f7c1efc2815a5c3012e42b59f2d39b50aafff315
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55
56 #include <sys/types.h>
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_stat.h"
60 #include <ctype.h>
61 #include <time.h>
62 #include <sys/time.h>
63
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73
74 static void clear_symtab_users_cleanup (void *ignore);
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 /* External variables and functions referenced. */
80
81 extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83 /* Functions this file defines */
84
85 #if 0
86 static int simple_read_overlay_region_table (void);
87 static void simple_free_overlay_region_table (void);
88 #endif
89
90 static void load_command (char *, int);
91
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
94 static void add_symbol_file_command (char *, int);
95
96 static void add_shared_symbol_files_command (char *, int);
97
98 static void reread_separate_symbols (struct objfile *objfile);
99
100 static void cashier_psymtab (struct partial_symtab *);
101
102 bfd *symfile_bfd_open (char *);
103
104 int get_section_index (struct objfile *, char *);
105
106 static struct sym_fns *find_sym_fns (bfd *);
107
108 static void decrement_reading_symtab (void *);
109
110 static void overlay_invalidate_all (void);
111
112 static int overlay_is_mapped (struct obj_section *);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
133
134 static int simple_read_overlay_table (void);
135
136 static int simple_overlay_update_1 (struct obj_section *);
137
138 static void add_filename_language (char *ext, enum language lang);
139
140 static void info_ext_lang_command (char *args, int from_tty);
141
142 static char *find_separate_debug_file (struct objfile *objfile);
143
144 static void init_filename_language_table (void);
145
146 static void symfile_find_segment_sections (struct objfile *objfile);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct section_table *start,
366 const struct section_table *end)
367 {
368 struct section_addr_info *sap;
369 const struct section_table *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
464 }
465
466 /* The arguments to place_section. */
467
468 struct place_section_arg
469 {
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472 };
473
474 /* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
477 void
478 place_section (bfd *abfd, asection *sect, void *obj)
479 {
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
484
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
494 start_addr = (arg->lowest + align - 1) & -align;
495
496 do {
497 asection *cur_sec;
498
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 break;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537
538 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
539 }
540
541 /* Parse the user's idea of an offset for dynamic linking, into our idea
542 of how to represent it for fast symbol reading. This is the default
543 version of the sym_fns.sym_offsets function for symbol readers that
544 don't need to do anything special. It allocates a section_offsets table
545 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
546
547 void
548 default_symfile_offsets (struct objfile *objfile,
549 struct section_addr_info *addrs)
550 {
551 int i;
552
553 objfile->num_sections = bfd_count_sections (objfile->obfd);
554 objfile->section_offsets = (struct section_offsets *)
555 obstack_alloc (&objfile->objfile_obstack,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557 memset (objfile->section_offsets, 0,
558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559
560 /* Now calculate offsets for section that were specified by the
561 caller. */
562 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
563 {
564 struct other_sections *osp ;
565
566 osp = &addrs->other[i] ;
567 if (osp->addr == 0)
568 continue;
569
570 /* Record all sections in offsets */
571 /* The section_offsets in the objfile are here filled in using
572 the BFD index. */
573 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
574 }
575
576 /* For relocatable files, all loadable sections will start at zero.
577 The zero is meaningless, so try to pick arbitrary addresses such
578 that no loadable sections overlap. This algorithm is quadratic,
579 but the number of sections in a single object file is generally
580 small. */
581 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
582 {
583 struct place_section_arg arg;
584 bfd *abfd = objfile->obfd;
585 asection *cur_sec;
586 CORE_ADDR lowest = 0;
587
588 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
589 /* We do not expect this to happen; just skip this step if the
590 relocatable file has a section with an assigned VMA. */
591 if (bfd_section_vma (abfd, cur_sec) != 0)
592 break;
593
594 if (cur_sec == NULL)
595 {
596 CORE_ADDR *offsets = objfile->section_offsets->offsets;
597
598 /* Pick non-overlapping offsets for sections the user did not
599 place explicitly. */
600 arg.offsets = objfile->section_offsets;
601 arg.lowest = 0;
602 bfd_map_over_sections (objfile->obfd, place_section, &arg);
603
604 /* Correctly filling in the section offsets is not quite
605 enough. Relocatable files have two properties that
606 (most) shared objects do not:
607
608 - Their debug information will contain relocations. Some
609 shared libraries do also, but many do not, so this can not
610 be assumed.
611
612 - If there are multiple code sections they will be loaded
613 at different relative addresses in memory than they are
614 in the objfile, since all sections in the file will start
615 at address zero.
616
617 Because GDB has very limited ability to map from an
618 address in debug info to the correct code section,
619 it relies on adding SECT_OFF_TEXT to things which might be
620 code. If we clear all the section offsets, and set the
621 section VMAs instead, then symfile_relocate_debug_section
622 will return meaningful debug information pointing at the
623 correct sections.
624
625 GDB has too many different data structures for section
626 addresses - a bfd, objfile, and so_list all have section
627 tables, as does exec_ops. Some of these could probably
628 be eliminated. */
629
630 for (cur_sec = abfd->sections; cur_sec != NULL;
631 cur_sec = cur_sec->next)
632 {
633 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
634 continue;
635
636 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
637 offsets[cur_sec->index] = 0;
638 }
639 }
640 }
641
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645 }
646
647
648 /* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654 struct symfile_segment_data *
655 default_symfile_segments (bfd *abfd)
656 {
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710 }
711
712 /* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
715 OBJFILE is where the symbols are to be read from.
716
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
737
738 MAINLINE is nonzero if this is the main symbol file, or zero if
739 it's an extra symbol file such as dynamically loaded code.
740
741 VERBO is nonzero if the caller has printed a verbose message about
742 the symbol reading (and complaints can be more terse about it). */
743
744 void
745 syms_from_objfile (struct objfile *objfile,
746 struct section_addr_info *addrs,
747 struct section_offsets *offsets,
748 int num_offsets,
749 int mainline,
750 int verbo)
751 {
752 struct section_addr_info *local_addr = NULL;
753 struct cleanup *old_chain;
754
755 gdb_assert (! (addrs && offsets));
756
757 init_entry_point_info (objfile);
758 objfile->sf = find_sym_fns (objfile->obfd);
759
760 if (objfile->sf == NULL)
761 return; /* No symbols. */
762
763 /* Make sure that partially constructed symbol tables will be cleaned up
764 if an error occurs during symbol reading. */
765 old_chain = make_cleanup_free_objfile (objfile);
766
767 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
768 list. We now establish the convention that an addr of zero means
769 no load address was specified. */
770 if (! addrs && ! offsets)
771 {
772 local_addr
773 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
774 make_cleanup (xfree, local_addr);
775 addrs = local_addr;
776 }
777
778 /* Now either addrs or offsets is non-zero. */
779
780 if (mainline)
781 {
782 /* We will modify the main symbol table, make sure that all its users
783 will be cleaned up if an error occurs during symbol reading. */
784 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
785
786 /* Since no error yet, throw away the old symbol table. */
787
788 if (symfile_objfile != NULL)
789 {
790 free_objfile (symfile_objfile);
791 symfile_objfile = NULL;
792 }
793
794 /* Currently we keep symbols from the add-symbol-file command.
795 If the user wants to get rid of them, they should do "symbol-file"
796 without arguments first. Not sure this is the best behavior
797 (PR 2207). */
798
799 (*objfile->sf->sym_new_init) (objfile);
800 }
801
802 /* Convert addr into an offset rather than an absolute address.
803 We find the lowest address of a loaded segment in the objfile,
804 and assume that <addr> is where that got loaded.
805
806 We no longer warn if the lowest section is not a text segment (as
807 happens for the PA64 port. */
808 if (!mainline && addrs && addrs->other[0].name)
809 {
810 asection *lower_sect;
811 asection *sect;
812 CORE_ADDR lower_offset;
813 int i;
814
815 /* Find lowest loadable section to be used as starting point for
816 continguous sections. FIXME!! won't work without call to find
817 .text first, but this assumes text is lowest section. */
818 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
819 if (lower_sect == NULL)
820 bfd_map_over_sections (objfile->obfd, find_lowest_section,
821 &lower_sect);
822 if (lower_sect == NULL)
823 warning (_("no loadable sections found in added symbol-file %s"),
824 objfile->name);
825 else
826 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
827 warning (_("Lowest section in %s is %s at %s"),
828 objfile->name,
829 bfd_section_name (objfile->obfd, lower_sect),
830 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
831 if (lower_sect != NULL)
832 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
833 else
834 lower_offset = 0;
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, verbo);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 #ifndef DEPRECATED_IBM6000_TARGET
897 /* This is a SVR4/SunOS specific hack, I think. In any event, it
898 screws RS/6000. sym_offsets should be doing this sort of thing,
899 because it knows the mapping between bfd sections and
900 section_offsets. */
901 /* This is a hack. As far as I can tell, section offsets are not
902 target dependent. They are all set to addr with a couple of
903 exceptions. The exceptions are sysvr4 shared libraries, whose
904 offsets are kept in solib structures anyway and rs6000 xcoff
905 which handles shared libraries in a completely unique way.
906
907 Section offsets are built similarly, except that they are built
908 by adding addr in all cases because there is no clear mapping
909 from section_offsets into actual sections. Note that solib.c
910 has a different algorithm for finding section offsets.
911
912 These should probably all be collapsed into some target
913 independent form of shared library support. FIXME. */
914
915 if (addrs)
916 {
917 struct obj_section *s;
918
919 /* Map section offsets in "addr" back to the object's
920 sections by comparing the section names with bfd's
921 section names. Then adjust the section address by
922 the offset. */ /* for gdb/13815 */
923
924 ALL_OBJFILE_OSECTIONS (objfile, s)
925 {
926 CORE_ADDR s_addr = 0;
927 int i;
928
929 for (i = 0;
930 !s_addr && i < addrs->num_sections && addrs->other[i].name;
931 i++)
932 if (strcmp (bfd_section_name (s->objfile->obfd,
933 s->the_bfd_section),
934 addrs->other[i].name) == 0)
935 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
936
937 s->addr -= s->offset;
938 s->addr += s_addr;
939 s->endaddr -= s->offset;
940 s->endaddr += s_addr;
941 s->offset += s_addr;
942 }
943 }
944 #endif /* not DEPRECATED_IBM6000_TARGET */
945
946 (*objfile->sf->sym_read) (objfile, mainline);
947
948 /* Don't allow char * to have a typename (else would get caddr_t).
949 Ditto void *. FIXME: Check whether this is now done by all the
950 symbol readers themselves (many of them now do), and if so remove
951 it from here. */
952
953 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
954 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
955
956 /* Mark the objfile has having had initial symbol read attempted. Note
957 that this does not mean we found any symbols... */
958
959 objfile->flags |= OBJF_SYMS;
960
961 /* Discard cleanups as symbol reading was successful. */
962
963 discard_cleanups (old_chain);
964 }
965
966 /* Perform required actions after either reading in the initial
967 symbols for a new objfile, or mapping in the symbols from a reusable
968 objfile. */
969
970 void
971 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
972 {
973
974 /* If this is the main symbol file we have to clean up all users of the
975 old main symbol file. Otherwise it is sufficient to fixup all the
976 breakpoints that may have been redefined by this symbol file. */
977 if (mainline)
978 {
979 /* OK, make it the "real" symbol file. */
980 symfile_objfile = objfile;
981
982 clear_symtab_users ();
983 }
984 else
985 {
986 breakpoint_re_set ();
987 }
988
989 /* We're done reading the symbol file; finish off complaints. */
990 clear_complaints (&symfile_complaints, 0, verbo);
991 }
992
993 /* Process a symbol file, as either the main file or as a dynamically
994 loaded file.
995
996 ABFD is a BFD already open on the file, as from symfile_bfd_open.
997 This BFD will be closed on error, and is always consumed by this function.
998
999 FROM_TTY says how verbose to be.
1000
1001 MAINLINE specifies whether this is the main symbol file, or whether
1002 it's an extra symbol file such as dynamically loaded code.
1003
1004 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1005 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1006 non-zero.
1007
1008 Upon success, returns a pointer to the objfile that was added.
1009 Upon failure, jumps back to command level (never returns). */
1010 static struct objfile *
1011 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1012 struct section_addr_info *addrs,
1013 struct section_offsets *offsets,
1014 int num_offsets,
1015 int mainline, int flags)
1016 {
1017 struct objfile *objfile;
1018 struct partial_symtab *psymtab;
1019 char *debugfile = NULL;
1020 struct section_addr_info *orig_addrs = NULL;
1021 struct cleanup *my_cleanups;
1022 const char *name = bfd_get_filename (abfd);
1023
1024 my_cleanups = make_cleanup_bfd_close (abfd);
1025
1026 /* Give user a chance to burp if we'd be
1027 interactively wiping out any existing symbols. */
1028
1029 if ((have_full_symbols () || have_partial_symbols ())
1030 && mainline
1031 && from_tty
1032 && !query ("Load new symbol table from \"%s\"? ", name))
1033 error (_("Not confirmed."));
1034
1035 objfile = allocate_objfile (abfd, flags);
1036 discard_cleanups (my_cleanups);
1037
1038 if (addrs)
1039 {
1040 orig_addrs = copy_section_addr_info (addrs);
1041 make_cleanup_free_section_addr_info (orig_addrs);
1042 }
1043
1044 /* We either created a new mapped symbol table, mapped an existing
1045 symbol table file which has not had initial symbol reading
1046 performed, or need to read an unmapped symbol table. */
1047 if (from_tty || info_verbose)
1048 {
1049 if (deprecated_pre_add_symbol_hook)
1050 deprecated_pre_add_symbol_hook (name);
1051 else
1052 {
1053 printf_unfiltered (_("Reading symbols from %s..."), name);
1054 wrap_here ("");
1055 gdb_flush (gdb_stdout);
1056 }
1057 }
1058 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1059 mainline, from_tty);
1060
1061 /* We now have at least a partial symbol table. Check to see if the
1062 user requested that all symbols be read on initial access via either
1063 the gdb startup command line or on a per symbol file basis. Expand
1064 all partial symbol tables for this objfile if so. */
1065
1066 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1067 {
1068 if (from_tty || info_verbose)
1069 {
1070 printf_unfiltered (_("expanding to full symbols..."));
1071 wrap_here ("");
1072 gdb_flush (gdb_stdout);
1073 }
1074
1075 for (psymtab = objfile->psymtabs;
1076 psymtab != NULL;
1077 psymtab = psymtab->next)
1078 {
1079 psymtab_to_symtab (psymtab);
1080 }
1081 }
1082
1083 /* If the file has its own symbol tables it has no separate debug info.
