PR 4713
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56
57 #include <sys/types.h>
58 #include <fcntl.h>
59 #include "gdb_string.h"
60 #include "gdb_stat.h"
61 #include <ctype.h>
62 #include <time.h>
63 #include <sys/time.h>
64
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static struct sym_fns *find_sym_fns (bfd *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 static void symfile_find_segment_sections (struct objfile *objfile);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167 static void
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174 }
175
176
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
186
187 int auto_solib_add = 1;
188
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197 int auto_solib_limit;
198 \f
199
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
202
203 static int
204 compare_psymbols (const void *s1p, const void *s2p)
205 {
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
211 }
212
213 void
214 sort_pst_symbols (struct partial_symtab *pst)
215 {
216 /* Sort the global list; don't sort the static list */
217
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
220 compare_psymbols);
221 }
222
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228 char *
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
230 {
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
236 const char *p1 = ptr;
237 char *p2 = p;
238 const char *end = ptr + size;
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244 }
245
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249 char *
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
252 {
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259 }
260
261 /* True if we are nested inside psymtab_to_symtab. */
262
263 int currently_reading_symtab = 0;
264
265 static void
266 decrement_reading_symtab (void *dummy)
267 {
268 currently_reading_symtab--;
269 }
270
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276 struct symtab *
277 psymtab_to_symtab (struct partial_symtab *pst)
278 {
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
285 {
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293 }
294
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304 void
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
306 {
307 asection **lowest = (asection **) obj;
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319 }
320
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
325 {
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336 }
337
338
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
343 {
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360 }
361
362
363
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370 {
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
375 sap = alloc_section_addr_info (end - start);
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
382 {
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392 }
393
394
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397 extern void
398 free_section_addr_info (struct section_addr_info *sap)
399 {
400 int idx;
401
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
405 xfree (sap);
406 }
407
408
409 /* Initialize OBJFILE's sect_index_* members. */
410 static void
411 init_objfile_sect_indices (struct objfile *objfile)
412 {
413 asection *sect;
414 int i;
415
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
417 if (sect)
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
421 if (sect)
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
425 if (sect)
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
429 if (sect)
430 objfile->sect_index_rodata = sect->index;
431
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. First, check for a file with the standard
436 one or two segments. */
437
438 symfile_find_segment_sections (objfile);
439
440 /* Except when explicitly adding symbol files at some address,
441 section_offsets contains nothing but zeros, so it doesn't matter
442 which slot in section_offsets the individual sect_index_* members
443 index into. So if they are all zero, it is safe to just point
444 all the currently uninitialized indices to the first slot. But
445 beware: if this is the main executable, it may be relocated
446 later, e.g. by the remote qOffsets packet, and then this will
447 be wrong! That's why we try segments first. */
448
449 for (i = 0; i < objfile->num_sections; i++)
450 {
451 if (ANOFFSET (objfile->section_offsets, i) != 0)
452 {
453 break;
454 }
455 }
456 if (i == objfile->num_sections)
457 {
458 if (objfile->sect_index_text == -1)
459 objfile->sect_index_text = 0;
460 if (objfile->sect_index_data == -1)
461 objfile->sect_index_data = 0;
462 if (objfile->sect_index_bss == -1)
463 objfile->sect_index_bss = 0;
464 if (objfile->sect_index_rodata == -1)
465 objfile->sect_index_rodata = 0;
466 }
467 }
468
469 /* The arguments to place_section. */
470
471 struct place_section_arg
472 {
473 struct section_offsets *offsets;
474 CORE_ADDR lowest;
475 };
476
477 /* Find a unique offset to use for loadable section SECT if
478 the user did not provide an offset. */
479
480 void
481 place_section (bfd *abfd, asection *sect, void *obj)
482 {
483 struct place_section_arg *arg = obj;
484 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
485 int done;
486 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
487
488 /* We are only interested in allocated sections. */
489 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
490 return;
491
492 /* If the user specified an offset, honor it. */
493 if (offsets[sect->index] != 0)
494 return;
495
496 /* Otherwise, let's try to find a place for the section. */
497 start_addr = (arg->lowest + align - 1) & -align;
498
499 do {
500 asection *cur_sec;
501
502 done = 1;
503
504 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
505 {
506 int indx = cur_sec->index;
507 CORE_ADDR cur_offset;
508
509 /* We don't need to compare against ourself. */
510 if (cur_sec == sect)
511 continue;
512
513 /* We can only conflict with allocated sections. */
514 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
515 continue;
516
517 /* If the section offset is 0, either the section has not been placed
518 yet, or it was the lowest section placed (in which case LOWEST
519 will be past its end). */
520 if (offsets[indx] == 0)
521 continue;
522
523 /* If this section would overlap us, then we must move up. */
524 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
525 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
526 {
527 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
528 start_addr = (start_addr + align - 1) & -align;
529 done = 0;
530 break;
531 }
532
533 /* Otherwise, we appear to be OK. So far. */
534 }
535 }
536 while (!done);
537
538 offsets[sect->index] = start_addr;
539 arg->lowest = start_addr + bfd_get_section_size (sect);
540
541 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
542 }
543
544 /* Parse the user's idea of an offset for dynamic linking, into our idea
545 of how to represent it for fast symbol reading. This is the default
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550 void
551 default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553 {
554 int i;
555
556 objfile->num_sections = bfd_count_sections (objfile->obfd);
557 objfile->section_offsets = (struct section_offsets *)
558 obstack_alloc (&objfile->objfile_obstack,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560 memset (objfile->section_offsets, 0,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
640 offsets[cur_sec->index] = 0;
641 }
642 }
643 }
644
645 /* Remember the bfd indexes for the .text, .data, .bss and
646 .rodata sections. */
647 init_objfile_sect_indices (objfile);
648 }
649
650
651 /* Divide the file into segments, which are individual relocatable units.
652 This is the default version of the sym_fns.sym_segments function for
653 symbol readers that do not have an explicit representation of segments.
654 It assumes that object files do not have segments, and fully linked
655 files have a single segment. */
656
657 struct symfile_segment_data *
658 default_symfile_segments (bfd *abfd)
659 {
660 int num_sections, i;
661 asection *sect;
662 struct symfile_segment_data *data;
663 CORE_ADDR low, high;
664
665 /* Relocatable files contain enough information to position each
666 loadable section independently; they should not be relocated
667 in segments. */
668 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
669 return NULL;
670
671 /* Make sure there is at least one loadable section in the file. */
672 for (sect = abfd->sections; sect != NULL; sect = sect->next)
673 {
674 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
675 continue;
676
677 break;
678 }
679 if (sect == NULL)
680 return NULL;
681
682 low = bfd_get_section_vma (abfd, sect);
683 high = low + bfd_get_section_size (sect);
684
685 data = XZALLOC (struct symfile_segment_data);
686 data->num_segments = 1;
687 data->segment_bases = XCALLOC (1, CORE_ADDR);
688 data->segment_sizes = XCALLOC (1, CORE_ADDR);
689
690 num_sections = bfd_count_sections (abfd);
691 data->segment_info = XCALLOC (num_sections, int);
692
693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
694 {
695 CORE_ADDR vma;
696
697 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
698 continue;
699
700 vma = bfd_get_section_vma (abfd, sect);
701 if (vma < low)
702 low = vma;
703 if (vma + bfd_get_section_size (sect) > high)
704 high = vma + bfd_get_section_size (sect);
705
706 data->segment_info[i] = 1;
707 }
708
709 data->segment_bases[0] = low;
710 data->segment_sizes[0] = high - low;
711
712 return data;
713 }
714
715 /* Process a symbol file, as either the main file or as a dynamically
716 loaded file.
717
718 OBJFILE is where the symbols are to be read from.
719
720 ADDRS is the list of section load addresses. If the user has given
721 an 'add-symbol-file' command, then this is the list of offsets and
722 addresses he or she provided as arguments to the command; or, if
723 we're handling a shared library, these are the actual addresses the
724 sections are loaded at, according to the inferior's dynamic linker
725 (as gleaned by GDB's shared library code). We convert each address
726 into an offset from the section VMA's as it appears in the object
727 file, and then call the file's sym_offsets function to convert this
728 into a format-specific offset table --- a `struct section_offsets'.
729 If ADDRS is non-zero, OFFSETS must be zero.
730
731 OFFSETS is a table of section offsets already in the right
732 format-specific representation. NUM_OFFSETS is the number of
733 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
734 assume this is the proper table the call to sym_offsets described
735 above would produce. Instead of calling sym_offsets, we just dump
736 it right into objfile->section_offsets. (When we're re-reading
737 symbols from an objfile, we don't have the original load address
738 list any more; all we have is the section offset table.) If
739 OFFSETS is non-zero, ADDRS must be zero.
740
741 MAINLINE is nonzero if this is the main symbol file, or zero if
742 it's an extra symbol file such as dynamically loaded code.
743
744 VERBO is nonzero if the caller has printed a verbose message about
745 the symbol reading (and complaints can be more terse about it). */
746
747 void
748 syms_from_objfile (struct objfile *objfile,
749 struct section_addr_info *addrs,
750 struct section_offsets *offsets,
751 int num_offsets,
752 int mainline,
753 int verbo)
754 {
755 struct section_addr_info *local_addr = NULL;
756 struct cleanup *old_chain;
757
758 gdb_assert (! (addrs && offsets));
759
760 init_entry_point_info (objfile);
761 objfile->sf = find_sym_fns (objfile->obfd);
762
763 if (objfile->sf == NULL)
764 return; /* No symbols. */
765
766 /* Make sure that partially constructed symbol tables will be cleaned up
767 if an error occurs during symbol reading. */
768 old_chain = make_cleanup_free_objfile (objfile);
769
770 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
771 list. We now establish the convention that an addr of zero means
772 no load address was specified. */
773 if (! addrs && ! offsets)
774 {
775 local_addr
776 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
777 make_cleanup (xfree, local_addr);
778 addrs = local_addr;
779 }
780
781 /* Now either addrs or offsets is non-zero. */
782
783 if (mainline)
784 {
785 /* We will modify the main symbol table, make sure that all its users
786 will be cleaned up if an error occurs during symbol reading. */
787 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
788
789 /* Since no error yet, throw away the old symbol table. */
790
791 if (symfile_objfile != NULL)
792 {
793 free_objfile (symfile_objfile);
794 symfile_objfile = NULL;
795 }
796
797 /* Currently we keep symbols from the add-symbol-file command.
798 If the user wants to get rid of them, they should do "symbol-file"
799 without arguments first. Not sure this is the best behavior
800 (PR 2207). */
801
802 (*objfile->sf->sym_new_init) (objfile);
803 }
804
805 /* Convert addr into an offset rather than an absolute address.
806 We find the lowest address of a loaded segment in the objfile,
807 and assume that <addr> is where that got loaded.
808
809 We no longer warn if the lowest section is not a text segment (as
810 happens for the PA64 port. */
811 if (!mainline && addrs && addrs->other[0].name)
812 {
813 asection *lower_sect;
814 asection *sect;
815 CORE_ADDR lower_offset;
816 int i;
817
818 /* Find lowest loadable section to be used as starting point for
819 continguous sections. FIXME!! won't work without call to find
820 .text first, but this assumes text is lowest section. */
821 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
822 if (lower_sect == NULL)
823 bfd_map_over_sections (objfile->obfd, find_lowest_section,
824 &lower_sect);
825 if (lower_sect == NULL)
826 warning (_("no loadable sections found in added symbol-file %s"),
827 objfile->name);
828 else
829 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
830 warning (_("Lowest section in %s is %s at %s"),
831 objfile->name,
832 bfd_section_name (objfile->obfd, lower_sect),
833 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
834 if (lower_sect != NULL)
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836 else
837 lower_offset = 0;
838
839 /* Calculate offsets for the loadable sections.
840 FIXME! Sections must be in order of increasing loadable section
841 so that contiguous sections can use the lower-offset!!!
842
843 Adjust offsets if the segments are not contiguous.
844 If the section is contiguous, its offset should be set to
845 the offset of the highest loadable section lower than it
846 (the loadable section directly below it in memory).
847 this_offset = lower_offset = lower_addr - lower_orig_addr */
848
849 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
850 {
851 if (addrs->other[i].addr != 0)
852 {
853 sect = bfd_get_section_by_name (objfile->obfd,
854 addrs->other[i].name);
855 if (sect)
856 {
857 addrs->other[i].addr
858 -= bfd_section_vma (objfile->obfd, sect);
859 lower_offset = addrs->other[i].addr;
860 /* This is the index used by BFD. */
861 addrs->other[i].sectindex = sect->index ;
862 }
863 else
864 {
865 warning (_("section %s not found in %s"),
866 addrs->other[i].name,
867 objfile->name);
868 addrs->other[i].addr = 0;
869 }
870 }
871 else
872 addrs->other[i].addr = lower_offset;
873 }
874 }
875
876 /* Initialize symbol reading routines for this objfile, allow complaints to
877 appear for this new file, and record how verbose to be, then do the
878 initial symbol reading for this file. */
879
880 (*objfile->sf->sym_init) (objfile);
881 clear_complaints (&symfile_complaints, 1, verbo);
882
883 if (addrs)
884 (*objfile->sf->sym_offsets) (objfile, addrs);
885 else
886 {
887 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
888
889 /* Just copy in the offset table directly as given to us. */
890 objfile->num_sections = num_offsets;
891 objfile->section_offsets
892 = ((struct section_offsets *)
893 obstack_alloc (&objfile->objfile_obstack, size));
894 memcpy (objfile->section_offsets, offsets, size);
895
896 init_objfile_sect_indices (objfile);
897 }
898
899 #ifndef DEPRECATED_IBM6000_TARGET
900 /* This is a SVR4/SunOS specific hack, I think. In any event, it
901 screws RS/6000. sym_offsets should be doing this sort of thing,
902 because it knows the mapping between bfd sections and
903 section_offsets. */
904 /* This is a hack. As far as I can tell, section offsets are not
905 target dependent. They are all set to addr with a couple of
906 exceptions. The exceptions are sysvr4 shared libraries, whose
907 offsets are kept in solib structures anyway and rs6000 xcoff
908 which handles shared libraries in a completely unique way.
909
910 Section offsets are built similarly, except that they are built
911 by adding addr in all cases because there is no clear mapping
912 from section_offsets into actual sections. Note that solib.c
913 has a different algorithm for finding section offsets.
