ffcba1a0908afae42fcc4ca5470bab36b90997ac
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
153
154 int auto_solib_add = 1;
155 \f
156
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165 int
166 print_symbol_loading_p (int from_tty, int exec, int full)
167 {
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180 }
181
182 /* True if we are reading a symbol table. */
183
184 int currently_reading_symtab = 0;
185
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
188
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
191 {
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
195 }
196
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206 void
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
208 {
209 asection **lowest = (asection **) obj;
210
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221 }
222
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
225
226 section_addr_info
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
229 {
230 const struct target_section *stp;
231
232 section_addr_info sap;
233
234 for (stp = start; stp != end; stp++)
235 {
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
244 }
245
246 return sap;
247 }
248
249 /* Create a section_addr_info from section offsets in ABFD. */
250
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
253 {
254 struct bfd_section *sec;
255
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
262
263 return sap;
264 }
265
266 /* Create a section_addr_info from section offsets in OBJFILE. */
267
268 section_addr_info
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
270 {
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
278 {
279 int sectindex = sap[i].sectindex;
280
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 }
283 return sap;
284 }
285
286 /* Initialize OBJFILE's sect_index_* members. */
287
288 static void
289 init_objfile_sect_indices (struct objfile *objfile)
290 {
291 asection *sect;
292 int i;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
295 if (sect)
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
299 if (sect)
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
303 if (sect)
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
307 if (sect)
308 objfile->sect_index_rodata = sect->index;
309
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
345 }
346
347 /* The arguments to place_section. */
348
349 struct place_section_arg
350 {
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353 };
354
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
358 static void
359 place_section (bfd *abfd, asection *sect, void *obj)
360 {
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
365
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
368 return;
369
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
376
377 do {
378 asection *cur_sec;
379
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
407 break;
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
417 }
418
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
422
423 void
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
426 const section_addr_info &addrs)
427 {
428 int i;
429
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
431
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
434 {
435 const struct other_sections *osp;
436
437 osp = &addrs[i];
438 if (osp->sectindex == -1)
439 continue;
440
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
443 the BFD index. */
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446 }
447
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454 static const char *
455 addr_section_name (const char *s)
456 {
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463 }
464
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
468
469 static bool
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
472 {
473 int retval;
474
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
479
480 return a->sectindex < b->sectindex;
481 }
482
483 /* Provide sorted array of pointers to sections of ADDRS. */
484
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
487 {
488 int i;
489
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
493
494 std::sort (array.begin (), array.end (), addrs_section_compar);
495
496 return array;
497 }
498
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
502
503 void
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
505 {
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
519 }
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
535
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
539
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
542
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
545
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
549 {
550 const char *sect_name = addr_section_name (sect->name.c_str ());
551
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
554 sect_name) < 0)
555 abfd_sorted_iter++;
556
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 sect_name) == 0)
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
567
568 /* Never use the same ABFD entry twice. */
569 abfd_sorted_iter++;
570 }
571 }
572
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
583 for (i = 0; i < addrs->size (); i++)
584 {
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
586
587 if (sect)
588 {
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
591
592 if ((*addrs)[i].addr != 0)
593 {
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
596 }
597 else
598 (*addrs)[i].addr = lower_offset;
599 }
600 else
601 {
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string &sect_name = (*addrs)[i].name;
604
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
618
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
626 && i > 0
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
631
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
634 }
635 }
636 }
637
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644 void
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
647 {
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
654
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
719 }
720 }
721 }
722
723 /* Remember the bfd indexes for the .text, .data, .bss and
724 .rodata sections. */
725 init_objfile_sect_indices (objfile);
726 }
727
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
736 {
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
766
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790 }
791
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795 static void
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
797 {
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
806 {
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
808
809 if (abfd != NULL)
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
818 }
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822 }
823
824 /* Initialize entry point information for this objfile. */
825
826 static void
827 init_entry_point_info (struct objfile *objfile)
828 {
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
858 }
859
860 if (ei->entry_point_p)
861 {
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
864 int found;
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
870 entry_point,
871 current_top_target ());
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
875 ei->entry_point
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
896 }
897 }
898
899 /* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
902 This function does not set the OBJFILE's entry-point info.
903
904 OBJFILE is where the symbols are to be read from.
905
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
927 {
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
930
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
932
933 if (objfile->sf == NULL)
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
953
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
957 if (! addrs)
958 addrs = &local_addr;
959
960 if (mainline)
961 {
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
978
979 (*objfile->sf->sym_new_init) (objfile);
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
985
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
994
995 (*objfile->sf->sym_init) (objfile);
996 clear_complaints ();
997
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
999
1000 read_symbols (objfile, add_flags);
1001
1002 /* Discard cleanups as symbol reading was successful. */
1003
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1007 }
1008
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
1012 static void
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1016 {
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1019 }
1020
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1024
1025 static void
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1027 {
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
1036 clear_symtab_users (add_flags);
1037 }
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1039 {
1040 breakpoint_re_set ();