1084 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1085 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1086 if (objfile->psymtabs == NULL)
1087 debugfile = find_separate_debug_file (objfile);
1088 if (debugfile)
1089 {
1090 if (addrs != NULL)
1091 {
1092 objfile->separate_debug_objfile
1093 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1094 }
1095 else
1096 {
1097 objfile->separate_debug_objfile
1098 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1099 }
1100 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1101 = objfile;
1102
1103 /* Put the separate debug object before the normal one, this is so that
1104 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1105 put_objfile_before (objfile->separate_debug_objfile, objfile);
1106
1107 xfree (debugfile);
1108 }
1109
1110 if (!have_partial_symbols () && !have_full_symbols ())
1111 {
1112 wrap_here ("");
1113 printf_filtered (_("(no debugging symbols found)"));
1114 if (from_tty || info_verbose)
1115 printf_filtered ("...");
1116 else
1117 printf_filtered ("\n");
1118 wrap_here ("");
1119 }
1120
1121 if (from_tty || info_verbose)
1122 {
1123 if (deprecated_post_add_symbol_hook)
1124 deprecated_post_add_symbol_hook ();
1125 else
1126 {
1127 printf_unfiltered (_("done.\n"));
1128 }
1129 }
1130
1131 /* We print some messages regardless of whether 'from_tty ||
1132 info_verbose' is true, so make sure they go out at the right
1133 time. */
1134 gdb_flush (gdb_stdout);
1135
1136 do_cleanups (my_cleanups);
1137
1138 if (objfile->sf == NULL)
1139 return objfile; /* No symbols. */
1140
1141 new_symfile_objfile (objfile, mainline, from_tty);
1142
1143 observer_notify_new_objfile (objfile);
1144
1145 bfd_cache_close_all ();
1146 return (objfile);
1147 }
1148
1149
1150 /* Process the symbol file ABFD, as either the main file or as a
1151 dynamically loaded file.
1152
1153 See symbol_file_add_with_addrs_or_offsets's comments for
1154 details. */
1155 struct objfile *
1156 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1157 struct section_addr_info *addrs,
1158 int mainline, int flags)
1159 {
1160 return symbol_file_add_with_addrs_or_offsets (abfd,
1161 from_tty, addrs, 0, 0,
1162 mainline, flags);
1163 }
1164
1165
1166 /* Process a symbol file, as either the main file or as a dynamically
1167 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1168 for details. */
1169 struct objfile *
1170 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1171 int mainline, int flags)
1172 {
1173 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1174 addrs, mainline, flags);
1175 }
1176
1177
1178 /* Call symbol_file_add() with default values and update whatever is
1179 affected by the loading of a new main().
1180 Used when the file is supplied in the gdb command line
1181 and by some targets with special loading requirements.
1182 The auxiliary function, symbol_file_add_main_1(), has the flags
1183 argument for the switches that can only be specified in the symbol_file
1184 command itself. */
1185
1186 void
1187 symbol_file_add_main (char *args, int from_tty)
1188 {
1189 symbol_file_add_main_1 (args, from_tty, 0);
1190 }
1191
1192 static void
1193 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1194 {
1195 symbol_file_add (args, from_tty, NULL, 1, flags);
1196
1197 /* Getting new symbols may change our opinion about
1198 what is frameless. */
1199 reinit_frame_cache ();
1200
1201 set_initial_language ();
1202 }
1203
1204 void
1205 symbol_file_clear (int from_tty)
1206 {
1207 if ((have_full_symbols () || have_partial_symbols ())
1208 && from_tty
1209 && (symfile_objfile
1210 ? !query (_("Discard symbol table from `%s'? "),
1211 symfile_objfile->name)
1212 : !query (_("Discard symbol table? "))))
1213 error (_("Not confirmed."));
1214 free_all_objfiles ();
1215
1216 /* solib descriptors may have handles to objfiles. Since their
1217 storage has just been released, we'd better wipe the solib
1218 descriptors as well.
1219 */
1220 #if defined(SOLIB_RESTART)
1221 SOLIB_RESTART ();
1222 #endif
1223
1224 symfile_objfile = NULL;
1225 if (from_tty)
1226 printf_unfiltered (_("No symbol file now.\n"));
1227 }
1228
1229 struct build_id
1230 {
1231 size_t size;
1232 gdb_byte data[1];
1233 };
1234
1235 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1236
1237 static struct build_id *
1238 build_id_bfd_get (bfd *abfd)
1239 {
1240 struct build_id *retval;
1241
1242 if (!bfd_check_format (abfd, bfd_object)
1243 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1244 || elf_tdata (abfd)->build_id == NULL)
1245 return NULL;
1246
1247 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1248 retval->size = elf_tdata (abfd)->build_id_size;
1249 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1250
1251 return retval;
1252 }
1253
1254 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1255
1256 static int
1257 build_id_verify (const char *filename, struct build_id *check)
1258 {
1259 bfd *abfd;
1260 struct build_id *found = NULL;
1261 int retval = 0;
1262
1263 /* We expect to be silent on the non-existing files. */
1264 abfd = bfd_openr (filename, gnutarget);
1265 if (abfd == NULL)
1266 return 0;
1267
1268 found = build_id_bfd_get (abfd);
1269
1270 if (found == NULL)
1271 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1272 else if (found->size != check->size
1273 || memcmp (found->data, check->data, found->size) != 0)
1274 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1275 else
1276 retval = 1;
1277
1278 if (!bfd_close (abfd))
1279 warning (_("cannot close \"%s\": %s"), filename,
1280 bfd_errmsg (bfd_get_error ()));
1281 return retval;
1282 }
1283
1284 static char *
1285 build_id_to_debug_filename (struct build_id *build_id)
1286 {
1287 char *link, *s, *retval = NULL;
1288 gdb_byte *data = build_id->data;
1289 size_t size = build_id->size;
1290
1291 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1292 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1293 + 2 * size + (sizeof ".debug" - 1) + 1);
1294 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1295 if (size > 0)
1296 {
1297 size--;
1298 s += sprintf (s, "%02x", (unsigned) *data++);
1299 }
1300 if (size > 0)
1301 *s++ = '/';
1302 while (size-- > 0)
1303 s += sprintf (s, "%02x", (unsigned) *data++);
1304 strcpy (s, ".debug");
1305
1306 /* lrealpath() is expensive even for the usually non-existent files. */
1307 if (access (link, F_OK) == 0)
1308 retval = lrealpath (link);
1309 xfree (link);
1310
1311 if (retval != NULL && !build_id_verify (retval, build_id))
1312 {
1313 xfree (retval);
1314 retval = NULL;
1315 }
1316
1317 return retval;
1318 }
1319
1320 static char *
1321 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1322 {
1323 asection *sect;
1324 bfd_size_type debuglink_size;
1325 unsigned long crc32;
1326 char *contents;
1327 int crc_offset;
1328 unsigned char *p;
1329
1330 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1331
1332 if (sect == NULL)
1333 return NULL;
1334
1335 debuglink_size = bfd_section_size (objfile->obfd, sect);
1336
1337 contents = xmalloc (debuglink_size);
1338 bfd_get_section_contents (objfile->obfd, sect, contents,
1339 (file_ptr)0, (bfd_size_type)debuglink_size);
1340
1341 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1342 crc_offset = strlen (contents) + 1;
1343 crc_offset = (crc_offset + 3) & ~3;
1344
1345 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1346
1347 *crc32_out = crc32;
1348 return contents;
1349 }
1350
1351 static int
1352 separate_debug_file_exists (const char *name, unsigned long crc)
1353 {
1354 unsigned long file_crc = 0;
1355 int fd;
1356 gdb_byte buffer[8*1024];
1357 int count;
1358
1359 fd = open (name, O_RDONLY | O_BINARY);
1360 if (fd < 0)
1361 return 0;
1362
1363 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1364 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1365
1366 close (fd);
1367
1368 return crc == file_crc;
1369 }
1370
1371 char *debug_file_directory = NULL;
1372 static void
1373 show_debug_file_directory (struct ui_file *file, int from_tty,
1374 struct cmd_list_element *c, const char *value)
1375 {
1376 fprintf_filtered (file, _("\
1377 The directory where separate debug symbols are searched for is \"%s\".\n"),
1378 value);
1379 }
1380
1381 #if ! defined (DEBUG_SUBDIRECTORY)
1382 #define DEBUG_SUBDIRECTORY ".debug"
1383 #endif
1384
1385 static char *
1386 find_separate_debug_file (struct objfile *objfile)
1387 {
1388 asection *sect;
1389 char *basename;
1390 char *dir;
1391 char *debugfile;
1392 char *name_copy;
1393 char *canon_name;
1394 bfd_size_type debuglink_size;
1395 unsigned long crc32;
1396 int i;
1397 struct build_id *build_id;
1398
1399 build_id = build_id_bfd_get (objfile->obfd);
1400 if (build_id != NULL)
1401 {
1402 char *build_id_name;
1403
1404 build_id_name = build_id_to_debug_filename (build_id);
1405 free (build_id);
1406 /* Prevent looping on a stripped .debug file. */
1407 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1408 {
1409 warning (_("\"%s\": separate debug info file has no debug info"),
1410 build_id_name);
1411 xfree (build_id_name);
1412 }
1413 else if (build_id_name != NULL)
1414 return build_id_name;
1415 }
1416
1417 basename = get_debug_link_info (objfile, &crc32);
1418
1419 if (basename == NULL)
1420 return NULL;
1421
1422 dir = xstrdup (objfile->name);
1423
1424 /* Strip off the final filename part, leaving the directory name,
1425 followed by a slash. Objfile names should always be absolute and
1426 tilde-expanded, so there should always be a slash in there
1427 somewhere. */
1428 for (i = strlen(dir) - 1; i >= 0; i--)
1429 {
1430 if (IS_DIR_SEPARATOR (dir[i]))
1431 break;
1432 }
1433 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1434 dir[i+1] = '\0';
1435
1436 debugfile = alloca (strlen (debug_file_directory) + 1
1437 + strlen (dir)
1438 + strlen (DEBUG_SUBDIRECTORY)
1439 + strlen ("/")
1440 + strlen (basename)
1441 + 1);
1442
1443 /* First try in the same directory as the original file. */
1444 strcpy (debugfile, dir);
1445 strcat (debugfile, basename);
1446
1447 if (separate_debug_file_exists (debugfile, crc32))
1448 {
1449 xfree (basename);
1450 xfree (dir);
1451 return xstrdup (debugfile);
1452 }
1453
1454 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1455 strcpy (debugfile, dir);
1456 strcat (debugfile, DEBUG_SUBDIRECTORY);
1457 strcat (debugfile, "/");
1458 strcat (debugfile, basename);
1459
1460 if (separate_debug_file_exists (debugfile, crc32))
1461 {
1462 xfree (basename);
1463 xfree (dir);
1464 return xstrdup (debugfile);
1465 }
1466
1467 /* Then try in the global debugfile directory. */
1468 strcpy (debugfile, debug_file_directory);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, dir);
1471 strcat (debugfile, basename);
1472
1473 if (separate_debug_file_exists (debugfile, crc32))
1474 {
1475 xfree (basename);
1476 xfree (dir);
1477 return xstrdup (debugfile);
1478 }
1479
1480 /* If the file is in the sysroot, try using its base path in the
1481 global debugfile directory. */
1482 canon_name = lrealpath (dir);
1483 if (canon_name
1484 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1485 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1486 {
1487 strcpy (debugfile, debug_file_directory);
1488 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1489 strcat (debugfile, "/");
1490 strcat (debugfile, basename);
1491
1492 if (separate_debug_file_exists (debugfile, crc32))
1493 {
1494 xfree (canon_name);
1495 xfree (basename);
1496 xfree (dir);
1497 return xstrdup (debugfile);
1498 }
1499 }
1500
1501 if (canon_name)
1502 xfree (canon_name);
1503
1504 xfree (basename);
1505 xfree (dir);
1506 return NULL;
1507 }
1508
1509
1510 /* This is the symbol-file command. Read the file, analyze its
1511 symbols, and add a struct symtab to a symtab list. The syntax of
1512 the command is rather bizarre:
1513
1514 1. The function buildargv implements various quoting conventions
1515 which are undocumented and have little or nothing in common with
1516 the way things are quoted (or not quoted) elsewhere in GDB.
1517
1518 2. Options are used, which are not generally used in GDB (perhaps
1519 "set mapped on", "set readnow on" would be better)
1520
1521 3. The order of options matters, which is contrary to GNU
1522 conventions (because it is confusing and inconvenient). */
1523
1524 void
1525 symbol_file_command (char *args, int from_tty)
1526 {
1527 dont_repeat ();
1528
1529 if (args == NULL)
1530 {
1531 symbol_file_clear (from_tty);
1532 }
1533 else
1534 {
1535 char **argv = buildargv (args);
1536 int flags = OBJF_USERLOADED;
1537 struct cleanup *cleanups;
1538 char *name = NULL;
1539
1540 if (argv == NULL)
1541 nomem (0);
1542
1543 cleanups = make_cleanup_freeargv (argv);
1544 while (*argv != NULL)
1545 {
1546 if (strcmp (*argv, "-readnow") == 0)
1547 flags |= OBJF_READNOW;
1548 else if (**argv == '-')
1549 error (_("unknown option `%s'"), *argv);
1550 else
1551 {
1552 symbol_file_add_main_1 (*argv, from_tty, flags);
1553 name = *argv;
1554 }
1555
1556 argv++;
1557 }
1558
1559 if (name == NULL)
1560 error (_("no symbol file name was specified"));
1561
1562 do_cleanups (cleanups);
1563 }
1564 }
1565
1566 /* Set the initial language.