914
915 These should probably all be collapsed into some target
916 independent form of shared library support. FIXME. */
917
918 if (addrs)
919 {
920 struct obj_section *s;
921
922 /* Map section offsets in "addr" back to the object's
923 sections by comparing the section names with bfd's
924 section names. Then adjust the section address by
925 the offset. */ /* for gdb/13815 */
926
927 ALL_OBJFILE_OSECTIONS (objfile, s)
928 {
929 CORE_ADDR s_addr = 0;
930 int i;
931
932 for (i = 0;
933 !s_addr && i < addrs->num_sections && addrs->other[i].name;
934 i++)
935 if (strcmp (bfd_section_name (s->objfile->obfd,
936 s->the_bfd_section),
937 addrs->other[i].name) == 0)
938 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
939
940 s->addr -= s->offset;
941 s->addr += s_addr;
942 s->endaddr -= s->offset;
943 s->endaddr += s_addr;
944 s->offset += s_addr;
945 }
946 }
947 #endif /* not DEPRECATED_IBM6000_TARGET */
948
949 (*objfile->sf->sym_read) (objfile, mainline);
950
951 /* Don't allow char * to have a typename (else would get caddr_t).
952 Ditto void *. FIXME: Check whether this is now done by all the
953 symbol readers themselves (many of them now do), and if so remove
954 it from here. */
955
956 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
957 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
958
959 /* Mark the objfile has having had initial symbol read attempted. Note
960 that this does not mean we found any symbols... */
961
962 objfile->flags |= OBJF_SYMS;
963
964 /* Discard cleanups as symbol reading was successful. */
965
966 discard_cleanups (old_chain);
967 }
968
969 /* Perform required actions after either reading in the initial
970 symbols for a new objfile, or mapping in the symbols from a reusable
971 objfile. */
972
973 void
974 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
975 {
976
977 /* If this is the main symbol file we have to clean up all users of the
978 old main symbol file. Otherwise it is sufficient to fixup all the
979 breakpoints that may have been redefined by this symbol file. */
980 if (mainline)
981 {
982 /* OK, make it the "real" symbol file. */
983 symfile_objfile = objfile;
984
985 clear_symtab_users ();
986 }
987 else
988 {
989 breakpoint_re_set ();
990 }
991
992 /* We're done reading the symbol file; finish off complaints. */
993 clear_complaints (&symfile_complaints, 0, verbo);
994 }
995
996 /* Process a symbol file, as either the main file or as a dynamically
997 loaded file.
998
999 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1000 This BFD will be closed on error, and is always consumed by this function.
1001
1002 FROM_TTY says how verbose to be.
1003
1004 MAINLINE specifies whether this is the main symbol file, or whether
1005 it's an extra symbol file such as dynamically loaded code.
1006
1007 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1008 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1009 non-zero.
1010
1011 Upon success, returns a pointer to the objfile that was added.
1012 Upon failure, jumps back to command level (never returns). */
1013 static struct objfile *
1014 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1015 struct section_addr_info *addrs,
1016 struct section_offsets *offsets,
1017 int num_offsets,
1018 int mainline, int flags)
1019 {
1020 struct objfile *objfile;
1021 struct partial_symtab *psymtab;
1022 char *debugfile;
1023 struct section_addr_info *orig_addrs = NULL;
1024 struct cleanup *my_cleanups;
1025 const char *name = bfd_get_filename (abfd);
1026
1027 my_cleanups = make_cleanup_bfd_close (abfd);
1028
1029 /* Give user a chance to burp if we'd be
1030 interactively wiping out any existing symbols. */
1031
1032 if ((have_full_symbols () || have_partial_symbols ())
1033 && mainline
1034 && from_tty
1035 && !query ("Load new symbol table from \"%s\"? ", name))
1036 error (_("Not confirmed."));
1037
1038 objfile = allocate_objfile (abfd, flags);
1039 discard_cleanups (my_cleanups);
1040
1041 if (addrs)
1042 {
1043 orig_addrs = copy_section_addr_info (addrs);
1044 make_cleanup_free_section_addr_info (orig_addrs);
1045 }
1046
1047 /* We either created a new mapped symbol table, mapped an existing
1048 symbol table file which has not had initial symbol reading
1049 performed, or need to read an unmapped symbol table. */
1050 if (from_tty || info_verbose)
1051 {
1052 if (deprecated_pre_add_symbol_hook)
1053 deprecated_pre_add_symbol_hook (name);
1054 else
1055 {
1056 printf_unfiltered (_("Reading symbols from %s..."), name);
1057 wrap_here ("");
1058 gdb_flush (gdb_stdout);
1059 }
1060 }
1061 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1062 mainline, from_tty);
1063
1064 /* We now have at least a partial symbol table. Check to see if the
1065 user requested that all symbols be read on initial access via either
1066 the gdb startup command line or on a per symbol file basis. Expand
1067 all partial symbol tables for this objfile if so. */
1068
1069 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1070 {
1071 if (from_tty || info_verbose)
1072 {
1073 printf_unfiltered (_("expanding to full symbols..."));
1074 wrap_here ("");
1075 gdb_flush (gdb_stdout);
1076 }
1077
1078 for (psymtab = objfile->psymtabs;
1079 psymtab != NULL;
1080 psymtab = psymtab->next)
1081 {
1082 psymtab_to_symtab (psymtab);
1083 }
1084 }
1085
1086 debugfile = find_separate_debug_file (objfile);
1087 if (debugfile)
1088 {
1089 if (addrs != NULL)
1090 {
1091 objfile->separate_debug_objfile
1092 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1093 }
1094 else
1095 {
1096 objfile->separate_debug_objfile
1097 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1098 }
1099 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1100 = objfile;
1101
1102 /* Put the separate debug object before the normal one, this is so that
1103 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1104 put_objfile_before (objfile->separate_debug_objfile, objfile);
1105
1106 xfree (debugfile);
1107 }
1108
1109 if (!have_partial_symbols () && !have_full_symbols ())
1110 {
1111 wrap_here ("");
1112 printf_filtered (_("(no debugging symbols found)"));
1113 if (from_tty || info_verbose)
1114 printf_filtered ("...");
1115 else
1116 printf_filtered ("\n");
1117 wrap_here ("");
1118 }
1119
1120 if (from_tty || info_verbose)
1121 {
1122 if (deprecated_post_add_symbol_hook)
1123 deprecated_post_add_symbol_hook ();
1124 else
1125 {
1126 printf_unfiltered (_("done.\n"));
1127 }
1128 }
1129
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
1135 do_cleanups (my_cleanups);
1136
1137 if (objfile->sf == NULL)
1138 return objfile; /* No symbols. */
1139
1140 new_symfile_objfile (objfile, mainline, from_tty);
1141
1142 observer_notify_new_objfile (objfile);
1143
1144 bfd_cache_close_all ();
1145 return (objfile);
1146 }
1147
1148
1149 /* Process the symbol file ABFD, as either the main file or as a
1150 dynamically loaded file.
1151
1152 See symbol_file_add_with_addrs_or_offsets's comments for
1153 details. */
1154 struct objfile *
1155 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1156 struct section_addr_info *addrs,
1157 int mainline, int flags)
1158 {
1159 return symbol_file_add_with_addrs_or_offsets (abfd,
1160 from_tty, addrs, 0, 0,
1161 mainline, flags);
1162 }
1163
1164
1165 /* Process a symbol file, as either the main file or as a dynamically
1166 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1167 for details. */
1168 struct objfile *
1169 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1170 int mainline, int flags)
1171 {
1172 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1173 addrs, mainline, flags);
1174 }
1175
1176
1177 /* Call symbol_file_add() with default values and update whatever is
1178 affected by the loading of a new main().
1179 Used when the file is supplied in the gdb command line
1180 and by some targets with special loading requirements.
1181 The auxiliary function, symbol_file_add_main_1(), has the flags
1182 argument for the switches that can only be specified in the symbol_file
1183 command itself. */
1184
1185 void
1186 symbol_file_add_main (char *args, int from_tty)
1187 {
1188 symbol_file_add_main_1 (args, from_tty, 0);
1189 }
1190
1191 static void
1192 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1193 {
1194 symbol_file_add (args, from_tty, NULL, 1, flags);
1195
1196 /* Getting new symbols may change our opinion about
1197 what is frameless. */
1198 reinit_frame_cache ();
1199
1200 set_initial_language ();
1201 }
1202
1203 void
1204 symbol_file_clear (int from_tty)
1205 {
1206 if ((have_full_symbols () || have_partial_symbols ())
1207 && from_tty
1208 && (symfile_objfile
1209 ? !query (_("Discard symbol table from `%s'? "),
1210 symfile_objfile->name)
1211 : !query (_("Discard symbol table? "))))
1212 error (_("Not confirmed."));
1213 free_all_objfiles ();
1214
1215 /* solib descriptors may have handles to objfiles. Since their
1216 storage has just been released, we'd better wipe the solib
1217 descriptors as well.
1218 */
1219 #if defined(SOLIB_RESTART)
1220 SOLIB_RESTART ();
1221 #endif
1222
1223 symfile_objfile = NULL;
1224 if (from_tty)
1225 printf_unfiltered (_("No symbol file now.\n"));
1226 }
1227
1228 static char *
1229 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1230 {
1231 asection *sect;
1232 bfd_size_type debuglink_size;
1233 unsigned long crc32;
1234 char *contents;
1235 int crc_offset;
1236 unsigned char *p;
1237
1238 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1239
1240 if (sect == NULL)
1241 return NULL;
1242
1243 debuglink_size = bfd_section_size (objfile->obfd, sect);
1244
1245 contents = xmalloc (debuglink_size);
1246 bfd_get_section_contents (objfile->obfd, sect, contents,
1247 (file_ptr)0, (bfd_size_type)debuglink_size);
1248
1249 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1250 crc_offset = strlen (contents) + 1;
1251 crc_offset = (crc_offset + 3) & ~3;
1252
1253 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1254
1255 *crc32_out = crc32;
1256 return contents;
1257 }
1258
1259 static int
1260 separate_debug_file_exists (const char *name, unsigned long crc)
1261 {
1262 unsigned long file_crc = 0;
1263 int fd;
1264 gdb_byte buffer[8*1024];
1265 int count;
1266
1267 fd = open (name, O_RDONLY | O_BINARY);
1268 if (fd < 0)
1269 return 0;
1270
1271 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1272 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1273
1274 close (fd);
1275
1276 return crc == file_crc;
1277 }
1278
1279 char *debug_file_directory = NULL;
1280 static void
1281 show_debug_file_directory (struct ui_file *file, int from_tty,
1282 struct cmd_list_element *c, const char *value)
1283 {
1284 fprintf_filtered (file, _("\
1285 The directory where separate debug symbols are searched for is \"%s\".\n"),
1286 value);
1287 }
1288
1289 #if ! defined (DEBUG_SUBDIRECTORY)
1290 #define DEBUG_SUBDIRECTORY ".debug"
1291 #endif
1292
1293 static char *
1294 find_separate_debug_file (struct objfile *objfile)
1295 {
1296 asection *sect;
1297 char *basename;
1298 char *dir;
1299 char *debugfile;
1300 char *name_copy;
1301 char *canon_name;
1302 bfd_size_type debuglink_size;
1303 unsigned long crc32;
1304 int i;
1305
1306 basename = get_debug_link_info (objfile, &crc32);
1307
1308 if (basename == NULL)
1309 return NULL;
1310
1311 dir = xstrdup (objfile->name);
1312
1313 /* Strip off the final filename part, leaving the directory name,
1314 followed by a slash. Objfile names should always be absolute and
1315 tilde-expanded, so there should always be a slash in there
1316 somewhere. */
1317 for (i = strlen(dir) - 1; i >= 0; i--)
1318 {
1319 if (IS_DIR_SEPARATOR (dir[i]))
1320 break;
1321 }
1322 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1323 dir[i+1] = '\0';
1324
1325 debugfile = alloca (strlen (debug_file_directory) + 1
1326 + strlen (dir)
1327 + strlen (DEBUG_SUBDIRECTORY)
1328 + strlen ("/")
1329 + strlen (basename)
1330 + 1);
1331
1332 /* First try in the same directory as the original file. */
1333 strcpy (debugfile, dir);
1334 strcat (debugfile, basename);
1335
1336 if (separate_debug_file_exists (debugfile, crc32))
1337 {
1338 xfree (basename);
1339 xfree (dir);
1340 return xstrdup (debugfile);
1341 }
1342
1343 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1344 strcpy (debugfile, dir);
1345 strcat (debugfile, DEBUG_SUBDIRECTORY);
1346 strcat (debugfile, "/");
1347 strcat (debugfile, basename);
1348
1349 if (separate_debug_file_exists (debugfile, crc32))
1350 {
1351 xfree (basename);
1352 xfree (dir);
1353 return xstrdup (debugfile);
1354 }
1355
1356 /* Then try in the global debugfile directory. */
1357 strcpy (debugfile, debug_file_directory);
1358 strcat (debugfile, "/");
1359 strcat (debugfile, dir);
1360 strcat (debugfile, basename);
1361
1362 if (separate_debug_file_exists (debugfile, crc32))
1363 {
1364 xfree (basename);
1365 xfree (dir);
1366 return xstrdup (debugfile);
1367 }
1368
1369 /* If the file is in the sysroot, try using its base path in the
1370 global debugfile directory. */
1371 canon_name = lrealpath (dir);
1372 if (canon_name
1373 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1374 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1375 {
1376 strcpy (debugfile, debug_file_directory);
1377 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1378 strcat (debugfile, "/");
1379 strcat (debugfile, basename);
1380
1381 if (separate_debug_file_exists (debugfile, crc32))
1382 {
1383 xfree (canon_name);
1384 xfree (basename);
1385 xfree (dir);
1386 return xstrdup (debugfile);
1387 }
1388 }
1389
1390 if (canon_name)
1391 xfree (canon_name);
1392
1393 xfree (basename);
1394 xfree (dir);
1395 return NULL;
1396 }
1397
1398
1399 /* This is the symbol-file command. Read the file, analyze its
1400 symbols, and add a struct symtab to a symtab list. The syntax of
1401 the command is rather bizarre:
1402
1403 1. The function buildargv implements various quoting conventions
1404 which are undocumented and have little or nothing in common with
1405 the way things are quoted (or not quoted) elsewhere in GDB.
