2010-11-19 Jan Kratochvil <jan.kratochvil@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 bfd *symfile_bfd_open (char *);
102
103 int get_section_index (struct objfile *, char *);
104
105 static const struct sym_fns *find_sym_fns (bfd *);
106
107 static void decrement_reading_symtab (void *);
108
109 static void overlay_invalidate_all (void);
110
111 void list_overlays_command (char *, int);
112
113 void map_overlay_command (char *, int);
114
115 void unmap_overlay_command (char *, int);
116
117 static void overlay_auto_command (char *, int);
118
119 static void overlay_manual_command (char *, int);
120
121 static void overlay_off_command (char *, int);
122
123 static void overlay_load_command (char *, int);
124
125 static void overlay_command (char *, int);
126
127 static void simple_free_overlay_table (void);
128
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
131
132 static int simple_read_overlay_table (void);
133
134 static int simple_overlay_update_1 (struct obj_section *);
135
136 static void add_filename_language (char *ext, enum language lang);
137
138 static void info_ext_lang_command (char *args, int from_tty);
139
140 static void init_filename_language_table (void);
141
142 static void symfile_find_segment_sections (struct objfile *objfile);
143
144 void _initialize_symfile (void);
145
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150 typedef const struct sym_fns *sym_fns_ptr;
151 DEF_VEC_P (sym_fns_ptr);
152
153 static VEC (sym_fns_ptr) *symtab_fns = NULL;
154
155 /* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158 #ifdef SYMBOL_RELOADING_DEFAULT
159 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160 #else
161 int symbol_reloading = 0;
162 #endif
163 static void
164 show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170 }
171
172 /* If non-zero, shared library symbols will be added automatically
173 when the inferior is created, new libraries are loaded, or when
174 attaching to the inferior. This is almost always what users will
175 want to have happen; but for very large programs, the startup time
176 will be excessive, and so if this is a problem, the user can clear
177 this flag and then add the shared library symbols as needed. Note
178 that there is a potential for confusion, since if the shared
179 library symbols are not loaded, commands like "info fun" will *not*
180 report all the functions that are actually present. */
181
182 int auto_solib_add = 1;
183
184 /* For systems that support it, a threshold size in megabytes. If
185 automatically adding a new library's symbol table to those already
186 known to the debugger would cause the total shared library symbol
187 size to exceed this threshhold, then the shlib's symbols are not
188 added. The threshold is ignored if the user explicitly asks for a
189 shlib to be added, such as when using the "sharedlibrary"
190 command. */
191
192 int auto_solib_limit;
193 \f
194
195 /* Make a null terminated copy of the string at PTR with SIZE characters in
196 the obstack pointed to by OBSTACKP . Returns the address of the copy.
197 Note that the string at PTR does not have to be null terminated, I.E. it
198 may be part of a larger string and we are only saving a substring. */
199
200 char *
201 obsavestring (const char *ptr, int size, struct obstack *obstackp)
202 {
203 char *p = (char *) obstack_alloc (obstackp, size + 1);
204 /* Open-coded memcpy--saves function call time. These strings are usually
205 short. FIXME: Is this really still true with a compiler that can
206 inline memcpy? */
207 {
208 const char *p1 = ptr;
209 char *p2 = p;
210 const char *end = ptr + size;
211
212 while (p1 != end)
213 *p2++ = *p1++;
214 }
215 p[size] = 0;
216 return p;
217 }
218
219 /* Concatenate NULL terminated variable argument list of `const char *' strings;
220 return the new string. Space is found in the OBSTACKP. Argument list must
221 be terminated by a sentinel expression `(char *) NULL'. */
222
223 char *
224 obconcat (struct obstack *obstackp, ...)
225 {
226 va_list ap;
227
228 va_start (ap, obstackp);
229 for (;;)
230 {
231 const char *s = va_arg (ap, const char *);
232
233 if (s == NULL)
234 break;
235
236 obstack_grow_str (obstackp, s);
237 }
238 va_end (ap);
239 obstack_1grow (obstackp, 0);
240
241 return obstack_finish (obstackp);
242 }
243
244 /* True if we are reading a symbol table. */
245
246 int currently_reading_symtab = 0;
247
248 static void
249 decrement_reading_symtab (void *dummy)
250 {
251 currently_reading_symtab--;
252 }
253
254 /* Increment currently_reading_symtab and return a cleanup that can be
255 used to decrement it. */
256 struct cleanup *
257 increment_reading_symtab (void)
258 {
259 ++currently_reading_symtab;
260 return make_cleanup (decrement_reading_symtab, NULL);
261 }
262
263 /* Remember the lowest-addressed loadable section we've seen.
264 This function is called via bfd_map_over_sections.
265
266 In case of equal vmas, the section with the largest size becomes the
267 lowest-addressed loadable section.
268
269 If the vmas and sizes are equal, the last section is considered the
270 lowest-addressed loadable section. */
271
272 void
273 find_lowest_section (bfd *abfd, asection *sect, void *obj)
274 {
275 asection **lowest = (asection **) obj;
276
277 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
278 return;
279 if (!*lowest)
280 *lowest = sect; /* First loadable section */
281 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
282 *lowest = sect; /* A lower loadable section */
283 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
284 && (bfd_section_size (abfd, (*lowest))
285 <= bfd_section_size (abfd, sect)))
286 *lowest = sect;
287 }
288
289 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
290
291 struct section_addr_info *
292 alloc_section_addr_info (size_t num_sections)
293 {
294 struct section_addr_info *sap;
295 size_t size;
296
297 size = (sizeof (struct section_addr_info)
298 + sizeof (struct other_sections) * (num_sections - 1));
299 sap = (struct section_addr_info *) xmalloc (size);
300 memset (sap, 0, size);
301 sap->num_sections = num_sections;
302
303 return sap;
304 }
305
306 /* Build (allocate and populate) a section_addr_info struct from
307 an existing section table. */
308
309 extern struct section_addr_info *
310 build_section_addr_info_from_section_table (const struct target_section *start,
311 const struct target_section *end)
312 {
313 struct section_addr_info *sap;
314 const struct target_section *stp;
315 int oidx;
316
317 sap = alloc_section_addr_info (end - start);
318
319 for (stp = start, oidx = 0; stp != end; stp++)
320 {
321 if (bfd_get_section_flags (stp->bfd,
322 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
323 && oidx < end - start)
324 {
325 sap->other[oidx].addr = stp->addr;
326 sap->other[oidx].name
327 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
328 sap->other[oidx].sectindex = stp->the_bfd_section->index;
329 oidx++;
330 }
331 }
332
333 return sap;
334 }
335
336 /* Create a section_addr_info from section offsets in ABFD. */
337
338 static struct section_addr_info *
339 build_section_addr_info_from_bfd (bfd *abfd)
340 {
341 struct section_addr_info *sap;
342 int i;
343 struct bfd_section *sec;
344
345 sap = alloc_section_addr_info (bfd_count_sections (abfd));
346 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
347 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
348 {
349 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
350 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
351 sap->other[i].sectindex = sec->index;
352 i++;
353 }
354 return sap;
355 }
356
357 /* Create a section_addr_info from section offsets in OBJFILE. */
358
359 struct section_addr_info *
360 build_section_addr_info_from_objfile (const struct objfile *objfile)
361 {
362 struct section_addr_info *sap;
363 int i;
364
365 /* Before reread_symbols gets rewritten it is not safe to call:
366 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
367 */
368 sap = build_section_addr_info_from_bfd (objfile->obfd);
369 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
370 {
371 int sectindex = sap->other[i].sectindex;
372
373 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
374 }
375 return sap;
376 }
377
378 /* Free all memory allocated by build_section_addr_info_from_section_table. */
379
380 extern void
381 free_section_addr_info (struct section_addr_info *sap)
382 {
383 int idx;
384
385 for (idx = 0; idx < sap->num_sections; idx++)
386 if (sap->other[idx].name)
387 xfree (sap->other[idx].name);
388 xfree (sap);
389 }
390
391
392 /* Initialize OBJFILE's sect_index_* members. */
393 static void
394 init_objfile_sect_indices (struct objfile *objfile)
395 {
396 asection *sect;
397 int i;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".text");
400 if (sect)
401 objfile->sect_index_text = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".data");
404 if (sect)
405 objfile->sect_index_data = sect->index;
406
407 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
408 if (sect)
409 objfile->sect_index_bss = sect->index;
410
411 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
412 if (sect)
413 objfile->sect_index_rodata = sect->index;
414
415 /* This is where things get really weird... We MUST have valid
416 indices for the various sect_index_* members or gdb will abort.
417 So if for example, there is no ".text" section, we have to
418 accomodate that. First, check for a file with the standard
419 one or two segments. */
420
421 symfile_find_segment_sections (objfile);
422
423 /* Except when explicitly adding symbol files at some address,
424 section_offsets contains nothing but zeros, so it doesn't matter
425 which slot in section_offsets the individual sect_index_* members
426 index into. So if they are all zero, it is safe to just point
427 all the currently uninitialized indices to the first slot. But
428 beware: if this is the main executable, it may be relocated
429 later, e.g. by the remote qOffsets packet, and then this will
430 be wrong! That's why we try segments first. */
431
432 for (i = 0; i < objfile->num_sections; i++)
433 {
434 if (ANOFFSET (objfile->section_offsets, i) != 0)
435 {
436 break;
437 }
438 }
439 if (i == objfile->num_sections)
440 {
441 if (objfile->sect_index_text == -1)
442 objfile->sect_index_text = 0;
443 if (objfile->sect_index_data == -1)
444 objfile->sect_index_data = 0;
445 if (objfile->sect_index_bss == -1)
446 objfile->sect_index_bss = 0;
447 if (objfile->sect_index_rodata == -1)
448 objfile->sect_index_rodata = 0;
449 }
450 }
451
452 /* The arguments to place_section. */
453
454 struct place_section_arg
455 {
456 struct section_offsets *offsets;
457 CORE_ADDR lowest;
458 };
459
460 /* Find a unique offset to use for loadable section SECT if
461 the user did not provide an offset. */
462
463 static void
464 place_section (bfd *abfd, asection *sect, void *obj)
465 {
466 struct place_section_arg *arg = obj;
467 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
468 int done;
469 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
470
471 /* We are only interested in allocated sections. */
472 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
473 return;
474
475 /* If the user specified an offset, honor it. */
476 if (offsets[sect->index] != 0)
477 return;
478
479 /* Otherwise, let's try to find a place for the section. */
480 start_addr = (arg->lowest + align - 1) & -align;
481
482 do {
483 asection *cur_sec;
484
485 done = 1;
486
487 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
488 {
489 int indx = cur_sec->index;
490
491 /* We don't need to compare against ourself. */
492 if (cur_sec == sect)
493 continue;
494
495 /* We can only conflict with allocated sections. */
496 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
497 continue;
498
499 /* If the section offset is 0, either the section has not been placed
500 yet, or it was the lowest section placed (in which case LOWEST
501 will be past its end). */
502 if (offsets[indx] == 0)
503 continue;
504
505 /* If this section would overlap us, then we must move up. */
506 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
507 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
508 {
509 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
510 start_addr = (start_addr + align - 1) & -align;
511 done = 0;
512 break;
513 }
514
515 /* Otherwise, we appear to be OK. So far. */
516 }
517 }
518 while (!done);
519
520 offsets[sect->index] = start_addr;
521 arg->lowest = start_addr + bfd_get_section_size (sect);
522 }
523
524 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
525 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
526 entries. */
527
528 void
529 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
530 int num_sections,
531 struct section_addr_info *addrs)
532 {
533 int i;
534
535 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
536
537 /* Now calculate offsets for section that were specified by the caller. */
538 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
539 {
540 struct other_sections *osp;
541
542 osp = &addrs->other[i];
543 if (osp->addr == 0)
544 continue;
545
546 /* Record all sections in offsets */
547 /* The section_offsets in the objfile are here filled in using
548 the BFD index. */
549 section_offsets->offsets[osp->sectindex] = osp->addr;
550 }
551 }
552
553 /* Transform section name S for a name comparison. prelink can split section
554 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
555 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
556 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
557 (`.sbss') section has invalid (increased) virtual address. */
558
559 static const char *
560 addr_section_name (const char *s)
561 {
562 if (strcmp (s, ".dynbss") == 0)
563 return ".bss";
564 if (strcmp (s, ".sdynbss") == 0)
565 return ".sbss";
566
567 return s;
568 }
569
570 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
571 their (name, sectindex) pair. sectindex makes the sort by name stable. */
572
573 static int
574 addrs_section_compar (const void *ap, const void *bp)
575 {
576 const struct other_sections *a = *((struct other_sections **) ap);
577 const struct other_sections *b = *((struct other_sections **) bp);
578 int retval, a_idx, b_idx;
579
580 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
581 if (retval)
582 return retval;
583
584 /* SECTINDEX is undefined iff ADDR is zero. */
585 a_idx = a->addr == 0 ? 0 : a->sectindex;
586 b_idx = b->addr == 0 ? 0 : b->sectindex;
587 return a_idx - b_idx;
588 }
589
590 /* Provide sorted array of pointers to sections of ADDRS. The array is
591 terminated by NULL. Caller is responsible to call xfree for it. */
592
593 static struct other_sections **
594 addrs_section_sort (struct section_addr_info *addrs)
595 {
596 struct other_sections **array;
597 int i;
598
599 /* `+ 1' for the NULL terminator. */
600 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 array[i] = &addrs->other[i];
603 array[i] = NULL;
604
605 qsort (array, i, sizeof (*array), addrs_section_compar);
606
607 return array;
608 }
609
610 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
611 also SECTINDEXes specific to ABFD there. This function can be used to
612 rebase ADDRS to start referencing different BFD than before. */
613
614 void
615 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
616 {
617 asection *lower_sect;
618 CORE_ADDR lower_offset;
619 int i;
620 struct cleanup *my_cleanup;
621 struct section_addr_info *abfd_addrs;
622 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
623 struct other_sections **addrs_to_abfd_addrs;
624
625 /* Find lowest loadable section to be used as starting point for
626 continguous sections. */
627 lower_sect = NULL;
628 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
629 if (lower_sect == NULL)
630 {
631 warning (_("no loadable sections found in added symbol-file %s"),
632 bfd_get_filename (abfd));
633 lower_offset = 0;
634 }
635 else
636 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
637
638 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
639 in ABFD. Section names are not unique - there can be multiple sections of
640 the same name. Also the sections of the same name do not have to be
641 adjacent to each other. Some sections may be present only in one of the
642 files. Even sections present in both files do not have to be in the same
643 order.