1567
1568 FIXME: A better solution would be to record the language in the
1569 psymtab when reading partial symbols, and then use it (if known) to
1570 set the language. This would be a win for formats that encode the
1571 language in an easily discoverable place, such as DWARF. For
1572 stabs, we can jump through hoops looking for specially named
1573 symbols or try to intuit the language from the specific type of
1574 stabs we find, but we can't do that until later when we read in
1575 full symbols. */
1576
1577 void
1578 set_initial_language (void)
1579 {
1580 struct partial_symtab *pst;
1581 enum language lang = language_unknown;
1582
1583 pst = find_main_psymtab ();
1584 if (pst != NULL)
1585 {
1586 if (pst->filename != NULL)
1587 lang = deduce_language_from_filename (pst->filename);
1588
1589 if (lang == language_unknown)
1590 {
1591 /* Make C the default language */
1592 lang = language_c;
1593 }
1594
1595 set_language (lang);
1596 expected_language = current_language; /* Don't warn the user. */
1597 }
1598 }
1599
1600 /* Open the file specified by NAME and hand it off to BFD for
1601 preliminary analysis. Return a newly initialized bfd *, which
1602 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1603 absolute). In case of trouble, error() is called. */
1604
1605 bfd *
1606 symfile_bfd_open (char *name)
1607 {
1608 bfd *sym_bfd;
1609 int desc;
1610 char *absolute_name;
1611
1612 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1613
1614 /* Look down path for it, allocate 2nd new malloc'd copy. */
1615 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1616 O_RDONLY | O_BINARY, 0, &absolute_name);
1617 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1618 if (desc < 0)
1619 {
1620 char *exename = alloca (strlen (name) + 5);
1621 strcat (strcpy (exename, name), ".exe");
1622 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1623 O_RDONLY | O_BINARY, 0, &absolute_name);
1624 }
1625 #endif
1626 if (desc < 0)
1627 {
1628 make_cleanup (xfree, name);
1629 perror_with_name (name);
1630 }
1631
1632 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1633 bfd. It'll be freed in free_objfile(). */
1634 xfree (name);
1635 name = absolute_name;
1636
1637 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1638 if (!sym_bfd)
1639 {
1640 close (desc);
1641 make_cleanup (xfree, name);
1642 error (_("\"%s\": can't open to read symbols: %s."), name,
1643 bfd_errmsg (bfd_get_error ()));
1644 }
1645 bfd_set_cacheable (sym_bfd, 1);
1646
1647 if (!bfd_check_format (sym_bfd, bfd_object))
1648 {
1649 /* FIXME: should be checking for errors from bfd_close (for one
1650 thing, on error it does not free all the storage associated
1651 with the bfd). */
1652 bfd_close (sym_bfd); /* This also closes desc. */
1653 make_cleanup (xfree, name);
1654 error (_("\"%s\": can't read symbols: %s."), name,
1655 bfd_errmsg (bfd_get_error ()));
1656 }
1657
1658 return sym_bfd;
1659 }
1660
1661 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1662 the section was not found. */
1663
1664 int
1665 get_section_index (struct objfile *objfile, char *section_name)
1666 {
1667 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1668
1669 if (sect)
1670 return sect->index;
1671 else
1672 return -1;
1673 }
1674
1675 /* Link SF into the global symtab_fns list. Called on startup by the
1676 _initialize routine in each object file format reader, to register
1677 information about each format the the reader is prepared to
1678 handle. */
1679
1680 void
1681 add_symtab_fns (struct sym_fns *sf)
1682 {
1683 sf->next = symtab_fns;
1684 symtab_fns = sf;
1685 }
1686
1687 /* Initialize OBJFILE to read symbols from its associated BFD. It
1688 either returns or calls error(). The result is an initialized
1689 struct sym_fns in the objfile structure, that contains cached
1690 information about the symbol file. */
1691
1692 static struct sym_fns *
1693 find_sym_fns (bfd *abfd)
1694 {
1695 struct sym_fns *sf;
1696 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1697
1698 if (our_flavour == bfd_target_srec_flavour
1699 || our_flavour == bfd_target_ihex_flavour
1700 || our_flavour == bfd_target_tekhex_flavour)
1701 return NULL; /* No symbols. */
1702
1703 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1704 if (our_flavour == sf->sym_flavour)
1705 return sf;
1706
1707 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1708 bfd_get_target (abfd));
1709 }
1710 \f
1711
1712 /* This function runs the load command of our current target. */
1713
1714 static void
1715 load_command (char *arg, int from_tty)
1716 {
1717 if (arg == NULL)
1718 {
1719 char *parg;
1720 int count = 0;
1721
1722 parg = arg = get_exec_file (1);
1723
1724 /* Count how many \ " ' tab space there are in the name. */
1725 while ((parg = strpbrk (parg, "\\\"'\t ")))
1726 {
1727 parg++;
1728 count++;
1729 }
1730
1731 if (count)
1732 {
1733 /* We need to quote this string so buildargv can pull it apart. */
1734 char *temp = xmalloc (strlen (arg) + count + 1 );
1735 char *ptemp = temp;
1736 char *prev;
1737
1738 make_cleanup (xfree, temp);
1739
1740 prev = parg = arg;
1741 while ((parg = strpbrk (parg, "\\\"'\t ")))
1742 {
1743 strncpy (ptemp, prev, parg - prev);
1744 ptemp += parg - prev;
1745 prev = parg++;
1746 *ptemp++ = '\\';
1747 }
1748 strcpy (ptemp, prev);
1749
1750 arg = temp;
1751 }
1752 }
1753
1754 /* The user might be reloading because the binary has changed. Take
1755 this opportunity to check. */
1756 reopen_exec_file ();
1757 reread_symbols ();
1758
1759 target_load (arg, from_tty);
1760
1761 /* After re-loading the executable, we don't really know which
1762 overlays are mapped any more. */
1763 overlay_cache_invalid = 1;
1764 }
1765
1766 /* This version of "load" should be usable for any target. Currently
1767 it is just used for remote targets, not inftarg.c or core files,
1768 on the theory that only in that case is it useful.
1769
1770 Avoiding xmodem and the like seems like a win (a) because we don't have
1771 to worry about finding it, and (b) On VMS, fork() is very slow and so
1772 we don't want to run a subprocess. On the other hand, I'm not sure how
1773 performance compares. */
1774
1775 static int validate_download = 0;
1776
1777 /* Callback service function for generic_load (bfd_map_over_sections). */
1778
1779 static void
1780 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1781 {
1782 bfd_size_type *sum = data;
1783
1784 *sum += bfd_get_section_size (asec);
1785 }
1786
1787 /* Opaque data for load_section_callback. */
1788 struct load_section_data {
1789 unsigned long load_offset;
1790 struct load_progress_data *progress_data;
1791 VEC(memory_write_request_s) *requests;
1792 };
1793
1794 /* Opaque data for load_progress. */
1795 struct load_progress_data {
1796 /* Cumulative data. */
1797 unsigned long write_count;
1798 unsigned long data_count;
1799 bfd_size_type total_size;
1800 };
1801
1802 /* Opaque data for load_progress for a single section. */
1803 struct load_progress_section_data {
1804 struct load_progress_data *cumulative;
1805
1806 /* Per-section data. */
1807 const char *section_name;
1808 ULONGEST section_sent;
1809 ULONGEST section_size;
1810 CORE_ADDR lma;
1811 gdb_byte *buffer;
1812 };
1813
1814 /* Target write callback routine for progress reporting. */
1815
1816 static void
1817 load_progress (ULONGEST bytes, void *untyped_arg)
1818 {
1819 struct load_progress_section_data *args = untyped_arg;
1820 struct load_progress_data *totals;
1821
1822 if (args == NULL)
1823 /* Writing padding data. No easy way to get at the cumulative
1824 stats, so just ignore this. */
1825 return;
1826
1827 totals = args->cumulative;
1828
1829 if (bytes == 0 && args->section_sent == 0)
1830 {
1831 /* The write is just starting. Let the user know we've started
1832 this section. */
1833 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1834 args->section_name, paddr_nz (args->section_size),
1835 paddr_nz (args->lma));
1836 return;
1837 }
1838
1839 if (validate_download)
1840 {
1841 /* Broken memories and broken monitors manifest themselves here
1842 when bring new computers to life. This doubles already slow
1843 downloads. */
1844 /* NOTE: cagney/1999-10-18: A more efficient implementation
1845 might add a verify_memory() method to the target vector and
1846 then use that. remote.c could implement that method using
1847 the ``qCRC'' packet. */
1848 gdb_byte *check = xmalloc (bytes);
1849 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1850
1851 if (target_read_memory (args->lma, check, bytes) != 0)
1852 error (_("Download verify read failed at 0x%s"),
1853 paddr (args->lma));
1854 if (memcmp (args->buffer, check, bytes) != 0)
1855 error (_("Download verify compare failed at 0x%s"),
1856 paddr (args->lma));
1857 do_cleanups (verify_cleanups);
1858 }
1859 totals->data_count += bytes;
1860 args->lma += bytes;
1861 args->buffer += bytes;
1862 totals->write_count += 1;
1863 args->section_sent += bytes;
1864 if (quit_flag
1865 || (deprecated_ui_load_progress_hook != NULL
1866 && deprecated_ui_load_progress_hook (args->section_name,
1867 args->section_sent)))
1868 error (_("Canceled the download"));
1869
1870 if (deprecated_show_load_progress != NULL)
1871 deprecated_show_load_progress (args->section_name,
1872 args->section_sent,
1873 args->section_size,
1874 totals->data_count,
1875 totals->total_size);
1876 }
1877
1878 /* Callback service function for generic_load (bfd_map_over_sections). */
1879
1880 static void
1881 load_section_callback (bfd *abfd, asection *asec, void *data)
1882 {
1883 struct memory_write_request *new_request;
1884 struct load_section_data *args = data;
1885 struct load_progress_section_data *section_data;
1886 bfd_size_type size = bfd_get_section_size (asec);
1887 gdb_byte *buffer;
1888 const char *sect_name = bfd_get_section_name (abfd, asec);
1889
1890 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1891 return;
1892
1893 if (size == 0)
1894 return;
1895
1896 new_request = VEC_safe_push (memory_write_request_s,
1897 args->requests, NULL);
1898 memset (new_request, 0, sizeof (struct memory_write_request));
1899 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1900 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1901 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1902 new_request->data = xmalloc (size);
1903 new_request->baton = section_data;
1904
1905 buffer = new_request->data;
1906
1907 section_data->cumulative = args->progress_data;
1908 section_data->section_name = sect_name;
1909 section_data->section_size = size;
1910 section_data->lma = new_request->begin;
1911 section_data->buffer = buffer;
1912
1913 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1914 }
1915
1916 /* Clean up an entire memory request vector, including load
1917 data and progress records. */
1918
1919 static void
1920 clear_memory_write_data (void *arg)
1921 {
1922 VEC(memory_write_request_s) **vec_p = arg;
1923 VEC(memory_write_request_s) *vec = *vec_p;
1924 int i;
1925 struct memory_write_request *mr;
1926
1927 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1928 {
1929 xfree (mr->data);
1930 xfree (mr->baton);
1931 }
1932 VEC_free (memory_write_request_s, vec);
1933 }
1934
1935 void
1936 generic_load (char *args, int from_tty)
1937 {
1938 bfd *loadfile_bfd;
1939 struct timeval start_time, end_time;
1940 char *filename;
1941 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1942 struct load_section_data cbdata;
1943 struct load_progress_data total_progress;
1944
1945 CORE_ADDR entry;
1946 char **argv;
1947
1948 memset (&cbdata, 0, sizeof (cbdata));
1949 memset (&total_progress, 0, sizeof (total_progress));
1950 cbdata.progress_data = &total_progress;
1951
1952 make_cleanup (clear_memory_write_data, &cbdata.requests);
1953
1954 argv = buildargv (args);
1955
1956 if (argv == NULL)
1957 nomem(0);
1958
1959 make_cleanup_freeargv (argv);
1960
1961 filename = tilde_expand (argv[0]);
1962 make_cleanup (xfree, filename);
1963
1964 if (argv[1] != NULL)
1965 {
1966 char *endptr;
1967
1968 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1969
1970 /* If the last word was not a valid number then
1971 treat it as a file name with spaces in. */
1972 if (argv[1] == endptr)
1973 error (_("Invalid download offset:%s."), argv[1]);
1974
1975 if (argv[2] != NULL)
1976 error (_("Too many parameters."));
1977 }
1978
1979 /* Open the file for loading. */
1980 loadfile_bfd = bfd_openr (filename, gnutarget);
1981 if (loadfile_bfd == NULL)
1982 {
1983 perror_with_name (filename);
1984 return;
1985 }
1986
1987 /* FIXME: should be checking for errors from bfd_close (for one thing,
1988 on error it does not free all the storage associated with the
1989 bfd). */
1990 make_cleanup_bfd_close (loadfile_bfd);
1991
1992 if (!bfd_check_format (loadfile_bfd, bfd_object))
1993 {
1994 error (_("\"%s\" is not an object file: %s"), filename,
1995 bfd_errmsg (bfd_get_error ()));
1996 }
1997
1998 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1999 (void *) &total_progress.total_size);
2000
2001 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2002
2003 gettimeofday (&start_time, NULL);
2004
2005 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2006 load_progress) != 0)
2007 error (_("Load failed"));
2008
2009 gettimeofday (&end_time, NULL);
2010
2011 entry = bfd_get_start_address (loadfile_bfd);
2012 ui_out_text (uiout, "Start address ");
2013 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2014 ui_out_text (uiout, ", load size ");
2015 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2016 ui_out_text (uiout, "\n");
2017 /* We were doing this in remote-mips.c, I suspect it is right
2018 for other targets too. */
2019 write_pc (entry);
2020
2021 /* FIXME: are we supposed to call symbol_file_add or not? According
2022 to a comment from remote-mips.c (where a call to symbol_file_add
2023 was commented out), making the call confuses GDB if more than one
2024 file is loaded in. Some targets do (e.g., remote-vx.c) but
2025 others don't (or didn't - perhaps they have all been deleted). */
2026
2027 print_transfer_performance (gdb_stdout, total_progress.data_count,
2028 total_progress.write_count,
2029 &start_time, &end_time);
2030
2031 do_cleanups (old_cleanups);
2032 }
2033
2034 /* Report how fast the transfer went. */
2035
2036 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2037 replaced by print_transfer_performance (with a very different
2038 function signature). */
2039
2040 void
2041 report_transfer_performance (unsigned long data_count, time_t start_time,
2042 time_t end_time)
2043 {
2044 struct timeval start, end;
2045
2046 start.tv_sec = start_time;
2047 start.tv_usec = 0;
2048 end.tv_sec = end_time;
2049 end.tv_usec = 0;
2050
2051 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2052 }
2053
2054 void
2055 print_transfer_performance (struct ui_file *stream,
2056 unsigned long data_count,
2057 unsigned long write_count,
2058 const struct timeval *start_time,
2059 const struct timeval *end_time)
2060 {
2061 ULONGEST time_count;
2062
2063 /* Compute the elapsed time in milliseconds, as a tradeoff between
2064 accuracy and overflow. */
2065 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2066 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2067
2068 ui_out_text (uiout, "Transfer rate: ");
2069 if (time_count > 0)
2070 {
2071 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2072
2073 if (ui_out_is_mi_like_p (uiout))
2074 {
2075 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2076 ui_out_text (uiout, " bits/sec");
2077 }
2078 else if (rate < 1024)
2079 {
2080 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2081 ui_out_text (uiout, " bytes/sec");
2082 }
2083 else
2084 {
2085 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2086 ui_out_text (uiout, " KB/sec");
2087 }
2088 }
2089 else
2090 {
2091 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2092 ui_out_text (uiout, " bits in <1 sec");
2093 }
2094 if (write_count > 0)
2095 {
2096 ui_out_text (uiout, ", ");
2097 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2098 ui_out_text (uiout, " bytes/write");
2099 }
2100 ui_out_text (uiout, ".\n");
2101 }
2102
2103 /* This function allows the addition of incrementally linked object files.