1406
1407 2. Options are used, which are not generally used in GDB (perhaps
1408 "set mapped on", "set readnow on" would be better)
1409
1410 3. The order of options matters, which is contrary to GNU
1411 conventions (because it is confusing and inconvenient). */
1412
1413 void
1414 symbol_file_command (char *args, int from_tty)
1415 {
1416 dont_repeat ();
1417
1418 if (args == NULL)
1419 {
1420 symbol_file_clear (from_tty);
1421 }
1422 else
1423 {
1424 char **argv = buildargv (args);
1425 int flags = OBJF_USERLOADED;
1426 struct cleanup *cleanups;
1427 char *name = NULL;
1428
1429 if (argv == NULL)
1430 nomem (0);
1431
1432 cleanups = make_cleanup_freeargv (argv);
1433 while (*argv != NULL)
1434 {
1435 if (strcmp (*argv, "-readnow") == 0)
1436 flags |= OBJF_READNOW;
1437 else if (**argv == '-')
1438 error (_("unknown option `%s'"), *argv);
1439 else
1440 {
1441 symbol_file_add_main_1 (*argv, from_tty, flags);
1442 name = *argv;
1443 }
1444
1445 argv++;
1446 }
1447
1448 if (name == NULL)
1449 error (_("no symbol file name was specified"));
1450
1451 do_cleanups (cleanups);
1452 }
1453 }
1454
1455 /* Set the initial language.
1456
1457 FIXME: A better solution would be to record the language in the
1458 psymtab when reading partial symbols, and then use it (if known) to
1459 set the language. This would be a win for formats that encode the
1460 language in an easily discoverable place, such as DWARF. For
1461 stabs, we can jump through hoops looking for specially named
1462 symbols or try to intuit the language from the specific type of
1463 stabs we find, but we can't do that until later when we read in
1464 full symbols. */
1465
1466 static void
1467 set_initial_language (void)
1468 {
1469 struct partial_symtab *pst;
1470 enum language lang = language_unknown;
1471
1472 pst = find_main_psymtab ();
1473 if (pst != NULL)
1474 {
1475 if (pst->filename != NULL)
1476 lang = deduce_language_from_filename (pst->filename);
1477
1478 if (lang == language_unknown)
1479 {
1480 /* Make C the default language */
1481 lang = language_c;
1482 }
1483
1484 set_language (lang);
1485 expected_language = current_language; /* Don't warn the user. */
1486 }
1487 }
1488
1489 /* Open the file specified by NAME and hand it off to BFD for
1490 preliminary analysis. Return a newly initialized bfd *, which
1491 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1492 absolute). In case of trouble, error() is called. */
1493
1494 bfd *
1495 symfile_bfd_open (char *name)
1496 {
1497 bfd *sym_bfd;
1498 int desc;
1499 char *absolute_name;
1500
1501 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1502
1503 /* Look down path for it, allocate 2nd new malloc'd copy. */
1504 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1505 O_RDONLY | O_BINARY, 0, &absolute_name);
1506 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1507 if (desc < 0)
1508 {
1509 char *exename = alloca (strlen (name) + 5);
1510 strcat (strcpy (exename, name), ".exe");
1511 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1512 O_RDONLY | O_BINARY, 0, &absolute_name);
1513 }
1514 #endif
1515 if (desc < 0)
1516 {
1517 make_cleanup (xfree, name);
1518 perror_with_name (name);
1519 }
1520
1521 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1522 bfd. It'll be freed in free_objfile(). */
1523 xfree (name);
1524 name = absolute_name;
1525
1526 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1527 if (!sym_bfd)
1528 {
1529 close (desc);
1530 make_cleanup (xfree, name);
1531 error (_("\"%s\": can't open to read symbols: %s."), name,
1532 bfd_errmsg (bfd_get_error ()));
1533 }
1534 bfd_set_cacheable (sym_bfd, 1);
1535
1536 if (!bfd_check_format (sym_bfd, bfd_object))
1537 {
1538 /* FIXME: should be checking for errors from bfd_close (for one
1539 thing, on error it does not free all the storage associated
1540 with the bfd). */
1541 bfd_close (sym_bfd); /* This also closes desc. */
1542 make_cleanup (xfree, name);
1543 error (_("\"%s\": can't read symbols: %s."), name,
1544 bfd_errmsg (bfd_get_error ()));
1545 }
1546
1547 return sym_bfd;
1548 }
1549
1550 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1551 the section was not found. */
1552
1553 int
1554 get_section_index (struct objfile *objfile, char *section_name)
1555 {
1556 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1557
1558 if (sect)
1559 return sect->index;
1560 else
1561 return -1;
1562 }
1563
1564 /* Link SF into the global symtab_fns list. Called on startup by the
1565 _initialize routine in each object file format reader, to register
1566 information about each format the the reader is prepared to
1567 handle. */
1568
1569 void
1570 add_symtab_fns (struct sym_fns *sf)
1571 {
1572 sf->next = symtab_fns;
1573 symtab_fns = sf;
1574 }
1575
1576 /* Initialize OBJFILE to read symbols from its associated BFD. It
1577 either returns or calls error(). The result is an initialized
1578 struct sym_fns in the objfile structure, that contains cached
1579 information about the symbol file. */
1580
1581 static struct sym_fns *
1582 find_sym_fns (bfd *abfd)
1583 {
1584 struct sym_fns *sf;
1585 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1586
1587 if (our_flavour == bfd_target_srec_flavour
1588 || our_flavour == bfd_target_ihex_flavour
1589 || our_flavour == bfd_target_tekhex_flavour)
1590 return NULL; /* No symbols. */
1591
1592 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1593 if (our_flavour == sf->sym_flavour)
1594 return sf;
1595
1596 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1597 bfd_get_target (abfd));
1598 }
1599 \f
1600
1601 /* This function runs the load command of our current target. */
1602
1603 static void
1604 load_command (char *arg, int from_tty)
1605 {
1606 if (arg == NULL)
1607 {
1608 char *parg;
1609 int count = 0;
1610
1611 parg = arg = get_exec_file (1);
1612
1613 /* Count how many \ " ' tab space there are in the name. */
1614 while ((parg = strpbrk (parg, "\\\"'\t ")))
1615 {
1616 parg++;
1617 count++;
1618 }
1619
1620 if (count)
1621 {
1622 /* We need to quote this string so buildargv can pull it apart. */
1623 char *temp = xmalloc (strlen (arg) + count + 1 );
1624 char *ptemp = temp;
1625 char *prev;
1626
1627 make_cleanup (xfree, temp);
1628
1629 prev = parg = arg;
1630 while ((parg = strpbrk (parg, "\\\"'\t ")))
1631 {
1632 strncpy (ptemp, prev, parg - prev);
1633 ptemp += parg - prev;
1634 prev = parg++;
1635 *ptemp++ = '\\';
1636 }
1637 strcpy (ptemp, prev);
1638
1639 arg = temp;
1640 }
1641 }
1642
1643 /* The user might be reloading because the binary has changed. Take
1644 this opportunity to check. */
1645 reopen_exec_file ();
1646 reread_symbols ();
1647
1648 target_load (arg, from_tty);
1649
1650 /* After re-loading the executable, we don't really know which
1651 overlays are mapped any more. */
1652 overlay_cache_invalid = 1;
1653 }
1654
1655 /* This version of "load" should be usable for any target. Currently
1656 it is just used for remote targets, not inftarg.c or core files,
1657 on the theory that only in that case is it useful.
1658
1659 Avoiding xmodem and the like seems like a win (a) because we don't have
1660 to worry about finding it, and (b) On VMS, fork() is very slow and so
1661 we don't want to run a subprocess. On the other hand, I'm not sure how
1662 performance compares. */
1663
1664 static int validate_download = 0;
1665
1666 /* Callback service function for generic_load (bfd_map_over_sections). */
1667
1668 static void
1669 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1670 {
1671 bfd_size_type *sum = data;
1672
1673 *sum += bfd_get_section_size (asec);
1674 }
1675
1676 /* Opaque data for load_section_callback. */
1677 struct load_section_data {
1678 unsigned long load_offset;
1679 struct load_progress_data *progress_data;
1680 VEC(memory_write_request_s) *requests;
1681 };
1682
1683 /* Opaque data for load_progress. */
1684 struct load_progress_data {
1685 /* Cumulative data. */
1686 unsigned long write_count;
1687 unsigned long data_count;
1688 bfd_size_type total_size;
1689 };
1690
1691 /* Opaque data for load_progress for a single section. */
1692 struct load_progress_section_data {
1693 struct load_progress_data *cumulative;
1694
1695 /* Per-section data. */
1696 const char *section_name;
1697 ULONGEST section_sent;
1698 ULONGEST section_size;
1699 CORE_ADDR lma;
1700 gdb_byte *buffer;
1701 };
1702
1703 /* Target write callback routine for progress reporting. */
1704
1705 static void
1706 load_progress (ULONGEST bytes, void *untyped_arg)
1707 {
1708 struct load_progress_section_data *args = untyped_arg;
1709 struct load_progress_data *totals;
1710
1711 if (args == NULL)
1712 /* Writing padding data. No easy way to get at the cumulative
1713 stats, so just ignore this. */
1714 return;
1715
1716 totals = args->cumulative;
1717
1718 if (bytes == 0 && args->section_sent == 0)
1719 {
1720 /* The write is just starting. Let the user know we've started
1721 this section. */
1722 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1723 args->section_name, paddr_nz (args->section_size),
1724 paddr_nz (args->lma));
1725 return;
1726 }
1727
1728 if (validate_download)
1729 {
1730 /* Broken memories and broken monitors manifest themselves here
1731 when bring new computers to life. This doubles already slow
1732 downloads. */
1733 /* NOTE: cagney/1999-10-18: A more efficient implementation
1734 might add a verify_memory() method to the target vector and
1735 then use that. remote.c could implement that method using
1736 the ``qCRC'' packet. */
1737 gdb_byte *check = xmalloc (bytes);
1738 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1739
1740 if (target_read_memory (args->lma, check, bytes) != 0)
1741 error (_("Download verify read failed at 0x%s"),
1742 paddr (args->lma));
1743 if (memcmp (args->buffer, check, bytes) != 0)
1744 error (_("Download verify compare failed at 0x%s"),
1745 paddr (args->lma));
1746 do_cleanups (verify_cleanups);
1747 }
1748 totals->data_count += bytes;
1749 args->lma += bytes;
1750 args->buffer += bytes;
1751 totals->write_count += 1;
1752 args->section_sent += bytes;
1753 if (quit_flag
1754 || (deprecated_ui_load_progress_hook != NULL
1755 && deprecated_ui_load_progress_hook (args->section_name,
1756 args->section_sent)))
1757 error (_("Canceled the download"));
1758
1759 if (deprecated_show_load_progress != NULL)
1760 deprecated_show_load_progress (args->section_name,
1761 args->section_sent,
1762 args->section_size,
1763 totals->data_count,
1764 totals->total_size);
1765 }
1766
1767 /* Callback service function for generic_load (bfd_map_over_sections). */
1768
1769 static void
1770 load_section_callback (bfd *abfd, asection *asec, void *data)
1771 {
1772 struct memory_write_request *new_request;
1773 struct load_section_data *args = data;
1774 struct load_progress_section_data *section_data;
1775 bfd_size_type size = bfd_get_section_size (asec);
1776 gdb_byte *buffer;
1777 const char *sect_name = bfd_get_section_name (abfd, asec);
1778
1779 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1780 return;
1781
1782 if (size == 0)
1783 return;
1784
1785 new_request = VEC_safe_push (memory_write_request_s,
1786 args->requests, NULL);
1787 memset (new_request, 0, sizeof (struct memory_write_request));
1788 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1789 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1790 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1791 new_request->data = xmalloc (size);
1792 new_request->baton = section_data;
1793
1794 buffer = new_request->data;
1795
1796 section_data->cumulative = args->progress_data;
1797 section_data->section_name = sect_name;
1798 section_data->section_size = size;
1799 section_data->lma = new_request->begin;
1800 section_data->buffer = buffer;
1801
1802 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1803 }
1804
1805 /* Clean up an entire memory request vector, including load
1806 data and progress records. */
1807
1808 static void
1809 clear_memory_write_data (void *arg)
1810 {
1811 VEC(memory_write_request_s) **vec_p = arg;
1812 VEC(memory_write_request_s) *vec = *vec_p;
1813 int i;
1814 struct memory_write_request *mr;
1815
1816 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1817 {
1818 xfree (mr->data);
1819 xfree (mr->baton);
1820 }
1821 VEC_free (memory_write_request_s, vec);
1822 }
1823
1824 void
1825 generic_load (char *args, int from_tty)
1826 {
1827 bfd *loadfile_bfd;
1828 struct timeval start_time, end_time;
1829 char *filename;
1830 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1831 struct load_section_data cbdata;
1832 struct load_progress_data total_progress;
1833
1834 CORE_ADDR entry;
1835 char **argv;
1836
1837 memset (&cbdata, 0, sizeof (cbdata));
1838 memset (&total_progress, 0, sizeof (total_progress));
1839 cbdata.progress_data = &total_progress;
1840
1841 make_cleanup (clear_memory_write_data, &cbdata.requests);
1842
1843 argv = buildargv (args);
1844
1845 if (argv == NULL)
1846 nomem(0);
1847
1848 make_cleanup_freeargv (argv);
1849
1850 filename = tilde_expand (argv[0]);
1851 make_cleanup (xfree, filename);
1852
1853 if (argv[1] != NULL)
1854 {
1855 char *endptr;
1856
1857 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1858
1859 /* If the last word was not a valid number then
1860 treat it as a file name with spaces in. */
1861 if (argv[1] == endptr)
1862 error (_("Invalid download offset:%s."), argv[1]);
1863
1864 if (argv[2] != NULL)
1865 error (_("Too many parameters."));
1866 }
1867
1868 /* Open the file for loading. */
1869 loadfile_bfd = bfd_openr (filename, gnutarget);
1870 if (loadfile_bfd == NULL)
1871 {
1872 perror_with_name (filename);
1873 return;
1874 }
1875
1876 /* FIXME: should be checking for errors from bfd_close (for one thing,
1877 on error it does not free all the storage associated with the
1878 bfd). */
1879 make_cleanup_bfd_close (loadfile_bfd);
1880
1881 if (!bfd_check_format (loadfile_bfd, bfd_object))
1882 {
1883 error (_("\"%s\" is not an object file: %s"), filename,
1884 bfd_errmsg (bfd_get_error ()));
1885 }
1886
1887 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1888 (void *) &total_progress.total_size);
1889
1890 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1891
1892 gettimeofday (&start_time, NULL);
1893
1894 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1895 load_progress) != 0)
1896 error (_("Load failed"));
1897
1898 gettimeofday (&end_time, NULL);
1899
1900 entry = bfd_get_start_address (loadfile_bfd);
1901 ui_out_text (uiout, "Start address ");
1902 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1903 ui_out_text (uiout, ", load size ");
1904 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1905 ui_out_text (uiout, "\n");
1906 /* We were doing this in remote-mips.c, I suspect it is right
1907 for other targets too. */
1908 write_pc (entry);
1909
1910 /* FIXME: are we supposed to call symbol_file_add or not? According
1911 to a comment from remote-mips.c (where a call to symbol_file_add
1912 was commented out), making the call confuses GDB if more than one
1913 file is loaded in. Some targets do (e.g., remote-vx.c) but
1914 others don't (or didn't - perhaps they have all been deleted). */
1915
1916 print_transfer_performance (gdb_stdout, total_progress.data_count,
1917 total_progress.write_count,
1918 &start_time, &end_time);
1919
1920 do_cleanups (old_cleanups);
1921 }
1922
1923 /* Report how fast the transfer went. */
1924
1925 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1926 replaced by print_transfer_performance (with a very different
1927 function signature). */
1928
1929 void
1930 report_transfer_performance (unsigned long data_count, time_t start_time,
1931 time_t end_time)
1932 {
1933 struct timeval start, end;
1934
1935 start.tv_sec = start_time;
1936 start.tv_usec = 0;
1937 end.tv_sec = end_time;
1938 end.tv_usec = 0;
1939
1940 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1941 }
1942
1943 void
1944 print_transfer_performance (struct ui_file *stream,
1945 unsigned long data_count,
1946 unsigned long write_count,
1947 const struct timeval *start_time,
1948 const struct timeval *end_time)
1949 {
1950 unsigned long time_count;
1951
1952 /* Compute the elapsed time in milliseconds, as a tradeoff between
1953 accuracy and overflow. */
1954 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1955 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1956
1957 ui_out_text (uiout, "Transfer rate: ");
1958 if (time_count > 0)
1959 {
1960 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1961 1000 * (data_count * 8) / time_count);
1962 ui_out_text (uiout, " bits/sec");
1963 }
1964 else
1965 {
1966 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1967 ui_out_text (uiout, " bits in <1 sec");
1968 }
1969 if (write_count > 0)
1970 {
1971 ui_out_text (uiout, ", ");
1972 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1973 ui_out_text (uiout, " bytes/write");
1974 }
1975 ui_out_text (uiout, ".\n");
1976 }
1977
1978 /* This function allows the addition of incrementally linked object files.