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1045 }
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1052
1053 For NAME description see the objfile constructor.
1054
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1057
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1060
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1066
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1072 {
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1079
1080 if (readnow_symbol_files)
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && mainline
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1106
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1113 if (should_print)
1114 {
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1117 else
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
1123 }
1124 syms_from_objfile (objfile, addrs, add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1135
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1138 }
1139
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1147
1148 if (should_print)
1149 {
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_filtered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
1301
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1303
1304 if (abfd == NULL)
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
1311
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1322
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1326 {
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
1335 verified_as_different = 1;
1336 }
1337 else
1338 verified_as_different = 0;
1339
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1341
1342 if (!file_crc_p)
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
1349
1350 if (crc != file_crc)
1351 {
1352 unsigned long parent_crc;
1353
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1357
1358 if (!verified_as_different)
1359 {
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
1367 }
1368
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1373
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
1377 return 0;
1378 }
1379
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
1383 return 1;
1384 }
1385
1386 char *debug_file_directory = NULL;
1387 static void
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390 {
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1394 value);
1395 }
1396
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1399 #endif
1400
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1408
1409 static std::string
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1414 {
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1418
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1422
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1424 return debugfile;
1425
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
1431
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1433 return debugfile;
1434
1435 /* Then try in the global debugfile directories.
1436
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1439
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444
1445 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1446 {
1447 debugfile = target_prefix ? "target:" : "";
1448 debugfile += debugdir.get ();
1449 debugfile += "/";
1450 debugfile += dir_notarget;
1451 debugfile += debuglink;
1452
1453 if (separate_debug_file_exists (debugfile, crc32, objfile))
1454 return debugfile;
1455
1456 const char *base_path;
1457 if (canon_dir != NULL
1458 && (base_path = child_path (gdb_sysroot, canon_dir)) != NULL)
1459 {
1460 /* If the file is in the sysroot, try using its base path in
1461 the global debugfile directory. */
1462 debugfile = target_prefix ? "target:" : "";
1463 debugfile += debugdir.get ();
1464 debugfile += "/";
1465 debugfile += base_path;
1466 debugfile += "/";
1467 debugfile += debuglink;
1468
1469 if (separate_debug_file_exists (debugfile, crc32, objfile))
1470 return debugfile;
1471
1472 /* If the file is in the sysroot, try using its base path in
1473 the sysroot's global debugfile directory. */
1474 debugfile = target_prefix ? "target:" : "";
1475 debugfile += gdb_sysroot;
1476 debugfile += debugdir.get ();
1477 debugfile += "/";
1478 debugfile += base_path;
1479 debugfile += "/";
1480 debugfile += debuglink;
1481
1482 if (separate_debug_file_exists (debugfile, crc32, objfile))
1483 return debugfile;
1484 }
1485
1486 }
1487
1488 return std::string ();
1489 }
1490
1491 /* Modify PATH to contain only "[/]directory/" part of PATH.
1492 If there were no directory separators in PATH, PATH will be empty
1493 string on return. */
1494
1495 static void
1496 terminate_after_last_dir_separator (char *path)
1497 {
1498 int i;
1499
1500 /* Strip off the final filename part, leaving the directory name,
1501 followed by a slash. The directory can be relative or absolute. */
1502 for (i = strlen(path) - 1; i >= 0; i--)
1503 if (IS_DIR_SEPARATOR (path[i]))
1504 break;
1505
1506 /* If I is -1 then no directory is present there and DIR will be "". */
1507 path[i + 1] = '\0';
1508 }
1509
1510 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1511 Returns pathname, or an empty string. */
1512
1513 std::string
1514 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1515 {
1516 unsigned long crc32;
1517
1518 gdb::unique_xmalloc_ptr<char> debuglink
1519 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1520
1521 if (debuglink == NULL)
1522 {
1523 /* There's no separate debug info, hence there's no way we could
1524 load it => no warning. */
1525 return std::string ();
1526 }
1527
1528 std::string dir = objfile_name (objfile);
1529 terminate_after_last_dir_separator (&dir[0]);
1530 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1531
1532 std::string debugfile
1533 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1534 debuglink.get (), crc32, objfile);
1535
1536 if (debugfile.empty ())
1537 {
1538 /* For PR gdb/9538, try again with realpath (if different from the
1539 original). */
1540
1541 struct stat st_buf;
1542
1543 if (lstat (objfile_name (objfile), &st_buf) == 0
1544 && S_ISLNK (st_buf.st_mode))
1545 {
1546 gdb::unique_xmalloc_ptr<char> symlink_dir
1547 (lrealpath (objfile_name (objfile)));
1548 if (symlink_dir != NULL)
1549 {
1550 terminate_after_last_dir_separator (symlink_dir.get ());
1551 if (dir != symlink_dir.get ())
1552 {
1553 /* Different directory, so try using it. */
1554 debugfile = find_separate_debug_file (symlink_dir.get (),
1555 symlink_dir.get (),
1556 debuglink.get (),
1557 crc32,
1558 objfile);
1559 }
1560 }
1561 }
1562 }
1563
1564 return debugfile;
1565 }
1566
1567 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1568 simultaneously. */
1569
1570 static void
1571 validate_readnow_readnever (objfile_flags flags)
1572 {
1573 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1574 error (_("-readnow and -readnever cannot be used simultaneously"));
1575 }
1576
1577 /* This is the symbol-file command. Read the file, analyze its
1578 symbols, and add a struct symtab to a symtab list. The syntax of
1579 the command is rather bizarre:
1580
1581 1. The function buildargv implements various quoting conventions
1582 which are undocumented and have little or nothing in common with
1583 the way things are quoted (or not quoted) elsewhere in GDB.
