Add entry for change in solib-osf.c (osf_in_dynsym_resolve_code).
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47
48 #ifndef O_BINARY
49 #define O_BINARY 0
50 #endif
51
52 #ifdef HPUXHPPA
53
54 /* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57 extern int hp_som_som_object_present;
58 extern int hp_cxx_exception_support_initialized;
59 #define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63 #endif
64
65 int (*ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*pre_add_symbol_hook) (char *);
72 void (*post_add_symbol_hook) (void);
73 void (*target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 struct complaint oldsyms_complaint =
81 {
82 "Replacing old symbols for `%s'", 0, 0
83 };
84
85 struct complaint empty_symtab_complaint =
86 {
87 "Empty symbol table found for `%s'", 0, 0
88 };
89
90 struct complaint unknown_option_complaint =
91 {
92 "Unknown option `%s' ignored", 0, 0
93 };
94
95 /* External variables and functions referenced. */
96
97 extern int info_verbose;
98
99 extern void report_transfer_performance (unsigned long, time_t, time_t);
100
101 /* Functions this file defines */
102
103 #if 0
104 static int simple_read_overlay_region_table (void);
105 static void simple_free_overlay_region_table (void);
106 #endif
107
108 static void set_initial_language (void);
109
110 static void load_command (char *, int);
111
112 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
113
114 static void add_symbol_file_command (char *, int);
115
116 static void add_shared_symbol_files_command (char *, int);
117
118 static void cashier_psymtab (struct partial_symtab *);
119
120 bfd *symfile_bfd_open (char *);
121
122 static void find_sym_fns (struct objfile *);
123
124 static void decrement_reading_symtab (void *);
125
126 static void overlay_invalidate_all (void);
127
128 static int overlay_is_mapped (struct obj_section *);
129
130 void list_overlays_command (char *, int);
131
132 void map_overlay_command (char *, int);
133
134 void unmap_overlay_command (char *, int);
135
136 static void overlay_auto_command (char *, int);
137
138 static void overlay_manual_command (char *, int);
139
140 static void overlay_off_command (char *, int);
141
142 static void overlay_load_command (char *, int);
143
144 static void overlay_command (char *, int);
145
146 static void simple_free_overlay_table (void);
147
148 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
149
150 static int simple_read_overlay_table (void);
151
152 static int simple_overlay_update_1 (struct obj_section *);
153
154 static void add_filename_language (char *ext, enum language lang);
155
156 static void set_ext_lang_command (char *args, int from_tty);
157
158 static void info_ext_lang_command (char *args, int from_tty);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
180 this variable is interpreted as a threshhold. If adding a new
181 library's symbol table to those already known to the debugger would
182 exceed this threshhold, then the shlib's symbols are not added.
183
184 If non-zero on other platforms, shared library symbols will be added
185 automatically when the inferior is created, new libraries are loaded,
186 or when attaching to the inferior. This is almost always what users
187 will want to have happen; but for very large programs, the startup
188 time will be excessive, and so if this is a problem, the user can
189 clear this flag and then add the shared library symbols as needed.
190 Note that there is a potential for confusion, since if the shared
191 library symbols are not loaded, commands like "info fun" will *not*
192 report all the functions that are actually present.
193
194 Note that HP-UX interprets this variable to mean, "threshhold size
195 in megabytes, where zero means never add". Other platforms interpret
196 this variable to mean, "always add if non-zero, never add if zero."
197 */
198
199 int auto_solib_add = 1;
200 \f
201
202 /* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206 static int
207 compare_symbols (const void *s1p, const void *s2p)
208 {
209 register struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
214 }
215
216 /*
217
218 LOCAL FUNCTION
219
220 compare_psymbols -- compare two partial symbols by name
221
222 DESCRIPTION
223
224 Given pointers to pointers to two partial symbol table entries,
225 compare them by name and return -N, 0, or +N (ala strcmp).
226 Typically used by sorting routines like qsort().
227
228 NOTES
229
230 Does direct compare of first two characters before punting
231 and passing to strcmp for longer compares. Note that the
232 original version had a bug whereby two null strings or two
233 identically named one character strings would return the
234 comparison of memory following the null byte.
235
236 */
237
238 static int
239 compare_psymbols (const void *s1p, const void *s2p)
240 {
241 register struct partial_symbol **s1, **s2;
242 register char *st1, *st2;
243
244 s1 = (struct partial_symbol **) s1p;
245 s2 = (struct partial_symbol **) s2p;
246 st1 = SYMBOL_SOURCE_NAME (*s1);
247 st2 = SYMBOL_SOURCE_NAME (*s2);
248
249
250 if ((st1[0] - st2[0]) || !st1[0])
251 {
252 return (st1[0] - st2[0]);
253 }
254 else if ((st1[1] - st2[1]) || !st1[1])
255 {
256 return (st1[1] - st2[1]);
257 }
258 else
259 {
260 return (strcmp (st1, st2));
261 }
262 }
263
264 void
265 sort_pst_symbols (struct partial_symtab *pst)
266 {
267 /* Sort the global list; don't sort the static list */
268
269 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
270 pst->n_global_syms, sizeof (struct partial_symbol *),
271 compare_psymbols);
272 }
273
274 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
275
276 void
277 sort_block_syms (register struct block *b)
278 {
279 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
280 sizeof (struct symbol *), compare_symbols);
281 }
282
283 /* Call sort_symtab_syms to sort alphabetically
284 the symbols of each block of one symtab. */
285
286 void
287 sort_symtab_syms (register struct symtab *s)
288 {
289 register struct blockvector *bv;
290 int nbl;
291 int i;
292 register struct block *b;
293
294 if (s == 0)
295 return;
296 bv = BLOCKVECTOR (s);
297 nbl = BLOCKVECTOR_NBLOCKS (bv);
298 for (i = 0; i < nbl; i++)
299 {
300 b = BLOCKVECTOR_BLOCK (bv, i);
301 if (BLOCK_SHOULD_SORT (b))
302 sort_block_syms (b);
303 }
304 }
305
306 /* Make a null terminated copy of the string at PTR with SIZE characters in
307 the obstack pointed to by OBSTACKP . Returns the address of the copy.
308 Note that the string at PTR does not have to be null terminated, I.E. it
309 may be part of a larger string and we are only saving a substring. */
310
311 char *
312 obsavestring (char *ptr, int size, struct obstack *obstackp)
313 {
314 register char *p = (char *) obstack_alloc (obstackp, size + 1);
315 /* Open-coded memcpy--saves function call time. These strings are usually
316 short. FIXME: Is this really still true with a compiler that can
317 inline memcpy? */
318 {
319 register char *p1 = ptr;
320 register char *p2 = p;
321 char *end = ptr + size;
322 while (p1 != end)
323 *p2++ = *p1++;
324 }
325 p[size] = 0;
326 return p;
327 }
328
329 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
330 in the obstack pointed to by OBSTACKP. */
331
332 char *
333 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
334 const char *s3)
335 {
336 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
337 register char *val = (char *) obstack_alloc (obstackp, len);
338 strcpy (val, s1);
339 strcat (val, s2);
340 strcat (val, s3);
341 return val;
342 }
343
344 /* True if we are nested inside psymtab_to_symtab. */
345
346 int currently_reading_symtab = 0;
347
348 static void
349 decrement_reading_symtab (void *dummy)
350 {
351 currently_reading_symtab--;
352 }
353
354 /* Get the symbol table that corresponds to a partial_symtab.
355 This is fast after the first time you do it. In fact, there
356 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
357 case inline. */
358
359 struct symtab *
360 psymtab_to_symtab (register struct partial_symtab *pst)
361 {
362 /* If it's been looked up before, return it. */
363 if (pst->symtab)
364 return pst->symtab;
365
366 /* If it has not yet been read in, read it. */
367 if (!pst->readin)
368 {
369 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
370 currently_reading_symtab++;
371 (*pst->read_symtab) (pst);
372 do_cleanups (back_to);
373 }
374
375 return pst->symtab;
376 }
377
378 /* Initialize entry point information for this objfile. */
379
380 void
381 init_entry_point_info (struct objfile *objfile)
382 {
383 /* Save startup file's range of PC addresses to help blockframe.c
384 decide where the bottom of the stack is. */
385
386 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
387 {
388 /* Executable file -- record its entry point so we'll recognize
389 the startup file because it contains the entry point. */
390 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
391 }
392 else
393 {
394 /* Examination of non-executable.o files. Short-circuit this stuff. */
395 objfile->ei.entry_point = INVALID_ENTRY_POINT;
396 }
397 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
398 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
399 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
400 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
401 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
402 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
403 }
404
405 /* Get current entry point address. */
406
407 CORE_ADDR
408 entry_point_address (void)
409 {
410 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
411 }
412
413 /* Remember the lowest-addressed loadable section we've seen.
414 This function is called via bfd_map_over_sections.
415
416 In case of equal vmas, the section with the largest size becomes the
417 lowest-addressed loadable section.
418
419 If the vmas and sizes are equal, the last section is considered the
420 lowest-addressed loadable section. */
421
422 void
423 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
424 {
425 asection **lowest = (asection **) obj;
426
427 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
428 return;
429 if (!*lowest)
430 *lowest = sect; /* First loadable section */
431 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
432 *lowest = sect; /* A lower loadable section */
433 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
434 && (bfd_section_size (abfd, (*lowest))
435 <= bfd_section_size (abfd, sect)))
436 *lowest = sect;
437 }
438
439
440 /* Build (allocate and populate) a section_addr_info struct from
441 an existing section table. */
442
443 extern struct section_addr_info *
444 build_section_addr_info_from_section_table (const struct section_table *start,
445 const struct section_table *end)
446 {
447 struct section_addr_info *sap;
448 const struct section_table *stp;
449 int oidx;
450
451 sap = xmalloc (sizeof (struct section_addr_info));
452 memset (sap, 0, sizeof (struct section_addr_info));
453
454 for (stp = start, oidx = 0; stp != end; stp++)
455 {
456 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
457 && oidx < MAX_SECTIONS)
458 {
459 sap->other[oidx].addr = stp->addr;
460 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
461 sap->other[oidx].sectindex = stp->the_bfd_section->index;
462 oidx++;
463 }
464 }
465
466 return sap;
467 }
468
469
470 /* Free all memory allocated by build_section_addr_info_from_section_table. */
471
472 extern void
473 free_section_addr_info (struct section_addr_info *sap)
474 {
475 int idx;
476
477 for (idx = 0; idx < MAX_SECTIONS; idx++)
478 if (sap->other[idx].name)
479 xfree (sap->other[idx].name);
480 xfree (sap);
481 }
482
483
484 /* Parse the user's idea of an offset for dynamic linking, into our idea
485 of how to represent it for fast symbol reading. This is the default
486 version of the sym_fns.sym_offsets function for symbol readers that
487 don't need to do anything special. It allocates a section_offsets table
488 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
489
490 void
491 default_symfile_offsets (struct objfile *objfile,
492 struct section_addr_info *addrs)
493 {
494 int i;
495 asection *sect = NULL;
496
497 objfile->num_sections = SECT_OFF_MAX;
498 objfile->section_offsets = (struct section_offsets *)
499 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
500 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
501
502 /* Now calculate offsets for section that were specified by the
503 caller. */
504 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
505 {
506 struct other_sections *osp ;
507
508 osp = &addrs->other[i] ;
509 if (osp->addr == 0)
510 continue;
511
512 /* Record all sections in offsets */
513 /* The section_offsets in the objfile are here filled in using
514 the BFD index. */
515 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
516 }
517
518 /* Remember the bfd indexes for the .text, .data, .bss and
519 .rodata sections. */
520
521 sect = bfd_get_section_by_name (objfile->obfd, ".text");
522 if (sect)
523 objfile->sect_index_text = sect->index;
524
525 sect = bfd_get_section_by_name (objfile->obfd, ".data");
526 if (sect)
527 objfile->sect_index_data = sect->index;
528
529 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
530 if (sect)
531 objfile->sect_index_bss = sect->index;
532
533 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
534 if (sect)
535 objfile->sect_index_rodata = sect->index;
536
537 }
538
539 /* Process a symbol file, as either the main file or as a dynamically
540 loaded file.
541
542 OBJFILE is where the symbols are to be read from.
543
544 ADDR is the address where the text segment was loaded, unless the
545 objfile is the main symbol file, in which case it is zero.
546
547 MAINLINE is nonzero if this is the main symbol file, or zero if
548 it's an extra symbol file such as dynamically loaded code.