1979 It does not modify any state in the target, only in the debugger. */
1980 /* Note: ezannoni 2000-04-13 This function/command used to have a
1981 special case syntax for the rombug target (Rombug is the boot
1982 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1983 rombug case, the user doesn't need to supply a text address,
1984 instead a call to target_link() (in target.c) would supply the
1985 value to use. We are now discontinuing this type of ad hoc syntax. */
1986
1987 static void
1988 add_symbol_file_command (char *args, int from_tty)
1989 {
1990 char *filename = NULL;
1991 int flags = OBJF_USERLOADED;
1992 char *arg;
1993 int expecting_option = 0;
1994 int section_index = 0;
1995 int argcnt = 0;
1996 int sec_num = 0;
1997 int i;
1998 int expecting_sec_name = 0;
1999 int expecting_sec_addr = 0;
2000 char **argv;
2001
2002 struct sect_opt
2003 {
2004 char *name;
2005 char *value;
2006 };
2007
2008 struct section_addr_info *section_addrs;
2009 struct sect_opt *sect_opts = NULL;
2010 size_t num_sect_opts = 0;
2011 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2012
2013 num_sect_opts = 16;
2014 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2015 * sizeof (struct sect_opt));
2016
2017 dont_repeat ();
2018
2019 if (args == NULL)
2020 error (_("add-symbol-file takes a file name and an address"));
2021
2022 argv = buildargv (args);
2023 make_cleanup_freeargv (argv);
2024
2025 if (argv == NULL)
2026 nomem (0);
2027
2028 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2029 {
2030 /* Process the argument. */
2031 if (argcnt == 0)
2032 {
2033 /* The first argument is the file name. */
2034 filename = tilde_expand (arg);
2035 make_cleanup (xfree, filename);
2036 }
2037 else
2038 if (argcnt == 1)
2039 {
2040 /* The second argument is always the text address at which
2041 to load the program. */
2042 sect_opts[section_index].name = ".text";
2043 sect_opts[section_index].value = arg;
2044 if (++section_index >= num_sect_opts)
2045 {
2046 num_sect_opts *= 2;
2047 sect_opts = ((struct sect_opt *)
2048 xrealloc (sect_opts,
2049 num_sect_opts
2050 * sizeof (struct sect_opt)));
2051 }
2052 }
2053 else
2054 {
2055 /* It's an option (starting with '-') or it's an argument
2056 to an option */
2057
2058 if (*arg == '-')
2059 {
2060 if (strcmp (arg, "-readnow") == 0)
2061 flags |= OBJF_READNOW;
2062 else if (strcmp (arg, "-s") == 0)
2063 {
2064 expecting_sec_name = 1;
2065 expecting_sec_addr = 1;
2066 }
2067 }
2068 else
2069 {
2070 if (expecting_sec_name)
2071 {
2072 sect_opts[section_index].name = arg;
2073 expecting_sec_name = 0;
2074 }
2075 else
2076 if (expecting_sec_addr)
2077 {
2078 sect_opts[section_index].value = arg;
2079 expecting_sec_addr = 0;
2080 if (++section_index >= num_sect_opts)
2081 {
2082 num_sect_opts *= 2;
2083 sect_opts = ((struct sect_opt *)
2084 xrealloc (sect_opts,
2085 num_sect_opts
2086 * sizeof (struct sect_opt)));
2087 }
2088 }
2089 else
2090 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2091 }
2092 }
2093 }
2094
2095 /* This command takes at least two arguments. The first one is a
2096 filename, and the second is the address where this file has been
2097 loaded. Abort now if this address hasn't been provided by the
2098 user. */
2099 if (section_index < 1)
2100 error (_("The address where %s has been loaded is missing"), filename);
2101
2102 /* Print the prompt for the query below. And save the arguments into
2103 a sect_addr_info structure to be passed around to other
2104 functions. We have to split this up into separate print
2105 statements because hex_string returns a local static
2106 string. */
2107
2108 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2109 section_addrs = alloc_section_addr_info (section_index);
2110 make_cleanup (xfree, section_addrs);
2111 for (i = 0; i < section_index; i++)
2112 {
2113 CORE_ADDR addr;
2114 char *val = sect_opts[i].value;
2115 char *sec = sect_opts[i].name;
2116
2117 addr = parse_and_eval_address (val);
2118
2119 /* Here we store the section offsets in the order they were
2120 entered on the command line. */
2121 section_addrs->other[sec_num].name = sec;
2122 section_addrs->other[sec_num].addr = addr;
2123 printf_unfiltered ("\t%s_addr = %s\n",
2124 sec, hex_string ((unsigned long)addr));
2125 sec_num++;
2126
2127 /* The object's sections are initialized when a
2128 call is made to build_objfile_section_table (objfile).
2129 This happens in reread_symbols.
2130 At this point, we don't know what file type this is,
2131 so we can't determine what section names are valid. */
2132 }
2133
2134 if (from_tty && (!query ("%s", "")))
2135 error (_("Not confirmed."));
2136
2137 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2138
2139 /* Getting new symbols may change our opinion about what is
2140 frameless. */
2141 reinit_frame_cache ();
2142 do_cleanups (my_cleanups);
2143 }
2144 \f
2145 static void
2146 add_shared_symbol_files_command (char *args, int from_tty)
2147 {
2148 #ifdef ADD_SHARED_SYMBOL_FILES
2149 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2150 #else
2151 error (_("This command is not available in this configuration of GDB."));
2152 #endif
2153 }
2154 \f
2155 /* Re-read symbols if a symbol-file has changed. */
2156 void
2157 reread_symbols (void)
2158 {
2159 struct objfile *objfile;
2160 long new_modtime;
2161 int reread_one = 0;
2162 struct stat new_statbuf;
2163 int res;
2164
2165 /* With the addition of shared libraries, this should be modified,
2166 the load time should be saved in the partial symbol tables, since
2167 different tables may come from different source files. FIXME.
2168 This routine should then walk down each partial symbol table
2169 and see if the symbol table that it originates from has been changed */
2170
2171 for (objfile = object_files; objfile; objfile = objfile->next)
2172 {
2173 if (objfile->obfd)
2174 {
2175 #ifdef DEPRECATED_IBM6000_TARGET
2176 /* If this object is from a shared library, then you should
2177 stat on the library name, not member name. */
2178
2179 if (objfile->obfd->my_archive)
2180 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2181 else
2182 #endif
2183 res = stat (objfile->name, &new_statbuf);
2184 if (res != 0)
2185 {
2186 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2187 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2188 objfile->name);
2189 continue;
2190 }
2191 new_modtime = new_statbuf.st_mtime;
2192 if (new_modtime != objfile->mtime)
2193 {
2194 struct cleanup *old_cleanups;
2195 struct section_offsets *offsets;
2196 int num_offsets;
2197 char *obfd_filename;
2198
2199 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2200 objfile->name);
2201
2202 /* There are various functions like symbol_file_add,
2203 symfile_bfd_open, syms_from_objfile, etc., which might
2204 appear to do what we want. But they have various other
2205 effects which we *don't* want. So we just do stuff
2206 ourselves. We don't worry about mapped files (for one thing,
2207 any mapped file will be out of date). */
2208
2209 /* If we get an error, blow away this objfile (not sure if
2210 that is the correct response for things like shared
2211 libraries). */
2212 old_cleanups = make_cleanup_free_objfile (objfile);
2213 /* We need to do this whenever any symbols go away. */
2214 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2215
2216 /* Clean up any state BFD has sitting around. We don't need
2217 to close the descriptor but BFD lacks a way of closing the
2218 BFD without closing the descriptor. */
2219 obfd_filename = bfd_get_filename (objfile->obfd);
2220 if (!bfd_close (objfile->obfd))
2221 error (_("Can't close BFD for %s: %s"), objfile->name,
2222 bfd_errmsg (bfd_get_error ()));
2223 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2224 if (objfile->obfd == NULL)
2225 error (_("Can't open %s to read symbols."), objfile->name);
2226 /* bfd_openr sets cacheable to true, which is what we want. */
2227 if (!bfd_check_format (objfile->obfd, bfd_object))
2228 error (_("Can't read symbols from %s: %s."), objfile->name,
2229 bfd_errmsg (bfd_get_error ()));
2230
2231 /* Save the offsets, we will nuke them with the rest of the
2232 objfile_obstack. */
2233 num_offsets = objfile->num_sections;
2234 offsets = ((struct section_offsets *)
2235 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2236 memcpy (offsets, objfile->section_offsets,
2237 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2238
2239 /* Remove any references to this objfile in the global
2240 value lists. */
2241 preserve_values (objfile);
2242
2243 /* Nuke all the state that we will re-read. Much of the following
2244 code which sets things to NULL really is necessary to tell
2245 other parts of GDB that there is nothing currently there. */
2246
2247 /* FIXME: Do we have to free a whole linked list, or is this
2248 enough? */
2249 if (objfile->global_psymbols.list)
2250 xfree (objfile->global_psymbols.list);
2251 memset (&objfile->global_psymbols, 0,
2252 sizeof (objfile->global_psymbols));
2253 if (objfile->static_psymbols.list)
2254 xfree (objfile->static_psymbols.list);
2255 memset (&objfile->static_psymbols, 0,
2256 sizeof (objfile->static_psymbols));
2257
2258 /* Free the obstacks for non-reusable objfiles */
2259 bcache_xfree (objfile->psymbol_cache);
2260 objfile->psymbol_cache = bcache_xmalloc ();
2261 bcache_xfree (objfile->macro_cache);
2262 objfile->macro_cache = bcache_xmalloc ();
2263 if (objfile->demangled_names_hash != NULL)
2264 {
2265 htab_delete (objfile->demangled_names_hash);
2266 objfile->demangled_names_hash = NULL;
2267 }
2268 obstack_free (&objfile->objfile_obstack, 0);
2269 objfile->sections = NULL;
2270 objfile->symtabs = NULL;
2271 objfile->psymtabs = NULL;
2272 objfile->free_psymtabs = NULL;
2273 objfile->cp_namespace_symtab = NULL;
2274 objfile->msymbols = NULL;
2275 objfile->deprecated_sym_private = NULL;
2276 objfile->minimal_symbol_count = 0;
2277 memset (&objfile->msymbol_hash, 0,
2278 sizeof (objfile->msymbol_hash));
2279 memset (&objfile->msymbol_demangled_hash, 0,
2280 sizeof (objfile->msymbol_demangled_hash));
2281 objfile->fundamental_types = NULL;
2282 clear_objfile_data (objfile);
2283 if (objfile->sf != NULL)
2284 {
2285 (*objfile->sf->sym_finish) (objfile);
2286 }
2287
2288 /* We never make this a mapped file. */
2289 objfile->md = NULL;
2290 objfile->psymbol_cache = bcache_xmalloc ();
2291 objfile->macro_cache = bcache_xmalloc ();
2292 /* obstack_init also initializes the obstack so it is
2293 empty. We could use obstack_specify_allocation but
2294 gdb_obstack.h specifies the alloc/dealloc
2295 functions. */
2296 obstack_init (&objfile->objfile_obstack);
2297 if (build_objfile_section_table (objfile))
2298 {
2299 error (_("Can't find the file sections in `%s': %s"),
2300 objfile->name, bfd_errmsg (bfd_get_error ()));
2301 }
2302 terminate_minimal_symbol_table (objfile);
2303
2304 /* We use the same section offsets as from last time. I'm not
2305 sure whether that is always correct for shared libraries. */
2306 objfile->section_offsets = (struct section_offsets *)
2307 obstack_alloc (&objfile->objfile_obstack,
2308 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2309 memcpy (objfile->section_offsets, offsets,
2310 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2311 objfile->num_sections = num_offsets;
2312
2313 /* What the hell is sym_new_init for, anyway? The concept of
2314 distinguishing between the main file and additional files
2315 in this way seems rather dubious. */
2316 if (objfile == symfile_objfile)
2317 {
2318 (*objfile->sf->sym_new_init) (objfile);
2319 }
2320
2321 (*objfile->sf->sym_init) (objfile);
2322 clear_complaints (&symfile_complaints, 1, 1);
2323 /* The "mainline" parameter is a hideous hack; I think leaving it
2324 zero is OK since dbxread.c also does what it needs to do if
2325 objfile->global_psymbols.size is 0. */
2326 (*objfile->sf->sym_read) (objfile, 0);
2327 if (!have_partial_symbols () && !have_full_symbols ())
2328 {
2329 wrap_here ("");
2330 printf_unfiltered (_("(no debugging symbols found)\n"));
2331 wrap_here ("");
2332 }
2333 objfile->flags |= OBJF_SYMS;
2334
2335 /* We're done reading the symbol file; finish off complaints. */
2336 clear_complaints (&symfile_complaints, 0, 1);
2337
2338 /* Getting new symbols may change our opinion about what is
2339 frameless. */
2340
2341 reinit_frame_cache ();
2342
2343 /* Discard cleanups as symbol reading was successful. */
2344 discard_cleanups (old_cleanups);
2345
2346 /* If the mtime has changed between the time we set new_modtime
2347 and now, we *want* this to be out of date, so don't call stat
2348 again now. */
2349 objfile->mtime = new_modtime;
2350 reread_one = 1;
2351 reread_separate_symbols (objfile);
2352 }
2353 }
2354 }
2355
2356 if (reread_one)
2357 {
2358 clear_symtab_users ();
2359 /* At least one objfile has changed, so we can consider that
2360 the executable we're debugging has changed too. */
2361 observer_notify_executable_changed (NULL);
2362 }
2363
2364 }
2365
2366
2367 /* Handle separate debug info for OBJFILE, which has just been
2368 re-read:
2369 - If we had separate debug info before, but now we don't, get rid
2370 of the separated objfile.