1584
1585 2. Options are used, which are not generally used in GDB (perhaps
1586 "set mapped on", "set readnow on" would be better)
1587
1588 3. The order of options matters, which is contrary to GNU
1589 conventions (because it is confusing and inconvenient). */
1590
1591 void
1592 symbol_file_command (const char *args, int from_tty)
1593 {
1594 dont_repeat ();
1595
1596 if (args == NULL)
1597 {
1598 symbol_file_clear (from_tty);
1599 }
1600 else
1601 {
1602 objfile_flags flags = OBJF_USERLOADED;
1603 symfile_add_flags add_flags = 0;
1604 char *name = NULL;
1605 bool stop_processing_options = false;
1606 CORE_ADDR offset = 0;
1607 int idx;
1608 char *arg;
1609
1610 if (from_tty)
1611 add_flags |= SYMFILE_VERBOSE;
1612
1613 gdb_argv built_argv (args);
1614 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1615 {
1616 if (stop_processing_options || *arg != '-')
1617 {
1618 if (name == NULL)
1619 name = arg;
1620 else
1621 error (_("Unrecognized argument \"%s\""), arg);
1622 }
1623 else if (strcmp (arg, "-readnow") == 0)
1624 flags |= OBJF_READNOW;
1625 else if (strcmp (arg, "-readnever") == 0)
1626 flags |= OBJF_READNEVER;
1627 else if (strcmp (arg, "-o") == 0)
1628 {
1629 arg = built_argv[++idx];
1630 if (arg == NULL)
1631 error (_("Missing argument to -o"));
1632
1633 offset = parse_and_eval_address (arg);
1634 }
1635 else if (strcmp (arg, "--") == 0)
1636 stop_processing_options = true;
1637 else
1638 error (_("Unrecognized argument \"%s\""), arg);
1639 }
1640
1641 if (name == NULL)
1642 error (_("no symbol file name was specified"));
1643
1644 validate_readnow_readnever (flags);
1645
1646 symbol_file_add_main_1 (name, add_flags, flags, offset);
1647 }
1648 }
1649
1650 /* Set the initial language.
1651
1652 FIXME: A better solution would be to record the language in the
1653 psymtab when reading partial symbols, and then use it (if known) to
1654 set the language. This would be a win for formats that encode the
1655 language in an easily discoverable place, such as DWARF. For
1656 stabs, we can jump through hoops looking for specially named
1657 symbols or try to intuit the language from the specific type of
1658 stabs we find, but we can't do that until later when we read in
1659 full symbols. */
1660
1661 void
1662 set_initial_language (void)
1663 {
1664 enum language lang = main_language ();
1665
1666 if (lang == language_unknown)
1667 {
1668 char *name = main_name ();
1669 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1670
1671 if (sym != NULL)
1672 lang = SYMBOL_LANGUAGE (sym);
1673 }
1674
1675 if (lang == language_unknown)
1676 {
1677 /* Make C the default language */
1678 lang = language_c;
1679 }
1680
1681 set_language (lang);
1682 expected_language = current_language; /* Don't warn the user. */
1683 }
1684
1685 /* Open the file specified by NAME and hand it off to BFD for
1686 preliminary analysis. Return a newly initialized bfd *, which
1687 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1688 absolute). In case of trouble, error() is called. */
1689
1690 gdb_bfd_ref_ptr
1691 symfile_bfd_open (const char *name)
1692 {
1693 int desc = -1;
1694
1695 gdb::unique_xmalloc_ptr<char> absolute_name;
1696 if (!is_target_filename (name))
1697 {
1698 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1699
1700 /* Look down path for it, allocate 2nd new malloc'd copy. */
1701 desc = openp (getenv ("PATH"),
1702 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1703 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1704 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1705 if (desc < 0)
1706 {
1707 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1708
1709 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 exename, O_RDONLY | O_BINARY, &absolute_name);
1713 }
1714 #endif
1715 if (desc < 0)
1716 perror_with_name (expanded_name.get ());
1717
1718 name = absolute_name.get ();
1719 }
1720
1721 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1722 if (sym_bfd == NULL)
1723 error (_("`%s': can't open to read symbols: %s."), name,
1724 bfd_errmsg (bfd_get_error ()));
1725
1726 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1727 bfd_set_cacheable (sym_bfd.get (), 1);
1728
1729 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1730 error (_("`%s': can't read symbols: %s."), name,
1731 bfd_errmsg (bfd_get_error ()));
1732
1733 return sym_bfd;
1734 }
1735
1736 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1737 the section was not found. */
1738
1739 int
1740 get_section_index (struct objfile *objfile, const char *section_name)
1741 {
1742 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1743
1744 if (sect)
1745 return sect->index;
1746 else
1747 return -1;
1748 }
1749
1750 /* Link SF into the global symtab_fns list.
