[gdb] Don't set initial language if set manually
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198 void
199 find_lowest_section (bfd *abfd, asection *sect, void *obj)
200 {
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212 }
213
214 /* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217 section_addr_info
218 build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220 {
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* The arguments to place_section. */
339
340 struct place_section_arg
341 {
342 section_offsets *offsets;
343 CORE_ADDR lowest;
344 };
345
346 /* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349 static void
350 place_section (bfd *abfd, asection *sect, void *obj)
351 {
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 section_offsets &offsets = *arg->offsets;
354 CORE_ADDR start_addr;
355 int done;
356 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
357
358 /* We are only interested in allocated sections. */
359 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
360 return;
361
362 /* If the user specified an offset, honor it. */
363 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
364 return;
365
366 /* Otherwise, let's try to find a place for the section. */
367 start_addr = (arg->lowest + align - 1) & -align;
368
369 do {
370 asection *cur_sec;
371
372 done = 1;
373
374 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
375 {
376 int indx = cur_sec->index;
377
378 /* We don't need to compare against ourself. */
379 if (cur_sec == sect)
380 continue;
381
382 /* We can only conflict with allocated sections. */
383 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
384 continue;
385
386 /* If the section offset is 0, either the section has not been placed
387 yet, or it was the lowest section placed (in which case LOWEST
388 will be past its end). */
389 if (offsets[indx] == 0)
390 continue;
391
392 /* If this section would overlap us, then we must move up. */
393 if (start_addr + bfd_section_size (sect) > offsets[indx]
394 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
395 {
396 start_addr = offsets[indx] + bfd_section_size (cur_sec);
397 start_addr = (start_addr + align - 1) & -align;
398 done = 0;
399 break;
400 }
401
402 /* Otherwise, we appear to be OK. So far. */
403 }
404 }
405 while (!done);
406
407 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
408 arg->lowest = start_addr + bfd_section_size (sect);
409 }
410
411 /* Store section_addr_info as prepared (made relative and with SECTINDEX
412 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
413
414 void
415 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
416 const section_addr_info &addrs)
417 {
418 int i;
419
420 section_offsets.assign (section_offsets.size (), 0);
421
422 /* Now calculate offsets for section that were specified by the caller. */
423 for (i = 0; i < addrs.size (); i++)
424 {
425 const struct other_sections *osp;
426
427 osp = &addrs[i];
428 if (osp->sectindex == -1)
429 continue;
430
431 /* Record all sections in offsets. */
432 /* The section_offsets in the objfile are here filled in using
433 the BFD index. */
434 section_offsets[osp->sectindex] = osp->addr;
435 }
436 }
437
438 /* Transform section name S for a name comparison. prelink can split section
439 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
440 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
441 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
442 (`.sbss') section has invalid (increased) virtual address. */
443
444 static const char *
445 addr_section_name (const char *s)
446 {
447 if (strcmp (s, ".dynbss") == 0)
448 return ".bss";
449 if (strcmp (s, ".sdynbss") == 0)
450 return ".sbss";
451
452 return s;
453 }
454
455 /* std::sort comparator for addrs_section_sort. Sort entries in
456 ascending order by their (name, sectindex) pair. sectindex makes
457 the sort by name stable. */
458
459 static bool
460 addrs_section_compar (const struct other_sections *a,
461 const struct other_sections *b)
462 {
463 int retval;
464
465 retval = strcmp (addr_section_name (a->name.c_str ()),
466 addr_section_name (b->name.c_str ()));
467 if (retval != 0)
468 return retval < 0;
469
470 return a->sectindex < b->sectindex;
471 }
472
473 /* Provide sorted array of pointers to sections of ADDRS. */
474
475 static std::vector<const struct other_sections *>
476 addrs_section_sort (const section_addr_info &addrs)
477 {
478 int i;
479
480 std::vector<const struct other_sections *> array (addrs.size ());
481 for (i = 0; i < addrs.size (); i++)
482 array[i] = &addrs[i];
483
484 std::sort (array.begin (), array.end (), addrs_section_compar);
485
486 return array;
487 }
488
489 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
490 also SECTINDEXes specific to ABFD there. This function can be used to
491 rebase ADDRS to start referencing different BFD than before. */
492
493 void
494 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
495 {
496 asection *lower_sect;
497 CORE_ADDR lower_offset;
498 int i;
499
500 /* Find lowest loadable section to be used as starting point for
501 contiguous sections. */
502 lower_sect = NULL;
503 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
504 if (lower_sect == NULL)
505 {
506 warning (_("no loadable sections found in added symbol-file %s"),
507 bfd_get_filename (abfd));
508 lower_offset = 0;
509 }
510 else
511 lower_offset = bfd_section_vma (lower_sect);
512
513 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
514 in ABFD. Section names are not unique - there can be multiple sections of
515 the same name. Also the sections of the same name do not have to be
516 adjacent to each other. Some sections may be present only in one of the
517 files. Even sections present in both files do not have to be in the same
518 order.
519
520 Use stable sort by name for the sections in both files. Then linearly
521 scan both lists matching as most of the entries as possible. */
522
523 std::vector<const struct other_sections *> addrs_sorted
524 = addrs_section_sort (*addrs);
525
526 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
527 std::vector<const struct other_sections *> abfd_addrs_sorted
528 = addrs_section_sort (abfd_addrs);
529
530 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
531 ABFD_ADDRS_SORTED. */
532
533 std::vector<const struct other_sections *>
534 addrs_to_abfd_addrs (addrs->size (), nullptr);
535
536 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
537 = abfd_addrs_sorted.begin ();
538 for (const other_sections *sect : addrs_sorted)
539 {
540 const char *sect_name = addr_section_name (sect->name.c_str ());
541
542 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
543 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
544 sect_name) < 0)
545 abfd_sorted_iter++;
546
547 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
548 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
549 sect_name) == 0)
550 {
551 int index_in_addrs;
552
553 /* Make the found item directly addressable from ADDRS. */
554 index_in_addrs = sect - addrs->data ();
555 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
556 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
557
558 /* Never use the same ABFD entry twice. */
559 abfd_sorted_iter++;
560 }
561 }
562
563 /* Calculate offsets for the loadable sections.
564 FIXME! Sections must be in order of increasing loadable section
565 so that contiguous sections can use the lower-offset!!!
566
567 Adjust offsets if the segments are not contiguous.
568 If the section is contiguous, its offset should be set to
569 the offset of the highest loadable section lower than it
570 (the loadable section directly below it in memory).
571 this_offset = lower_offset = lower_addr - lower_orig_addr */
572
573 for (i = 0; i < addrs->size (); i++)
574 {
575 const struct other_sections *sect = addrs_to_abfd_addrs[i];
576
577 if (sect)
578 {
579 /* This is the index used by BFD. */
580 (*addrs)[i].sectindex = sect->sectindex;
581
582 if ((*addrs)[i].addr != 0)
583 {
584 (*addrs)[i].addr -= sect->addr;
585 lower_offset = (*addrs)[i].addr;
586 }
587 else
588 (*addrs)[i].addr = lower_offset;
589 }
590 else
591 {
592 /* addr_section_name transformation is not used for SECT_NAME. */
593 const std::string &sect_name = (*addrs)[i].name;
594
595 /* This section does not exist in ABFD, which is normally
596 unexpected and we want to issue a warning.
597
598 However, the ELF prelinker does create a few sections which are
599 marked in the main executable as loadable (they are loaded in
600 memory from the DYNAMIC segment) and yet are not present in
601 separate debug info files. This is fine, and should not cause
602 a warning. Shared libraries contain just the section
603 ".gnu.liblist" but it is not marked as loadable there. There is
604 no other way to identify them than by their name as the sections
605 created by prelink have no special flags.
606
607 For the sections `.bss' and `.sbss' see addr_section_name. */
608
609 if (!(sect_name == ".gnu.liblist"
610 || sect_name == ".gnu.conflict"
611 || (sect_name == ".bss"
612 && i > 0
613 && (*addrs)[i - 1].name == ".dynbss"
614 && addrs_to_abfd_addrs[i - 1] != NULL)
615 || (sect_name == ".sbss"
616 && i > 0
617 && (*addrs)[i - 1].name == ".sdynbss"
618 && addrs_to_abfd_addrs[i - 1] != NULL)))
619 warning (_("section %s not found in %s"), sect_name.c_str (),
620 bfd_get_filename (abfd));
621
622 (*addrs)[i].addr = 0;
623 (*addrs)[i].sectindex = -1;
624 }
625 }
626 }
627
628 /* Parse the user's idea of an offset for dynamic linking, into our idea
629 of how to represent it for fast symbol reading. This is the default
630 version of the sym_fns.sym_offsets function for symbol readers that
631 don't need to do anything special. It allocates a section_offsets table
632 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
633
634 void
635 default_symfile_offsets (struct objfile *objfile,
636 const section_addr_info &addrs)
637 {
638 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
639 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
640
641 /* For relocatable files, all loadable sections will start at zero.
642 The zero is meaningless, so try to pick arbitrary addresses such
643 that no loadable sections overlap. This algorithm is quadratic,
644 but the number of sections in a single object file is generally
645 small. */
646 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
647 {
648 struct place_section_arg arg;
649 bfd *abfd = objfile->obfd;
650 asection *cur_sec;
651
652 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
653 /* We do not expect this to happen; just skip this step if the
654 relocatable file has a section with an assigned VMA. */
655 if (bfd_section_vma (cur_sec) != 0)
656 break;
657
658 if (cur_sec == NULL)
659 {
660 section_offsets &offsets = objfile->section_offsets;
661
662 /* Pick non-overlapping offsets for sections the user did not
663 place explicitly. */
664 arg.offsets = &objfile->section_offsets;
665 arg.lowest = 0;
666 bfd_map_over_sections (objfile->obfd, place_section, &arg);
667
668 /* Correctly filling in the section offsets is not quite
669 enough. Relocatable files have two properties that
670 (most) shared objects do not:
671
672 - Their debug information will contain relocations. Some
673 shared libraries do also, but many do not, so this can not
674 be assumed.
675
676 - If there are multiple code sections they will be loaded
677 at different relative addresses in memory than they are
678 in the objfile, since all sections in the file will start
679 at address zero.
680
681 Because GDB has very limited ability to map from an
682 address in debug info to the correct code section,
683 it relies on adding SECT_OFF_TEXT to things which might be
684 code. If we clear all the section offsets, and set the
685 section VMAs instead, then symfile_relocate_debug_section
686 will return meaningful debug information pointing at the
687 correct sections.
688
689 GDB has too many different data structures for section
690 addresses - a bfd, objfile, and so_list all have section
691 tables, as does exec_ops. Some of these could probably
692 be eliminated. */
693
694 for (cur_sec = abfd->sections; cur_sec != NULL;
695 cur_sec = cur_sec->next)
696 {
697 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
698 continue;
699
700 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
701 exec_set_section_address (bfd_get_filename (abfd),
702 cur_sec->index,
703 offsets[cur_sec->index]);
704 offsets[cur_sec->index] = 0;
705 }
706 }
707 }
708
709 /* Remember the bfd indexes for the .text, .data, .bss and
710 .rodata sections. */
711 init_objfile_sect_indices (objfile);
712 }
713
714 /* Divide the file into segments, which are individual relocatable units.
715 This is the default version of the sym_fns.sym_segments function for
716 symbol readers that do not have an explicit representation of segments.
717 It assumes that object files do not have segments, and fully linked
718 files have a single segment. */
719
720 struct symfile_segment_data *
721 default_symfile_segments (bfd *abfd)
722 {
723 int num_sections, i;
724 asection *sect;
725 struct symfile_segment_data *data;
726 CORE_ADDR low, high;
727
728 /* Relocatable files contain enough information to position each
729 loadable section independently; they should not be relocated
730 in segments. */
731 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
732 return NULL;
733
734 /* Make sure there is at least one loadable section in the file. */
735 for (sect = abfd->sections; sect != NULL; sect = sect->next)
736 {
737 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
738 continue;
739
740 break;
741 }
742 if (sect == NULL)
743 return NULL;
744
745 low = bfd_section_vma (sect);
746 high = low + bfd_section_size (sect);
747
748 data = XCNEW (struct symfile_segment_data);
749 data->num_segments = 1;
750 data->segment_bases = XCNEW (CORE_ADDR);
751 data->segment_sizes = XCNEW (CORE_ADDR);
752
753 num_sections = bfd_count_sections (abfd);
754 data->segment_info = XCNEWVEC (int, num_sections);
755
756 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
757 {
758 CORE_ADDR vma;
759
760 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
761 continue;
762
763 vma = bfd_section_vma (sect);
764 if (vma < low)
765 low = vma;
766 if (vma + bfd_section_size (sect) > high)
767 high = vma + bfd_section_size (sect);
768
769 data->segment_info[i] = 1;
770 }
771
772 data->segment_bases[0] = low;
773 data->segment_sizes[0] = high - low;
774
775 return data;
776 }
777
778 /* This is a convenience function to call sym_read for OBJFILE and
779 possibly force the partial symbols to be read. */
780
781 static void
782 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
783 {
784 (*objfile->sf->sym_read) (objfile, add_flags);
785 objfile->per_bfd->minsyms_read = true;
786
787 /* find_separate_debug_file_in_section should be called only if there is
788 single binary with no existing separate debug info file. */
789 if (!objfile_has_partial_symbols (objfile)
790 && objfile->separate_debug_objfile == NULL
791 && objfile->separate_debug_objfile_backlink == NULL)
792 {
793 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
794
795 if (abfd != NULL)
796 {
797 /* find_separate_debug_file_in_section uses the same filename for the
798 virtual section-as-bfd like the bfd filename containing the
799 section. Therefore use also non-canonical name form for the same
800 file containing the section. */
801 symbol_file_add_separate (abfd.get (),
802 bfd_get_filename (abfd.get ()),
803 add_flags | SYMFILE_NOT_FILENAME, objfile);
804 }
805 }
806 if ((add_flags & SYMFILE_NO_READ) == 0)
807 require_partial_symbols (objfile, false);
808 }
809
810 /* Initialize entry point information for this objfile. */
811
812 static void
813 init_entry_point_info (struct objfile *objfile)
814 {
815 struct entry_info *ei = &objfile->per_bfd->ei;
816
817 if (ei->initialized)
818 return;
819 ei->initialized = 1;
820
821 /* Save startup file's range of PC addresses to help blockframe.c
822 decide where the bottom of the stack is. */
823
824 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
825 {
826 /* Executable file -- record its entry point so we'll recognize
827 the startup file because it contains the entry point. */
828 ei->entry_point = bfd_get_start_address (objfile->obfd);
829 ei->entry_point_p = 1;
830 }
831 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
832 && bfd_get_start_address (objfile->obfd) != 0)
833 {
834 /* Some shared libraries may have entry points set and be
835 runnable. There's no clear way to indicate this, so just check
836 for values other than zero. */
837 ei->entry_point = bfd_get_start_address (objfile->obfd);
838 ei->entry_point_p = 1;
839 }
840 else
841 {
842 /* Examination of non-executable.o files. Short-circuit this stuff. */
843 ei->entry_point_p = 0;
844 }
845
846 if (ei->entry_point_p)
847 {
848 struct obj_section *osect;
849 CORE_ADDR entry_point = ei->entry_point;
850 int found;
851
852 /* Make certain that the address points at real code, and not a
853 function descriptor. */
854 entry_point
855 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
856 entry_point,
857 current_top_target ());
858
859 /* Remove any ISA markers, so that this matches entries in the
860 symbol table. */
861 ei->entry_point
862 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
863
864 found = 0;
865 ALL_OBJFILE_OSECTIONS (objfile, osect)
866 {
867 struct bfd_section *sect = osect->the_bfd_section;
868
869 if (entry_point >= bfd_section_vma (sect)
870 && entry_point < (bfd_section_vma (sect)
871 + bfd_section_size (sect)))
872 {
873 ei->the_bfd_section_index
874 = gdb_bfd_section_index (objfile->obfd, sect);
875 found = 1;
876 break;
877 }
878 }
879
880 if (!found)
881 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
882 }
883 }
884
885 /* Process a symbol file, as either the main file or as a dynamically
886 loaded file.
