PR 20569, segv in follow_exec
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include "gdb_sys_time.h"
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static void add_symbol_file_command (char *, int);
92
93 static const struct sym_fns *find_sym_fns (bfd *);
94
95 static void decrement_reading_symtab (void *);
96
97 static void overlay_invalidate_all (void);
98
99 static void overlay_auto_command (char *, int);
100
101 static void overlay_manual_command (char *, int);
102
103 static void overlay_off_command (char *, int);
104
105 static void overlay_load_command (char *, int);
106
107 static void overlay_command (char *, int);
108
109 static void simple_free_overlay_table (void);
110
111 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
112 enum bfd_endian);
113
114 static int simple_read_overlay_table (void);
115
116 static int simple_overlay_update_1 (struct obj_section *);
117
118 static void info_ext_lang_command (char *args, int from_tty);
119
120 static void symfile_find_segment_sections (struct objfile *objfile);
121
122 void _initialize_symfile (void);
123
124 /* List of all available sym_fns. On gdb startup, each object file reader
125 calls add_symtab_fns() to register information on each format it is
126 prepared to read. */
127
128 typedef struct
129 {
130 /* BFD flavour that we handle. */
131 enum bfd_flavour sym_flavour;
132
133 /* The "vtable" of symbol functions. */
134 const struct sym_fns *sym_fns;
135 } registered_sym_fns;
136
137 DEF_VEC_O (registered_sym_fns);
138
139 static VEC (registered_sym_fns) *symtab_fns = NULL;
140
141 /* Values for "set print symbol-loading". */
142
143 const char print_symbol_loading_off[] = "off";
144 const char print_symbol_loading_brief[] = "brief";
145 const char print_symbol_loading_full[] = "full";
146 static const char *print_symbol_loading_enums[] =
147 {
148 print_symbol_loading_off,
149 print_symbol_loading_brief,
150 print_symbol_loading_full,
151 NULL
152 };
153 static const char *print_symbol_loading = print_symbol_loading_full;
154
155 /* If non-zero, shared library symbols will be added automatically
156 when the inferior is created, new libraries are loaded, or when
157 attaching to the inferior. This is almost always what users will
158 want to have happen; but for very large programs, the startup time
159 will be excessive, and so if this is a problem, the user can clear
160 this flag and then add the shared library symbols as needed. Note
161 that there is a potential for confusion, since if the shared
162 library symbols are not loaded, commands like "info fun" will *not*
163 report all the functions that are actually present. */
164
165 int auto_solib_add = 1;
166 \f
167
168 /* Return non-zero if symbol-loading messages should be printed.
169 FROM_TTY is the standard from_tty argument to gdb commands.
170 If EXEC is non-zero the messages are for the executable.
171 Otherwise, messages are for shared libraries.
172 If FULL is non-zero then the caller is printing a detailed message.
173 E.g., the message includes the shared library name.
174 Otherwise, the caller is printing a brief "summary" message. */
175
176 int
177 print_symbol_loading_p (int from_tty, int exec, int full)
178 {
179 if (!from_tty && !info_verbose)
180 return 0;
181
182 if (exec)
183 {
184 /* We don't check FULL for executables, there are few such
185 messages, therefore brief == full. */
186 return print_symbol_loading != print_symbol_loading_off;
187 }
188 if (full)
189 return print_symbol_loading == print_symbol_loading_full;
190 return print_symbol_loading == print_symbol_loading_brief;
191 }
192
193 /* True if we are reading a symbol table. */
194
195 int currently_reading_symtab = 0;
196
197 static void
198 decrement_reading_symtab (void *dummy)
199 {
200 currently_reading_symtab--;
201 gdb_assert (currently_reading_symtab >= 0);
202 }
203
204 /* Increment currently_reading_symtab and return a cleanup that can be
205 used to decrement it. */
206
207 struct cleanup *
208 increment_reading_symtab (void)
209 {
210 ++currently_reading_symtab;
211 gdb_assert (currently_reading_symtab > 0);
212 return make_cleanup (decrement_reading_symtab, NULL);
213 }
214
215 /* Remember the lowest-addressed loadable section we've seen.
216 This function is called via bfd_map_over_sections.
217
218 In case of equal vmas, the section with the largest size becomes the
219 lowest-addressed loadable section.
220
221 If the vmas and sizes are equal, the last section is considered the
222 lowest-addressed loadable section. */
223
224 void
225 find_lowest_section (bfd *abfd, asection *sect, void *obj)
226 {
227 asection **lowest = (asection **) obj;
228
229 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
230 return;
231 if (!*lowest)
232 *lowest = sect; /* First loadable section */
233 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
234 *lowest = sect; /* A lower loadable section */
235 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
236 && (bfd_section_size (abfd, (*lowest))
237 <= bfd_section_size (abfd, sect)))
238 *lowest = sect;
239 }
240
241 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
242 new object's 'num_sections' field is set to 0; it must be updated
243 by the caller. */
244
245 struct section_addr_info *
246 alloc_section_addr_info (size_t num_sections)
247 {
248 struct section_addr_info *sap;
249 size_t size;
250
251 size = (sizeof (struct section_addr_info)
252 + sizeof (struct other_sections) * (num_sections - 1));
253 sap = (struct section_addr_info *) xmalloc (size);
254 memset (sap, 0, size);
255
256 return sap;
257 }
258
259 /* Build (allocate and populate) a section_addr_info struct from
260 an existing section table. */
261
262 extern struct section_addr_info *
263 build_section_addr_info_from_section_table (const struct target_section *start,
264 const struct target_section *end)
265 {
266 struct section_addr_info *sap;
267 const struct target_section *stp;
268 int oidx;
269
270 sap = alloc_section_addr_info (end - start);
271
272 for (stp = start, oidx = 0; stp != end; stp++)
273 {
274 struct bfd_section *asect = stp->the_bfd_section;
275 bfd *abfd = asect->owner;
276
277 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
278 && oidx < end - start)
279 {
280 sap->other[oidx].addr = stp->addr;
281 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
282 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
283 oidx++;
284 }
285 }
286
287 sap->num_sections = oidx;
288
289 return sap;
290 }
291
292 /* Create a section_addr_info from section offsets in ABFD. */
293
294 static struct section_addr_info *
295 build_section_addr_info_from_bfd (bfd *abfd)
296 {
297 struct section_addr_info *sap;
298 int i;
299 struct bfd_section *sec;
300
301 sap = alloc_section_addr_info (bfd_count_sections (abfd));
302 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
303 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
304 {
305 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
306 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
307 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
308 i++;
309 }
310
311 sap->num_sections = i;
312
313 return sap;
314 }
315
316 /* Create a section_addr_info from section offsets in OBJFILE. */
317
318 struct section_addr_info *
319 build_section_addr_info_from_objfile (const struct objfile *objfile)
320 {
321 struct section_addr_info *sap;
322 int i;
323
324 /* Before reread_symbols gets rewritten it is not safe to call:
325 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
326 */
327 sap = build_section_addr_info_from_bfd (objfile->obfd);
328 for (i = 0; i < sap->num_sections; i++)
329 {
330 int sectindex = sap->other[i].sectindex;
331
332 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
333 }
334 return sap;
335 }
336
337 /* Free all memory allocated by build_section_addr_info_from_section_table. */
338
339 extern void
340 free_section_addr_info (struct section_addr_info *sap)
341 {
342 int idx;
343
344 for (idx = 0; idx < sap->num_sections; idx++)
345 xfree (sap->other[idx].name);
346 xfree (sap);
347 }
348
349 /* Initialize OBJFILE's sect_index_* members. */
350
351 static void
352 init_objfile_sect_indices (struct objfile *objfile)
353 {
354 asection *sect;
355 int i;
356
357 sect = bfd_get_section_by_name (objfile->obfd, ".text");
358 if (sect)
359 objfile->sect_index_text = sect->index;
360
361 sect = bfd_get_section_by_name (objfile->obfd, ".data");
362 if (sect)
363 objfile->sect_index_data = sect->index;
364
365 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
366 if (sect)
367 objfile->sect_index_bss = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
370 if (sect)
371 objfile->sect_index_rodata = sect->index;
372
373 /* This is where things get really weird... We MUST have valid
374 indices for the various sect_index_* members or gdb will abort.
375 So if for example, there is no ".text" section, we have to
376 accomodate that. First, check for a file with the standard
377 one or two segments. */
378
379 symfile_find_segment_sections (objfile);
380
381 /* Except when explicitly adding symbol files at some address,
382 section_offsets contains nothing but zeros, so it doesn't matter
383 which slot in section_offsets the individual sect_index_* members
384 index into. So if they are all zero, it is safe to just point
385 all the currently uninitialized indices to the first slot. But
386 beware: if this is the main executable, it may be relocated
387 later, e.g. by the remote qOffsets packet, and then this will
388 be wrong! That's why we try segments first. */
389
390 for (i = 0; i < objfile->num_sections; i++)
391 {
392 if (ANOFFSET (objfile->section_offsets, i) != 0)
393 {
394 break;
395 }
396 }
397 if (i == objfile->num_sections)
398 {
399 if (objfile->sect_index_text == -1)
400 objfile->sect_index_text = 0;
401 if (objfile->sect_index_data == -1)
402 objfile->sect_index_data = 0;
403 if (objfile->sect_index_bss == -1)
404 objfile->sect_index_bss = 0;
405 if (objfile->sect_index_rodata == -1)
406 objfile->sect_index_rodata = 0;
407 }
408 }
409
410 /* The arguments to place_section. */
411
412 struct place_section_arg
413 {
414 struct section_offsets *offsets;
415 CORE_ADDR lowest;
416 };
417
418 /* Find a unique offset to use for loadable section SECT if
419 the user did not provide an offset. */
420
421 static void
422 place_section (bfd *abfd, asection *sect, void *obj)
423 {
424 struct place_section_arg *arg = (struct place_section_arg *) obj;
425 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
426 int done;
427 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
428
429 /* We are only interested in allocated sections. */
430 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
431 return;
432
433 /* If the user specified an offset, honor it. */
434 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
435 return;
436
437 /* Otherwise, let's try to find a place for the section. */
438 start_addr = (arg->lowest + align - 1) & -align;
439
440 do {
441 asection *cur_sec;
442
443 done = 1;
444
445 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
446 {
447 int indx = cur_sec->index;
448
449 /* We don't need to compare against ourself. */
450 if (cur_sec == sect)
451 continue;
452
453 /* We can only conflict with allocated sections. */
454 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
455 continue;
456
457 /* If the section offset is 0, either the section has not been placed
458 yet, or it was the lowest section placed (in which case LOWEST
459 will be past its end). */
460 if (offsets[indx] == 0)
461 continue;
462
463 /* If this section would overlap us, then we must move up. */
464 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
465 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
466 {
467 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
468 start_addr = (start_addr + align - 1) & -align;
469 done = 0;
470 break;
471 }
472
473 /* Otherwise, we appear to be OK. So far. */
474 }
475 }
476 while (!done);
477
478 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
479 arg->lowest = start_addr + bfd_get_section_size (sect);
480 }
481
482 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
483 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
484 entries. */
485
486 void
487 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
488 int num_sections,
489 const struct section_addr_info *addrs)
490 {
491 int i;
492
493 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
494
495 /* Now calculate offsets for section that were specified by the caller. */
496 for (i = 0; i < addrs->num_sections; i++)
497 {
498 const struct other_sections *osp;
499
500 osp = &addrs->other[i];
501 if (osp->sectindex == -1)
502 continue;
503
504 /* Record all sections in offsets. */
505 /* The section_offsets in the objfile are here filled in using
506 the BFD index. */
507 section_offsets->offsets[osp->sectindex] = osp->addr;
508 }
509 }
510
511 /* Transform section name S for a name comparison. prelink can split section
512 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
513 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
514 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
515 (`.sbss') section has invalid (increased) virtual address. */
516
517 static const char *
518 addr_section_name (const char *s)
519 {
520 if (strcmp (s, ".dynbss") == 0)
521 return ".bss";
522 if (strcmp (s, ".sdynbss") == 0)
523 return ".sbss";
524
525 return s;
526 }
527
528 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
529 their (name, sectindex) pair. sectindex makes the sort by name stable. */
530
531 static int
532 addrs_section_compar (const void *ap, const void *bp)
533 {
534 const struct other_sections *a = *((struct other_sections **) ap);
535 const struct other_sections *b = *((struct other_sections **) bp);
536 int retval;
537
538 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
539 if (retval)
540 return retval;
541
542 return a->sectindex - b->sectindex;
543 }
544
545 /* Provide sorted array of pointers to sections of ADDRS. The array is
546 terminated by NULL. Caller is responsible to call xfree for it. */
547
548 static struct other_sections **
549 addrs_section_sort (struct section_addr_info *addrs)
550 {
551 struct other_sections **array;
552 int i;
553
554 /* `+ 1' for the NULL terminator. */
555 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
556 for (i = 0; i < addrs->num_sections; i++)
557 array[i] = &addrs->other[i];
558 array[i] = NULL;
559
560 qsort (array, i, sizeof (*array), addrs_section_compar);
561
562 return array;
563 }
564
565 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
566 also SECTINDEXes specific to ABFD there. This function can be used to
567 rebase ADDRS to start referencing different BFD than before. */
568
569 void
570 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
571 {
572 asection *lower_sect;
573 CORE_ADDR lower_offset;
574 int i;
575 struct cleanup *my_cleanup;
576 struct section_addr_info *abfd_addrs;
577 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
578 struct other_sections **addrs_to_abfd_addrs;
579
580 /* Find lowest loadable section to be used as starting point for
581 continguous sections. */
582 lower_sect = NULL;
583 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
584 if (lower_sect == NULL)
585 {
586 warning (_("no loadable sections found in added symbol-file %s"),
587 bfd_get_filename (abfd));
588 lower_offset = 0;
589 }
590 else
591 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
592
593 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
594 in ABFD. Section names are not unique - there can be multiple sections of
595 the same name. Also the sections of the same name do not have to be
596 adjacent to each other. Some sections may be present only in one of the
597 files. Even sections present in both files do not have to be in the same
598 order.