644
645 Use stable sort by name for the sections in both files. Then linearly
646 scan both lists matching as most of the entries as possible. */
647
648 addrs_sorted = addrs_section_sort (addrs);
649 my_cleanup = make_cleanup (xfree, addrs_sorted);
650
651 abfd_addrs = build_section_addr_info_from_bfd (abfd);
652 make_cleanup_free_section_addr_info (abfd_addrs);
653 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
654 make_cleanup (xfree, abfd_addrs_sorted);
655
656 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
657
658 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
659 * addrs->num_sections);
660 make_cleanup (xfree, addrs_to_abfd_addrs);
661
662 while (*addrs_sorted)
663 {
664 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
665
666 while (*abfd_addrs_sorted
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) < 0)
669 abfd_addrs_sorted++;
670
671 if (*abfd_addrs_sorted
672 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
673 sect_name) == 0)
674 {
675 int index_in_addrs;
676
677 /* Make the found item directly addressable from ADDRS. */
678 index_in_addrs = *addrs_sorted - addrs->other;
679 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
680 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
681
682 /* Never use the same ABFD entry twice. */
683 abfd_addrs_sorted++;
684 }
685
686 addrs_sorted++;
687 }
688
689 /* Calculate offsets for the loadable sections.
690 FIXME! Sections must be in order of increasing loadable section
691 so that contiguous sections can use the lower-offset!!!
692
693 Adjust offsets if the segments are not contiguous.
694 If the section is contiguous, its offset should be set to
695 the offset of the highest loadable section lower than it
696 (the loadable section directly below it in memory).
697 this_offset = lower_offset = lower_addr - lower_orig_addr */
698
699 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
700 {
701 struct other_sections *sect = addrs_to_abfd_addrs[i];
702
703 if (sect)
704 {
705 /* This is the index used by BFD. */
706 addrs->other[i].sectindex = sect->sectindex;
707
708 if (addrs->other[i].addr != 0)
709 {
710 addrs->other[i].addr -= sect->addr;
711 lower_offset = addrs->other[i].addr;
712 }
713 else
714 addrs->other[i].addr = lower_offset;
715 }
716 else
717 {
718 /* addr_section_name transformation is not used for SECT_NAME. */
719 const char *sect_name = addrs->other[i].name;
720
721 /* This section does not exist in ABFD, which is normally
722 unexpected and we want to issue a warning.
723
724 However, the ELF prelinker does create a few sections which are
725 marked in the main executable as loadable (they are loaded in
726 memory from the DYNAMIC segment) and yet are not present in
727 separate debug info files. This is fine, and should not cause
728 a warning. Shared libraries contain just the section
729 ".gnu.liblist" but it is not marked as loadable there. There is
730 no other way to identify them than by their name as the sections
731 created by prelink have no special flags.
732
733 For the sections `.bss' and `.sbss' see addr_section_name. */
734
735 if (!(strcmp (sect_name, ".gnu.liblist") == 0
736 || strcmp (sect_name, ".gnu.conflict") == 0
737 || (strcmp (sect_name, ".bss") == 0
738 && i > 0
739 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
740 && addrs_to_abfd_addrs[i - 1] != NULL)
741 || (strcmp (sect_name, ".sbss") == 0
742 && i > 0
743 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
744 && addrs_to_abfd_addrs[i - 1] != NULL)))
745 warning (_("section %s not found in %s"), sect_name,
746 bfd_get_filename (abfd));
747
748 addrs->other[i].addr = 0;
749
750 /* SECTINDEX is invalid if ADDR is zero. */
751 }
752 }
753
754 do_cleanups (my_cleanup);
755 }
756
757 /* Parse the user's idea of an offset for dynamic linking, into our idea
758 of how to represent it for fast symbol reading. This is the default
759 version of the sym_fns.sym_offsets function for symbol readers that
760 don't need to do anything special. It allocates a section_offsets table
761 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
762
763 void
764 default_symfile_offsets (struct objfile *objfile,
765 struct section_addr_info *addrs)
766 {
767 objfile->num_sections = bfd_count_sections (objfile->obfd);
768 objfile->section_offsets = (struct section_offsets *)
769 obstack_alloc (&objfile->objfile_obstack,
770 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
771 relative_addr_info_to_section_offsets (objfile->section_offsets,
772 objfile->num_sections, addrs);
773
774 /* For relocatable files, all loadable sections will start at zero.
775 The zero is meaningless, so try to pick arbitrary addresses such
776 that no loadable sections overlap. This algorithm is quadratic,
777 but the number of sections in a single object file is generally
778 small. */
779 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
780 {
781 struct place_section_arg arg;
782 bfd *abfd = objfile->obfd;
783 asection *cur_sec;
784
785 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
786 /* We do not expect this to happen; just skip this step if the
787 relocatable file has a section with an assigned VMA. */
788 if (bfd_section_vma (abfd, cur_sec) != 0)
789 break;
790
791 if (cur_sec == NULL)
792 {
793 CORE_ADDR *offsets = objfile->section_offsets->offsets;
794
795 /* Pick non-overlapping offsets for sections the user did not
796 place explicitly. */
797 arg.offsets = objfile->section_offsets;
798 arg.lowest = 0;
799 bfd_map_over_sections (objfile->obfd, place_section, &arg);
800
801 /* Correctly filling in the section offsets is not quite
802 enough. Relocatable files have two properties that
803 (most) shared objects do not:
804
805 - Their debug information will contain relocations. Some
806 shared libraries do also, but many do not, so this can not
807 be assumed.
808
809 - If there are multiple code sections they will be loaded
810 at different relative addresses in memory than they are
811 in the objfile, since all sections in the file will start
812 at address zero.
813
814 Because GDB has very limited ability to map from an
815 address in debug info to the correct code section,
816 it relies on adding SECT_OFF_TEXT to things which might be
817 code. If we clear all the section offsets, and set the
818 section VMAs instead, then symfile_relocate_debug_section
819 will return meaningful debug information pointing at the
820 correct sections.
821
822 GDB has too many different data structures for section
823 addresses - a bfd, objfile, and so_list all have section
824 tables, as does exec_ops. Some of these could probably
825 be eliminated. */
826
827 for (cur_sec = abfd->sections; cur_sec != NULL;
828 cur_sec = cur_sec->next)
829 {
830 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
831 continue;
832
833 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
834 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
835 offsets[cur_sec->index]);
836 offsets[cur_sec->index] = 0;
837 }
838 }
839 }
840
841 /* Remember the bfd indexes for the .text, .data, .bss and
842 .rodata sections. */
843 init_objfile_sect_indices (objfile);
844 }
845
846
847 /* Divide the file into segments, which are individual relocatable units.
848 This is the default version of the sym_fns.sym_segments function for
849 symbol readers that do not have an explicit representation of segments.
850 It assumes that object files do not have segments, and fully linked
851 files have a single segment. */
852
853 struct symfile_segment_data *
854 default_symfile_segments (bfd *abfd)
855 {
856 int num_sections, i;
857 asection *sect;
858 struct symfile_segment_data *data;
859 CORE_ADDR low, high;
860
861 /* Relocatable files contain enough information to position each
862 loadable section independently; they should not be relocated
863 in segments. */
864 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
865 return NULL;
866
867 /* Make sure there is at least one loadable section in the file. */
868 for (sect = abfd->sections; sect != NULL; sect = sect->next)
869 {
870 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
871 continue;
872
873 break;
874 }
875 if (sect == NULL)
876 return NULL;
877
878 low = bfd_get_section_vma (abfd, sect);
879 high = low + bfd_get_section_size (sect);
880
881 data = XZALLOC (struct symfile_segment_data);
882 data->num_segments = 1;
883 data->segment_bases = XCALLOC (1, CORE_ADDR);
884 data->segment_sizes = XCALLOC (1, CORE_ADDR);
885
886 num_sections = bfd_count_sections (abfd);
887 data->segment_info = XCALLOC (num_sections, int);
888
889 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
890 {
891 CORE_ADDR vma;
892
893 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
894 continue;
895
896 vma = bfd_get_section_vma (abfd, sect);
897 if (vma < low)
898 low = vma;
899 if (vma + bfd_get_section_size (sect) > high)
900 high = vma + bfd_get_section_size (sect);
901
902 data->segment_info[i] = 1;
903 }
904
905 data->segment_bases[0] = low;
906 data->segment_sizes[0] = high - low;
907
908 return data;
909 }
910
911 /* Process a symbol file, as either the main file or as a dynamically
912 loaded file.
913
914 OBJFILE is where the symbols are to be read from.
915
916 ADDRS is the list of section load addresses. If the user has given
917 an 'add-symbol-file' command, then this is the list of offsets and
918 addresses he or she provided as arguments to the command; or, if
919 we're handling a shared library, these are the actual addresses the
920 sections are loaded at, according to the inferior's dynamic linker
921 (as gleaned by GDB's shared library code). We convert each address
922 into an offset from the section VMA's as it appears in the object
923 file, and then call the file's sym_offsets function to convert this
924 into a format-specific offset table --- a `struct section_offsets'.
925 If ADDRS is non-zero, OFFSETS must be zero.
926
927 OFFSETS is a table of section offsets already in the right
928 format-specific representation. NUM_OFFSETS is the number of
929 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
930 assume this is the proper table the call to sym_offsets described
931 above would produce. Instead of calling sym_offsets, we just dump
932 it right into objfile->section_offsets. (When we're re-reading
933 symbols from an objfile, we don't have the original load address
934 list any more; all we have is the section offset table.) If
935 OFFSETS is non-zero, ADDRS must be zero.
936
937 ADD_FLAGS encodes verbosity level, whether this is main symbol or
938 an extra symbol file such as dynamically loaded code, and wether
939 breakpoint reset should be deferred. */
940
941 void
942 syms_from_objfile (struct objfile *objfile,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int add_flags)
947 {
948 struct section_addr_info *local_addr = NULL;
949 struct cleanup *old_chain;
950 const int mainline = add_flags & SYMFILE_MAINLINE;
951
952 gdb_assert (! (addrs && offsets));
953
954 init_entry_point_info (objfile);
955 objfile->sf = find_sym_fns (objfile->obfd);
956
957 if (objfile->sf == NULL)
958 return; /* No symbols. */
959
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
962 old_chain = make_cleanup_free_objfile (objfile);
963
964 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
965 list. We now establish the convention that an addr of zero means
966 no load address was specified. */
967 if (! addrs && ! offsets)
968 {
969 local_addr
970 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
977 if (mainline)
978 {
979 /* We will modify the main symbol table, make sure that all its users
980 will be cleaned up if an error occurs during symbol reading. */
981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
988 gdb_assert (symfile_objfile == NULL);
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
995
996 (*objfile->sf->sym_new_init) (objfile);
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
1001 and assume that <addr> is where that got loaded.
1002
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
1005 if (addrs && addrs->other[0].name)
1006 addr_info_make_relative (addrs, objfile->obfd);
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
1010 initial symbol reading for this file. */
1011
1012 (*objfile->sf->sym_init) (objfile);
1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1014
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
1025 obstack_alloc (&objfile->objfile_obstack, size));
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
1030
1031 (*objfile->sf->sym_read) (objfile, add_flags);
1032
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
1036 xfree (local_addr);
1037 }
1038
1039 /* Perform required actions after either reading in the initial
1040 symbols for a new objfile, or mapping in the symbols from a reusable
1041 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1042
1043 void
1044 new_symfile_objfile (struct objfile *objfile, int add_flags)
1045 {
1046 /* If this is the main symbol file we have to clean up all users of the
1047 old main symbol file. Otherwise it is sufficient to fixup all the
1048 breakpoints that may have been redefined by this symbol file. */
1049 if (add_flags & SYMFILE_MAINLINE)
1050 {
1051 /* OK, make it the "real" symbol file. */
1052 symfile_objfile = objfile;
1053
1054 clear_symtab_users (add_flags);
1055 }
1056 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1057 {
1058 breakpoint_re_set ();
1059 }
1060
1061 /* We're done reading the symbol file; finish off complaints. */
1062 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1063 }
1064
1065 /* Process a symbol file, as either the main file or as a dynamically
1066 loaded file.
1067
1068 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1069 This BFD will be closed on error, and is always consumed by this function.
1070
1071 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1072 extra, such as dynamically loaded code, and what to do with breakpoins.
1073
1074 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1075 syms_from_objfile, above.