2371 - If we didn't have separated debug info before, but now we do,
2372 read in the new separated debug info file.
2373 - If the debug link points to a different file, toss the old one
2374 and read the new one.
2375 This function does *not* handle the case where objfile is still
2376 using the same separate debug info file, but that file's timestamp
2377 has changed. That case should be handled by the loop in
2378 reread_symbols already. */
2379 static void
2380 reread_separate_symbols (struct objfile *objfile)
2381 {
2382 char *debug_file;
2383 unsigned long crc32;
2384
2385 /* Does the updated objfile's debug info live in a
2386 separate file? */
2387 debug_file = find_separate_debug_file (objfile);
2388
2389 if (objfile->separate_debug_objfile)
2390 {
2391 /* There are two cases where we need to get rid of
2392 the old separated debug info objfile:
2393 - if the new primary objfile doesn't have
2394 separated debug info, or
2395 - if the new primary objfile has separate debug
2396 info, but it's under a different filename.
2397
2398 If the old and new objfiles both have separate
2399 debug info, under the same filename, then we're
2400 okay --- if the separated file's contents have
2401 changed, we will have caught that when we
2402 visited it in this function's outermost
2403 loop. */
2404 if (! debug_file
2405 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2406 free_objfile (objfile->separate_debug_objfile);
2407 }
2408
2409 /* If the new objfile has separate debug info, and we
2410 haven't loaded it already, do so now. */
2411 if (debug_file
2412 && ! objfile->separate_debug_objfile)
2413 {
2414 /* Use the same section offset table as objfile itself.
2415 Preserve the flags from objfile that make sense. */
2416 objfile->separate_debug_objfile
2417 = (symbol_file_add_with_addrs_or_offsets
2418 (symfile_bfd_open (debug_file),
2419 info_verbose, /* from_tty: Don't override the default. */
2420 0, /* No addr table. */
2421 objfile->section_offsets, objfile->num_sections,
2422 0, /* Not mainline. See comments about this above. */
2423 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2424 | OBJF_USERLOADED)));
2425 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2426 = objfile;
2427 }
2428 }
2429
2430
2431 \f
2432
2433
2434 typedef struct
2435 {
2436 char *ext;
2437 enum language lang;
2438 }
2439 filename_language;
2440
2441 static filename_language *filename_language_table;
2442 static int fl_table_size, fl_table_next;
2443
2444 static void
2445 add_filename_language (char *ext, enum language lang)
2446 {
2447 if (fl_table_next >= fl_table_size)
2448 {
2449 fl_table_size += 10;
2450 filename_language_table =
2451 xrealloc (filename_language_table,
2452 fl_table_size * sizeof (*filename_language_table));
2453 }
2454
2455 filename_language_table[fl_table_next].ext = xstrdup (ext);
2456 filename_language_table[fl_table_next].lang = lang;
2457 fl_table_next++;
2458 }
2459
2460 static char *ext_args;
2461 static void
2462 show_ext_args (struct ui_file *file, int from_tty,
2463 struct cmd_list_element *c, const char *value)
2464 {
2465 fprintf_filtered (file, _("\
2466 Mapping between filename extension and source language is \"%s\".\n"),
2467 value);
2468 }
2469
2470 static void
2471 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2472 {
2473 int i;
2474 char *cp = ext_args;
2475 enum language lang;
2476
2477 /* First arg is filename extension, starting with '.' */
2478 if (*cp != '.')
2479 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2480
2481 /* Find end of first arg. */
2482 while (*cp && !isspace (*cp))
2483 cp++;
2484
2485 if (*cp == '\0')
2486 error (_("'%s': two arguments required -- filename extension and language"),
2487 ext_args);
2488
2489 /* Null-terminate first arg */
2490 *cp++ = '\0';
2491
2492 /* Find beginning of second arg, which should be a source language. */
2493 while (*cp && isspace (*cp))
2494 cp++;
2495
2496 if (*cp == '\0')
2497 error (_("'%s': two arguments required -- filename extension and language"),
2498 ext_args);
2499
2500 /* Lookup the language from among those we know. */
2501 lang = language_enum (cp);
2502
2503 /* Now lookup the filename extension: do we already know it? */
2504 for (i = 0; i < fl_table_next; i++)
2505 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2506 break;
2507
2508 if (i >= fl_table_next)
2509 {
2510 /* new file extension */
2511 add_filename_language (ext_args, lang);
2512 }
2513 else
2514 {
2515 /* redefining a previously known filename extension */
2516
2517 /* if (from_tty) */
2518 /* query ("Really make files of type %s '%s'?", */
2519 /* ext_args, language_str (lang)); */
2520
2521 xfree (filename_language_table[i].ext);
2522 filename_language_table[i].ext = xstrdup (ext_args);
2523 filename_language_table[i].lang = lang;
2524 }
2525 }
2526
2527 static void
2528 info_ext_lang_command (char *args, int from_tty)
2529 {
2530 int i;
2531
2532 printf_filtered (_("Filename extensions and the languages they represent:"));
2533 printf_filtered ("\n\n");
2534 for (i = 0; i < fl_table_next; i++)
2535 printf_filtered ("\t%s\t- %s\n",
2536 filename_language_table[i].ext,
2537 language_str (filename_language_table[i].lang));
2538 }
2539
2540 static void
2541 init_filename_language_table (void)
2542 {
2543 if (fl_table_size == 0) /* protect against repetition */
2544 {
2545 fl_table_size = 20;
2546 fl_table_next = 0;
2547 filename_language_table =
2548 xmalloc (fl_table_size * sizeof (*filename_language_table));
2549 add_filename_language (".c", language_c);
2550 add_filename_language (".C", language_cplus);
2551 add_filename_language (".cc", language_cplus);
2552 add_filename_language (".cp", language_cplus);
2553 add_filename_language (".cpp", language_cplus);
2554 add_filename_language (".cxx", language_cplus);
2555 add_filename_language (".c++", language_cplus);
2556 add_filename_language (".java", language_java);
2557 add_filename_language (".class", language_java);
2558 add_filename_language (".m", language_objc);
2559 add_filename_language (".f", language_fortran);
2560 add_filename_language (".F", language_fortran);
2561 add_filename_language (".s", language_asm);
2562 add_filename_language (".S", language_asm);
2563 add_filename_language (".pas", language_pascal);
2564 add_filename_language (".p", language_pascal);
2565 add_filename_language (".pp", language_pascal);
2566 add_filename_language (".adb", language_ada);
2567 add_filename_language (".ads", language_ada);
2568 add_filename_language (".a", language_ada);
2569 add_filename_language (".ada", language_ada);
2570 }
2571 }
2572
2573 enum language
2574 deduce_language_from_filename (char *filename)
2575 {
2576 int i;
2577 char *cp;
2578
2579 if (filename != NULL)
2580 if ((cp = strrchr (filename, '.')) != NULL)
2581 for (i = 0; i < fl_table_next; i++)
2582 if (strcmp (cp, filename_language_table[i].ext) == 0)
2583 return filename_language_table[i].lang;
2584
2585 return language_unknown;
2586 }
2587 \f
2588 /* allocate_symtab:
2589
2590 Allocate and partly initialize a new symbol table. Return a pointer
2591 to it. error() if no space.
2592
2593 Caller must set these fields:
2594 LINETABLE(symtab)
2595 symtab->blockvector
2596 symtab->dirname
2597 symtab->free_code
2598 symtab->free_ptr
2599 possibly free_named_symtabs (symtab->filename);
2600 */
2601
2602 struct symtab *
2603 allocate_symtab (char *filename, struct objfile *objfile)
2604 {
2605 struct symtab *symtab;
2606
2607 symtab = (struct symtab *)
2608 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2609 memset (symtab, 0, sizeof (*symtab));
2610 symtab->filename = obsavestring (filename, strlen (filename),
2611 &objfile->objfile_obstack);
2612 symtab->fullname = NULL;
2613 symtab->language = deduce_language_from_filename (filename);
2614 symtab->debugformat = obsavestring ("unknown", 7,
2615 &objfile->objfile_obstack);
2616
2617 /* Hook it to the objfile it comes from */
2618
2619 symtab->objfile = objfile;
2620 symtab->next = objfile->symtabs;
2621 objfile->symtabs = symtab;
2622
2623 return (symtab);
2624 }
2625
2626 struct partial_symtab *
2627 allocate_psymtab (char *filename, struct objfile *objfile)
2628 {
2629 struct partial_symtab *psymtab;
2630
2631 if (objfile->free_psymtabs)
2632 {
2633 psymtab = objfile->free_psymtabs;
2634 objfile->free_psymtabs = psymtab->next;
2635 }
2636 else
2637 psymtab = (struct partial_symtab *)
2638 obstack_alloc (&objfile->objfile_obstack,
2639 sizeof (struct partial_symtab));
2640
2641 memset (psymtab, 0, sizeof (struct partial_symtab));
2642 psymtab->filename = obsavestring (filename, strlen (filename),
2643 &objfile->objfile_obstack);
2644 psymtab->symtab = NULL;
2645
2646 /* Prepend it to the psymtab list for the objfile it belongs to.
2647 Psymtabs are searched in most recent inserted -> least recent
2648 inserted order. */
2649
2650 psymtab->objfile = objfile;
2651 psymtab->next = objfile->psymtabs;
2652 objfile->psymtabs = psymtab;
2653 #if 0
2654 {
2655 struct partial_symtab **prev_pst;
2656 psymtab->objfile = objfile;
2657 psymtab->next = NULL;
2658 prev_pst = &(objfile->psymtabs);
2659 while ((*prev_pst) != NULL)
2660 prev_pst = &((*prev_pst)->next);
2661 (*prev_pst) = psymtab;
2662 }
2663 #endif
2664
2665 return (psymtab);
2666 }
2667
2668 void
2669 discard_psymtab (struct partial_symtab *pst)
2670 {
2671 struct partial_symtab **prev_pst;
2672
2673 /* From dbxread.c:
2674 Empty psymtabs happen as a result of header files which don't
2675 have any symbols in them. There can be a lot of them. But this
2676 check is wrong, in that a psymtab with N_SLINE entries but
2677 nothing else is not empty, but we don't realize that. Fixing
2678 that without slowing things down might be tricky. */
2679
2680 /* First, snip it out of the psymtab chain */
2681
2682 prev_pst = &(pst->objfile->psymtabs);
2683 while ((*prev_pst) != pst)
2684 prev_pst = &((*prev_pst)->next);
2685 (*prev_pst) = pst->next;
2686
2687 /* Next, put it on a free list for recycling */
2688
2689 pst->next = pst->objfile->free_psymtabs;
2690 pst->objfile->free_psymtabs = pst;
2691 }
2692 \f
2693
2694 /* Reset all data structures in gdb which may contain references to symbol
2695 table data. */
2696
2697 void
2698 clear_symtab_users (void)
2699 {
2700 /* Someday, we should do better than this, by only blowing away
2701 the things that really need to be blown. */
2702
2703 /* Clear the "current" symtab first, because it is no longer valid.
2704 breakpoint_re_set may try to access the current symtab. */
2705 clear_current_source_symtab_and_line ();
2706
2707 clear_displays ();
2708 breakpoint_re_set ();
2709 set_default_breakpoint (0, 0, 0, 0);
2710 clear_pc_function_cache ();
2711 observer_notify_new_objfile (NULL);
2712
2713 /* Clear globals which might have pointed into a removed objfile.
2714 FIXME: It's not clear which of these are supposed to persist
2715 between expressions and which ought to be reset each time. */
2716 expression_context_block = NULL;
2717 innermost_block = NULL;
2718
2719 /* Varobj may refer to old symbols, perform a cleanup. */
2720 varobj_invalidate ();
2721
2722 }
2723
2724 static void
2725 clear_symtab_users_cleanup (void *ignore)
2726 {
2727 clear_symtab_users ();
2728 }
2729
2730 /* clear_symtab_users_once:
2731
2732 This function is run after symbol reading, or from a cleanup.
2733 If an old symbol table was obsoleted, the old symbol table
2734 has been blown away, but the other GDB data structures that may
2735 reference it have not yet been cleared or re-directed. (The old
2736 symtab was zapped, and the cleanup queued, in free_named_symtab()
2737 below.)