2104 It does not modify any state in the target, only in the debugger. */
2105 /* Note: ezannoni 2000-04-13 This function/command used to have a
2106 special case syntax for the rombug target (Rombug is the boot
2107 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2108 rombug case, the user doesn't need to supply a text address,
2109 instead a call to target_link() (in target.c) would supply the
2110 value to use. We are now discontinuing this type of ad hoc syntax. */
2111
2112 static void
2113 add_symbol_file_command (char *args, int from_tty)
2114 {
2115 char *filename = NULL;
2116 int flags = OBJF_USERLOADED;
2117 char *arg;
2118 int expecting_option = 0;
2119 int section_index = 0;
2120 int argcnt = 0;
2121 int sec_num = 0;
2122 int i;
2123 int expecting_sec_name = 0;
2124 int expecting_sec_addr = 0;
2125 char **argv;
2126
2127 struct sect_opt
2128 {
2129 char *name;
2130 char *value;
2131 };
2132
2133 struct section_addr_info *section_addrs;
2134 struct sect_opt *sect_opts = NULL;
2135 size_t num_sect_opts = 0;
2136 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2137
2138 num_sect_opts = 16;
2139 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2140 * sizeof (struct sect_opt));
2141
2142 dont_repeat ();
2143
2144 if (args == NULL)
2145 error (_("add-symbol-file takes a file name and an address"));
2146
2147 argv = buildargv (args);
2148 make_cleanup_freeargv (argv);
2149
2150 if (argv == NULL)
2151 nomem (0);
2152
2153 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2154 {
2155 /* Process the argument. */
2156 if (argcnt == 0)
2157 {
2158 /* The first argument is the file name. */
2159 filename = tilde_expand (arg);
2160 make_cleanup (xfree, filename);
2161 }
2162 else
2163 if (argcnt == 1)
2164 {
2165 /* The second argument is always the text address at which
2166 to load the program. */
2167 sect_opts[section_index].name = ".text";
2168 sect_opts[section_index].value = arg;
2169 if (++section_index >= num_sect_opts)
2170 {
2171 num_sect_opts *= 2;
2172 sect_opts = ((struct sect_opt *)
2173 xrealloc (sect_opts,
2174 num_sect_opts
2175 * sizeof (struct sect_opt)));
2176 }
2177 }
2178 else
2179 {
2180 /* It's an option (starting with '-') or it's an argument
2181 to an option */
2182
2183 if (*arg == '-')
2184 {
2185 if (strcmp (arg, "-readnow") == 0)
2186 flags |= OBJF_READNOW;
2187 else if (strcmp (arg, "-s") == 0)
2188 {
2189 expecting_sec_name = 1;
2190 expecting_sec_addr = 1;
2191 }
2192 }
2193 else
2194 {
2195 if (expecting_sec_name)
2196 {
2197 sect_opts[section_index].name = arg;
2198 expecting_sec_name = 0;
2199 }
2200 else
2201 if (expecting_sec_addr)
2202 {
2203 sect_opts[section_index].value = arg;
2204 expecting_sec_addr = 0;
2205 if (++section_index >= num_sect_opts)
2206 {
2207 num_sect_opts *= 2;
2208 sect_opts = ((struct sect_opt *)
2209 xrealloc (sect_opts,
2210 num_sect_opts
2211 * sizeof (struct sect_opt)));
2212 }
2213 }
2214 else
2215 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2216 }
2217 }
2218 }
2219
2220 /* This command takes at least two arguments. The first one is a
2221 filename, and the second is the address where this file has been
2222 loaded. Abort now if this address hasn't been provided by the
2223 user. */
2224 if (section_index < 1)
2225 error (_("The address where %s has been loaded is missing"), filename);
2226
2227 /* Print the prompt for the query below. And save the arguments into
2228 a sect_addr_info structure to be passed around to other
2229 functions. We have to split this up into separate print
2230 statements because hex_string returns a local static
2231 string. */
2232
2233 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2234 section_addrs = alloc_section_addr_info (section_index);
2235 make_cleanup (xfree, section_addrs);
2236 for (i = 0; i < section_index; i++)
2237 {
2238 CORE_ADDR addr;
2239 char *val = sect_opts[i].value;
2240 char *sec = sect_opts[i].name;
2241
2242 addr = parse_and_eval_address (val);
2243
2244 /* Here we store the section offsets in the order they were
2245 entered on the command line. */
2246 section_addrs->other[sec_num].name = sec;
2247 section_addrs->other[sec_num].addr = addr;
2248 printf_unfiltered ("\t%s_addr = %s\n",
2249 sec, hex_string ((unsigned long)addr));
2250 sec_num++;
2251
2252 /* The object's sections are initialized when a
2253 call is made to build_objfile_section_table (objfile).
2254 This happens in reread_symbols.
2255 At this point, we don't know what file type this is,
2256 so we can't determine what section names are valid. */
2257 }
2258
2259 if (from_tty && (!query ("%s", "")))
2260 error (_("Not confirmed."));
2261
2262 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2263
2264 /* Getting new symbols may change our opinion about what is
2265 frameless. */
2266 reinit_frame_cache ();
2267 do_cleanups (my_cleanups);
2268 }
2269 \f
2270 static void
2271 add_shared_symbol_files_command (char *args, int from_tty)
2272 {
2273 #ifdef ADD_SHARED_SYMBOL_FILES
2274 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2275 #else
2276 error (_("This command is not available in this configuration of GDB."));
2277 #endif
2278 }
2279 \f
2280 /* Re-read symbols if a symbol-file has changed. */
2281 void
2282 reread_symbols (void)
2283 {
2284 struct objfile *objfile;
2285 long new_modtime;
2286 int reread_one = 0;
2287 struct stat new_statbuf;
2288 int res;
2289
2290 /* With the addition of shared libraries, this should be modified,
2291 the load time should be saved in the partial symbol tables, since
2292 different tables may come from different source files. FIXME.
2293 This routine should then walk down each partial symbol table
2294 and see if the symbol table that it originates from has been changed */
2295
2296 for (objfile = object_files; objfile; objfile = objfile->next)
2297 {
2298 if (objfile->obfd)
2299 {
2300 #ifdef DEPRECATED_IBM6000_TARGET
2301 /* If this object is from a shared library, then you should
2302 stat on the library name, not member name. */
2303
2304 if (objfile->obfd->my_archive)
2305 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2306 else
2307 #endif
2308 res = stat (objfile->name, &new_statbuf);
2309 if (res != 0)
2310 {
2311 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2312 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2313 objfile->name);
2314 continue;
2315 }
2316 new_modtime = new_statbuf.st_mtime;
2317 if (new_modtime != objfile->mtime)
2318 {
2319 struct cleanup *old_cleanups;
2320 struct section_offsets *offsets;
2321 int num_offsets;
2322 char *obfd_filename;
2323
2324 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2325 objfile->name);
2326
2327 /* There are various functions like symbol_file_add,
2328 symfile_bfd_open, syms_from_objfile, etc., which might
2329 appear to do what we want. But they have various other
2330 effects which we *don't* want. So we just do stuff
2331 ourselves. We don't worry about mapped files (for one thing,
2332 any mapped file will be out of date). */
2333
2334 /* If we get an error, blow away this objfile (not sure if
2335 that is the correct response for things like shared
2336 libraries). */
2337 old_cleanups = make_cleanup_free_objfile (objfile);
2338 /* We need to do this whenever any symbols go away. */
2339 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2340
2341 /* Clean up any state BFD has sitting around. We don't need
2342 to close the descriptor but BFD lacks a way of closing the
2343 BFD without closing the descriptor. */
2344 obfd_filename = bfd_get_filename (objfile->obfd);
2345 if (!bfd_close (objfile->obfd))
2346 error (_("Can't close BFD for %s: %s"), objfile->name,
2347 bfd_errmsg (bfd_get_error ()));
2348 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2349 if (objfile->obfd == NULL)
2350 error (_("Can't open %s to read symbols."), objfile->name);
2351 /* bfd_openr sets cacheable to true, which is what we want. */
2352 if (!bfd_check_format (objfile->obfd, bfd_object))
2353 error (_("Can't read symbols from %s: %s."), objfile->name,
2354 bfd_errmsg (bfd_get_error ()));
2355
2356 /* Save the offsets, we will nuke them with the rest of the
2357 objfile_obstack. */
2358 num_offsets = objfile->num_sections;
2359 offsets = ((struct section_offsets *)
2360 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2361 memcpy (offsets, objfile->section_offsets,
2362 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2363
2364 /* Remove any references to this objfile in the global
2365 value lists. */
2366 preserve_values (objfile);
2367
2368 /* Nuke all the state that we will re-read. Much of the following
2369 code which sets things to NULL really is necessary to tell
2370 other parts of GDB that there is nothing currently there. */
2371
2372 /* FIXME: Do we have to free a whole linked list, or is this
2373 enough? */
2374 if (objfile->global_psymbols.list)
2375 xfree (objfile->global_psymbols.list);
2376 memset (&objfile->global_psymbols, 0,
2377 sizeof (objfile->global_psymbols));
2378 if (objfile->static_psymbols.list)
2379 xfree (objfile->static_psymbols.list);
2380 memset (&objfile->static_psymbols, 0,
2381 sizeof (objfile->static_psymbols));
2382
2383 /* Free the obstacks for non-reusable objfiles */
2384 bcache_xfree (objfile->psymbol_cache);
2385 objfile->psymbol_cache = bcache_xmalloc ();
2386 bcache_xfree (objfile->macro_cache);
2387 objfile->macro_cache = bcache_xmalloc ();
2388 if (objfile->demangled_names_hash != NULL)
2389 {
2390 htab_delete (objfile->demangled_names_hash);
2391 objfile->demangled_names_hash = NULL;
2392 }
2393 obstack_free (&objfile->objfile_obstack, 0);
2394 objfile->sections = NULL;
2395 objfile->symtabs = NULL;
2396 objfile->psymtabs = NULL;
2397 objfile->free_psymtabs = NULL;
2398 objfile->cp_namespace_symtab = NULL;
2399 objfile->msymbols = NULL;
2400 objfile->deprecated_sym_private = NULL;
2401 objfile->minimal_symbol_count = 0;
2402 memset (&objfile->msymbol_hash, 0,
2403 sizeof (objfile->msymbol_hash));
2404 memset (&objfile->msymbol_demangled_hash, 0,
2405 sizeof (objfile->msymbol_demangled_hash));
2406 clear_objfile_data (objfile);
2407 if (objfile->sf != NULL)
2408 {
2409 (*objfile->sf->sym_finish) (objfile);
2410 }
2411
2412 /* We never make this a mapped file. */
2413 objfile->md = NULL;
2414 objfile->psymbol_cache = bcache_xmalloc ();
2415 objfile->macro_cache = bcache_xmalloc ();
2416 /* obstack_init also initializes the obstack so it is
2417 empty. We could use obstack_specify_allocation but
2418 gdb_obstack.h specifies the alloc/dealloc
2419 functions. */
2420 obstack_init (&objfile->objfile_obstack);
2421 if (build_objfile_section_table (objfile))
2422 {
2423 error (_("Can't find the file sections in `%s': %s"),
2424 objfile->name, bfd_errmsg (bfd_get_error ()));
2425 }
2426 terminate_minimal_symbol_table (objfile);
2427
2428 /* We use the same section offsets as from last time. I'm not
2429 sure whether that is always correct for shared libraries. */
2430 objfile->section_offsets = (struct section_offsets *)
2431 obstack_alloc (&objfile->objfile_obstack,
2432 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2433 memcpy (objfile->section_offsets, offsets,
2434 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2435 objfile->num_sections = num_offsets;
2436
2437 /* What the hell is sym_new_init for, anyway? The concept of
2438 distinguishing between the main file and additional files
2439 in this way seems rather dubious. */
2440 if (objfile == symfile_objfile)
2441 {
2442 (*objfile->sf->sym_new_init) (objfile);
2443 }
2444
2445 (*objfile->sf->sym_init) (objfile);
2446 clear_complaints (&symfile_complaints, 1, 1);
2447 /* The "mainline" parameter is a hideous hack; I think leaving it
2448 zero is OK since dbxread.c also does what it needs to do if
2449 objfile->global_psymbols.size is 0. */
2450 (*objfile->sf->sym_read) (objfile, 0);
2451 if (!have_partial_symbols () && !have_full_symbols ())
2452 {
2453 wrap_here ("");
2454 printf_unfiltered (_("(no debugging symbols found)\n"));
2455 wrap_here ("");
2456 }
2457 objfile->flags |= OBJF_SYMS;
2458
2459 /* We're done reading the symbol file; finish off complaints. */
2460 clear_complaints (&symfile_complaints, 0, 1);
2461
2462 /* Getting new symbols may change our opinion about what is
2463 frameless. */
2464
2465 reinit_frame_cache ();
2466
2467 /* Discard cleanups as symbol reading was successful. */
2468 discard_cleanups (old_cleanups);
2469
2470 /* If the mtime has changed between the time we set new_modtime
2471 and now, we *want* this to be out of date, so don't call stat
2472 again now. */
2473 objfile->mtime = new_modtime;
2474 reread_one = 1;
2475 reread_separate_symbols (objfile);
2476 }
2477 }
2478 }
2479
2480 if (reread_one)
2481 {
2482 clear_symtab_users ();
2483 /* At least one objfile has changed, so we can consider that
2484 the executable we're debugging has changed too. */
2485 observer_notify_executable_changed (NULL);
2486 }
2487
2488 }
2489
2490
2491 /* Handle separate debug info for OBJFILE, which has just been
2492 re-read:
2493 - If we had separate debug info before, but now we don't, get rid
2494 of the separated objfile.