1076 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1077
1078 Upon success, returns a pointer to the objfile that was added.
1079 Upon failure, jumps back to command level (never returns). */
1080
1081 static struct objfile *
1082 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1083 int add_flags,
1084 struct section_addr_info *addrs,
1085 struct section_offsets *offsets,
1086 int num_offsets,
1087 int flags)
1088 {
1089 struct objfile *objfile;
1090 struct cleanup *my_cleanups;
1091 const char *name = bfd_get_filename (abfd);
1092 const int from_tty = add_flags & SYMFILE_VERBOSE;
1093
1094 if (readnow_symbol_files)
1095 flags |= OBJF_READNOW;
1096
1097 my_cleanups = make_cleanup_bfd_close (abfd);
1098
1099 /* Give user a chance to burp if we'd be
1100 interactively wiping out any existing symbols. */
1101
1102 if ((have_full_symbols () || have_partial_symbols ())
1103 && (add_flags & SYMFILE_MAINLINE)
1104 && from_tty
1105 && !query (_("Load new symbol table from \"%s\"? "), name))
1106 error (_("Not confirmed."));
1107
1108 objfile = allocate_objfile (abfd, flags);
1109 discard_cleanups (my_cleanups);
1110
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (from_tty || info_verbose)
1115 {
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1119 {
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124 }
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (from_tty || info_verbose)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if ((from_tty || info_verbose)
1147 && !objfile_has_symbols (objfile))
1148 {
1149 wrap_here ("");
1150 printf_unfiltered (_("(no debugging symbols found)..."));
1151 wrap_here ("");
1152 }
1153
1154 if (from_tty || info_verbose)
1155 {
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
1158 else
1159 printf_unfiltered (_("done.\n"));
1160 }
1161
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1166
1167 do_cleanups (my_cleanups);
1168
1169 if (objfile->sf == NULL)
1170 {
1171 observer_notify_new_objfile (objfile);
1172 return objfile; /* No symbols. */
1173 }
1174
1175 new_symfile_objfile (objfile, add_flags);
1176
1177 observer_notify_new_objfile (objfile);
1178
1179 bfd_cache_close_all ();
1180 return (objfile);
1181 }
1182
1183 /* Add BFD as a separate debug file for OBJFILE. */
1184
1185 void
1186 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1187 {
1188 struct objfile *new_objfile;
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1191
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
1197
1198 new_objfile = symbol_file_add_with_addrs_or_offsets
1199 (bfd, symfile_flags,
1200 sap, NULL, 0,
1201 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1202 | OBJF_USERLOADED));
1203
1204 do_cleanups (my_cleanup);
1205
1206 add_separate_debug_objfile (new_objfile, objfile);
1207 }
1208
1209 /* Process the symbol file ABFD, as either the main file or as a
1210 dynamically loaded file.
1211
1212 See symbol_file_add_with_addrs_or_offsets's comments for
1213 details. */
1214 struct objfile *
1215 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1216 struct section_addr_info *addrs,
1217 int flags)
1218 {
1219 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1220 flags);
1221 }
1222
1223
1224 /* Process a symbol file, as either the main file or as a dynamically
1225 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1226 for details. */
1227 struct objfile *
1228 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1229 int flags)
1230 {
1231 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1232 flags);
1233 }
1234
1235
1236 /* Call symbol_file_add() with default values and update whatever is
1237 affected by the loading of a new main().
1238 Used when the file is supplied in the gdb command line
1239 and by some targets with special loading requirements.
1240 The auxiliary function, symbol_file_add_main_1(), has the flags
1241 argument for the switches that can only be specified in the symbol_file
1242 command itself. */
1243
1244 void
1245 symbol_file_add_main (char *args, int from_tty)
1246 {
1247 symbol_file_add_main_1 (args, from_tty, 0);
1248 }
1249
1250 static void
1251 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1252 {
1253 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1254 symbol_file_add (args, add_flags, NULL, flags);
1255
1256 /* Getting new symbols may change our opinion about
1257 what is frameless. */
1258 reinit_frame_cache ();
1259
1260 set_initial_language ();
1261 }
1262
1263 void
1264 symbol_file_clear (int from_tty)
1265 {
1266 if ((have_full_symbols () || have_partial_symbols ())
1267 && from_tty
1268 && (symfile_objfile
1269 ? !query (_("Discard symbol table from `%s'? "),
1270 symfile_objfile->name)
1271 : !query (_("Discard symbol table? "))))
1272 error (_("Not confirmed."));
1273
1274 /* solib descriptors may have handles to objfiles. Wipe them before their
1275 objfiles get stale by free_all_objfiles. */
1276 no_shared_libraries (NULL, from_tty);
1277
1278 free_all_objfiles ();
1279
1280 gdb_assert (symfile_objfile == NULL);
1281 if (from_tty)
1282 printf_unfiltered (_("No symbol file now.\n"));
1283 }
1284
1285 static char *
1286 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1287 {
1288 asection *sect;
1289 bfd_size_type debuglink_size;
1290 unsigned long crc32;
1291 char *contents;
1292 int crc_offset;
1293
1294 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1295
1296 if (sect == NULL)
1297 return NULL;
1298
1299 debuglink_size = bfd_section_size (objfile->obfd, sect);
1300
1301 contents = xmalloc (debuglink_size);
1302 bfd_get_section_contents (objfile->obfd, sect, contents,
1303 (file_ptr)0, (bfd_size_type)debuglink_size);
1304
1305 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1306 crc_offset = strlen (contents) + 1;
1307 crc_offset = (crc_offset + 3) & ~3;
1308
1309 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1310
1311 *crc32_out = crc32;
1312 return contents;
1313 }
1314
1315 static int
1316 separate_debug_file_exists (const char *name, unsigned long crc,
1317 struct objfile *parent_objfile)
1318 {
1319 unsigned long file_crc = 0;
1320 bfd *abfd;
1321 gdb_byte buffer[8*1024];
1322 int count;
1323 struct stat parent_stat, abfd_stat;
1324
1325 /* Find a separate debug info file as if symbols would be present in
1326 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1327 section can contain just the basename of PARENT_OBJFILE without any
1328 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1329 the separate debug infos with the same basename can exist. */
1330
1331 if (strcmp (name, parent_objfile->name) == 0)
1332 return 0;
1333
1334 abfd = bfd_open_maybe_remote (name);
1335
1336 if (!abfd)
1337 return 0;
1338
1339 /* Verify symlinks were not the cause of strcmp name difference above.
1340
1341 Some operating systems, e.g. Windows, do not provide a meaningful
1342 st_ino; they always set it to zero. (Windows does provide a
1343 meaningful st_dev.) Do not indicate a duplicate library in that
1344 case. While there is no guarantee that a system that provides
1345 meaningful inode numbers will never set st_ino to zero, this is
1346 merely an optimization, so we do not need to worry about false
1347 negatives. */
1348
1349 if (bfd_stat (abfd, &abfd_stat) == 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1351 && abfd_stat.st_dev == parent_stat.st_dev
1352 && abfd_stat.st_ino == parent_stat.st_ino
1353 && abfd_stat.st_ino != 0)
1354 {
1355 bfd_close (abfd);
1356 return 0;
1357 }
1358
1359 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1360 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1361
1362 bfd_close (abfd);
1363
1364 if (crc != file_crc)
1365 {
1366 warning (_("the debug information found in \"%s\""
1367 " does not match \"%s\" (CRC mismatch).\n"),
1368 name, parent_objfile->name);
1369 return 0;
1370 }
1371
1372 return 1;
1373 }
1374
1375 char *debug_file_directory = NULL;
1376 static void
1377 show_debug_file_directory (struct ui_file *file, int from_tty,
1378 struct cmd_list_element *c, const char *value)
1379 {
1380 fprintf_filtered (file, _("\
1381 The directory where separate debug symbols are searched for is \"%s\".\n"),
1382 value);
1383 }
1384
1385 #if ! defined (DEBUG_SUBDIRECTORY)
1386 #define DEBUG_SUBDIRECTORY ".debug"
1387 #endif
1388
1389 char *
1390 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1391 {
1392 char *basename, *debugdir;
1393 char *dir = NULL;
1394 char *debugfile = NULL;
1395 char *canon_name = NULL;
1396 unsigned long crc32;
1397 int i;
1398
1399 basename = get_debug_link_info (objfile, &crc32);
1400
1401 if (basename == NULL)
1402 /* There's no separate debug info, hence there's no way we could
1403 load it => no warning. */
1404 goto cleanup_return_debugfile;
1405
1406 dir = xstrdup (objfile->name);
1407
1408 /* Strip off the final filename part, leaving the directory name,
1409 followed by a slash. The directory can be relative or absolute. */
1410 for (i = strlen(dir) - 1; i >= 0; i--)
1411 {
1412 if (IS_DIR_SEPARATOR (dir[i]))
1413 break;
1414 }
1415 /* If I is -1 then no directory is present there and DIR will be "". */
1416 dir[i+1] = '\0';
1417
1418 /* Set I to max (strlen (canon_name), strlen (dir)). */
1419 canon_name = lrealpath (dir);
1420 i = strlen (dir);
1421 if (canon_name && strlen (canon_name) > i)
1422 i = strlen (canon_name);
1423
1424 debugfile = xmalloc (strlen (debug_file_directory) + 1
1425 + i
1426 + strlen (DEBUG_SUBDIRECTORY)
1427 + strlen ("/")
1428 + strlen (basename)
1429 + 1);
1430
1431 /* First try in the same directory as the original file. */
1432 strcpy (debugfile, dir);
1433 strcat (debugfile, basename);
1434
1435 if (separate_debug_file_exists (debugfile, crc32, objfile))
1436 goto cleanup_return_debugfile;
1437
1438 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1439 strcpy (debugfile, dir);
1440 strcat (debugfile, DEBUG_SUBDIRECTORY);
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
1445 goto cleanup_return_debugfile;
1446
1447 /* Then try in the global debugfile directories.
1448
1449 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1450 cause "/..." lookups. */
1451
1452 debugdir = debug_file_directory;
1453 do
1454 {
1455 char *debugdir_end;
1456
1457 while (*debugdir == DIRNAME_SEPARATOR)
1458 debugdir++;
1459
1460 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1461 if (debugdir_end == NULL)
1462 debugdir_end = &debugdir[strlen (debugdir)];
1463
1464 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1465 debugfile[debugdir_end - debugdir] = 0;
1466 strcat (debugfile, "/");
1467 strcat (debugfile, dir);
1468 strcat (debugfile, basename);
1469
1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1471 goto cleanup_return_debugfile;
1472
1473 /* If the file is in the sysroot, try using its base path in the
1474 global debugfile directory. */
1475 if (canon_name
1476 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 {
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 goto cleanup_return_debugfile;
1487 }
1488
1489 debugdir = debugdir_end;
1490 }
1491 while (*debugdir != 0);
1492
1493 xfree (debugfile);
1494 debugfile = NULL;
1495
1496 cleanup_return_debugfile:
1497 xfree (canon_name);
1498 xfree (basename);
1499 xfree (dir);
1500 return debugfile;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = gdb_buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 cleanups = make_cleanup_freeargv (argv);
1535 while (*argv != NULL)
1536 {
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
1540 error (_("unknown option `%s'"), *argv);
1541 else
1542 {
1543 symbol_file_add_main_1 (*argv, from_tty, flags);
1544 name = *argv;
1545 }
1546
1547 argv++;
1548 }
1549
1550 if (name == NULL)
1551 error (_("no symbol file name was specified"));
1552
1553 do_cleanups (cleanups);
1554 }
1555 }
1556
1557 /* Set the initial language.