1751 FLAVOUR is the file format that SF handles.
1752 Called on startup by the _initialize routine in each object file format
1753 reader, to register information about each format the reader is prepared
1754 to handle. */
1755
1756 void
1757 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1758 {
1759 symtab_fns.emplace_back (flavour, sf);
1760 }
1761
1762 /* Initialize OBJFILE to read symbols from its associated BFD. It
1763 either returns or calls error(). The result is an initialized
1764 struct sym_fns in the objfile structure, that contains cached
1765 information about the symbol file. */
1766
1767 static const struct sym_fns *
1768 find_sym_fns (bfd *abfd)
1769 {
1770 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1771
1772 if (our_flavour == bfd_target_srec_flavour
1773 || our_flavour == bfd_target_ihex_flavour
1774 || our_flavour == bfd_target_tekhex_flavour)
1775 return NULL; /* No symbols. */
1776
1777 for (const registered_sym_fns &rsf : symtab_fns)
1778 if (our_flavour == rsf.sym_flavour)
1779 return rsf.sym_fns;
1780
1781 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1782 bfd_get_target (abfd));
1783 }
1784 \f
1785
1786 /* This function runs the load command of our current target. */
1787
1788 static void
1789 load_command (const char *arg, int from_tty)
1790 {
1791 dont_repeat ();
1792
1793 /* The user might be reloading because the binary has changed. Take
1794 this opportunity to check. */
1795 reopen_exec_file ();
1796 reread_symbols ();
1797
1798 std::string temp;
1799 if (arg == NULL)
1800 {
1801 const char *parg, *prev;
1802
1803 arg = get_exec_file (1);
1804
1805 /* We may need to quote this string so buildargv can pull it
1806 apart. */
1807 prev = parg = arg;
1808 while ((parg = strpbrk (parg, "\\\"'\t ")))
1809 {
1810 temp.append (prev, parg - prev);
1811 prev = parg++;
1812 temp.push_back ('\\');
1813 }
1814 /* If we have not copied anything yet, then we didn't see a
1815 character to quote, and we can just leave ARG unchanged. */
1816 if (!temp.empty ())
1817 {
1818 temp.append (prev);
1819 arg = temp.c_str ();
1820 }
1821 }
1822
1823 target_load (arg, from_tty);
1824
1825 /* After re-loading the executable, we don't really know which
1826 overlays are mapped any more. */
1827 overlay_cache_invalid = 1;
1828 }
1829
1830 /* This version of "load" should be usable for any target. Currently
1831 it is just used for remote targets, not inftarg.c or core files,
1832 on the theory that only in that case is it useful.
1833
1834 Avoiding xmodem and the like seems like a win (a) because we don't have
1835 to worry about finding it, and (b) On VMS, fork() is very slow and so
1836 we don't want to run a subprocess. On the other hand, I'm not sure how
1837 performance compares. */
1838
1839 static int validate_download = 0;
1840
1841 /* Callback service function for generic_load (bfd_map_over_sections). */
1842
1843 static void
1844 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1845 {
1846 bfd_size_type *sum = (bfd_size_type *) data;
1847
1848 *sum += bfd_get_section_size (asec);
1849 }
1850
1851 /* Opaque data for load_progress. */
1852 struct load_progress_data
1853 {
1854 /* Cumulative data. */
1855 unsigned long write_count = 0;
1856 unsigned long data_count = 0;
1857 bfd_size_type total_size = 0;
1858 };
1859
1860 /* Opaque data for load_progress for a single section. */
1861 struct load_progress_section_data
1862 {
1863 load_progress_section_data (load_progress_data *cumulative_,
1864 const char *section_name_, ULONGEST section_size_,
1865 CORE_ADDR lma_, gdb_byte *buffer_)
1866 : cumulative (cumulative_), section_name (section_name_),
1867 section_size (section_size_), lma (lma_), buffer (buffer_)
1868 {}
1869
1870 struct load_progress_data *cumulative;
1871
1872 /* Per-section data. */
1873 const char *section_name;
1874 ULONGEST section_sent = 0;
1875 ULONGEST section_size;
1876 CORE_ADDR lma;
1877 gdb_byte *buffer;
1878 };
1879
1880 /* Opaque data for load_section_callback. */
1881 struct load_section_data
1882 {
1883 load_section_data (load_progress_data *progress_data_)
1884 : progress_data (progress_data_)
1885 {}
1886
1887 ~load_section_data ()
1888 {
1889 for (auto &&request : requests)
1890 {
1891 xfree (request.data);
1892 delete ((load_progress_section_data *) request.baton);
1893 }
1894 }
1895
1896 CORE_ADDR load_offset = 0;
1897 struct load_progress_data *progress_data;
1898 std::vector<struct memory_write_request> requests;
1899 };
1900
1901 /* Target write callback routine for progress reporting. */
1902
1903 static void
1904 load_progress (ULONGEST bytes, void *untyped_arg)
1905 {
1906 struct load_progress_section_data *args
1907 = (struct load_progress_section_data *) untyped_arg;
1908 struct load_progress_data *totals;
1909
1910 if (args == NULL)
1911 /* Writing padding data. No easy way to get at the cumulative
1912 stats, so just ignore this. */
1913 return;
1914
1915 totals = args->cumulative;
1916
1917 if (bytes == 0 && args->section_sent == 0)
1918 {
1919 /* The write is just starting. Let the user know we've started
1920 this section. */
1921 current_uiout->message ("Loading section %s, size %s lma %s\n",
1922 args->section_name,
1923 hex_string (args->section_size),