2738
2739 This function can be queued N times as a cleanup, or called
2740 directly; it will do all the work the first time, and then will be a
2741 no-op until the next time it is queued. This works by bumping a
2742 counter at queueing time. Much later when the cleanup is run, or at
2743 the end of symbol processing (in case the cleanup is discarded), if
2744 the queued count is greater than the "done-count", we do the work
2745 and set the done-count to the queued count. If the queued count is
2746 less than or equal to the done-count, we just ignore the call. This
2747 is needed because reading a single .o file will often replace many
2748 symtabs (one per .h file, for example), and we don't want to reset
2749 the breakpoints N times in the user's face.
2750
2751 The reason we both queue a cleanup, and call it directly after symbol
2752 reading, is because the cleanup protects us in case of errors, but is
2753 discarded if symbol reading is successful. */
2754
2755 #if 0
2756 /* FIXME: As free_named_symtabs is currently a big noop this function
2757 is no longer needed. */
2758 static void clear_symtab_users_once (void);
2759
2760 static int clear_symtab_users_queued;
2761 static int clear_symtab_users_done;
2762
2763 static void
2764 clear_symtab_users_once (void)
2765 {
2766 /* Enforce once-per-`do_cleanups'-semantics */
2767 if (clear_symtab_users_queued <= clear_symtab_users_done)
2768 return;
2769 clear_symtab_users_done = clear_symtab_users_queued;
2770
2771 clear_symtab_users ();
2772 }
2773 #endif
2774
2775 /* Delete the specified psymtab, and any others that reference it. */
2776
2777 static void
2778 cashier_psymtab (struct partial_symtab *pst)
2779 {
2780 struct partial_symtab *ps, *pprev = NULL;
2781 int i;
2782
2783 /* Find its previous psymtab in the chain */
2784 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2785 {
2786 if (ps == pst)
2787 break;
2788 pprev = ps;
2789 }
2790
2791 if (ps)
2792 {
2793 /* Unhook it from the chain. */
2794 if (ps == pst->objfile->psymtabs)
2795 pst->objfile->psymtabs = ps->next;
2796 else
2797 pprev->next = ps->next;
2798
2799 /* FIXME, we can't conveniently deallocate the entries in the
2800 partial_symbol lists (global_psymbols/static_psymbols) that
2801 this psymtab points to. These just take up space until all
2802 the psymtabs are reclaimed. Ditto the dependencies list and
2803 filename, which are all in the objfile_obstack. */
2804
2805 /* We need to cashier any psymtab that has this one as a dependency... */
2806 again:
2807 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2808 {
2809 for (i = 0; i < ps->number_of_dependencies; i++)
2810 {
2811 if (ps->dependencies[i] == pst)
2812 {
2813 cashier_psymtab (ps);
2814 goto again; /* Must restart, chain has been munged. */
2815 }
2816 }
2817 }
2818 }
2819 }
2820
2821 /* If a symtab or psymtab for filename NAME is found, free it along
2822 with any dependent breakpoints, displays, etc.
2823 Used when loading new versions of object modules with the "add-file"
2824 command. This is only called on the top-level symtab or psymtab's name;
2825 it is not called for subsidiary files such as .h files.
2826
2827 Return value is 1 if we blew away the environment, 0 if not.
2828 FIXME. The return value appears to never be used.
2829
2830 FIXME. I think this is not the best way to do this. We should
2831 work on being gentler to the environment while still cleaning up
2832 all stray pointers into the freed symtab. */
2833
2834 int
2835 free_named_symtabs (char *name)
2836 {
2837 #if 0
2838 /* FIXME: With the new method of each objfile having it's own
2839 psymtab list, this function needs serious rethinking. In particular,
2840 why was it ever necessary to toss psymtabs with specific compilation
2841 unit filenames, as opposed to all psymtabs from a particular symbol
2842 file? -- fnf
2843 Well, the answer is that some systems permit reloading of particular
2844 compilation units. We want to blow away any old info about these
2845 compilation units, regardless of which objfiles they arrived in. --gnu. */
2846
2847 struct symtab *s;
2848 struct symtab *prev;
2849 struct partial_symtab *ps;
2850 struct blockvector *bv;
2851 int blewit = 0;
2852
2853 /* We only wack things if the symbol-reload switch is set. */
2854 if (!symbol_reloading)
2855 return 0;
2856
2857 /* Some symbol formats have trouble providing file names... */
2858 if (name == 0 || *name == '\0')
2859 return 0;
2860
2861 /* Look for a psymtab with the specified name. */
2862
2863 again2:
2864 for (ps = partial_symtab_list; ps; ps = ps->next)
2865 {
2866 if (strcmp (name, ps->filename) == 0)
2867 {
2868 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2869 goto again2; /* Must restart, chain has been munged */
2870 }
2871 }
2872
2873 /* Look for a symtab with the specified name. */
2874
2875 for (s = symtab_list; s; s = s->next)
2876 {
2877 if (strcmp (name, s->filename) == 0)
2878 break;
2879 prev = s;
2880 }
2881
2882 if (s)
2883 {
2884 if (s == symtab_list)
2885 symtab_list = s->next;
2886 else
2887 prev->next = s->next;
2888
2889 /* For now, queue a delete for all breakpoints, displays, etc., whether
2890 or not they depend on the symtab being freed. This should be
2891 changed so that only those data structures affected are deleted. */
2892
2893 /* But don't delete anything if the symtab is empty.
2894 This test is necessary due to a bug in "dbxread.c" that
2895 causes empty symtabs to be created for N_SO symbols that
2896 contain the pathname of the object file. (This problem
2897 has been fixed in GDB 3.9x). */
2898
2899 bv = BLOCKVECTOR (s);
2900 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2901 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2902 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2903 {
2904 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2905 name);
2906 clear_symtab_users_queued++;
2907 make_cleanup (clear_symtab_users_once, 0);
2908 blewit = 1;
2909 }
2910 else
2911 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2912 name);
2913
2914 free_symtab (s);
2915 }
2916 else
2917 {
2918 /* It is still possible that some breakpoints will be affected
2919 even though no symtab was found, since the file might have
2920 been compiled without debugging, and hence not be associated
2921 with a symtab. In order to handle this correctly, we would need
2922 to keep a list of text address ranges for undebuggable files.
2923 For now, we do nothing, since this is a fairly obscure case. */
2924 ;
2925 }
2926
2927 /* FIXME, what about the minimal symbol table? */
2928 return blewit;
2929 #else
2930 return (0);
2931 #endif
2932 }
2933 \f
2934 /* Allocate and partially fill a partial symtab. It will be
2935 completely filled at the end of the symbol list.
2936
2937 FILENAME is the name of the symbol-file we are reading from. */
2938
2939 struct partial_symtab *
2940 start_psymtab_common (struct objfile *objfile,
2941 struct section_offsets *section_offsets, char *filename,
2942 CORE_ADDR textlow, struct partial_symbol **global_syms,
2943 struct partial_symbol **static_syms)
2944 {
2945 struct partial_symtab *psymtab;
2946
2947 psymtab = allocate_psymtab (filename, objfile);
2948 psymtab->section_offsets = section_offsets;
2949 psymtab->textlow = textlow;
2950 psymtab->texthigh = psymtab->textlow; /* default */
2951 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2952 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2953 return (psymtab);
2954 }
2955 \f
2956 /* Add a symbol with a long value to a psymtab.
2957 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2958 Return the partial symbol that has been added. */
2959
2960 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2961 symbol is so that callers can get access to the symbol's demangled
2962 name, which they don't have any cheap way to determine otherwise.
2963 (Currenly, dwarf2read.c is the only file who uses that information,
2964 though it's possible that other readers might in the future.)
2965 Elena wasn't thrilled about that, and I don't blame her, but we
2966 couldn't come up with a better way to get that information. If
2967 it's needed in other situations, we could consider breaking up
2968 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2969 cache. */
2970
2971 const struct partial_symbol *
2972 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2973 enum address_class class,
2974 struct psymbol_allocation_list *list, long val, /* Value as a long */
2975 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2976 enum language language, struct objfile *objfile)
2977 {
2978 struct partial_symbol *psym;
2979 char *buf = alloca (namelength + 1);
2980 /* psymbol is static so that there will be no uninitialized gaps in the
2981 structure which might contain random data, causing cache misses in
2982 bcache. */
2983 static struct partial_symbol psymbol;
2984
2985 /* Create local copy of the partial symbol */
2986 memcpy (buf, name, namelength);
2987 buf[namelength] = '\0';
2988 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2989 if (val != 0)
2990 {
2991 SYMBOL_VALUE (&psymbol) = val;
2992 }
2993 else
2994 {
2995 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2996 }
2997 SYMBOL_SECTION (&psymbol) = 0;
2998 SYMBOL_LANGUAGE (&psymbol) = language;
2999 PSYMBOL_DOMAIN (&psymbol) = domain;
3000 PSYMBOL_CLASS (&psymbol) = class;
3001
3002 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3003
3004 /* Stash the partial symbol away in the cache */
3005 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3006 objfile->psymbol_cache);
3007
3008 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3009 if (list->next >= list->list + list->size)
3010 {
3011 extend_psymbol_list (list, objfile);
3012 }
3013 *list->next++ = psym;
3014 OBJSTAT (objfile, n_psyms++);
3015
3016 return psym;
3017 }
3018
3019 /* Initialize storage for partial symbols. */
3020
3021 void
3022 init_psymbol_list (struct objfile *objfile, int total_symbols)
3023 {
3024 /* Free any previously allocated psymbol lists. */
3025
3026 if (objfile->global_psymbols.list)
3027 {
3028 xfree (objfile->global_psymbols.list);
3029 }
3030 if (objfile->static_psymbols.list)
3031 {
3032 xfree (objfile->static_psymbols.list);
3033 }
3034
3035 /* Current best guess is that approximately a twentieth
3036 of the total symbols (in a debugging file) are global or static
3037 oriented symbols */
3038
3039 objfile->global_psymbols.size = total_symbols / 10;
3040 objfile->static_psymbols.size = total_symbols / 10;
3041
3042 if (objfile->global_psymbols.size > 0)
3043 {
3044 objfile->global_psymbols.next =
3045 objfile->global_psymbols.list = (struct partial_symbol **)
3046 xmalloc ((objfile->global_psymbols.size
3047 * sizeof (struct partial_symbol *)));
3048 }
3049 if (objfile->static_psymbols.size > 0)
3050 {
3051 objfile->static_psymbols.next =
3052 objfile->static_psymbols.list = (struct partial_symbol **)
3053 xmalloc ((objfile->static_psymbols.size
3054 * sizeof (struct partial_symbol *)));
3055 }
3056 }
3057
3058 /* OVERLAYS:
3059 The following code implements an abstraction for debugging overlay sections.
3060
3061 The target model is as follows:
3062 1) The gnu linker will permit multiple sections to be mapped into the
3063 same VMA, each with its own unique LMA (or load address).
3064 2) It is assumed that some runtime mechanism exists for mapping the
3065 sections, one by one, from the load address into the VMA address.
3066 3) This code provides a mechanism for gdb to keep track of which
3067 sections should be considered to be mapped from the VMA to the LMA.
3068 This information is used for symbol lookup, and memory read/write.
3069 For instance, if a section has been mapped then its contents
3070 should be read from the VMA, otherwise from the LMA.
3071
3072 Two levels of debugger support for overlays are available. One is
3073 "manual", in which the debugger relies on the user to tell it which
3074 overlays are currently mapped. This level of support is
3075 implemented entirely in the core debugger, and the information about
3076 whether a section is mapped is kept in the objfile->obj_section table.
3077
3078 The second level of support is "automatic", and is only available if
3079 the target-specific code provides functionality to read the target's
3080 overlay mapping table, and translate its contents for the debugger
3081 (by updating the mapped state information in the obj_section tables).
3082
3083 The interface is as follows:
3084 User commands:
3085 overlay map <name> -- tell gdb to consider this section mapped
3086 overlay unmap <name> -- tell gdb to consider this section unmapped
3087 overlay list -- list the sections that GDB thinks are mapped
3088 overlay read-target -- get the target's state of what's mapped
3089 overlay off/manual/auto -- set overlay debugging state
3090 Functional interface:
3091 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3092 section, return that section.