549
550 VERBO is nonzero if the caller has printed a verbose message about
551 the symbol reading (and complaints can be more terse about it). */
552
553 void
554 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
555 int mainline, int verbo)
556 {
557 asection *lower_sect;
558 asection *sect;
559 CORE_ADDR lower_offset;
560 struct section_addr_info local_addr;
561 struct cleanup *old_chain;
562 int i;
563
564 /* If ADDRS is NULL, initialize the local section_addr_info struct and
565 point ADDRS to it. We now establish the convention that an addr of
566 zero means no load address was specified. */
567
568 if (addrs == NULL)
569 {
570 memset (&local_addr, 0, sizeof (local_addr));
571 addrs = &local_addr;
572 }
573
574 init_entry_point_info (objfile);
575 find_sym_fns (objfile);
576
577 /* Make sure that partially constructed symbol tables will be cleaned up
578 if an error occurs during symbol reading. */
579 old_chain = make_cleanup_free_objfile (objfile);
580
581 if (mainline)
582 {
583 /* We will modify the main symbol table, make sure that all its users
584 will be cleaned up if an error occurs during symbol reading. */
585 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
586
587 /* Since no error yet, throw away the old symbol table. */
588
589 if (symfile_objfile != NULL)
590 {
591 free_objfile (symfile_objfile);
592 symfile_objfile = NULL;
593 }
594
595 /* Currently we keep symbols from the add-symbol-file command.
596 If the user wants to get rid of them, they should do "symbol-file"
597 without arguments first. Not sure this is the best behavior
598 (PR 2207). */
599
600 (*objfile->sf->sym_new_init) (objfile);
601 }
602
603 /* Convert addr into an offset rather than an absolute address.
604 We find the lowest address of a loaded segment in the objfile,
605 and assume that <addr> is where that got loaded.
606
607 We no longer warn if the lowest section is not a text segment (as
608 happens for the PA64 port. */
609 if (!mainline)
610 {
611 /* Find lowest loadable section to be used as starting point for
612 continguous sections. FIXME!! won't work without call to find
613 .text first, but this assumes text is lowest section. */
614 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
615 if (lower_sect == NULL)
616 bfd_map_over_sections (objfile->obfd, find_lowest_section,
617 (PTR) &lower_sect);
618 if (lower_sect == NULL)
619 warning ("no loadable sections found in added symbol-file %s",
620 objfile->name);
621 else
622 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
623 warning ("Lowest section in %s is %s at %s",
624 objfile->name,
625 bfd_section_name (objfile->obfd, lower_sect),
626 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
627 if (lower_sect != NULL)
628 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
629 else
630 lower_offset = 0;
631
632 /* Calculate offsets for the loadable sections.
633 FIXME! Sections must be in order of increasing loadable section
634 so that contiguous sections can use the lower-offset!!!
635
636 Adjust offsets if the segments are not contiguous.
637 If the section is contiguous, its offset should be set to
638 the offset of the highest loadable section lower than it
639 (the loadable section directly below it in memory).
640 this_offset = lower_offset = lower_addr - lower_orig_addr */
641
642 /* Calculate offsets for sections. */
643 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
644 {
645 if (addrs->other[i].addr != 0)
646 {
647 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
648 if (sect)
649 {
650 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
651 lower_offset = addrs->other[i].addr;
652 /* This is the index used by BFD. */
653 addrs->other[i].sectindex = sect->index ;
654 }
655 else
656 {
657 warning ("section %s not found in %s", addrs->other[i].name,
658 objfile->name);
659 addrs->other[i].addr = 0;
660 }
661 }
662 else
663 addrs->other[i].addr = lower_offset;
664 }
665 }
666
667 /* Initialize symbol reading routines for this objfile, allow complaints to
668 appear for this new file, and record how verbose to be, then do the
669 initial symbol reading for this file. */
670
671 (*objfile->sf->sym_init) (objfile);
672 clear_complaints (1, verbo);
673
674 (*objfile->sf->sym_offsets) (objfile, addrs);
675
676 #ifndef IBM6000_TARGET
677 /* This is a SVR4/SunOS specific hack, I think. In any event, it
678 screws RS/6000. sym_offsets should be doing this sort of thing,
679 because it knows the mapping between bfd sections and
680 section_offsets. */
681 /* This is a hack. As far as I can tell, section offsets are not
682 target dependent. They are all set to addr with a couple of
683 exceptions. The exceptions are sysvr4 shared libraries, whose
684 offsets are kept in solib structures anyway and rs6000 xcoff
685 which handles shared libraries in a completely unique way.
686
687 Section offsets are built similarly, except that they are built
688 by adding addr in all cases because there is no clear mapping
689 from section_offsets into actual sections. Note that solib.c
690 has a different algorithm for finding section offsets.
691
692 These should probably all be collapsed into some target
693 independent form of shared library support. FIXME. */
694
695 if (addrs)
696 {
697 struct obj_section *s;
698
699 /* Map section offsets in "addr" back to the object's
700 sections by comparing the section names with bfd's
701 section names. Then adjust the section address by
702 the offset. */ /* for gdb/13815 */
703
704 ALL_OBJFILE_OSECTIONS (objfile, s)
705 {
706 CORE_ADDR s_addr = 0;
707 int i;
708
709 for (i = 0;
710 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
711 i++)
712 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
713 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
714
715 s->addr -= s->offset;
716 s->addr += s_addr;
717 s->endaddr -= s->offset;
718 s->endaddr += s_addr;
719 s->offset += s_addr;
720 }
721 }
722 #endif /* not IBM6000_TARGET */
723
724 (*objfile->sf->sym_read) (objfile, mainline);
725
726 if (!have_partial_symbols () && !have_full_symbols ())
727 {
728 wrap_here ("");
729 printf_filtered ("(no debugging symbols found)...");
730 wrap_here ("");
731 }
732
733 /* Don't allow char * to have a typename (else would get caddr_t).
734 Ditto void *. FIXME: Check whether this is now done by all the
735 symbol readers themselves (many of them now do), and if so remove
736 it from here. */
737
738 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
739 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
740
741 /* Mark the objfile has having had initial symbol read attempted. Note
742 that this does not mean we found any symbols... */
743
744 objfile->flags |= OBJF_SYMS;
745
746 /* Discard cleanups as symbol reading was successful. */
747
748 discard_cleanups (old_chain);
749
750 /* Call this after reading in a new symbol table to give target
751 dependent code a crack at the new symbols. For instance, this
752 could be used to update the values of target-specific symbols GDB
753 needs to keep track of (such as _sigtramp, or whatever). */
754
755 TARGET_SYMFILE_POSTREAD (objfile);
756 }
757
758 /* Perform required actions after either reading in the initial
759 symbols for a new objfile, or mapping in the symbols from a reusable
760 objfile. */
761
762 void
763 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
764 {
765
766 /* If this is the main symbol file we have to clean up all users of the
767 old main symbol file. Otherwise it is sufficient to fixup all the
768 breakpoints that may have been redefined by this symbol file. */
769 if (mainline)
770 {
771 /* OK, make it the "real" symbol file. */
772 symfile_objfile = objfile;
773
774 clear_symtab_users ();
775 }
776 else
777 {
778 breakpoint_re_set ();
779 }
780
781 /* We're done reading the symbol file; finish off complaints. */
782 clear_complaints (0, verbo);
783 }
784
785 /* Process a symbol file, as either the main file or as a dynamically
786 loaded file.
787
788 NAME is the file name (which will be tilde-expanded and made
789 absolute herein) (but we don't free or modify NAME itself).
790 FROM_TTY says how verbose to be. MAINLINE specifies whether this
791 is the main symbol file, or whether it's an extra symbol file such
792 as dynamically loaded code. If !mainline, ADDR is the address
793 where the text segment was loaded.
794
795 Upon success, returns a pointer to the objfile that was added.
796 Upon failure, jumps back to command level (never returns). */
797
798 struct objfile *
799 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
800 int mainline, int flags)
801 {
802 struct objfile *objfile;
803 struct partial_symtab *psymtab;
804 bfd *abfd;
805
806 /* Open a bfd for the file, and give user a chance to burp if we'd be
807 interactively wiping out any existing symbols. */
808
809 abfd = symfile_bfd_open (name);
810
811 if ((have_full_symbols () || have_partial_symbols ())
812 && mainline
813 && from_tty
814 && !query ("Load new symbol table from \"%s\"? ", name))
815 error ("Not confirmed.");
816
817 objfile = allocate_objfile (abfd, flags);
818
819 /* If the objfile uses a mapped symbol file, and we have a psymtab for
820 it, then skip reading any symbols at this time. */
821
822 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
823 {
824 /* We mapped in an existing symbol table file that already has had
825 initial symbol reading performed, so we can skip that part. Notify
826 the user that instead of reading the symbols, they have been mapped.
827 */
828 if (from_tty || info_verbose)
829 {
830 printf_filtered ("Mapped symbols for %s...", name);
831 wrap_here ("");
832 gdb_flush (gdb_stdout);
833 }
834 init_entry_point_info (objfile);
835 find_sym_fns (objfile);
836 }
837 else
838 {
839 /* We either created a new mapped symbol table, mapped an existing
840 symbol table file which has not had initial symbol reading
841 performed, or need to read an unmapped symbol table. */
842 if (from_tty || info_verbose)
843 {
844 if (pre_add_symbol_hook)
845 pre_add_symbol_hook (name);
846 else
847 {
848 printf_filtered ("Reading symbols from %s...", name);
849 wrap_here ("");
850 gdb_flush (gdb_stdout);
851 }
852 }
853 syms_from_objfile (objfile, addrs, mainline, from_tty);
854 }
855
856 /* We now have at least a partial symbol table. Check to see if the
857 user requested that all symbols be read on initial access via either
858 the gdb startup command line or on a per symbol file basis. Expand
859 all partial symbol tables for this objfile if so. */
860
861 if ((flags & OBJF_READNOW) || readnow_symbol_files)
862 {
863 if (from_tty || info_verbose)
864 {
865 printf_filtered ("expanding to full symbols...");
866 wrap_here ("");
867 gdb_flush (gdb_stdout);
868 }
869
870 for (psymtab = objfile->psymtabs;
871 psymtab != NULL;
872 psymtab = psymtab->next)
873 {
874 psymtab_to_symtab (psymtab);
875 }
876 }
877
878 if (from_tty || info_verbose)
879 {
880 if (post_add_symbol_hook)
881 post_add_symbol_hook ();
882 else
883 {
884 printf_filtered ("done.\n");
885 gdb_flush (gdb_stdout);
886 }
887 }
888
889 new_symfile_objfile (objfile, mainline, from_tty);
890
891 if (target_new_objfile_hook)
892 target_new_objfile_hook (objfile);
893
894 return (objfile);
895 }
896
897 /* Call symbol_file_add() with default values and update whatever is
898 affected by the loading of a new main().
899 Used when the file is supplied in the gdb command line
900 and by some targets with special loading requirements.
901 The auxiliary function, symbol_file_add_main_1(), has the flags
902 argument for the switches that can only be specified in the symbol_file
903 command itself. */
904
905 void
906 symbol_file_add_main (char *args, int from_tty)
907 {
908 symbol_file_add_main_1 (args, from_tty, 0);
909 }
910
911 static void
912 symbol_file_add_main_1 (char *args, int from_tty, int flags)
913 {
914 symbol_file_add (args, from_tty, NULL, 1, flags);
915
916 #ifdef HPUXHPPA
917 RESET_HP_UX_GLOBALS ();
918 #endif
919
920 /* Getting new symbols may change our opinion about
921 what is frameless. */
922 reinit_frame_cache ();
923
924 set_initial_language ();
925 }
926
927 void
928 symbol_file_clear (int from_tty)
929 {
930 if ((have_full_symbols () || have_partial_symbols ())
931 && from_tty
932 && !query ("Discard symbol table from `%s'? ",
933 symfile_objfile->name))
934 error ("Not confirmed.");
935 free_all_objfiles ();
936
937 /* solib descriptors may have handles to objfiles. Since their
938 storage has just been released, we'd better wipe the solib
939 descriptors as well.