887
888 This function does not set the OBJFILE's entry-point info.
889
890 OBJFILE is where the symbols are to be read from.
891
892 ADDRS is the list of section load addresses. If the user has given
893 an 'add-symbol-file' command, then this is the list of offsets and
894 addresses he or she provided as arguments to the command; or, if
895 we're handling a shared library, these are the actual addresses the
896 sections are loaded at, according to the inferior's dynamic linker
897 (as gleaned by GDB's shared library code). We convert each address
898 into an offset from the section VMA's as it appears in the object
899 file, and then call the file's sym_offsets function to convert this
900 into a format-specific offset table --- a `section_offsets'.
901 The sectindex field is used to control the ordering of sections
902 with the same name. Upon return, it is updated to contain the
903 corresponding BFD section index, or -1 if the section was not found.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and whether
907 breakpoint reset should be deferred. */
908
909 static void
910 syms_from_objfile_1 (struct objfile *objfile,
911 section_addr_info *addrs,
912 symfile_add_flags add_flags)
913 {
914 section_addr_info local_addr;
915 const int mainline = add_flags & SYMFILE_MAINLINE;
916
917 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
918
919 if (objfile->sf == NULL)
920 {
921 /* No symbols to load, but we still need to make sure
922 that the section_offsets table is allocated. */
923 int num_sections = gdb_bfd_count_sections (objfile->obfd);
924
925 objfile->section_offsets.assign (num_sections, 0);
926 return;
927 }
928
929 /* Make sure that partially constructed symbol tables will be cleaned up
930 if an error occurs during symbol reading. */
931 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
932
933 objfile_up objfile_holder (objfile);
934
935 /* If ADDRS is NULL, put together a dummy address list.
936 We now establish the convention that an addr of zero means
937 no load address was specified. */
938 if (! addrs)
939 addrs = &local_addr;
940
941 if (mainline)
942 {
943 /* We will modify the main symbol table, make sure that all its users
944 will be cleaned up if an error occurs during symbol reading. */
945 defer_clear_users.emplace ((symfile_add_flag) 0);
946
947 /* Since no error yet, throw away the old symbol table. */
948
949 if (symfile_objfile != NULL)
950 {
951 symfile_objfile->unlink ();
952 gdb_assert (symfile_objfile == NULL);
953 }
954
955 /* Currently we keep symbols from the add-symbol-file command.
956 If the user wants to get rid of them, they should do "symbol-file"
957 without arguments first. Not sure this is the best behavior
958 (PR 2207). */
959
960 (*objfile->sf->sym_new_init) (objfile);
961 }
962
963 /* Convert addr into an offset rather than an absolute address.
964 We find the lowest address of a loaded segment in the objfile,
965 and assume that <addr> is where that got loaded.
966
967 We no longer warn if the lowest section is not a text segment (as
968 happens for the PA64 port. */
969 if (addrs->size () > 0)
970 addr_info_make_relative (addrs, objfile->obfd);
971
972 /* Initialize symbol reading routines for this objfile, allow complaints to
973 appear for this new file, and record how verbose to be, then do the
974 initial symbol reading for this file. */
975
976 (*objfile->sf->sym_init) (objfile);
977 clear_complaints ();
978
979 (*objfile->sf->sym_offsets) (objfile, *addrs);
980
981 read_symbols (objfile, add_flags);
982
983 /* Discard cleanups as symbol reading was successful. */
984
985 objfile_holder.release ();
986 if (defer_clear_users)
987 defer_clear_users->release ();
988 }
989
990 /* Same as syms_from_objfile_1, but also initializes the objfile
991 entry-point info. */
992
993 static void
994 syms_from_objfile (struct objfile *objfile,
995 section_addr_info *addrs,
996 symfile_add_flags add_flags)
997 {
998 syms_from_objfile_1 (objfile, addrs, add_flags);
999 init_entry_point_info (objfile);
1000 }
1001
1002 /* Perform required actions after either reading in the initial
1003 symbols for a new objfile, or mapping in the symbols from a reusable
1004 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1005
1006 static void
1007 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1008 {
1009 /* If this is the main symbol file we have to clean up all users of the
1010 old main symbol file. Otherwise it is sufficient to fixup all the
1011 breakpoints that may have been redefined by this symbol file. */
1012 if (add_flags & SYMFILE_MAINLINE)
1013 {
1014 /* OK, make it the "real" symbol file. */
1015 symfile_objfile = objfile;
1016
1017 clear_symtab_users (add_flags);
1018 }
1019 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1020 {
1021 breakpoint_re_set ();
1022 }
1023
1024 /* We're done reading the symbol file; finish off complaints. */
1025 clear_complaints ();
1026 }
1027
1028 /* Process a symbol file, as either the main file or as a dynamically
1029 loaded file.
1030
1031 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1032 A new reference is acquired by this function.
1033
1034 For NAME description see the objfile constructor.
1035
1036 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1037 extra, such as dynamically loaded code, and what to do with breakpoints.
1038
1039 ADDRS is as described for syms_from_objfile_1, above.
1040 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1041
1042 PARENT is the original objfile if ABFD is a separate debug info file.
1043 Otherwise PARENT is NULL.
1044
1045 Upon success, returns a pointer to the objfile that was added.
1046 Upon failure, jumps back to command level (never returns). */
1047
1048 static struct objfile *
1049 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1050 symfile_add_flags add_flags,
1051 section_addr_info *addrs,
1052 objfile_flags flags, struct objfile *parent)
1053 {
1054 struct objfile *objfile;
1055 const int from_tty = add_flags & SYMFILE_VERBOSE;
1056 const int mainline = add_flags & SYMFILE_MAINLINE;
1057 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1058 && (readnow_symbol_files
1059 || (add_flags & SYMFILE_NO_READ) == 0));
1060
1061 if (readnow_symbol_files)
1062 {
1063 flags |= OBJF_READNOW;
1064 add_flags &= ~SYMFILE_NO_READ;
1065 }
1066 else if (readnever_symbol_files
1067 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1068 {
1069 flags |= OBJF_READNEVER;
1070 add_flags |= SYMFILE_NO_READ;
1071 }
1072 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1073 flags |= OBJF_NOT_FILENAME;
1074
1075 /* Give user a chance to burp if we'd be
1076 interactively wiping out any existing symbols. */
1077
1078 if ((have_full_symbols () || have_partial_symbols ())
1079 && mainline
1080 && from_tty
1081 && !query (_("Load new symbol table from \"%s\"? "), name))
1082 error (_("Not confirmed."));
1083
1084 if (mainline)
1085 flags |= OBJF_MAINLINE;
1086 objfile = objfile::make (abfd, name, flags, parent);
1087
1088 /* We either created a new mapped symbol table, mapped an existing
1089 symbol table file which has not had initial symbol reading
1090 performed, or need to read an unmapped symbol table. */
1091 if (should_print)
1092 {
1093 if (deprecated_pre_add_symbol_hook)
1094 deprecated_pre_add_symbol_hook (name);
1095 else
1096 printf_filtered (_("Reading symbols from %ps...\n"),
1097 styled_string (file_name_style.style (), name));
1098 }
1099 syms_from_objfile (objfile, addrs, add_flags);
1100
1101 /* We now have at least a partial symbol table. Check to see if the
1102 user requested that all symbols be read on initial access via either
1103 the gdb startup command line or on a per symbol file basis. Expand
1104 all partial symbol tables for this objfile if so. */
1105
1106 if ((flags & OBJF_READNOW))
1107 {
1108 if (should_print)
1109 printf_filtered (_("Expanding full symbols from %ps...\n"),
1110 styled_string (file_name_style.style (), name));
1111
1112 if (objfile->sf)
1113 objfile->sf->qf->expand_all_symtabs (objfile);
1114 }
1115
1116 /* Note that we only print a message if we have no symbols and have
1117 no separate debug file. If there is a separate debug file which
1118 does not have symbols, we'll have emitted this message for that
1119 file, and so printing it twice is just redundant. */
1120 if (should_print && !objfile_has_symbols (objfile)
1121 && objfile->separate_debug_objfile == nullptr)
1122 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1123 styled_string (file_name_style.style (), name));
1124
1125 if (should_print)
1126 {
1127 if (deprecated_post_add_symbol_hook)
1128 deprecated_post_add_symbol_hook ();
1129 }
1130
1131 /* We print some messages regardless of whether 'from_tty ||
1132 info_verbose' is true, so make sure they go out at the right
1133 time. */
1134 gdb_flush (gdb_stdout);
1135
1136 if (objfile->sf == NULL)
1137 {
1138 gdb::observers::new_objfile.notify (objfile);
1139 return objfile; /* No symbols. */
1140 }
1141
1142 finish_new_objfile (objfile, add_flags);
1143
1144 gdb::observers::new_objfile.notify (objfile);
1145
1146 bfd_cache_close_all ();
1147 return (objfile);
1148 }
1149
1150 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1151 see the objfile constructor. */
1152
1153 void
1154 symbol_file_add_separate (bfd *bfd, const char *name,
1155 symfile_add_flags symfile_flags,
1156 struct objfile *objfile)
1157 {
1158 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1159 because sections of BFD may not match sections of OBJFILE and because
1160 vma may have been modified by tools such as prelink. */
1161 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1162
1163 symbol_file_add_with_addrs
1164 (bfd, name, symfile_flags, &sap,
1165 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1166 | OBJF_USERLOADED),
1167 objfile);
1168 }
1169
1170 /* Process the symbol file ABFD, as either the main file or as a
1171 dynamically loaded file.
1172 See symbol_file_add_with_addrs's comments for details. */
1173
1174 struct objfile *
1175 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1176 symfile_add_flags add_flags,
1177 section_addr_info *addrs,
1178 objfile_flags flags, struct objfile *parent)
1179 {
1180 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1181 parent);
1182 }
1183
1184 /* Process a symbol file, as either the main file or as a dynamically
1185 loaded file. See symbol_file_add_with_addrs's comments for details. */
1186
1187 struct objfile *
1188 symbol_file_add (const char *name, symfile_add_flags add_flags,
1189 section_addr_info *addrs, objfile_flags flags)
1190 {
1191 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1192
1193 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1194 flags, NULL);
1195 }
1196
1197 /* Call symbol_file_add() with default values and update whatever is
1198 affected by the loading of a new main().
1199 Used when the file is supplied in the gdb command line
1200 and by some targets with special loading requirements.
1201 The auxiliary function, symbol_file_add_main_1(), has the flags
1202 argument for the switches that can only be specified in the symbol_file
1203 command itself. */
1204
1205 void
1206 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1207 {
1208 symbol_file_add_main_1 (args, add_flags, 0, 0);
1209 }
1210
1211 static void
1212 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1213 objfile_flags flags, CORE_ADDR reloff)
1214 {
1215 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1216
1217 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1218 if (reloff != 0)
1219 objfile_rebase (objfile, reloff);
1220
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1224
1225 if ((add_flags & SYMFILE_NO_READ) == 0)
1226 set_initial_language ();
1227 }
1228
1229 void
1230 symbol_file_clear (int from_tty)
1231 {
1232 if ((have_full_symbols () || have_partial_symbols ())
1233 && from_tty
1234 && (symfile_objfile
1235 ? !query (_("Discard symbol table from `%s'? "),
1236 objfile_name (symfile_objfile))
1237 : !query (_("Discard symbol table? "))))
1238 error (_("Not confirmed."));
1239
1240 /* solib descriptors may have handles to objfiles. Wipe them before their
1241 objfiles get stale by free_all_objfiles. */
1242 no_shared_libraries (NULL, from_tty);
1243
1244 current_program_space->free_all_objfiles ();
1245
1246 clear_symtab_users (0);
1247
1248 gdb_assert (symfile_objfile == NULL);
1249 if (from_tty)
1250 printf_filtered (_("No symbol file now.\n"));
1251 }
1252
1253 /* See symfile.h. */
1254
1255 bool separate_debug_file_debug = false;
1256
1257 static int
1258 separate_debug_file_exists (const std::string &name, unsigned long crc,
1259 struct objfile *parent_objfile)
1260 {
1261 unsigned long file_crc;
1262 int file_crc_p;
1263 struct stat parent_stat, abfd_stat;
1264 int verified_as_different;
1265
1266 /* Find a separate debug info file as if symbols would be present in
1267 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1268 section can contain just the basename of PARENT_OBJFILE without any
1269 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1270 the separate debug infos with the same basename can exist. */
1271
1272 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1273 return 0;
1274
1275 if (separate_debug_file_debug)
1276 {
1277 printf_filtered (_(" Trying %s..."), name.c_str ());
1278 gdb_flush (gdb_stdout);
1279 }
1280
1281 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1282
1283 if (abfd == NULL)
1284 {
1285 if (separate_debug_file_debug)
1286 printf_filtered (_(" no, unable to open.\n"));
1287
1288 return 0;
1289 }
1290
1291 /* Verify symlinks were not the cause of filename_cmp name difference above.
