well update all sections, even if only one was requested. */
3462 ALL_OBJSECTIONS (objfile, osect)
3463 if (section_is_overlay (osect))
3464 {
3465 int i, size;
3466 bfd *obfd = osect->objfile->obfd;
3467 asection *bsect = osect->the_bfd_section;
3468
3469 size = bfd_get_section_size (bsect);
3470 for (i = 0; i < cache_novlys; i++)
3471 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3472 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3473 /* && cache_ovly_table[i][SIZE] == size */ )
3474 { /* obj_section matches i'th entry in ovly_table */
3475 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3476 break; /* finished with inner for loop: break out */
3477 }
3478 }
3479 }
3480
3481 /* Set the output sections and output offsets for section SECTP in
3482 ABFD. The relocation code in BFD will read these offsets, so we
3483 need to be sure they're initialized. We map each section to itself,
3484 with no offset; this means that SECTP->vma will be honored. */
3485
3486 static void
3487 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3488 {
3489 sectp->output_section = sectp;
3490 sectp->output_offset = 0;
3491 }
3492
3493 /* Default implementation for sym_relocate. */
3494
3495
3496 bfd_byte *
3497 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3498 bfd_byte *buf)
3499 {
3500 bfd *abfd = objfile->obfd;
3501
3502 /* We're only interested in sections with relocation
3503 information. */
3504 if ((sectp->flags & SEC_RELOC) == 0)
3505 return NULL;
3506
3507 /* We will handle section offsets properly elsewhere, so relocate as if
3508 all sections begin at 0. */
3509 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3510
3511 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3512 }
3513
3514 /* Relocate the contents of a debug section SECTP in ABFD. The
3515 contents are stored in BUF if it is non-NULL, or returned in a
3516 malloc'd buffer otherwise.
3517
3518 For some platforms and debug info formats, shared libraries contain
3519 relocations against the debug sections (particularly for DWARF-2;
3520 one affected platform is PowerPC GNU/Linux, although it depends on
3521 the version of the linker in use). Also, ELF object files naturally
3522 have unresolved relocations for their debug sections. We need to apply
3523 the relocations in order to get the locations of symbols correct.
3524 Another example that may require relocation processing, is the
3525 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3526 debug section. */
3527
3528 bfd_byte *
3529 symfile_relocate_debug_section (struct objfile *objfile,
3530 asection *sectp, bfd_byte *buf)
3531 {
3532 gdb_assert (objfile->sf->sym_relocate);
3533
3534 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3535 }
3536
3537 struct symfile_segment_data *
3538 get_symfile_segment_data (bfd *abfd)
3539 {
3540 struct sym_fns *sf = find_sym_fns (abfd);
3541
3542 if (sf == NULL)
3543 return NULL;
3544
3545 return sf->sym_segments (abfd);
3546 }
3547
3548 void
3549 free_symfile_segment_data (struct symfile_segment_data *data)
3550 {
3551 xfree (data->segment_bases);
3552 xfree (data->segment_sizes);
3553 xfree (data->segment_info);
3554 xfree (data);
3555 }
3556
3557
3558 /* Given:
3559 - DATA, containing segment addresses from the object file ABFD, and
3560 the mapping from ABFD's sections onto the segments that own them,
3561 and
3562 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3563 segment addresses reported by the target,
3564 store the appropriate offsets for each section in OFFSETS.
3565
3566 If there are fewer entries in SEGMENT_BASES than there are segments
3567 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3568
3569 If there are more entries, then ignore the extra. The target may
3570 not be able to distinguish between an empty data segment and a
3571 missing data segment; a missing text segment is less plausible. */
3572 int
3573 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3574 struct section_offsets *offsets,
3575 int num_segment_bases,
3576 const CORE_ADDR *segment_bases)
3577 {
3578 int i;
3579 asection *sect;
3580
3581 /* It doesn't make sense to call this function unless you have some
3582 segment base addresses. */
3583 gdb_assert (num_segment_bases > 0);
3584
3585 /* If we do not have segment mappings for the object file, we
3586 can not relocate it by segments. */
3587 gdb_assert (data != NULL);
3588 gdb_assert (data->num_segments > 0);
3589
3590 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3591 {
3592 int which = data->segment_info[i];
3593
3594 gdb_assert (0 <= which && which <= data->num_segments);
3595
3596 /* Don't bother computing offsets for sections that aren't
3597 loaded as part of any segment. */
3598 if (! which)
3599 continue;
3600
3601 /* Use the last SEGMENT_BASES entry as the address of any extra
3602 segments mentioned in DATA->segment_info. */
3603 if (which > num_segment_bases)
3604 which = num_segment_bases;
3605
3606 offsets->offsets[i] = (segment_bases[which - 1]