940 */
941 #if defined(SOLIB_RESTART)
942 SOLIB_RESTART ();
943 #endif
944
945 symfile_objfile = NULL;
946 if (from_tty)
947 printf_unfiltered ("No symbol file now.\n");
948 #ifdef HPUXHPPA
949 RESET_HP_UX_GLOBALS ();
950 #endif
951 }
952
953 /* This is the symbol-file command. Read the file, analyze its
954 symbols, and add a struct symtab to a symtab list. The syntax of
955 the command is rather bizarre--(1) buildargv implements various
956 quoting conventions which are undocumented and have little or
957 nothing in common with the way things are quoted (or not quoted)
958 elsewhere in GDB, (2) options are used, which are not generally
959 used in GDB (perhaps "set mapped on", "set readnow on" would be
960 better), (3) the order of options matters, which is contrary to GNU
961 conventions (because it is confusing and inconvenient). */
962 /* Note: ezannoni 2000-04-17. This function used to have support for
963 rombug (see remote-os9k.c). It consisted of a call to target_link()
964 (target.c) to get the address of the text segment from the target,
965 and pass that to symbol_file_add(). This is no longer supported. */
966
967 void
968 symbol_file_command (char *args, int from_tty)
969 {
970 char **argv;
971 char *name = NULL;
972 struct cleanup *cleanups;
973 int flags = OBJF_USERLOADED;
974
975 dont_repeat ();
976
977 if (args == NULL)
978 {
979 symbol_file_clear (from_tty);
980 }
981 else
982 {
983 if ((argv = buildargv (args)) == NULL)
984 {
985 nomem (0);
986 }
987 cleanups = make_cleanup_freeargv (argv);
988 while (*argv != NULL)
989 {
990 if (STREQ (*argv, "-mapped"))
991 flags |= OBJF_MAPPED;
992 else
993 if (STREQ (*argv, "-readnow"))
994 flags |= OBJF_READNOW;
995 else
996 if (**argv == '-')
997 error ("unknown option `%s'", *argv);
998 else
999 {
1000 name = *argv;
1001
1002 symbol_file_add_main_1 (name, from_tty, flags);
1003 }
1004 argv++;
1005 }
1006
1007 if (name == NULL)
1008 {
1009 error ("no symbol file name was specified");
1010 }
1011 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1012 do_cleanups (cleanups);
1013 }
1014 }
1015
1016 /* Set the initial language.
1017
1018 A better solution would be to record the language in the psymtab when reading
1019 partial symbols, and then use it (if known) to set the language. This would
1020 be a win for formats that encode the language in an easily discoverable place,
1021 such as DWARF. For stabs, we can jump through hoops looking for specially
1022 named symbols or try to intuit the language from the specific type of stabs
1023 we find, but we can't do that until later when we read in full symbols.
1024 FIXME. */
1025
1026 static void
1027 set_initial_language (void)
1028 {
1029 struct partial_symtab *pst;
1030 enum language lang = language_unknown;
1031
1032 pst = find_main_psymtab ();
1033 if (pst != NULL)
1034 {
1035 if (pst->filename != NULL)
1036 {
1037 lang = deduce_language_from_filename (pst->filename);
1038 }
1039 if (lang == language_unknown)
1040 {
1041 /* Make C the default language */
1042 lang = language_c;
1043 }
1044 set_language (lang);
1045 expected_language = current_language; /* Don't warn the user */
1046 }
1047 }
1048
1049 /* Open file specified by NAME and hand it off to BFD for preliminary
1050 analysis. Result is a newly initialized bfd *, which includes a newly
1051 malloc'd` copy of NAME (tilde-expanded and made absolute).
1052 In case of trouble, error() is called. */
1053
1054 bfd *
1055 symfile_bfd_open (char *name)
1056 {
1057 bfd *sym_bfd;
1058 int desc;
1059 char *absolute_name;
1060
1061
1062
1063 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1064
1065 /* Look down path for it, allocate 2nd new malloc'd copy. */
1066 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1067 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1068 if (desc < 0)
1069 {
1070 char *exename = alloca (strlen (name) + 5);
1071 strcat (strcpy (exename, name), ".exe");
1072 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1073 0, &absolute_name);
1074 }
1075 #endif
1076 if (desc < 0)
1077 {
1078 make_cleanup (xfree, name);
1079 perror_with_name (name);
1080 }
1081 xfree (name); /* Free 1st new malloc'd copy */
1082 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1083 /* It'll be freed in free_objfile(). */
1084
1085 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1086 if (!sym_bfd)
1087 {
1088 close (desc);
1089 make_cleanup (xfree, name);
1090 error ("\"%s\": can't open to read symbols: %s.", name,
1091 bfd_errmsg (bfd_get_error ()));
1092 }
1093 sym_bfd->cacheable = true;
1094
1095 if (!bfd_check_format (sym_bfd, bfd_object))
1096 {
1097 /* FIXME: should be checking for errors from bfd_close (for one thing,
1098 on error it does not free all the storage associated with the
1099 bfd). */
1100 bfd_close (sym_bfd); /* This also closes desc */
1101 make_cleanup (xfree, name);
1102 error ("\"%s\": can't read symbols: %s.", name,
1103 bfd_errmsg (bfd_get_error ()));
1104 }
1105 return (sym_bfd);
1106 }
1107
1108 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1109 startup by the _initialize routine in each object file format reader,
1110 to register information about each format the the reader is prepared
1111 to handle. */
1112
1113 void
1114 add_symtab_fns (struct sym_fns *sf)
1115 {
1116 sf->next = symtab_fns;
1117 symtab_fns = sf;
1118 }
1119
1120
1121 /* Initialize to read symbols from the symbol file sym_bfd. It either
1122 returns or calls error(). The result is an initialized struct sym_fns
1123 in the objfile structure, that contains cached information about the
1124 symbol file. */
1125
1126 static void
1127 find_sym_fns (struct objfile *objfile)
1128 {
1129 struct sym_fns *sf;
1130 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1131 char *our_target = bfd_get_target (objfile->obfd);
1132
1133 /* Special kludge for apollo. See dstread.c. */
1134 if (STREQN (our_target, "apollo", 6))
1135 our_flavour = (enum bfd_flavour) -2;
1136
1137 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1138 {
1139 if (our_flavour == sf->sym_flavour)
1140 {
1141 objfile->sf = sf;
1142 return;
1143 }
1144 }
1145 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1146 bfd_get_target (objfile->obfd));
1147 }
1148 \f
1149 /* This function runs the load command of our current target. */
1150
1151 static void
1152 load_command (char *arg, int from_tty)
1153 {
1154 if (arg == NULL)
1155 arg = get_exec_file (1);
1156 target_load (arg, from_tty);
1157 }
1158
1159 /* This version of "load" should be usable for any target. Currently
1160 it is just used for remote targets, not inftarg.c or core files,
1161 on the theory that only in that case is it useful.
1162
1163 Avoiding xmodem and the like seems like a win (a) because we don't have
1164 to worry about finding it, and (b) On VMS, fork() is very slow and so
1165 we don't want to run a subprocess. On the other hand, I'm not sure how
1166 performance compares. */
1167
1168 static int download_write_size = 512;
1169 static int validate_download = 0;
1170
1171 void
1172 generic_load (char *args, int from_tty)
1173 {
1174 asection *s;
1175 bfd *loadfile_bfd;
1176 time_t start_time, end_time; /* Start and end times of download */
1177 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1178 unsigned long write_count = 0; /* Number of writes needed. */
1179 unsigned long load_offset; /* offset to add to vma for each section */
1180 char *filename;
1181 struct cleanup *old_cleanups;
1182 char *offptr;
1183 CORE_ADDR total_size = 0;
1184 CORE_ADDR total_sent = 0;
1185
1186 /* Parse the input argument - the user can specify a load offset as
1187 a second argument. */
1188 filename = xmalloc (strlen (args) + 1);
1189 old_cleanups = make_cleanup (xfree, filename);
1190 strcpy (filename, args);
1191 offptr = strchr (filename, ' ');
1192 if (offptr != NULL)
1193 {
1194 char *endptr;
1195 load_offset = strtoul (offptr, &endptr, 0);
1196 if (offptr == endptr)
1197 error ("Invalid download offset:%s\n", offptr);
1198 *offptr = '\0';
1199 }
1200 else
1201 load_offset = 0;
1202
1203 /* Open the file for loading. */
1204 loadfile_bfd = bfd_openr (filename, gnutarget);
1205 if (loadfile_bfd == NULL)
1206 {
1207 perror_with_name (filename);
1208 return;
1209 }
1210
1211 /* FIXME: should be checking for errors from bfd_close (for one thing,
1212 on error it does not free all the storage associated with the
1213 bfd). */
1214 make_cleanup_bfd_close (loadfile_bfd);
1215
1216 if (!bfd_check_format (loadfile_bfd, bfd_object))
1217 {
1218 error ("\"%s\" is not an object file: %s", filename,
1219 bfd_errmsg (bfd_get_error ()));
1220 }
1221
1222 for (s = loadfile_bfd->sections; s; s = s->next)
1223 if (s->flags & SEC_LOAD)
1224 total_size += bfd_get_section_size_before_reloc (s);
1225
1226 start_time = time (NULL);
1227
1228 for (s = loadfile_bfd->sections; s; s = s->next)
1229 {
1230 if (s->flags & SEC_LOAD)
1231 {
1232 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1233 if (size > 0)
1234 {
1235 char *buffer;
1236 struct cleanup *old_chain;
1237 CORE_ADDR lma = s->lma + load_offset;
1238 CORE_ADDR block_size;
1239 int err;
1240 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1241 CORE_ADDR sent;
1242
1243 if (download_write_size > 0 && size > download_write_size)
1244 block_size = download_write_size;
1245 else
1246 block_size = size;
1247
1248 buffer = xmalloc (size);
1249 old_chain = make_cleanup (xfree, buffer);
1250
1251 /* Is this really necessary? I guess it gives the user something
1252 to look at during a long download. */
1253 #ifdef UI_OUT
1254 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1255 sect_name, paddr_nz (size), paddr_nz (lma));
1256 #else
1257 fprintf_unfiltered (gdb_stdout,
1258 "Loading section %s, size 0x%s lma 0x%s\n",
1259 sect_name, paddr_nz (size), paddr_nz (lma));
1260 #endif
1261
1262 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1263
1264 sent = 0;
1265 do
1266 {
1267 CORE_ADDR len;
1268 CORE_ADDR this_transfer = size - sent;
1269 if (this_transfer >= block_size)
1270 this_transfer = block_size;
1271 len = target_write_memory_partial (lma, buffer,
1272 this_transfer, &err);
1273 if (err)
1274 break;
1275 if (validate_download)
1276 {
1277 /* Broken memories and broken monitors manifest
1278 themselves here when bring new computers to
1279 life. This doubles already slow downloads. */
1280 /* NOTE: cagney/1999-10-18: A more efficient
1281 implementation might add a verify_memory()
1282 method to the target vector and then use
1283 that. remote.c could implement that method
1284 using the ``qCRC'' packet. */
1285 char *check = xmalloc (len);
1286 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1287 if (target_read_memory (lma, check, len) != 0)
1288 error ("Download verify read failed at 0x%s",
1289 paddr (lma));
1290 if (memcmp (buffer, check, len) != 0)
1291 error ("Download verify compare failed at 0x%s",
1292 paddr (lma));
1293 do_cleanups (verify_cleanups);
1294 }
1295 data_count += len;
1296 lma += len;
1297 buffer += len;
1298 write_count += 1;
1299 sent += len;
1300 total_sent += len;
1301 if (quit_flag
1302 || (ui_load_progress_hook != NULL
1303 && ui_load_progress_hook (sect_name, sent)))
1304 error ("Canceled the download");
1305
1306 if (show_load_progress != NULL)
1307 show_load_progress (sect_name, sent, size, total_sent, total_size);
1308 }
1309 while (sent < size);
1310
1311 if (err != 0)
1312 error ("Memory access error while loading section %s.", sect_name);
1313
1314 do_cleanups (old_chain);
1315 }
1316 }
1317 }
1318
1319 end_time = time (NULL);
1320 {
1321 CORE_ADDR entry;
1322 entry = bfd_get_start_address (loadfile_bfd);
1323 #ifdef UI_OUT
1324 ui_out_text (uiout, "Start address ");
1325 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1326 ui_out_text (uiout, ", load size ");
1327 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1328 ui_out_text (uiout, "\n");
1329
1330 #else
1331 fprintf_unfiltered (gdb_stdout,
1332 "Start address 0x%s , load size %ld\n",
1333 paddr_nz (entry), data_count);
1334 #endif
1335 /* We were doing this in remote-mips.c, I suspect it is right
1336 for other targets too. */
1337 write_pc (entry);
1338 }
1339
1340 /* FIXME: are we supposed to call symbol_file_add or not? According to
1341 a comment from remote-mips.c (where a call to symbol_file_add was
1342 commented out), making the call confuses GDB if more than one file is
1343 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1344 does. */
1345
1346 print_transfer_performance (gdb_stdout, data_count, write_count,
1347 end_time - start_time);
1348
1349 do_cleanups (old_cleanups);
1350 }
1351
1352 /* Report how fast the transfer went. */
1353
1354 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1355 replaced by print_transfer_performance (with a very different
1356 function signature). */
1357
1358 void
1359 report_transfer_performance (unsigned long data_count, time_t start_time,
1360 time_t end_time)
1361 {
1362 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1363 }
1364
1365 void
1366 print_transfer_performance (struct ui_file *stream,
1367 unsigned long data_count,
1368 unsigned long write_count,
1369 unsigned long time_count)
1370 {
1371 #ifdef UI_OUT
1372 ui_out_text (uiout, "Transfer rate: ");
1373 if (time_count > 0)
1374 {
1375 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1376 (data_count * 8) / time_count);
1377 ui_out_text (uiout, " bits/sec");
1378 }
1379 else
1380 {
1381 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1382 ui_out_text (uiout, " bits in <1 sec");
1383 }
1384 if (write_count > 0)
1385 {
1386 ui_out_text (uiout, ", ");
1387 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1388 ui_out_text (uiout, " bytes/write");
1389 }
1390 ui_out_text (uiout, ".\n");
1391 #else
1392 fprintf_unfiltered (stream, "Transfer rate: ");
1393 if (time_count > 0)
1394 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1395 else
1396 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1397 if (write_count > 0)
1398 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1399 fprintf_unfiltered (stream, ".\n");
1400 #endif
1401 }
1402
1403 /* This function allows the addition of incrementally linked object files.