1558
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
1567
1568 void
1569 set_initial_language (void)
1570 {
1571 enum language lang = language_unknown;
1572
1573 if (language_of_main != language_unknown)
1574 lang = language_of_main;
1575 else
1576 {
1577 const char *filename;
1578
1579 filename = find_main_filename ();
1580 if (filename != NULL)
1581 lang = deduce_language_from_filename (filename);
1582 }
1583
1584 if (lang == language_unknown)
1585 {
1586 /* Make C the default language */
1587 lang = language_c;
1588 }
1589
1590 set_language (lang);
1591 expected_language = current_language; /* Don't warn the user. */
1592 }
1593
1594 /* If NAME is a remote name open the file using remote protocol, otherwise
1595 open it normally. */
1596
1597 bfd *
1598 bfd_open_maybe_remote (const char *name)
1599 {
1600 if (remote_filename_p (name))
1601 return remote_bfd_open (name, gnutarget);
1602 else
1603 return bfd_openr (name, gnutarget);
1604 }
1605
1606
1607 /* Open the file specified by NAME and hand it off to BFD for
1608 preliminary analysis. Return a newly initialized bfd *, which
1609 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1610 absolute). In case of trouble, error() is called. */
1611
1612 bfd *
1613 symfile_bfd_open (char *name)
1614 {
1615 bfd *sym_bfd;
1616 int desc;
1617 char *absolute_name;
1618
1619 if (remote_filename_p (name))
1620 {
1621 name = xstrdup (name);
1622 sym_bfd = remote_bfd_open (name, gnutarget);
1623 if (!sym_bfd)
1624 {
1625 make_cleanup (xfree, name);
1626 error (_("`%s': can't open to read symbols: %s."), name,
1627 bfd_errmsg (bfd_get_error ()));
1628 }
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 bfd_close (sym_bfd);
1633 make_cleanup (xfree, name);
1634 error (_("`%s': can't read symbols: %s."), name,
1635 bfd_errmsg (bfd_get_error ()));
1636 }
1637
1638 return sym_bfd;
1639 }
1640
1641 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1642
1643 /* Look down path for it, allocate 2nd new malloc'd copy. */
1644 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1645 O_RDONLY | O_BINARY, &absolute_name);
1646 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1647 if (desc < 0)
1648 {
1649 char *exename = alloca (strlen (name) + 5);
1650
1651 strcat (strcpy (exename, name), ".exe");
1652 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1653 O_RDONLY | O_BINARY, &absolute_name);
1654 }
1655 #endif
1656 if (desc < 0)
1657 {
1658 make_cleanup (xfree, name);
1659 perror_with_name (name);
1660 }
1661
1662 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1663 bfd. It'll be freed in free_objfile(). */
1664 xfree (name);
1665 name = absolute_name;
1666
1667 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1668 if (!sym_bfd)
1669 {
1670 close (desc);
1671 make_cleanup (xfree, name);
1672 error (_("`%s': can't open to read symbols: %s."), name,
1673 bfd_errmsg (bfd_get_error ()));
1674 }
1675 bfd_set_cacheable (sym_bfd, 1);
1676
1677 if (!bfd_check_format (sym_bfd, bfd_object))
1678 {
1679 /* FIXME: should be checking for errors from bfd_close (for one
1680 thing, on error it does not free all the storage associated
1681 with the bfd). */
1682 bfd_close (sym_bfd); /* This also closes desc. */
1683 make_cleanup (xfree, name);
1684 error (_("`%s': can't read symbols: %s."), name,
1685 bfd_errmsg (bfd_get_error ()));
1686 }
1687
1688 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1689 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1690
1691 return sym_bfd;
1692 }
1693
1694 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1695 the section was not found. */
1696
1697 int
1698 get_section_index (struct objfile *objfile, char *section_name)
1699 {
1700 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1701
1702 if (sect)
1703 return sect->index;
1704 else
1705 return -1;
1706 }
1707
1708 /* Link SF into the global symtab_fns list. Called on startup by the
1709 _initialize routine in each object file format reader, to register
1710 information about each format the the reader is prepared to
1711 handle. */
1712
1713 void
1714 add_symtab_fns (const struct sym_fns *sf)
1715 {
1716 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1717 }
1718
1719 /* Initialize OBJFILE to read symbols from its associated BFD. It
1720 either returns or calls error(). The result is an initialized
1721 struct sym_fns in the objfile structure, that contains cached
1722 information about the symbol file. */
1723
1724 static const struct sym_fns *
1725 find_sym_fns (bfd *abfd)
1726 {
1727 const struct sym_fns *sf;
1728 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1729 int i;
1730
1731 if (our_flavour == bfd_target_srec_flavour
1732 || our_flavour == bfd_target_ihex_flavour
1733 || our_flavour == bfd_target_tekhex_flavour)
1734 return NULL; /* No symbols. */
1735
1736 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1737 if (our_flavour == sf->sym_flavour)
1738 return sf;
1739
1740 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1741 bfd_get_target (abfd));
1742 }
1743 \f
1744
1745 /* This function runs the load command of our current target. */
1746
1747 static void
1748 load_command (char *arg, int from_tty)
1749 {
1750 /* The user might be reloading because the binary has changed. Take
1751 this opportunity to check. */
1752 reopen_exec_file ();
1753 reread_symbols ();
1754
1755 if (arg == NULL)
1756 {
1757 char *parg;
1758 int count = 0;
1759
1760 parg = arg = get_exec_file (1);
1761
1762 /* Count how many \ " ' tab space there are in the name. */
1763 while ((parg = strpbrk (parg, "\\\"'\t ")))
1764 {
1765 parg++;
1766 count++;
1767 }
1768
1769 if (count)
1770 {
1771 /* We need to quote this string so buildargv can pull it apart. */
1772 char *temp = xmalloc (strlen (arg) + count + 1 );
1773 char *ptemp = temp;
1774 char *prev;
1775
1776 make_cleanup (xfree, temp);
1777
1778 prev = parg = arg;
1779 while ((parg = strpbrk (parg, "\\\"'\t ")))
1780 {
1781 strncpy (ptemp, prev, parg - prev);
1782 ptemp += parg - prev;
1783 prev = parg++;
1784 *ptemp++ = '\\';
1785 }
1786 strcpy (ptemp, prev);
1787
1788 arg = temp;
1789 }
1790 }
1791
1792 target_load (arg, from_tty);
1793
1794 /* After re-loading the executable, we don't really know which
1795 overlays are mapped any more. */
1796 overlay_cache_invalid = 1;
1797 }
1798
1799 /* This version of "load" should be usable for any target. Currently
1800 it is just used for remote targets, not inftarg.c or core files,
1801 on the theory that only in that case is it useful.
1802
1803 Avoiding xmodem and the like seems like a win (a) because we don't have
1804 to worry about finding it, and (b) On VMS, fork() is very slow and so
1805 we don't want to run a subprocess. On the other hand, I'm not sure how
1806 performance compares. */
1807
1808 static int validate_download = 0;
1809
1810 /* Callback service function for generic_load (bfd_map_over_sections). */
1811
1812 static void
1813 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1814 {
1815 bfd_size_type *sum = data;
1816
1817 *sum += bfd_get_section_size (asec);
1818 }
1819
1820 /* Opaque data for load_section_callback. */
1821 struct load_section_data {
1822 unsigned long load_offset;
1823 struct load_progress_data *progress_data;
1824 VEC(memory_write_request_s) *requests;
1825 };
1826
1827 /* Opaque data for load_progress. */
1828 struct load_progress_data {
1829 /* Cumulative data. */
1830 unsigned long write_count;
1831 unsigned long data_count;
1832 bfd_size_type total_size;
1833 };
1834
1835 /* Opaque data for load_progress for a single section. */
1836 struct load_progress_section_data {
1837 struct load_progress_data *cumulative;
1838
1839 /* Per-section data. */
1840 const char *section_name;
1841 ULONGEST section_sent;
1842 ULONGEST section_size;
1843 CORE_ADDR lma;
1844 gdb_byte *buffer;
1845 };
1846
1847 /* Target write callback routine for progress reporting. */
1848
1849 static void
1850 load_progress (ULONGEST bytes, void *untyped_arg)
1851 {
1852 struct load_progress_section_data *args = untyped_arg;
1853 struct load_progress_data *totals;
1854
1855 if (args == NULL)
1856 /* Writing padding data. No easy way to get at the cumulative
1857 stats, so just ignore this. */
1858 return;
1859
1860 totals = args->cumulative;
1861
1862 if (bytes == 0 && args->section_sent == 0)
1863 {
1864 /* The write is just starting. Let the user know we've started
1865 this section. */
1866 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1867 args->section_name, hex_string (args->section_size),
1868 paddress (target_gdbarch, args->lma));
1869 return;
1870 }
1871
1872 if (validate_download)
1873 {
1874 /* Broken memories and broken monitors manifest themselves here
1875 when bring new computers to life. This doubles already slow
1876 downloads. */
1877 /* NOTE: cagney/1999-10-18: A more efficient implementation
1878 might add a verify_memory() method to the target vector and
1879 then use that. remote.c could implement that method using
1880 the ``qCRC'' packet. */
1881 gdb_byte *check = xmalloc (bytes);
1882 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1883
1884 if (target_read_memory (args->lma, check, bytes) != 0)
1885 error (_("Download verify read failed at %s"),
1886 paddress (target_gdbarch, args->lma));
1887 if (memcmp (args->buffer, check, bytes) != 0)
1888 error (_("Download verify compare failed at %s"),
1889 paddress (target_gdbarch, args->lma));
1890 do_cleanups (verify_cleanups);
1891 }
1892 totals->data_count += bytes;
1893 args->lma += bytes;
1894 args->buffer += bytes;
1895 totals->write_count += 1;
1896 args->section_sent += bytes;
1897 if (quit_flag
1898 || (deprecated_ui_load_progress_hook != NULL
1899 && deprecated_ui_load_progress_hook (args->section_name,
1900 args->section_sent)))
1901 error (_("Canceled the download"));
1902
1903 if (deprecated_show_load_progress != NULL)
1904 deprecated_show_load_progress (args->section_name,
1905 args->section_sent,
1906 args->section_size,
1907 totals->data_count,
1908 totals->total_size);
1909 }
1910
1911 /* Callback service function for generic_load (bfd_map_over_sections). */
1912
1913 static void
1914 load_section_callback (bfd *abfd, asection *asec, void *data)
1915 {
1916 struct memory_write_request *new_request;
1917 struct load_section_data *args = data;
1918 struct load_progress_section_data *section_data;
1919 bfd_size_type size = bfd_get_section_size (asec);
1920 gdb_byte *buffer;
1921 const char *sect_name = bfd_get_section_name (abfd, asec);
1922
1923 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1924 return;
1925
1926 if (size == 0)
1927 return;
1928
1929 new_request = VEC_safe_push (memory_write_request_s,
1930 args->requests, NULL);
1931 memset (new_request, 0, sizeof (struct memory_write_request));
1932 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1933 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1935 new_request->data = xmalloc (size);
1936 new_request->baton = section_data;
1937
1938 buffer = new_request->data;
1939
1940 section_data->cumulative = args->progress_data;
1941 section_data->section_name = sect_name;
1942 section_data->section_size = size;
1943 section_data->lma = new_request->begin;
1944 section_data->buffer = buffer;
1945
1946 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1947 }
1948
1949 /* Clean up an entire memory request vector, including load
1950 data and progress records. */
1951
1952 static void
1953 clear_memory_write_data (void *arg)
1954 {
1955 VEC(memory_write_request_s) **vec_p = arg;
1956 VEC(memory_write_request_s) *vec = *vec_p;
1957 int i;
1958 struct memory_write_request *mr;
1959
1960 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1961 {
1962 xfree (mr->data);
1963 xfree (mr->baton);
1964 }
1965 VEC_free (memory_write_request_s, vec);
1966 }
1967
1968 void
1969 generic_load (char *args, int from_tty)
1970 {
1971 bfd *loadfile_bfd;
1972 struct timeval start_time, end_time;
1973 char *filename;
1974 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1975 struct load_section_data cbdata;
1976 struct load_progress_data total_progress;
1977
1978 CORE_ADDR entry;
1979 char **argv;
1980
1981 memset (&cbdata, 0, sizeof (cbdata));
1982 memset (&total_progress, 0, sizeof (total_progress));
1983 cbdata.progress_data = &total_progress;
1984
1985 make_cleanup (clear_memory_write_data, &cbdata.requests);
1986
1987 if (args == NULL)
1988 error_no_arg (_("file to load"));
1989
1990 argv = gdb_buildargv (args);
1991 make_cleanup_freeargv (argv);
1992
1993 filename = tilde_expand (argv[0]);
1994 make_cleanup (xfree, filename);
1995
1996 if (argv[1] != NULL)
1997 {
1998 char *endptr;
1999
2000 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2001
2002 /* If the last word was not a valid number then
2003 treat it as a file name with spaces in. */
2004 if (argv[1] == endptr)
2005 error (_("Invalid download offset:%s."), argv[1]);
2006
2007 if (argv[2] != NULL)
2008 error (_("Too many parameters."));
2009 }
2010
2011 /* Open the file for loading. */
2012 loadfile_bfd = bfd_openr (filename, gnutarget);
2013 if (loadfile_bfd == NULL)
2014 {
2015 perror_with_name (filename);
2016 return;
2017 }
2018
2019 /* FIXME: should be checking for errors from bfd_close (for one thing,
2020 on error it does not free all the storage associated with the
2021 bfd). */
2022 make_cleanup_bfd_close (loadfile_bfd);
2023
2024 if (!bfd_check_format (loadfile_bfd, bfd_object))
2025 {
2026 error (_("\"%s\" is not an object file: %s"), filename,
2027 bfd_errmsg (bfd_get_error ()));
2028 }
2029
2030 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2031 (void *) &total_progress.total_size);
2032
2033 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2034
2035 gettimeofday (&start_time, NULL);
2036
2037 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2038 load_progress) != 0)
2039 error (_("Load failed"));
2040
2041 gettimeofday (&end_time, NULL);
2042
2043 entry = bfd_get_start_address (loadfile_bfd);
2044 ui_out_text (uiout, "Start address ");
2045 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2046 ui_out_text (uiout, ", load size ");
2047 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2048 ui_out_text (uiout, "\n");
2049 /* We were doing this in remote-mips.c, I suspect it is right
2050 for other targets too. */
2051 regcache_write_pc (get_current_regcache (), entry);
2052
2053 /* Reset breakpoints, now that we have changed the load image. For
2054 instance, breakpoints may have been set (or reset, by
2055 post_create_inferior) while connected to the target but before we
2056 loaded the program. In that case, the prologue analyzer could
2057 have read instructions from the target to find the right
2058 breakpoint locations. Loading has changed the contents of that
2059 memory. */
2060
2061 breakpoint_re_set ();
2062
2063 /* FIXME: are we supposed to call symbol_file_add or not? According
2064 to a comment from remote-mips.c (where a call to symbol_file_add
2065 was commented out), making the call confuses GDB if more than one
2066 file is loaded in. Some targets do (e.g., remote-vx.c) but
2067 others don't (or didn't - perhaps they have all been deleted). */
2068
2069 print_transfer_performance (gdb_stdout, total_progress.data_count,
2070 total_progress.write_count,
2071 &start_time, &end_time);
2072
2073 do_cleanups (old_cleanups);
2074 }
2075
2076 /* Report how fast the transfer went. */
2077
2078 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2079 replaced by print_transfer_performance (with a very different
2080 function signature). */
2081
2082 void
2083 report_transfer_performance (unsigned long data_count, time_t start_time,
2084 time_t end_time)
2085 {
2086 struct timeval start, end;
2087
2088 start.tv_sec = start_time;
2089 start.tv_usec = 0;
2090 end.tv_sec = end_time;
2091 end.tv_usec = 0;
2092
2093 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2094 }
2095
2096 void
2097 print_transfer_performance (struct ui_file *stream,
2098 unsigned long data_count,
2099 unsigned long write_count,
2100 const struct timeval *start_time,
2101 const struct timeval *end_time)
2102 {
2103 ULONGEST time_count;
2104
2105 /* Compute the elapsed time in milliseconds, as a tradeoff between
2106 accuracy and overflow. */
2107 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2108 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2109
2110 ui_out_text (uiout, "Transfer rate: ");
2111 if (time_count > 0)
2112 {
2113 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2114
2115 if (ui_out_is_mi_like_p (uiout))
2116 {
2117 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2118 ui_out_text (uiout, " bits/sec");
2119 }
2120 else if (rate < 1024)
2121 {
2122 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2123 ui_out_text (uiout, " bytes/sec");
2124 }
2125 else
2126 {
2127 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2128 ui_out_text (uiout, " KB/sec");
2129 }
2130 }
2131 else
2132 {
2133 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2134 ui_out_text (uiout, " bits in <1 sec");
2135 }
2136 if (write_count > 0)
2137 {
2138 ui_out_text (uiout, ", ");
2139 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2140 ui_out_text (uiout, " bytes/write");
2141 }
2142 ui_out_text (uiout, ".\n");
2143 }
2144
2145 /* This function allows the addition of incrementally linked object files.