599
600 Use stable sort by name for the sections in both files. Then linearly
601 scan both lists matching as most of the entries as possible. */
602
603 addrs_sorted = addrs_section_sort (addrs);
604 my_cleanup = make_cleanup (xfree, addrs_sorted);
605
606 abfd_addrs = build_section_addr_info_from_bfd (abfd);
607 make_cleanup_free_section_addr_info (abfd_addrs);
608 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
609 make_cleanup (xfree, abfd_addrs_sorted);
610
611 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
612 ABFD_ADDRS_SORTED. */
613
614 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
615 make_cleanup (xfree, addrs_to_abfd_addrs);
616
617 while (*addrs_sorted)
618 {
619 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
620
621 while (*abfd_addrs_sorted
622 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
623 sect_name) < 0)
624 abfd_addrs_sorted++;
625
626 if (*abfd_addrs_sorted
627 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
628 sect_name) == 0)
629 {
630 int index_in_addrs;
631
632 /* Make the found item directly addressable from ADDRS. */
633 index_in_addrs = *addrs_sorted - addrs->other;
634 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
635 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
636
637 /* Never use the same ABFD entry twice. */
638 abfd_addrs_sorted++;
639 }
640
641 addrs_sorted++;
642 }
643
644 /* Calculate offsets for the loadable sections.
645 FIXME! Sections must be in order of increasing loadable section
646 so that contiguous sections can use the lower-offset!!!
647
648 Adjust offsets if the segments are not contiguous.
649 If the section is contiguous, its offset should be set to
650 the offset of the highest loadable section lower than it
651 (the loadable section directly below it in memory).
652 this_offset = lower_offset = lower_addr - lower_orig_addr */
653
654 for (i = 0; i < addrs->num_sections; i++)
655 {
656 struct other_sections *sect = addrs_to_abfd_addrs[i];
657
658 if (sect)
659 {
660 /* This is the index used by BFD. */
661 addrs->other[i].sectindex = sect->sectindex;
662
663 if (addrs->other[i].addr != 0)
664 {
665 addrs->other[i].addr -= sect->addr;
666 lower_offset = addrs->other[i].addr;
667 }
668 else
669 addrs->other[i].addr = lower_offset;
670 }
671 else
672 {
673 /* addr_section_name transformation is not used for SECT_NAME. */
674 const char *sect_name = addrs->other[i].name;
675
676 /* This section does not exist in ABFD, which is normally
677 unexpected and we want to issue a warning.
678
679 However, the ELF prelinker does create a few sections which are
680 marked in the main executable as loadable (they are loaded in
681 memory from the DYNAMIC segment) and yet are not present in
682 separate debug info files. This is fine, and should not cause
683 a warning. Shared libraries contain just the section
684 ".gnu.liblist" but it is not marked as loadable there. There is
685 no other way to identify them than by their name as the sections
686 created by prelink have no special flags.
687
688 For the sections `.bss' and `.sbss' see addr_section_name. */
689
690 if (!(strcmp (sect_name, ".gnu.liblist") == 0
691 || strcmp (sect_name, ".gnu.conflict") == 0
692 || (strcmp (sect_name, ".bss") == 0
693 && i > 0
694 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
695 && addrs_to_abfd_addrs[i - 1] != NULL)
696 || (strcmp (sect_name, ".sbss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)))
700 warning (_("section %s not found in %s"), sect_name,
701 bfd_get_filename (abfd));
702
703 addrs->other[i].addr = 0;
704 addrs->other[i].sectindex = -1;
705 }
706 }
707
708 do_cleanups (my_cleanup);
709 }
710
711 /* Parse the user's idea of an offset for dynamic linking, into our idea
712 of how to represent it for fast symbol reading. This is the default
713 version of the sym_fns.sym_offsets function for symbol readers that
714 don't need to do anything special. It allocates a section_offsets table
715 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
716
717 void
718 default_symfile_offsets (struct objfile *objfile,
719 const struct section_addr_info *addrs)
720 {
721 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
722 objfile->section_offsets = (struct section_offsets *)
723 obstack_alloc (&objfile->objfile_obstack,
724 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
725 relative_addr_info_to_section_offsets (objfile->section_offsets,
726 objfile->num_sections, addrs);
727
728 /* For relocatable files, all loadable sections will start at zero.
729 The zero is meaningless, so try to pick arbitrary addresses such
730 that no loadable sections overlap. This algorithm is quadratic,
731 but the number of sections in a single object file is generally
732 small. */
733 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
734 {
735 struct place_section_arg arg;
736 bfd *abfd = objfile->obfd;
737 asection *cur_sec;
738
739 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
740 /* We do not expect this to happen; just skip this step if the
741 relocatable file has a section with an assigned VMA. */
742 if (bfd_section_vma (abfd, cur_sec) != 0)
743 break;
744
745 if (cur_sec == NULL)
746 {
747 CORE_ADDR *offsets = objfile->section_offsets->offsets;
748
749 /* Pick non-overlapping offsets for sections the user did not
750 place explicitly. */
751 arg.offsets = objfile->section_offsets;
752 arg.lowest = 0;
753 bfd_map_over_sections (objfile->obfd, place_section, &arg);
754
755 /* Correctly filling in the section offsets is not quite
756 enough. Relocatable files have two properties that
757 (most) shared objects do not:
758
759 - Their debug information will contain relocations. Some
760 shared libraries do also, but many do not, so this can not
761 be assumed.
762
763 - If there are multiple code sections they will be loaded
764 at different relative addresses in memory than they are
765 in the objfile, since all sections in the file will start
766 at address zero.
767
768 Because GDB has very limited ability to map from an
769 address in debug info to the correct code section,
770 it relies on adding SECT_OFF_TEXT to things which might be
771 code. If we clear all the section offsets, and set the
772 section VMAs instead, then symfile_relocate_debug_section
773 will return meaningful debug information pointing at the
774 correct sections.
775
776 GDB has too many different data structures for section
777 addresses - a bfd, objfile, and so_list all have section
778 tables, as does exec_ops. Some of these could probably
779 be eliminated. */
780
781 for (cur_sec = abfd->sections; cur_sec != NULL;
782 cur_sec = cur_sec->next)
783 {
784 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
785 continue;
786
787 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
788 exec_set_section_address (bfd_get_filename (abfd),
789 cur_sec->index,
790 offsets[cur_sec->index]);
791 offsets[cur_sec->index] = 0;
792 }
793 }
794 }
795
796 /* Remember the bfd indexes for the .text, .data, .bss and
797 .rodata sections. */
798 init_objfile_sect_indices (objfile);
799 }
800
801 /* Divide the file into segments, which are individual relocatable units.
802 This is the default version of the sym_fns.sym_segments function for
803 symbol readers that do not have an explicit representation of segments.
804 It assumes that object files do not have segments, and fully linked
805 files have a single segment. */
806
807 struct symfile_segment_data *
808 default_symfile_segments (bfd *abfd)
809 {
810 int num_sections, i;
811 asection *sect;
812 struct symfile_segment_data *data;
813 CORE_ADDR low, high;
814
815 /* Relocatable files contain enough information to position each
816 loadable section independently; they should not be relocated
817 in segments. */
818 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
819 return NULL;
820
821 /* Make sure there is at least one loadable section in the file. */
822 for (sect = abfd->sections; sect != NULL; sect = sect->next)
823 {
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 break;
828 }
829 if (sect == NULL)
830 return NULL;
831
832 low = bfd_get_section_vma (abfd, sect);
833 high = low + bfd_get_section_size (sect);
834
835 data = XCNEW (struct symfile_segment_data);
836 data->num_segments = 1;
837 data->segment_bases = XCNEW (CORE_ADDR);
838 data->segment_sizes = XCNEW (CORE_ADDR);
839
840 num_sections = bfd_count_sections (abfd);
841 data->segment_info = XCNEWVEC (int, num_sections);
842
843 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
844 {
845 CORE_ADDR vma;
846
847 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
848 continue;
849
850 vma = bfd_get_section_vma (abfd, sect);
851 if (vma < low)
852 low = vma;
853 if (vma + bfd_get_section_size (sect) > high)
854 high = vma + bfd_get_section_size (sect);
855
856 data->segment_info[i] = 1;
857 }
858
859 data->segment_bases[0] = low;
860 data->segment_sizes[0] = high - low;
861
862 return data;
863 }
864
865 /* This is a convenience function to call sym_read for OBJFILE and
866 possibly force the partial symbols to be read. */
867
868 static void
869 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
870 {
871 (*objfile->sf->sym_read) (objfile, add_flags);
872 objfile->per_bfd->minsyms_read = 1;
873
874 /* find_separate_debug_file_in_section should be called only if there is
875 single binary with no existing separate debug info file. */
876 if (!objfile_has_partial_symbols (objfile)
877 && objfile->separate_debug_objfile == NULL
878 && objfile->separate_debug_objfile_backlink == NULL)
879 {
880 bfd *abfd = find_separate_debug_file_in_section (objfile);
881 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
882
883 if (abfd != NULL)
884 {
885 /* find_separate_debug_file_in_section uses the same filename for the
886 virtual section-as-bfd like the bfd filename containing the
887 section. Therefore use also non-canonical name form for the same
888 file containing the section. */
889 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
890 objfile);
891 }
892
893 do_cleanups (cleanup);
894 }
895 if ((add_flags & SYMFILE_NO_READ) == 0)
896 require_partial_symbols (objfile, 0);
897 }
898
899 /* Initialize entry point information for this objfile. */
900
901 static void
902 init_entry_point_info (struct objfile *objfile)
903 {
904 struct entry_info *ei = &objfile->per_bfd->ei;
905
906 if (ei->initialized)
907 return;
908 ei->initialized = 1;
909
910 /* Save startup file's range of PC addresses to help blockframe.c
911 decide where the bottom of the stack is. */
912
913 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
914 {
915 /* Executable file -- record its entry point so we'll recognize
916 the startup file because it contains the entry point. */
917 ei->entry_point = bfd_get_start_address (objfile->obfd);
918 ei->entry_point_p = 1;
919 }
920 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
921 && bfd_get_start_address (objfile->obfd) != 0)
922 {
923 /* Some shared libraries may have entry points set and be
924 runnable. There's no clear way to indicate this, so just check
925 for values other than zero. */
926 ei->entry_point = bfd_get_start_address (objfile->obfd);
927 ei->entry_point_p = 1;
928 }
929 else
930 {
931 /* Examination of non-executable.o files. Short-circuit this stuff. */
932 ei->entry_point_p = 0;
933 }
934
935 if (ei->entry_point_p)
936 {
937 struct obj_section *osect;
938 CORE_ADDR entry_point = ei->entry_point;
939 int found;
940
941 /* Make certain that the address points at real code, and not a
942 function descriptor. */
943 entry_point
944 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
945 entry_point,
946 &current_target);
947
948 /* Remove any ISA markers, so that this matches entries in the
949 symbol table. */
950 ei->entry_point
951 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
952
953 found = 0;
954 ALL_OBJFILE_OSECTIONS (objfile, osect)
955 {
956 struct bfd_section *sect = osect->the_bfd_section;
957
958 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
959 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
960 + bfd_get_section_size (sect)))
961 {
962 ei->the_bfd_section_index
963 = gdb_bfd_section_index (objfile->obfd, sect);
964 found = 1;
965 break;
966 }
967 }
968
969 if (!found)
970 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
971 }
972 }
973
974 /* Process a symbol file, as either the main file or as a dynamically
975 loaded file.
976
977 This function does not set the OBJFILE's entry-point info.
978
979 OBJFILE is where the symbols are to be read from.
980
981 ADDRS is the list of section load addresses. If the user has given
982 an 'add-symbol-file' command, then this is the list of offsets and
983 addresses he or she provided as arguments to the command; or, if
984 we're handling a shared library, these are the actual addresses the
985 sections are loaded at, according to the inferior's dynamic linker
986 (as gleaned by GDB's shared library code). We convert each address
987 into an offset from the section VMA's as it appears in the object
988 file, and then call the file's sym_offsets function to convert this
989 into a format-specific offset table --- a `struct section_offsets'.
990
991 ADD_FLAGS encodes verbosity level, whether this is main symbol or
992 an extra symbol file such as dynamically loaded code, and wether
993 breakpoint reset should be deferred. */
994
995 static void
996 syms_from_objfile_1 (struct objfile *objfile,
997 struct section_addr_info *addrs,
998 symfile_add_flags add_flags)
999 {
1000 struct section_addr_info *local_addr = NULL;
1001 struct cleanup *old_chain;
1002 const int mainline = add_flags & SYMFILE_MAINLINE;
1003
1004 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1005
1006 if (objfile->sf == NULL)
1007 {
1008 /* No symbols to load, but we still need to make sure
1009 that the section_offsets table is allocated. */
1010 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1011 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1012
1013 objfile->num_sections = num_sections;
1014 objfile->section_offsets
1015 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1016 size);
1017 memset (objfile->section_offsets, 0, size);
1018 return;
1019 }
1020
1021 /* Make sure that partially constructed symbol tables will be cleaned up
1022 if an error occurs during symbol reading. */
1023 old_chain = make_cleanup_free_objfile (objfile);
1024
1025 /* If ADDRS is NULL, put together a dummy address list.
1026 We now establish the convention that an addr of zero means
1027 no load address was specified. */
1028 if (! addrs)
1029 {
1030 local_addr = alloc_section_addr_info (1);
1031 make_cleanup (xfree, local_addr);
1032 addrs = local_addr;
1033 }
1034
1035 if (mainline)
1036 {
1037 /* We will modify the main symbol table, make sure that all its users
1038 will be cleaned up if an error occurs during symbol reading. */
1039 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1040
1041 /* Since no error yet, throw away the old symbol table. */
1042
1043 if (symfile_objfile != NULL)
1044 {
1045 free_objfile (symfile_objfile);
1046 gdb_assert (symfile_objfile == NULL);
1047 }
1048
1049 /* Currently we keep symbols from the add-symbol-file command.
1050 If the user wants to get rid of them, they should do "symbol-file"
1051 without arguments first. Not sure this is the best behavior
1052 (PR 2207). */
1053
1054 (*objfile->sf->sym_new_init) (objfile);
1055 }
1056
1057 /* Convert addr into an offset rather than an absolute address.
1058 We find the lowest address of a loaded segment in the objfile,
1059 and assume that <addr> is where that got loaded.