2495 - If we didn't have separated debug info before, but now we do,
2496 read in the new separated debug info file.
2497 - If the debug link points to a different file, toss the old one
2498 and read the new one.
2499 This function does *not* handle the case where objfile is still
2500 using the same separate debug info file, but that file's timestamp
2501 has changed. That case should be handled by the loop in
2502 reread_symbols already. */
2503 static void
2504 reread_separate_symbols (struct objfile *objfile)
2505 {
2506 char *debug_file;
2507 unsigned long crc32;
2508
2509 /* Does the updated objfile's debug info live in a
2510 separate file? */
2511 debug_file = find_separate_debug_file (objfile);
2512
2513 if (objfile->separate_debug_objfile)
2514 {
2515 /* There are two cases where we need to get rid of
2516 the old separated debug info objfile:
2517 - if the new primary objfile doesn't have
2518 separated debug info, or
2519 - if the new primary objfile has separate debug
2520 info, but it's under a different filename.
2521
2522 If the old and new objfiles both have separate
2523 debug info, under the same filename, then we're
2524 okay --- if the separated file's contents have
2525 changed, we will have caught that when we
2526 visited it in this function's outermost
2527 loop. */
2528 if (! debug_file
2529 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2530 free_objfile (objfile->separate_debug_objfile);
2531 }
2532
2533 /* If the new objfile has separate debug info, and we
2534 haven't loaded it already, do so now. */
2535 if (debug_file
2536 && ! objfile->separate_debug_objfile)
2537 {
2538 /* Use the same section offset table as objfile itself.
2539 Preserve the flags from objfile that make sense. */
2540 objfile->separate_debug_objfile
2541 = (symbol_file_add_with_addrs_or_offsets
2542 (symfile_bfd_open (debug_file),
2543 info_verbose, /* from_tty: Don't override the default. */
2544 0, /* No addr table. */
2545 objfile->section_offsets, objfile->num_sections,
2546 0, /* Not mainline. See comments about this above. */
2547 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2548 | OBJF_USERLOADED)));
2549 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2550 = objfile;
2551 }
2552 if (debug_file)
2553 xfree (debug_file);
2554 }
2555
2556
2557 \f
2558
2559
2560 typedef struct
2561 {
2562 char *ext;
2563 enum language lang;
2564 }
2565 filename_language;
2566
2567 static filename_language *filename_language_table;
2568 static int fl_table_size, fl_table_next;
2569
2570 static void
2571 add_filename_language (char *ext, enum language lang)
2572 {
2573 if (fl_table_next >= fl_table_size)
2574 {
2575 fl_table_size += 10;
2576 filename_language_table =
2577 xrealloc (filename_language_table,
2578 fl_table_size * sizeof (*filename_language_table));
2579 }
2580
2581 filename_language_table[fl_table_next].ext = xstrdup (ext);
2582 filename_language_table[fl_table_next].lang = lang;
2583 fl_table_next++;
2584 }
2585
2586 static char *ext_args;
2587 static void
2588 show_ext_args (struct ui_file *file, int from_tty,
2589 struct cmd_list_element *c, const char *value)
2590 {
2591 fprintf_filtered (file, _("\
2592 Mapping between filename extension and source language is \"%s\".\n"),
2593 value);
2594 }
2595
2596 static void
2597 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2598 {
2599 int i;
2600 char *cp = ext_args;
2601 enum language lang;
2602
2603 /* First arg is filename extension, starting with '.' */
2604 if (*cp != '.')
2605 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2606
2607 /* Find end of first arg. */
2608 while (*cp && !isspace (*cp))
2609 cp++;
2610
2611 if (*cp == '\0')
2612 error (_("'%s': two arguments required -- filename extension and language"),
2613 ext_args);
2614
2615 /* Null-terminate first arg */
2616 *cp++ = '\0';
2617
2618 /* Find beginning of second arg, which should be a source language. */
2619 while (*cp && isspace (*cp))
2620 cp++;
2621
2622 if (*cp == '\0')
2623 error (_("'%s': two arguments required -- filename extension and language"),
2624 ext_args);
2625
2626 /* Lookup the language from among those we know. */
2627 lang = language_enum (cp);
2628
2629 /* Now lookup the filename extension: do we already know it? */
2630 for (i = 0; i < fl_table_next; i++)
2631 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2632 break;
2633
2634 if (i >= fl_table_next)
2635 {
2636 /* new file extension */
2637 add_filename_language (ext_args, lang);
2638 }
2639 else
2640 {
2641 /* redefining a previously known filename extension */
2642
2643 /* if (from_tty) */
2644 /* query ("Really make files of type %s '%s'?", */
2645 /* ext_args, language_str (lang)); */
2646
2647 xfree (filename_language_table[i].ext);
2648 filename_language_table[i].ext = xstrdup (ext_args);
2649 filename_language_table[i].lang = lang;
2650 }
2651 }
2652
2653 static void
2654 info_ext_lang_command (char *args, int from_tty)
2655 {
2656 int i;
2657
2658 printf_filtered (_("Filename extensions and the languages they represent:"));
2659 printf_filtered ("\n\n");
2660 for (i = 0; i < fl_table_next; i++)
2661 printf_filtered ("\t%s\t- %s\n",
2662 filename_language_table[i].ext,
2663 language_str (filename_language_table[i].lang));
2664 }
2665
2666 static void
2667 init_filename_language_table (void)
2668 {
2669 if (fl_table_size == 0) /* protect against repetition */
2670 {
2671 fl_table_size = 20;
2672 fl_table_next = 0;
2673 filename_language_table =
2674 xmalloc (fl_table_size * sizeof (*filename_language_table));
2675 add_filename_language (".c", language_c);
2676 add_filename_language (".C", language_cplus);
2677 add_filename_language (".cc", language_cplus);
2678 add_filename_language (".cp", language_cplus);
2679 add_filename_language (".cpp", language_cplus);
2680 add_filename_language (".cxx", language_cplus);
2681 add_filename_language (".c++", language_cplus);
2682 add_filename_language (".java", language_java);
2683 add_filename_language (".class", language_java);
2684 add_filename_language (".m", language_objc);
2685 add_filename_language (".f", language_fortran);
2686 add_filename_language (".F", language_fortran);
2687 add_filename_language (".s", language_asm);
2688 add_filename_language (".sx", language_asm);
2689 add_filename_language (".S", language_asm);
2690 add_filename_language (".pas", language_pascal);
2691 add_filename_language (".p", language_pascal);
2692 add_filename_language (".pp", language_pascal);
2693 add_filename_language (".adb", language_ada);
2694 add_filename_language (".ads", language_ada);
2695 add_filename_language (".a", language_ada);
2696 add_filename_language (".ada", language_ada);
2697 }
2698 }
2699
2700 enum language
2701 deduce_language_from_filename (char *filename)
2702 {
2703 int i;
2704 char *cp;
2705
2706 if (filename != NULL)
2707 if ((cp = strrchr (filename, '.')) != NULL)
2708 for (i = 0; i < fl_table_next; i++)
2709 if (strcmp (cp, filename_language_table[i].ext) == 0)
2710 return filename_language_table[i].lang;
2711
2712 return language_unknown;
2713 }
2714 \f
2715 /* allocate_symtab:
2716
2717 Allocate and partly initialize a new symbol table. Return a pointer
2718 to it. error() if no space.
2719
2720 Caller must set these fields:
2721 LINETABLE(symtab)
2722 symtab->blockvector
2723 symtab->dirname
2724 symtab->free_code
2725 symtab->free_ptr
2726 possibly free_named_symtabs (symtab->filename);
2727 */
2728
2729 struct symtab *
2730 allocate_symtab (char *filename, struct objfile *objfile)
2731 {
2732 struct symtab *symtab;
2733
2734 symtab = (struct symtab *)
2735 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2736 memset (symtab, 0, sizeof (*symtab));
2737 symtab->filename = obsavestring (filename, strlen (filename),
2738 &objfile->objfile_obstack);
2739 symtab->fullname = NULL;
2740 symtab->language = deduce_language_from_filename (filename);
2741 symtab->debugformat = obsavestring ("unknown", 7,
2742 &objfile->objfile_obstack);
2743
2744 /* Hook it to the objfile it comes from */
2745
2746 symtab->objfile = objfile;
2747 symtab->next = objfile->symtabs;
2748 objfile->symtabs = symtab;
2749
2750 return (symtab);
2751 }
2752
2753 struct partial_symtab *
2754 allocate_psymtab (char *filename, struct objfile *objfile)
2755 {
2756 struct partial_symtab *psymtab;
2757
2758 if (objfile->free_psymtabs)
2759 {
2760 psymtab = objfile->free_psymtabs;
2761 objfile->free_psymtabs = psymtab->next;
2762 }
2763 else
2764 psymtab = (struct partial_symtab *)
2765 obstack_alloc (&objfile->objfile_obstack,
2766 sizeof (struct partial_symtab));
2767
2768 memset (psymtab, 0, sizeof (struct partial_symtab));
2769 psymtab->filename = obsavestring (filename, strlen (filename),
2770 &objfile->objfile_obstack);
2771 psymtab->symtab = NULL;
2772
2773 /* Prepend it to the psymtab list for the objfile it belongs to.
2774 Psymtabs are searched in most recent inserted -> least recent
2775 inserted order. */
2776
2777 psymtab->objfile = objfile;
2778 psymtab->next = objfile->psymtabs;
2779 objfile->psymtabs = psymtab;
2780 #if 0
2781 {
2782 struct partial_symtab **prev_pst;
2783 psymtab->objfile = objfile;
2784 psymtab->next = NULL;
2785 prev_pst = &(objfile->psymtabs);
2786 while ((*prev_pst) != NULL)
2787 prev_pst = &((*prev_pst)->next);
2788 (*prev_pst) = psymtab;
2789 }
2790 #endif
2791
2792 return (psymtab);
2793 }
2794
2795 void
2796 discard_psymtab (struct partial_symtab *pst)
2797 {
2798 struct partial_symtab **prev_pst;
2799
2800 /* From dbxread.c:
2801 Empty psymtabs happen as a result of header files which don't
2802 have any symbols in them. There can be a lot of them. But this
2803 check is wrong, in that a psymtab with N_SLINE entries but
2804 nothing else is not empty, but we don't realize that. Fixing
2805 that without slowing things down might be tricky. */
2806
2807 /* First, snip it out of the psymtab chain */
2808
2809 prev_pst = &(pst->objfile->psymtabs);
2810 while ((*prev_pst) != pst)
2811 prev_pst = &((*prev_pst)->next);
2812 (*prev_pst) = pst->next;
2813
2814 /* Next, put it on a free list for recycling */
2815
2816 pst->next = pst->objfile->free_psymtabs;
2817 pst->objfile->free_psymtabs = pst;
2818 }
2819 \f
2820
2821 /* Reset all data structures in gdb which may contain references to symbol
2822 table data. */
2823
2824 void
2825 clear_symtab_users (void)
2826 {
2827 /* Someday, we should do better than this, by only blowing away
2828 the things that really need to be blown. */
2829
2830 /* Clear the "current" symtab first, because it is no longer valid.
2831 breakpoint_re_set may try to access the current symtab. */
2832 clear_current_source_symtab_and_line ();
2833
2834 clear_displays ();
2835 breakpoint_re_set ();
2836 set_default_breakpoint (0, 0, 0, 0);
2837 clear_pc_function_cache ();
2838 observer_notify_new_objfile (NULL);
2839
2840 /* Clear globals which might have pointed into a removed objfile.
2841 FIXME: It's not clear which of these are supposed to persist
2842 between expressions and which ought to be reset each time. */
2843 expression_context_block = NULL;
2844 innermost_block = NULL;
2845
2846 /* Varobj may refer to old symbols, perform a cleanup. */
2847 varobj_invalidate ();
2848
2849 }
2850
2851 static void
2852 clear_symtab_users_cleanup (void *ignore)
2853 {
2854 clear_symtab_users ();
2855 }
2856
2857 /* clear_symtab_users_once:
2858
2859 This function is run after symbol reading, or from a cleanup.
2860 If an old symbol table was obsoleted, the old symbol table
2861 has been blown away, but the other GDB data structures that may
2862 reference it have not yet been cleared or re-directed. (The old
2863 symtab was zapped, and the cleanup queued, in free_named_symtab()
2864 below.)
2865
2866 This function can be queued N times as a cleanup, or called
2867 directly; it will do all the work the first time, and then will be a
2868 no-op until the next time it is queued. This works by bumping a
2869 counter at queueing time. Much later when the cleanup is run, or at
2870 the end of symbol processing (in case the cleanup is discarded), if
2871 the queued count is greater than the "done-count", we do the work
2872 and set the done-count to the queued count. If the queued count is
2873 less than or equal to the done-count, we just ignore the call. This
2874 is needed because reading a single .o file will often replace many
2875 symtabs (one per .h file, for example), and we don't want to reset
2876 the breakpoints N times in the user's face.