1404 It does not modify any state in the target, only in the debugger. */
1405 /* Note: ezannoni 2000-04-13 This function/command used to have a
1406 special case syntax for the rombug target (Rombug is the boot
1407 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1408 rombug case, the user doesn't need to supply a text address,
1409 instead a call to target_link() (in target.c) would supply the
1410 value to use. We are now discontinuing this type of ad hoc syntax. */
1411
1412 /* ARGSUSED */
1413 static void
1414 add_symbol_file_command (char *args, int from_tty)
1415 {
1416 char *filename = NULL;
1417 int flags = OBJF_USERLOADED;
1418 char *arg;
1419 int expecting_option = 0;
1420 int section_index = 0;
1421 int argcnt = 0;
1422 int sec_num = 0;
1423 int i;
1424 int expecting_sec_name = 0;
1425 int expecting_sec_addr = 0;
1426
1427 struct
1428 {
1429 char *name;
1430 char *value;
1431 } sect_opts[SECT_OFF_MAX];
1432
1433 struct section_addr_info section_addrs;
1434 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1435
1436 dont_repeat ();
1437
1438 if (args == NULL)
1439 error ("add-symbol-file takes a file name and an address");
1440
1441 /* Make a copy of the string that we can safely write into. */
1442 args = xstrdup (args);
1443
1444 /* Ensure section_addrs is initialized */
1445 memset (&section_addrs, 0, sizeof (section_addrs));
1446
1447 while (*args != '\000')
1448 {
1449 /* Any leading spaces? */
1450 while (isspace (*args))
1451 args++;
1452
1453 /* Point arg to the beginning of the argument. */
1454 arg = args;
1455
1456 /* Move args pointer over the argument. */
1457 while ((*args != '\000') && !isspace (*args))
1458 args++;
1459
1460 /* If there are more arguments, terminate arg and
1461 proceed past it. */
1462 if (*args != '\000')
1463 *args++ = '\000';
1464
1465 /* Now process the argument. */
1466 if (argcnt == 0)
1467 {
1468 /* The first argument is the file name. */
1469 filename = tilde_expand (arg);
1470 make_cleanup (xfree, filename);
1471 }
1472 else
1473 if (argcnt == 1)
1474 {
1475 /* The second argument is always the text address at which
1476 to load the program. */
1477 sect_opts[section_index].name = ".text";
1478 sect_opts[section_index].value = arg;
1479 section_index++;
1480 }
1481 else
1482 {
1483 /* It's an option (starting with '-') or it's an argument
1484 to an option */
1485
1486 if (*arg == '-')
1487 {
1488 if (strcmp (arg, "-mapped") == 0)
1489 flags |= OBJF_MAPPED;
1490 else
1491 if (strcmp (arg, "-readnow") == 0)
1492 flags |= OBJF_READNOW;
1493 else
1494 if (strcmp (arg, "-s") == 0)
1495 {
1496 if (section_index >= SECT_OFF_MAX)
1497 error ("Too many sections specified.");
1498 expecting_sec_name = 1;
1499 expecting_sec_addr = 1;
1500 }
1501 }
1502 else
1503 {
1504 if (expecting_sec_name)
1505 {
1506 sect_opts[section_index].name = arg;
1507 expecting_sec_name = 0;
1508 }
1509 else
1510 if (expecting_sec_addr)
1511 {
1512 sect_opts[section_index].value = arg;
1513 expecting_sec_addr = 0;
1514 section_index++;
1515 }
1516 else
1517 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1518 }
1519 }
1520 argcnt++;
1521 }
1522
1523 /* Print the prompt for the query below. And save the arguments into
1524 a sect_addr_info structure to be passed around to other
1525 functions. We have to split this up into separate print
1526 statements because local_hex_string returns a local static
1527 string. */
1528
1529 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1530 for (i = 0; i < section_index; i++)
1531 {
1532 CORE_ADDR addr;
1533 char *val = sect_opts[i].value;
1534 char *sec = sect_opts[i].name;
1535
1536 val = sect_opts[i].value;
1537 if (val[0] == '0' && val[1] == 'x')
1538 addr = strtoul (val+2, NULL, 16);
1539 else
1540 addr = strtoul (val, NULL, 10);
1541
1542 /* Here we store the section offsets in the order they were
1543 entered on the command line. */
1544 section_addrs.other[sec_num].name = sec;
1545 section_addrs.other[sec_num].addr = addr;
1546 printf_filtered ("\t%s_addr = %s\n",
1547 sec,
1548 local_hex_string ((unsigned long)addr));
1549 sec_num++;
1550
1551 /* The object's sections are initialized when a
1552 call is made to build_objfile_section_table (objfile).
1553 This happens in reread_symbols.
1554 At this point, we don't know what file type this is,
1555 so we can't determine what section names are valid. */
1556 }
1557
1558 if (from_tty && (!query ("%s", "")))
1559 error ("Not confirmed.");
1560
1561 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1562
1563 /* Getting new symbols may change our opinion about what is
1564 frameless. */
1565 reinit_frame_cache ();
1566 do_cleanups (my_cleanups);
1567 }
1568 \f
1569 static void
1570 add_shared_symbol_files_command (char *args, int from_tty)
1571 {
1572 #ifdef ADD_SHARED_SYMBOL_FILES
1573 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1574 #else
1575 error ("This command is not available in this configuration of GDB.");
1576 #endif
1577 }
1578 \f
1579 /* Re-read symbols if a symbol-file has changed. */
1580 void
1581 reread_symbols (void)
1582 {
1583 struct objfile *objfile;
1584 long new_modtime;
1585 int reread_one = 0;
1586 struct stat new_statbuf;
1587 int res;
1588
1589 /* With the addition of shared libraries, this should be modified,
1590 the load time should be saved in the partial symbol tables, since
1591 different tables may come from different source files. FIXME.
1592 This routine should then walk down each partial symbol table
1593 and see if the symbol table that it originates from has been changed */
1594
1595 for (objfile = object_files; objfile; objfile = objfile->next)
1596 {
1597 if (objfile->obfd)
1598 {
1599 #ifdef IBM6000_TARGET
1600 /* If this object is from a shared library, then you should
1601 stat on the library name, not member name. */
1602
1603 if (objfile->obfd->my_archive)
1604 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1605 else
1606 #endif
1607 res = stat (objfile->name, &new_statbuf);
1608 if (res != 0)
1609 {
1610 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1611 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1612 objfile->name);
1613 continue;
1614 }
1615 new_modtime = new_statbuf.st_mtime;
1616 if (new_modtime != objfile->mtime)
1617 {
1618 struct cleanup *old_cleanups;
1619 struct section_offsets *offsets;
1620 int num_offsets;
1621 char *obfd_filename;
1622
1623 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1624 objfile->name);
1625
1626 /* There are various functions like symbol_file_add,
1627 symfile_bfd_open, syms_from_objfile, etc., which might
1628 appear to do what we want. But they have various other
1629 effects which we *don't* want. So we just do stuff
1630 ourselves. We don't worry about mapped files (for one thing,
1631 any mapped file will be out of date). */
1632
1633 /* If we get an error, blow away this objfile (not sure if
1634 that is the correct response for things like shared
1635 libraries). */
1636 old_cleanups = make_cleanup_free_objfile (objfile);
1637 /* We need to do this whenever any symbols go away. */
1638 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1639
1640 /* Clean up any state BFD has sitting around. We don't need
1641 to close the descriptor but BFD lacks a way of closing the
1642 BFD without closing the descriptor. */
1643 obfd_filename = bfd_get_filename (objfile->obfd);
1644 if (!bfd_close (objfile->obfd))
1645 error ("Can't close BFD for %s: %s", objfile->name,
1646 bfd_errmsg (bfd_get_error ()));
1647 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1648 if (objfile->obfd == NULL)
1649 error ("Can't open %s to read symbols.", objfile->name);
1650 /* bfd_openr sets cacheable to true, which is what we want. */
1651 if (!bfd_check_format (objfile->obfd, bfd_object))
1652 error ("Can't read symbols from %s: %s.", objfile->name,
1653 bfd_errmsg (bfd_get_error ()));
1654
1655 /* Save the offsets, we will nuke them with the rest of the
1656 psymbol_obstack. */
1657 num_offsets = objfile->num_sections;
1658 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1659 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1660
1661 /* Nuke all the state that we will re-read. Much of the following
1662 code which sets things to NULL really is necessary to tell
1663 other parts of GDB that there is nothing currently there. */
1664
1665 /* FIXME: Do we have to free a whole linked list, or is this
1666 enough? */
1667 if (objfile->global_psymbols.list)
1668 mfree (objfile->md, objfile->global_psymbols.list);
1669 memset (&objfile->global_psymbols, 0,
1670 sizeof (objfile->global_psymbols));
1671 if (objfile->static_psymbols.list)
1672 mfree (objfile->md, objfile->static_psymbols.list);
1673 memset (&objfile->static_psymbols, 0,
1674 sizeof (objfile->static_psymbols));
1675
1676 /* Free the obstacks for non-reusable objfiles */
1677 free_bcache (&objfile->psymbol_cache);
1678 obstack_free (&objfile->psymbol_obstack, 0);
1679 obstack_free (&objfile->symbol_obstack, 0);
1680 obstack_free (&objfile->type_obstack, 0);
1681 objfile->sections = NULL;
1682 objfile->symtabs = NULL;
1683 objfile->psymtabs = NULL;
1684 objfile->free_psymtabs = NULL;
1685 objfile->msymbols = NULL;
1686 objfile->minimal_symbol_count = 0;
1687 memset (&objfile->msymbol_hash, 0,
1688 sizeof (objfile->msymbol_hash));
1689 memset (&objfile->msymbol_demangled_hash, 0,
1690 sizeof (objfile->msymbol_demangled_hash));
1691 objfile->fundamental_types = NULL;
1692 if (objfile->sf != NULL)
1693 {
1694 (*objfile->sf->sym_finish) (objfile);
1695 }
1696
1697 /* We never make this a mapped file. */
1698 objfile->md = NULL;
1699 /* obstack_specify_allocation also initializes the obstack so
1700 it is empty. */
1701 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1702 xmalloc, xfree);
1703 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1704 xmalloc, xfree);
1705 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1706 xmalloc, xfree);
1707 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1708 xmalloc, xfree);
1709 if (build_objfile_section_table (objfile))
1710 {
1711 error ("Can't find the file sections in `%s': %s",
1712 objfile->name, bfd_errmsg (bfd_get_error ()));
1713 }
1714
1715 /* We use the same section offsets as from last time. I'm not
1716 sure whether that is always correct for shared libraries. */
1717 objfile->section_offsets = (struct section_offsets *)
1718 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1719 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1720 objfile->num_sections = num_offsets;
1721
1722 /* What the hell is sym_new_init for, anyway? The concept of
1723 distinguishing between the main file and additional files
1724 in this way seems rather dubious. */
1725 if (objfile == symfile_objfile)
1726 {
1727 (*objfile->sf->sym_new_init) (objfile);
1728 #ifdef HPUXHPPA
1729 RESET_HP_UX_GLOBALS ();
1730 #endif
1731 }
1732
1733 (*objfile->sf->sym_init) (objfile);
1734 clear_complaints (1, 1);
1735 /* The "mainline" parameter is a hideous hack; I think leaving it
1736 zero is OK since dbxread.c also does what it needs to do if
1737 objfile->global_psymbols.size is 0. */
1738 (*objfile->sf->sym_read) (objfile, 0);
1739 if (!have_partial_symbols () && !have_full_symbols ())
1740 {
1741 wrap_here ("");
1742 printf_filtered ("(no debugging symbols found)\n");
1743 wrap_here ("");
1744 }
1745 objfile->flags |= OBJF_SYMS;
1746
1747 /* We're done reading the symbol file; finish off complaints. */
1748 clear_complaints (0, 1);
1749
1750 /* Getting new symbols may change our opinion about what is
1751 frameless. */
1752
1753 reinit_frame_cache ();
1754
1755 /* Discard cleanups as symbol reading was successful. */
1756 discard_cleanups (old_cleanups);
1757
1758 /* If the mtime has changed between the time we set new_modtime
1759 and now, we *want* this to be out of date, so don't call stat
1760 again now. */
1761 objfile->mtime = new_modtime;
1762 reread_one = 1;
1763
1764 /* Call this after reading in a new symbol table to give target
1765 dependent code a crack at the new symbols. For instance, this
1766 could be used to update the values of target-specific symbols GDB
1767 needs to keep track of (such as _sigtramp, or whatever). */
1768
1769 TARGET_SYMFILE_POSTREAD (objfile);
1770 }
1771 }
1772 }
1773
1774 if (reread_one)
1775 clear_symtab_users ();
1776 }
1777 \f
1778
1779
1780 typedef struct
1781 {
1782 char *ext;
1783 enum language lang;
1784 }
1785 filename_language;
1786
1787 static filename_language *filename_language_table;
1788 static int fl_table_size, fl_table_next;
1789
1790 static void
1791 add_filename_language (char *ext, enum language lang)
1792 {
1793 if (fl_table_next >= fl_table_size)
1794 {
1795 fl_table_size += 10;
1796 filename_language_table = xrealloc (filename_language_table,
1797 fl_table_size);
1798 }
1799
1800 filename_language_table[fl_table_next].ext = xstrdup (ext);
1801 filename_language_table[fl_table_next].lang = lang;
1802 fl_table_next++;
1803 }
1804
1805 static char *ext_args;
1806
1807 static void
1808 set_ext_lang_command (char *args, int from_tty)
1809 {
1810 int i;
1811 char *cp = ext_args;
1812 enum language lang;
1813
1814 /* First arg is filename extension, starting with '.' */
1815 if (*cp != '.')