1924 paddress (target_gdbarch (), args->lma));
1925 return;
1926 }
1927
1928 if (validate_download)
1929 {
1930 /* Broken memories and broken monitors manifest themselves here
1931 when bring new computers to life. This doubles already slow
1932 downloads. */
1933 /* NOTE: cagney/1999-10-18: A more efficient implementation
1934 might add a verify_memory() method to the target vector and
1935 then use that. remote.c could implement that method using
1936 the ``qCRC'' packet. */
1937 gdb::byte_vector check (bytes);
1938
1939 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1940 error (_("Download verify read failed at %s"),
1941 paddress (target_gdbarch (), args->lma));
1942 if (memcmp (args->buffer, check.data (), bytes) != 0)
1943 error (_("Download verify compare failed at %s"),
1944 paddress (target_gdbarch (), args->lma));
1945 }
1946 totals->data_count += bytes;
1947 args->lma += bytes;
1948 args->buffer += bytes;
1949 totals->write_count += 1;
1950 args->section_sent += bytes;
1951 if (check_quit_flag ()
1952 || (deprecated_ui_load_progress_hook != NULL
1953 && deprecated_ui_load_progress_hook (args->section_name,
1954 args->section_sent)))
1955 error (_("Canceled the download"));
1956
1957 if (deprecated_show_load_progress != NULL)
1958 deprecated_show_load_progress (args->section_name,
1959 args->section_sent,
1960 args->section_size,
1961 totals->data_count,
1962 totals->total_size);
1963 }
1964
1965 /* Callback service function for generic_load (bfd_map_over_sections). */
1966
1967 static void
1968 load_section_callback (bfd *abfd, asection *asec, void *data)
1969 {
1970 struct load_section_data *args = (struct load_section_data *) data;
1971 bfd_size_type size = bfd_get_section_size (asec);
1972 const char *sect_name = bfd_get_section_name (abfd, asec);
1973
1974 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1975 return;
1976
1977 if (size == 0)
1978 return;
1979
1980 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1981 ULONGEST end = begin + size;
1982 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1983 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1984
1985 load_progress_section_data *section_data
1986 = new load_progress_section_data (args->progress_data, sect_name, size,
1987 begin, buffer);
1988
1989 args->requests.emplace_back (begin, end, buffer, section_data);
1990 }
1991
1992 static void print_transfer_performance (struct ui_file *stream,
1993 unsigned long data_count,
1994 unsigned long write_count,
1995 std::chrono::steady_clock::duration d);
1996
1997 void
1998 generic_load (const char *args, int from_tty)
1999 {
2000 struct load_progress_data total_progress;
2001 struct load_section_data cbdata (&total_progress);
2002 struct ui_out *uiout = current_uiout;
2003
2004 if (args == NULL)
2005 error_no_arg (_("file to load"));
2006
2007 gdb_argv argv (args);
2008
2009 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2010
2011 if (argv[1] != NULL)
2012 {
2013 const char *endptr;
2014
2015 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2016
2017 /* If the last word was not a valid number then
2018 treat it as a file name with spaces in. */
2019 if (argv[1] == endptr)
2020 error (_("Invalid download offset:%s."), argv[1]);
2021
2022 if (argv[2] != NULL)
2023 error (_("Too many parameters."));
2024 }
2025
2026 /* Open the file for loading. */
2027 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2028 if (loadfile_bfd == NULL)
2029 perror_with_name (filename.get ());
2030
2031 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2032 {
2033 error (_("\"%s\" is not an object file: %s"), filename.get (),
2034 bfd_errmsg (bfd_get_error ()));
2035 }
2036
2037 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2038 (void *) &total_progress.total_size);
2039
2040 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2041
2042 using namespace std::chrono;
2043
2044 steady_clock::time_point start_time = steady_clock::now ();
2045
2046 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2047 load_progress) != 0)
2048 error (_("Load failed"));
2049
2050 steady_clock::time_point end_time = steady_clock::now ();
2051
2052 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2053 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2054 uiout->text ("Start address ");
2055 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2056 uiout->text (", load size ");
2057 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2058 uiout->text ("\n");
2059 regcache_write_pc (get_current_regcache (), entry);
2060
2061 /* Reset breakpoints, now that we have changed the load image. For
2062 instance, breakpoints may have been set (or reset, by
2063 post_create_inferior) while connected to the target but before we
2064 loaded the program. In that case, the prologue analyzer could
2065 have read instructions from the target to find the right
2066 breakpoint locations. Loading has changed the contents of that
2067 memory. */
2068
2069 breakpoint_re_set ();
2070
2071 print_transfer_performance (gdb_stdout, total_progress.data_count,
2072 total_progress.write_count,
2073 end_time - start_time);
2074 }
2075
2076 /* Report on STREAM the performance of a memory transfer operation,
2077 such as 'load'. DATA_COUNT is the number of bytes transferred.