2877
2878 The reason we both queue a cleanup, and call it directly after symbol
2879 reading, is because the cleanup protects us in case of errors, but is
2880 discarded if symbol reading is successful. */
2881
2882 #if 0
2883 /* FIXME: As free_named_symtabs is currently a big noop this function
2884 is no longer needed. */
2885 static void clear_symtab_users_once (void);
2886
2887 static int clear_symtab_users_queued;
2888 static int clear_symtab_users_done;
2889
2890 static void
2891 clear_symtab_users_once (void)
2892 {
2893 /* Enforce once-per-`do_cleanups'-semantics */
2894 if (clear_symtab_users_queued <= clear_symtab_users_done)
2895 return;
2896 clear_symtab_users_done = clear_symtab_users_queued;
2897
2898 clear_symtab_users ();
2899 }
2900 #endif
2901
2902 /* Delete the specified psymtab, and any others that reference it. */
2903
2904 static void
2905 cashier_psymtab (struct partial_symtab *pst)
2906 {
2907 struct partial_symtab *ps, *pprev = NULL;
2908 int i;
2909
2910 /* Find its previous psymtab in the chain */
2911 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2912 {
2913 if (ps == pst)
2914 break;
2915 pprev = ps;
2916 }
2917
2918 if (ps)
2919 {
2920 /* Unhook it from the chain. */
2921 if (ps == pst->objfile->psymtabs)
2922 pst->objfile->psymtabs = ps->next;
2923 else
2924 pprev->next = ps->next;
2925
2926 /* FIXME, we can't conveniently deallocate the entries in the
2927 partial_symbol lists (global_psymbols/static_psymbols) that
2928 this psymtab points to. These just take up space until all
2929 the psymtabs are reclaimed. Ditto the dependencies list and
2930 filename, which are all in the objfile_obstack. */
2931
2932 /* We need to cashier any psymtab that has this one as a dependency... */
2933 again:
2934 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2935 {
2936 for (i = 0; i < ps->number_of_dependencies; i++)
2937 {
2938 if (ps->dependencies[i] == pst)
2939 {
2940 cashier_psymtab (ps);
2941 goto again; /* Must restart, chain has been munged. */
2942 }
2943 }
2944 }
2945 }
2946 }
2947
2948 /* If a symtab or psymtab for filename NAME is found, free it along
2949 with any dependent breakpoints, displays, etc.
2950 Used when loading new versions of object modules with the "add-file"
2951 command. This is only called on the top-level symtab or psymtab's name;
2952 it is not called for subsidiary files such as .h files.
2953
2954 Return value is 1 if we blew away the environment, 0 if not.
2955 FIXME. The return value appears to never be used.
2956
2957 FIXME. I think this is not the best way to do this. We should
2958 work on being gentler to the environment while still cleaning up
2959 all stray pointers into the freed symtab. */
2960
2961 int
2962 free_named_symtabs (char *name)
2963 {
2964 #if 0
2965 /* FIXME: With the new method of each objfile having it's own
2966 psymtab list, this function needs serious rethinking. In particular,
2967 why was it ever necessary to toss psymtabs with specific compilation
2968 unit filenames, as opposed to all psymtabs from a particular symbol
2969 file? -- fnf
2970 Well, the answer is that some systems permit reloading of particular
2971 compilation units. We want to blow away any old info about these
2972 compilation units, regardless of which objfiles they arrived in. --gnu. */
2973
2974 struct symtab *s;
2975 struct symtab *prev;
2976 struct partial_symtab *ps;
2977 struct blockvector *bv;
2978 int blewit = 0;
2979
2980 /* We only wack things if the symbol-reload switch is set. */
2981 if (!symbol_reloading)
2982 return 0;
2983
2984 /* Some symbol formats have trouble providing file names... */
2985 if (name == 0 || *name == '\0')
2986 return 0;
2987
2988 /* Look for a psymtab with the specified name. */
2989
2990 again2:
2991 for (ps = partial_symtab_list; ps; ps = ps->next)
2992 {
2993 if (strcmp (name, ps->filename) == 0)
2994 {
2995 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2996 goto again2; /* Must restart, chain has been munged */
2997 }
2998 }
2999
3000 /* Look for a symtab with the specified name. */
3001
3002 for (s = symtab_list; s; s = s->next)
3003 {
3004 if (strcmp (name, s->filename) == 0)
3005 break;
3006 prev = s;
3007 }
3008
3009 if (s)
3010 {
3011 if (s == symtab_list)
3012 symtab_list = s->next;
3013 else
3014 prev->next = s->next;
3015
3016 /* For now, queue a delete for all breakpoints, displays, etc., whether
3017 or not they depend on the symtab being freed. This should be
3018 changed so that only those data structures affected are deleted. */
3019
3020 /* But don't delete anything if the symtab is empty.
3021 This test is necessary due to a bug in "dbxread.c" that
3022 causes empty symtabs to be created for N_SO symbols that
3023 contain the pathname of the object file. (This problem
3024 has been fixed in GDB 3.9x). */
3025
3026 bv = BLOCKVECTOR (s);
3027 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3028 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3029 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3030 {
3031 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3032 name);
3033 clear_symtab_users_queued++;
3034 make_cleanup (clear_symtab_users_once, 0);
3035 blewit = 1;
3036 }
3037 else
3038 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3039 name);
3040
3041 free_symtab (s);
3042 }
3043 else
3044 {
3045 /* It is still possible that some breakpoints will be affected
3046 even though no symtab was found, since the file might have
3047 been compiled without debugging, and hence not be associated
3048 with a symtab. In order to handle this correctly, we would need
3049 to keep a list of text address ranges for undebuggable files.
3050 For now, we do nothing, since this is a fairly obscure case. */
3051 ;
3052 }
3053
3054 /* FIXME, what about the minimal symbol table? */
3055 return blewit;
3056 #else
3057 return (0);
3058 #endif
3059 }
3060 \f
3061 /* Allocate and partially fill a partial symtab. It will be
3062 completely filled at the end of the symbol list.
3063
3064 FILENAME is the name of the symbol-file we are reading from. */
3065
3066 struct partial_symtab *
3067 start_psymtab_common (struct objfile *objfile,
3068 struct section_offsets *section_offsets, char *filename,
3069 CORE_ADDR textlow, struct partial_symbol **global_syms,
3070 struct partial_symbol **static_syms)
3071 {
3072 struct partial_symtab *psymtab;
3073
3074 psymtab = allocate_psymtab (filename, objfile);
3075 psymtab->section_offsets = section_offsets;
3076 psymtab->textlow = textlow;
3077 psymtab->texthigh = psymtab->textlow; /* default */
3078 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3079 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3080 return (psymtab);
3081 }
3082 \f
3083 /* Add a symbol with a long value to a psymtab.
3084 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3085 Return the partial symbol that has been added. */
3086
3087 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3088 symbol is so that callers can get access to the symbol's demangled
3089 name, which they don't have any cheap way to determine otherwise.
3090 (Currenly, dwarf2read.c is the only file who uses that information,
3091 though it's possible that other readers might in the future.)
3092 Elena wasn't thrilled about that, and I don't blame her, but we
3093 couldn't come up with a better way to get that information. If
3094 it's needed in other situations, we could consider breaking up
3095 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3096 cache. */
3097
3098 const struct partial_symbol *
3099 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3100 enum address_class class,
3101 struct psymbol_allocation_list *list, long val, /* Value as a long */
3102 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3103 enum language language, struct objfile *objfile)
3104 {
3105 struct partial_symbol *psym;
3106 char *buf = alloca (namelength + 1);
3107 /* psymbol is static so that there will be no uninitialized gaps in the
3108 structure which might contain random data, causing cache misses in
3109 bcache. */
3110 static struct partial_symbol psymbol;
3111
3112 /* Create local copy of the partial symbol */
3113 memcpy (buf, name, namelength);
3114 buf[namelength] = '\0';
3115 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3116 if (val != 0)
3117 {
3118 SYMBOL_VALUE (&psymbol) = val;
3119 }
3120 else
3121 {
3122 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3123 }
3124 SYMBOL_SECTION (&psymbol) = 0;
3125 SYMBOL_LANGUAGE (&psymbol) = language;
3126 PSYMBOL_DOMAIN (&psymbol) = domain;
3127 PSYMBOL_CLASS (&psymbol) = class;
3128
3129 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3130
3131 /* Stash the partial symbol away in the cache */
3132 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3133 objfile->psymbol_cache);
3134
3135 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3136 if (list->next >= list->list + list->size)
3137 {
3138 extend_psymbol_list (list, objfile);
3139 }
3140 *list->next++ = psym;
3141 OBJSTAT (objfile, n_psyms++);
3142
3143 return psym;
3144 }
3145
3146 /* Initialize storage for partial symbols. */
3147
3148 void
3149 init_psymbol_list (struct objfile *objfile, int total_symbols)
3150 {
3151 /* Free any previously allocated psymbol lists. */
3152
3153 if (objfile->global_psymbols.list)
3154 {
3155 xfree (objfile->global_psymbols.list);
3156 }
3157 if (objfile->static_psymbols.list)
3158 {
3159 xfree (objfile->static_psymbols.list);
3160 }
3161
3162 /* Current best guess is that approximately a twentieth
3163 of the total symbols (in a debugging file) are global or static
3164 oriented symbols */
3165
3166 objfile->global_psymbols.size = total_symbols / 10;
3167 objfile->static_psymbols.size = total_symbols / 10;
3168
3169 if (objfile->global_psymbols.size > 0)
3170 {
3171 objfile->global_psymbols.next =
3172 objfile->global_psymbols.list = (struct partial_symbol **)
3173 xmalloc ((objfile->global_psymbols.size
3174 * sizeof (struct partial_symbol *)));
3175 }
3176 if (objfile->static_psymbols.size > 0)
3177 {
3178 objfile->static_psymbols.next =
3179 objfile->static_psymbols.list = (struct partial_symbol **)
3180 xmalloc ((objfile->static_psymbols.size
3181 * sizeof (struct partial_symbol *)));
3182 }
3183 }
3184
3185 /* OVERLAYS:
3186 The following code implements an abstraction for debugging overlay sections.
3187
3188 The target model is as follows:
3189 1) The gnu linker will permit multiple sections to be mapped into the
3190 same VMA, each with its own unique LMA (or load address).
3191 2) It is assumed that some runtime mechanism exists for mapping the
3192 sections, one by one, from the load address into the VMA address.
3193 3) This code provides a mechanism for gdb to keep track of which
3194 sections should be considered to be mapped from the VMA to the LMA.
3195 This information is used for symbol lookup, and memory read/write.
3196 For instance, if a section has been mapped then its contents
3197 should be read from the VMA, otherwise from the LMA.
3198
3199 Two levels of debugger support for overlays are available. One is
3200 "manual", in which the debugger relies on the user to tell it which
3201 overlays are currently mapped. This level of support is
3202 implemented entirely in the core debugger, and the information about
3203 whether a section is mapped is kept in the objfile->obj_section table.
3204
3205 The second level of support is "automatic", and is only available if
3206 the target-specific code provides functionality to read the target's
3207 overlay mapping table, and translate its contents for the debugger
3208 (by updating the mapped state information in the obj_section tables).
3209
3210 The interface is as follows:
3211 User commands:
3212 overlay map <name> -- tell gdb to consider this section mapped
3213 overlay unmap <name> -- tell gdb to consider this section unmapped
3214 overlay list -- list the sections that GDB thinks are mapped
3215 overlay read-target -- get the target's state of what's mapped
3216 overlay off/manual/auto -- set overlay debugging state
3217 Functional interface:
3218 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3219 section, return that section.
3220 find_pc_overlay(pc): find any overlay section that contains
3221 the pc, either in its VMA or its LMA
3222 overlay_is_mapped(sect): true if overlay is marked as mapped
3223 section_is_overlay(sect): true if section's VMA != LMA
3224 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3225 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3226 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3227 overlay_mapped_address(...): map an address from section's LMA to VMA
3228 overlay_unmapped_address(...): map an address from section's VMA to LMA
3229 symbol_overlayed_address(...): Return a "current" address for symbol:
3230 either in VMA or LMA depending on whether
3231 the symbol's section is currently mapped
3232 */
3233
3234 /* Overlay debugging state: */
3235
3236 enum overlay_debugging_state overlay_debugging = ovly_off;
3237 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3238
3239 /* Function: section_is_overlay (SECTION)
3240 Returns true if SECTION has VMA not equal to LMA, ie.
3241 SECTION is loaded at an address different from where it will "run". */
3242
3243 int
3244 section_is_overlay (asection *section)
3245 {
3246 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3247
3248 if (overlay_debugging)
3249 if (section && section->lma != 0 &&
3250 section->vma != section->lma)
3251 return 1;
3252
3253 return 0;
3254 }
3255
3256 /* Function: overlay_invalidate_all (void)
3257 Invalidate the mapped state of all overlay sections (mark it as stale). */
3258
3259 static void
3260 overlay_invalidate_all (void)
3261 {
3262 struct objfile *objfile;
3263 struct obj_section *sect;
3264
3265 ALL_OBJSECTIONS (objfile, sect)
3266 if (section_is_overlay (sect->the_bfd_section))
3267 sect->ovly_mapped = -1;
3268 }
3269
3270 /* Function: overlay_is_mapped (SECTION)