1292
1293 Some operating systems, e.g. Windows, do not provide a meaningful
1294 st_ino; they always set it to zero. (Windows does provide a
1295 meaningful st_dev.) Files accessed from gdbservers that do not
1296 support the vFile:fstat packet will also have st_ino set to zero.
1297 Do not indicate a duplicate library in either case. While there
1298 is no guarantee that a system that provides meaningful inode
1299 numbers will never set st_ino to zero, this is merely an
1300 optimization, so we do not need to worry about false negatives. */
1301
1302 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1303 && abfd_stat.st_ino != 0
1304 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1305 {
1306 if (abfd_stat.st_dev == parent_stat.st_dev
1307 && abfd_stat.st_ino == parent_stat.st_ino)
1308 {
1309 if (separate_debug_file_debug)
1310 printf_filtered (_(" no, same file as the objfile.\n"));
1311
1312 return 0;
1313 }
1314 verified_as_different = 1;
1315 }
1316 else
1317 verified_as_different = 0;
1318
1319 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1320
1321 if (!file_crc_p)
1322 {
1323 if (separate_debug_file_debug)
1324 printf_filtered (_(" no, error computing CRC.\n"));
1325
1326 return 0;
1327 }
1328
1329 if (crc != file_crc)
1330 {
1331 unsigned long parent_crc;
1332
1333 /* If the files could not be verified as different with
1334 bfd_stat then we need to calculate the parent's CRC
1335 to verify whether the files are different or not. */
1336
1337 if (!verified_as_different)
1338 {
1339 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1340 {
1341 if (separate_debug_file_debug)
1342 printf_filtered (_(" no, error computing CRC.\n"));
1343
1344 return 0;
1345 }
1346 }
1347
1348 if (verified_as_different || parent_crc != file_crc)
1349 warning (_("the debug information found in \"%s\""
1350 " does not match \"%s\" (CRC mismatch).\n"),
1351 name.c_str (), objfile_name (parent_objfile));
1352
1353 if (separate_debug_file_debug)
1354 printf_filtered (_(" no, CRC doesn't match.\n"));
1355
1356 return 0;
1357 }
1358
1359 if (separate_debug_file_debug)
1360 printf_filtered (_(" yes!\n"));
1361
1362 return 1;
1363 }
1364
1365 char *debug_file_directory = NULL;
1366 static void
1367 show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369 {
1370 fprintf_filtered (file,
1371 _("The directory where separate debug "
1372 "symbols are searched for is \"%s\".\n"),
1373 value);
1374 }
1375
1376 #if ! defined (DEBUG_SUBDIRECTORY)
1377 #define DEBUG_SUBDIRECTORY ".debug"
1378 #endif
1379
1380 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1381 where the original file resides (may not be the same as
1382 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1383 looking for. CANON_DIR is the "realpath" form of DIR.
1384 DIR must contain a trailing '/'.
1385 Returns the path of the file with separate debug info, or an empty
1386 string. */
1387
1388 static std::string
1389 find_separate_debug_file (const char *dir,
1390 const char *canon_dir,
1391 const char *debuglink,
1392 unsigned long crc32, struct objfile *objfile)
1393 {
1394 if (separate_debug_file_debug)
1395 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1396 "%s\n"), objfile_name (objfile));
1397
1398 /* First try in the same directory as the original file. */
1399 std::string debugfile = dir;
1400 debugfile += debuglink;
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 return debugfile;
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 debugfile = dir;
1407 debugfile += DEBUG_SUBDIRECTORY;
1408 debugfile += "/";
1409 debugfile += debuglink;
1410
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 return debugfile;
1413
1414 /* Then try in the global debugfile directories.
1415
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
1418
1419 bool target_prefix = startswith (dir, "target:");
1420 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1421 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1422 = dirnames_to_char_ptr_vec (debug_file_directory);
1423 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1424
1425 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1426 convert the drive letter into a one-letter directory, so that the
1427 file name resulting from splicing below will be valid.
1428
1429 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1430 There are various remote-debugging scenarios where such a
1431 transformation of the drive letter might be required when GDB runs
1432 on a Posix host, see
1433
1434 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1435
1436 If some of those scenarios need to be supported, we will need to
1437 use a different condition for HAS_DRIVE_SPEC and a different macro
1438 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1439 std::string drive;
1440 if (HAS_DRIVE_SPEC (dir_notarget))
1441 {
1442 drive = dir_notarget[0];
1443 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1444 }
1445
1446 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1447 {
1448 debugfile = target_prefix ? "target:" : "";
1449 debugfile += debugdir.get ();
1450 debugfile += "/";
1451 debugfile += drive;
1452 debugfile += dir_notarget;
1453 debugfile += debuglink;
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 return debugfile;
1457
1458 const char *base_path = NULL;
1459 if (canon_dir != NULL)
1460 {
1461 if (canon_sysroot.get () != NULL)
1462 base_path = child_path (canon_sysroot.get (), canon_dir);
1463 else
1464 base_path = child_path (gdb_sysroot, canon_dir);
1465 }
1466 if (base_path != NULL)
1467 {
1468 /* If the file is in the sysroot, try using its base path in
1469 the global debugfile directory. */
1470 debugfile = target_prefix ? "target:" : "";
1471 debugfile += debugdir.get ();
1472 debugfile += "/";
1473 debugfile += base_path;
1474 debugfile += "/";
1475 debugfile += debuglink;
1476
1477 if (separate_debug_file_exists (debugfile, crc32, objfile))
1478 return debugfile;
1479
1480 /* If the file is in the sysroot, try using its base path in
1481 the sysroot's global debugfile directory. */
1482 debugfile = target_prefix ? "target:" : "";
1483 debugfile += gdb_sysroot;
1484 debugfile += debugdir.get ();
1485 debugfile += "/";
1486 debugfile += base_path;
1487 debugfile += "/";
1488 debugfile += debuglink;
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 return debugfile;
1492 }
1493
1494 }
1495
1496 return std::string ();
1497 }
1498
1499 /* Modify PATH to contain only "[/]directory/" part of PATH.
1500 If there were no directory separators in PATH, PATH will be empty
1501 string on return. */
1502
1503 static void
1504 terminate_after_last_dir_separator (char *path)
1505 {
1506 int i;
1507
1508 /* Strip off the final filename part, leaving the directory name,
1509 followed by a slash. The directory can be relative or absolute. */
1510 for (i = strlen(path) - 1; i >= 0; i--)
1511 if (IS_DIR_SEPARATOR (path[i]))
1512 break;
1513
1514 /* If I is -1 then no directory is present there and DIR will be "". */
1515 path[i + 1] = '\0';
1516 }
1517
1518 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1519 Returns pathname, or an empty string. */
1520
1521 std::string
1522 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1523 {
1524 unsigned long crc32;
1525
1526 gdb::unique_xmalloc_ptr<char> debuglink
1527 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1528
1529 if (debuglink == NULL)
1530 {
1531 /* There's no separate debug info, hence there's no way we could
1532 load it => no warning. */
1533 return std::string ();
1534 }
1535
1536 std::string dir = objfile_name (objfile);
1537 terminate_after_last_dir_separator (&dir[0]);
1538 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1539
1540 std::string debugfile
1541 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1542 debuglink.get (), crc32, objfile);
1543
1544 if (debugfile.empty ())
1545 {
1546 /* For PR gdb/9538, try again with realpath (if different from the
1547 original). */
1548
1549 struct stat st_buf;
1550
1551 if (lstat (objfile_name (objfile), &st_buf) == 0
1552 && S_ISLNK (st_buf.st_mode))
1553 {
1554 gdb::unique_xmalloc_ptr<char> symlink_dir
1555 (lrealpath (objfile_name (objfile)));
1556 if (symlink_dir != NULL)
1557 {
1558 terminate_after_last_dir_separator (symlink_dir.get ());
1559 if (dir != symlink_dir.get ())
1560 {
1561 /* Different directory, so try using it. */
1562 debugfile = find_separate_debug_file (symlink_dir.get (),
1563 symlink_dir.get (),
1564 debuglink.get (),
1565 crc32,
1566 objfile);
1567 }
1568 }
1569 }
1570 }
1571
1572 return debugfile;
1573 }
1574
1575 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1576 simultaneously. */
1577
1578 static void
1579 validate_readnow_readnever (objfile_flags flags)
1580 {
1581 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1582 error (_("-readnow and -readnever cannot be used simultaneously"));
1583 }
1584
1585 /* This is the symbol-file command. Read the file, analyze its
1586 symbols, and add a struct symtab to a symtab list. The syntax of
1587 the command is rather bizarre:
1588
1589 1. The function buildargv implements various quoting conventions
1590 which are undocumented and have little or nothing in common with
1591 the way things are quoted (or not quoted) elsewhere in GDB.
1592
1593 2. Options are used, which are not generally used in GDB (perhaps
1594 "set mapped on", "set readnow on" would be better)
1595
1596 3. The order of options matters, which is contrary to GNU
1597 conventions (because it is confusing and inconvenient). */
1598
1599 void
1600 symbol_file_command (const char *args, int from_tty)
1601 {
1602 dont_repeat ();
1603
1604 if (args == NULL)
1605 {
1606 symbol_file_clear (from_tty);
1607 }
1608 else
1609 {
1610 objfile_flags flags = OBJF_USERLOADED;
1611 symfile_add_flags add_flags = 0;
1612 char *name = NULL;
1613 bool stop_processing_options = false;
1614 CORE_ADDR offset = 0;
1615 int idx;
1616 char *arg;
1617
1618 if (from_tty)
1619 add_flags |= SYMFILE_VERBOSE;
1620
1621 gdb_argv built_argv (args);
1622 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1623 {
1624 if (stop_processing_options || *arg != '-')
1625 {
1626 if (name == NULL)
1627 name = arg;
1628 else
1629 error (_("Unrecognized argument \"%s\""), arg);
1630 }
1631 else if (strcmp (arg, "-readnow") == 0)
1632 flags |= OBJF_READNOW;
1633 else if (strcmp (arg, "-readnever") == 0)
1634 flags |= OBJF_READNEVER;
1635 else if (strcmp (arg, "-o") == 0)
1636 {
1637 arg = built_argv[++idx];
1638 if (arg == NULL)
1639 error (_("Missing argument to -o"));
1640
1641 offset = parse_and_eval_address (arg);
1642 }
1643 else if (strcmp (arg, "--") == 0)
1644 stop_processing_options = true;
1645 else
1646 error (_("Unrecognized argument \"%s\""), arg);
1647 }
1648
1649 if (name == NULL)
1650 error (_("no symbol file name was specified"));
1651
1652 validate_readnow_readnever (flags);
1653
1654 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1655 (Position Independent Executable) main symbol file will only be
1656 computed by the solib_create_inferior_hook below. Without it,
1657 breakpoint_re_set would fail to insert the breakpoints with the zero
1658 displacement. */
1659 add_flags |= SYMFILE_DEFER_BP_RESET;
1660
1661 symbol_file_add_main_1 (name, add_flags, flags, offset);
1662
1663 solib_create_inferior_hook (from_tty);
1664
1665 /* Now it's safe to re-add the breakpoints. */
1666 breakpoint_re_set ();
1667 }
1668 }
1669
1670 /* Set the initial language.
1671
1672 FIXME: A better solution would be to record the language in the
1673 psymtab when reading partial symbols, and then use it (if known) to
1674 set the language. This would be a win for formats that encode the
1675 language in an easily discoverable place, such as DWARF. For
1676 stabs, we can jump through hoops looking for specially named
1677 symbols or try to intuit the language from the specific type of
1678 stabs we find, but we can't do that until later when we read in
1679 full symbols. */
1680
1681 void
1682 set_initial_language (void)
1683 {
1684 if (language_mode == language_mode_manual)
1685 return;
1686 enum language lang = main_language ();
1687
1688 if (lang == language_unknown)
1689 {
1690 const char *name = main_name ();
1691 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1692
1693 if (sym != NULL)
1694 lang = sym->language ();
1695 }
1696
1697 if (lang == language_unknown)
1698 {
1699 /* Make C the default language */
1700 lang = language_c;
1701 }
1702
1703 set_language (lang);
1704 expected_language = current_language; /* Don't warn the user. */
1705 }
1706
1707 /* Open the file specified by NAME and hand it off to BFD for
1708 preliminary analysis. Return a newly initialized bfd *, which
1709 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1710 absolute). In case of trouble, error() is called. */
1711
1712 gdb_bfd_ref_ptr
1713 symfile_bfd_open (const char *name)
1714 {
1715 int desc = -1;
1716
1717 gdb::unique_xmalloc_ptr<char> absolute_name;
1718 if (!is_target_filename (name))
1719 {
1720 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1721
1722 /* Look down path for it, allocate 2nd new malloc'd copy. */
1723 desc = openp (getenv ("PATH"),
1724 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1725 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1726 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1727 if (desc < 0)
1728 {
1729 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1730
1731 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1732 desc = openp (getenv ("PATH"),
1733 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1734 exename, O_RDONLY | O_BINARY, &absolute_name);
1735 }
1736 #endif
1737 if (desc < 0)
1738 perror_with_name (expanded_name.get ());
1739
1740 name = absolute_name.get ();
1741 }
1742
1743 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1744 if (sym_bfd == NULL)
1745 error (_("`%s': can't open to read symbols: %s."), name,
1746 bfd_errmsg (bfd_get_error ()));
1747
1748 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1749 bfd_set_cacheable (sym_bfd.get (), 1);
1750
1751 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1752 error (_("`%s': can't read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1754
1755 return sym_bfd;
1756 }
1757
1758 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1759 the section was not found. */
1760
1761 int
1762 get_section_index (struct objfile *objfile, const char *section_name)
1763 {
1764 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1765
1766 if (sect)
1767 return sect->index;
1768 else
1769 return -1;
1770 }
1771
1772 /* Link SF into the global symtab_fns list.