1060
1061 We no longer warn if the lowest section is not a text segment (as
1062 happens for the PA64 port. */
1063 if (addrs->num_sections > 0)
1064 addr_info_make_relative (addrs, objfile->obfd);
1065
1066 /* Initialize symbol reading routines for this objfile, allow complaints to
1067 appear for this new file, and record how verbose to be, then do the
1068 initial symbol reading for this file. */
1069
1070 (*objfile->sf->sym_init) (objfile);
1071 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1072
1073 (*objfile->sf->sym_offsets) (objfile, addrs);
1074
1075 read_symbols (objfile, add_flags);
1076
1077 /* Discard cleanups as symbol reading was successful. */
1078
1079 discard_cleanups (old_chain);
1080 xfree (local_addr);
1081 }
1082
1083 /* Same as syms_from_objfile_1, but also initializes the objfile
1084 entry-point info. */
1085
1086 static void
1087 syms_from_objfile (struct objfile *objfile,
1088 struct section_addr_info *addrs,
1089 symfile_add_flags add_flags)
1090 {
1091 syms_from_objfile_1 (objfile, addrs, add_flags);
1092 init_entry_point_info (objfile);
1093 }
1094
1095 /* Perform required actions after either reading in the initial
1096 symbols for a new objfile, or mapping in the symbols from a reusable
1097 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1098
1099 static void
1100 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1101 {
1102 /* If this is the main symbol file we have to clean up all users of the
1103 old main symbol file. Otherwise it is sufficient to fixup all the
1104 breakpoints that may have been redefined by this symbol file. */
1105 if (add_flags & SYMFILE_MAINLINE)
1106 {
1107 /* OK, make it the "real" symbol file. */
1108 symfile_objfile = objfile;
1109
1110 clear_symtab_users (add_flags);
1111 }
1112 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1113 {
1114 breakpoint_re_set ();
1115 }
1116
1117 /* We're done reading the symbol file; finish off complaints. */
1118 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1119 }
1120
1121 /* Process a symbol file, as either the main file or as a dynamically
1122 loaded file.
1123
1124 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1125 A new reference is acquired by this function.
1126
1127 For NAME description see allocate_objfile's definition.
1128
1129 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1130 extra, such as dynamically loaded code, and what to do with breakpoins.
1131
1132 ADDRS is as described for syms_from_objfile_1, above.
1133 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1134
1135 PARENT is the original objfile if ABFD is a separate debug info file.
1136 Otherwise PARENT is NULL.
1137
1138 Upon success, returns a pointer to the objfile that was added.
1139 Upon failure, jumps back to command level (never returns). */
1140
1141 static struct objfile *
1142 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1143 symfile_add_flags add_flags,
1144 struct section_addr_info *addrs,
1145 objfile_flags flags, struct objfile *parent)
1146 {
1147 struct objfile *objfile;
1148 const int from_tty = add_flags & SYMFILE_VERBOSE;
1149 const int mainline = add_flags & SYMFILE_MAINLINE;
1150 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1151 && (readnow_symbol_files
1152 || (add_flags & SYMFILE_NO_READ) == 0));
1153
1154 if (readnow_symbol_files)
1155 {
1156 flags |= OBJF_READNOW;
1157 add_flags &= ~SYMFILE_NO_READ;
1158 }
1159
1160 /* Give user a chance to burp if we'd be
1161 interactively wiping out any existing symbols. */
1162
1163 if ((have_full_symbols () || have_partial_symbols ())
1164 && mainline
1165 && from_tty
1166 && !query (_("Load new symbol table from \"%s\"? "), name))
1167 error (_("Not confirmed."));
1168
1169 if (mainline)
1170 flags |= OBJF_MAINLINE;
1171 objfile = allocate_objfile (abfd, name, flags);
1172
1173 if (parent)
1174 add_separate_debug_objfile (objfile, parent);
1175
1176 /* We either created a new mapped symbol table, mapped an existing
1177 symbol table file which has not had initial symbol reading
1178 performed, or need to read an unmapped symbol table. */
1179 if (should_print)
1180 {
1181 if (deprecated_pre_add_symbol_hook)
1182 deprecated_pre_add_symbol_hook (name);
1183 else
1184 {
1185 printf_unfiltered (_("Reading symbols from %s..."), name);
1186 wrap_here ("");
1187 gdb_flush (gdb_stdout);
1188 }
1189 }
1190 syms_from_objfile (objfile, addrs, add_flags);
1191
1192 /* We now have at least a partial symbol table. Check to see if the
1193 user requested that all symbols be read on initial access via either
1194 the gdb startup command line or on a per symbol file basis. Expand
1195 all partial symbol tables for this objfile if so. */
1196
1197 if ((flags & OBJF_READNOW))
1198 {
1199 if (should_print)
1200 {
1201 printf_unfiltered (_("expanding to full symbols..."));
1202 wrap_here ("");
1203 gdb_flush (gdb_stdout);
1204 }
1205
1206 if (objfile->sf)
1207 objfile->sf->qf->expand_all_symtabs (objfile);
1208 }
1209
1210 if (should_print && !objfile_has_symbols (objfile))
1211 {
1212 wrap_here ("");
1213 printf_unfiltered (_("(no debugging symbols found)..."));
1214 wrap_here ("");
1215 }
1216
1217 if (should_print)
1218 {
1219 if (deprecated_post_add_symbol_hook)
1220 deprecated_post_add_symbol_hook ();
1221 else
1222 printf_unfiltered (_("done.\n"));
1223 }
1224
1225 /* We print some messages regardless of whether 'from_tty ||
1226 info_verbose' is true, so make sure they go out at the right
1227 time. */
1228 gdb_flush (gdb_stdout);
1229
1230 if (objfile->sf == NULL)
1231 {
1232 observer_notify_new_objfile (objfile);
1233 return objfile; /* No symbols. */
1234 }
1235
1236 finish_new_objfile (objfile, add_flags);
1237
1238 observer_notify_new_objfile (objfile);
1239
1240 bfd_cache_close_all ();
1241 return (objfile);
1242 }
1243
1244 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1245 see allocate_objfile's definition. */
1246
1247 void
1248 symbol_file_add_separate (bfd *bfd, const char *name,
1249 symfile_add_flags symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
1260
1261 symbol_file_add_with_addrs
1262 (bfd, name, symfile_flags, sap,
1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1264 | OBJF_USERLOADED),
1265 objfile);
1266
1267 do_cleanups (my_cleanup);
1268 }
1269
1270 /* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
1272 See symbol_file_add_with_addrs's comments for details. */
1273
1274 struct objfile *
1275 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1276 symfile_add_flags add_flags,
1277 struct section_addr_info *addrs,
1278 objfile_flags flags, struct objfile *parent)
1279 {
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282 }
1283
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287 struct objfile *
1288 symbol_file_add (const char *name, symfile_add_flags add_flags,
1289 struct section_addr_info *addrs, objfile_flags flags)
1290 {
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298 }
1299
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308 void
1309 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1310 {
1311 symbol_file_add_main_1 (args, add_flags, 0);
1312 }
1313
1314 static void
1315 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1316 objfile_flags flags)
1317 {
1318 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1319
1320 symbol_file_add (args, add_flags, NULL, flags);
1321
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
1326 if ((add_flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1328 }
1329
1330 void
1331 symbol_file_clear (int from_tty)
1332 {
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1340
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1344
1345 free_all_objfiles ();
1346
1347 gdb_assert (symfile_objfile == NULL);
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1350 }
1351
1352 static int
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1355 {
1356 unsigned long file_crc;
1357 int file_crc_p;
1358 bfd *abfd;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1367
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369 return 0;
1370
1371 abfd = gdb_bfd_open (name, gnutarget, -1);
1372
1373 if (!abfd)
1374 return 0;
1375
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1390 {
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
1394 gdb_bfd_unref (abfd);
1395 return 0;
1396 }
1397 verified_as_different = 1;
1398 }
1399 else
1400 verified_as_different = 0;
1401
1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1403
1404 gdb_bfd_unref (abfd);
1405
1406 if (!file_crc_p)
1407 return 0;
1408
1409 if (crc != file_crc)
1410 {
1411 unsigned long parent_crc;
1412
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
1416
1417 if (!verified_as_different)
1418 {
1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1420 return 0;
1421 }
1422
1423 if (verified_as_different || parent_crc != file_crc)
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
1426 name, objfile_name (parent_objfile));
1427
1428 return 0;
1429 }
1430
1431 return 1;
1432 }
1433
1434 char *debug_file_directory = NULL;
1435 static void
1436 show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
1442 value);
1443 }
1444
1445 #if ! defined (DEBUG_SUBDIRECTORY)
1446 #define DEBUG_SUBDIRECTORY ".debug"
1447 #endif
1448
1449 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1455
1456 static char *
1457 find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
1461 {
1462 char *debugdir;
1463 char *debugfile;
1464 int i;
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
1468
1469 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1470 i = strlen (dir);
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1473
1474 debugfile
1475 = (char *) xmalloc (strlen (debug_file_directory) + 1
1476 + i
1477 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen ("/")
1479 + strlen (debuglink)
1480 + 1);
1481
1482 /* First try in the same directory as the original file. */
1483 strcpy (debugfile, dir);
1484 strcat (debugfile, debuglink);
1485
1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1487 return debugfile;
1488
1489 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, DEBUG_SUBDIRECTORY);
1492 strcat (debugfile, "/");
1493 strcat (debugfile, debuglink);
1494
1495 if (separate_debug_file_exists (debugfile, crc32, objfile))
1496 return debugfile;
1497
1498 /* Then try in the global debugfile directories.
1499
1500 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1501 cause "/..." lookups. */
1502
1503 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1504 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1505
1506 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 {
1508 strcpy (debugfile, debugdir);
1509 strcat (debugfile, "/");
1510 strcat (debugfile, dir);
1511 strcat (debugfile, debuglink);
1512
1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
1514 {
1515 do_cleanups (back_to);
1516 return debugfile;
1517 }
1518
1519 /* If the file is in the sysroot, try using its base path in the
1520 global debugfile directory. */
1521 if (canon_dir != NULL
1522 && filename_ncmp (canon_dir, gdb_sysroot,
1523 strlen (gdb_sysroot)) == 0
1524 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1525 {
1526 strcpy (debugfile, debugdir);
1527 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1528 strcat (debugfile, "/");
1529 strcat (debugfile, debuglink);
1530
1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
1532 {
1533 do_cleanups (back_to);
1534 return debugfile;
1535 }
1536 }
1537 }
1538
1539 do_cleanups (back_to);
1540 xfree (debugfile);
1541 return NULL;
1542 }
1543
1544 /* Modify PATH to contain only "[/]directory/" part of PATH.
1545 If there were no directory separators in PATH, PATH will be empty
1546 string on return. */
1547
1548 static void
1549 terminate_after_last_dir_separator (char *path)
1550 {
1551 int i;
1552
1553 /* Strip off the final filename part, leaving the directory name,
1554 followed by a slash. The directory can be relative or absolute. */
1555 for (i = strlen(path) - 1; i >= 0; i--)
1556 if (IS_DIR_SEPARATOR (path[i]))
1557 break;
1558
1559 /* If I is -1 then no directory is present there and DIR will be "". */
1560 path[i + 1] = '\0';
1561 }
1562
1563 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1564 Returns pathname, or NULL. */
1565
1566 char *
1567 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1568 {
1569 char *debuglink;
1570 char *dir, *canon_dir;
1571 char *debugfile;
1572 unsigned long crc32;
1573 struct cleanup *cleanups;
1574
1575 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1576
1577 if (debuglink == NULL)
1578 {
1579 /* There's no separate debug info, hence there's no way we could
1580 load it => no warning. */
1581 return NULL;
1582 }
1583
1584 cleanups = make_cleanup (xfree, debuglink);
1585 dir = xstrdup (objfile_name (objfile));
1586 make_cleanup (xfree, dir);
1587 terminate_after_last_dir_separator (dir);
1588 canon_dir = lrealpath (dir);
1589
1590 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1591 crc32, objfile);
1592 xfree (canon_dir);
1593
1594 if (debugfile == NULL)
1595 {
1596 /* For PR gdb/9538, try again with realpath (if different from the
1597 original). */
1598
1599 struct stat st_buf;
1600
1601 if (lstat (objfile_name (objfile), &st_buf) == 0
1602 && S_ISLNK (st_buf.st_mode))
1603 {
1604 char *symlink_dir;
1605
1606 symlink_dir = lrealpath (objfile_name (objfile));
1607 if (symlink_dir != NULL)
1608 {
1609 make_cleanup (xfree, symlink_dir);
1610 terminate_after_last_dir_separator (symlink_dir);
1611 if (strcmp (dir, symlink_dir) != 0)
1612 {
1613 /* Different directory, so try using it. */
1614 debugfile = find_separate_debug_file (symlink_dir,
1615 symlink_dir,
1616 debuglink,
1617 crc32,
1618 objfile);
1619 }
1620 }
1621 }
1622 }
1623
1624 do_cleanups (cleanups);
1625 return debugfile;
1626 }
1627
1628 /* This is the symbol-file command. Read the file, analyze its
1629 symbols, and add a struct symtab to a symtab list. The syntax of
1630 the command is rather bizarre:
1631
1632 1. The function buildargv implements various quoting conventions
1633 which are undocumented and have little or nothing in common with
1634 the way things are quoted (or not quoted) elsewhere in GDB.
1635
1636 2. Options are used, which are not generally used in GDB (perhaps
1637 "set mapped on", "set readnow on" would be better)
1638
1639 3. The order of options matters, which is contrary to GNU
1640 conventions (because it is confusing and inconvenient). */
1641
1642 void
1643 symbol_file_command (char *args, int from_tty)
1644 {
1645 dont_repeat ();
1646
1647 if (args == NULL)
1648 {
1649 symbol_file_clear (from_tty);
1650 }
1651 else
1652 {
1653 char **argv = gdb_buildargv (args);
1654 objfile_flags flags = OBJF_USERLOADED;
1655 symfile_add_flags add_flags = 0;
1656 struct cleanup *cleanups;
1657 char *name = NULL;
1658
1659 if (from_tty)
1660 add_flags |= SYMFILE_VERBOSE;
1661
1662 cleanups = make_cleanup_freeargv (argv);
1663 while (*argv != NULL)
1664 {
1665 if (strcmp (*argv, "-readnow") == 0)
1666 flags |= OBJF_READNOW;
1667 else if (**argv == '-')
1668 error (_("unknown option `%s'"), *argv);
1669 else
1670 {
1671 symbol_file_add_main_1 (*argv, add_flags, flags);
1672 name = *argv;
1673 }
1674
1675 argv++;
1676 }
1677
1678 if (name == NULL)
1679 error (_("no symbol file name was specified"));
1680
1681 do_cleanups (cleanups);
1682 }
1683 }
1684
1685 /* Set the initial language.