3271 Returns true if section is an overlay, and is currently mapped.
3272 Private: public access is thru function section_is_mapped.
3273
3274 Access to the ovly_mapped flag is restricted to this function, so
3275 that we can do automatic update. If the global flag
3276 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3277 overlay_invalidate_all. If the mapped state of the particular
3278 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3279
3280 static int
3281 overlay_is_mapped (struct obj_section *osect)
3282 {
3283 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3284 return 0;
3285
3286 switch (overlay_debugging)
3287 {
3288 default:
3289 case ovly_off:
3290 return 0; /* overlay debugging off */
3291 case ovly_auto: /* overlay debugging automatic */
3292 /* Unles there is a gdbarch_overlay_update function,
3293 there's really nothing useful to do here (can't really go auto) */
3294 if (gdbarch_overlay_update_p (current_gdbarch))
3295 {
3296 if (overlay_cache_invalid)
3297 {
3298 overlay_invalidate_all ();
3299 overlay_cache_invalid = 0;
3300 }
3301 if (osect->ovly_mapped == -1)
3302 gdbarch_overlay_update (current_gdbarch, osect);
3303 }
3304 /* fall thru to manual case */
3305 case ovly_on: /* overlay debugging manual */
3306 return osect->ovly_mapped == 1;
3307 }
3308 }
3309
3310 /* Function: section_is_mapped
3311 Returns true if section is an overlay, and is currently mapped. */
3312
3313 int
3314 section_is_mapped (asection *section)
3315 {
3316 struct objfile *objfile;
3317 struct obj_section *osect;
3318
3319 if (overlay_debugging)
3320 if (section && section_is_overlay (section))
3321 ALL_OBJSECTIONS (objfile, osect)
3322 if (osect->the_bfd_section == section)
3323 return overlay_is_mapped (osect);
3324
3325 return 0;
3326 }
3327
3328 /* Function: pc_in_unmapped_range
3329 If PC falls into the lma range of SECTION, return true, else false. */
3330
3331 CORE_ADDR
3332 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3333 {
3334 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3335
3336 int size;
3337
3338 if (overlay_debugging)
3339 if (section && section_is_overlay (section))
3340 {
3341 size = bfd_get_section_size (section);
3342 if (section->lma <= pc && pc < section->lma + size)
3343 return 1;
3344 }
3345 return 0;
3346 }
3347
3348 /* Function: pc_in_mapped_range
3349 If PC falls into the vma range of SECTION, return true, else false. */
3350
3351 CORE_ADDR
3352 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3353 {
3354 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3355
3356 int size;
3357
3358 if (overlay_debugging)
3359 if (section && section_is_overlay (section))
3360 {
3361 size = bfd_get_section_size (section);
3362 if (section->vma <= pc && pc < section->vma + size)
3363 return 1;
3364 }
3365 return 0;
3366 }
3367
3368
3369 /* Return true if the mapped ranges of sections A and B overlap, false
3370 otherwise. */
3371 static int
3372 sections_overlap (asection *a, asection *b)
3373 {
3374 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3375
3376 CORE_ADDR a_start = a->vma;
3377 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3378 CORE_ADDR b_start = b->vma;
3379 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3380
3381 return (a_start < b_end && b_start < a_end);
3382 }
3383
3384 /* Function: overlay_unmapped_address (PC, SECTION)
3385 Returns the address corresponding to PC in the unmapped (load) range.
3386 May be the same as PC. */
3387
3388 CORE_ADDR
3389 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3390 {
3391 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3392
3393 if (overlay_debugging)
3394 if (section && section_is_overlay (section) &&
3395 pc_in_mapped_range (pc, section))
3396 return pc + section->lma - section->vma;
3397
3398 return pc;
3399 }
3400
3401 /* Function: overlay_mapped_address (PC, SECTION)
3402 Returns the address corresponding to PC in the mapped (runtime) range.
3403 May be the same as PC. */
3404
3405 CORE_ADDR
3406 overlay_mapped_address (CORE_ADDR pc, asection *section)
3407 {
3408 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3409
3410 if (overlay_debugging)
3411 if (section && section_is_overlay (section) &&
3412 pc_in_unmapped_range (pc, section))
3413 return pc + section->vma - section->lma;
3414
3415 return pc;
3416 }
3417
3418
3419 /* Function: symbol_overlayed_address
3420 Return one of two addresses (relative to the VMA or to the LMA),
3421 depending on whether the section is mapped or not. */
3422
3423 CORE_ADDR
3424 symbol_overlayed_address (CORE_ADDR address, asection *section)
3425 {
3426 if (overlay_debugging)
3427 {
3428 /* If the symbol has no section, just return its regular address. */
3429 if (section == 0)
3430 return address;
3431 /* If the symbol's section is not an overlay, just return its address */
3432 if (!section_is_overlay (section))
3433 return address;
3434 /* If the symbol's section is mapped, just return its address */
3435 if (section_is_mapped (section))
3436 return address;
3437 /*
3438 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3439 * then return its LOADED address rather than its vma address!!
3440 */
3441 return overlay_unmapped_address (address, section);
3442 }
3443 return address;
3444 }
3445
3446 /* Function: find_pc_overlay (PC)
3447 Return the best-match overlay section for PC:
3448 If PC matches a mapped overlay section's VMA, return that section.
3449 Else if PC matches an unmapped section's VMA, return that section.
3450 Else if PC matches an unmapped section's LMA, return that section. */
3451
3452 asection *
3453 find_pc_overlay (CORE_ADDR pc)
3454 {
3455 struct objfile *objfile;
3456 struct obj_section *osect, *best_match = NULL;
3457
3458 if (overlay_debugging)
3459 ALL_OBJSECTIONS (objfile, osect)
3460 if (section_is_overlay (osect->the_bfd_section))
3461 {
3462 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3463 {
3464 if (overlay_is_mapped (osect))
3465 return osect->the_bfd_section;
3466 else
3467 best_match = osect;
3468 }
3469 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3470 best_match = osect;
3471 }
3472 return best_match ? best_match->the_bfd_section : NULL;
3473 }
3474
3475 /* Function: find_pc_mapped_section (PC)
3476 If PC falls into the VMA address range of an overlay section that is
3477 currently marked as MAPPED, return that section. Else return NULL. */
3478
3479 asection *
3480 find_pc_mapped_section (CORE_ADDR pc)
3481 {
3482 struct objfile *objfile;
3483 struct obj_section *osect;
3484
3485 if (overlay_debugging)
3486 ALL_OBJSECTIONS (objfile, osect)
3487 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3488 overlay_is_mapped (osect))
3489 return osect->the_bfd_section;
3490
3491 return NULL;
3492 }
3493
3494 /* Function: list_overlays_command
3495 Print a list of mapped sections and their PC ranges */
3496
3497 void
3498 list_overlays_command (char *args, int from_tty)
3499 {
3500 int nmapped = 0;
3501 struct objfile *objfile;
3502 struct obj_section *osect;
3503
3504 if (overlay_debugging)
3505 ALL_OBJSECTIONS (objfile, osect)
3506 if (overlay_is_mapped (osect))
3507 {
3508 const char *name;
3509 bfd_vma lma, vma;
3510 int size;
3511
3512 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3513 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3514 size = bfd_get_section_size (osect->the_bfd_section);
3515 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3516
3517 printf_filtered ("Section %s, loaded at ", name);
3518 fputs_filtered (paddress (lma), gdb_stdout);
3519 puts_filtered (" - ");
3520 fputs_filtered (paddress (lma + size), gdb_stdout);
3521 printf_filtered (", mapped at ");
3522 fputs_filtered (paddress (vma), gdb_stdout);
3523 puts_filtered (" - ");
3524 fputs_filtered (paddress (vma + size), gdb_stdout);
3525 puts_filtered ("\n");
3526
3527 nmapped++;
3528 }
3529 if (nmapped == 0)
3530 printf_filtered (_("No sections are mapped.\n"));
3531 }
3532
3533 /* Function: map_overlay_command
3534 Mark the named section as mapped (ie. residing at its VMA address). */
3535
3536 void
3537 map_overlay_command (char *args, int from_tty)
3538 {
3539 struct objfile *objfile, *objfile2;
3540 struct obj_section *sec, *sec2;
3541 asection *bfdsec;
3542
3543 if (!overlay_debugging)
3544 error (_("\
3545 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3546 the 'overlay manual' command."));
3547
3548 if (args == 0 || *args == 0)
3549 error (_("Argument required: name of an overlay section"));
3550
3551 /* First, find a section matching the user supplied argument */
3552 ALL_OBJSECTIONS (objfile, sec)
3553 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3554 {
3555 /* Now, check to see if the section is an overlay. */
3556 bfdsec = sec->the_bfd_section;
3557 if (!section_is_overlay (bfdsec))
3558 continue; /* not an overlay section */
3559
3560 /* Mark the overlay as "mapped" */
3561 sec->ovly_mapped = 1;
3562
3563 /* Next, make a pass and unmap any sections that are
3564 overlapped by this new section: */
3565 ALL_OBJSECTIONS (objfile2, sec2)
3566 if (sec2->ovly_mapped
3567 && sec != sec2
3568 && sec->the_bfd_section != sec2->the_bfd_section
3569 && sections_overlap (sec->the_bfd_section,
3570 sec2->the_bfd_section))
3571 {
3572 if (info_verbose)
3573 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3574 bfd_section_name (objfile->obfd,
3575 sec2->the_bfd_section));
3576 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3577 }
3578 return;
3579 }
3580 error (_("No overlay section called %s"), args);
3581 }
3582
3583 /* Function: unmap_overlay_command
3584 Mark the overlay section as unmapped
3585 (ie. resident in its LMA address range, rather than the VMA range). */
3586
3587 void
3588 unmap_overlay_command (char *args, int from_tty)
3589 {
3590 struct objfile *objfile;
3591 struct obj_section *sec;
3592
3593 if (!overlay_debugging)
3594 error (_("\
3595 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3596 the 'overlay manual' command."));
3597
3598 if (args == 0 || *args == 0)
3599 error (_("Argument required: name of an overlay section"));
3600
3601 /* First, find a section matching the user supplied argument */
3602 ALL_OBJSECTIONS (objfile, sec)
3603 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3604 {
3605 if (!sec->ovly_mapped)
3606 error (_("Section %s is not mapped"), args);
3607 sec->ovly_mapped = 0;
3608 return;
3609 }
3610 error (_("No overlay section called %s"), args);
3611 }
3612
3613 /* Function: overlay_auto_command
3614 A utility command to turn on overlay debugging.
3615 Possibly this should be done via a set/show command. */
3616
3617 static void
3618 overlay_auto_command (char *args, int from_tty)
3619 {
3620 overlay_debugging = ovly_auto;
3621 enable_overlay_breakpoints ();
3622 if (info_verbose)
3623 printf_unfiltered (_("Automatic overlay debugging enabled."));
3624 }
3625
3626 /* Function: overlay_manual_command
3627 A utility command to turn on overlay debugging.
3628 Possibly this should be done via a set/show command. */
3629
3630 static void
3631 overlay_manual_command (char *args, int from_tty)
3632 {
3633 overlay_debugging = ovly_on;
3634 disable_overlay_breakpoints ();
3635 if (info_verbose)
3636 printf_unfiltered (_("Overlay debugging enabled."));
3637 }
3638
3639 /* Function: overlay_off_command
3640 A utility command to turn on overlay debugging.
3641 Possibly this should be done via a set/show command. */
3642
3643 static void
3644 overlay_off_command (char *args, int from_tty)
3645 {
3646 overlay_debugging = ovly_off;
3647 disable_overlay_breakpoints ();
3648 if (info_verbose)
3649 printf_unfiltered (_("Overlay debugging disabled."));
3650 }
3651
3652 static void
3653 overlay_load_command (char *args, int from_tty)
3654 {
3655 if (gdbarch_overlay_update_p (current_gdbarch))
3656 gdbarch_overlay_update (current_gdbarch, NULL);
3657 else
3658 error (_("This target does not know how to read its overlay state."));
3659 }
3660
3661 /* Function: overlay_command
3662 A place-holder for a mis-typed command */
3663
3664 /* Command list chain containing all defined "overlay" subcommands. */
3665 struct cmd_list_element *overlaylist;
3666
3667 static void
3668 overlay_command (char *args, int from_tty)
3669 {
3670 printf_unfiltered
3671 ("\"overlay\" must be followed by the name of an overlay command.\n");
3672 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3673 }
3674
3675
3676 /* Target Overlays for the "Simplest" overlay manager:
3677
3678 This is GDB's default target overlay layer. It works with the
3679 minimal overlay manager supplied as an example by Cygnus. The
3680 entry point is via a function pointer "gdbarch_overlay_update",
3681 so targets that use a different runtime overlay manager can
3682 substitute their own overlay_update function and take over the
3683 function pointer.
3684
3685 The overlay_update function pokes around in the target's data structures
3686 to see what overlays are mapped, and updates GDB's overlay mapping with
3687 this information.
3688
3689 In this simple implementation, the target data structures are as follows:
3690 unsigned _novlys; /# number of overlay sections #/
3691 unsigned _ovly_table[_novlys][4] = {
3692 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3693 {..., ..., ..., ...},
3694 }
3695 unsigned _novly_regions; /# number of overlay regions #/
3696 unsigned _ovly_region_table[_novly_regions][3] = {
3697 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3698 {..., ..., ...},
3699 }
3700 These functions will attempt to update GDB's mappedness state in the
3701 symbol section table, based on the target's mappedness state.
3702
3703 To do this, we keep a cached copy of the target's _ovly_table, and
3704 attempt to detect when the cached copy is invalidated. The main
3705 entry point is "simple_overlay_update(SECT), which looks up SECT in
3706 the cached table and re-reads only the entry for that section from
3707 the target (whenever possible).
3708 */
3709
3710 /* Cached, dynamically allocated copies of the target data structures: */
3711 static unsigned (*cache_ovly_table)[4] = 0;
3712 #if 0
3713 static unsigned (*cache_ovly_region_table)[3] = 0;
3714 #endif
3715 static unsigned cache_novlys = 0;
3716 #if 0
3717 static unsigned cache_novly_regions = 0;
3718 #endif
3719 static CORE_ADDR cache_ovly_table_base = 0;
3720 #if 0
3721 static CORE_ADDR cache_ovly_region_table_base = 0;
3722 #endif
3723 enum ovly_index
3724 {
3725 VMA, SIZE, LMA, MAPPED
3726 };
3727 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3728 / TARGET_CHAR_BIT)
3729
3730 /* Throw away the cached copy of _ovly_table */
3731 static void
3732 simple_free_overlay_table (void)
3733 {
3734 if (cache_ovly_table)
3735 xfree (cache_ovly_table);
3736 cache_novlys = 0;
3737 cache_ovly_table = NULL;
3738 cache_ovly_table_base = 0;
3739 }
3740
3741 #if 0
3742 /* Throw away the cached copy of _ovly_region_table */
3743 static void
3744 simple_free_overlay_region_table (void)
3745 {
3746 if (cache_ovly_region_table)
3747 xfree (cache_ovly_region_table);
3748 cache_novly_regions = 0;
3749 cache_ovly_region_table = NULL;
3750 cache_ovly_region_table_base = 0;
3751 }
3752 #endif
3753
3754 /* Read an array of ints from the target into a local buffer.