2078 WRITE_COUNT is the number of separate write operations, or 0, if
2079 that information is not available. TIME is how long the operation
2080 lasted. */
2081
2082 static void
2083 print_transfer_performance (struct ui_file *stream,
2084 unsigned long data_count,
2085 unsigned long write_count,
2086 std::chrono::steady_clock::duration time)
2087 {
2088 using namespace std::chrono;
2089 struct ui_out *uiout = current_uiout;
2090
2091 milliseconds ms = duration_cast<milliseconds> (time);
2092
2093 uiout->text ("Transfer rate: ");
2094 if (ms.count () > 0)
2095 {
2096 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2097
2098 if (uiout->is_mi_like_p ())
2099 {
2100 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2101 uiout->text (" bits/sec");
2102 }
2103 else if (rate < 1024)
2104 {
2105 uiout->field_fmt ("transfer-rate", "%lu", rate);
2106 uiout->text (" bytes/sec");
2107 }
2108 else
2109 {
2110 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2111 uiout->text (" KB/sec");
2112 }
2113 }
2114 else
2115 {
2116 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2117 uiout->text (" bits in <1 sec");
2118 }
2119 if (write_count > 0)
2120 {
2121 uiout->text (", ");
2122 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2123 uiout->text (" bytes/write");
2124 }
2125 uiout->text (".\n");
2126 }
2127
2128 /* Add an OFFSET to the start address of each section in OBJF, except
2129 sections that were specified in ADDRS. */
2130
2131 static void
2132 set_objfile_default_section_offset (struct objfile *objf,
2133 const section_addr_info &addrs,
2134 CORE_ADDR offset)
2135 {
2136 /* Add OFFSET to all sections by default. */
2137 std::vector<struct section_offsets> offsets (objf->num_sections,
2138 { { offset } });
2139
2140 /* Create sorted lists of all sections in ADDRS as well as all
2141 sections in OBJF. */
2142
2143 std::vector<const struct other_sections *> addrs_sorted
2144 = addrs_section_sort (addrs);
2145
2146 section_addr_info objf_addrs
2147 = build_section_addr_info_from_objfile (objf);
2148 std::vector<const struct other_sections *> objf_addrs_sorted
2149 = addrs_section_sort (objf_addrs);
2150
2151 /* Walk the BFD section list, and if a matching section is found in
2152 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2153 unchanged.
2154
2155 Note that both lists may contain multiple sections with the same
2156 name, and then the sections from ADDRS are matched in BFD order
2157 (thanks to sectindex). */
2158
2159 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2160 = addrs_sorted.begin ();
2161 for (const other_sections *objf_sect : objf_addrs_sorted)
2162 {
2163 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2164 int cmp = -1;
2165
2166 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2167 {
2168 const struct other_sections *sect = *addrs_sorted_iter;
2169 const char *sect_name = addr_section_name (sect->name.c_str ());
2170 cmp = strcmp (sect_name, objf_name);
2171 if (cmp <= 0)
2172 ++addrs_sorted_iter;
2173 }
2174
2175 if (cmp == 0)
2176 offsets[objf_sect->sectindex].offsets[0] = 0;
2177 }
2178
2179 /* Apply the new section offsets. */
2180 objfile_relocate (objf, offsets.data ());
2181 }
2182
2183 /* This function allows the addition of incrementally linked object files.
2184 It does not modify any state in the target, only in the debugger. */
2185 /* Note: ezannoni 2000-04-13 This function/command used to have a
2186 special case syntax for the rombug target (Rombug is the boot
2187 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2188 rombug case, the user doesn't need to supply a text address,
2189 instead a call to target_link() (in target.c) would supply the
2190 value to use. We are now discontinuing this type of ad hoc syntax. */
2191
2192 static void
2193 add_symbol_file_command (const char *args, int from_tty)
2194 {
2195 struct gdbarch *gdbarch = get_current_arch ();
2196 gdb::unique_xmalloc_ptr<char> filename;
2197 char *arg;
2198 int argcnt = 0;
2199 struct objfile *objf;
2200 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2201 symfile_add_flags add_flags = 0;
2202
2203 if (from_tty)
2204 add_flags |= SYMFILE_VERBOSE;
2205
2206 struct sect_opt
2207 {
2208 const char *name;
2209 const char *value;
2210 };
2211
2212 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2213 bool stop_processing_options = false;
2214 CORE_ADDR offset = 0;
2215
2216 dont_repeat ();
2217
2218 if (args == NULL)
2219 error (_("add-symbol-file takes a file name and an address"));
2220
2221 bool seen_addr = false;
2222 bool seen_offset = false;
2223 gdb_argv argv (args);
2224
2225 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2226 {
2227 if (stop_processing_options || *arg != '-')
2228 {
2229 if (filename == NULL)
2230 {
2231 /* First non-option argument is always the filename. */
2232 filename.reset (tilde_expand (arg));
2233 }
2234 else if (!seen_addr)
2235 {
2236 /* The second non-option argument is always the text
2237 address at which to load the program. */
2238 sect_opts[0].value = arg;
2239 seen_addr = true;
2240 }
2241 else
2242 error (_("Unrecognized argument \"%s\""), arg);
2243 }
2244 else if (strcmp (arg, "-readnow") == 0)
2245 flags |= OBJF_READNOW;
2246 else if (strcmp (arg, "-readnever") == 0)
2247 flags |= OBJF_READNEVER;
2248 else if (strcmp (arg, "-s") == 0)
2249 {