1686
1687 FIXME: A better solution would be to record the language in the
1688 psymtab when reading partial symbols, and then use it (if known) to
1689 set the language. This would be a win for formats that encode the
1690 language in an easily discoverable place, such as DWARF. For
1691 stabs, we can jump through hoops looking for specially named
1692 symbols or try to intuit the language from the specific type of
1693 stabs we find, but we can't do that until later when we read in
1694 full symbols. */
1695
1696 void
1697 set_initial_language (void)
1698 {
1699 enum language lang = main_language ();
1700
1701 if (lang == language_unknown)
1702 {
1703 char *name = main_name ();
1704 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1705
1706 if (sym != NULL)
1707 lang = SYMBOL_LANGUAGE (sym);
1708 }
1709
1710 if (lang == language_unknown)
1711 {
1712 /* Make C the default language */
1713 lang = language_c;
1714 }
1715
1716 set_language (lang);
1717 expected_language = current_language; /* Don't warn the user. */
1718 }
1719
1720 /* Open the file specified by NAME and hand it off to BFD for
1721 preliminary analysis. Return a newly initialized bfd *, which
1722 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1723 absolute). In case of trouble, error() is called. */
1724
1725 bfd *
1726 symfile_bfd_open (const char *name)
1727 {
1728 bfd *sym_bfd;
1729 int desc = -1;
1730 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1731
1732 if (!is_target_filename (name))
1733 {
1734 char *expanded_name, *absolute_name;
1735
1736 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1737
1738 /* Look down path for it, allocate 2nd new malloc'd copy. */
1739 desc = openp (getenv ("PATH"),
1740 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1742 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1743 if (desc < 0)
1744 {
1745 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1746
1747 strcat (strcpy (exename, expanded_name), ".exe");
1748 desc = openp (getenv ("PATH"),
1749 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1750 exename, O_RDONLY | O_BINARY, &absolute_name);
1751 }
1752 #endif
1753 if (desc < 0)
1754 {
1755 make_cleanup (xfree, expanded_name);
1756 perror_with_name (expanded_name);
1757 }
1758
1759 xfree (expanded_name);
1760 make_cleanup (xfree, absolute_name);
1761 name = absolute_name;
1762 }
1763
1764 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1765 if (!sym_bfd)
1766 error (_("`%s': can't open to read symbols: %s."), name,
1767 bfd_errmsg (bfd_get_error ()));
1768
1769 if (!gdb_bfd_has_target_filename (sym_bfd))
1770 bfd_set_cacheable (sym_bfd, 1);
1771
1772 if (!bfd_check_format (sym_bfd, bfd_object))
1773 {
1774 make_cleanup_bfd_unref (sym_bfd);
1775 error (_("`%s': can't read symbols: %s."), name,
1776 bfd_errmsg (bfd_get_error ()));
1777 }
1778
1779 do_cleanups (back_to);
1780
1781 return sym_bfd;
1782 }
1783
1784 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1785 the section was not found. */
1786
1787 int
1788 get_section_index (struct objfile *objfile, char *section_name)
1789 {
1790 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1791
1792 if (sect)
1793 return sect->index;
1794 else
1795 return -1;
1796 }
1797
1798 /* Link SF into the global symtab_fns list.
1799 FLAVOUR is the file format that SF handles.
1800 Called on startup by the _initialize routine in each object file format
1801 reader, to register information about each format the reader is prepared
1802 to handle. */
1803
1804 void
1805 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1806 {
1807 registered_sym_fns fns = { flavour, sf };
1808
1809 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1810 }
1811
1812 /* Initialize OBJFILE to read symbols from its associated BFD. It
1813 either returns or calls error(). The result is an initialized
1814 struct sym_fns in the objfile structure, that contains cached
1815 information about the symbol file. */
1816
1817 static const struct sym_fns *
1818 find_sym_fns (bfd *abfd)
1819 {
1820 registered_sym_fns *rsf;
1821 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1822 int i;
1823
1824 if (our_flavour == bfd_target_srec_flavour
1825 || our_flavour == bfd_target_ihex_flavour
1826 || our_flavour == bfd_target_tekhex_flavour)
1827 return NULL; /* No symbols. */
1828
1829 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1830 if (our_flavour == rsf->sym_flavour)
1831 return rsf->sym_fns;
1832
1833 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1834 bfd_get_target (abfd));
1835 }
1836 \f
1837
1838 /* This function runs the load command of our current target. */
1839
1840 static void
1841 load_command (char *arg, int from_tty)
1842 {
1843 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1844
1845 dont_repeat ();
1846
1847 /* The user might be reloading because the binary has changed. Take
1848 this opportunity to check. */
1849 reopen_exec_file ();
1850 reread_symbols ();
1851
1852 if (arg == NULL)
1853 {
1854 char *parg;
1855 int count = 0;
1856
1857 parg = arg = get_exec_file (1);
1858
1859 /* Count how many \ " ' tab space there are in the name. */
1860 while ((parg = strpbrk (parg, "\\\"'\t ")))
1861 {
1862 parg++;
1863 count++;
1864 }
1865
1866 if (count)
1867 {
1868 /* We need to quote this string so buildargv can pull it apart. */
1869 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1870 char *ptemp = temp;
1871 char *prev;
1872
1873 make_cleanup (xfree, temp);
1874
1875 prev = parg = arg;
1876 while ((parg = strpbrk (parg, "\\\"'\t ")))
1877 {
1878 strncpy (ptemp, prev, parg - prev);
1879 ptemp += parg - prev;
1880 prev = parg++;
1881 *ptemp++ = '\\';
1882 }
1883 strcpy (ptemp, prev);
1884
1885 arg = temp;
1886 }
1887 }
1888
1889 target_load (arg, from_tty);
1890
1891 /* After re-loading the executable, we don't really know which
1892 overlays are mapped any more. */
1893 overlay_cache_invalid = 1;
1894
1895 do_cleanups (cleanup);
1896 }
1897
1898 /* This version of "load" should be usable for any target. Currently
1899 it is just used for remote targets, not inftarg.c or core files,
1900 on the theory that only in that case is it useful.
1901
1902 Avoiding xmodem and the like seems like a win (a) because we don't have
1903 to worry about finding it, and (b) On VMS, fork() is very slow and so
1904 we don't want to run a subprocess. On the other hand, I'm not sure how
1905 performance compares. */
1906
1907 static int validate_download = 0;
1908
1909 /* Callback service function for generic_load (bfd_map_over_sections). */
1910
1911 static void
1912 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1913 {
1914 bfd_size_type *sum = (bfd_size_type *) data;
1915
1916 *sum += bfd_get_section_size (asec);
1917 }
1918
1919 /* Opaque data for load_section_callback. */
1920 struct load_section_data {
1921 CORE_ADDR load_offset;
1922 struct load_progress_data *progress_data;
1923 VEC(memory_write_request_s) *requests;
1924 };
1925
1926 /* Opaque data for load_progress. */
1927 struct load_progress_data {
1928 /* Cumulative data. */
1929 unsigned long write_count;
1930 unsigned long data_count;
1931 bfd_size_type total_size;
1932 };
1933
1934 /* Opaque data for load_progress for a single section. */
1935 struct load_progress_section_data {
1936 struct load_progress_data *cumulative;
1937
1938 /* Per-section data. */
1939 const char *section_name;
1940 ULONGEST section_sent;
1941 ULONGEST section_size;
1942 CORE_ADDR lma;
1943 gdb_byte *buffer;
1944 };
1945
1946 /* Target write callback routine for progress reporting. */
1947
1948 static void
1949 load_progress (ULONGEST bytes, void *untyped_arg)
1950 {
1951 struct load_progress_section_data *args
1952 = (struct load_progress_section_data *) untyped_arg;
1953 struct load_progress_data *totals;
1954
1955 if (args == NULL)
1956 /* Writing padding data. No easy way to get at the cumulative
1957 stats, so just ignore this. */
1958 return;
1959
1960 totals = args->cumulative;
1961
1962 if (bytes == 0 && args->section_sent == 0)
1963 {
1964 /* The write is just starting. Let the user know we've started
1965 this section. */
1966 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1967 args->section_name, hex_string (args->section_size),
1968 paddress (target_gdbarch (), args->lma));
1969 return;
1970 }
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
1981 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1982 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1983
1984 if (target_read_memory (args->lma, check, bytes) != 0)
1985 error (_("Download verify read failed at %s"),
1986 paddress (target_gdbarch (), args->lma));
1987 if (memcmp (args->buffer, check, bytes) != 0)
1988 error (_("Download verify compare failed at %s"),
1989 paddress (target_gdbarch (), args->lma));
1990 do_cleanups (verify_cleanups);
1991 }
1992 totals->data_count += bytes;
1993 args->lma += bytes;
1994 args->buffer += bytes;
1995 totals->write_count += 1;
1996 args->section_sent += bytes;
1997 if (check_quit_flag ()
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
2007 totals->data_count,
2008 totals->total_size);
2009 }
2010
2011 /* Callback service function for generic_load (bfd_map_over_sections). */
2012
2013 static void
2014 load_section_callback (bfd *abfd, asection *asec, void *data)
2015 {
2016 struct memory_write_request *new_request;
2017 struct load_section_data *args = (struct load_section_data *) data;
2018 struct load_progress_section_data *section_data;
2019 bfd_size_type size = bfd_get_section_size (asec);
2020 gdb_byte *buffer;
2021 const char *sect_name = bfd_get_section_name (abfd, asec);
2022
2023 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 return;
2025
2026 if (size == 0)
2027 return;
2028
2029 new_request = VEC_safe_push (memory_write_request_s,
2030 args->requests, NULL);
2031 memset (new_request, 0, sizeof (struct memory_write_request));
2032 section_data = XCNEW (struct load_progress_section_data);
2033 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2034 new_request->end = new_request->begin + size; /* FIXME Should size
2035 be in instead? */
2036 new_request->data = (gdb_byte *) xmalloc (size);
2037 new_request->baton = section_data;
2038
2039 buffer = new_request->data;
2040
2041 section_data->cumulative = args->progress_data;
2042 section_data->section_name = sect_name;
2043 section_data->section_size = size;
2044 section_data->lma = new_request->begin;
2045 section_data->buffer = buffer;
2046
2047 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2048 }
2049
2050 /* Clean up an entire memory request vector, including load
2051 data and progress records. */
2052
2053 static void
2054 clear_memory_write_data (void *arg)
2055 {
2056 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2057 VEC(memory_write_request_s) *vec = *vec_p;
2058 int i;
2059 struct memory_write_request *mr;
2060
2061 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2062 {
2063 xfree (mr->data);
2064 xfree (mr->baton);
2065 }
2066 VEC_free (memory_write_request_s, vec);
2067 }
2068
2069 void
2070 generic_load (const char *args, int from_tty)
2071 {
2072 bfd *loadfile_bfd;
2073 struct timeval start_time, end_time;
2074 char *filename;
2075 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2076 struct load_section_data cbdata;
2077 struct load_progress_data total_progress;
2078 struct ui_out *uiout = current_uiout;
2079
2080 CORE_ADDR entry;
2081 char **argv;
2082
2083 memset (&cbdata, 0, sizeof (cbdata));
2084 memset (&total_progress, 0, sizeof (total_progress));
2085 cbdata.progress_data = &total_progress;
2086
2087 make_cleanup (clear_memory_write_data, &cbdata.requests);
2088
2089 if (args == NULL)
2090 error_no_arg (_("file to load"));
2091
2092 argv = gdb_buildargv (args);
2093 make_cleanup_freeargv (argv);
2094
2095 filename = tilde_expand (argv[0]);
2096 make_cleanup (xfree, filename);
2097
2098 if (argv[1] != NULL)
2099 {
2100 const char *endptr;
2101
2102 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2103
2104 /* If the last word was not a valid number then
2105 treat it as a file name with spaces in. */
2106 if (argv[1] == endptr)
2107 error (_("Invalid download offset:%s."), argv[1]);
2108
2109 if (argv[2] != NULL)
2110 error (_("Too many parameters."));
2111 }
2112
2113 /* Open the file for loading. */
2114 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2115 if (loadfile_bfd == NULL)
2116 {
2117 perror_with_name (filename);
2118 return;
2119 }
2120
2121 make_cleanup_bfd_unref (loadfile_bfd);
2122
2123 if (!bfd_check_format (loadfile_bfd, bfd_object))
2124 {
2125 error (_("\"%s\" is not an object file: %s"), filename,
2126 bfd_errmsg (bfd_get_error ()));
2127 }
2128
2129 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2130 (void *) &total_progress.total_size);
2131
2132 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2133
2134 gettimeofday (&start_time, NULL);
2135
2136 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2137 load_progress) != 0)
2138 error (_("Load failed"));
2139
2140 gettimeofday (&end_time, NULL);
2141
2142 entry = bfd_get_start_address (loadfile_bfd);
2143 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2144 ui_out_text (uiout, "Start address ");
2145 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2146 ui_out_text (uiout, ", load size ");
2147 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2148 ui_out_text (uiout, "\n");
2149 regcache_write_pc (get_current_regcache (), entry);
2150
2151 /* Reset breakpoints, now that we have changed the load image. For
2152 instance, breakpoints may have been set (or reset, by
2153 post_create_inferior) while connected to the target but before we
2154 loaded the program. In that case, the prologue analyzer could
2155 have read instructions from the target to find the right
2156 breakpoint locations. Loading has changed the contents of that
2157 memory. */
2158
2159 breakpoint_re_set ();
2160
2161 print_transfer_performance (gdb_stdout, total_progress.data_count,
2162 total_progress.write_count,
2163 &start_time, &end_time);
2164
2165 do_cleanups (old_cleanups);
2166 }
2167
2168 /* Report how fast the transfer went. */
2169
2170 void
2171 print_transfer_performance (struct ui_file *stream,
2172 unsigned long data_count,
2173 unsigned long write_count,
2174 const struct timeval *start_time,
2175 const struct timeval *end_time)
2176 {
2177 ULONGEST time_count;
2178 struct ui_out *uiout = current_uiout;
2179
2180 /* Compute the elapsed time in milliseconds, as a tradeoff between
2181 accuracy and overflow. */
2182 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2183 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2184
2185 ui_out_text (uiout, "Transfer rate: ");
2186 if (time_count > 0)
2187 {
2188 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2189
2190 if (ui_out_is_mi_like_p (uiout))
2191 {
2192 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2193 ui_out_text (uiout, " bits/sec");
2194 }
2195 else if (rate < 1024)
2196 {
2197 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2198 ui_out_text (uiout, " bytes/sec");
2199 }
2200 else
2201 {
2202 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2203 ui_out_text (uiout, " KB/sec");
2204 }
2205 }
2206 else
2207 {
2208 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2209 ui_out_text (uiout, " bits in <1 sec");
2210 }
2211 if (write_count > 0)
2212 {
2213 ui_out_text (uiout, ", ");
2214 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2215 ui_out_text (uiout, " bytes/write");
2216 }
2217 ui_out_text (uiout, ".\n");
2218 }
2219
2220 /* This function allows the addition of incrementally linked object files.