3755 Convert to host order. int LEN is number of ints */
3756 static void
3757 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3758 {
3759 /* FIXME (alloca): Not safe if array is very large. */
3760 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3761 int i;
3762
3763 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3764 for (i = 0; i < len; i++)
3765 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3766 TARGET_LONG_BYTES);
3767 }
3768
3769 /* Find and grab a copy of the target _ovly_table
3770 (and _novlys, which is needed for the table's size) */
3771 static int
3772 simple_read_overlay_table (void)
3773 {
3774 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3775
3776 simple_free_overlay_table ();
3777 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3778 if (! novlys_msym)
3779 {
3780 error (_("Error reading inferior's overlay table: "
3781 "couldn't find `_novlys' variable\n"
3782 "in inferior. Use `overlay manual' mode."));
3783 return 0;
3784 }
3785
3786 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3787 if (! ovly_table_msym)
3788 {
3789 error (_("Error reading inferior's overlay table: couldn't find "
3790 "`_ovly_table' array\n"
3791 "in inferior. Use `overlay manual' mode."));
3792 return 0;
3793 }
3794
3795 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3796 cache_ovly_table
3797 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3798 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3799 read_target_long_array (cache_ovly_table_base,
3800 (unsigned int *) cache_ovly_table,
3801 cache_novlys * 4);
3802
3803 return 1; /* SUCCESS */
3804 }
3805
3806 #if 0
3807 /* Find and grab a copy of the target _ovly_region_table
3808 (and _novly_regions, which is needed for the table's size) */
3809 static int
3810 simple_read_overlay_region_table (void)
3811 {
3812 struct minimal_symbol *msym;
3813
3814 simple_free_overlay_region_table ();
3815 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3816 if (msym != NULL)
3817 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3818 else
3819 return 0; /* failure */
3820 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3821 if (cache_ovly_region_table != NULL)
3822 {
3823 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3824 if (msym != NULL)
3825 {
3826 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3827 read_target_long_array (cache_ovly_region_table_base,
3828 (unsigned int *) cache_ovly_region_table,
3829 cache_novly_regions * 3);
3830 }
3831 else
3832 return 0; /* failure */
3833 }
3834 else
3835 return 0; /* failure */
3836 return 1; /* SUCCESS */
3837 }
3838 #endif
3839
3840 /* Function: simple_overlay_update_1
3841 A helper function for simple_overlay_update. Assuming a cached copy
3842 of _ovly_table exists, look through it to find an entry whose vma,
3843 lma and size match those of OSECT. Re-read the entry and make sure
3844 it still matches OSECT (else the table may no longer be valid).
3845 Set OSECT's mapped state to match the entry. Return: 1 for
3846 success, 0 for failure. */
3847
3848 static int
3849 simple_overlay_update_1 (struct obj_section *osect)
3850 {
3851 int i, size;
3852 bfd *obfd = osect->objfile->obfd;
3853 asection *bsect = osect->the_bfd_section;
3854
3855 size = bfd_get_section_size (osect->the_bfd_section);
3856 for (i = 0; i < cache_novlys; i++)
3857 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3858 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3859 /* && cache_ovly_table[i][SIZE] == size */ )
3860 {
3861 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3862 (unsigned int *) cache_ovly_table[i], 4);
3863 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3864 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3865 /* && cache_ovly_table[i][SIZE] == size */ )
3866 {
3867 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3868 return 1;
3869 }
3870 else /* Warning! Warning! Target's ovly table has changed! */
3871 return 0;
3872 }
3873 return 0;
3874 }
3875
3876 /* Function: simple_overlay_update
3877 If OSECT is NULL, then update all sections' mapped state
3878 (after re-reading the entire target _ovly_table).
3879 If OSECT is non-NULL, then try to find a matching entry in the
3880 cached ovly_table and update only OSECT's mapped state.
3881 If a cached entry can't be found or the cache isn't valid, then
3882 re-read the entire cache, and go ahead and update all sections. */
3883
3884 void
3885 simple_overlay_update (struct obj_section *osect)
3886 {
3887 struct objfile *objfile;
3888
3889 /* Were we given an osect to look up? NULL means do all of them. */
3890 if (osect)
3891 /* Have we got a cached copy of the target's overlay table? */
3892 if (cache_ovly_table != NULL)
3893 /* Does its cached location match what's currently in the symtab? */
3894 if (cache_ovly_table_base ==
3895 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3896 /* Then go ahead and try to look up this single section in the cache */
3897 if (simple_overlay_update_1 (osect))
3898 /* Found it! We're done. */
3899 return;
3900
3901 /* Cached table no good: need to read the entire table anew.
3902 Or else we want all the sections, in which case it's actually
3903 more efficient to read the whole table in one block anyway. */
3904
3905 if (! simple_read_overlay_table ())
3906 return;
3907
3908 /* Now may as well update all sections, even if only one was requested. */
3909 ALL_OBJSECTIONS (objfile, osect)
3910 if (section_is_overlay (osect->the_bfd_section))
3911 {
3912 int i, size;
3913 bfd *obfd = osect->objfile->obfd;
3914 asection *bsect = osect->the_bfd_section;
3915
3916 size = bfd_get_section_size (bsect);
3917 for (i = 0; i < cache_novlys; i++)
3918 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3919 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3920 /* && cache_ovly_table[i][SIZE] == size */ )
3921 { /* obj_section matches i'th entry in ovly_table */
3922 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3923 break; /* finished with inner for loop: break out */
3924 }
3925 }
3926 }
3927
3928 /* Set the output sections and output offsets for section SECTP in
3929 ABFD. The relocation code in BFD will read these offsets, so we
3930 need to be sure they're initialized. We map each section to itself,
3931 with no offset; this means that SECTP->vma will be honored. */
3932
3933 static void
3934 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3935 {
3936 sectp->output_section = sectp;
3937 sectp->output_offset = 0;
3938 }
3939
3940 /* Relocate the contents of a debug section SECTP in ABFD. The
3941 contents are stored in BUF if it is non-NULL, or returned in a
3942 malloc'd buffer otherwise.
3943
3944 For some platforms and debug info formats, shared libraries contain
3945 relocations against the debug sections (particularly for DWARF-2;
3946 one affected platform is PowerPC GNU/Linux, although it depends on
3947 the version of the linker in use). Also, ELF object files naturally
3948 have unresolved relocations for their debug sections. We need to apply
3949 the relocations in order to get the locations of symbols correct. */
3950
3951 bfd_byte *
3952 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3953 {
3954 /* We're only interested in debugging sections with relocation
3955 information. */
3956 if ((sectp->flags & SEC_RELOC) == 0)
3957 return NULL;
3958 if ((sectp->flags & SEC_DEBUGGING) == 0)
3959 return NULL;
3960
3961 /* We will handle section offsets properly elsewhere, so relocate as if
3962 all sections begin at 0. */
3963 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3964
3965 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3966 }
3967
3968 struct symfile_segment_data *
3969 get_symfile_segment_data (bfd *abfd)
3970 {
3971 struct sym_fns *sf = find_sym_fns (abfd);
3972
3973 if (sf == NULL)
3974 return NULL;
3975
3976 return sf->sym_segments (abfd);
3977 }
3978
3979 void
3980 free_symfile_segment_data (struct symfile_segment_data *data)
3981 {
3982 xfree (data->segment_bases);
3983 xfree (data->segment_sizes);
3984 xfree (data->segment_info);
3985 xfree (data);
3986 }
3987
3988
3989 /* Given:
3990 - DATA, containing segment addresses from the object file ABFD, and
3991 the mapping from ABFD's sections onto the segments that own them,
3992 and
3993 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3994 segment addresses reported by the target,
3995 store the appropriate offsets for each section in OFFSETS.
3996
3997 If there are fewer entries in SEGMENT_BASES than there are segments
3998 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3999
4000 If there are more, then verify that all the excess addresses are
4001 the same as the last legitimate one, and then ignore them. This
4002 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4003 only a single segment. */
4004 int
4005 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4006 struct section_offsets *offsets,
4007 int num_segment_bases,
4008 const CORE_ADDR *segment_bases)
4009 {
4010 int i;
4011 asection *sect;
4012
4013 /* It doesn't make sense to call this function unless you have some
4014 segment base addresses. */
4015 gdb_assert (segment_bases > 0);
4016
4017 /* If we do not have segment mappings for the object file, we
4018 can not relocate it by segments. */
4019 gdb_assert (data != NULL);
4020 gdb_assert (data->num_segments > 0);
4021
4022 /* Check any extra SEGMENT_BASES entries. */
4023 if (num_segment_bases > data->num_segments)
4024 for (i = data->num_segments; i < num_segment_bases; i++)
4025 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4026 return 0;
4027
4028 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4029 {
4030 int which = data->segment_info[i];
4031
4032 gdb_assert (0 <= which && which <= data->num_segments);
4033
4034 /* Don't bother computing offsets for sections that aren't
4035 loaded as part of any segment. */
4036 if (! which)
4037 continue;
4038
4039 /* Use the last SEGMENT_BASES entry as the address of any extra
4040 segments mentioned in DATA->segment_info. */
4041 if (which > num_segment_bases)
4042 which = num_segment_bases;
4043
4044 offsets->offsets[i] = (segment_bases[which - 1]
4045 - data->segment_bases[which - 1]);
4046 }
4047
4048 return 1;
4049 }
4050
4051 static void
4052 symfile_find_segment_sections (struct objfile *objfile)
4053 {
4054 bfd *abfd = objfile->obfd;
4055 int i;
4056 asection *sect;
4057 struct symfile_segment_data *data;
4058
4059 data = get_symfile_segment_data (objfile->obfd);
4060 if (data == NULL)
4061 return;
4062
4063 if (data->num_segments != 1 && data->num_segments != 2)
4064 {
4065 free_symfile_segment_data (data);
4066 return;
4067 }
4068
4069 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4070 {
4071 CORE_ADDR vma;
4072 int which = data->segment_info[i];
4073
4074 if (which == 1)
4075 {
4076 if (objfile->sect_index_text == -1)
4077 objfile->sect_index_text = sect->index;
4078
4079 if (objfile->sect_index_rodata == -1)
4080 objfile->sect_index_rodata = sect->index;
4081 }
4082 else if (which == 2)
4083 {
4084 if (objfile->sect_index_data == -1)
4085 objfile->sect_index_data = sect->index;
4086
4087 if (objfile->sect_index_bss == -1)
4088 objfile->sect_index_bss = sect->index;
4089 }
4090 }
4091
4092 free_symfile_segment_data (data);
4093 }
4094
4095 void
4096 _initialize_symfile (void)
4097 {
4098 struct cmd_list_element *c;
4099
4100 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4101 Load symbol table from executable file FILE.\n\
4102 The `file' command can also load symbol tables, as well as setting the file\n\
4103 to execute."), &cmdlist);
4104 set_cmd_completer (c, filename_completer);
4105
4106 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4107 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4108 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4109 ADDR is the starting address of the file's text.\n\
4110 The optional arguments are section-name section-address pairs and\n\
4111 should be specified if the data and bss segments are not contiguous\n\
4112 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4113 &cmdlist);
4114 set_cmd_completer (c, filename_completer);
4115
4116 c = add_cmd ("add-shared-symbol-files", class_files,
4117 add_shared_symbol_files_command, _("\
4118 Load the symbols from shared objects in the dynamic linker's link map."),
4119 &cmdlist);
4120 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4121 &cmdlist);
4122
4123 c = add_cmd ("load", class_files, load_command, _("\
4124 Dynamically load FILE into the running program, and record its symbols\n\
4125 for access from GDB.\n\
4126 A load OFFSET may also be given."), &cmdlist);
4127 set_cmd_completer (c, filename_completer);
4128
4129 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4130 &symbol_reloading, _("\
4131 Set dynamic symbol table reloading multiple times in one run."), _("\
4132 Show dynamic symbol table reloading multiple times in one run."), NULL,
4133 NULL,
4134 show_symbol_reloading,
4135 &setlist, &showlist);
4136
4137 add_prefix_cmd ("overlay", class_support, overlay_command,
4138 _("Commands for debugging overlays."), &overlaylist,
4139 "overlay ", 0, &cmdlist);
4140
4141 add_com_alias ("ovly", "overlay", class_alias, 1);
4142 add_com_alias ("ov", "overlay", class_alias, 1);
4143
4144 add_cmd ("map-overlay", class_support, map_overlay_command,
4145 _("Assert that an overlay section is mapped."), &overlaylist);
4146
4147 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4148 _("Assert that an overlay section is unmapped."), &overlaylist);
4149
4150 add_cmd ("list-overlays", class_support, list_overlays_command,
4151 _("List mappings of overlay sections."), &overlaylist);
4152
4153 add_cmd ("manual", class_support, overlay_manual_command,
4154 _("Enable overlay debugging."), &overlaylist);
4155 add_cmd ("off", class_support, overlay_off_command,
4156 _("Disable overlay debugging."), &overlaylist);
4157 add_cmd ("auto", class_support, overlay_auto_command,
4158 _("Enable automatic overlay debugging."), &overlaylist);
4159 add_cmd ("load-target", class_support, overlay_load_command,
4160 _("Read the overlay mapping state from the target."), &overlaylist);
4161
4162 /* Filename extension to source language lookup table: */
4163 init_filename_language_table ();
4164 add_setshow_string_noescape_cmd ("extension-language", class_files,
4165 &ext_args, _("\
4166 Set mapping between filename extension and source language."), _("\
4167 Show mapping between filename extension and source language."), _("\
4168 Usage: set extension-language .foo bar"),
4169 set_ext_lang_command,
4170 show_ext_args,
4171 &setlist, &showlist);
4172
4173 add_info ("extensions", info_ext_lang_command,
4174 _("All filename extensions associated with a source language."));
4175
4176 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4177 &debug_file_directory, _("\
4178 Set the directory where separate debug symbols are searched for."), _("\
4179 Show the directory where separate debug symbols are searched for."), _("\
4180 Separate debug symbols are first searched for in the same\n\
4181 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4182 and lastly at the path of the directory of the binary with\n\
4183 the global debug-file directory prepended."),
4184 NULL,
4185 show_debug_file_directory,
4186 &setlist, &showlist);
4187 }
This page took 0.115232 seconds and 4 git commands to generate.