1773 FLAVOUR is the file format that SF handles.
1774 Called on startup by the _initialize routine in each object file format
1775 reader, to register information about each format the reader is prepared
1776 to handle. */
1777
1778 void
1779 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1780 {
1781 symtab_fns.emplace_back (flavour, sf);
1782 }
1783
1784 /* Initialize OBJFILE to read symbols from its associated BFD. It
1785 either returns or calls error(). The result is an initialized
1786 struct sym_fns in the objfile structure, that contains cached
1787 information about the symbol file. */
1788
1789 static const struct sym_fns *
1790 find_sym_fns (bfd *abfd)
1791 {
1792 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1793
1794 if (our_flavour == bfd_target_srec_flavour
1795 || our_flavour == bfd_target_ihex_flavour
1796 || our_flavour == bfd_target_tekhex_flavour)
1797 return NULL; /* No symbols. */
1798
1799 for (const registered_sym_fns &rsf : symtab_fns)
1800 if (our_flavour == rsf.sym_flavour)
1801 return rsf.sym_fns;
1802
1803 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1804 bfd_get_target (abfd));
1805 }
1806 \f
1807
1808 /* This function runs the load command of our current target. */
1809
1810 static void
1811 load_command (const char *arg, int from_tty)
1812 {
1813 dont_repeat ();
1814
1815 /* The user might be reloading because the binary has changed. Take
1816 this opportunity to check. */
1817 reopen_exec_file ();
1818 reread_symbols ();
1819
1820 std::string temp;
1821 if (arg == NULL)
1822 {
1823 const char *parg, *prev;
1824
1825 arg = get_exec_file (1);
1826
1827 /* We may need to quote this string so buildargv can pull it
1828 apart. */
1829 prev = parg = arg;
1830 while ((parg = strpbrk (parg, "\\\"'\t ")))
1831 {
1832 temp.append (prev, parg - prev);
1833 prev = parg++;
1834 temp.push_back ('\\');
1835 }
1836 /* If we have not copied anything yet, then we didn't see a
1837 character to quote, and we can just leave ARG unchanged. */
1838 if (!temp.empty ())
1839 {
1840 temp.append (prev);
1841 arg = temp.c_str ();
1842 }
1843 }
1844
1845 target_load (arg, from_tty);
1846
1847 /* After re-loading the executable, we don't really know which
1848 overlays are mapped any more. */
1849 overlay_cache_invalid = 1;
1850 }
1851
1852 /* This version of "load" should be usable for any target. Currently
1853 it is just used for remote targets, not inftarg.c or core files,
1854 on the theory that only in that case is it useful.
1855
1856 Avoiding xmodem and the like seems like a win (a) because we don't have
1857 to worry about finding it, and (b) On VMS, fork() is very slow and so
1858 we don't want to run a subprocess. On the other hand, I'm not sure how
1859 performance compares. */
1860
1861 static int validate_download = 0;
1862
1863 /* Callback service function for generic_load (bfd_map_over_sections). */
1864
1865 static void
1866 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1867 {
1868 bfd_size_type *sum = (bfd_size_type *) data;
1869
1870 *sum += bfd_section_size (asec);
1871 }
1872
1873 /* Opaque data for load_progress. */
1874 struct load_progress_data
1875 {
1876 /* Cumulative data. */
1877 unsigned long write_count = 0;
1878 unsigned long data_count = 0;
1879 bfd_size_type total_size = 0;
1880 };
1881
1882 /* Opaque data for load_progress for a single section. */
1883 struct load_progress_section_data
1884 {
1885 load_progress_section_data (load_progress_data *cumulative_,
1886 const char *section_name_, ULONGEST section_size_,
1887 CORE_ADDR lma_, gdb_byte *buffer_)
1888 : cumulative (cumulative_), section_name (section_name_),
1889 section_size (section_size_), lma (lma_), buffer (buffer_)
1890 {}
1891
1892 struct load_progress_data *cumulative;
1893
1894 /* Per-section data. */
1895 const char *section_name;
1896 ULONGEST section_sent = 0;
1897 ULONGEST section_size;
1898 CORE_ADDR lma;
1899 gdb_byte *buffer;
1900 };
1901
1902 /* Opaque data for load_section_callback. */
1903 struct load_section_data
1904 {
1905 load_section_data (load_progress_data *progress_data_)
1906 : progress_data (progress_data_)
1907 {}
1908
1909 ~load_section_data ()
1910 {
1911 for (auto &&request : requests)
1912 {
1913 xfree (request.data);
1914 delete ((load_progress_section_data *) request.baton);
1915 }
1916 }
1917
1918 CORE_ADDR load_offset = 0;
1919 struct load_progress_data *progress_data;
1920 std::vector<struct memory_write_request> requests;
1921 };
1922
1923 /* Target write callback routine for progress reporting. */
1924
1925 static void
1926 load_progress (ULONGEST bytes, void *untyped_arg)
1927 {
1928 struct load_progress_section_data *args
1929 = (struct load_progress_section_data *) untyped_arg;
1930 struct load_progress_data *totals;
1931
1932 if (args == NULL)
1933 /* Writing padding data. No easy way to get at the cumulative
1934 stats, so just ignore this. */
1935 return;
1936
1937 totals = args->cumulative;
1938
1939 if (bytes == 0 && args->section_sent == 0)
1940 {
1941 /* The write is just starting. Let the user know we've started
1942 this section. */
1943 current_uiout->message ("Loading section %s, size %s lma %s\n",
1944 args->section_name,
1945 hex_string (args->section_size),
1946 paddress (target_gdbarch (), args->lma));
1947 return;
1948 }
1949
1950 if (validate_download)
1951 {
1952 /* Broken memories and broken monitors manifest themselves here
1953 when bring new computers to life. This doubles already slow
1954 downloads. */
1955 /* NOTE: cagney/1999-10-18: A more efficient implementation
1956 might add a verify_memory() method to the target vector and
1957 then use that. remote.c could implement that method using
1958 the ``qCRC'' packet. */
1959 gdb::byte_vector check (bytes);
1960
1961 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1962 error (_("Download verify read failed at %s"),
1963 paddress (target_gdbarch (), args->lma));
1964 if (memcmp (args->buffer, check.data (), bytes) != 0)
1965 error (_("Download verify compare failed at %s"),
1966 paddress (target_gdbarch (), args->lma));
1967 }
1968 totals->data_count += bytes;
1969 args->lma += bytes;
1970 args->buffer += bytes;
1971 totals->write_count += 1;
1972 args->section_sent += bytes;
1973 if (check_quit_flag ()
1974 || (deprecated_ui_load_progress_hook != NULL
1975 && deprecated_ui_load_progress_hook (args->section_name,
1976 args->section_sent)))
1977 error (_("Canceled the download"));
1978
1979 if (deprecated_show_load_progress != NULL)
1980 deprecated_show_load_progress (args->section_name,
1981 args->section_sent,
1982 args->section_size,
1983 totals->data_count,
1984 totals->total_size);
1985 }
1986
1987 /* Callback service function for generic_load (bfd_map_over_sections). */
1988
1989 static void
1990 load_section_callback (bfd *abfd, asection *asec, void *data)
1991 {
1992 struct load_section_data *args = (struct load_section_data *) data;
1993 bfd_size_type size = bfd_section_size (asec);
1994 const char *sect_name = bfd_section_name (asec);
1995
1996 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1997 return;
1998
1999 if (size == 0)
2000 return;
2001
2002 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
2003 ULONGEST end = begin + size;
2004 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2005 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2006
2007 load_progress_section_data *section_data
2008 = new load_progress_section_data (args->progress_data, sect_name, size,
2009 begin, buffer);
2010
2011 args->requests.emplace_back (begin, end, buffer, section_data);
2012 }
2013
2014 static void print_transfer_performance (struct ui_file *stream,
2015 unsigned long data_count,
2016 unsigned long write_count,
2017 std::chrono::steady_clock::duration d);
2018
2019 /* See symfile.h. */
2020
2021 void
2022 generic_load (const char *args, int from_tty)
2023 {
2024 struct load_progress_data total_progress;
2025 struct load_section_data cbdata (&total_progress);
2026 struct ui_out *uiout = current_uiout;
2027
2028 if (args == NULL)
2029 error_no_arg (_("file to load"));
2030
2031 gdb_argv argv (args);
2032
2033 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2034
2035 if (argv[1] != NULL)
2036 {
2037 const char *endptr;
2038
2039 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2040
2041 /* If the last word was not a valid number then
2042 treat it as a file name with spaces in. */
2043 if (argv[1] == endptr)
2044 error (_("Invalid download offset:%s."), argv[1]);
2045
2046 if (argv[2] != NULL)
2047 error (_("Too many parameters."));
2048 }
2049
2050 /* Open the file for loading. */
2051 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2052 if (loadfile_bfd == NULL)
2053 perror_with_name (filename.get ());
2054
2055 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2056 {
2057 error (_("\"%s\" is not an object file: %s"), filename.get (),
2058 bfd_errmsg (bfd_get_error ()));
2059 }
2060
2061 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2062 (void *) &total_progress.total_size);
2063
2064 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2065
2066 using namespace std::chrono;
2067
2068 steady_clock::time_point start_time = steady_clock::now ();
2069
2070 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2071 load_progress) != 0)
2072 error (_("Load failed"));
2073
2074 steady_clock::time_point end_time = steady_clock::now ();
2075
2076 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2077 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2078 uiout->text ("Start address ");
2079 uiout->field_core_addr ("address", target_gdbarch (), entry);
2080 uiout->text (", load size ");
2081 uiout->field_unsigned ("load-size", total_progress.data_count);
2082 uiout->text ("\n");
2083 regcache_write_pc (get_current_regcache (), entry);
2084
2085 /* Reset breakpoints, now that we have changed the load image. For
2086 instance, breakpoints may have been set (or reset, by
2087 post_create_inferior) while connected to the target but before we
2088 loaded the program. In that case, the prologue analyzer could
2089 have read instructions from the target to find the right
2090 breakpoint locations. Loading has changed the contents of that
2091 memory. */
2092
2093 breakpoint_re_set ();
2094
2095 print_transfer_performance (gdb_stdout, total_progress.data_count,
2096 total_progress.write_count,
2097 end_time - start_time);
2098 }
2099
2100 /* Report on STREAM the performance of a memory transfer operation,
2101 such as 'load'. DATA_COUNT is the number of bytes transferred.
2102 WRITE_COUNT is the number of separate write operations, or 0, if
2103 that information is not available. TIME is how long the operation
2104 lasted. */
2105
2106 static void
2107 print_transfer_performance (struct ui_file *stream,
2108 unsigned long data_count,
2109 unsigned long write_count,
2110 std::chrono::steady_clock::duration time)
2111 {
2112 using namespace std::chrono;
2113 struct ui_out *uiout = current_uiout;
2114
2115 milliseconds ms = duration_cast<milliseconds> (time);
2116
2117 uiout->text ("Transfer rate: ");
2118 if (ms.count () > 0)
2119 {
2120 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2121
2122 if (uiout->is_mi_like_p ())
2123 {
2124 uiout->field_unsigned ("transfer-rate", rate * 8);
2125 uiout->text (" bits/sec");
2126 }
2127 else if (rate < 1024)
2128 {
2129 uiout->field_unsigned ("transfer-rate", rate);
2130 uiout->text (" bytes/sec");
2131 }
2132 else
2133 {
2134 uiout->field_unsigned ("transfer-rate", rate / 1024);
2135 uiout->text (" KB/sec");
2136 }
2137 }
2138 else
2139 {
2140 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2141 uiout->text (" bits in <1 sec");
2142 }
2143 if (write_count > 0)
2144 {
2145 uiout->text (", ");
2146 uiout->field_unsigned ("write-rate", data_count / write_count);
2147 uiout->text (" bytes/write");
2148 }
2149 uiout->text (".\n");
2150 }
2151
2152 /* Add an OFFSET to the start address of each section in OBJF, except
2153 sections that were specified in ADDRS. */
2154
2155 static void
2156 set_objfile_default_section_offset (struct objfile *objf,
2157 const section_addr_info &addrs,
2158 CORE_ADDR offset)
2159 {
2160 /* Add OFFSET to all sections by default. */
2161 section_offsets offsets (objf->section_offsets.size (), offset);
2162
2163 /* Create sorted lists of all sections in ADDRS as well as all
2164 sections in OBJF. */
2165
2166 std::vector<const struct other_sections *> addrs_sorted
2167 = addrs_section_sort (addrs);
2168
2169 section_addr_info objf_addrs
2170 = build_section_addr_info_from_objfile (objf);
2171 std::vector<const struct other_sections *> objf_addrs_sorted
2172 = addrs_section_sort (objf_addrs);
2173
2174 /* Walk the BFD section list, and if a matching section is found in
2175 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2176 unchanged.
2177
2178 Note that both lists may contain multiple sections with the same
2179 name, and then the sections from ADDRS are matched in BFD order
2180 (thanks to sectindex). */
2181
2182 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2183 = addrs_sorted.begin ();
2184 for (const other_sections *objf_sect : objf_addrs_sorted)
2185 {
2186 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2187 int cmp = -1;
2188
2189 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2190 {
2191 const struct other_sections *sect = *addrs_sorted_iter;
2192 const char *sect_name = addr_section_name (sect->name.c_str ());
2193 cmp = strcmp (sect_name, objf_name);
2194 if (cmp <= 0)
2195 ++addrs_sorted_iter;
2196 }
2197
2198 if (cmp == 0)
2199 offsets[objf_sect->sectindex] = 0;
2200 }
2201
2202 /* Apply the new section offsets. */
2203 objfile_relocate (objf, offsets);
2204 }
2205
2206 /* This function allows the addition of incrementally linked object files.