2221 It does not modify any state in the target, only in the debugger. */
2222 /* Note: ezannoni 2000-04-13 This function/command used to have a
2223 special case syntax for the rombug target (Rombug is the boot
2224 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2225 rombug case, the user doesn't need to supply a text address,
2226 instead a call to target_link() (in target.c) would supply the
2227 value to use. We are now discontinuing this type of ad hoc syntax. */
2228
2229 static void
2230 add_symbol_file_command (char *args, int from_tty)
2231 {
2232 struct gdbarch *gdbarch = get_current_arch ();
2233 char *filename = NULL;
2234 char *arg;
2235 int section_index = 0;
2236 int argcnt = 0;
2237 int sec_num = 0;
2238 int i;
2239 int expecting_sec_name = 0;
2240 int expecting_sec_addr = 0;
2241 char **argv;
2242 struct objfile *objf;
2243 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2244 symfile_add_flags add_flags = 0;
2245
2246 if (from_tty)
2247 add_flags |= SYMFILE_VERBOSE;
2248
2249 struct sect_opt
2250 {
2251 char *name;
2252 char *value;
2253 };
2254
2255 struct section_addr_info *section_addrs;
2256 struct sect_opt *sect_opts = NULL;
2257 size_t num_sect_opts = 0;
2258 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2259
2260 num_sect_opts = 16;
2261 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2262
2263 dont_repeat ();
2264
2265 if (args == NULL)
2266 error (_("add-symbol-file takes a file name and an address"));
2267
2268 argv = gdb_buildargv (args);
2269 make_cleanup_freeargv (argv);
2270
2271 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2272 {
2273 /* Process the argument. */
2274 if (argcnt == 0)
2275 {
2276 /* The first argument is the file name. */
2277 filename = tilde_expand (arg);
2278 make_cleanup (xfree, filename);
2279 }
2280 else if (argcnt == 1)
2281 {
2282 /* The second argument is always the text address at which
2283 to load the program. */
2284 sect_opts[section_index].name = ".text";
2285 sect_opts[section_index].value = arg;
2286 if (++section_index >= num_sect_opts)
2287 {
2288 num_sect_opts *= 2;
2289 sect_opts = ((struct sect_opt *)
2290 xrealloc (sect_opts,
2291 num_sect_opts
2292 * sizeof (struct sect_opt)));
2293 }
2294 }
2295 else
2296 {
2297 /* It's an option (starting with '-') or it's an argument
2298 to an option. */
2299 if (expecting_sec_name)
2300 {
2301 sect_opts[section_index].name = arg;
2302 expecting_sec_name = 0;
2303 }
2304 else if (expecting_sec_addr)
2305 {
2306 sect_opts[section_index].value = arg;
2307 expecting_sec_addr = 0;
2308 if (++section_index >= num_sect_opts)
2309 {
2310 num_sect_opts *= 2;
2311 sect_opts = ((struct sect_opt *)
2312 xrealloc (sect_opts,
2313 num_sect_opts
2314 * sizeof (struct sect_opt)));
2315 }
2316 }
2317 else if (strcmp (arg, "-readnow") == 0)
2318 flags |= OBJF_READNOW;
2319 else if (strcmp (arg, "-s") == 0)
2320 {
2321 expecting_sec_name = 1;
2322 expecting_sec_addr = 1;
2323 }
2324 else
2325 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2326 " [-readnow] [-s <secname> <addr>]*"));
2327 }
2328 }
2329
2330 /* This command takes at least two arguments. The first one is a
2331 filename, and the second is the address where this file has been
2332 loaded. Abort now if this address hasn't been provided by the
2333 user. */
2334 if (section_index < 1)
2335 error (_("The address where %s has been loaded is missing"), filename);
2336
2337 /* Print the prompt for the query below. And save the arguments into
2338 a sect_addr_info structure to be passed around to other
2339 functions. We have to split this up into separate print
2340 statements because hex_string returns a local static
2341 string. */
2342
2343 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2344 section_addrs = alloc_section_addr_info (section_index);
2345 make_cleanup (xfree, section_addrs);
2346 for (i = 0; i < section_index; i++)
2347 {
2348 CORE_ADDR addr;
2349 char *val = sect_opts[i].value;
2350 char *sec = sect_opts[i].name;
2351
2352 addr = parse_and_eval_address (val);
2353
2354 /* Here we store the section offsets in the order they were
2355 entered on the command line. */
2356 section_addrs->other[sec_num].name = sec;
2357 section_addrs->other[sec_num].addr = addr;
2358 printf_unfiltered ("\t%s_addr = %s\n", sec,
2359 paddress (gdbarch, addr));
2360 sec_num++;
2361
2362 /* The object's sections are initialized when a
2363 call is made to build_objfile_section_table (objfile).
2364 This happens in reread_symbols.
2365 At this point, we don't know what file type this is,
2366 so we can't determine what section names are valid. */
2367 }
2368 section_addrs->num_sections = sec_num;
2369
2370 if (from_tty && (!query ("%s", "")))
2371 error (_("Not confirmed."));
2372
2373 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
2374
2375 add_target_sections_of_objfile (objf);
2376
2377 /* Getting new symbols may change our opinion about what is
2378 frameless. */
2379 reinit_frame_cache ();
2380 do_cleanups (my_cleanups);
2381 }
2382 \f
2383
2384 /* This function removes a symbol file that was added via add-symbol-file. */
2385
2386 static void
2387 remove_symbol_file_command (char *args, int from_tty)
2388 {
2389 char **argv;
2390 struct objfile *objf = NULL;
2391 struct cleanup *my_cleanups;
2392 struct program_space *pspace = current_program_space;
2393
2394 dont_repeat ();
2395
2396 if (args == NULL)
2397 error (_("remove-symbol-file: no symbol file provided"));
2398
2399 my_cleanups = make_cleanup (null_cleanup, NULL);
2400
2401 argv = gdb_buildargv (args);
2402
2403 if (strcmp (argv[0], "-a") == 0)
2404 {
2405 /* Interpret the next argument as an address. */
2406 CORE_ADDR addr;
2407
2408 if (argv[1] == NULL)
2409 error (_("Missing address argument"));
2410
2411 if (argv[2] != NULL)
2412 error (_("Junk after %s"), argv[1]);
2413
2414 addr = parse_and_eval_address (argv[1]);
2415
2416 ALL_OBJFILES (objf)
2417 {
2418 if ((objf->flags & OBJF_USERLOADED) != 0
2419 && (objf->flags & OBJF_SHARED) != 0
2420 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2421 break;
2422 }
2423 }
2424 else if (argv[0] != NULL)
2425 {
2426 /* Interpret the current argument as a file name. */
2427 char *filename;
2428
2429 if (argv[1] != NULL)
2430 error (_("Junk after %s"), argv[0]);
2431
2432 filename = tilde_expand (argv[0]);
2433 make_cleanup (xfree, filename);
2434
2435 ALL_OBJFILES (objf)
2436 {
2437 if ((objf->flags & OBJF_USERLOADED) != 0
2438 && (objf->flags & OBJF_SHARED) != 0
2439 && objf->pspace == pspace
2440 && filename_cmp (filename, objfile_name (objf)) == 0)
2441 break;
2442 }
2443 }
2444
2445 if (objf == NULL)
2446 error (_("No symbol file found"));
2447
2448 if (from_tty
2449 && !query (_("Remove symbol table from file \"%s\"? "),
2450 objfile_name (objf)))
2451 error (_("Not confirmed."));
2452
2453 free_objfile (objf);
2454 clear_symtab_users (0);
2455
2456 do_cleanups (my_cleanups);
2457 }
2458
2459 typedef struct objfile *objfilep;
2460
2461 DEF_VEC_P (objfilep);
2462
2463 /* Re-read symbols if a symbol-file has changed. */
2464
2465 void
2466 reread_symbols (void)
2467 {
2468 struct objfile *objfile;
2469 long new_modtime;
2470 struct stat new_statbuf;
2471 int res;
2472 VEC (objfilep) *new_objfiles = NULL;
2473 struct cleanup *all_cleanups;
2474
2475 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2476
2477 /* With the addition of shared libraries, this should be modified,
2478 the load time should be saved in the partial symbol tables, since
2479 different tables may come from different source files. FIXME.
2480 This routine should then walk down each partial symbol table
2481 and see if the symbol table that it originates from has been changed. */
2482
2483 for (objfile = object_files; objfile; objfile = objfile->next)
2484 {
2485 if (objfile->obfd == NULL)
2486 continue;
2487
2488 /* Separate debug objfiles are handled in the main objfile. */
2489 if (objfile->separate_debug_objfile_backlink)
2490 continue;
2491
2492 /* If this object is from an archive (what you usually create with
2493 `ar', often called a `static library' on most systems, though
2494 a `shared library' on AIX is also an archive), then you should
2495 stat on the archive name, not member name. */
2496 if (objfile->obfd->my_archive)
2497 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2498 else
2499 res = stat (objfile_name (objfile), &new_statbuf);
2500 if (res != 0)
2501 {
2502 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2503 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2504 objfile_name (objfile));
2505 continue;
2506 }
2507 new_modtime = new_statbuf.st_mtime;
2508 if (new_modtime != objfile->mtime)
2509 {
2510 struct cleanup *old_cleanups;
2511 struct section_offsets *offsets;
2512 int num_offsets;
2513 char *original_name;
2514
2515 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2516 objfile_name (objfile));
2517
2518 /* There are various functions like symbol_file_add,
2519 symfile_bfd_open, syms_from_objfile, etc., which might
2520 appear to do what we want. But they have various other
2521 effects which we *don't* want. So we just do stuff
2522 ourselves. We don't worry about mapped files (for one thing,
2523 any mapped file will be out of date). */
2524
2525 /* If we get an error, blow away this objfile (not sure if
2526 that is the correct response for things like shared
2527 libraries). */
2528 old_cleanups = make_cleanup_free_objfile (objfile);
2529 /* We need to do this whenever any symbols go away. */
2530 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2531
2532 if (exec_bfd != NULL
2533 && filename_cmp (bfd_get_filename (objfile->obfd),
2534 bfd_get_filename (exec_bfd)) == 0)
2535 {
2536 /* Reload EXEC_BFD without asking anything. */
2537
2538 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2539 }
2540
2541 /* Keep the calls order approx. the same as in free_objfile. */
2542
2543 /* Free the separate debug objfiles. It will be
2544 automatically recreated by sym_read. */
2545 free_objfile_separate_debug (objfile);
2546
2547 /* Remove any references to this objfile in the global
2548 value lists. */
2549 preserve_values (objfile);
2550
2551 /* Nuke all the state that we will re-read. Much of the following
2552 code which sets things to NULL really is necessary to tell
2553 other parts of GDB that there is nothing currently there.
2554
2555 Try to keep the freeing order compatible with free_objfile. */
2556
2557 if (objfile->sf != NULL)
2558 {
2559 (*objfile->sf->sym_finish) (objfile);
2560 }
2561
2562 clear_objfile_data (objfile);
2563
2564 /* Clean up any state BFD has sitting around. */
2565 {
2566 struct bfd *obfd = objfile->obfd;
2567 char *obfd_filename;
2568
2569 obfd_filename = bfd_get_filename (objfile->obfd);
2570 /* Open the new BFD before freeing the old one, so that
2571 the filename remains live. */
2572 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2573 if (objfile->obfd == NULL)
2574 {
2575 /* We have to make a cleanup and error here, rather
2576 than erroring later, because once we unref OBFD,
2577 OBFD_FILENAME will be freed. */
2578 make_cleanup_bfd_unref (obfd);
2579 error (_("Can't open %s to read symbols."), obfd_filename);
2580 }
2581 gdb_bfd_unref (obfd);
2582 }
2583
2584 original_name = xstrdup (objfile->original_name);
2585 make_cleanup (xfree, original_name);
2586
2587 /* bfd_openr sets cacheable to true, which is what we want. */
2588 if (!bfd_check_format (objfile->obfd, bfd_object))
2589 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2590 bfd_errmsg (bfd_get_error ()));
2591
2592 /* Save the offsets, we will nuke them with the rest of the
2593 objfile_obstack. */
2594 num_offsets = objfile->num_sections;
2595 offsets = ((struct section_offsets *)
2596 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2597 memcpy (offsets, objfile->section_offsets,
2598 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2599
2600 /* FIXME: Do we have to free a whole linked list, or is this
2601 enough? */
2602 if (objfile->global_psymbols.list)
2603 xfree (objfile->global_psymbols.list);
2604 memset (&objfile->global_psymbols, 0,
2605 sizeof (objfile->global_psymbols));
2606 if (objfile->static_psymbols.list)
2607 xfree (objfile->static_psymbols.list);
2608 memset (&objfile->static_psymbols, 0,
2609 sizeof (objfile->static_psymbols));
2610
2611 /* Free the obstacks for non-reusable objfiles. */
2612 psymbol_bcache_free (objfile->psymbol_cache);
2613 objfile->psymbol_cache = psymbol_bcache_init ();
2614 obstack_free (&objfile->objfile_obstack, 0);
2615 objfile->sections = NULL;
2616 objfile->compunit_symtabs = NULL;
2617 objfile->psymtabs = NULL;
2618 objfile->psymtabs_addrmap = NULL;
2619 objfile->free_psymtabs = NULL;
2620 objfile->template_symbols = NULL;
2621
2622 /* obstack_init also initializes the obstack so it is
2623 empty. We could use obstack_specify_allocation but
2624 gdb_obstack.h specifies the alloc/dealloc functions. */
2625 obstack_init (&objfile->objfile_obstack);
2626
2627 /* set_objfile_per_bfd potentially allocates the per-bfd
2628 data on the objfile's obstack (if sharing data across
2629 multiple users is not possible), so it's important to
2630 do it *after* the obstack has been initialized. */
2631 set_objfile_per_bfd (objfile);
2632
2633 objfile->original_name
2634 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2635 strlen (original_name));
2636
2637 /* Reset the sym_fns pointer. The ELF reader can change it
2638 based on whether .gdb_index is present, and we need it to
2639 start over. PR symtab/15885 */
2640 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2641
2642 build_objfile_section_table (objfile);
2643 terminate_minimal_symbol_table (objfile);
2644
2645 /* We use the same section offsets as from last time. I'm not
2646 sure whether that is always correct for shared libraries. */
2647 objfile->section_offsets = (struct section_offsets *)
2648 obstack_alloc (&objfile->objfile_obstack,
2649 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2650 memcpy (objfile->section_offsets, offsets,
2651 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2652 objfile->num_sections = num_offsets;
2653
2654 /* What the hell is sym_new_init for, anyway? The concept of
2655 distinguishing between the main file and additional files
2656 in this way seems rather dubious. */
2657 if (objfile == symfile_objfile)
2658 {
2659 (*objfile->sf->sym_new_init) (objfile);
2660 }
2661
2662 (*objfile->sf->sym_init) (objfile);
2663 clear_complaints (&symfile_complaints, 1, 1);
2664
2665 objfile->flags &= ~OBJF_PSYMTABS_READ;
2666 read_symbols (objfile, 0);
2667
2668 if (!objfile_has_symbols (objfile))
2669 {
2670 wrap_here ("");
2671 printf_unfiltered (_("(no debugging symbols found)\n"));
2672 wrap_here ("");
2673 }
2674
2675 /* We're done reading the symbol file; finish off complaints. */
2676 clear_complaints (&symfile_complaints, 0, 1);
2677
2678 /* Getting new symbols may change our opinion about what is
2679 frameless. */
2680
2681 reinit_frame_cache ();
2682
2683 /* Discard cleanups as symbol reading was successful. */
2684 discard_cleanups (old_cleanups);
2685
2686 /* If the mtime has changed between the time we set new_modtime
2687 and now, we *want* this to be out of date, so don't call stat
2688 again now. */
2689 objfile->mtime = new_modtime;
2690 init_entry_point_info (objfile);
2691
2692 VEC_safe_push (objfilep, new_objfiles, objfile);
2693 }
2694 }
2695
2696 if (new_objfiles)
2697 {
2698 int ix;
2699
2700 /* Notify objfiles that we've modified objfile sections. */
2701 objfiles_changed ();
2702
2703 clear_symtab_users (0);
2704
2705 /* clear_objfile_data for each objfile was called before freeing it and
2706 observer_notify_new_objfile (NULL) has been called by
2707 clear_symtab_users above. Notify the new files now. */
2708 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2709 observer_notify_new_objfile (objfile);
2710
2711 /* At least one objfile has changed, so we can consider that
2712 the executable we're debugging has changed too. */
2713 observer_notify_executable_changed ();
2714 }
2715
2716 do_cleanups (all_cleanups);
2717 }
2718 \f
2719
2720 typedef struct
2721 {
2722 char *ext;
2723 enum language lang;
2724 } filename_language;
2725
2726 DEF_VEC_O (filename_language);
2727
2728 static VEC (filename_language) *filename_language_table;
2729
2730 /* See symfile.h. */
2731
2732 void
2733 add_filename_language (const char *ext, enum language lang)
2734 {
2735 filename_language entry;
2736
2737 entry.ext = xstrdup (ext);
2738 entry.lang = lang;
2739
2740 VEC_safe_push (filename_language, filename_language_table, &entry);
2741 }
2742
2743 static char *ext_args;
2744 static void
2745 show_ext_args (struct ui_file *file, int from_tty,
2746 struct cmd_list_element *c, const char *value)
2747 {
2748 fprintf_filtered (file,
2749 _("Mapping between filename extension "
2750 "and source language is \"%s\".\n"),
2751 value);
2752 }
2753
2754 static void
2755 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2756 {
2757 int i;
2758 char *cp = ext_args;
2759 enum language lang;
2760 filename_language *entry;
2761
2762 /* First arg is filename extension, starting with '.' */
2763 if (*cp != '.')