3093 find_pc_overlay(pc): find any overlay section that contains
3094 the pc, either in its VMA or its LMA
3095 overlay_is_mapped(sect): true if overlay is marked as mapped
3096 section_is_overlay(sect): true if section's VMA != LMA
3097 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3098 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3099 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3100 overlay_mapped_address(...): map an address from section's LMA to VMA
3101 overlay_unmapped_address(...): map an address from section's VMA to LMA
3102 symbol_overlayed_address(...): Return a "current" address for symbol:
3103 either in VMA or LMA depending on whether
3104 the symbol's section is currently mapped
3105 */
3106
3107 /* Overlay debugging state: */
3108
3109 enum overlay_debugging_state overlay_debugging = ovly_off;
3110 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3111
3112 /* Function: section_is_overlay (SECTION)
3113 Returns true if SECTION has VMA not equal to LMA, ie.
3114 SECTION is loaded at an address different from where it will "run". */
3115
3116 int
3117 section_is_overlay (asection *section)
3118 {
3119 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3120
3121 if (overlay_debugging)
3122 if (section && section->lma != 0 &&
3123 section->vma != section->lma)
3124 return 1;
3125
3126 return 0;
3127 }
3128
3129 /* Function: overlay_invalidate_all (void)
3130 Invalidate the mapped state of all overlay sections (mark it as stale). */
3131
3132 static void
3133 overlay_invalidate_all (void)
3134 {
3135 struct objfile *objfile;
3136 struct obj_section *sect;
3137
3138 ALL_OBJSECTIONS (objfile, sect)
3139 if (section_is_overlay (sect->the_bfd_section))
3140 sect->ovly_mapped = -1;
3141 }
3142
3143 /* Function: overlay_is_mapped (SECTION)
3144 Returns true if section is an overlay, and is currently mapped.
3145 Private: public access is thru function section_is_mapped.
3146
3147 Access to the ovly_mapped flag is restricted to this function, so
3148 that we can do automatic update. If the global flag
3149 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3150 overlay_invalidate_all. If the mapped state of the particular
3151 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3152
3153 static int
3154 overlay_is_mapped (struct obj_section *osect)
3155 {
3156 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3157 return 0;
3158
3159 switch (overlay_debugging)
3160 {
3161 default:
3162 case ovly_off:
3163 return 0; /* overlay debugging off */
3164 case ovly_auto: /* overlay debugging automatic */
3165 /* Unles there is a gdbarch_overlay_update function,
3166 there's really nothing useful to do here (can't really go auto) */
3167 if (gdbarch_overlay_update_p (current_gdbarch))
3168 {
3169 if (overlay_cache_invalid)
3170 {
3171 overlay_invalidate_all ();
3172 overlay_cache_invalid = 0;
3173 }
3174 if (osect->ovly_mapped == -1)
3175 gdbarch_overlay_update (current_gdbarch, osect);
3176 }
3177 /* fall thru to manual case */
3178 case ovly_on: /* overlay debugging manual */
3179 return osect->ovly_mapped == 1;
3180 }
3181 }
3182
3183 /* Function: section_is_mapped
3184 Returns true if section is an overlay, and is currently mapped. */
3185
3186 int
3187 section_is_mapped (asection *section)
3188 {
3189 struct objfile *objfile;
3190 struct obj_section *osect;
3191
3192 if (overlay_debugging)
3193 if (section && section_is_overlay (section))
3194 ALL_OBJSECTIONS (objfile, osect)
3195 if (osect->the_bfd_section == section)
3196 return overlay_is_mapped (osect);
3197
3198 return 0;
3199 }
3200
3201 /* Function: pc_in_unmapped_range
3202 If PC falls into the lma range of SECTION, return true, else false. */
3203
3204 CORE_ADDR
3205 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3206 {
3207 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3208
3209 int size;
3210
3211 if (overlay_debugging)
3212 if (section && section_is_overlay (section))
3213 {
3214 size = bfd_get_section_size (section);
3215 if (section->lma <= pc && pc < section->lma + size)
3216 return 1;
3217 }
3218 return 0;
3219 }
3220
3221 /* Function: pc_in_mapped_range
3222 If PC falls into the vma range of SECTION, return true, else false. */
3223
3224 CORE_ADDR
3225 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3226 {
3227 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3228
3229 int size;
3230
3231 if (overlay_debugging)
3232 if (section && section_is_overlay (section))
3233 {
3234 size = bfd_get_section_size (section);
3235 if (section->vma <= pc && pc < section->vma + size)
3236 return 1;
3237 }
3238 return 0;
3239 }
3240
3241
3242 /* Return true if the mapped ranges of sections A and B overlap, false
3243 otherwise. */
3244 static int
3245 sections_overlap (asection *a, asection *b)
3246 {
3247 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3248
3249 CORE_ADDR a_start = a->vma;
3250 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3251 CORE_ADDR b_start = b->vma;
3252 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3253
3254 return (a_start < b_end && b_start < a_end);
3255 }
3256
3257 /* Function: overlay_unmapped_address (PC, SECTION)
3258 Returns the address corresponding to PC in the unmapped (load) range.
3259 May be the same as PC. */
3260
3261 CORE_ADDR
3262 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3263 {
3264 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3265
3266 if (overlay_debugging)
3267 if (section && section_is_overlay (section) &&
3268 pc_in_mapped_range (pc, section))
3269 return pc + section->lma - section->vma;
3270
3271 return pc;
3272 }
3273
3274 /* Function: overlay_mapped_address (PC, SECTION)
3275 Returns the address corresponding to PC in the mapped (runtime) range.
3276 May be the same as PC. */
3277
3278 CORE_ADDR
3279 overlay_mapped_address (CORE_ADDR pc, asection *section)
3280 {
3281 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3282
3283 if (overlay_debugging)
3284 if (section && section_is_overlay (section) &&
3285 pc_in_unmapped_range (pc, section))
3286 return pc + section->vma - section->lma;
3287
3288 return pc;
3289 }
3290
3291
3292 /* Function: symbol_overlayed_address
3293 Return one of two addresses (relative to the VMA or to the LMA),
3294 depending on whether the section is mapped or not. */
3295
3296 CORE_ADDR
3297 symbol_overlayed_address (CORE_ADDR address, asection *section)
3298 {
3299 if (overlay_debugging)
3300 {
3301 /* If the symbol has no section, just return its regular address. */
3302 if (section == 0)
3303 return address;
3304 /* If the symbol's section is not an overlay, just return its address */
3305 if (!section_is_overlay (section))
3306 return address;
3307 /* If the symbol's section is mapped, just return its address */
3308 if (section_is_mapped (section))
3309 return address;
3310 /*
3311 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3312 * then return its LOADED address rather than its vma address!!
3313 */
3314 return overlay_unmapped_address (address, section);
3315 }
3316 return address;
3317 }
3318
3319 /* Function: find_pc_overlay (PC)
3320 Return the best-match overlay section for PC:
3321 If PC matches a mapped overlay section's VMA, return that section.
3322 Else if PC matches an unmapped section's VMA, return that section.
3323 Else if PC matches an unmapped section's LMA, return that section. */
3324
3325 asection *
3326 find_pc_overlay (CORE_ADDR pc)
3327 {
3328 struct objfile *objfile;
3329 struct obj_section *osect, *best_match = NULL;
3330
3331 if (overlay_debugging)
3332 ALL_OBJSECTIONS (objfile, osect)
3333 if (section_is_overlay (osect->the_bfd_section))
3334 {
3335 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3336 {
3337 if (overlay_is_mapped (osect))
3338 return osect->the_bfd_section;
3339 else
3340 best_match = osect;
3341 }
3342 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3343 best_match = osect;
3344 }
3345 return best_match ? best_match->the_bfd_section : NULL;
3346 }
3347
3348 /* Function: find_pc_mapped_section (PC)
3349 If PC falls into the VMA address range of an overlay section that is
3350 currently marked as MAPPED, return that section. Else return NULL. */
3351
3352 asection *
3353 find_pc_mapped_section (CORE_ADDR pc)
3354 {
3355 struct objfile *objfile;
3356 struct obj_section *osect;
3357
3358 if (overlay_debugging)
3359 ALL_OBJSECTIONS (objfile, osect)
3360 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3361 overlay_is_mapped (osect))
3362 return osect->the_bfd_section;
3363
3364 return NULL;
3365 }
3366
3367 /* Function: list_overlays_command
3368 Print a list of mapped sections and their PC ranges */
3369
3370 void
3371 list_overlays_command (char *args, int from_tty)
3372 {
3373 int nmapped = 0;
3374 struct objfile *objfile;
3375 struct obj_section *osect;
3376
3377 if (overlay_debugging)
3378 ALL_OBJSECTIONS (objfile, osect)
3379 if (overlay_is_mapped (osect))
3380 {
3381 const char *name;
3382 bfd_vma lma, vma;
3383 int size;
3384
3385 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3386 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3387 size = bfd_get_section_size (osect->the_bfd_section);
3388 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3389
3390 printf_filtered ("Section %s, loaded at ", name);
3391 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3392 puts_filtered (" - ");
3393 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3394 printf_filtered (", mapped at ");
3395 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3396 puts_filtered (" - ");
3397 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3398 puts_filtered ("\n");
3399
3400 nmapped++;
3401 }
3402 if (nmapped == 0)
3403 printf_filtered (_("No sections are mapped.\n"));
3404 }
3405
3406 /* Function: map_overlay_command
3407 Mark the named section as mapped (ie. residing at its VMA address). */
3408
3409 void
3410 map_overlay_command (char *args, int from_tty)
3411 {
3412 struct objfile *objfile, *objfile2;
3413 struct obj_section *sec, *sec2;
3414 asection *bfdsec;
3415
3416 if (!overlay_debugging)
3417 error (_("\
3418 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3419 the 'overlay manual' command."));
3420
3421 if (args == 0 || *args == 0)
3422 error (_("Argument required: name of an overlay section"));
3423
3424 /* First, find a section matching the user supplied argument */
3425 ALL_OBJSECTIONS (objfile, sec)
3426 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3427 {
3428 /* Now, check to see if the section is an overlay. */
3429 bfdsec = sec->the_bfd_section;
3430 if (!section_is_overlay (bfdsec))
3431 continue; /* not an overlay section */
3432
3433 /* Mark the overlay as "mapped" */
3434 sec->ovly_mapped = 1;
3435
3436 /* Next, make a pass and unmap any sections that are
3437 overlapped by this new section: */
3438 ALL_OBJSECTIONS (objfile2, sec2)
3439 if (sec2->ovly_mapped
3440 && sec != sec2
3441 && sec->the_bfd_section != sec2->the_bfd_section
3442 && sections_overlap (sec->the_bfd_section,
3443 sec2->the_bfd_section))
3444 {
3445 if (info_verbose)
3446 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3447 bfd_section_name (objfile->obfd,
3448 sec2->the_bfd_section));
3449 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3450 }
3451 return;
3452 }
3453 error (_("No overlay section called %s"), args);
3454 }
3455
3456 /* Function: unmap_overlay_command
3457 Mark the overlay section as unmapped
3458 (ie. resident in its LMA address range, rather than the VMA range). */
3459
3460 void
3461 unmap_overlay_command (char *args, int from_tty)
3462 {
3463 struct objfile *objfile;
3464 struct obj_section *sec;
3465
3466 if (!overlay_debugging)
3467 error (_("\
3468 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3469 the 'overlay manual' command."));
3470
3471 if (args == 0 || *args == 0)
3472 error (_("Argument required: name of an overlay section"));
3473
3474 /* First, find a section matching the user supplied argument */
3475 ALL_OBJSECTIONS (objfile, sec)
3476 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3477 {
3478 if (!sec->ovly_mapped)
3479 error (_("Section %s is not mapped"), args);
3480 sec->ovly_mapped = 0;
3481 return;
3482 }
3483 error (_("No overlay section called %s"), args);
3484 }
3485
3486 /* Function: overlay_auto_command
3487 A utility command to turn on overlay debugging.
3488 Possibly this should be done via a set/show command. */
3489
3490 static void
3491 overlay_auto_command (char *args, int from_tty)
3492 {
3493 overlay_debugging = ovly_auto;
3494 enable_overlay_breakpoints ();
3495 if (info_verbose)
3496 printf_unfiltered (_("Automatic overlay debugging enabled."));
3497 }
3498
3499 /* Function: overlay_manual_command
3500 A utility command to turn on overlay debugging.
3501 Possibly this should be done via a set/show command. */
3502
3503 static void
3504 overlay_manual_command (char *args, int from_tty)
3505 {
3506 overlay_debugging = ovly_on;
3507 disable_overlay_breakpoints ();
3508 if (info_verbose)
3509 printf_unfiltered (_("Overlay debugging enabled."));
3510 }
3511
3512 /* Function: overlay_off_command
3513 A utility command to turn on overlay debugging.
3514 Possibly this should be done via a set/show command. */
3515
3516 static void
3517 overlay_off_command (char *args, int from_tty)
3518 {
3519 overlay_debugging = ovly_off;
3520 disable_overlay_breakpoints ();
3521 if (info_verbose)
3522 printf_unfiltered (_("Overlay debugging disabled."));
3523 }
3524
3525 static void
3526 overlay_load_command (char *args, int from_tty)
3527 {
3528 if (gdbarch_overlay_update_p (current_gdbarch))
3529 gdbarch_overlay_update (current_gdbarch, NULL);
3530 else
3531 error (_("This target does not know how to read its overlay state."));
3532 }
3533
3534 /* Function: overlay_command
3535 A place-holder for a mis-typed command */
3536
3537 /* Command list chain containing all defined "overlay" subcommands. */
3538 struct cmd_list_element *overlaylist;
3539
3540 static void
3541 overlay_command (char *args, int from_tty)
3542 {
3543 printf_unfiltered
3544 ("\"overlay\" must be followed by the name of an overlay command.\n");
3545 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3546 }
3547
3548
3549 /* Target Overlays for the "Simplest" overlay manager:
3550
3551 This is GDB's default target overlay layer. It works with the
3552 minimal overlay manager supplied as an example by Cygnus. The
3553 entry point is via a function pointer "gdbarch_overlay_update",
3554 so targets that use a different runtime overlay manager can
3555 substitute their own overlay_update function and take over the
3556 function pointer.
3557
3558 The overlay_update function pokes around in the target's data structures
3559 to see what overlays are mapped, and updates GDB's overlay mapping with
3560 this information.
3561
3562 In this simple implementation, the target data structures are as follows:
3563 unsigned _novlys; /# number of overlay sections #/
3564 unsigned _ovly_table[_novlys][4] = {
3565 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3566 {..., ..., ..., ...},
3567 }
3568 unsigned _novly_regions; /# number of overlay regions #/
3569 unsigned _ovly_region_table[_novly_regions][3] = {
3570 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3571 {..., ..., ...},
3572 }
3573 These functions will attempt to update GDB's mappedness state in the
3574 symbol section table, based on the target's mappedness state.
3575
3576 To do this, we keep a cached copy of the target's _ovly_table, and
3577 attempt to detect when the cached copy is invalidated. The main
3578 entry point is "simple_overlay_update(SECT), which looks up SECT in
3579 the cached table and re-reads only the entry for that section from
3580 the target (whenever possible).
3581 */
3582
3583 /* Cached, dynamically allocated copies of the target data structures: */
3584 static unsigned (*cache_ovly_table)[4] = 0;
3585 #if 0
3586 static unsigned (*cache_ovly_region_table)[3] = 0;
3587 #endif
3588 static unsigned cache_novlys = 0;
3589 #if 0
3590 static unsigned cache_novly_regions = 0;
3591 #endif
3592 static CORE_ADDR cache_ovly_table_base = 0;
3593 #if 0
3594 static CORE_ADDR cache_ovly_region_table_base = 0;
3595 #endif
3596 enum ovly_index
3597 {
3598 VMA, SIZE, LMA, MAPPED
3599 };
3600 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3601 / TARGET_CHAR_BIT)
3602
3603 /* Throw away the cached copy of _ovly_table */
3604 static void
3605 simple_free_overlay_table (void)
3606 {
3607 if (cache_ovly_table)
3608 xfree (cache_ovly_table);
3609 cache_novlys = 0;
3610 cache_ovly_table = NULL;
3611 cache_ovly_table_base = 0;
3612 }
3613
3614 #if 0
3615 /* Throw away the cached copy of _ovly_region_table */
3616 static void
3617 simple_free_overlay_region_table (void)
3618 {
3619 if (cache_ovly_region_table)
3620 xfree (cache_ovly_region_table);
3621 cache_novly_regions = 0;
3622 cache_ovly_region_table = NULL;
3623 cache_ovly_region_table_base = 0;
3624 }
3625 #endif
3626
3627 /* Read an array of ints from the target into a local buffer.