2250 if (argv[argcnt + 1] == NULL)
2251 error (_("Missing section name after \"-s\""));
2252 else if (argv[argcnt + 2] == NULL)
2253 error (_("Missing section address after \"-s\""));
2254
2255 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2256
2257 sect_opts.push_back (sect);
2258 argcnt += 2;
2259 }
2260 else if (strcmp (arg, "-o") == 0)
2261 {
2262 arg = argv[++argcnt];
2263 if (arg == NULL)
2264 error (_("Missing argument to -o"));
2265
2266 offset = parse_and_eval_address (arg);
2267 seen_offset = true;
2268 }
2269 else if (strcmp (arg, "--") == 0)
2270 stop_processing_options = true;
2271 else
2272 error (_("Unrecognized argument \"%s\""), arg);
2273 }
2274
2275 if (filename == NULL)
2276 error (_("You must provide a filename to be loaded."));
2277
2278 validate_readnow_readnever (flags);
2279
2280 /* Print the prompt for the query below. And save the arguments into
2281 a sect_addr_info structure to be passed around to other
2282 functions. We have to split this up into separate print
2283 statements because hex_string returns a local static
2284 string. */
2285
2286 printf_unfiltered (_("add symbol table from file \"%s\""),
2287 filename.get ());
2288 section_addr_info section_addrs;
2289 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2290 if (!seen_addr)
2291 ++it;
2292 for (; it != sect_opts.end (); ++it)
2293 {
2294 CORE_ADDR addr;
2295 const char *val = it->value;
2296 const char *sec = it->name;
2297
2298 if (section_addrs.empty ())
2299 printf_unfiltered (_(" at\n"));
2300 addr = parse_and_eval_address (val);
2301
2302 /* Here we store the section offsets in the order they were
2303 entered on the command line. Every array element is
2304 assigned an ascending section index to preserve the above
2305 order over an unstable sorting algorithm. This dummy
2306 index is not used for any other purpose.
2307 */
2308 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2309 printf_filtered ("\t%s_addr = %s\n", sec,
2310 paddress (gdbarch, addr));
2311
2312 /* The object's sections are initialized when a
2313 call is made to build_objfile_section_table (objfile).
2314 This happens in reread_symbols.
2315 At this point, we don't know what file type this is,
2316 so we can't determine what section names are valid. */
2317 }
2318 if (seen_offset)
2319 printf_unfiltered (_("%s offset by %s\n"),
2320 (section_addrs.empty ()
2321 ? _(" with all sections")
2322 : _("with other sections")),
2323 paddress (gdbarch, offset));
2324 else if (section_addrs.empty ())
2325 printf_unfiltered ("\n");
2326
2327 if (from_tty && (!query ("%s", "")))
2328 error (_("Not confirmed."));
2329
2330 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2331 flags);
2332
2333 if (seen_offset)
2334 set_objfile_default_section_offset (objf, section_addrs, offset);
2335
2336 add_target_sections_of_objfile (objf);
2337
2338 /* Getting new symbols may change our opinion about what is
2339 frameless. */
2340 reinit_frame_cache ();
2341 }
2342 \f
2343
2344 /* This function removes a symbol file that was added via add-symbol-file. */
2345
2346 static void
2347 remove_symbol_file_command (const char *args, int from_tty)
2348 {
2349 struct objfile *objf = NULL;
2350 struct program_space *pspace = current_program_space;
2351
2352 dont_repeat ();
2353
2354 if (args == NULL)
2355 error (_("remove-symbol-file: no symbol file provided"));
2356
2357 gdb_argv argv (args);
2358
2359 if (strcmp (argv[0], "-a") == 0)
2360 {
2361 /* Interpret the next argument as an address. */
2362 CORE_ADDR addr;
2363
2364 if (argv[1] == NULL)
2365 error (_("Missing address argument"));
2366
2367 if (argv[2] != NULL)
2368 error (_("Junk after %s"), argv[1]);
2369
2370 addr = parse_and_eval_address (argv[1]);
2371
2372 for (objfile *objfile : current_program_space->objfiles ())
2373 {
2374 if ((objfile->flags & OBJF_USERLOADED) != 0
2375 && (objfile->flags & OBJF_SHARED) != 0
2376 && objfile->pspace == pspace
2377 && is_addr_in_objfile (addr, objfile))
2378 {
2379 objf = objfile;
2380 break;
2381 }
2382 }
2383 }
2384 else if (argv[0] != NULL)
2385 {
2386 /* Interpret the current argument as a file name. */
2387
2388 if (argv[1] != NULL)
2389 error (_("Junk after %s"), argv[0]);
2390
2391 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2392
2393 for (objfile *objfile : current_program_space->objfiles ())
2394 {
2395 if ((objfile->flags & OBJF_USERLOADED) != 0
2396 && (objfile->flags & OBJF_SHARED) != 0
2397 && objfile->pspace == pspace
2398 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2399 {
2400 objf = objfile;
2401 break;
2402 }
2403 }
2404 }
2405
2406 if (objf == NULL)
2407 error (_("No symbol file found"));
2408
2409 if (from_tty
2410 && !query (_("Remove symbol table from file \"%s\"? "),
2411 objfile_name (objf)))
2412 error (_("Not confirmed."));
2413
2414 delete objf;
2415 clear_symtab_users (0);
2416 }
2417
2418 /* Re-read symbols if a symbol-file has changed. */
2419
2420 void
2421 reread_symbols (void)
2422 {
2423 struct objfile *objfile;
2424 long new_modtime;
2425 struct stat new_statbuf;
2426 int res;
2427 std::vector<struct objfile *> new_objfiles;
2428
2429 /* With the addition of shared libraries, this should be modified,
2430 the load time should be saved in the partial symbol tables, since
2431 different tables may come from different source files. FIXME.