2207 It does not modify any state in the target, only in the debugger. */
2208
2209 static void
2210 add_symbol_file_command (const char *args, int from_tty)
2211 {
2212 struct gdbarch *gdbarch = get_current_arch ();
2213 gdb::unique_xmalloc_ptr<char> filename;
2214 char *arg;
2215 int argcnt = 0;
2216 struct objfile *objf;
2217 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2218 symfile_add_flags add_flags = 0;
2219
2220 if (from_tty)
2221 add_flags |= SYMFILE_VERBOSE;
2222
2223 struct sect_opt
2224 {
2225 const char *name;
2226 const char *value;
2227 };
2228
2229 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2230 bool stop_processing_options = false;
2231 CORE_ADDR offset = 0;
2232
2233 dont_repeat ();
2234
2235 if (args == NULL)
2236 error (_("add-symbol-file takes a file name and an address"));
2237
2238 bool seen_addr = false;
2239 bool seen_offset = false;
2240 gdb_argv argv (args);
2241
2242 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2243 {
2244 if (stop_processing_options || *arg != '-')
2245 {
2246 if (filename == NULL)
2247 {
2248 /* First non-option argument is always the filename. */
2249 filename.reset (tilde_expand (arg));
2250 }
2251 else if (!seen_addr)
2252 {
2253 /* The second non-option argument is always the text
2254 address at which to load the program. */
2255 sect_opts[0].value = arg;
2256 seen_addr = true;
2257 }
2258 else
2259 error (_("Unrecognized argument \"%s\""), arg);
2260 }
2261 else if (strcmp (arg, "-readnow") == 0)
2262 flags |= OBJF_READNOW;
2263 else if (strcmp (arg, "-readnever") == 0)
2264 flags |= OBJF_READNEVER;
2265 else if (strcmp (arg, "-s") == 0)
2266 {
2267 if (argv[argcnt + 1] == NULL)
2268 error (_("Missing section name after \"-s\""));
2269 else if (argv[argcnt + 2] == NULL)
2270 error (_("Missing section address after \"-s\""));
2271
2272 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2273
2274 sect_opts.push_back (sect);
2275 argcnt += 2;
2276 }
2277 else if (strcmp (arg, "-o") == 0)
2278 {
2279 arg = argv[++argcnt];
2280 if (arg == NULL)
2281 error (_("Missing argument to -o"));
2282
2283 offset = parse_and_eval_address (arg);
2284 seen_offset = true;
2285 }
2286 else if (strcmp (arg, "--") == 0)
2287 stop_processing_options = true;
2288 else
2289 error (_("Unrecognized argument \"%s\""), arg);
2290 }
2291
2292 if (filename == NULL)
2293 error (_("You must provide a filename to be loaded."));
2294
2295 validate_readnow_readnever (flags);
2296
2297 /* Print the prompt for the query below. And save the arguments into
2298 a sect_addr_info structure to be passed around to other
2299 functions. We have to split this up into separate print
2300 statements because hex_string returns a local static
2301 string. */
2302
2303 printf_unfiltered (_("add symbol table from file \"%s\""),
2304 filename.get ());
2305 section_addr_info section_addrs;
2306 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2307 if (!seen_addr)
2308 ++it;
2309 for (; it != sect_opts.end (); ++it)
2310 {
2311 CORE_ADDR addr;
2312 const char *val = it->value;
2313 const char *sec = it->name;
2314
2315 if (section_addrs.empty ())
2316 printf_unfiltered (_(" at\n"));
2317 addr = parse_and_eval_address (val);
2318
2319 /* Here we store the section offsets in the order they were
2320 entered on the command line. Every array element is
2321 assigned an ascending section index to preserve the above
2322 order over an unstable sorting algorithm. This dummy
2323 index is not used for any other purpose.
2324 */
2325 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2326 printf_filtered ("\t%s_addr = %s\n", sec,
2327 paddress (gdbarch, addr));
2328
2329 /* The object's sections are initialized when a
2330 call is made to build_objfile_section_table (objfile).
2331 This happens in reread_symbols.
2332 At this point, we don't know what file type this is,
2333 so we can't determine what section names are valid. */
2334 }
2335 if (seen_offset)
2336 printf_unfiltered (_("%s offset by %s\n"),
2337 (section_addrs.empty ()
2338 ? _(" with all sections")
2339 : _("with other sections")),
2340 paddress (gdbarch, offset));
2341 else if (section_addrs.empty ())
2342 printf_unfiltered ("\n");
2343
2344 if (from_tty && (!query ("%s", "")))
2345 error (_("Not confirmed."));
2346
2347 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2348 flags);
2349 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2350 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2351 filename.get ());
2352
2353 if (seen_offset)
2354 set_objfile_default_section_offset (objf, section_addrs, offset);
2355
2356 add_target_sections_of_objfile (objf);
2357
2358 /* Getting new symbols may change our opinion about what is
2359 frameless. */
2360 reinit_frame_cache ();
2361 }
2362 \f
2363
2364 /* This function removes a symbol file that was added via add-symbol-file. */
2365
2366 static void
2367 remove_symbol_file_command (const char *args, int from_tty)
2368 {
2369 struct objfile *objf = NULL;
2370 struct program_space *pspace = current_program_space;
2371
2372 dont_repeat ();
2373
2374 if (args == NULL)
2375 error (_("remove-symbol-file: no symbol file provided"));
2376
2377 gdb_argv argv (args);
2378
2379 if (strcmp (argv[0], "-a") == 0)
2380 {
2381 /* Interpret the next argument as an address. */
2382 CORE_ADDR addr;
2383
2384 if (argv[1] == NULL)
2385 error (_("Missing address argument"));
2386
2387 if (argv[2] != NULL)
2388 error (_("Junk after %s"), argv[1]);
2389
2390 addr = parse_and_eval_address (argv[1]);
2391
2392 for (objfile *objfile : current_program_space->objfiles ())
2393 {
2394 if ((objfile->flags & OBJF_USERLOADED) != 0
2395 && (objfile->flags & OBJF_SHARED) != 0
2396 && objfile->pspace == pspace
2397 && is_addr_in_objfile (addr, objfile))
2398 {
2399 objf = objfile;
2400 break;
2401 }
2402 }
2403 }
2404 else if (argv[0] != NULL)
2405 {
2406 /* Interpret the current argument as a file name. */
2407
2408 if (argv[1] != NULL)
2409 error (_("Junk after %s"), argv[0]);
2410
2411 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2412
2413 for (objfile *objfile : current_program_space->objfiles ())
2414 {
2415 if ((objfile->flags & OBJF_USERLOADED) != 0
2416 && (objfile->flags & OBJF_SHARED) != 0
2417 && objfile->pspace == pspace
2418 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2419 {
2420 objf = objfile;
2421 break;
2422 }
2423 }
2424 }
2425
2426 if (objf == NULL)
2427 error (_("No symbol file found"));
2428
2429 if (from_tty
2430 && !query (_("Remove symbol table from file \"%s\"? "),
2431 objfile_name (objf)))
2432 error (_("Not confirmed."));
2433
2434 objf->unlink ();
2435 clear_symtab_users (0);
2436 }
2437
2438 /* Re-read symbols if a symbol-file has changed. */
2439
2440 void
2441 reread_symbols (void)
2442 {
2443 long new_modtime;
2444 struct stat new_statbuf;
2445 int res;
2446 std::vector<struct objfile *> new_objfiles;
2447
2448 for (objfile *objfile : current_program_space->objfiles ())
2449 {
2450 if (objfile->obfd == NULL)
2451 continue;
2452
2453 /* Separate debug objfiles are handled in the main objfile. */
2454 if (objfile->separate_debug_objfile_backlink)
2455 continue;
2456
2457 /* If this object is from an archive (what you usually create with
2458 `ar', often called a `static library' on most systems, though
2459 a `shared library' on AIX is also an archive), then you should
2460 stat on the archive name, not member name. */
2461 if (objfile->obfd->my_archive)
2462 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2463 else
2464 res = stat (objfile_name (objfile), &new_statbuf);
2465 if (res != 0)
2466 {
2467 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2468 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2469 objfile_name (objfile));
2470 continue;
2471 }
2472 new_modtime = new_statbuf.st_mtime;
2473 if (new_modtime != objfile->mtime)
2474 {
2475 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2476 objfile_name (objfile));
2477
2478 /* There are various functions like symbol_file_add,
2479 symfile_bfd_open, syms_from_objfile, etc., which might
2480 appear to do what we want. But they have various other
2481 effects which we *don't* want. So we just do stuff
2482 ourselves. We don't worry about mapped files (for one thing,
2483 any mapped file will be out of date). */
2484
2485 /* If we get an error, blow away this objfile (not sure if
2486 that is the correct response for things like shared
2487 libraries). */
2488 objfile_up objfile_holder (objfile);
2489
2490 /* We need to do this whenever any symbols go away. */
2491 clear_symtab_users_cleanup defer_clear_users (0);
2492
2493 if (exec_bfd != NULL
2494 && filename_cmp (bfd_get_filename (objfile->obfd),
2495 bfd_get_filename (exec_bfd)) == 0)
2496 {
2497 /* Reload EXEC_BFD without asking anything. */
2498
2499 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2500 }
2501
2502 /* Keep the calls order approx. the same as in free_objfile. */
2503
2504 /* Free the separate debug objfiles. It will be
2505 automatically recreated by sym_read. */
2506 free_objfile_separate_debug (objfile);
2507
2508 /* Clear the stale source cache. */
2509 forget_cached_source_info ();
2510
2511 /* Remove any references to this objfile in the global
2512 value lists. */
2513 preserve_values (objfile);
2514
2515 /* Nuke all the state that we will re-read. Much of the following
2516 code which sets things to NULL really is necessary to tell
2517 other parts of GDB that there is nothing currently there.
2518
2519 Try to keep the freeing order compatible with free_objfile. */
2520
2521 if (objfile->sf != NULL)
2522 {
2523 (*objfile->sf->sym_finish) (objfile);
2524 }
2525
2526 clear_objfile_data (objfile);
2527
2528 /* Clean up any state BFD has sitting around. */
2529 {
2530 gdb_bfd_ref_ptr obfd (objfile->obfd);
2531 const char *obfd_filename;
2532
2533 obfd_filename = bfd_get_filename (objfile->obfd);
2534 /* Open the new BFD before freeing the old one, so that
2535 the filename remains live. */
2536 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2537 objfile->obfd = temp.release ();
2538 if (objfile->obfd == NULL)
2539 error (_("Can't open %s to read symbols."), obfd_filename);
2540 }
2541
2542 std::string original_name = objfile->original_name;
2543
2544 /* bfd_openr sets cacheable to true, which is what we want. */
2545 if (!bfd_check_format (objfile->obfd, bfd_object))
2546 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2547 bfd_errmsg (bfd_get_error ()));
2548
2549 objfile->reset_psymtabs ();
2550
2551 /* NB: after this call to obstack_free, objfiles_changed
2552 will need to be called (see discussion below). */
2553 obstack_free (&objfile->objfile_obstack, 0);
2554 objfile->sections = NULL;
2555 objfile->compunit_symtabs = NULL;
2556 objfile->template_symbols = NULL;
2557 objfile->static_links.reset (nullptr);
2558
2559 /* obstack_init also initializes the obstack so it is
2560 empty. We could use obstack_specify_allocation but
2561 gdb_obstack.h specifies the alloc/dealloc functions. */
2562 obstack_init (&objfile->objfile_obstack);
2563
2564 /* set_objfile_per_bfd potentially allocates the per-bfd
2565 data on the objfile's obstack (if sharing data across
2566 multiple users is not possible), so it's important to
2567 do it *after* the obstack has been initialized. */
2568 set_objfile_per_bfd (objfile);
2569
2570 objfile->original_name
2571 = obstack_strdup (&objfile->objfile_obstack, original_name);
2572
2573 /* Reset the sym_fns pointer. The ELF reader can change it
2574 based on whether .gdb_index is present, and we need it to
2575 start over. PR symtab/15885 */
2576 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2577
2578 build_objfile_section_table (objfile);
2579
2580 /* What the hell is sym_new_init for, anyway? The concept of
2581 distinguishing between the main file and additional files
2582 in this way seems rather dubious. */
2583 if (objfile == symfile_objfile)
2584 {
2585 (*objfile->sf->sym_new_init) (objfile);
2586 }
2587
2588 (*objfile->sf->sym_init) (objfile);
2589 clear_complaints ();
2590
2591 objfile->flags &= ~OBJF_PSYMTABS_READ;
2592
2593 /* We are about to read new symbols and potentially also
2594 DWARF information. Some targets may want to pass addresses
2595 read from DWARF DIE's through an adjustment function before
2596 saving them, like MIPS, which may call into
2597 "find_pc_section". When called, that function will make
2598 use of per-objfile program space data.
2599
2600 Since we discarded our section information above, we have
2601 dangling pointers in the per-objfile program space data
2602 structure. Force GDB to update the section mapping
2603 information by letting it know the objfile has changed,
2604 making the dangling pointers point to correct data
2605 again. */
2606
2607 objfiles_changed ();
2608
2609 read_symbols (objfile, 0);
2610
2611 if (!objfile_has_symbols (objfile))
2612 {
2613 wrap_here ("");
2614 printf_filtered (_("(no debugging symbols found)\n"));
2615 wrap_here ("");
2616 }
2617
2618 /* We're done reading the symbol file; finish off complaints. */
2619 clear_complaints ();
2620
2621 /* Getting new symbols may change our opinion about what is
2622 frameless. */
2623
2624 reinit_frame_cache ();
2625
2626 /* Discard cleanups as symbol reading was successful. */
2627 objfile_holder.release ();
2628 defer_clear_users.release ();
2629
2630 /* If the mtime has changed between the time we set new_modtime
2631 and now, we *want* this to be out of date, so don't call stat
2632 again now. */
2633 objfile->mtime = new_modtime;
2634 init_entry_point_info (objfile);
2635
2636 new_objfiles.push_back (objfile);
2637 }
2638 }
2639
2640 if (!new_objfiles.empty ())
2641 {
2642 clear_symtab_users (0);
2643
2644 /* clear_objfile_data for each objfile was called before freeing it and
2645 gdb::observers::new_objfile.notify (NULL) has been called by
2646 clear_symtab_users above. Notify the new files now. */
2647 for (auto iter : new_objfiles)
2648 gdb::observers::new_objfile.notify (iter);
2649
2650 /* At least one objfile has changed, so we can consider that
2651 the executable we're debugging has changed too. */
2652 gdb::observers::executable_changed.notify ();
2653 }
2654 }
2655 \f
2656
2657 struct filename_language
2658 {
2659 filename_language (const std::string &ext_, enum language lang_)
2660 : ext (ext_), lang (lang_)
2661 {}
2662
2663 std::string ext;
2664 enum language lang;
2665 };
2666
2667 static std::vector<filename_language> filename_language_table;
2668
2669 /* See symfile.h. */
2670
2671 void
2672 add_filename_language (const char *ext, enum language lang)
2673 {
2674 filename_language_table.emplace_back (ext, lang);
2675 }
2676
2677 static char *ext_args;
2678 static void
2679 show_ext_args (struct ui_file *file, int from_tty,
2680 struct cmd_list_element *c, const char *value)
2681 {
2682 fprintf_filtered (file,
2683 _("Mapping between filename extension "
2684 "and source language is \"%s\".\n"),
2685 value);
2686 }
2687
2688 static void
2689 set_ext_lang_command (const char *args,
2690 int from_tty, struct cmd_list_element *e)
2691 {
2692 char *cp = ext_args;
2693 enum language lang;
2694
2695 /* First arg is filename extension, starting with '.' */
2696 if (*cp != '.')