3628 Convert to host order. int LEN is number of ints */
3629 static void
3630 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3631 {
3632 /* FIXME (alloca): Not safe if array is very large. */
3633 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3634 int i;
3635
3636 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3637 for (i = 0; i < len; i++)
3638 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3639 TARGET_LONG_BYTES);
3640 }
3641
3642 /* Find and grab a copy of the target _ovly_table
3643 (and _novlys, which is needed for the table's size) */
3644 static int
3645 simple_read_overlay_table (void)
3646 {
3647 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3648
3649 simple_free_overlay_table ();
3650 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3651 if (! novlys_msym)
3652 {
3653 error (_("Error reading inferior's overlay table: "
3654 "couldn't find `_novlys' variable\n"
3655 "in inferior. Use `overlay manual' mode."));
3656 return 0;
3657 }
3658
3659 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3660 if (! ovly_table_msym)
3661 {
3662 error (_("Error reading inferior's overlay table: couldn't find "
3663 "`_ovly_table' array\n"
3664 "in inferior. Use `overlay manual' mode."));
3665 return 0;
3666 }
3667
3668 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3669 cache_ovly_table
3670 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3671 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3672 read_target_long_array (cache_ovly_table_base,
3673 (unsigned int *) cache_ovly_table,
3674 cache_novlys * 4);
3675
3676 return 1; /* SUCCESS */
3677 }
3678
3679 #if 0
3680 /* Find and grab a copy of the target _ovly_region_table
3681 (and _novly_regions, which is needed for the table's size) */
3682 static int
3683 simple_read_overlay_region_table (void)
3684 {
3685 struct minimal_symbol *msym;
3686
3687 simple_free_overlay_region_table ();
3688 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3689 if (msym != NULL)
3690 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3691 else
3692 return 0; /* failure */
3693 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3694 if (cache_ovly_region_table != NULL)
3695 {
3696 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3697 if (msym != NULL)
3698 {
3699 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3700 read_target_long_array (cache_ovly_region_table_base,
3701 (unsigned int *) cache_ovly_region_table,
3702 cache_novly_regions * 3);
3703 }
3704 else
3705 return 0; /* failure */
3706 }
3707 else
3708 return 0; /* failure */
3709 return 1; /* SUCCESS */
3710 }
3711 #endif
3712
3713 /* Function: simple_overlay_update_1
3714 A helper function for simple_overlay_update. Assuming a cached copy
3715 of _ovly_table exists, look through it to find an entry whose vma,
3716 lma and size match those of OSECT. Re-read the entry and make sure
3717 it still matches OSECT (else the table may no longer be valid).
3718 Set OSECT's mapped state to match the entry. Return: 1 for
3719 success, 0 for failure. */
3720
3721 static int
3722 simple_overlay_update_1 (struct obj_section *osect)
3723 {
3724 int i, size;
3725 bfd *obfd = osect->objfile->obfd;
3726 asection *bsect = osect->the_bfd_section;
3727
3728 size = bfd_get_section_size (osect->the_bfd_section);
3729 for (i = 0; i < cache_novlys; i++)
3730 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3731 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3732 /* && cache_ovly_table[i][SIZE] == size */ )
3733 {
3734 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3735 (unsigned int *) cache_ovly_table[i], 4);
3736 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3737 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3738 /* && cache_ovly_table[i][SIZE] == size */ )
3739 {
3740 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3741 return 1;
3742 }
3743 else /* Warning! Warning! Target's ovly table has changed! */
3744 return 0;
3745 }
3746 return 0;
3747 }
3748
3749 /* Function: simple_overlay_update
3750 If OSECT is NULL, then update all sections' mapped state
3751 (after re-reading the entire target _ovly_table).
3752 If OSECT is non-NULL, then try to find a matching entry in the
3753 cached ovly_table and update only OSECT's mapped state.
3754 If a cached entry can't be found or the cache isn't valid, then
3755 re-read the entire cache, and go ahead and update all sections. */
3756
3757 void
3758 simple_overlay_update (struct obj_section *osect)
3759 {
3760 struct objfile *objfile;
3761
3762 /* Were we given an osect to look up? NULL means do all of them. */
3763 if (osect)
3764 /* Have we got a cached copy of the target's overlay table? */
3765 if (cache_ovly_table != NULL)
3766 /* Does its cached location match what's currently in the symtab? */
3767 if (cache_ovly_table_base ==
3768 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3769 /* Then go ahead and try to look up this single section in the cache */
3770 if (simple_overlay_update_1 (osect))
3771 /* Found it! We're done. */
3772 return;
3773
3774 /* Cached table no good: need to read the entire table anew.
3775 Or else we want all the sections, in which case it's actually
3776 more efficient to read the whole table in one block anyway. */
3777
3778 if (! simple_read_overlay_table ())
3779 return;
3780
3781 /* Now may as well update all sections, even if only one was requested. */
3782 ALL_OBJSECTIONS (objfile, osect)
3783 if (section_is_overlay (osect->the_bfd_section))
3784 {
3785 int i, size;
3786 bfd *obfd = osect->objfile->obfd;
3787 asection *bsect = osect->the_bfd_section;
3788
3789 size = bfd_get_section_size (bsect);
3790 for (i = 0; i < cache_novlys; i++)
3791 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3792 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3793 /* && cache_ovly_table[i][SIZE] == size */ )
3794 { /* obj_section matches i'th entry in ovly_table */
3795 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3796 break; /* finished with inner for loop: break out */
3797 }
3798 }
3799 }
3800
3801 /* Set the output sections and output offsets for section SECTP in
3802 ABFD. The relocation code in BFD will read these offsets, so we
3803 need to be sure they're initialized. We map each section to itself,
3804 with no offset; this means that SECTP->vma will be honored. */
3805
3806 static void
3807 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3808 {
3809 sectp->output_section = sectp;
3810 sectp->output_offset = 0;
3811 }
3812
3813 /* Relocate the contents of a debug section SECTP in ABFD. The
3814 contents are stored in BUF if it is non-NULL, or returned in a
3815 malloc'd buffer otherwise.
3816
3817 For some platforms and debug info formats, shared libraries contain
3818 relocations against the debug sections (particularly for DWARF-2;
3819 one affected platform is PowerPC GNU/Linux, although it depends on
3820 the version of the linker in use). Also, ELF object files naturally
3821 have unresolved relocations for their debug sections. We need to apply
3822 the relocations in order to get the locations of symbols correct. */
3823
3824 bfd_byte *
3825 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3826 {
3827 /* We're only interested in debugging sections with relocation
3828 information. */
3829 if ((sectp->flags & SEC_RELOC) == 0)
3830 return NULL;
3831 if ((sectp->flags & SEC_DEBUGGING) == 0)
3832 return NULL;
3833
3834 /* We will handle section offsets properly elsewhere, so relocate as if
3835 all sections begin at 0. */
3836 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3837
3838 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3839 }
3840
3841 struct symfile_segment_data *
3842 get_symfile_segment_data (bfd *abfd)
3843 {
3844 struct sym_fns *sf = find_sym_fns (abfd);
3845
3846 if (sf == NULL)
3847 return NULL;
3848
3849 return sf->sym_segments (abfd);
3850 }
3851
3852 void
3853 free_symfile_segment_data (struct symfile_segment_data *data)
3854 {
3855 xfree (data->segment_bases);
3856 xfree (data->segment_sizes);
3857 xfree (data->segment_info);
3858 xfree (data);
3859 }
3860
3861 int
3862 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3863 struct section_offsets *offsets,
3864 int num_segment_bases,
3865 const CORE_ADDR *segment_bases)
3866 {
3867 int i;
3868 asection *sect;
3869
3870 /* If we do not have segment mappings for the object file, we
3871 can not relocate it by segments. */
3872 gdb_assert (data != NULL);
3873 gdb_assert (data->num_segments > 0);
3874
3875 /* If more offsets are provided than we have segments, make sure the
3876 excess offsets are all the same as the last segment's offset.
3877 This allows "Text=X;Data=X" for files which have only a single
3878 segment. */
3879 if (num_segment_bases > data->num_segments)
3880 for (i = data->num_segments; i < num_segment_bases; i++)
3881 if (segment_bases[i] != segment_bases[data->num_segments - 1])
3882 return 0;
3883
3884 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3885 {
3886 CORE_ADDR vma;
3887 int which = data->segment_info[i];
3888
3889 if (which > num_segment_bases)
3890 offsets->offsets[i] = segment_bases[num_segment_bases - 1];
3891 else if (which > 0)
3892 offsets->offsets[i] = segment_bases[which - 1];
3893 else
3894 continue;
3895
3896 offsets->offsets[i] -= data->segment_bases[which - 1];
3897 }
3898
3899 return 1;
3900 }
3901
3902 static void
3903 symfile_find_segment_sections (struct objfile *objfile)
3904 {
3905 bfd *abfd = objfile->obfd;
3906 int i;
3907 asection *sect;
3908 struct symfile_segment_data *data;
3909
3910 data = get_symfile_segment_data (objfile->obfd);
3911 if (data == NULL)
3912 return;
3913
3914 if (data->num_segments != 1 && data->num_segments != 2)
3915 {
3916 free_symfile_segment_data (data);
3917 return;
3918 }
3919
3920 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3921 {
3922 CORE_ADDR vma;
3923 int which = data->segment_info[i];
3924
3925 if (which == 1)
3926 {
3927 if (objfile->sect_index_text == -1)
3928 objfile->sect_index_text = sect->index;
3929
3930 if (objfile->sect_index_rodata == -1)
3931 objfile->sect_index_rodata = sect->index;
3932 }
3933 else if (which == 2)
3934 {
3935 if (objfile->sect_index_data == -1)
3936 objfile->sect_index_data = sect->index;
3937
3938 if (objfile->sect_index_bss == -1)
3939 objfile->sect_index_bss = sect->index;
3940 }
3941 }
3942
3943 free_symfile_segment_data (data);
3944 }
3945
3946 void
3947 _initialize_symfile (void)
3948 {
3949 struct cmd_list_element *c;
3950
3951 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3952 Load symbol table from executable file FILE.\n\
3953 The `file' command can also load symbol tables, as well as setting the file\n\
3954 to execute."), &cmdlist);
3955 set_cmd_completer (c, filename_completer);
3956
3957 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3958 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3959 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3960 ADDR is the starting address of the file's text.\n\
3961 The optional arguments are section-name section-address pairs and\n\
3962 should be specified if the data and bss segments are not contiguous\n\
3963 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3964 &cmdlist);
3965 set_cmd_completer (c, filename_completer);
3966
3967 c = add_cmd ("add-shared-symbol-files", class_files,
3968 add_shared_symbol_files_command, _("\
3969 Load the symbols from shared objects in the dynamic linker's link map."),
3970 &cmdlist);
3971 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3972 &cmdlist);
3973
3974 c = add_cmd ("load", class_files, load_command, _("\
3975 Dynamically load FILE into the running program, and record its symbols\n\
3976 for access from GDB.\n\
3977 A load OFFSET may also be given."), &cmdlist);
3978 set_cmd_completer (c, filename_completer);
3979
3980 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3981 &symbol_reloading, _("\
3982 Set dynamic symbol table reloading multiple times in one run."), _("\
3983 Show dynamic symbol table reloading multiple times in one run."), NULL,
3984 NULL,
3985 show_symbol_reloading,
3986 &setlist, &showlist);
3987
3988 add_prefix_cmd ("overlay", class_support, overlay_command,
3989 _("Commands for debugging overlays."), &overlaylist,
3990 "overlay ", 0, &cmdlist);
3991
3992 add_com_alias ("ovly", "overlay", class_alias, 1);
3993 add_com_alias ("ov", "overlay", class_alias, 1);
3994
3995 add_cmd ("map-overlay", class_support, map_overlay_command,
3996 _("Assert that an overlay section is mapped."), &overlaylist);
3997
3998 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3999 _("Assert that an overlay section is unmapped."), &overlaylist);
4000
4001 add_cmd ("list-overlays", class_support, list_overlays_command,
4002 _("List mappings of overlay sections."), &overlaylist);
4003
4004 add_cmd ("manual", class_support, overlay_manual_command,
4005 _("Enable overlay debugging."), &overlaylist);
4006 add_cmd ("off", class_support, overlay_off_command,
4007 _("Disable overlay debugging."), &overlaylist);
4008 add_cmd ("auto", class_support, overlay_auto_command,
4009 _("Enable automatic overlay debugging."), &overlaylist);
4010 add_cmd ("load-target", class_support, overlay_load_command,
4011 _("Read the overlay mapping state from the target."), &overlaylist);
4012
4013 /* Filename extension to source language lookup table: */
4014 init_filename_language_table ();
4015 add_setshow_string_noescape_cmd ("extension-language", class_files,
4016 &ext_args, _("\
4017 Set mapping between filename extension and source language."), _("\
4018 Show mapping between filename extension and source language."), _("\
4019 Usage: set extension-language .foo bar"),
4020 set_ext_lang_command,
4021 show_ext_args,
4022 &setlist, &showlist);
4023
4024 add_info ("extensions", info_ext_lang_command,
4025 _("All filename extensions associated with a source language."));
4026
4027 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4028 &debug_file_directory, _("\
4029 Set the directory where separate debug symbols are searched for."), _("\
4030 Show the directory where separate debug symbols are searched for."), _("\
4031 Separate debug symbols are first searched for in the same\n\
4032 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4033 and lastly at the path of the directory of the binary with\n\
4034 the global debug-file directory prepended."),
4035 NULL,
4036 show_debug_file_directory,
4037 &setlist, &showlist);
4038 }
This page took 0.133518 seconds and 4 git commands to generate.