1816 error ("'%s': Filename extension must begin with '.'", ext_args);
1817
1818 /* Find end of first arg. */
1819 while (*cp && !isspace (*cp))
1820 cp++;
1821
1822 if (*cp == '\0')
1823 error ("'%s': two arguments required -- filename extension and language",
1824 ext_args);
1825
1826 /* Null-terminate first arg */
1827 *cp++ = '\0';
1828
1829 /* Find beginning of second arg, which should be a source language. */
1830 while (*cp && isspace (*cp))
1831 cp++;
1832
1833 if (*cp == '\0')
1834 error ("'%s': two arguments required -- filename extension and language",
1835 ext_args);
1836
1837 /* Lookup the language from among those we know. */
1838 lang = language_enum (cp);
1839
1840 /* Now lookup the filename extension: do we already know it? */
1841 for (i = 0; i < fl_table_next; i++)
1842 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1843 break;
1844
1845 if (i >= fl_table_next)
1846 {
1847 /* new file extension */
1848 add_filename_language (ext_args, lang);
1849 }
1850 else
1851 {
1852 /* redefining a previously known filename extension */
1853
1854 /* if (from_tty) */
1855 /* query ("Really make files of type %s '%s'?", */
1856 /* ext_args, language_str (lang)); */
1857
1858 xfree (filename_language_table[i].ext);
1859 filename_language_table[i].ext = xstrdup (ext_args);
1860 filename_language_table[i].lang = lang;
1861 }
1862 }
1863
1864 static void
1865 info_ext_lang_command (char *args, int from_tty)
1866 {
1867 int i;
1868
1869 printf_filtered ("Filename extensions and the languages they represent:");
1870 printf_filtered ("\n\n");
1871 for (i = 0; i < fl_table_next; i++)
1872 printf_filtered ("\t%s\t- %s\n",
1873 filename_language_table[i].ext,
1874 language_str (filename_language_table[i].lang));
1875 }
1876
1877 static void
1878 init_filename_language_table (void)
1879 {
1880 if (fl_table_size == 0) /* protect against repetition */
1881 {
1882 fl_table_size = 20;
1883 fl_table_next = 0;
1884 filename_language_table =
1885 xmalloc (fl_table_size * sizeof (*filename_language_table));
1886 add_filename_language (".c", language_c);
1887 add_filename_language (".C", language_cplus);
1888 add_filename_language (".cc", language_cplus);
1889 add_filename_language (".cp", language_cplus);
1890 add_filename_language (".cpp", language_cplus);
1891 add_filename_language (".cxx", language_cplus);
1892 add_filename_language (".c++", language_cplus);
1893 add_filename_language (".java", language_java);
1894 add_filename_language (".class", language_java);
1895 add_filename_language (".ch", language_chill);
1896 add_filename_language (".c186", language_chill);
1897 add_filename_language (".c286", language_chill);
1898 add_filename_language (".f", language_fortran);
1899 add_filename_language (".F", language_fortran);
1900 add_filename_language (".s", language_asm);
1901 add_filename_language (".S", language_asm);
1902 add_filename_language (".pas", language_pascal);
1903 add_filename_language (".p", language_pascal);
1904 add_filename_language (".pp", language_pascal);
1905 }
1906 }
1907
1908 enum language
1909 deduce_language_from_filename (char *filename)
1910 {
1911 int i;
1912 char *cp;
1913
1914 if (filename != NULL)
1915 if ((cp = strrchr (filename, '.')) != NULL)
1916 for (i = 0; i < fl_table_next; i++)
1917 if (strcmp (cp, filename_language_table[i].ext) == 0)
1918 return filename_language_table[i].lang;
1919
1920 return language_unknown;
1921 }
1922 \f
1923 /* allocate_symtab:
1924
1925 Allocate and partly initialize a new symbol table. Return a pointer
1926 to it. error() if no space.
1927
1928 Caller must set these fields:
1929 LINETABLE(symtab)
1930 symtab->blockvector
1931 symtab->dirname
1932 symtab->free_code
1933 symtab->free_ptr
1934 possibly free_named_symtabs (symtab->filename);
1935 */
1936
1937 struct symtab *
1938 allocate_symtab (char *filename, struct objfile *objfile)
1939 {
1940 register struct symtab *symtab;
1941
1942 symtab = (struct symtab *)
1943 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1944 memset (symtab, 0, sizeof (*symtab));
1945 symtab->filename = obsavestring (filename, strlen (filename),
1946 &objfile->symbol_obstack);
1947 symtab->fullname = NULL;
1948 symtab->language = deduce_language_from_filename (filename);
1949 symtab->debugformat = obsavestring ("unknown", 7,
1950 &objfile->symbol_obstack);
1951
1952 /* Hook it to the objfile it comes from */
1953
1954 symtab->objfile = objfile;
1955 symtab->next = objfile->symtabs;
1956 objfile->symtabs = symtab;
1957
1958 /* FIXME: This should go away. It is only defined for the Z8000,
1959 and the Z8000 definition of this macro doesn't have anything to
1960 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1961 here for convenience. */
1962 #ifdef INIT_EXTRA_SYMTAB_INFO
1963 INIT_EXTRA_SYMTAB_INFO (symtab);
1964 #endif
1965
1966 return (symtab);
1967 }
1968
1969 struct partial_symtab *
1970 allocate_psymtab (char *filename, struct objfile *objfile)
1971 {
1972 struct partial_symtab *psymtab;
1973
1974 if (objfile->free_psymtabs)
1975 {
1976 psymtab = objfile->free_psymtabs;
1977 objfile->free_psymtabs = psymtab->next;
1978 }
1979 else
1980 psymtab = (struct partial_symtab *)
1981 obstack_alloc (&objfile->psymbol_obstack,
1982 sizeof (struct partial_symtab));
1983
1984 memset (psymtab, 0, sizeof (struct partial_symtab));
1985 psymtab->filename = obsavestring (filename, strlen (filename),
1986 &objfile->psymbol_obstack);
1987 psymtab->symtab = NULL;
1988
1989 /* Prepend it to the psymtab list for the objfile it belongs to.
1990 Psymtabs are searched in most recent inserted -> least recent
1991 inserted order. */
1992
1993 psymtab->objfile = objfile;
1994 psymtab->next = objfile->psymtabs;
1995 objfile->psymtabs = psymtab;
1996 #if 0
1997 {
1998 struct partial_symtab **prev_pst;
1999 psymtab->objfile = objfile;
2000 psymtab->next = NULL;
2001 prev_pst = &(objfile->psymtabs);
2002 while ((*prev_pst) != NULL)
2003 prev_pst = &((*prev_pst)->next);
2004 (*prev_pst) = psymtab;
2005 }
2006 #endif
2007
2008 return (psymtab);
2009 }
2010
2011 void
2012 discard_psymtab (struct partial_symtab *pst)
2013 {
2014 struct partial_symtab **prev_pst;
2015
2016 /* From dbxread.c:
2017 Empty psymtabs happen as a result of header files which don't
2018 have any symbols in them. There can be a lot of them. But this
2019 check is wrong, in that a psymtab with N_SLINE entries but
2020 nothing else is not empty, but we don't realize that. Fixing
2021 that without slowing things down might be tricky. */
2022
2023 /* First, snip it out of the psymtab chain */
2024
2025 prev_pst = &(pst->objfile->psymtabs);
2026 while ((*prev_pst) != pst)
2027 prev_pst = &((*prev_pst)->next);
2028 (*prev_pst) = pst->next;
2029
2030 /* Next, put it on a free list for recycling */
2031
2032 pst->next = pst->objfile->free_psymtabs;
2033 pst->objfile->free_psymtabs = pst;
2034 }
2035 \f
2036
2037 /* Reset all data structures in gdb which may contain references to symbol
2038 table data. */
2039
2040 void
2041 clear_symtab_users (void)
2042 {
2043 /* Someday, we should do better than this, by only blowing away
2044 the things that really need to be blown. */
2045 clear_value_history ();
2046 clear_displays ();
2047 clear_internalvars ();
2048 breakpoint_re_set ();
2049 set_default_breakpoint (0, 0, 0, 0);
2050 current_source_symtab = 0;
2051 current_source_line = 0;
2052 clear_pc_function_cache ();
2053 if (target_new_objfile_hook)
2054 target_new_objfile_hook (NULL);
2055 }
2056
2057 static void
2058 clear_symtab_users_cleanup (void *ignore)
2059 {
2060 clear_symtab_users ();
2061 }
2062
2063 /* clear_symtab_users_once:
2064
2065 This function is run after symbol reading, or from a cleanup.
2066 If an old symbol table was obsoleted, the old symbol table
2067 has been blown away, but the other GDB data structures that may
2068 reference it have not yet been cleared or re-directed. (The old
2069 symtab was zapped, and the cleanup queued, in free_named_symtab()
2070 below.)
2071
2072 This function can be queued N times as a cleanup, or called
2073 directly; it will do all the work the first time, and then will be a
2074 no-op until the next time it is queued. This works by bumping a
2075 counter at queueing time. Much later when the cleanup is run, or at
2076 the end of symbol processing (in case the cleanup is discarded), if
2077 the queued count is greater than the "done-count", we do the work
2078 and set the done-count to the queued count. If the queued count is
2079 less than or equal to the done-count, we just ignore the call. This
2080 is needed because reading a single .o file will often replace many
2081 symtabs (one per .h file, for example), and we don't want to reset
2082 the breakpoints N times in the user's face.