2697 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2698
2699 /* Find end of first arg. */
2700 while (*cp && !isspace (*cp))
2701 cp++;
2702
2703 if (*cp == '\0')
2704 error (_("'%s': two arguments required -- "
2705 "filename extension and language"),
2706 ext_args);
2707
2708 /* Null-terminate first arg. */
2709 *cp++ = '\0';
2710
2711 /* Find beginning of second arg, which should be a source language. */
2712 cp = skip_spaces (cp);
2713
2714 if (*cp == '\0')
2715 error (_("'%s': two arguments required -- "
2716 "filename extension and language"),
2717 ext_args);
2718
2719 /* Lookup the language from among those we know. */
2720 lang = language_enum (cp);
2721
2722 auto it = filename_language_table.begin ();
2723 /* Now lookup the filename extension: do we already know it? */
2724 for (; it != filename_language_table.end (); it++)
2725 {
2726 if (it->ext == ext_args)
2727 break;
2728 }
2729
2730 if (it == filename_language_table.end ())
2731 {
2732 /* New file extension. */
2733 add_filename_language (ext_args, lang);
2734 }
2735 else
2736 {
2737 /* Redefining a previously known filename extension. */
2738
2739 /* if (from_tty) */
2740 /* query ("Really make files of type %s '%s'?", */
2741 /* ext_args, language_str (lang)); */
2742
2743 it->lang = lang;
2744 }
2745 }
2746
2747 static void
2748 info_ext_lang_command (const char *args, int from_tty)
2749 {
2750 printf_filtered (_("Filename extensions and the languages they represent:"));
2751 printf_filtered ("\n\n");
2752 for (const filename_language &entry : filename_language_table)
2753 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2754 language_str (entry.lang));
2755 }
2756
2757 enum language
2758 deduce_language_from_filename (const char *filename)
2759 {
2760 const char *cp;
2761
2762 if (filename != NULL)
2763 if ((cp = strrchr (filename, '.')) != NULL)
2764 {
2765 for (const filename_language &entry : filename_language_table)
2766 if (entry.ext == cp)
2767 return entry.lang;
2768 }
2769
2770 return language_unknown;
2771 }
2772 \f
2773 /* Allocate and initialize a new symbol table.
2774 CUST is from the result of allocate_compunit_symtab. */
2775
2776 struct symtab *
2777 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2778 {
2779 struct objfile *objfile = cust->objfile;
2780 struct symtab *symtab
2781 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2782
2783 symtab->filename
2784 = ((const char *) objfile->per_bfd->filename_cache.insert
2785 (filename, strlen (filename) + 1));
2786 symtab->fullname = NULL;
2787 symtab->language = deduce_language_from_filename (filename);
2788
2789 /* This can be very verbose with lots of headers.
2790 Only print at higher debug levels. */
2791 if (symtab_create_debug >= 2)
2792 {
2793 /* Be a bit clever with debugging messages, and don't print objfile
2794 every time, only when it changes. */
2795 static char *last_objfile_name = NULL;
2796
2797 if (last_objfile_name == NULL
2798 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2799 {
2800 xfree (last_objfile_name);
2801 last_objfile_name = xstrdup (objfile_name (objfile));
2802 fprintf_filtered (gdb_stdlog,
2803 "Creating one or more symtabs for objfile %s ...\n",
2804 last_objfile_name);
2805 }
2806 fprintf_filtered (gdb_stdlog,
2807 "Created symtab %s for module %s.\n",
2808 host_address_to_string (symtab), filename);
2809 }
2810
2811 /* Add it to CUST's list of symtabs. */
2812 if (cust->filetabs == NULL)
2813 {
2814 cust->filetabs = symtab;
2815 cust->last_filetab = symtab;
2816 }
2817 else
2818 {
2819 cust->last_filetab->next = symtab;
2820 cust->last_filetab = symtab;
2821 }
2822
2823 /* Backlink to the containing compunit symtab. */
2824 symtab->compunit_symtab = cust;
2825
2826 return symtab;
2827 }
2828
2829 /* Allocate and initialize a new compunit.
2830 NAME is the name of the main source file, if there is one, or some
2831 descriptive text if there are no source files. */
2832
2833 struct compunit_symtab *
2834 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2835 {
2836 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2837 struct compunit_symtab);
2838 const char *saved_name;
2839
2840 cu->objfile = objfile;
2841
2842 /* The name we record here is only for display/debugging purposes.
2843 Just save the basename to avoid path issues (too long for display,
2844 relative vs absolute, etc.). */
2845 saved_name = lbasename (name);
2846 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2847
2848 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2849
2850 if (symtab_create_debug)
2851 {
2852 fprintf_filtered (gdb_stdlog,
2853 "Created compunit symtab %s for %s.\n",
2854 host_address_to_string (cu),
2855 cu->name);
2856 }
2857
2858 return cu;
2859 }
2860
2861 /* Hook CU to the objfile it comes from. */
2862
2863 void
2864 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2865 {
2866 cu->next = cu->objfile->compunit_symtabs;
2867 cu->objfile->compunit_symtabs = cu;
2868 }
2869 \f
2870
2871 /* Reset all data structures in gdb which may contain references to
2872 symbol table data. */
2873
2874 void
2875 clear_symtab_users (symfile_add_flags add_flags)
2876 {
2877 /* Someday, we should do better than this, by only blowing away
2878 the things that really need to be blown. */
2879
2880 /* Clear the "current" symtab first, because it is no longer valid.
2881 breakpoint_re_set may try to access the current symtab. */
2882 clear_current_source_symtab_and_line ();
2883
2884 clear_displays ();
2885 clear_last_displayed_sal ();
2886 clear_pc_function_cache ();
2887 gdb::observers::new_objfile.notify (NULL);
2888
2889 /* Varobj may refer to old symbols, perform a cleanup. */
2890 varobj_invalidate ();
2891
2892 /* Now that the various caches have been cleared, we can re_set
2893 our breakpoints without risking it using stale data. */
2894 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2895 breakpoint_re_set ();
2896 }
2897 \f
2898 /* OVERLAYS:
2899 The following code implements an abstraction for debugging overlay sections.
2900
2901 The target model is as follows:
2902 1) The gnu linker will permit multiple sections to be mapped into the
2903 same VMA, each with its own unique LMA (or load address).
2904 2) It is assumed that some runtime mechanism exists for mapping the
2905 sections, one by one, from the load address into the VMA address.
2906 3) This code provides a mechanism for gdb to keep track of which
2907 sections should be considered to be mapped from the VMA to the LMA.
2908 This information is used for symbol lookup, and memory read/write.
2909 For instance, if a section has been mapped then its contents
2910 should be read from the VMA, otherwise from the LMA.
2911
2912 Two levels of debugger support for overlays are available. One is
2913 "manual", in which the debugger relies on the user to tell it which
2914 overlays are currently mapped. This level of support is
2915 implemented entirely in the core debugger, and the information about
2916 whether a section is mapped is kept in the objfile->obj_section table.
2917
2918 The second level of support is "automatic", and is only available if
2919 the target-specific code provides functionality to read the target's
2920 overlay mapping table, and translate its contents for the debugger
2921 (by updating the mapped state information in the obj_section tables).
2922
2923 The interface is as follows:
2924 User commands:
2925 overlay map <name> -- tell gdb to consider this section mapped
2926 overlay unmap <name> -- tell gdb to consider this section unmapped
2927 overlay list -- list the sections that GDB thinks are mapped
2928 overlay read-target -- get the target's state of what's mapped
2929 overlay off/manual/auto -- set overlay debugging state
2930 Functional interface:
2931 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2932 section, return that section.
2933 find_pc_overlay(pc): find any overlay section that contains
2934 the pc, either in its VMA or its LMA
2935 section_is_mapped(sect): true if overlay is marked as mapped
2936 section_is_overlay(sect): true if section's VMA != LMA
2937 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2938 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2939 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2940 overlay_mapped_address(...): map an address from section's LMA to VMA
2941 overlay_unmapped_address(...): map an address from section's VMA to LMA
2942 symbol_overlayed_address(...): Return a "current" address for symbol:
2943 either in VMA or LMA depending on whether
2944 the symbol's section is currently mapped. */
2945
2946 /* Overlay debugging state: */
2947
2948 enum overlay_debugging_state overlay_debugging = ovly_off;
2949 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2950
2951 /* Function: section_is_overlay (SECTION)
2952 Returns true if SECTION has VMA not equal to LMA, ie.
2953 SECTION is loaded at an address different from where it will "run". */
2954
2955 int
2956 section_is_overlay (struct obj_section *section)
2957 {
2958 if (overlay_debugging && section)
2959 {
2960 asection *bfd_section = section->the_bfd_section;
2961
2962 if (bfd_section_lma (bfd_section) != 0
2963 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2964 return 1;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /* Function: overlay_invalidate_all (void)
2971 Invalidate the mapped state of all overlay sections (mark it as stale). */
2972
2973 static void
2974 overlay_invalidate_all (void)
2975 {
2976 struct obj_section *sect;
2977
2978 for (objfile *objfile : current_program_space->objfiles ())
2979 ALL_OBJFILE_OSECTIONS (objfile, sect)
2980 if (section_is_overlay (sect))
2981 sect->ovly_mapped = -1;
2982 }
2983
2984 /* Function: section_is_mapped (SECTION)
2985 Returns true if section is an overlay, and is currently mapped.
2986
2987 Access to the ovly_mapped flag is restricted to this function, so
2988 that we can do automatic update. If the global flag
2989 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2990 overlay_invalidate_all. If the mapped state of the particular
2991 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2992
2993 int
2994 section_is_mapped (struct obj_section *osect)
2995 {
2996 struct gdbarch *gdbarch;
2997
2998 if (osect == 0 || !section_is_overlay (osect))
2999 return 0;
3000
3001 switch (overlay_debugging)
3002 {
3003 default:
3004 case ovly_off:
3005 return 0; /* overlay debugging off */
3006 case ovly_auto: /* overlay debugging automatic */
3007 /* Unles there is a gdbarch_overlay_update function,
3008 there's really nothing useful to do here (can't really go auto). */
3009 gdbarch = get_objfile_arch (osect->objfile);
3010 if (gdbarch_overlay_update_p (gdbarch))
3011 {
3012 if (overlay_cache_invalid)
3013 {
3014 overlay_invalidate_all ();
3015 overlay_cache_invalid = 0;
3016 }
3017 if (osect->ovly_mapped == -1)
3018 gdbarch_overlay_update (gdbarch, osect);
3019 }
3020 /* fall thru */
3021 case ovly_on: /* overlay debugging manual */
3022 return osect->ovly_mapped == 1;
3023 }
3024 }
3025
3026 /* Function: pc_in_unmapped_range
3027 If PC falls into the lma range of SECTION, return true, else false. */
3028
3029 CORE_ADDR
3030 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3031 {
3032 if (section_is_overlay (section))
3033 {
3034 asection *bfd_section = section->the_bfd_section;
3035
3036 /* We assume the LMA is relocated by the same offset as the VMA. */
3037 bfd_vma size = bfd_section_size (bfd_section);
3038 CORE_ADDR offset = obj_section_offset (section);
3039
3040 if (bfd_section_lma (bfd_section) + offset <= pc
3041 && pc < bfd_section_lma (bfd_section) + offset + size)
3042 return 1;
3043 }
3044
3045 return 0;
3046 }
3047
3048 /* Function: pc_in_mapped_range
3049 If PC falls into the vma range of SECTION, return true, else false. */
3050
3051 CORE_ADDR
3052 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3053 {
3054 if (section_is_overlay (section))
3055 {
3056 if (obj_section_addr (section) <= pc
3057 && pc < obj_section_endaddr (section))
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Return true if the mapped ranges of sections A and B overlap, false
3065 otherwise. */
3066
3067 static int
3068 sections_overlap (struct obj_section *a, struct obj_section *b)
3069 {
3070 CORE_ADDR a_start = obj_section_addr (a);
3071 CORE_ADDR a_end = obj_section_endaddr (a);
3072 CORE_ADDR b_start = obj_section_addr (b);
3073 CORE_ADDR b_end = obj_section_endaddr (b);
3074
3075 return (a_start < b_end && b_start < a_end);
3076 }
3077
3078 /* Function: overlay_unmapped_address (PC, SECTION)
3079 Returns the address corresponding to PC in the unmapped (load) range.
3080 May be the same as PC. */
3081
3082 CORE_ADDR
3083 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3084 {
3085 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3086 {
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 return (pc + bfd_section_lma (bfd_section)
3090 - bfd_section_vma (bfd_section));
3091 }
3092
3093 return pc;
3094 }
3095
3096 /* Function: overlay_mapped_address (PC, SECTION)
3097 Returns the address corresponding to PC in the mapped (runtime) range.
3098 May be the same as PC. */
3099
3100 CORE_ADDR
3101 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3102 {
3103 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3104 {
3105 asection *bfd_section = section->the_bfd_section;
3106
3107 return (pc + bfd_section_vma (bfd_section)
3108 - bfd_section_lma (bfd_section));
3109 }
3110
3111 return pc;
3112 }
3113
3114 /* Function: symbol_overlayed_address
3115 Return one of two addresses (relative to the VMA or to the LMA),
3116 depending on whether the section is mapped or not. */
3117
3118 CORE_ADDR
3119 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3120 {
3121 if (overlay_debugging)
3122 {
3123 /* If the symbol has no section, just return its regular address. */
3124 if (section == 0)
3125 return address;
3126 /* If the symbol's section is not an overlay, just return its
3127 address. */
3128 if (!section_is_overlay (section))
3129 return address;
3130 /* If the symbol's section is mapped, just return its address. */
3131 if (section_is_mapped (section))
3132 return address;
3133 /*
3134 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3135 * then return its LOADED address rather than its vma address!!