2146 It does not modify any state in the target, only in the debugger. */
2147 /* Note: ezannoni 2000-04-13 This function/command used to have a
2148 special case syntax for the rombug target (Rombug is the boot
2149 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2150 rombug case, the user doesn't need to supply a text address,
2151 instead a call to target_link() (in target.c) would supply the
2152 value to use. We are now discontinuing this type of ad hoc syntax. */
2153
2154 static void
2155 add_symbol_file_command (char *args, int from_tty)
2156 {
2157 struct gdbarch *gdbarch = get_current_arch ();
2158 char *filename = NULL;
2159 int flags = OBJF_USERLOADED;
2160 char *arg;
2161 int section_index = 0;
2162 int argcnt = 0;
2163 int sec_num = 0;
2164 int i;
2165 int expecting_sec_name = 0;
2166 int expecting_sec_addr = 0;
2167 char **argv;
2168
2169 struct sect_opt
2170 {
2171 char *name;
2172 char *value;
2173 };
2174
2175 struct section_addr_info *section_addrs;
2176 struct sect_opt *sect_opts = NULL;
2177 size_t num_sect_opts = 0;
2178 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2179
2180 num_sect_opts = 16;
2181 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2182 * sizeof (struct sect_opt));
2183
2184 dont_repeat ();
2185
2186 if (args == NULL)
2187 error (_("add-symbol-file takes a file name and an address"));
2188
2189 argv = gdb_buildargv (args);
2190 make_cleanup_freeargv (argv);
2191
2192 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2193 {
2194 /* Process the argument. */
2195 if (argcnt == 0)
2196 {
2197 /* The first argument is the file name. */
2198 filename = tilde_expand (arg);
2199 make_cleanup (xfree, filename);
2200 }
2201 else
2202 if (argcnt == 1)
2203 {
2204 /* The second argument is always the text address at which
2205 to load the program. */
2206 sect_opts[section_index].name = ".text";
2207 sect_opts[section_index].value = arg;
2208 if (++section_index >= num_sect_opts)
2209 {
2210 num_sect_opts *= 2;
2211 sect_opts = ((struct sect_opt *)
2212 xrealloc (sect_opts,
2213 num_sect_opts
2214 * sizeof (struct sect_opt)));
2215 }
2216 }
2217 else
2218 {
2219 /* It's an option (starting with '-') or it's an argument
2220 to an option */
2221
2222 if (*arg == '-')
2223 {
2224 if (strcmp (arg, "-readnow") == 0)
2225 flags |= OBJF_READNOW;
2226 else if (strcmp (arg, "-s") == 0)
2227 {
2228 expecting_sec_name = 1;
2229 expecting_sec_addr = 1;
2230 }
2231 }
2232 else
2233 {
2234 if (expecting_sec_name)
2235 {
2236 sect_opts[section_index].name = arg;
2237 expecting_sec_name = 0;
2238 }
2239 else
2240 if (expecting_sec_addr)
2241 {
2242 sect_opts[section_index].value = arg;
2243 expecting_sec_addr = 0;
2244 if (++section_index >= num_sect_opts)
2245 {
2246 num_sect_opts *= 2;
2247 sect_opts = ((struct sect_opt *)
2248 xrealloc (sect_opts,
2249 num_sect_opts
2250 * sizeof (struct sect_opt)));
2251 }
2252 }
2253 else
2254 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2255 }
2256 }
2257 }
2258
2259 /* This command takes at least two arguments. The first one is a
2260 filename, and the second is the address where this file has been
2261 loaded. Abort now if this address hasn't been provided by the
2262 user. */
2263 if (section_index < 1)
2264 error (_("The address where %s has been loaded is missing"), filename);
2265
2266 /* Print the prompt for the query below. And save the arguments into
2267 a sect_addr_info structure to be passed around to other
2268 functions. We have to split this up into separate print
2269 statements because hex_string returns a local static
2270 string. */
2271
2272 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2273 section_addrs = alloc_section_addr_info (section_index);
2274 make_cleanup (xfree, section_addrs);
2275 for (i = 0; i < section_index; i++)
2276 {
2277 CORE_ADDR addr;
2278 char *val = sect_opts[i].value;
2279 char *sec = sect_opts[i].name;
2280
2281 addr = parse_and_eval_address (val);
2282
2283 /* Here we store the section offsets in the order they were
2284 entered on the command line. */
2285 section_addrs->other[sec_num].name = sec;
2286 section_addrs->other[sec_num].addr = addr;
2287 printf_unfiltered ("\t%s_addr = %s\n", sec,
2288 paddress (gdbarch, addr));
2289 sec_num++;
2290
2291 /* The object's sections are initialized when a
2292 call is made to build_objfile_section_table (objfile).
2293 This happens in reread_symbols.
2294 At this point, we don't know what file type this is,
2295 so we can't determine what section names are valid. */
2296 }
2297
2298 if (from_tty && (!query ("%s", "")))
2299 error (_("Not confirmed."));
2300
2301 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2302 section_addrs, flags);
2303
2304 /* Getting new symbols may change our opinion about what is
2305 frameless. */
2306 reinit_frame_cache ();
2307 do_cleanups (my_cleanups);
2308 }
2309 \f
2310
2311 /* Re-read symbols if a symbol-file has changed. */
2312 void
2313 reread_symbols (void)
2314 {
2315 struct objfile *objfile;
2316 long new_modtime;
2317 int reread_one = 0;
2318 struct stat new_statbuf;
2319 int res;
2320
2321 /* With the addition of shared libraries, this should be modified,
2322 the load time should be saved in the partial symbol tables, since
2323 different tables may come from different source files. FIXME.
2324 This routine should then walk down each partial symbol table
2325 and see if the symbol table that it originates from has been changed */
2326
2327 for (objfile = object_files; objfile; objfile = objfile->next)
2328 {
2329 /* solib-sunos.c creates one objfile with obfd. */
2330 if (objfile->obfd == NULL)
2331 continue;
2332
2333 /* Separate debug objfiles are handled in the main objfile. */
2334 if (objfile->separate_debug_objfile_backlink)
2335 continue;
2336
2337 /* If this object is from an archive (what you usually create with
2338 `ar', often called a `static library' on most systems, though
2339 a `shared library' on AIX is also an archive), then you should
2340 stat on the archive name, not member name. */
2341 if (objfile->obfd->my_archive)
2342 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2343 else
2344 res = stat (objfile->name, &new_statbuf);
2345 if (res != 0)
2346 {
2347 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2348 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2349 objfile->name);
2350 continue;
2351 }
2352 new_modtime = new_statbuf.st_mtime;
2353 if (new_modtime != objfile->mtime)
2354 {
2355 struct cleanup *old_cleanups;
2356 struct section_offsets *offsets;
2357 int num_offsets;
2358 char *obfd_filename;
2359
2360 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2361 objfile->name);
2362
2363 /* There are various functions like symbol_file_add,
2364 symfile_bfd_open, syms_from_objfile, etc., which might
2365 appear to do what we want. But they have various other
2366 effects which we *don't* want. So we just do stuff
2367 ourselves. We don't worry about mapped files (for one thing,
2368 any mapped file will be out of date). */
2369
2370 /* If we get an error, blow away this objfile (not sure if
2371 that is the correct response for things like shared
2372 libraries). */
2373 old_cleanups = make_cleanup_free_objfile (objfile);
2374 /* We need to do this whenever any symbols go away. */
2375 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2376
2377 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2378 bfd_get_filename (exec_bfd)) == 0)
2379 {
2380 /* Reload EXEC_BFD without asking anything. */
2381
2382 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2383 }
2384
2385 /* Clean up any state BFD has sitting around. We don't need
2386 to close the descriptor but BFD lacks a way of closing the
2387 BFD without closing the descriptor. */
2388 obfd_filename = bfd_get_filename (objfile->obfd);
2389 if (!bfd_close (objfile->obfd))
2390 error (_("Can't close BFD for %s: %s"), objfile->name,
2391 bfd_errmsg (bfd_get_error ()));
2392 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2393 if (objfile->obfd == NULL)
2394 error (_("Can't open %s to read symbols."), objfile->name);
2395 else
2396 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2397 /* bfd_openr sets cacheable to true, which is what we want. */
2398 if (!bfd_check_format (objfile->obfd, bfd_object))
2399 error (_("Can't read symbols from %s: %s."), objfile->name,
2400 bfd_errmsg (bfd_get_error ()));
2401
2402 /* Save the offsets, we will nuke them with the rest of the
2403 objfile_obstack. */
2404 num_offsets = objfile->num_sections;
2405 offsets = ((struct section_offsets *)
2406 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2407 memcpy (offsets, objfile->section_offsets,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409
2410 /* Remove any references to this objfile in the global
2411 value lists. */
2412 preserve_values (objfile);
2413
2414 /* Nuke all the state that we will re-read. Much of the following
2415 code which sets things to NULL really is necessary to tell
2416 other parts of GDB that there is nothing currently there.
2417
2418 Try to keep the freeing order compatible with free_objfile. */
2419
2420 if (objfile->sf != NULL)
2421 {
2422 (*objfile->sf->sym_finish) (objfile);
2423 }
2424
2425 clear_objfile_data (objfile);
2426
2427 /* Free the separate debug objfiles. It will be
2428 automatically recreated by sym_read. */
2429 free_objfile_separate_debug (objfile);
2430
2431 /* FIXME: Do we have to free a whole linked list, or is this
2432 enough? */
2433 if (objfile->global_psymbols.list)
2434 xfree (objfile->global_psymbols.list);
2435 memset (&objfile->global_psymbols, 0,
2436 sizeof (objfile->global_psymbols));
2437 if (objfile->static_psymbols.list)
2438 xfree (objfile->static_psymbols.list);
2439 memset (&objfile->static_psymbols, 0,
2440 sizeof (objfile->static_psymbols));
2441
2442 /* Free the obstacks for non-reusable objfiles */
2443 psymbol_bcache_free (objfile->psymbol_cache);
2444 objfile->psymbol_cache = psymbol_bcache_init ();
2445 bcache_xfree (objfile->macro_cache);
2446 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2447 bcache_xfree (objfile->filename_cache);
2448 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2449 if (objfile->demangled_names_hash != NULL)
2450 {
2451 htab_delete (objfile->demangled_names_hash);
2452 objfile->demangled_names_hash = NULL;
2453 }
2454 obstack_free (&objfile->objfile_obstack, 0);
2455 objfile->sections = NULL;
2456 objfile->symtabs = NULL;
2457 objfile->psymtabs = NULL;
2458 objfile->psymtabs_addrmap = NULL;
2459 objfile->free_psymtabs = NULL;
2460 objfile->cp_namespace_symtab = NULL;
2461 objfile->template_symbols = NULL;
2462 objfile->msymbols = NULL;
2463 objfile->deprecated_sym_private = NULL;
2464 objfile->minimal_symbol_count = 0;
2465 memset (&objfile->msymbol_hash, 0,
2466 sizeof (objfile->msymbol_hash));
2467 memset (&objfile->msymbol_demangled_hash, 0,
2468 sizeof (objfile->msymbol_demangled_hash));
2469
2470 objfile->psymbol_cache = psymbol_bcache_init ();
2471 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2472 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2473 /* obstack_init also initializes the obstack so it is
2474 empty. We could use obstack_specify_allocation but
2475 gdb_obstack.h specifies the alloc/dealloc
2476 functions. */
2477 obstack_init (&objfile->objfile_obstack);
2478 if (build_objfile_section_table (objfile))
2479 {
2480 error (_("Can't find the file sections in `%s': %s"),
2481 objfile->name, bfd_errmsg (bfd_get_error ()));
2482 }
2483 terminate_minimal_symbol_table (objfile);
2484
2485 /* We use the same section offsets as from last time. I'm not
2486 sure whether that is always correct for shared libraries. */
2487 objfile->section_offsets = (struct section_offsets *)
2488 obstack_alloc (&objfile->objfile_obstack,
2489 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2490 memcpy (objfile->section_offsets, offsets,
2491 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2492 objfile->num_sections = num_offsets;
2493
2494 /* What the hell is sym_new_init for, anyway? The concept of
2495 distinguishing between the main file and additional files
2496 in this way seems rather dubious. */
2497 if (objfile == symfile_objfile)
2498 {
2499 (*objfile->sf->sym_new_init) (objfile);
2500 }
2501
2502 (*objfile->sf->sym_init) (objfile);
2503 clear_complaints (&symfile_complaints, 1, 1);
2504 /* Do not set flags as this is safe and we don't want to be
2505 verbose. */
2506 (*objfile->sf->sym_read) (objfile, 0);
2507 if (!objfile_has_symbols (objfile))
2508 {
2509 wrap_here ("");
2510 printf_unfiltered (_("(no debugging symbols found)\n"));
2511 wrap_here ("");
2512 }
2513
2514 /* We're done reading the symbol file; finish off complaints. */
2515 clear_complaints (&symfile_complaints, 0, 1);
2516
2517 /* Getting new symbols may change our opinion about what is
2518 frameless. */
2519
2520 reinit_frame_cache ();
2521
2522 /* Discard cleanups as symbol reading was successful. */
2523 discard_cleanups (old_cleanups);
2524
2525 /* If the mtime has changed between the time we set new_modtime
2526 and now, we *want* this to be out of date, so don't call stat
2527 again now. */
2528 objfile->mtime = new_modtime;
2529 reread_one = 1;
2530 init_entry_point_info (objfile);
2531 }
2532 }
2533
2534 if (reread_one)
2535 {
2536 /* Notify objfiles that we've modified objfile sections. */
2537 objfiles_changed ();
2538
2539 clear_symtab_users (0);
2540 /* At least one objfile has changed, so we can consider that
2541 the executable we're debugging has changed too. */
2542 observer_notify_executable_changed ();
2543 }
2544 }
2545 \f
2546
2547
2548 typedef struct
2549 {
2550 char *ext;
2551 enum language lang;
2552 }
2553 filename_language;
2554
2555 static filename_language *filename_language_table;
2556 static int fl_table_size, fl_table_next;
2557
2558 static void
2559 add_filename_language (char *ext, enum language lang)
2560 {
2561 if (fl_table_next >= fl_table_size)
2562 {
2563 fl_table_size += 10;
2564 filename_language_table =
2565 xrealloc (filename_language_table,
2566 fl_table_size * sizeof (*filename_language_table));
2567 }
2568
2569 filename_language_table[fl_table_next].ext = xstrdup (ext);
2570 filename_language_table[fl_table_next].lang = lang;
2571 fl_table_next++;
2572 }
2573
2574 static char *ext_args;
2575 static void
2576 show_ext_args (struct ui_file *file, int from_tty,
2577 struct cmd_list_element *c, const char *value)
2578 {
2579 fprintf_filtered (file, _("\
2580 Mapping between filename extension and source language is \"%s\".\n"),
2581 value);
2582 }
2583
2584 static void
2585 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2586 {
2587 int i;
2588 char *cp = ext_args;
2589 enum language lang;
2590
2591 /* First arg is filename extension, starting with '.' */
2592 if (*cp != '.')