2083
2084 The reason we both queue a cleanup, and call it directly after symbol
2085 reading, is because the cleanup protects us in case of errors, but is
2086 discarded if symbol reading is successful. */
2087
2088 #if 0
2089 /* FIXME: As free_named_symtabs is currently a big noop this function
2090 is no longer needed. */
2091 static void clear_symtab_users_once (void);
2092
2093 static int clear_symtab_users_queued;
2094 static int clear_symtab_users_done;
2095
2096 static void
2097 clear_symtab_users_once (void)
2098 {
2099 /* Enforce once-per-`do_cleanups'-semantics */
2100 if (clear_symtab_users_queued <= clear_symtab_users_done)
2101 return;
2102 clear_symtab_users_done = clear_symtab_users_queued;
2103
2104 clear_symtab_users ();
2105 }
2106 #endif
2107
2108 /* Delete the specified psymtab, and any others that reference it. */
2109
2110 static void
2111 cashier_psymtab (struct partial_symtab *pst)
2112 {
2113 struct partial_symtab *ps, *pprev = NULL;
2114 int i;
2115
2116 /* Find its previous psymtab in the chain */
2117 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2118 {
2119 if (ps == pst)
2120 break;
2121 pprev = ps;
2122 }
2123
2124 if (ps)
2125 {
2126 /* Unhook it from the chain. */
2127 if (ps == pst->objfile->psymtabs)
2128 pst->objfile->psymtabs = ps->next;
2129 else
2130 pprev->next = ps->next;
2131
2132 /* FIXME, we can't conveniently deallocate the entries in the
2133 partial_symbol lists (global_psymbols/static_psymbols) that
2134 this psymtab points to. These just take up space until all
2135 the psymtabs are reclaimed. Ditto the dependencies list and
2136 filename, which are all in the psymbol_obstack. */
2137
2138 /* We need to cashier any psymtab that has this one as a dependency... */
2139 again:
2140 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2141 {
2142 for (i = 0; i < ps->number_of_dependencies; i++)
2143 {
2144 if (ps->dependencies[i] == pst)
2145 {
2146 cashier_psymtab (ps);
2147 goto again; /* Must restart, chain has been munged. */
2148 }
2149 }
2150 }
2151 }
2152 }
2153
2154 /* If a symtab or psymtab for filename NAME is found, free it along
2155 with any dependent breakpoints, displays, etc.
2156 Used when loading new versions of object modules with the "add-file"
2157 command. This is only called on the top-level symtab or psymtab's name;
2158 it is not called for subsidiary files such as .h files.
2159
2160 Return value is 1 if we blew away the environment, 0 if not.
2161 FIXME. The return value appears to never be used.
2162
2163 FIXME. I think this is not the best way to do this. We should
2164 work on being gentler to the environment while still cleaning up
2165 all stray pointers into the freed symtab. */
2166
2167 int
2168 free_named_symtabs (char *name)
2169 {
2170 #if 0
2171 /* FIXME: With the new method of each objfile having it's own
2172 psymtab list, this function needs serious rethinking. In particular,
2173 why was it ever necessary to toss psymtabs with specific compilation
2174 unit filenames, as opposed to all psymtabs from a particular symbol
2175 file? -- fnf
2176 Well, the answer is that some systems permit reloading of particular
2177 compilation units. We want to blow away any old info about these
2178 compilation units, regardless of which objfiles they arrived in. --gnu. */
2179
2180 register struct symtab *s;
2181 register struct symtab *prev;
2182 register struct partial_symtab *ps;
2183 struct blockvector *bv;
2184 int blewit = 0;
2185
2186 /* We only wack things if the symbol-reload switch is set. */
2187 if (!symbol_reloading)
2188 return 0;
2189
2190 /* Some symbol formats have trouble providing file names... */
2191 if (name == 0 || *name == '\0')
2192 return 0;
2193
2194 /* Look for a psymtab with the specified name. */
2195
2196 again2:
2197 for (ps = partial_symtab_list; ps; ps = ps->next)
2198 {
2199 if (STREQ (name, ps->filename))
2200 {
2201 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2202 goto again2; /* Must restart, chain has been munged */
2203 }
2204 }
2205
2206 /* Look for a symtab with the specified name. */
2207
2208 for (s = symtab_list; s; s = s->next)
2209 {
2210 if (STREQ (name, s->filename))
2211 break;
2212 prev = s;
2213 }
2214
2215 if (s)
2216 {
2217 if (s == symtab_list)
2218 symtab_list = s->next;
2219 else
2220 prev->next = s->next;
2221
2222 /* For now, queue a delete for all breakpoints, displays, etc., whether
2223 or not they depend on the symtab being freed. This should be
2224 changed so that only those data structures affected are deleted. */
2225
2226 /* But don't delete anything if the symtab is empty.
2227 This test is necessary due to a bug in "dbxread.c" that
2228 causes empty symtabs to be created for N_SO symbols that
2229 contain the pathname of the object file. (This problem
2230 has been fixed in GDB 3.9x). */
2231
2232 bv = BLOCKVECTOR (s);
2233 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2234 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2235 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2236 {
2237 complain (&oldsyms_complaint, name);
2238
2239 clear_symtab_users_queued++;
2240 make_cleanup (clear_symtab_users_once, 0);
2241 blewit = 1;
2242 }
2243 else
2244 {
2245 complain (&empty_symtab_complaint, name);
2246 }
2247
2248 free_symtab (s);
2249 }
2250 else
2251 {
2252 /* It is still possible that some breakpoints will be affected
2253 even though no symtab was found, since the file might have
2254 been compiled without debugging, and hence not be associated
2255 with a symtab. In order to handle this correctly, we would need
2256 to keep a list of text address ranges for undebuggable files.
2257 For now, we do nothing, since this is a fairly obscure case. */
2258 ;
2259 }
2260
2261 /* FIXME, what about the minimal symbol table? */
2262 return blewit;
2263 #else
2264 return (0);
2265 #endif
2266 }
2267 \f
2268 /* Allocate and partially fill a partial symtab. It will be
2269 completely filled at the end of the symbol list.
2270
2271 FILENAME is the name of the symbol-file we are reading from. */
2272
2273 struct partial_symtab *
2274 start_psymtab_common (struct objfile *objfile,
2275 struct section_offsets *section_offsets, char *filename,
2276 CORE_ADDR textlow, struct partial_symbol **global_syms,
2277 struct partial_symbol **static_syms)
2278 {
2279 struct partial_symtab *psymtab;
2280
2281 psymtab = allocate_psymtab (filename, objfile);
2282 psymtab->section_offsets = section_offsets;
2283 psymtab->textlow = textlow;
2284 psymtab->texthigh = psymtab->textlow; /* default */
2285 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2286 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2287 return (psymtab);
2288 }
2289 \f
2290 /* Add a symbol with a long value to a psymtab.
2291 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2292
2293 void
2294 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2295 enum address_class class,
2296 struct psymbol_allocation_list *list, long val, /* Value as a long */
2297 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2298 enum language language, struct objfile *objfile)
2299 {
2300 register struct partial_symbol *psym;
2301 char *buf = alloca (namelength + 1);
2302 /* psymbol is static so that there will be no uninitialized gaps in the
2303 structure which might contain random data, causing cache misses in
2304 bcache. */
2305 static struct partial_symbol psymbol;
2306
2307 /* Create local copy of the partial symbol */
2308 memcpy (buf, name, namelength);
2309 buf[namelength] = '\0';
2310 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2311 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2312 if (val != 0)
2313 {
2314 SYMBOL_VALUE (&psymbol) = val;
2315 }
2316 else
2317 {
2318 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2319 }
2320 SYMBOL_SECTION (&psymbol) = 0;
2321 SYMBOL_LANGUAGE (&psymbol) = language;
2322 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2323 PSYMBOL_CLASS (&psymbol) = class;
2324 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2325
2326 /* Stash the partial symbol away in the cache */
2327 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2328
2329 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2330 if (list->next >= list->list + list->size)
2331 {
2332 extend_psymbol_list (list, objfile);
2333 }
2334 *list->next++ = psym;
2335 OBJSTAT (objfile, n_psyms++);
2336 }
2337
2338 /* Add a symbol with a long value to a psymtab. This differs from
2339 * add_psymbol_to_list above in taking both a mangled and a demangled
2340 * name. */
2341
2342 void
2343 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2344 int dem_namelength, namespace_enum namespace,
2345 enum address_class class,
2346 struct psymbol_allocation_list *list, long val, /* Value as a long */
2347 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2348 enum language language,
2349 struct objfile *objfile)
2350 {
2351 register struct partial_symbol *psym;
2352 char *buf = alloca (namelength + 1);
2353 /* psymbol is static so that there will be no uninitialized gaps in the
2354 structure which might contain random data, causing cache misses in
2355 bcache. */
2356 static struct partial_symbol psymbol;
2357
2358 /* Create local copy of the partial symbol */
2359
2360 memcpy (buf, name, namelength);
2361 buf[namelength] = '\0';
2362 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2363
2364 buf = alloca (dem_namelength + 1);
2365 memcpy (buf, dem_name, dem_namelength);
2366 buf[dem_namelength] = '\0';
2367
2368 switch (language)
2369 {
2370 case language_c:
2371 case language_cplus:
2372 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2373 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2374 break;
2375 case language_chill:
2376 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2377 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2378
2379 /* FIXME What should be done for the default case? Ignoring for now. */
2380 }
2381
2382 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2383 if (val != 0)
2384 {
2385 SYMBOL_VALUE (&psymbol) = val;
2386 }
2387 else
2388 {
2389 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2390 }
2391 SYMBOL_SECTION (&psymbol) = 0;
2392 SYMBOL_LANGUAGE (&psymbol) = language;
2393 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2394 PSYMBOL_CLASS (&psymbol) = class;
2395 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2396
2397 /* Stash the partial symbol away in the cache */
2398 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2399
2400 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2401 if (list->next >= list->list + list->size)
2402 {
2403 extend_psymbol_list (list, objfile);
2404 }
2405 *list->next++ = psym;
2406 OBJSTAT (objfile, n_psyms++);
2407 }
2408
2409 /* Initialize storage for partial symbols. */
2410
2411 void
2412 init_psymbol_list (struct objfile *objfile, int total_symbols)
2413 {
2414 /* Free any previously allocated psymbol lists. */
2415
2416 if (objfile->global_psymbols.list)
2417 {
2418 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2419 }
2420 if (objfile->static_psymbols.list)
2421 {
2422 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2423 }
2424
2425 /* Current best guess is that approximately a twentieth
2426 of the total symbols (in a debugging file) are global or static
2427 oriented symbols */
2428
2429 objfile->global_psymbols.size = total_symbols / 10;
2430 objfile->static_psymbols.size = total_symbols / 10;
2431
2432 if (objfile->global_psymbols.size > 0)
2433 {
2434 objfile->global_psymbols.next =
2435 objfile->global_psymbols.list = (struct partial_symbol **)
2436 xmmalloc (objfile->md, (objfile->global_psymbols.size
2437 * sizeof (struct partial_symbol *)));
2438 }
2439 if (objfile->static_psymbols.size > 0)
2440 {
2441 objfile->static_psymbols.next =
2442 objfile->static_psymbols.list = (struct partial_symbol **)
2443 xmmalloc (objfile->md, (objfile->static_psymbols.size
2444 * sizeof (struct partial_symbol *)));
2445 }
2446 }
2447
2448 /* OVERLAYS:
2449 The following code implements an abstraction for debugging overlay sections.
2450
2451 The target model is as follows:
2452 1) The gnu linker will permit multiple sections to be mapped into the
2453 same VMA, each with its own unique LMA (or load address).
2454 2) It is assumed that some runtime mechanism exists for mapping the
2455 sections, one by one, from the load address into the VMA address.
2456 3) This code provides a mechanism for gdb to keep track of which
2457 sections should be considered to be mapped from the VMA to the LMA.
2458 This information is used for symbol lookup, and memory read/write.
2459 For instance, if a section has been mapped then its contents
2460 should be read from the VMA, otherwise from the LMA.
2461
2462 Two levels of debugger support for overlays are available. One is
2463 "manual", in which the debugger relies on the user to tell it which
2464 overlays are currently mapped. This level of support is
2465 implemented entirely in the core debugger, and the information about
2466 whether a section is mapped is kept in the objfile->obj_section table.
2467
2468 The second level of support is "automatic", and is only available if
2469 the target-specific code provides functionality to read the target's
2470 overlay mapping table, and translate its contents for the debugger
2471 (by updating the mapped state information in the obj_section tables).