3136 */
3137 return overlay_unmapped_address (address, section);
3138 }
3139 return address;
3140 }
3141
3142 /* Function: find_pc_overlay (PC)
3143 Return the best-match overlay section for PC:
3144 If PC matches a mapped overlay section's VMA, return that section.
3145 Else if PC matches an unmapped section's VMA, return that section.
3146 Else if PC matches an unmapped section's LMA, return that section. */
3147
3148 struct obj_section *
3149 find_pc_overlay (CORE_ADDR pc)
3150 {
3151 struct obj_section *osect, *best_match = NULL;
3152
3153 if (overlay_debugging)
3154 {
3155 for (objfile *objfile : current_program_space->objfiles ())
3156 ALL_OBJFILE_OSECTIONS (objfile, osect)
3157 if (section_is_overlay (osect))
3158 {
3159 if (pc_in_mapped_range (pc, osect))
3160 {
3161 if (section_is_mapped (osect))
3162 return osect;
3163 else
3164 best_match = osect;
3165 }
3166 else if (pc_in_unmapped_range (pc, osect))
3167 best_match = osect;
3168 }
3169 }
3170 return best_match;
3171 }
3172
3173 /* Function: find_pc_mapped_section (PC)
3174 If PC falls into the VMA address range of an overlay section that is
3175 currently marked as MAPPED, return that section. Else return NULL. */
3176
3177 struct obj_section *
3178 find_pc_mapped_section (CORE_ADDR pc)
3179 {
3180 struct obj_section *osect;
3181
3182 if (overlay_debugging)
3183 {
3184 for (objfile *objfile : current_program_space->objfiles ())
3185 ALL_OBJFILE_OSECTIONS (objfile, osect)
3186 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3187 return osect;
3188 }
3189
3190 return NULL;
3191 }
3192
3193 /* Function: list_overlays_command
3194 Print a list of mapped sections and their PC ranges. */
3195
3196 static void
3197 list_overlays_command (const char *args, int from_tty)
3198 {
3199 int nmapped = 0;
3200 struct obj_section *osect;
3201
3202 if (overlay_debugging)
3203 {
3204 for (objfile *objfile : current_program_space->objfiles ())
3205 ALL_OBJFILE_OSECTIONS (objfile, osect)
3206 if (section_is_mapped (osect))
3207 {
3208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3209 const char *name;
3210 bfd_vma lma, vma;
3211 int size;
3212
3213 vma = bfd_section_vma (osect->the_bfd_section);
3214 lma = bfd_section_lma (osect->the_bfd_section);
3215 size = bfd_section_size (osect->the_bfd_section);
3216 name = bfd_section_name (osect->the_bfd_section);
3217
3218 printf_filtered ("Section %s, loaded at ", name);
3219 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3220 puts_filtered (" - ");
3221 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3222 printf_filtered (", mapped at ");
3223 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3224 puts_filtered (" - ");
3225 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3226 puts_filtered ("\n");
3227
3228 nmapped++;
3229 }
3230 }
3231 if (nmapped == 0)
3232 printf_filtered (_("No sections are mapped.\n"));
3233 }
3234
3235 /* Function: map_overlay_command
3236 Mark the named section as mapped (ie. residing at its VMA address). */
3237
3238 static void
3239 map_overlay_command (const char *args, int from_tty)
3240 {
3241 struct obj_section *sec, *sec2;
3242
3243 if (!overlay_debugging)
3244 error (_("Overlay debugging not enabled. Use "
3245 "either the 'overlay auto' or\n"
3246 "the 'overlay manual' command."));
3247
3248 if (args == 0 || *args == 0)
3249 error (_("Argument required: name of an overlay section"));
3250
3251 /* First, find a section matching the user supplied argument. */
3252 for (objfile *obj_file : current_program_space->objfiles ())
3253 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3254 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3255 {
3256 /* Now, check to see if the section is an overlay. */
3257 if (!section_is_overlay (sec))
3258 continue; /* not an overlay section */
3259
3260 /* Mark the overlay as "mapped". */
3261 sec->ovly_mapped = 1;
3262
3263 /* Next, make a pass and unmap any sections that are
3264 overlapped by this new section: */
3265 for (objfile *objfile2 : current_program_space->objfiles ())
3266 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3267 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3268 sec2))
3269 {
3270 if (info_verbose)
3271 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3272 bfd_section_name (sec2->the_bfd_section));
3273 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3274 }
3275 return;
3276 }
3277 error (_("No overlay section called %s"), args);
3278 }
3279
3280 /* Function: unmap_overlay_command
3281 Mark the overlay section as unmapped
3282 (ie. resident in its LMA address range, rather than the VMA range). */
3283
3284 static void
3285 unmap_overlay_command (const char *args, int from_tty)
3286 {
3287 struct obj_section *sec = NULL;
3288
3289 if (!overlay_debugging)
3290 error (_("Overlay debugging not enabled. "
3291 "Use either the 'overlay auto' or\n"
3292 "the 'overlay manual' command."));
3293
3294 if (args == 0 || *args == 0)
3295 error (_("Argument required: name of an overlay section"));
3296
3297 /* First, find a section matching the user supplied argument. */
3298 for (objfile *objfile : current_program_space->objfiles ())
3299 ALL_OBJFILE_OSECTIONS (objfile, sec)
3300 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3301 {
3302 if (!sec->ovly_mapped)
3303 error (_("Section %s is not mapped"), args);
3304 sec->ovly_mapped = 0;
3305 return;
3306 }
3307 error (_("No overlay section called %s"), args);
3308 }
3309
3310 /* Function: overlay_auto_command
3311 A utility command to turn on overlay debugging.
3312 Possibly this should be done via a set/show command. */
3313
3314 static void
3315 overlay_auto_command (const char *args, int from_tty)
3316 {
3317 overlay_debugging = ovly_auto;
3318 enable_overlay_breakpoints ();
3319 if (info_verbose)
3320 printf_unfiltered (_("Automatic overlay debugging enabled."));
3321 }
3322
3323 /* Function: overlay_manual_command
3324 A utility command to turn on overlay debugging.
3325 Possibly this should be done via a set/show command. */
3326
3327 static void
3328 overlay_manual_command (const char *args, int from_tty)
3329 {
3330 overlay_debugging = ovly_on;
3331 disable_overlay_breakpoints ();
3332 if (info_verbose)
3333 printf_unfiltered (_("Overlay debugging enabled."));
3334 }
3335
3336 /* Function: overlay_off_command
3337 A utility command to turn on overlay debugging.
3338 Possibly this should be done via a set/show command. */
3339
3340 static void
3341 overlay_off_command (const char *args, int from_tty)
3342 {
3343 overlay_debugging = ovly_off;
3344 disable_overlay_breakpoints ();
3345 if (info_verbose)
3346 printf_unfiltered (_("Overlay debugging disabled."));
3347 }
3348
3349 static void
3350 overlay_load_command (const char *args, int from_tty)
3351 {
3352 struct gdbarch *gdbarch = get_current_arch ();
3353
3354 if (gdbarch_overlay_update_p (gdbarch))
3355 gdbarch_overlay_update (gdbarch, NULL);
3356 else
3357 error (_("This target does not know how to read its overlay state."));
3358 }
3359
3360 /* Function: overlay_command
3361 A place-holder for a mis-typed command. */
3362
3363 /* Command list chain containing all defined "overlay" subcommands. */
3364 static struct cmd_list_element *overlaylist;
3365
3366 static void
3367 overlay_command (const char *args, int from_tty)
3368 {
3369 printf_unfiltered
3370 ("\"overlay\" must be followed by the name of an overlay command.\n");
3371 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3372 }
3373
3374 /* Target Overlays for the "Simplest" overlay manager:
3375
3376 This is GDB's default target overlay layer. It works with the
3377 minimal overlay manager supplied as an example by Cygnus. The
3378 entry point is via a function pointer "gdbarch_overlay_update",
3379 so targets that use a different runtime overlay manager can
3380 substitute their own overlay_update function and take over the
3381 function pointer.
3382
3383 The overlay_update function pokes around in the target's data structures
3384 to see what overlays are mapped, and updates GDB's overlay mapping with
3385 this information.
3386
3387 In this simple implementation, the target data structures are as follows:
3388 unsigned _novlys; /# number of overlay sections #/
3389 unsigned _ovly_table[_novlys][4] = {
3390 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3391 {..., ..., ..., ...},
3392 }
3393 unsigned _novly_regions; /# number of overlay regions #/
3394 unsigned _ovly_region_table[_novly_regions][3] = {
3395 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3396 {..., ..., ...},
3397 }
3398 These functions will attempt to update GDB's mappedness state in the
3399 symbol section table, based on the target's mappedness state.
3400
3401 To do this, we keep a cached copy of the target's _ovly_table, and
3402 attempt to detect when the cached copy is invalidated. The main
3403 entry point is "simple_overlay_update(SECT), which looks up SECT in
3404 the cached table and re-reads only the entry for that section from
3405 the target (whenever possible). */
3406
3407 /* Cached, dynamically allocated copies of the target data structures: */
3408 static unsigned (*cache_ovly_table)[4] = 0;
3409 static unsigned cache_novlys = 0;
3410 static CORE_ADDR cache_ovly_table_base = 0;
3411 enum ovly_index
3412 {
3413 VMA, OSIZE, LMA, MAPPED
3414 };
3415
3416 /* Throw away the cached copy of _ovly_table. */
3417
3418 static void
3419 simple_free_overlay_table (void)
3420 {
3421 if (cache_ovly_table)
3422 xfree (cache_ovly_table);
3423 cache_novlys = 0;
3424 cache_ovly_table = NULL;
3425 cache_ovly_table_base = 0;
3426 }
3427
3428 /* Read an array of ints of size SIZE from the target into a local buffer.
3429 Convert to host order. int LEN is number of ints. */
3430
3431 static void
3432 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3433 int len, int size, enum bfd_endian byte_order)
3434 {
3435 /* FIXME (alloca): Not safe if array is very large. */
3436 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3437 int i;
3438
3439 read_memory (memaddr, buf, len * size);
3440 for (i = 0; i < len; i++)
3441 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3442 }
3443
3444 /* Find and grab a copy of the target _ovly_table
3445 (and _novlys, which is needed for the table's size). */
3446
3447 static int
3448 simple_read_overlay_table (void)
3449 {
3450 struct bound_minimal_symbol novlys_msym;
3451 struct bound_minimal_symbol ovly_table_msym;
3452 struct gdbarch *gdbarch;
3453 int word_size;
3454 enum bfd_endian byte_order;
3455
3456 simple_free_overlay_table ();
3457 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3458 if (! novlys_msym.minsym)
3459 {
3460 error (_("Error reading inferior's overlay table: "
3461 "couldn't find `_novlys' variable\n"
3462 "in inferior. Use `overlay manual' mode."));
3463 return 0;
3464 }
3465
3466 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3467 if (! ovly_table_msym.minsym)
3468 {
3469 error (_("Error reading inferior's overlay table: couldn't find "
3470 "`_ovly_table' array\n"
3471 "in inferior. Use `overlay manual' mode."));
3472 return 0;
3473 }
3474
3475 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3476 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3477 byte_order = gdbarch_byte_order (gdbarch);
3478
3479 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3480 4, byte_order);
3481 cache_ovly_table
3482 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3483 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3484 read_target_long_array (cache_ovly_table_base,
3485 (unsigned int *) cache_ovly_table,
3486 cache_novlys * 4, word_size, byte_order);
3487
3488 return 1; /* SUCCESS */
3489 }
3490
3491 /* Function: simple_overlay_update_1
3492 A helper function for simple_overlay_update. Assuming a cached copy
3493 of _ovly_table exists, look through it to find an entry whose vma,
3494 lma and size match those of OSECT. Re-read the entry and make sure
3495 it still matches OSECT (else the table may no longer be valid).
3496 Set OSECT's mapped state to match the entry. Return: 1 for
3497 success, 0 for failure. */
3498
3499 static int
3500 simple_overlay_update_1 (struct obj_section *osect)
3501 {
3502 int i;
3503 asection *bsect = osect->the_bfd_section;
3504 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3505 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3507
3508 for (i = 0; i < cache_novlys; i++)
3509 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3510 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3511 {
3512 read_target_long_array (cache_ovly_table_base + i * word_size,
3513 (unsigned int *) cache_ovly_table[i],
3514 4, word_size, byte_order);
3515 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3516 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3517 {
3518 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3519 return 1;
3520 }
3521 else /* Warning! Warning! Target's ovly table has changed! */
3522 return 0;
3523 }
3524 return 0;
3525 }
3526
3527 /* Function: simple_overlay_update
3528 If OSECT is NULL, then update all sections' mapped state
3529 (after re-reading the entire target _ovly_table).
3530 If OSECT is non-NULL, then try to find a matching entry in the
3531 cached ovly_table and update only OSECT's mapped state.
3532 If a cached entry can't be found or the cache isn't valid, then
3533 re-read the entire cache, and go ahead and update all sections. */
3534
3535 void
3536 simple_overlay_update (struct obj_section *osect)
3537 {
3538 /* Were we given an osect to look up? NULL means do all of them. */
3539 if (osect)
3540 /* Have we got a cached copy of the target's overlay table? */
3541 if (cache_ovly_table != NULL)
3542 {
3543 /* Does its cached location match what's currently in the
3544 symtab? */
3545 struct bound_minimal_symbol minsym
3546 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3547
3548 if (minsym.minsym == NULL)
3549 error (_("Error reading inferior's overlay table: couldn't "
3550 "find `_ovly_table' array\n"
3551 "in inferior. Use `overlay manual' mode."));
3552
3553 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3554 /* Then go ahead and try to look up this single section in
3555 the cache. */
3556 if (simple_overlay_update_1 (osect))
3557 /* Found it! We're done. */
3558 return;
3559 }
3560
3561 /* Cached table no good: need to read the entire table anew.