2593 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2594
2595 /* Find end of first arg. */
2596 while (*cp && !isspace (*cp))
2597 cp++;
2598
2599 if (*cp == '\0')
2600 error (_("'%s': two arguments required -- filename extension and language"),
2601 ext_args);
2602
2603 /* Null-terminate first arg */
2604 *cp++ = '\0';
2605
2606 /* Find beginning of second arg, which should be a source language. */
2607 while (*cp && isspace (*cp))
2608 cp++;
2609
2610 if (*cp == '\0')
2611 error (_("'%s': two arguments required -- filename extension and language"),
2612 ext_args);
2613
2614 /* Lookup the language from among those we know. */
2615 lang = language_enum (cp);
2616
2617 /* Now lookup the filename extension: do we already know it? */
2618 for (i = 0; i < fl_table_next; i++)
2619 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2620 break;
2621
2622 if (i >= fl_table_next)
2623 {
2624 /* new file extension */
2625 add_filename_language (ext_args, lang);
2626 }
2627 else
2628 {
2629 /* redefining a previously known filename extension */
2630
2631 /* if (from_tty) */
2632 /* query ("Really make files of type %s '%s'?", */
2633 /* ext_args, language_str (lang)); */
2634
2635 xfree (filename_language_table[i].ext);
2636 filename_language_table[i].ext = xstrdup (ext_args);
2637 filename_language_table[i].lang = lang;
2638 }
2639 }
2640
2641 static void
2642 info_ext_lang_command (char *args, int from_tty)
2643 {
2644 int i;
2645
2646 printf_filtered (_("Filename extensions and the languages they represent:"));
2647 printf_filtered ("\n\n");
2648 for (i = 0; i < fl_table_next; i++)
2649 printf_filtered ("\t%s\t- %s\n",
2650 filename_language_table[i].ext,
2651 language_str (filename_language_table[i].lang));
2652 }
2653
2654 static void
2655 init_filename_language_table (void)
2656 {
2657 if (fl_table_size == 0) /* protect against repetition */
2658 {
2659 fl_table_size = 20;
2660 fl_table_next = 0;
2661 filename_language_table =
2662 xmalloc (fl_table_size * sizeof (*filename_language_table));
2663 add_filename_language (".c", language_c);
2664 add_filename_language (".d", language_d);
2665 add_filename_language (".C", language_cplus);
2666 add_filename_language (".cc", language_cplus);
2667 add_filename_language (".cp", language_cplus);
2668 add_filename_language (".cpp", language_cplus);
2669 add_filename_language (".cxx", language_cplus);
2670 add_filename_language (".c++", language_cplus);
2671 add_filename_language (".java", language_java);
2672 add_filename_language (".class", language_java);
2673 add_filename_language (".m", language_objc);
2674 add_filename_language (".f", language_fortran);
2675 add_filename_language (".F", language_fortran);
2676 add_filename_language (".for", language_fortran);
2677 add_filename_language (".FOR", language_fortran);
2678 add_filename_language (".ftn", language_fortran);
2679 add_filename_language (".FTN", language_fortran);
2680 add_filename_language (".fpp", language_fortran);
2681 add_filename_language (".FPP", language_fortran);
2682 add_filename_language (".f90", language_fortran);
2683 add_filename_language (".F90", language_fortran);
2684 add_filename_language (".f95", language_fortran);
2685 add_filename_language (".F95", language_fortran);
2686 add_filename_language (".f03", language_fortran);
2687 add_filename_language (".F03", language_fortran);
2688 add_filename_language (".f08", language_fortran);
2689 add_filename_language (".F08", language_fortran);
2690 add_filename_language (".s", language_asm);
2691 add_filename_language (".sx", language_asm);
2692 add_filename_language (".S", language_asm);
2693 add_filename_language (".pas", language_pascal);
2694 add_filename_language (".p", language_pascal);
2695 add_filename_language (".pp", language_pascal);
2696 add_filename_language (".adb", language_ada);
2697 add_filename_language (".ads", language_ada);
2698 add_filename_language (".a", language_ada);
2699 add_filename_language (".ada", language_ada);
2700 add_filename_language (".dg", language_ada);
2701 }
2702 }
2703
2704 enum language
2705 deduce_language_from_filename (const char *filename)
2706 {
2707 int i;
2708 char *cp;
2709
2710 if (filename != NULL)
2711 if ((cp = strrchr (filename, '.')) != NULL)
2712 for (i = 0; i < fl_table_next; i++)
2713 if (strcmp (cp, filename_language_table[i].ext) == 0)
2714 return filename_language_table[i].lang;
2715
2716 return language_unknown;
2717 }
2718 \f
2719 /* allocate_symtab:
2720
2721 Allocate and partly initialize a new symbol table. Return a pointer
2722 to it. error() if no space.
2723
2724 Caller must set these fields:
2725 LINETABLE(symtab)
2726 symtab->blockvector
2727 symtab->dirname
2728 symtab->free_code
2729 symtab->free_ptr
2730 */
2731
2732 struct symtab *
2733 allocate_symtab (const char *filename, struct objfile *objfile)
2734 {
2735 struct symtab *symtab;
2736
2737 symtab = (struct symtab *)
2738 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2739 memset (symtab, 0, sizeof (*symtab));
2740 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2741 objfile->filename_cache);
2742 symtab->fullname = NULL;
2743 symtab->language = deduce_language_from_filename (filename);
2744 symtab->debugformat = "unknown";
2745
2746 /* Hook it to the objfile it comes from */
2747
2748 symtab->objfile = objfile;
2749 symtab->next = objfile->symtabs;
2750 objfile->symtabs = symtab;
2751
2752 return (symtab);
2753 }
2754 \f
2755
2756 /* Reset all data structures in gdb which may contain references to symbol
2757 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2758
2759 void
2760 clear_symtab_users (int add_flags)
2761 {
2762 /* Someday, we should do better than this, by only blowing away
2763 the things that really need to be blown. */
2764
2765 /* Clear the "current" symtab first, because it is no longer valid.
2766 breakpoint_re_set may try to access the current symtab. */
2767 clear_current_source_symtab_and_line ();
2768
2769 clear_displays ();
2770 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2771 breakpoint_re_set ();
2772 set_default_breakpoint (0, NULL, 0, 0, 0);
2773 clear_pc_function_cache ();
2774 observer_notify_new_objfile (NULL);
2775
2776 /* Clear globals which might have pointed into a removed objfile.
2777 FIXME: It's not clear which of these are supposed to persist
2778 between expressions and which ought to be reset each time. */
2779 expression_context_block = NULL;
2780 innermost_block = NULL;
2781
2782 /* Varobj may refer to old symbols, perform a cleanup. */
2783 varobj_invalidate ();
2784
2785 }
2786
2787 static void
2788 clear_symtab_users_cleanup (void *ignore)
2789 {
2790 clear_symtab_users (0);
2791 }
2792 \f
2793 /* OVERLAYS:
2794 The following code implements an abstraction for debugging overlay sections.
2795
2796 The target model is as follows:
2797 1) The gnu linker will permit multiple sections to be mapped into the
2798 same VMA, each with its own unique LMA (or load address).
2799 2) It is assumed that some runtime mechanism exists for mapping the
2800 sections, one by one, from the load address into the VMA address.
2801 3) This code provides a mechanism for gdb to keep track of which
2802 sections should be considered to be mapped from the VMA to the LMA.
2803 This information is used for symbol lookup, and memory read/write.
2804 For instance, if a section has been mapped then its contents
2805 should be read from the VMA, otherwise from the LMA.
2806
2807 Two levels of debugger support for overlays are available. One is
2808 "manual", in which the debugger relies on the user to tell it which
2809 overlays are currently mapped. This level of support is
2810 implemented entirely in the core debugger, and the information about
2811 whether a section is mapped is kept in the objfile->obj_section table.
2812
2813 The second level of support is "automatic", and is only available if
2814 the target-specific code provides functionality to read the target's
2815 overlay mapping table, and translate its contents for the debugger
2816 (by updating the mapped state information in the obj_section tables).
2817
2818 The interface is as follows:
2819 User commands:
2820 overlay map <name> -- tell gdb to consider this section mapped
2821 overlay unmap <name> -- tell gdb to consider this section unmapped
2822 overlay list -- list the sections that GDB thinks are mapped
2823 overlay read-target -- get the target's state of what's mapped
2824 overlay off/manual/auto -- set overlay debugging state
2825 Functional interface:
2826 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2827 section, return that section.
2828 find_pc_overlay(pc): find any overlay section that contains
2829 the pc, either in its VMA or its LMA
2830 section_is_mapped(sect): true if overlay is marked as mapped
2831 section_is_overlay(sect): true if section's VMA != LMA
2832 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2833 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2834 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2835 overlay_mapped_address(...): map an address from section's LMA to VMA
2836 overlay_unmapped_address(...): map an address from section's VMA to LMA
2837 symbol_overlayed_address(...): Return a "current" address for symbol:
2838 either in VMA or LMA depending on whether
2839 the symbol's section is currently mapped
2840 */
2841
2842 /* Overlay debugging state: */
2843
2844 enum overlay_debugging_state overlay_debugging = ovly_off;
2845 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2846
2847 /* Function: section_is_overlay (SECTION)
2848 Returns true if SECTION has VMA not equal to LMA, ie.
2849 SECTION is loaded at an address different from where it will "run". */
2850
2851 int
2852 section_is_overlay (struct obj_section *section)
2853 {
2854 if (overlay_debugging && section)
2855 {
2856 bfd *abfd = section->objfile->obfd;
2857 asection *bfd_section = section->the_bfd_section;
2858
2859 if (bfd_section_lma (abfd, bfd_section) != 0
2860 && bfd_section_lma (abfd, bfd_section)
2861 != bfd_section_vma (abfd, bfd_section))
2862 return 1;
2863 }
2864
2865 return 0;
2866 }
2867
2868 /* Function: overlay_invalidate_all (void)
2869 Invalidate the mapped state of all overlay sections (mark it as stale). */
2870
2871 static void
2872 overlay_invalidate_all (void)
2873 {
2874 struct objfile *objfile;
2875 struct obj_section *sect;
2876
2877 ALL_OBJSECTIONS (objfile, sect)
2878 if (section_is_overlay (sect))
2879 sect->ovly_mapped = -1;
2880 }
2881
2882 /* Function: section_is_mapped (SECTION)
2883 Returns true if section is an overlay, and is currently mapped.
2884
2885 Access to the ovly_mapped flag is restricted to this function, so
2886 that we can do automatic update. If the global flag
2887 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2888 overlay_invalidate_all. If the mapped state of the particular
2889 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2890
2891 int
2892 section_is_mapped (struct obj_section *osect)
2893 {
2894 struct gdbarch *gdbarch;
2895
2896 if (osect == 0 || !section_is_overlay (osect))
2897 return 0;
2898
2899 switch (overlay_debugging)
2900 {
2901 default:
2902 case ovly_off:
2903 return 0; /* overlay debugging off */
2904 case ovly_auto: /* overlay debugging automatic */
2905 /* Unles there is a gdbarch_overlay_update function,
2906 there's really nothing useful to do here (can't really go auto) */
2907 gdbarch = get_objfile_arch (osect->objfile);
2908 if (gdbarch_overlay_update_p (gdbarch))
2909 {
2910 if (overlay_cache_invalid)
2911 {
2912 overlay_invalidate_all ();
2913 overlay_cache_invalid = 0;
2914 }
2915 if (osect->ovly_mapped == -1)
2916 gdbarch_overlay_update (gdbarch, osect);
2917 }
2918 /* fall thru to manual case */
2919 case ovly_on: /* overlay debugging manual */
2920 return osect->ovly_mapped == 1;
2921 }
2922 }
2923
2924 /* Function: pc_in_unmapped_range
2925 If PC falls into the lma range of SECTION, return true, else false. */
2926
2927 CORE_ADDR
2928 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2929 {
2930 if (section_is_overlay (section))
2931 {
2932 bfd *abfd = section->objfile->obfd;
2933 asection *bfd_section = section->the_bfd_section;
2934
2935 /* We assume the LMA is relocated by the same offset as the VMA. */
2936 bfd_vma size = bfd_get_section_size (bfd_section);
2937 CORE_ADDR offset = obj_section_offset (section);
2938
2939 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2940 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2941 return 1;
2942 }
2943
2944 return 0;
2945 }
2946
2947 /* Function: pc_in_mapped_range
2948 If PC falls into the vma range of SECTION, return true, else false. */
2949
2950 CORE_ADDR
2951 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2952 {
2953 if (section_is_overlay (section))
2954 {
2955 if (obj_section_addr (section) <= pc
2956 && pc < obj_section_endaddr (section))
2957 return 1;
2958 }
2959
2960 return 0;
2961 }
2962
2963
2964 /* Return true if the mapped ranges of sections A and B overlap, false
2965 otherwise. */
2966 static int
2967 sections_overlap (struct obj_section *a, struct obj_section *b)
2968 {
2969 CORE_ADDR a_start = obj_section_addr (a);
2970 CORE_ADDR a_end = obj_section_endaddr (a);
2971 CORE_ADDR b_start = obj_section_addr (b);
2972 CORE_ADDR b_end = obj_section_endaddr (b);
2973
2974 return (a_start < b_end && b_start < a_end);
2975 }
2976
2977 /* Function: overlay_unmapped_address (PC, SECTION)