2472
2473 The interface is as follows:
2474 User commands:
2475 overlay map <name> -- tell gdb to consider this section mapped
2476 overlay unmap <name> -- tell gdb to consider this section unmapped
2477 overlay list -- list the sections that GDB thinks are mapped
2478 overlay read-target -- get the target's state of what's mapped
2479 overlay off/manual/auto -- set overlay debugging state
2480 Functional interface:
2481 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2482 section, return that section.
2483 find_pc_overlay(pc): find any overlay section that contains
2484 the pc, either in its VMA or its LMA
2485 overlay_is_mapped(sect): true if overlay is marked as mapped
2486 section_is_overlay(sect): true if section's VMA != LMA
2487 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2488 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2489 overlay_mapped_address(...): map an address from section's LMA to VMA
2490 overlay_unmapped_address(...): map an address from section's VMA to LMA
2491 symbol_overlayed_address(...): Return a "current" address for symbol:
2492 either in VMA or LMA depending on whether
2493 the symbol's section is currently mapped
2494 */
2495
2496 /* Overlay debugging state: */
2497
2498 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2499 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2500
2501 /* Target vector for refreshing overlay mapped state */
2502 static void simple_overlay_update (struct obj_section *);
2503 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2504
2505 /* Function: section_is_overlay (SECTION)
2506 Returns true if SECTION has VMA not equal to LMA, ie.
2507 SECTION is loaded at an address different from where it will "run". */
2508
2509 int
2510 section_is_overlay (asection *section)
2511 {
2512 if (overlay_debugging)
2513 if (section && section->lma != 0 &&
2514 section->vma != section->lma)
2515 return 1;
2516
2517 return 0;
2518 }
2519
2520 /* Function: overlay_invalidate_all (void)
2521 Invalidate the mapped state of all overlay sections (mark it as stale). */
2522
2523 static void
2524 overlay_invalidate_all (void)
2525 {
2526 struct objfile *objfile;
2527 struct obj_section *sect;
2528
2529 ALL_OBJSECTIONS (objfile, sect)
2530 if (section_is_overlay (sect->the_bfd_section))
2531 sect->ovly_mapped = -1;
2532 }
2533
2534 /* Function: overlay_is_mapped (SECTION)
2535 Returns true if section is an overlay, and is currently mapped.
2536 Private: public access is thru function section_is_mapped.
2537
2538 Access to the ovly_mapped flag is restricted to this function, so
2539 that we can do automatic update. If the global flag
2540 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2541 overlay_invalidate_all. If the mapped state of the particular
2542 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2543
2544 static int
2545 overlay_is_mapped (struct obj_section *osect)
2546 {
2547 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2548 return 0;
2549
2550 switch (overlay_debugging)
2551 {
2552 default:
2553 case 0:
2554 return 0; /* overlay debugging off */
2555 case -1: /* overlay debugging automatic */
2556 /* Unles there is a target_overlay_update function,
2557 there's really nothing useful to do here (can't really go auto) */
2558 if (target_overlay_update)
2559 {
2560 if (overlay_cache_invalid)
2561 {
2562 overlay_invalidate_all ();
2563 overlay_cache_invalid = 0;
2564 }
2565 if (osect->ovly_mapped == -1)
2566 (*target_overlay_update) (osect);
2567 }
2568 /* fall thru to manual case */
2569 case 1: /* overlay debugging manual */
2570 return osect->ovly_mapped == 1;
2571 }
2572 }
2573
2574 /* Function: section_is_mapped
2575 Returns true if section is an overlay, and is currently mapped. */
2576
2577 int
2578 section_is_mapped (asection *section)
2579 {
2580 struct objfile *objfile;
2581 struct obj_section *osect;
2582
2583 if (overlay_debugging)
2584 if (section && section_is_overlay (section))
2585 ALL_OBJSECTIONS (objfile, osect)
2586 if (osect->the_bfd_section == section)
2587 return overlay_is_mapped (osect);
2588
2589 return 0;
2590 }
2591
2592 /* Function: pc_in_unmapped_range
2593 If PC falls into the lma range of SECTION, return true, else false. */
2594
2595 CORE_ADDR
2596 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2597 {
2598 int size;
2599
2600 if (overlay_debugging)
2601 if (section && section_is_overlay (section))
2602 {
2603 size = bfd_get_section_size_before_reloc (section);
2604 if (section->lma <= pc && pc < section->lma + size)
2605 return 1;
2606 }
2607 return 0;
2608 }
2609
2610 /* Function: pc_in_mapped_range
2611 If PC falls into the vma range of SECTION, return true, else false. */
2612
2613 CORE_ADDR
2614 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2615 {
2616 int size;
2617
2618 if (overlay_debugging)
2619 if (section && section_is_overlay (section))
2620 {
2621 size = bfd_get_section_size_before_reloc (section);
2622 if (section->vma <= pc && pc < section->vma + size)
2623 return 1;
2624 }
2625 return 0;
2626 }
2627
2628 /* Function: overlay_unmapped_address (PC, SECTION)
2629 Returns the address corresponding to PC in the unmapped (load) range.
2630 May be the same as PC. */
2631
2632 CORE_ADDR
2633 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2634 {
2635 if (overlay_debugging)
2636 if (section && section_is_overlay (section) &&
2637 pc_in_mapped_range (pc, section))
2638 return pc + section->lma - section->vma;
2639
2640 return pc;
2641 }
2642
2643 /* Function: overlay_mapped_address (PC, SECTION)
2644 Returns the address corresponding to PC in the mapped (runtime) range.
2645 May be the same as PC. */
2646
2647 CORE_ADDR
2648 overlay_mapped_address (CORE_ADDR pc, asection *section)
2649 {
2650 if (overlay_debugging)
2651 if (section && section_is_overlay (section) &&
2652 pc_in_unmapped_range (pc, section))
2653 return pc + section->vma - section->lma;
2654
2655 return pc;
2656 }
2657
2658
2659 /* Function: symbol_overlayed_address
2660 Return one of two addresses (relative to the VMA or to the LMA),
2661 depending on whether the section is mapped or not. */
2662
2663 CORE_ADDR
2664 symbol_overlayed_address (CORE_ADDR address, asection *section)
2665 {
2666 if (overlay_debugging)
2667 {
2668 /* If the symbol has no section, just return its regular address. */
2669 if (section == 0)
2670 return address;
2671 /* If the symbol's section is not an overlay, just return its address */
2672 if (!section_is_overlay (section))
2673 return address;
2674 /* If the symbol's section is mapped, just return its address */
2675 if (section_is_mapped (section))
2676 return address;
2677 /*
2678 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2679 * then return its LOADED address rather than its vma address!!
2680 */
2681 return overlay_unmapped_address (address, section);
2682 }
2683 return address;
2684 }
2685
2686 /* Function: find_pc_overlay (PC)
2687 Return the best-match overlay section for PC:
2688 If PC matches a mapped overlay section's VMA, return that section.
2689 Else if PC matches an unmapped section's VMA, return that section.
2690 Else if PC matches an unmapped section's LMA, return that section. */
2691
2692 asection *
2693 find_pc_overlay (CORE_ADDR pc)
2694 {
2695 struct objfile *objfile;
2696 struct obj_section *osect, *best_match = NULL;
2697
2698 if (overlay_debugging)
2699 ALL_OBJSECTIONS (objfile, osect)
2700 if (section_is_overlay (osect->the_bfd_section))
2701 {
2702 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2703 {
2704 if (overlay_is_mapped (osect))
2705 return osect->the_bfd_section;
2706 else
2707 best_match = osect;
2708 }
2709 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2710 best_match = osect;
2711 }
2712 return best_match ? best_match->the_bfd_section : NULL;
2713 }
2714
2715 /* Function: find_pc_mapped_section (PC)
2716 If PC falls into the VMA address range of an overlay section that is
2717 currently marked as MAPPED, return that section. Else return NULL. */
2718
2719 asection *
2720 find_pc_mapped_section (CORE_ADDR pc)
2721 {
2722 struct objfile *objfile;
2723 struct obj_section *osect;
2724
2725 if (overlay_debugging)
2726 ALL_OBJSECTIONS (objfile, osect)
2727 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2728 overlay_is_mapped (osect))
2729 return osect->the_bfd_section;
2730
2731 return NULL;
2732 }
2733
2734 /* Function: list_overlays_command
2735 Print a list of mapped sections and their PC ranges */
2736
2737 void
2738 list_overlays_command (char *args, int from_tty)
2739 {
2740 int nmapped = 0;
2741 struct objfile *objfile;
2742 struct obj_section *osect;
2743
2744 if (overlay_debugging)
2745 ALL_OBJSECTIONS (objfile, osect)
2746 if (overlay_is_mapped (osect))
2747 {
2748 const char *name;
2749 bfd_vma lma, vma;
2750 int size;
2751
2752 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2753 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2754 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2755 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2756
2757 printf_filtered ("Section %s, loaded at ", name);
2758 print_address_numeric (lma, 1, gdb_stdout);
2759 puts_filtered (" - ");
2760 print_address_numeric (lma + size, 1, gdb_stdout);
2761 printf_filtered (", mapped at ");
2762 print_address_numeric (vma, 1, gdb_stdout);
2763 puts_filtered (" - ");
2764 print_address_numeric (vma + size, 1, gdb_stdout);
2765 puts_filtered ("\n");
2766
2767 nmapped++;
2768 }
2769 if (nmapped == 0)
2770 printf_filtered ("No sections are mapped.\n");
2771 }
2772
2773 /* Function: map_overlay_command
2774 Mark the named section as mapped (ie. residing at its VMA address). */
2775
2776 void
2777 map_overlay_command (char *args, int from_tty)
2778 {
2779 struct objfile *objfile, *objfile2;
2780 struct obj_section *sec, *sec2;
2781 asection *bfdsec;
2782
2783 if (!overlay_debugging)
2784 error ("\
2785 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2786 the 'overlay manual' command.");
2787
2788 if (args == 0 || *args == 0)
2789 error ("Argument required: name of an overlay section");
2790
2791 /* First, find a section matching the user supplied argument */
2792 ALL_OBJSECTIONS (objfile, sec)
2793 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2794 {
2795 /* Now, check to see if the section is an overlay. */
2796 bfdsec = sec->the_bfd_section;
2797 if (!section_is_overlay (bfdsec))
2798 continue; /* not an overlay section */
2799
2800 /* Mark the overlay as "mapped" */
2801 sec->ovly_mapped = 1;
2802
2803 /* Next, make a pass and unmap any sections that are
2804 overlapped by this new section: */
2805 ALL_OBJSECTIONS (objfile2, sec2)
2806 if (sec2->ovly_mapped &&
2807 sec != sec2 &&
2808 sec->the_bfd_section != sec2->the_bfd_section &&
2809 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2810 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2811 {
2812 if (info_verbose)
2813 printf_filtered ("Note: section %s unmapped by overlap\n",
2814 bfd_section_name (objfile->obfd,
2815 sec2->the_bfd_section));
2816 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2817 }
2818 return;
2819 }
2820 error ("No overlay section called %s", args);
2821 }
2822
2823 /* Function: unmap_overlay_command
2824 Mark the overlay section as unmapped
2825 (ie. resident in its LMA address range, rather than the VMA range). */
2826
2827 void
2828 unmap_overlay_command (char *args, int from_tty)
2829 {
2830 struct objfile *objfile;
2831 struct obj_section *sec;
2832
2833 if (!overlay_debugging)
2834 error ("\
2835 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2836 the 'overlay manual' command.");
2837
2838 if (args == 0 || *args == 0)
2839 error ("Argument required: name of an overlay section");
2840
2841 /* First, find a section matching the user supplied argument */
2842 ALL_OBJSECTIONS (objfile, sec)
2843 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2844 {
2845 if (!sec->ovly_mapped)
2846 error ("Section %s is not mapped", args);
2847 sec->ovly_mapped = 0;
2848 return;
2849 }
2850 error ("No overlay section called %s", args);
2851 }
2852
2853 /* Function: overlay_auto_command
2854 A utility command to turn on overlay debugging.
2855 Possibly this should be done via a set/show command. */
2856
2857 static void
2858 overlay_auto_command (char *args, int from_tty)
2859 {
2860 overlay_debugging = -1;
2861 if (info_verbose)
2862 printf_filtered ("Automatic overlay debugging enabled.");
2863 }
2864
2865 /* Function: overlay_manual_command
2866 A utility command to turn on overlay debugging.
2867 Possibly this should be done via a set/show command. */
2868
2869 static void
2870 overlay_manual_command (char *args, int from_tty)
2871 {
2872 overlay_debugging = 1;
2873 if (info_verbose)
2874 printf_filtered ("Overlay debugging enabled.");
2875 }
2876
2877 /* Function: overlay_off_command
2878 A utility command to turn on overlay debugging.
2879 Possibly this should be done via a set/show command. */
2880
2881 static void
2882 overlay_off_command (char *args, int from_tty)
2883 {
2884 overlay_debugging = 0;
2885 if (info_verbose)
2886 printf_filtered ("Overlay debugging disabled.");
2887 }
2888
2889 static void
2890 overlay_load_command (char *args, int from_tty)
2891 {
2892 if (target_overlay_update)
2893 (*target_overlay_update) (NULL);
2894 else
2895 error ("This target does not know how to read its overlay state.");
2896 }
2897
2898 /* Function: overlay_command
2899 A place-holder for a mis-typed command */
2900
2901 /* Command list chain containing all defined "overlay" subcommands. */
2902 struct cmd_list_element *overlaylist;
2903
2904 static void
2905 overlay_command (char *args, int from_tty)
2906 {
2907 printf_unfiltered
2908 ("\"overlay\" must be followed by the name of an overlay command.\n");
2909 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2910 }
2911
2912
2913 /* Target Overlays for the "Simplest" overlay manager:
2914
2915 This is GDB's default target overlay layer. It works with the
2916 minimal overlay manager supplied as an example by Cygnus. The
2917 entry point is via a function pointer "target_overlay_update",
2918 so targets that use a different runtime overlay manager can
2919 substitute their own overlay_update function and take over the
2920 function pointer.