3562 Or else we want all the sections, in which case it's actually
3563 more efficient to read the whole table in one block anyway. */
3564
3565 if (! simple_read_overlay_table ())
3566 return;
3567
3568 /* Now may as well update all sections, even if only one was requested. */
3569 for (objfile *objfile : current_program_space->objfiles ())
3570 ALL_OBJFILE_OSECTIONS (objfile, osect)
3571 if (section_is_overlay (osect))
3572 {
3573 int i;
3574 asection *bsect = osect->the_bfd_section;
3575
3576 for (i = 0; i < cache_novlys; i++)
3577 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3578 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3579 { /* obj_section matches i'th entry in ovly_table. */
3580 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3581 break; /* finished with inner for loop: break out. */
3582 }
3583 }
3584 }
3585
3586 /* Set the output sections and output offsets for section SECTP in
3587 ABFD. The relocation code in BFD will read these offsets, so we
3588 need to be sure they're initialized. We map each section to itself,
3589 with no offset; this means that SECTP->vma will be honored. */
3590
3591 static void
3592 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3593 {
3594 sectp->output_section = sectp;
3595 sectp->output_offset = 0;
3596 }
3597
3598 /* Default implementation for sym_relocate. */
3599
3600 bfd_byte *
3601 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3602 bfd_byte *buf)
3603 {
3604 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3605 DWO file. */
3606 bfd *abfd = sectp->owner;
3607
3608 /* We're only interested in sections with relocation
3609 information. */
3610 if ((sectp->flags & SEC_RELOC) == 0)
3611 return NULL;
3612
3613 /* We will handle section offsets properly elsewhere, so relocate as if
3614 all sections begin at 0. */
3615 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3616
3617 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3618 }
3619
3620 /* Relocate the contents of a debug section SECTP in ABFD. The
3621 contents are stored in BUF if it is non-NULL, or returned in a
3622 malloc'd buffer otherwise.
3623
3624 For some platforms and debug info formats, shared libraries contain
3625 relocations against the debug sections (particularly for DWARF-2;
3626 one affected platform is PowerPC GNU/Linux, although it depends on
3627 the version of the linker in use). Also, ELF object files naturally
3628 have unresolved relocations for their debug sections. We need to apply
3629 the relocations in order to get the locations of symbols correct.
3630 Another example that may require relocation processing, is the
3631 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3632 debug section. */
3633
3634 bfd_byte *
3635 symfile_relocate_debug_section (struct objfile *objfile,
3636 asection *sectp, bfd_byte *buf)
3637 {
3638 gdb_assert (objfile->sf->sym_relocate);
3639
3640 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3641 }
3642
3643 struct symfile_segment_data *
3644 get_symfile_segment_data (bfd *abfd)
3645 {
3646 const struct sym_fns *sf = find_sym_fns (abfd);
3647
3648 if (sf == NULL)
3649 return NULL;
3650
3651 return sf->sym_segments (abfd);
3652 }
3653
3654 void
3655 free_symfile_segment_data (struct symfile_segment_data *data)
3656 {
3657 xfree (data->segment_bases);
3658 xfree (data->segment_sizes);
3659 xfree (data->segment_info);
3660 xfree (data);
3661 }
3662
3663 /* Given:
3664 - DATA, containing segment addresses from the object file ABFD, and
3665 the mapping from ABFD's sections onto the segments that own them,
3666 and
3667 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3668 segment addresses reported by the target,
3669 store the appropriate offsets for each section in OFFSETS.
3670
3671 If there are fewer entries in SEGMENT_BASES than there are segments
3672 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3673
3674 If there are more entries, then ignore the extra. The target may
3675 not be able to distinguish between an empty data segment and a
3676 missing data segment; a missing text segment is less plausible. */
3677
3678 int
3679 symfile_map_offsets_to_segments (bfd *abfd,
3680 const struct symfile_segment_data *data,
3681 section_offsets &offsets,
3682 int num_segment_bases,
3683 const CORE_ADDR *segment_bases)
3684 {
3685 int i;
3686 asection *sect;
3687
3688 /* It doesn't make sense to call this function unless you have some
3689 segment base addresses. */
3690 gdb_assert (num_segment_bases > 0);
3691
3692 /* If we do not have segment mappings for the object file, we
3693 can not relocate it by segments. */
3694 gdb_assert (data != NULL);
3695 gdb_assert (data->num_segments > 0);
3696
3697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3698 {
3699 int which = data->segment_info[i];
3700
3701 gdb_assert (0 <= which && which <= data->num_segments);
3702
3703 /* Don't bother computing offsets for sections that aren't
3704 loaded as part of any segment. */
3705 if (! which)
3706 continue;
3707
3708 /* Use the last SEGMENT_BASES entry as the address of any extra
3709 segments mentioned in DATA->segment_info. */
3710 if (which > num_segment_bases)
3711 which = num_segment_bases;
3712
3713 offsets[i] = segment_bases[which - 1] - data->segment_bases[which - 1];
3714 }
3715
3716 return 1;
3717 }
3718
3719 static void
3720 symfile_find_segment_sections (struct objfile *objfile)
3721 {
3722 bfd *abfd = objfile->obfd;
3723 int i;
3724 asection *sect;
3725 struct symfile_segment_data *data;
3726
3727 data = get_symfile_segment_data (objfile->obfd);
3728 if (data == NULL)
3729 return;
3730
3731 if (data->num_segments != 1 && data->num_segments != 2)
3732 {
3733 free_symfile_segment_data (data);
3734 return;
3735 }
3736
3737 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3738 {
3739 int which = data->segment_info[i];
3740
3741 if (which == 1)
3742 {
3743 if (objfile->sect_index_text == -1)
3744 objfile->sect_index_text = sect->index;
3745
3746 if (objfile->sect_index_rodata == -1)
3747 objfile->sect_index_rodata = sect->index;
3748 }
3749 else if (which == 2)
3750 {
3751 if (objfile->sect_index_data == -1)
3752 objfile->sect_index_data = sect->index;
3753
3754 if (objfile->sect_index_bss == -1)
3755 objfile->sect_index_bss = sect->index;
3756 }
3757 }
3758
3759 free_symfile_segment_data (data);
3760 }
3761
3762 /* Listen for free_objfile events. */
3763
3764 static void
3765 symfile_free_objfile (struct objfile *objfile)
3766 {
3767 /* Remove the target sections owned by this objfile. */
3768 if (objfile != NULL)
3769 remove_target_sections ((void *) objfile);
3770 }
3771
3772 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3773 Expand all symtabs that match the specified criteria.
3774 See quick_symbol_functions.expand_symtabs_matching for details. */
3775
3776 void
3777 expand_symtabs_matching
3778 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3779 const lookup_name_info &lookup_name,
3780 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3781 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3782 enum search_domain kind)
3783 {
3784 for (objfile *objfile : current_program_space->objfiles ())
3785 {
3786 if (objfile->sf)
3787 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3788 lookup_name,
3789 symbol_matcher,
3790 expansion_notify, kind);
3791 }
3792 }
3793
3794 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3795 Map function FUN over every file.
3796 See quick_symbol_functions.map_symbol_filenames for details. */
3797
3798 void
3799 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3800 int need_fullname)
3801 {
3802 for (objfile *objfile : current_program_space->objfiles ())
3803 {
3804 if (objfile->sf)
3805 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3806 need_fullname);
3807 }
3808 }
3809
3810 #if GDB_SELF_TEST
3811
3812 namespace selftests {
3813 namespace filename_language {
3814
3815 static void test_filename_language ()
3816 {
3817 /* This test messes up the filename_language_table global. */
3818 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3819
3820 /* Test deducing an unknown extension. */
3821 language lang = deduce_language_from_filename ("myfile.blah");
3822 SELF_CHECK (lang == language_unknown);
3823
3824 /* Test deducing a known extension. */
3825 lang = deduce_language_from_filename ("myfile.c");
3826 SELF_CHECK (lang == language_c);
3827
3828 /* Test adding a new extension using the internal API. */
3829 add_filename_language (".blah", language_pascal);
3830 lang = deduce_language_from_filename ("myfile.blah");
3831 SELF_CHECK (lang == language_pascal);
3832 }
3833
3834 static void
3835 test_set_ext_lang_command ()
3836 {
3837 /* This test messes up the filename_language_table global. */
3838 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3839
3840 /* Confirm that the .hello extension is not known. */
3841 language lang = deduce_language_from_filename ("cake.hello");
3842 SELF_CHECK (lang == language_unknown);
3843
3844 /* Test adding a new extension using the CLI command. */
3845 auto args_holder = make_unique_xstrdup (".hello rust");
3846 ext_args = args_holder.get ();
3847 set_ext_lang_command (NULL, 1, NULL);
3848
3849 lang = deduce_language_from_filename ("cake.hello");
3850 SELF_CHECK (lang == language_rust);
3851
3852 /* Test overriding an existing extension using the CLI command. */
3853 int size_before = filename_language_table.size ();
3854 args_holder.reset (xstrdup (".hello pascal"));
3855 ext_args = args_holder.get ();
3856 set_ext_lang_command (NULL, 1, NULL);
3857 int size_after = filename_language_table.size ();
3858
3859 lang = deduce_language_from_filename ("cake.hello");
3860 SELF_CHECK (lang == language_pascal);
3861 SELF_CHECK (size_before == size_after);
3862 }
3863
3864 } /* namespace filename_language */
3865 } /* namespace selftests */
3866
3867 #endif /* GDB_SELF_TEST */
3868
3869 void _initialize_symfile ();
3870 void
3871 _initialize_symfile ()
3872 {
3873 struct cmd_list_element *c;
3874
3875 gdb::observers::free_objfile.attach (symfile_free_objfile);
3876
3877 #define READNOW_READNEVER_HELP \
3878 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3879 immediately. This makes the command slower, but may make future operations\n\
3880 faster.\n\
3881 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3882 symbolic debug information."
3883
3884 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3885 Load symbol table from executable file FILE.\n\
3886 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3887 OFF is an optional offset which is added to each section address.\n\
3888 The `file' command can also load symbol tables, as well as setting the file\n\
3889 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3890 set_cmd_completer (c, filename_completer);
3891
3892 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3893 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3894 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3895 [-s SECT-NAME SECT-ADDR]...\n\
3896 ADDR is the starting address of the file's text.\n\
3897 Each '-s' argument provides a section name and address, and\n\
3898 should be specified if the data and bss segments are not contiguous\n\
3899 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3900 OFF is an optional offset which is added to the default load addresses\n\
3901 of all sections for which no other address was specified.\n"
3902 READNOW_READNEVER_HELP),
3903 &cmdlist);
3904 set_cmd_completer (c, filename_completer);
3905
3906 c = add_cmd ("remove-symbol-file", class_files,
3907 remove_symbol_file_command, _("\
3908 Remove a symbol file added via the add-symbol-file command.\n\
3909 Usage: remove-symbol-file FILENAME\n\
3910 remove-symbol-file -a ADDRESS\n\
3911 The file to remove can be identified by its filename or by an address\n\
3912 that lies within the boundaries of this symbol file in memory."),
3913 &cmdlist);
3914
3915 c = add_cmd ("load", class_files, load_command, _("\
3916 Dynamically load FILE into the running program.\n\
3917 FILE symbols are recorded for access from GDB.\n\
3918 Usage: load [FILE] [OFFSET]\n\
3919 An optional load OFFSET may also be given as a literal address.\n\
3920 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3921 on its own."), &cmdlist);
3922 set_cmd_completer (c, filename_completer);
3923
3924 add_prefix_cmd ("overlay", class_support, overlay_command,
3925 _("Commands for debugging overlays."), &overlaylist,
3926 "overlay ", 0, &cmdlist);
3927
3928 add_com_alias ("ovly", "overlay", class_alias, 1);
3929 add_com_alias ("ov", "overlay", class_alias, 1);
3930
3931 add_cmd ("map-overlay", class_support, map_overlay_command,
3932 _("Assert that an overlay section is mapped."), &overlaylist);
3933
3934 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3935 _("Assert that an overlay section is unmapped."), &overlaylist);
3936
3937 add_cmd ("list-overlays", class_support, list_overlays_command,
3938 _("List mappings of overlay sections."), &overlaylist);
3939
3940 add_cmd ("manual", class_support, overlay_manual_command,
3941 _("Enable overlay debugging."), &overlaylist);
3942 add_cmd ("off", class_support, overlay_off_command,
3943 _("Disable overlay debugging."), &overlaylist);
3944 add_cmd ("auto", class_support, overlay_auto_command,
3945 _("Enable automatic overlay debugging."), &overlaylist);
3946 add_cmd ("load-target", class_support, overlay_load_command,
3947 _("Read the overlay mapping state from the target."), &overlaylist);
3948
3949 /* Filename extension to source language lookup table: */
3950 add_setshow_string_noescape_cmd ("extension-language", class_files,
3951 &ext_args, _("\
3952 Set mapping between filename extension and source language."), _("\
3953 Show mapping between filename extension and source language."), _("\
3954 Usage: set extension-language .foo bar"),
3955 set_ext_lang_command,
3956 show_ext_args,
3957 &setlist, &showlist);
3958
3959 add_info ("extensions", info_ext_lang_command,
3960 _("All filename extensions associated with a source language."));
3961
3962 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3963 &debug_file_directory, _("\
3964 Set the directories where separate debug symbols are searched for."), _("\
3965 Show the directories where separate debug symbols are searched for."), _("\
3966 Separate debug symbols are first searched for in the same\n\
3967 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3968 and lastly at the path of the directory of the binary with\n\
3969 each global debug-file-directory component prepended."),
3970 NULL,
3971 show_debug_file_directory,
3972 &setlist, &showlist);
3973
3974 add_setshow_enum_cmd ("symbol-loading", no_class,
3975 print_symbol_loading_enums, &print_symbol_loading,
3976 _("\
3977 Set printing of symbol loading messages."), _("\
3978 Show printing of symbol loading messages."), _("\
3979 off == turn all messages off\n\
3980 brief == print messages for the executable,\n\
3981 and brief messages for shared libraries\n\
3982 full == print messages for the executable,\n\
3983 and messages for each shared library."),
3984 NULL,
3985 NULL,
3986 &setprintlist, &showprintlist);
3987
3988 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3989 &separate_debug_file_debug, _("\
3990 Set printing of separate debug info file search debug."), _("\
3991 Show printing of separate debug info file search debug."), _("\
3992 When on, GDB prints the searched locations while looking for separate debug \
3993 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3994
3995 #if GDB_SELF_TEST
3996 selftests::register_test
3997 ("filename_language", selftests::filename_language::test_filename_language);
3998 selftests::register_test
3999 ("set_ext_lang_command",
4000 selftests::filename_language::test_set_ext_lang_command);
4001 #endif
4002 }
This page took 0.146516 seconds and 4 git commands to generate.