2764 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2765
2766 /* Find end of first arg. */
2767 while (*cp && !isspace (*cp))
2768 cp++;
2769
2770 if (*cp == '\0')
2771 error (_("'%s': two arguments required -- "
2772 "filename extension and language"),
2773 ext_args);
2774
2775 /* Null-terminate first arg. */
2776 *cp++ = '\0';
2777
2778 /* Find beginning of second arg, which should be a source language. */
2779 cp = skip_spaces (cp);
2780
2781 if (*cp == '\0')
2782 error (_("'%s': two arguments required -- "
2783 "filename extension and language"),
2784 ext_args);
2785
2786 /* Lookup the language from among those we know. */
2787 lang = language_enum (cp);
2788
2789 /* Now lookup the filename extension: do we already know it? */
2790 for (i = 0;
2791 VEC_iterate (filename_language, filename_language_table, i, entry);
2792 ++i)
2793 {
2794 if (0 == strcmp (ext_args, entry->ext))
2795 break;
2796 }
2797
2798 if (entry == NULL)
2799 {
2800 /* New file extension. */
2801 add_filename_language (ext_args, lang);
2802 }
2803 else
2804 {
2805 /* Redefining a previously known filename extension. */
2806
2807 /* if (from_tty) */
2808 /* query ("Really make files of type %s '%s'?", */
2809 /* ext_args, language_str (lang)); */
2810
2811 xfree (entry->ext);
2812 entry->ext = xstrdup (ext_args);
2813 entry->lang = lang;
2814 }
2815 }
2816
2817 static void
2818 info_ext_lang_command (char *args, int from_tty)
2819 {
2820 int i;
2821 filename_language *entry;
2822
2823 printf_filtered (_("Filename extensions and the languages they represent:"));
2824 printf_filtered ("\n\n");
2825 for (i = 0;
2826 VEC_iterate (filename_language, filename_language_table, i, entry);
2827 ++i)
2828 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2829 }
2830
2831 enum language
2832 deduce_language_from_filename (const char *filename)
2833 {
2834 int i;
2835 const char *cp;
2836
2837 if (filename != NULL)
2838 if ((cp = strrchr (filename, '.')) != NULL)
2839 {
2840 filename_language *entry;
2841
2842 for (i = 0;
2843 VEC_iterate (filename_language, filename_language_table, i, entry);
2844 ++i)
2845 if (strcmp (cp, entry->ext) == 0)
2846 return entry->lang;
2847 }
2848
2849 return language_unknown;
2850 }
2851 \f
2852 /* Allocate and initialize a new symbol table.
2853 CUST is from the result of allocate_compunit_symtab. */
2854
2855 struct symtab *
2856 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2857 {
2858 struct objfile *objfile = cust->objfile;
2859 struct symtab *symtab
2860 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2861
2862 symtab->filename
2863 = (const char *) bcache (filename, strlen (filename) + 1,
2864 objfile->per_bfd->filename_cache);
2865 symtab->fullname = NULL;
2866 symtab->language = deduce_language_from_filename (filename);
2867
2868 /* This can be very verbose with lots of headers.
2869 Only print at higher debug levels. */
2870 if (symtab_create_debug >= 2)
2871 {
2872 /* Be a bit clever with debugging messages, and don't print objfile
2873 every time, only when it changes. */
2874 static char *last_objfile_name = NULL;
2875
2876 if (last_objfile_name == NULL
2877 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2878 {
2879 xfree (last_objfile_name);
2880 last_objfile_name = xstrdup (objfile_name (objfile));
2881 fprintf_unfiltered (gdb_stdlog,
2882 "Creating one or more symtabs for objfile %s ...\n",
2883 last_objfile_name);
2884 }
2885 fprintf_unfiltered (gdb_stdlog,
2886 "Created symtab %s for module %s.\n",
2887 host_address_to_string (symtab), filename);
2888 }
2889
2890 /* Add it to CUST's list of symtabs. */
2891 if (cust->filetabs == NULL)
2892 {
2893 cust->filetabs = symtab;
2894 cust->last_filetab = symtab;
2895 }
2896 else
2897 {
2898 cust->last_filetab->next = symtab;
2899 cust->last_filetab = symtab;
2900 }
2901
2902 /* Backlink to the containing compunit symtab. */
2903 symtab->compunit_symtab = cust;
2904
2905 return symtab;
2906 }
2907
2908 /* Allocate and initialize a new compunit.
2909 NAME is the name of the main source file, if there is one, or some
2910 descriptive text if there are no source files. */
2911
2912 struct compunit_symtab *
2913 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2914 {
2915 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2916 struct compunit_symtab);
2917 const char *saved_name;
2918
2919 cu->objfile = objfile;
2920
2921 /* The name we record here is only for display/debugging purposes.
2922 Just save the basename to avoid path issues (too long for display,
2923 relative vs absolute, etc.). */
2924 saved_name = lbasename (name);
2925 cu->name
2926 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2927 strlen (saved_name));
2928
2929 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2930
2931 if (symtab_create_debug)
2932 {
2933 fprintf_unfiltered (gdb_stdlog,
2934 "Created compunit symtab %s for %s.\n",
2935 host_address_to_string (cu),
2936 cu->name);
2937 }
2938
2939 return cu;
2940 }
2941
2942 /* Hook CU to the objfile it comes from. */
2943
2944 void
2945 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2946 {
2947 cu->next = cu->objfile->compunit_symtabs;
2948 cu->objfile->compunit_symtabs = cu;
2949 }
2950 \f
2951
2952 /* Reset all data structures in gdb which may contain references to
2953 symbol table data. */
2954
2955 void
2956 clear_symtab_users (symfile_add_flags add_flags)
2957 {
2958 /* Someday, we should do better than this, by only blowing away
2959 the things that really need to be blown. */
2960
2961 /* Clear the "current" symtab first, because it is no longer valid.
2962 breakpoint_re_set may try to access the current symtab. */
2963 clear_current_source_symtab_and_line ();
2964
2965 clear_displays ();
2966 clear_last_displayed_sal ();
2967 clear_pc_function_cache ();
2968 observer_notify_new_objfile (NULL);
2969
2970 /* Clear globals which might have pointed into a removed objfile.
2971 FIXME: It's not clear which of these are supposed to persist
2972 between expressions and which ought to be reset each time. */
2973 expression_context_block = NULL;
2974 innermost_block = NULL;
2975
2976 /* Varobj may refer to old symbols, perform a cleanup. */
2977 varobj_invalidate ();
2978
2979 /* Now that the various caches have been cleared, we can re_set
2980 our breakpoints without risking it using stale data. */
2981 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2982 breakpoint_re_set ();
2983 }
2984
2985 static void
2986 clear_symtab_users_cleanup (void *ignore)
2987 {
2988 clear_symtab_users (0);
2989 }
2990 \f
2991 /* OVERLAYS:
2992 The following code implements an abstraction for debugging overlay sections.
2993
2994 The target model is as follows:
2995 1) The gnu linker will permit multiple sections to be mapped into the
2996 same VMA, each with its own unique LMA (or load address).
2997 2) It is assumed that some runtime mechanism exists for mapping the
2998 sections, one by one, from the load address into the VMA address.
2999 3) This code provides a mechanism for gdb to keep track of which
3000 sections should be considered to be mapped from the VMA to the LMA.
3001 This information is used for symbol lookup, and memory read/write.
3002 For instance, if a section has been mapped then its contents
3003 should be read from the VMA, otherwise from the LMA.
3004
3005 Two levels of debugger support for overlays are available. One is
3006 "manual", in which the debugger relies on the user to tell it which
3007 overlays are currently mapped. This level of support is
3008 implemented entirely in the core debugger, and the information about
3009 whether a section is mapped is kept in the objfile->obj_section table.
3010
3011 The second level of support is "automatic", and is only available if
3012 the target-specific code provides functionality to read the target's
3013 overlay mapping table, and translate its contents for the debugger
3014 (by updating the mapped state information in the obj_section tables).
3015
3016 The interface is as follows:
3017 User commands:
3018 overlay map <name> -- tell gdb to consider this section mapped
3019 overlay unmap <name> -- tell gdb to consider this section unmapped
3020 overlay list -- list the sections that GDB thinks are mapped
3021 overlay read-target -- get the target's state of what's mapped
3022 overlay off/manual/auto -- set overlay debugging state
3023 Functional interface:
3024 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3025 section, return that section.
3026 find_pc_overlay(pc): find any overlay section that contains
3027 the pc, either in its VMA or its LMA
3028 section_is_mapped(sect): true if overlay is marked as mapped
3029 section_is_overlay(sect): true if section's VMA != LMA
3030 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3031 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3032 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3033 overlay_mapped_address(...): map an address from section's LMA to VMA
3034 overlay_unmapped_address(...): map an address from section's VMA to LMA
3035 symbol_overlayed_address(...): Return a "current" address for symbol:
3036 either in VMA or LMA depending on whether
3037 the symbol's section is currently mapped. */
3038
3039 /* Overlay debugging state: */
3040
3041 enum overlay_debugging_state overlay_debugging = ovly_off;
3042 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3043
3044 /* Function: section_is_overlay (SECTION)
3045 Returns true if SECTION has VMA not equal to LMA, ie.
3046 SECTION is loaded at an address different from where it will "run". */
3047
3048 int
3049 section_is_overlay (struct obj_section *section)
3050 {
3051 if (overlay_debugging && section)
3052 {
3053 bfd *abfd = section->objfile->obfd;
3054 asection *bfd_section = section->the_bfd_section;
3055
3056 if (bfd_section_lma (abfd, bfd_section) != 0
3057 && bfd_section_lma (abfd, bfd_section)
3058 != bfd_section_vma (abfd, bfd_section))
3059 return 1;
3060 }
3061
3062 return 0;
3063 }
3064
3065 /* Function: overlay_invalidate_all (void)
3066 Invalidate the mapped state of all overlay sections (mark it as stale). */
3067
3068 static void
3069 overlay_invalidate_all (void)
3070 {
3071 struct objfile *objfile;
3072 struct obj_section *sect;
3073
3074 ALL_OBJSECTIONS (objfile, sect)
3075 if (section_is_overlay (sect))
3076 sect->ovly_mapped = -1;
3077 }
3078
3079 /* Function: section_is_mapped (SECTION)