2921
2922 The overlay_update function pokes around in the target's data structures
2923 to see what overlays are mapped, and updates GDB's overlay mapping with
2924 this information.
2925
2926 In this simple implementation, the target data structures are as follows:
2927 unsigned _novlys; /# number of overlay sections #/
2928 unsigned _ovly_table[_novlys][4] = {
2929 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2930 {..., ..., ..., ...},
2931 }
2932 unsigned _novly_regions; /# number of overlay regions #/
2933 unsigned _ovly_region_table[_novly_regions][3] = {
2934 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2935 {..., ..., ...},
2936 }
2937 These functions will attempt to update GDB's mappedness state in the
2938 symbol section table, based on the target's mappedness state.
2939
2940 To do this, we keep a cached copy of the target's _ovly_table, and
2941 attempt to detect when the cached copy is invalidated. The main
2942 entry point is "simple_overlay_update(SECT), which looks up SECT in
2943 the cached table and re-reads only the entry for that section from
2944 the target (whenever possible).
2945 */
2946
2947 /* Cached, dynamically allocated copies of the target data structures: */
2948 static unsigned (*cache_ovly_table)[4] = 0;
2949 #if 0
2950 static unsigned (*cache_ovly_region_table)[3] = 0;
2951 #endif
2952 static unsigned cache_novlys = 0;
2953 #if 0
2954 static unsigned cache_novly_regions = 0;
2955 #endif
2956 static CORE_ADDR cache_ovly_table_base = 0;
2957 #if 0
2958 static CORE_ADDR cache_ovly_region_table_base = 0;
2959 #endif
2960 enum ovly_index
2961 {
2962 VMA, SIZE, LMA, MAPPED
2963 };
2964 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2965
2966 /* Throw away the cached copy of _ovly_table */
2967 static void
2968 simple_free_overlay_table (void)
2969 {
2970 if (cache_ovly_table)
2971 xfree (cache_ovly_table);
2972 cache_novlys = 0;
2973 cache_ovly_table = NULL;
2974 cache_ovly_table_base = 0;
2975 }
2976
2977 #if 0
2978 /* Throw away the cached copy of _ovly_region_table */
2979 static void
2980 simple_free_overlay_region_table (void)
2981 {
2982 if (cache_ovly_region_table)
2983 xfree (cache_ovly_region_table);
2984 cache_novly_regions = 0;
2985 cache_ovly_region_table = NULL;
2986 cache_ovly_region_table_base = 0;
2987 }
2988 #endif
2989
2990 /* Read an array of ints from the target into a local buffer.
2991 Convert to host order. int LEN is number of ints */
2992 static void
2993 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
2994 {
2995 char *buf = alloca (len * TARGET_LONG_BYTES);
2996 int i;
2997
2998 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2999 for (i = 0; i < len; i++)
3000 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3001 TARGET_LONG_BYTES);
3002 }
3003
3004 /* Find and grab a copy of the target _ovly_table
3005 (and _novlys, which is needed for the table's size) */
3006 static int
3007 simple_read_overlay_table (void)
3008 {
3009 struct minimal_symbol *msym;
3010
3011 simple_free_overlay_table ();
3012 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3013 if (msym != NULL)
3014 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3015 else
3016 return 0; /* failure */
3017 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3018 if (cache_ovly_table != NULL)
3019 {
3020 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3021 if (msym != NULL)
3022 {
3023 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3024 read_target_long_array (cache_ovly_table_base,
3025 (int *) cache_ovly_table,
3026 cache_novlys * 4);
3027 }
3028 else
3029 return 0; /* failure */
3030 }
3031 else
3032 return 0; /* failure */
3033 return 1; /* SUCCESS */
3034 }
3035
3036 #if 0
3037 /* Find and grab a copy of the target _ovly_region_table
3038 (and _novly_regions, which is needed for the table's size) */
3039 static int
3040 simple_read_overlay_region_table (void)
3041 {
3042 struct minimal_symbol *msym;
3043
3044 simple_free_overlay_region_table ();
3045 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3046 if (msym != NULL)
3047 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3048 else
3049 return 0; /* failure */
3050 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3051 if (cache_ovly_region_table != NULL)
3052 {
3053 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3054 if (msym != NULL)
3055 {
3056 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3057 read_target_long_array (cache_ovly_region_table_base,
3058 (int *) cache_ovly_region_table,
3059 cache_novly_regions * 3);
3060 }
3061 else
3062 return 0; /* failure */
3063 }
3064 else
3065 return 0; /* failure */
3066 return 1; /* SUCCESS */
3067 }
3068 #endif
3069
3070 /* Function: simple_overlay_update_1
3071 A helper function for simple_overlay_update. Assuming a cached copy
3072 of _ovly_table exists, look through it to find an entry whose vma,
3073 lma and size match those of OSECT. Re-read the entry and make sure
3074 it still matches OSECT (else the table may no longer be valid).
3075 Set OSECT's mapped state to match the entry. Return: 1 for
3076 success, 0 for failure. */
3077
3078 static int
3079 simple_overlay_update_1 (struct obj_section *osect)
3080 {
3081 int i, size;
3082
3083 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3084 for (i = 0; i < cache_novlys; i++)
3085 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3086 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3087 cache_ovly_table[i][SIZE] == size */ )
3088 {
3089 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3090 (int *) cache_ovly_table[i], 4);
3091 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3092 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3093 cache_ovly_table[i][SIZE] == size */ )
3094 {
3095 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3096 return 1;
3097 }
3098 else /* Warning! Warning! Target's ovly table has changed! */
3099 return 0;
3100 }
3101 return 0;
3102 }
3103
3104 /* Function: simple_overlay_update
3105 If OSECT is NULL, then update all sections' mapped state
3106 (after re-reading the entire target _ovly_table).
3107 If OSECT is non-NULL, then try to find a matching entry in the
3108 cached ovly_table and update only OSECT's mapped state.
3109 If a cached entry can't be found or the cache isn't valid, then
3110 re-read the entire cache, and go ahead and update all sections. */
3111
3112 static void
3113 simple_overlay_update (struct obj_section *osect)
3114 {
3115 struct objfile *objfile;
3116
3117 /* Were we given an osect to look up? NULL means do all of them. */
3118 if (osect)
3119 /* Have we got a cached copy of the target's overlay table? */
3120 if (cache_ovly_table != NULL)
3121 /* Does its cached location match what's currently in the symtab? */
3122 if (cache_ovly_table_base ==
3123 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3124 /* Then go ahead and try to look up this single section in the cache */
3125 if (simple_overlay_update_1 (osect))
3126 /* Found it! We're done. */
3127 return;
3128
3129 /* Cached table no good: need to read the entire table anew.
3130 Or else we want all the sections, in which case it's actually
3131 more efficient to read the whole table in one block anyway. */
3132
3133 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3134 {
3135 warning ("Failed to read the target overlay mapping table.");
3136 return;
3137 }
3138 /* Now may as well update all sections, even if only one was requested. */
3139 ALL_OBJSECTIONS (objfile, osect)
3140 if (section_is_overlay (osect->the_bfd_section))
3141 {
3142 int i, size;
3143
3144 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3145 for (i = 0; i < cache_novlys; i++)
3146 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3147 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3148 cache_ovly_table[i][SIZE] == size */ )
3149 { /* obj_section matches i'th entry in ovly_table */
3150 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3151 break; /* finished with inner for loop: break out */
3152 }
3153 }
3154 }
3155
3156
3157 void
3158 _initialize_symfile (void)
3159 {
3160 struct cmd_list_element *c;
3161
3162 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3163 "Load symbol table from executable file FILE.\n\
3164 The `file' command can also load symbol tables, as well as setting the file\n\
3165 to execute.", &cmdlist);
3166 c->completer = filename_completer;
3167
3168 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3169 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3170 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3171 ADDR is the starting address of the file's text.\n\
3172 The optional arguments are section-name section-address pairs and\n\
3173 should be specified if the data and bss segments are not contiguous\n\
3174 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3175 &cmdlist);
3176 c->completer = filename_completer;
3177
3178 c = add_cmd ("add-shared-symbol-files", class_files,
3179 add_shared_symbol_files_command,
3180 "Load the symbols from shared objects in the dynamic linker's link map.",
3181 &cmdlist);
3182 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3183 &cmdlist);
3184
3185 c = add_cmd ("load", class_files, load_command,
3186 "Dynamically load FILE into the running program, and record its symbols\n\
3187 for access from GDB.", &cmdlist);
3188 c->completer = filename_completer;
3189
3190 add_show_from_set
3191 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3192 (char *) &symbol_reloading,
3193 "Set dynamic symbol table reloading multiple times in one run.",
3194 &setlist),
3195 &showlist);
3196
3197 add_prefix_cmd ("overlay", class_support, overlay_command,
3198 "Commands for debugging overlays.", &overlaylist,
3199 "overlay ", 0, &cmdlist);
3200
3201 add_com_alias ("ovly", "overlay", class_alias, 1);
3202 add_com_alias ("ov", "overlay", class_alias, 1);
3203
3204 add_cmd ("map-overlay", class_support, map_overlay_command,
3205 "Assert that an overlay section is mapped.", &overlaylist);
3206
3207 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3208 "Assert that an overlay section is unmapped.", &overlaylist);
3209
3210 add_cmd ("list-overlays", class_support, list_overlays_command,
3211 "List mappings of overlay sections.", &overlaylist);
3212
3213 add_cmd ("manual", class_support, overlay_manual_command,
3214 "Enable overlay debugging.", &overlaylist);
3215 add_cmd ("off", class_support, overlay_off_command,
3216 "Disable overlay debugging.", &overlaylist);
3217 add_cmd ("auto", class_support, overlay_auto_command,
3218 "Enable automatic overlay debugging.", &overlaylist);
3219 add_cmd ("load-target", class_support, overlay_load_command,
3220 "Read the overlay mapping state from the target.", &overlaylist);
3221
3222 /* Filename extension to source language lookup table: */
3223 init_filename_language_table ();
3224 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3225 (char *) &ext_args,
3226 "Set mapping between filename extension and source language.\n\
3227 Usage: set extension-language .foo bar",
3228 &setlist);
3229 c->function.cfunc = set_ext_lang_command;
3230
3231 add_info ("extensions", info_ext_lang_command,
3232 "All filename extensions associated with a source language.");
3233
3234 add_show_from_set
3235 (add_set_cmd ("download-write-size", class_obscure,
3236 var_integer, (char *) &download_write_size,
3237 "Set the write size used when downloading a program.\n"
3238 "Only used when downloading a program onto a remote\n"
3239 "target. Specify zero, or a negative value, to disable\n"
3240 "blocked writes. The actual size of each transfer is also\n"
3241 "limited by the size of the target packet and the memory\n"
3242 "cache.\n",
3243 &setlist),
3244 &showlist);
3245 }
This page took 0.095516 seconds and 4 git commands to generate.