2978 Returns the address corresponding to PC in the unmapped (load) range.
2979 May be the same as PC. */
2980
2981 CORE_ADDR
2982 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2983 {
2984 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2985 {
2986 bfd *abfd = section->objfile->obfd;
2987 asection *bfd_section = section->the_bfd_section;
2988
2989 return pc + bfd_section_lma (abfd, bfd_section)
2990 - bfd_section_vma (abfd, bfd_section);
2991 }
2992
2993 return pc;
2994 }
2995
2996 /* Function: overlay_mapped_address (PC, SECTION)
2997 Returns the address corresponding to PC in the mapped (runtime) range.
2998 May be the same as PC. */
2999
3000 CORE_ADDR
3001 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3002 {
3003 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3004 {
3005 bfd *abfd = section->objfile->obfd;
3006 asection *bfd_section = section->the_bfd_section;
3007
3008 return pc + bfd_section_vma (abfd, bfd_section)
3009 - bfd_section_lma (abfd, bfd_section);
3010 }
3011
3012 return pc;
3013 }
3014
3015
3016 /* Function: symbol_overlayed_address
3017 Return one of two addresses (relative to the VMA or to the LMA),
3018 depending on whether the section is mapped or not. */
3019
3020 CORE_ADDR
3021 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3022 {
3023 if (overlay_debugging)
3024 {
3025 /* If the symbol has no section, just return its regular address. */
3026 if (section == 0)
3027 return address;
3028 /* If the symbol's section is not an overlay, just return its address */
3029 if (!section_is_overlay (section))
3030 return address;
3031 /* If the symbol's section is mapped, just return its address */
3032 if (section_is_mapped (section))
3033 return address;
3034 /*
3035 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3036 * then return its LOADED address rather than its vma address!!
3037 */
3038 return overlay_unmapped_address (address, section);
3039 }
3040 return address;
3041 }
3042
3043 /* Function: find_pc_overlay (PC)
3044 Return the best-match overlay section for PC:
3045 If PC matches a mapped overlay section's VMA, return that section.
3046 Else if PC matches an unmapped section's VMA, return that section.
3047 Else if PC matches an unmapped section's LMA, return that section. */
3048
3049 struct obj_section *
3050 find_pc_overlay (CORE_ADDR pc)
3051 {
3052 struct objfile *objfile;
3053 struct obj_section *osect, *best_match = NULL;
3054
3055 if (overlay_debugging)
3056 ALL_OBJSECTIONS (objfile, osect)
3057 if (section_is_overlay (osect))
3058 {
3059 if (pc_in_mapped_range (pc, osect))
3060 {
3061 if (section_is_mapped (osect))
3062 return osect;
3063 else
3064 best_match = osect;
3065 }
3066 else if (pc_in_unmapped_range (pc, osect))
3067 best_match = osect;
3068 }
3069 return best_match;
3070 }
3071
3072 /* Function: find_pc_mapped_section (PC)
3073 If PC falls into the VMA address range of an overlay section that is
3074 currently marked as MAPPED, return that section. Else return NULL. */
3075
3076 struct obj_section *
3077 find_pc_mapped_section (CORE_ADDR pc)
3078 {
3079 struct objfile *objfile;
3080 struct obj_section *osect;
3081
3082 if (overlay_debugging)
3083 ALL_OBJSECTIONS (objfile, osect)
3084 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3085 return osect;
3086
3087 return NULL;
3088 }
3089
3090 /* Function: list_overlays_command
3091 Print a list of mapped sections and their PC ranges */
3092
3093 void
3094 list_overlays_command (char *args, int from_tty)
3095 {
3096 int nmapped = 0;
3097 struct objfile *objfile;
3098 struct obj_section *osect;
3099
3100 if (overlay_debugging)
3101 ALL_OBJSECTIONS (objfile, osect)
3102 if (section_is_mapped (osect))
3103 {
3104 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3105 const char *name;
3106 bfd_vma lma, vma;
3107 int size;
3108
3109 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3110 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3111 size = bfd_get_section_size (osect->the_bfd_section);
3112 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3113
3114 printf_filtered ("Section %s, loaded at ", name);
3115 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3116 puts_filtered (" - ");
3117 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3118 printf_filtered (", mapped at ");
3119 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3120 puts_filtered (" - ");
3121 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3122 puts_filtered ("\n");
3123
3124 nmapped++;
3125 }
3126 if (nmapped == 0)
3127 printf_filtered (_("No sections are mapped.\n"));
3128 }
3129
3130 /* Function: map_overlay_command
3131 Mark the named section as mapped (ie. residing at its VMA address). */
3132
3133 void
3134 map_overlay_command (char *args, int from_tty)
3135 {
3136 struct objfile *objfile, *objfile2;
3137 struct obj_section *sec, *sec2;
3138
3139 if (!overlay_debugging)
3140 error (_("\
3141 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3142 the 'overlay manual' command."));
3143
3144 if (args == 0 || *args == 0)
3145 error (_("Argument required: name of an overlay section"));
3146
3147 /* First, find a section matching the user supplied argument */
3148 ALL_OBJSECTIONS (objfile, sec)
3149 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3150 {
3151 /* Now, check to see if the section is an overlay. */
3152 if (!section_is_overlay (sec))
3153 continue; /* not an overlay section */
3154
3155 /* Mark the overlay as "mapped" */
3156 sec->ovly_mapped = 1;
3157
3158 /* Next, make a pass and unmap any sections that are
3159 overlapped by this new section: */
3160 ALL_OBJSECTIONS (objfile2, sec2)
3161 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3162 {
3163 if (info_verbose)
3164 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3165 bfd_section_name (objfile->obfd,
3166 sec2->the_bfd_section));
3167 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3168 }
3169 return;
3170 }
3171 error (_("No overlay section called %s"), args);
3172 }
3173
3174 /* Function: unmap_overlay_command
3175 Mark the overlay section as unmapped
3176 (ie. resident in its LMA address range, rather than the VMA range). */
3177
3178 void
3179 unmap_overlay_command (char *args, int from_tty)
3180 {
3181 struct objfile *objfile;
3182 struct obj_section *sec;
3183
3184 if (!overlay_debugging)
3185 error (_("\
3186 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3187 the 'overlay manual' command."));
3188
3189 if (args == 0 || *args == 0)
3190 error (_("Argument required: name of an overlay section"));
3191
3192 /* First, find a section matching the user supplied argument */
3193 ALL_OBJSECTIONS (objfile, sec)
3194 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3195 {
3196 if (!sec->ovly_mapped)
3197 error (_("Section %s is not mapped"), args);
3198 sec->ovly_mapped = 0;
3199 return;
3200 }
3201 error (_("No overlay section called %s"), args);
3202 }
3203
3204 /* Function: overlay_auto_command
3205 A utility command to turn on overlay debugging.
3206 Possibly this should be done via a set/show command. */
3207
3208 static void
3209 overlay_auto_command (char *args, int from_tty)
3210 {
3211 overlay_debugging = ovly_auto;
3212 enable_overlay_breakpoints ();
3213 if (info_verbose)
3214 printf_unfiltered (_("Automatic overlay debugging enabled."));
3215 }
3216
3217 /* Function: overlay_manual_command
3218 A utility command to turn on overlay debugging.
3219 Possibly this should be done via a set/show command. */
3220
3221 static void
3222 overlay_manual_command (char *args, int from_tty)
3223 {
3224 overlay_debugging = ovly_on;
3225 disable_overlay_breakpoints ();
3226 if (info_verbose)
3227 printf_unfiltered (_("Overlay debugging enabled."));
3228 }
3229
3230 /* Function: overlay_off_command
3231 A utility command to turn on overlay debugging.
3232 Possibly this should be done via a set/show command. */
3233
3234 static void
3235 overlay_off_command (char *args, int from_tty)
3236 {
3237 overlay_debugging = ovly_off;
3238 disable_overlay_breakpoints ();
3239 if (info_verbose)
3240 printf_unfiltered (_("Overlay debugging disabled."));
3241 }
3242
3243 static void
3244 overlay_load_command (char *args, int from_tty)
3245 {
3246 struct gdbarch *gdbarch = get_current_arch ();
3247
3248 if (gdbarch_overlay_update_p (gdbarch))
3249 gdbarch_overlay_update (gdbarch, NULL);
3250 else
3251 error (_("This target does not know how to read its overlay state."));
3252 }
3253
3254 /* Function: overlay_command
3255 A place-holder for a mis-typed command */
3256
3257 /* Command list chain containing all defined "overlay" subcommands. */
3258 struct cmd_list_element *overlaylist;
3259
3260 static void
3261 overlay_command (char *args, int from_tty)
3262 {
3263 printf_unfiltered
3264 ("\"overlay\" must be followed by the name of an overlay command.\n");
3265 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3266 }
3267
3268
3269 /* Target Overlays for the "Simplest" overlay manager:
3270
3271 This is GDB's default target overlay layer. It works with the
3272 minimal overlay manager supplied as an example by Cygnus. The
3273 entry point is via a function pointer "gdbarch_overlay_update",
3274 so targets that use a different runtime overlay manager can
3275 substitute their own overlay_update function and take over the
3276 function pointer.
3277
3278 The overlay_update function pokes around in the target's data structures
3279 to see what overlays are mapped, and updates GDB's overlay mapping with
3280 this information.
3281
3282 In this simple implementation, the target data structures are as follows:
3283 unsigned _novlys; /# number of overlay sections #/
3284 unsigned _ovly_table[_novlys][4] = {
3285 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3286 {..., ..., ..., ...},
3287 }
3288 unsigned _novly_regions; /# number of overlay regions #/
3289 unsigned _ovly_region_table[_novly_regions][3] = {
3290 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3291 {..., ..., ...},
3292 }
3293 These functions will attempt to update GDB's mappedness state in the
3294 symbol section table, based on the target's mappedness state.
3295
3296 To do this, we keep a cached copy of the target's _ovly_table, and
3297 attempt to detect when the cached copy is invalidated. The main
3298 entry point is "simple_overlay_update(SECT), which looks up SECT in
3299 the cached table and re-reads only the entry for that section from
3300 the target (whenever possible).
3301 */
3302
3303 /* Cached, dynamically allocated copies of the target data structures: */
3304 static unsigned (*cache_ovly_table)[4] = 0;
3305 #if 0
3306 static unsigned (*cache_ovly_region_table)[3] = 0;
3307 #endif
3308 static unsigned cache_novlys = 0;
3309 #if 0
3310 static unsigned cache_novly_regions = 0;
3311 #endif
3312 static CORE_ADDR cache_ovly_table_base = 0;
3313 #if 0
3314 static CORE_ADDR cache_ovly_region_table_base = 0;
3315 #endif
3316 enum ovly_index
3317 {
3318 VMA, SIZE, LMA, MAPPED
3319 };
3320
3321 /* Throw away the cached copy of _ovly_table */
3322 static void
3323 simple_free_overlay_table (void)
3324 {
3325 if (cache_ovly_table)
3326 xfree (cache_ovly_table);
3327 cache_novlys = 0;
3328 cache_ovly_table = NULL;
3329 cache_ovly_table_base = 0;
3330 }
3331
3332 #if 0
3333 /* Throw away the cached copy of _ovly_region_table */
3334 static void
3335 simple_free_overlay_region_table (void)
3336 {
3337 if (cache_ovly_region_table)
3338 xfree (cache_ovly_region_table);
3339 cache_novly_regions = 0;
3340 cache_ovly_region_table = NULL;
3341 cache_ovly_region_table_base = 0;
3342 }
3343 #endif
3344
3345 /* Read an array of ints of size SIZE from the target into a local buffer.