3080 Returns true if section is an overlay, and is currently mapped.
3081
3082 Access to the ovly_mapped flag is restricted to this function, so
3083 that we can do automatic update. If the global flag
3084 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3085 overlay_invalidate_all. If the mapped state of the particular
3086 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3087
3088 int
3089 section_is_mapped (struct obj_section *osect)
3090 {
3091 struct gdbarch *gdbarch;
3092
3093 if (osect == 0 || !section_is_overlay (osect))
3094 return 0;
3095
3096 switch (overlay_debugging)
3097 {
3098 default:
3099 case ovly_off:
3100 return 0; /* overlay debugging off */
3101 case ovly_auto: /* overlay debugging automatic */
3102 /* Unles there is a gdbarch_overlay_update function,
3103 there's really nothing useful to do here (can't really go auto). */
3104 gdbarch = get_objfile_arch (osect->objfile);
3105 if (gdbarch_overlay_update_p (gdbarch))
3106 {
3107 if (overlay_cache_invalid)
3108 {
3109 overlay_invalidate_all ();
3110 overlay_cache_invalid = 0;
3111 }
3112 if (osect->ovly_mapped == -1)
3113 gdbarch_overlay_update (gdbarch, osect);
3114 }
3115 /* fall thru to manual case */
3116 case ovly_on: /* overlay debugging manual */
3117 return osect->ovly_mapped == 1;
3118 }
3119 }
3120
3121 /* Function: pc_in_unmapped_range
3122 If PC falls into the lma range of SECTION, return true, else false. */
3123
3124 CORE_ADDR
3125 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3126 {
3127 if (section_is_overlay (section))
3128 {
3129 bfd *abfd = section->objfile->obfd;
3130 asection *bfd_section = section->the_bfd_section;
3131
3132 /* We assume the LMA is relocated by the same offset as the VMA. */
3133 bfd_vma size = bfd_get_section_size (bfd_section);
3134 CORE_ADDR offset = obj_section_offset (section);
3135
3136 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3137 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3138 return 1;
3139 }
3140
3141 return 0;
3142 }
3143
3144 /* Function: pc_in_mapped_range
3145 If PC falls into the vma range of SECTION, return true, else false. */
3146
3147 CORE_ADDR
3148 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3149 {
3150 if (section_is_overlay (section))
3151 {
3152 if (obj_section_addr (section) <= pc
3153 && pc < obj_section_endaddr (section))
3154 return 1;
3155 }
3156
3157 return 0;
3158 }
3159
3160 /* Return true if the mapped ranges of sections A and B overlap, false
3161 otherwise. */
3162
3163 static int
3164 sections_overlap (struct obj_section *a, struct obj_section *b)
3165 {
3166 CORE_ADDR a_start = obj_section_addr (a);
3167 CORE_ADDR a_end = obj_section_endaddr (a);
3168 CORE_ADDR b_start = obj_section_addr (b);
3169 CORE_ADDR b_end = obj_section_endaddr (b);
3170
3171 return (a_start < b_end && b_start < a_end);
3172 }
3173
3174 /* Function: overlay_unmapped_address (PC, SECTION)
3175 Returns the address corresponding to PC in the unmapped (load) range.
3176 May be the same as PC. */
3177
3178 CORE_ADDR
3179 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3180 {
3181 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3182 {
3183 bfd *abfd = section->objfile->obfd;
3184 asection *bfd_section = section->the_bfd_section;
3185
3186 return pc + bfd_section_lma (abfd, bfd_section)
3187 - bfd_section_vma (abfd, bfd_section);
3188 }
3189
3190 return pc;
3191 }
3192
3193 /* Function: overlay_mapped_address (PC, SECTION)
3194 Returns the address corresponding to PC in the mapped (runtime) range.
3195 May be the same as PC. */
3196
3197 CORE_ADDR
3198 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3199 {
3200 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3201 {
3202 bfd *abfd = section->objfile->obfd;
3203 asection *bfd_section = section->the_bfd_section;
3204
3205 return pc + bfd_section_vma (abfd, bfd_section)
3206 - bfd_section_lma (abfd, bfd_section);
3207 }
3208
3209 return pc;
3210 }
3211
3212 /* Function: symbol_overlayed_address
3213 Return one of two addresses (relative to the VMA or to the LMA),
3214 depending on whether the section is mapped or not. */
3215
3216 CORE_ADDR
3217 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3218 {
3219 if (overlay_debugging)
3220 {
3221 /* If the symbol has no section, just return its regular address. */
3222 if (section == 0)
3223 return address;
3224 /* If the symbol's section is not an overlay, just return its
3225 address. */
3226 if (!section_is_overlay (section))
3227 return address;
3228 /* If the symbol's section is mapped, just return its address. */
3229 if (section_is_mapped (section))
3230 return address;
3231 /*
3232 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3233 * then return its LOADED address rather than its vma address!!
3234 */
3235 return overlay_unmapped_address (address, section);
3236 }
3237 return address;
3238 }
3239
3240 /* Function: find_pc_overlay (PC)
3241 Return the best-match overlay section for PC:
3242 If PC matches a mapped overlay section's VMA, return that section.
3243 Else if PC matches an unmapped section's VMA, return that section.
3244 Else if PC matches an unmapped section's LMA, return that section. */
3245
3246 struct obj_section *
3247 find_pc_overlay (CORE_ADDR pc)
3248 {
3249 struct objfile *objfile;
3250 struct obj_section *osect, *best_match = NULL;
3251
3252 if (overlay_debugging)
3253 {
3254 ALL_OBJSECTIONS (objfile, osect)
3255 if (section_is_overlay (osect))
3256 {
3257 if (pc_in_mapped_range (pc, osect))
3258 {
3259 if (section_is_mapped (osect))
3260 return osect;
3261 else
3262 best_match = osect;
3263 }
3264 else if (pc_in_unmapped_range (pc, osect))
3265 best_match = osect;
3266 }
3267 }
3268 return best_match;
3269 }
3270
3271 /* Function: find_pc_mapped_section (PC)
3272 If PC falls into the VMA address range of an overlay section that is
3273 currently marked as MAPPED, return that section. Else return NULL. */
3274
3275 struct obj_section *
3276 find_pc_mapped_section (CORE_ADDR pc)
3277 {
3278 struct objfile *objfile;
3279 struct obj_section *osect;
3280
3281 if (overlay_debugging)
3282 {
3283 ALL_OBJSECTIONS (objfile, osect)
3284 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3285 return osect;
3286 }
3287
3288 return NULL;
3289 }
3290
3291 /* Function: list_overlays_command
3292 Print a list of mapped sections and their PC ranges. */
3293
3294 static void
3295 list_overlays_command (char *args, int from_tty)
3296 {
3297 int nmapped = 0;
3298 struct objfile *objfile;
3299 struct obj_section *osect;
3300
3301 if (overlay_debugging)
3302 {
3303 ALL_OBJSECTIONS (objfile, osect)
3304 if (section_is_mapped (osect))
3305 {
3306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3307 const char *name;
3308 bfd_vma lma, vma;
3309 int size;
3310
3311 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3312 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3313 size = bfd_get_section_size (osect->the_bfd_section);
3314 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3315
3316 printf_filtered ("Section %s, loaded at ", name);
3317 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3318 puts_filtered (" - ");
3319 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3320 printf_filtered (", mapped at ");
3321 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3322 puts_filtered (" - ");
3323 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3324 puts_filtered ("\n");
3325
3326 nmapped++;
3327 }
3328 }
3329 if (nmapped == 0)
3330 printf_filtered (_("No sections are mapped.\n"));
3331 }
3332
3333 /* Function: map_overlay_command
3334 Mark the named section as mapped (ie. residing at its VMA address). */
3335
3336 static void
3337 map_overlay_command (char *args, int from_tty)
3338 {
3339 struct objfile *objfile, *objfile2;
3340 struct obj_section *sec, *sec2;
3341
3342 if (!overlay_debugging)
3343 error (_("Overlay debugging not enabled. Use "
3344 "either the 'overlay auto' or\n"
3345 "the 'overlay manual' command."));
3346
3347 if (args == 0 || *args == 0)
3348 error (_("Argument required: name of an overlay section"));
3349
3350 /* First, find a section matching the user supplied argument. */
3351 ALL_OBJSECTIONS (objfile, sec)
3352 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3353 {
3354 /* Now, check to see if the section is an overlay. */
3355 if (!section_is_overlay (sec))
3356 continue; /* not an overlay section */
3357
3358 /* Mark the overlay as "mapped". */
3359 sec->ovly_mapped = 1;
3360
3361 /* Next, make a pass and unmap any sections that are
3362 overlapped by this new section: */
3363 ALL_OBJSECTIONS (objfile2, sec2)
3364 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3365 {
3366 if (info_verbose)
3367 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3368 bfd_section_name (objfile->obfd,
3369 sec2->the_bfd_section));
3370 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3371 }
3372 return;
3373 }
3374 error (_("No overlay section called %s"), args);
3375 }
3376
3377 /* Function: unmap_overlay_command
3378 Mark the overlay section as unmapped
3379 (ie. resident in its LMA address range, rather than the VMA range). */
3380
3381 static void
3382 unmap_overlay_command (char *args, int from_tty)
3383 {
3384 struct objfile *objfile;
3385 struct obj_section *sec = NULL;
3386
3387 if (!overlay_debugging)
3388 error (_("Overlay debugging not enabled. "
3389 "Use either the 'overlay auto' or\n"
3390 "the 'overlay manual' command."));
3391
3392 if (args == 0 || *args == 0)
3393 error (_("Argument required: name of an overlay section"));
3394
3395 /* First, find a section matching the user supplied argument. */
3396 ALL_OBJSECTIONS (objfile, sec)
3397 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3398 {
3399 if (!sec->ovly_mapped)
3400 error (_("Section %s is not mapped"), args);
3401 sec->ovly_mapped = 0;
3402 return;
3403 }
3404 error (_("No overlay section called %s"), args);
3405 }
3406
3407 /* Function: overlay_auto_command
3408 A utility command to turn on overlay debugging.
3409 Possibly this should be done via a set/show command. */
3410
3411 static void
3412 overlay_auto_command (char *args, int from_tty)
3413 {
3414 overlay_debugging = ovly_auto;
3415 enable_overlay_breakpoints ();
3416 if (info_verbose)
3417 printf_unfiltered (_("Automatic overlay debugging enabled."));
3418 }
3419
3420 /* Function: overlay_manual_command
3421 A utility command to turn on overlay debugging.
3422 Possibly this should be done via a set/show command. */
3423
3424 static void
3425 overlay_manual_command (char *args, int from_tty)
3426 {
3427 overlay_debugging = ovly_on;
3428 disable_overlay_breakpoints ();
3429 if (info_verbose)
3430 printf_unfiltered (_("Overlay debugging enabled."));
3431 }
3432
3433 /* Function: overlay_off_command
3434 A utility command to turn on overlay debugging.
3435 Possibly this should be done via a set/show command. */
3436
3437 static void
3438 overlay_off_command (char *args, int from_tty)
3439 {
3440 overlay_debugging = ovly_off;
3441 disable_overlay_breakpoints ();
3442 if (info_verbose)
3443 printf_unfiltered (_("Overlay debugging disabled."));
3444 }
3445
3446 static void
3447 overlay_load_command (char *args, int from_tty)
3448 {
3449 struct gdbarch *gdbarch = get_current_arch ();
3450
3451 if (gdbarch_overlay_update_p (gdbarch))
3452 gdbarch_overlay_update (gdbarch, NULL);
3453 else
3454 error (_("This target does not know how to read its overlay state."));
3455 }
3456
3457 /* Function: overlay_command
3458 A place-holder for a mis-typed command. */
3459
3460 /* Command list chain containing all defined "overlay" subcommands. */
3461 static struct cmd_list_element *overlaylist;
3462
3463 static void
3464 overlay_command (char *args, int from_tty)
3465 {
3466 printf_unfiltered
3467 ("\"overlay\" must be followed by the name of an overlay command.\n");
3468 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3469 }
3470
3471 /* Target Overlays for the "Simplest" overlay manager:
3472
3473 This is GDB's default target overlay layer. It works with the
3474 minimal overlay manager supplied as an example by Cygnus. The
3475 entry point is via a function pointer "gdbarch_overlay_update",
3476 so targets that use a different runtime overlay manager can
3477 substitute their own overlay_update function and take over the
3478 function pointer.
3479
3480 The overlay_update function pokes around in the target's data structures
3481 to see what overlays are mapped, and updates GDB's overlay mapping with
3482 this information.
3483
3484 In this simple implementation, the target data structures are as follows:
3485 unsigned _novlys; /# number of overlay sections #/
3486 unsigned _ovly_table[_novlys][4] = {
3487 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3488 {..., ..., ..., ...},
3489 }
3490 unsigned _novly_regions; /# number of overlay regions #/
3491 unsigned _ovly_region_table[_novly_regions][3] = {
3492 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3493 {..., ..., ...},
3494 }
3495 These functions will attempt to update GDB's mappedness state in the
3496 symbol section table, based on the target's mappedness state.
3497
3498 To do this, we keep a cached copy of the target's _ovly_table, and
3499 attempt to detect when the cached copy is invalidated. The main
3500 entry point is "simple_overlay_update(SECT), which looks up SECT in
3501 the cached table and re-reads only the entry for that section from
3502 the target (whenever possible). */
3503
3504 /* Cached, dynamically allocated copies of the target data structures: */
3505 static unsigned (*cache_ovly_table)[4] = 0;
3506 static unsigned cache_novlys = 0;
3507 static CORE_ADDR cache_ovly_table_base = 0;
3508 enum ovly_index
3509 {
3510 VMA, OSIZE, LMA, MAPPED
3511 };
3512
3513 /* Throw away the cached copy of _ovly_table. */
3514
3515 static void
3516 simple_free_overlay_table (void)
3517 {
3518 if (cache_ovly_table)
3519 xfree (cache_ovly_table);
3520 cache_novlys = 0;
3521 cache_ovly_table = NULL;
3522 cache_ovly_table_base = 0;
3523 }
3524
3525 /* Read an array of ints of size SIZE from the target into a local buffer.
3526 Convert to host order. int LEN is number of ints. */
3527
3528 static void
3529 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3530 int len, int size, enum bfd_endian byte_order)
3531 {
3532 /* FIXME (alloca): Not safe if array is very large. */
3533 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3534 int i;
3535
3536 read_memory (memaddr, buf, len * size);
3537 for (i = 0; i < len; i++)
3538 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3539 }
3540
3541 /* Find and grab a copy of the target _ovly_table
3542 (and _novlys, which is needed for the table's size). */
3543
3544 static int
3545 simple_read_overlay_table (void)
3546 {
3547 struct bound_minimal_symbol novlys_msym;
3548 struct bound_minimal_symbol ovly_table_msym;
3549 struct gdbarch *gdbarch;
3550 int word_size;
3551 enum bfd_endian byte_order;
3552
3553 simple_free_overlay_table ();
3554 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3555 if (! novlys_msym.minsym)
3556 {
3557 error (_("Error reading inferior's overlay table: "
3558 "couldn't find `_novlys' variable\n"
3559 "in inferior. Use `overlay manual' mode."));
3560 return 0;
3561 }
3562
3563 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3564 if (! ovly_table_msym.minsym)
3565 {
3566 error (_("Error reading inferior's overlay table: couldn't find "
3567 "`_ovly_table' array\n"
3568 "in inferior. Use `overlay manual' mode."));
3569 return 0;
3570 }
3571
3572 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3573 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3574 byte_order = gdbarch_byte_order (gdbarch);
3575
3576 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3577 4, byte_order);
3578 cache_ovly_table
3579 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3580 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3581 read_target_long_array (cache_ovly_table_base,
3582 (unsigned int *) cache_ovly_table,
3583 cache_novlys * 4, word_size, byte_order);
3584
3585 return 1; /* SUCCESS */
3586 }
3587
3588 /* Function: simple_overlay_update_1
3589 A helper function for simple_overlay_update. Assuming a cached copy
3590 of _ovly_table exists, look through it to find an entry whose vma,
3591 lma and size match those of OSECT. Re-read the entry and make sure
3592 it still matches OSECT (else the table may no longer be valid).