3607 - data->segment_bases[which - 1]);
3608 }
3609
3610 return 1;
3611 }
3612
3613 static void
3614 symfile_find_segment_sections (struct objfile *objfile)
3615 {
3616 bfd *abfd = objfile->obfd;
3617 int i;
3618 asection *sect;
3619 struct symfile_segment_data *data;
3620
3621 data = get_symfile_segment_data (objfile->obfd);
3622 if (data == NULL)
3623 return;
3624
3625 if (data->num_segments != 1 && data->num_segments != 2)
3626 {
3627 free_symfile_segment_data (data);
3628 return;
3629 }
3630
3631 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3632 {
3633 CORE_ADDR vma;
3634 int which = data->segment_info[i];
3635
3636 if (which == 1)
3637 {
3638 if (objfile->sect_index_text == -1)
3639 objfile->sect_index_text = sect->index;
3640
3641 if (objfile->sect_index_rodata == -1)
3642 objfile->sect_index_rodata = sect->index;
3643 }
3644 else if (which == 2)
3645 {
3646 if (objfile->sect_index_data == -1)
3647 objfile->sect_index_data = sect->index;
3648
3649 if (objfile->sect_index_bss == -1)
3650 objfile->sect_index_bss = sect->index;
3651 }
3652 }
3653
3654 free_symfile_segment_data (data);
3655 }
3656
3657 void
3658 _initialize_symfile (void)
3659 {
3660 struct cmd_list_element *c;
3661
3662 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3663 Load symbol table from executable file FILE.\n\
3664 The `file' command can also load symbol tables, as well as setting the file\n\
3665 to execute."), &cmdlist);
3666 set_cmd_completer (c, filename_completer);
3667
3668 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3669 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3670 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3671 ADDR is the starting address of the file's text.\n\
3672 The optional arguments are section-name section-address pairs and\n\
3673 should be specified if the data and bss segments are not contiguous\n\
3674 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3675 &cmdlist);
3676 set_cmd_completer (c, filename_completer);
3677
3678 c = add_cmd ("load", class_files, load_command, _("\
3679 Dynamically load FILE into the running program, and record its symbols\n\
3680 for access from GDB.\n\
3681 A load OFFSET may also be given."), &cmdlist);
3682 set_cmd_completer (c, filename_completer);
3683
3684 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3685 &symbol_reloading, _("\
3686 Set dynamic symbol table reloading multiple times in one run."), _("\
3687 Show dynamic symbol table reloading multiple times in one run."), NULL,
3688 NULL,
3689 show_symbol_reloading,
3690 &setlist, &showlist);
3691
3692 add_prefix_cmd ("overlay", class_support, overlay_command,
3693 _("Commands for debugging overlays."), &overlaylist,
3694 "overlay ", 0, &cmdlist);
3695
3696 add_com_alias ("ovly", "overlay", class_alias, 1);
3697 add_com_alias ("ov", "overlay", class_alias, 1);
3698
3699 add_cmd ("map-overlay", class_support, map_overlay_command,
3700 _("Assert that an overlay section is mapped."), &overlaylist);
3701
3702 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3703 _("Assert that an overlay section is unmapped."), &overlaylist);
3704
3705 add_cmd ("list-overlays", class_support, list_overlays_command,
3706 _("List mappings of overlay sections."), &overlaylist);
3707
3708 add_cmd ("manual", class_support, overlay_manual_command,
3709 _("Enable overlay debugging."), &overlaylist);
3710 add_cmd ("off", class_support, overlay_off_command,
3711 _("Disable overlay debugging."), &overlaylist);
3712 add_cmd ("auto", class_support, overlay_auto_command,
3713 _("Enable automatic overlay debugging."), &overlaylist);
3714 add_cmd ("load-target", class_support, overlay_load_command,
3715 _("Read the overlay mapping state from the target."), &overlaylist);
3716
3717 /* Filename extension to source language lookup table: */
3718 init_filename_language_table ();
3719 add_setshow_string_noescape_cmd ("extension-language", class_files,
3720 &ext_args, _("\
3721 Set mapping between filename extension and source language."), _("\
3722 Show mapping between filename extension and source language."), _("\
3723 Usage: set extension-language .foo bar"),
3724 set_ext_lang_command,
3725 show_ext_args,
3726 &setlist, &showlist);
3727
3728 add_info ("extensions", info_ext_lang_command,
3729 _("All filename extensions associated with a source language."));
3730
3731 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3732 &debug_file_directory, _("\
3733 Set the directories where separate debug symbols are searched for."), _("\
3734 Show the directories where separate debug symbols are searched for."), _("\
3735 Separate debug symbols are first searched for in the same\n\
3736 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3737 and lastly at the path of the directory of the binary with\n\
3738 each global debug-file-directory component prepended."),
3739 NULL,
3740 show_debug_file_directory,
3741 &setlist, &showlist);
3742 }
This page took 0.152321 seconds and 4 git commands to generate.