3346 Convert to host order. int LEN is number of ints */
3347 static void
3348 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3349 int len, int size, enum bfd_endian byte_order)
3350 {
3351 /* FIXME (alloca): Not safe if array is very large. */
3352 gdb_byte *buf = alloca (len * size);
3353 int i;
3354
3355 read_memory (memaddr, buf, len * size);
3356 for (i = 0; i < len; i++)
3357 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3358 }
3359
3360 /* Find and grab a copy of the target _ovly_table
3361 (and _novlys, which is needed for the table's size) */
3362 static int
3363 simple_read_overlay_table (void)
3364 {
3365 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3366 struct gdbarch *gdbarch;
3367 int word_size;
3368 enum bfd_endian byte_order;
3369
3370 simple_free_overlay_table ();
3371 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3372 if (! novlys_msym)
3373 {
3374 error (_("Error reading inferior's overlay table: "
3375 "couldn't find `_novlys' variable\n"
3376 "in inferior. Use `overlay manual' mode."));
3377 return 0;
3378 }
3379
3380 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3381 if (! ovly_table_msym)
3382 {
3383 error (_("Error reading inferior's overlay table: couldn't find "
3384 "`_ovly_table' array\n"
3385 "in inferior. Use `overlay manual' mode."));
3386 return 0;
3387 }
3388
3389 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3390 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3391 byte_order = gdbarch_byte_order (gdbarch);
3392
3393 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3394 4, byte_order);
3395 cache_ovly_table
3396 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3397 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3398 read_target_long_array (cache_ovly_table_base,
3399 (unsigned int *) cache_ovly_table,
3400 cache_novlys * 4, word_size, byte_order);
3401
3402 return 1; /* SUCCESS */
3403 }
3404
3405 #if 0
3406 /* Find and grab a copy of the target _ovly_region_table
3407 (and _novly_regions, which is needed for the table's size) */
3408 static int
3409 simple_read_overlay_region_table (void)
3410 {
3411 struct minimal_symbol *msym;
3412 struct gdbarch *gdbarch;
3413 int word_size;
3414 enum bfd_endian byte_order;
3415
3416 simple_free_overlay_region_table ();
3417 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3418 if (msym == NULL)
3419 return 0; /* failure */
3420
3421 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3422 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3423 byte_order = gdbarch_byte_order (gdbarch);
3424
3425 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3426 4, byte_order);
3427
3428 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3429 if (cache_ovly_region_table != NULL)
3430 {
3431 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3432 if (msym != NULL)
3433 {
3434 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3435 read_target_long_array (cache_ovly_region_table_base,
3436 (unsigned int *) cache_ovly_region_table,
3437 cache_novly_regions * 3,
3438 word_size, byte_order);
3439 }
3440 else
3441 return 0; /* failure */
3442 }
3443 else
3444 return 0; /* failure */
3445 return 1; /* SUCCESS */
3446 }
3447 #endif
3448
3449 /* Function: simple_overlay_update_1
3450 A helper function for simple_overlay_update. Assuming a cached copy
3451 of _ovly_table exists, look through it to find an entry whose vma,
3452 lma and size match those of OSECT. Re-read the entry and make sure
3453 it still matches OSECT (else the table may no longer be valid).
3454 Set OSECT's mapped state to match the entry. Return: 1 for
3455 success, 0 for failure. */
3456
3457 static int
3458 simple_overlay_update_1 (struct obj_section *osect)
3459 {
3460 int i, size;
3461 bfd *obfd = osect->objfile->obfd;
3462 asection *bsect = osect->the_bfd_section;
3463 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3464 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3466
3467 size = bfd_get_section_size (osect->the_bfd_section);
3468 for (i = 0; i < cache_novlys; i++)
3469 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3470 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3471 /* && cache_ovly_table[i][SIZE] == size */ )
3472 {
3473 read_target_long_array (cache_ovly_table_base + i * word_size,
3474 (unsigned int *) cache_ovly_table[i],
3475 4, word_size, byte_order);
3476 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3477 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3478 /* && cache_ovly_table[i][SIZE] == size */ )
3479 {
3480 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3481 return 1;
3482 }
3483 else /* Warning! Warning! Target's ovly table has changed! */
3484 return 0;
3485 }
3486 return 0;
3487 }
3488
3489 /* Function: simple_overlay_update
3490 If OSECT is NULL, then update all sections' mapped state
3491 (after re-reading the entire target _ovly_table).
3492 If OSECT is non-NULL, then try to find a matching entry in the
3493 cached ovly_table and update only OSECT's mapped state.
3494 If a cached entry can't be found or the cache isn't valid, then
3495 re-read the entire cache, and go ahead and update all sections. */
3496
3497 void
3498 simple_overlay_update (struct obj_section *osect)
3499 {
3500 struct objfile *objfile;
3501
3502 /* Were we given an osect to look up? NULL means do all of them. */
3503 if (osect)
3504 /* Have we got a cached copy of the target's overlay table? */
3505 if (cache_ovly_table != NULL)
3506 /* Does its cached location match what's currently in the symtab? */
3507 if (cache_ovly_table_base ==
3508 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3509 /* Then go ahead and try to look up this single section in the cache */
3510 if (simple_overlay_update_1 (osect))
3511 /* Found it! We're done. */
3512 return;
3513
3514 /* Cached table no good: need to read the entire table anew.
3515 Or else we want all the sections, in which case it's actually
3516 more efficient to read the whole table in one block anyway. */
3517
3518 if (! simple_read_overlay_table ())
3519 return;
3520
3521 /* Now may as well update all sections, even if only one was requested. */
3522 ALL_OBJSECTIONS (objfile, osect)
3523 if (section_is_overlay (osect))
3524 {
3525 int i, size;
3526 bfd *obfd = osect->objfile->obfd;
3527 asection *bsect = osect->the_bfd_section;
3528
3529 size = bfd_get_section_size (bsect);
3530 for (i = 0; i < cache_novlys; i++)
3531 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3532 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3533 /* && cache_ovly_table[i][SIZE] == size */ )
3534 { /* obj_section matches i'th entry in ovly_table */
3535 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3536 break; /* finished with inner for loop: break out */
3537 }
3538 }
3539 }
3540
3541 /* Set the output sections and output offsets for section SECTP in
3542 ABFD. The relocation code in BFD will read these offsets, so we
3543 need to be sure they're initialized. We map each section to itself,
3544 with no offset; this means that SECTP->vma will be honored. */
3545
3546 static void
3547 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3548 {
3549 sectp->output_section = sectp;
3550 sectp->output_offset = 0;
3551 }
3552
3553 /* Default implementation for sym_relocate. */
3554
3555
3556 bfd_byte *
3557 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3558 bfd_byte *buf)
3559 {
3560 bfd *abfd = objfile->obfd;
3561
3562 /* We're only interested in sections with relocation
3563 information. */
3564 if ((sectp->flags & SEC_RELOC) == 0)
3565 return NULL;
3566
3567 /* We will handle section offsets properly elsewhere, so relocate as if
3568 all sections begin at 0. */
3569 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3570
3571 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3572 }
3573
3574 /* Relocate the contents of a debug section SECTP in ABFD. The
3575 contents are stored in BUF if it is non-NULL, or returned in a
3576 malloc'd buffer otherwise.
3577
3578 For some platforms and debug info formats, shared libraries contain
3579 relocations against the debug sections (particularly for DWARF-2;
3580 one affected platform is PowerPC GNU/Linux, although it depends on
3581 the version of the linker in use). Also, ELF object files naturally
3582 have unresolved relocations for their debug sections. We need to apply
3583 the relocations in order to get the locations of symbols correct.
3584 Another example that may require relocation processing, is the
3585 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3586 debug section. */
3587
3588 bfd_byte *
3589 symfile_relocate_debug_section (struct objfile *objfile,
3590 asection *sectp, bfd_byte *buf)
3591 {
3592 gdb_assert (objfile->sf->sym_relocate);
3593
3594 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3595 }
3596
3597 struct symfile_segment_data *
3598 get_symfile_segment_data (bfd *abfd)
3599 {
3600 const struct sym_fns *sf = find_sym_fns (abfd);
3601
3602 if (sf == NULL)
3603 return NULL;
3604
3605 return sf->sym_segments (abfd);
3606 }
3607
3608 void
3609 free_symfile_segment_data (struct symfile_segment_data *data)
3610 {
3611 xfree (data->segment_bases);
3612 xfree (data->segment_sizes);
3613 xfree (data->segment_info);
3614 xfree (data);
3615 }
3616
3617
3618 /* Given:
3619 - DATA, containing segment addresses from the object file ABFD, and
3620 the mapping from ABFD's sections onto the segments that own them,
3621 and
3622 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3623 segment addresses reported by the target,
3624 store the appropriate offsets for each section in OFFSETS.
3625
3626 If there are fewer entries in SEGMENT_BASES than there are segments
3627 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3628
3629 If there are more entries, then ignore the extra. The target may
3630 not be able to distinguish between an empty data segment and a
3631 missing data segment; a missing text segment is less plausible. */
3632 int
3633 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3634 struct section_offsets *offsets,
3635 int num_segment_bases,
3636 const CORE_ADDR *segment_bases)
3637 {
3638 int i;
3639 asection *sect;
3640
3641 /* It doesn't make sense to call this function unless you have some
3642 segment base addresses. */
3643 gdb_assert (num_segment_bases > 0);
3644
3645 /* If we do not have segment mappings for the object file, we
3646 can not relocate it by segments. */
3647 gdb_assert (data != NULL);
3648 gdb_assert (data->num_segments > 0);
3649
3650 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3651 {
3652 int which = data->segment_info[i];
3653
3654 gdb_assert (0 <= which && which <= data->num_segments);
3655
3656 /* Don't bother computing offsets for sections that aren't
3657 loaded as part of any segment. */
3658 if (! which)
3659 continue;
3660
3661 /* Use the last SEGMENT_BASES entry as the address of any extra
3662 segments mentioned in DATA->segment_info. */
3663 if (which > num_segment_bases)
3664 which = num_segment_bases;
3665
3666 offsets->offsets[i] = (segment_bases[which - 1]
3667 - data->segment_bases[which - 1]);
3668 }
3669
3670 return 1;
3671 }
3672
3673 static void
3674 symfile_find_segment_sections (struct objfile *objfile)
3675 {
3676 bfd *abfd = objfile->obfd;
3677 int i;
3678 asection *sect;
3679 struct symfile_segment_data *data;
3680
3681 data = get_symfile_segment_data (objfile->obfd);
3682 if (data == NULL)
3683 return;
3684
3685 if (data->num_segments != 1 && data->num_segments != 2)
3686 {
3687 free_symfile_segment_data (data);
3688 return;
3689 }
3690
3691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3692 {
3693 int which = data->segment_info[i];
3694
3695 if (which == 1)
3696 {
3697 if (objfile->sect_index_text == -1)
3698 objfile->sect_index_text = sect->index;
3699
3700 if (objfile->sect_index_rodata == -1)
3701 objfile->sect_index_rodata = sect->index;
3702 }
3703 else if (which == 2)
3704 {
3705 if (objfile->sect_index_data == -1)
3706 objfile->sect_index_data = sect->index;
3707
3708 if (objfile->sect_index_bss == -1)
3709 objfile->sect_index_bss = sect->index;
3710 }
3711 }
3712
3713 free_symfile_segment_data (data);
3714 }
3715
3716 void
3717 _initialize_symfile (void)
3718 {
3719 struct cmd_list_element *c;
3720
3721 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3722 Load symbol table from executable file FILE.\n\
3723 The `file' command can also load symbol tables, as well as setting the file\n\
3724 to execute."), &cmdlist);
3725 set_cmd_completer (c, filename_completer);
3726
3727 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3728 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3729 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3730 ADDR is the starting address of the file's text.\n\
3731 The optional arguments are section-name section-address pairs and\n\
3732 should be specified if the data and bss segments are not contiguous\n\
3733 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3734 &cmdlist);
3735 set_cmd_completer (c, filename_completer);
3736
3737 c = add_cmd ("load", class_files, load_command, _("\
3738 Dynamically load FILE into the running program, and record its symbols\n\
3739 for access from GDB.\n\
3740 A load OFFSET may also be given."), &cmdlist);
3741 set_cmd_completer (c, filename_completer);
3742
3743 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3744 &symbol_reloading, _("\
3745 Set dynamic symbol table reloading multiple times in one run."), _("\
3746 Show dynamic symbol table reloading multiple times in one run."), NULL,
3747 NULL,
3748 show_symbol_reloading,
3749 &setlist, &showlist);
3750
3751 add_prefix_cmd ("overlay", class_support, overlay_command,
3752 _("Commands for debugging overlays."), &overlaylist,
3753 "overlay ", 0, &cmdlist);
3754
3755 add_com_alias ("ovly", "overlay", class_alias, 1);
3756 add_com_alias ("ov", "overlay", class_alias, 1);
3757
3758 add_cmd ("map-overlay", class_support, map_overlay_command,
3759 _("Assert that an overlay section is mapped."), &overlaylist);
3760
3761 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3762 _("Assert that an overlay section is unmapped."), &overlaylist);
3763
3764 add_cmd ("list-overlays", class_support, list_overlays_command,
3765 _("List mappings of overlay sections."), &overlaylist);
3766
3767 add_cmd ("manual", class_support, overlay_manual_command,
3768 _("Enable overlay debugging."), &overlaylist);
3769 add_cmd ("off", class_support, overlay_off_command,
3770 _("Disable overlay debugging."), &overlaylist);
3771 add_cmd ("auto", class_support, overlay_auto_command,
3772 _("Enable automatic overlay debugging."), &overlaylist);
3773 add_cmd ("load-target", class_support, overlay_load_command,
3774 _("Read the overlay mapping state from the target."), &overlaylist);
3775
3776 /* Filename extension to source language lookup table: */
3777 init_filename_language_table ();
3778 add_setshow_string_noescape_cmd ("extension-language", class_files,
3779 &ext_args, _("\
3780 Set mapping between filename extension and source language."), _("\
3781 Show mapping between filename extension and source language."), _("\
3782 Usage: set extension-language .foo bar"),
3783 set_ext_lang_command,
3784 show_ext_args,
3785 &setlist, &showlist);
3786
3787 add_info ("extensions", info_ext_lang_command,
3788 _("All filename extensions associated with a source language."));
3789
3790 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3791 &debug_file_directory, _("\
3792 Set the directories where separate debug symbols are searched for."), _("\
3793 Show the directories where separate debug symbols are searched for."), _("\
3794 Separate debug symbols are first searched for in the same\n\
3795 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3796 and lastly at the path of the directory of the binary with\n\
3797 each global debug-file-directory component prepended."),
3798 NULL,
3799 show_debug_file_directory,
3800 &setlist, &showlist);
3801 }
This page took 0.157517 seconds and 4 git commands to generate.