3593 Set OSECT's mapped state to match the entry. Return: 1 for
3594 success, 0 for failure. */
3595
3596 static int
3597 simple_overlay_update_1 (struct obj_section *osect)
3598 {
3599 int i;
3600 bfd *obfd = osect->objfile->obfd;
3601 asection *bsect = osect->the_bfd_section;
3602 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3603 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3605
3606 for (i = 0; i < cache_novlys; i++)
3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3609 {
3610 read_target_long_array (cache_ovly_table_base + i * word_size,
3611 (unsigned int *) cache_ovly_table[i],
3612 4, word_size, byte_order);
3613 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3614 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3615 {
3616 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3617 return 1;
3618 }
3619 else /* Warning! Warning! Target's ovly table has changed! */
3620 return 0;
3621 }
3622 return 0;
3623 }
3624
3625 /* Function: simple_overlay_update
3626 If OSECT is NULL, then update all sections' mapped state
3627 (after re-reading the entire target _ovly_table).
3628 If OSECT is non-NULL, then try to find a matching entry in the
3629 cached ovly_table and update only OSECT's mapped state.
3630 If a cached entry can't be found or the cache isn't valid, then
3631 re-read the entire cache, and go ahead and update all sections. */
3632
3633 void
3634 simple_overlay_update (struct obj_section *osect)
3635 {
3636 struct objfile *objfile;
3637
3638 /* Were we given an osect to look up? NULL means do all of them. */
3639 if (osect)
3640 /* Have we got a cached copy of the target's overlay table? */
3641 if (cache_ovly_table != NULL)
3642 {
3643 /* Does its cached location match what's currently in the
3644 symtab? */
3645 struct bound_minimal_symbol minsym
3646 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3647
3648 if (minsym.minsym == NULL)
3649 error (_("Error reading inferior's overlay table: couldn't "
3650 "find `_ovly_table' array\n"
3651 "in inferior. Use `overlay manual' mode."));
3652
3653 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3654 /* Then go ahead and try to look up this single section in
3655 the cache. */
3656 if (simple_overlay_update_1 (osect))
3657 /* Found it! We're done. */
3658 return;
3659 }
3660
3661 /* Cached table no good: need to read the entire table anew.
3662 Or else we want all the sections, in which case it's actually
3663 more efficient to read the whole table in one block anyway. */
3664
3665 if (! simple_read_overlay_table ())
3666 return;
3667
3668 /* Now may as well update all sections, even if only one was requested. */
3669 ALL_OBJSECTIONS (objfile, osect)
3670 if (section_is_overlay (osect))
3671 {
3672 int i;
3673 bfd *obfd = osect->objfile->obfd;
3674 asection *bsect = osect->the_bfd_section;
3675
3676 for (i = 0; i < cache_novlys; i++)
3677 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3678 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3679 { /* obj_section matches i'th entry in ovly_table. */
3680 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3681 break; /* finished with inner for loop: break out. */
3682 }
3683 }
3684 }
3685
3686 /* Set the output sections and output offsets for section SECTP in
3687 ABFD. The relocation code in BFD will read these offsets, so we
3688 need to be sure they're initialized. We map each section to itself,
3689 with no offset; this means that SECTP->vma will be honored. */
3690
3691 static void
3692 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3693 {
3694 sectp->output_section = sectp;
3695 sectp->output_offset = 0;
3696 }
3697
3698 /* Default implementation for sym_relocate. */
3699
3700 bfd_byte *
3701 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3702 bfd_byte *buf)
3703 {
3704 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3705 DWO file. */
3706 bfd *abfd = sectp->owner;
3707
3708 /* We're only interested in sections with relocation
3709 information. */
3710 if ((sectp->flags & SEC_RELOC) == 0)
3711 return NULL;
3712
3713 /* We will handle section offsets properly elsewhere, so relocate as if
3714 all sections begin at 0. */
3715 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3716
3717 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3718 }
3719
3720 /* Relocate the contents of a debug section SECTP in ABFD. The
3721 contents are stored in BUF if it is non-NULL, or returned in a
3722 malloc'd buffer otherwise.
3723
3724 For some platforms and debug info formats, shared libraries contain
3725 relocations against the debug sections (particularly for DWARF-2;
3726 one affected platform is PowerPC GNU/Linux, although it depends on
3727 the version of the linker in use). Also, ELF object files naturally
3728 have unresolved relocations for their debug sections. We need to apply
3729 the relocations in order to get the locations of symbols correct.
3730 Another example that may require relocation processing, is the
3731 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3732 debug section. */
3733
3734 bfd_byte *
3735 symfile_relocate_debug_section (struct objfile *objfile,
3736 asection *sectp, bfd_byte *buf)
3737 {
3738 gdb_assert (objfile->sf->sym_relocate);
3739
3740 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3741 }
3742
3743 struct symfile_segment_data *
3744 get_symfile_segment_data (bfd *abfd)
3745 {
3746 const struct sym_fns *sf = find_sym_fns (abfd);
3747
3748 if (sf == NULL)
3749 return NULL;
3750
3751 return sf->sym_segments (abfd);
3752 }
3753
3754 void
3755 free_symfile_segment_data (struct symfile_segment_data *data)
3756 {
3757 xfree (data->segment_bases);
3758 xfree (data->segment_sizes);
3759 xfree (data->segment_info);
3760 xfree (data);
3761 }
3762
3763 /* Given:
3764 - DATA, containing segment addresses from the object file ABFD, and
3765 the mapping from ABFD's sections onto the segments that own them,
3766 and
3767 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3768 segment addresses reported by the target,
3769 store the appropriate offsets for each section in OFFSETS.
3770
3771 If there are fewer entries in SEGMENT_BASES than there are segments
3772 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3773
3774 If there are more entries, then ignore the extra. The target may
3775 not be able to distinguish between an empty data segment and a
3776 missing data segment; a missing text segment is less plausible. */
3777
3778 int
3779 symfile_map_offsets_to_segments (bfd *abfd,
3780 const struct symfile_segment_data *data,
3781 struct section_offsets *offsets,
3782 int num_segment_bases,
3783 const CORE_ADDR *segment_bases)
3784 {
3785 int i;
3786 asection *sect;
3787
3788 /* It doesn't make sense to call this function unless you have some
3789 segment base addresses. */
3790 gdb_assert (num_segment_bases > 0);
3791
3792 /* If we do not have segment mappings for the object file, we
3793 can not relocate it by segments. */
3794 gdb_assert (data != NULL);
3795 gdb_assert (data->num_segments > 0);
3796
3797 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3798 {
3799 int which = data->segment_info[i];
3800
3801 gdb_assert (0 <= which && which <= data->num_segments);
3802
3803 /* Don't bother computing offsets for sections that aren't
3804 loaded as part of any segment. */
3805 if (! which)
3806 continue;
3807
3808 /* Use the last SEGMENT_BASES entry as the address of any extra
3809 segments mentioned in DATA->segment_info. */
3810 if (which > num_segment_bases)
3811 which = num_segment_bases;
3812
3813 offsets->offsets[i] = (segment_bases[which - 1]
3814 - data->segment_bases[which - 1]);
3815 }
3816
3817 return 1;
3818 }
3819
3820 static void
3821 symfile_find_segment_sections (struct objfile *objfile)
3822 {
3823 bfd *abfd = objfile->obfd;
3824 int i;
3825 asection *sect;
3826 struct symfile_segment_data *data;
3827
3828 data = get_symfile_segment_data (objfile->obfd);
3829 if (data == NULL)
3830 return;
3831
3832 if (data->num_segments != 1 && data->num_segments != 2)
3833 {
3834 free_symfile_segment_data (data);
3835 return;
3836 }
3837
3838 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3839 {
3840 int which = data->segment_info[i];
3841
3842 if (which == 1)
3843 {
3844 if (objfile->sect_index_text == -1)
3845 objfile->sect_index_text = sect->index;
3846
3847 if (objfile->sect_index_rodata == -1)
3848 objfile->sect_index_rodata = sect->index;
3849 }
3850 else if (which == 2)
3851 {
3852 if (objfile->sect_index_data == -1)
3853 objfile->sect_index_data = sect->index;
3854
3855 if (objfile->sect_index_bss == -1)
3856 objfile->sect_index_bss = sect->index;
3857 }
3858 }
3859
3860 free_symfile_segment_data (data);
3861 }
3862
3863 /* Listen for free_objfile events. */
3864
3865 static void
3866 symfile_free_objfile (struct objfile *objfile)
3867 {
3868 /* Remove the target sections owned by this objfile. */
3869 if (objfile != NULL)
3870 remove_target_sections ((void *) objfile);
3871 }
3872
3873 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3874 Expand all symtabs that match the specified criteria.
3875 See quick_symbol_functions.expand_symtabs_matching for details. */
3876
3877 void
3878 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3880 expand_symtabs_exp_notify_ftype *expansion_notify,
3881 enum search_domain kind,
3882 void *data)
3883 {
3884 struct objfile *objfile;
3885
3886 ALL_OBJFILES (objfile)
3887 {
3888 if (objfile->sf)
3889 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3890 symbol_matcher,
3891 expansion_notify, kind,
3892 data);
3893 }
3894 }
3895
3896 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3897 Map function FUN over every file.
3898 See quick_symbol_functions.map_symbol_filenames for details. */
3899
3900 void
3901 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3902 int need_fullname)
3903 {
3904 struct objfile *objfile;
3905
3906 ALL_OBJFILES (objfile)
3907 {
3908 if (objfile->sf)
3909 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3910 need_fullname);
3911 }
3912 }
3913
3914 void
3915 _initialize_symfile (void)
3916 {
3917 struct cmd_list_element *c;
3918
3919 observer_attach_free_objfile (symfile_free_objfile);
3920
3921 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3922 Load symbol table from executable file FILE.\n\
3923 The `file' command can also load symbol tables, as well as setting the file\n\
3924 to execute."), &cmdlist);
3925 set_cmd_completer (c, filename_completer);
3926
3927 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3928 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3929 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3930 ...]\nADDR is the starting address of the file's text.\n\
3931 The optional arguments are section-name section-address pairs and\n\
3932 should be specified if the data and bss segments are not contiguous\n\
3933 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3934 &cmdlist);
3935 set_cmd_completer (c, filename_completer);
3936
3937 c = add_cmd ("remove-symbol-file", class_files,
3938 remove_symbol_file_command, _("\
3939 Remove a symbol file added via the add-symbol-file command.\n\
3940 Usage: remove-symbol-file FILENAME\n\
3941 remove-symbol-file -a ADDRESS\n\
3942 The file to remove can be identified by its filename or by an address\n\
3943 that lies within the boundaries of this symbol file in memory."),
3944 &cmdlist);
3945
3946 c = add_cmd ("load", class_files, load_command, _("\
3947 Dynamically load FILE into the running program, and record its symbols\n\
3948 for access from GDB.\n\
3949 A load OFFSET may also be given."), &cmdlist);
3950 set_cmd_completer (c, filename_completer);
3951
3952 add_prefix_cmd ("overlay", class_support, overlay_command,
3953 _("Commands for debugging overlays."), &overlaylist,
3954 "overlay ", 0, &cmdlist);
3955
3956 add_com_alias ("ovly", "overlay", class_alias, 1);
3957 add_com_alias ("ov", "overlay", class_alias, 1);
3958
3959 add_cmd ("map-overlay", class_support, map_overlay_command,
3960 _("Assert that an overlay section is mapped."), &overlaylist);
3961
3962 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3963 _("Assert that an overlay section is unmapped."), &overlaylist);
3964
3965 add_cmd ("list-overlays", class_support, list_overlays_command,
3966 _("List mappings of overlay sections."), &overlaylist);
3967
3968 add_cmd ("manual", class_support, overlay_manual_command,
3969 _("Enable overlay debugging."), &overlaylist);
3970 add_cmd ("off", class_support, overlay_off_command,
3971 _("Disable overlay debugging."), &overlaylist);
3972 add_cmd ("auto", class_support, overlay_auto_command,
3973 _("Enable automatic overlay debugging."), &overlaylist);
3974 add_cmd ("load-target", class_support, overlay_load_command,
3975 _("Read the overlay mapping state from the target."), &overlaylist);
3976
3977 /* Filename extension to source language lookup table: */
3978 add_setshow_string_noescape_cmd ("extension-language", class_files,
3979 &ext_args, _("\
3980 Set mapping between filename extension and source language."), _("\
3981 Show mapping between filename extension and source language."), _("\
3982 Usage: set extension-language .foo bar"),
3983 set_ext_lang_command,
3984 show_ext_args,
3985 &setlist, &showlist);
3986
3987 add_info ("extensions", info_ext_lang_command,
3988 _("All filename extensions associated with a source language."));
3989
3990 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3991 &debug_file_directory, _("\
3992 Set the directories where separate debug symbols are searched for."), _("\
3993 Show the directories where separate debug symbols are searched for."), _("\
3994 Separate debug symbols are first searched for in the same\n\
3995 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3996 and lastly at the path of the directory of the binary with\n\
3997 each global debug-file-directory component prepended."),
3998 NULL,
3999 show_debug_file_directory,
4000 &setlist, &showlist);
4001
4002 add_setshow_enum_cmd ("symbol-loading", no_class,
4003 print_symbol_loading_enums, &print_symbol_loading,
4004 _("\
4005 Set printing of symbol loading messages."), _("\
4006 Show printing of symbol loading messages."), _("\
4007 off == turn all messages off\n\
4008 brief == print messages for the executable,\n\
4009 and brief messages for shared libraries\n\
4010 full == print messages for the executable,\n\
4011 and messages for each shared library."),
4012 NULL,
4013 NULL,
4014 &setprintlist, &showprintlist);
4015 }
This page took 0.125918 seconds and 4 git commands to generate.