2432 This routine should then walk down each partial symbol table
2433 and see if the symbol table that it originates from has been changed. */
2434
2435 for (objfile = object_files; objfile; objfile = objfile->next)
2436 {
2437 if (objfile->obfd == NULL)
2438 continue;
2439
2440 /* Separate debug objfiles are handled in the main objfile. */
2441 if (objfile->separate_debug_objfile_backlink)
2442 continue;
2443
2444 /* If this object is from an archive (what you usually create with
2445 `ar', often called a `static library' on most systems, though
2446 a `shared library' on AIX is also an archive), then you should
2447 stat on the archive name, not member name. */
2448 if (objfile->obfd->my_archive)
2449 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2450 else
2451 res = stat (objfile_name (objfile), &new_statbuf);
2452 if (res != 0)
2453 {
2454 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2455 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2456 objfile_name (objfile));
2457 continue;
2458 }
2459 new_modtime = new_statbuf.st_mtime;
2460 if (new_modtime != objfile->mtime)
2461 {
2462 struct section_offsets *offsets;
2463 int num_offsets;
2464
2465 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2466 objfile_name (objfile));
2467
2468 /* There are various functions like symbol_file_add,
2469 symfile_bfd_open, syms_from_objfile, etc., which might
2470 appear to do what we want. But they have various other
2471 effects which we *don't* want. So we just do stuff
2472 ourselves. We don't worry about mapped files (for one thing,
2473 any mapped file will be out of date). */
2474
2475 /* If we get an error, blow away this objfile (not sure if
2476 that is the correct response for things like shared
2477 libraries). */
2478 std::unique_ptr<struct objfile> objfile_holder (objfile);
2479
2480 /* We need to do this whenever any symbols go away. */
2481 clear_symtab_users_cleanup defer_clear_users (0);
2482
2483 if (exec_bfd != NULL
2484 && filename_cmp (bfd_get_filename (objfile->obfd),
2485 bfd_get_filename (exec_bfd)) == 0)
2486 {
2487 /* Reload EXEC_BFD without asking anything. */
2488
2489 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2490 }
2491
2492 /* Keep the calls order approx. the same as in free_objfile. */
2493
2494 /* Free the separate debug objfiles. It will be
2495 automatically recreated by sym_read. */
2496 free_objfile_separate_debug (objfile);
2497
2498 /* Remove any references to this objfile in the global
2499 value lists. */
2500 preserve_values (objfile);
2501
2502 /* Nuke all the state that we will re-read. Much of the following
2503 code which sets things to NULL really is necessary to tell
2504 other parts of GDB that there is nothing currently there.
2505
2506 Try to keep the freeing order compatible with free_objfile. */
2507
2508 if (objfile->sf != NULL)
2509 {
2510 (*objfile->sf->sym_finish) (objfile);
2511 }
2512
2513 clear_objfile_data (objfile);
2514
2515 /* Clean up any state BFD has sitting around. */
2516 {
2517 gdb_bfd_ref_ptr obfd (objfile->obfd);
2518 char *obfd_filename;
2519
2520 obfd_filename = bfd_get_filename (objfile->obfd);
2521 /* Open the new BFD before freeing the old one, so that
2522 the filename remains live. */
2523 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2524 objfile->obfd = temp.release ();
2525 if (objfile->obfd == NULL)
2526 error (_("Can't open %s to read symbols."), obfd_filename);
2527 }
2528
2529 std::string original_name = objfile->original_name;
2530
2531 /* bfd_openr sets cacheable to true, which is what we want. */
2532 if (!bfd_check_format (objfile->obfd, bfd_object))
2533 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2534 bfd_errmsg (bfd_get_error ()));
2535
2536 /* Save the offsets, we will nuke them with the rest of the
2537 objfile_obstack. */
2538 num_offsets = objfile->num_sections;
2539 offsets = ((struct section_offsets *)
2540 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2541 memcpy (offsets, objfile->section_offsets,
2542 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2543
2544 objfile->reset_psymtabs ();
2545
2546 /* NB: after this call to obstack_free, objfiles_changed
2547 will need to be called (see discussion below). */
2548 obstack_free (&objfile->objfile_obstack, 0);
2549 objfile->sections = NULL;
2550 objfile->compunit_symtabs = NULL;
2551 objfile->template_symbols = NULL;
2552 objfile->static_links = NULL;
2553
2554 /* obstack_init also initializes the obstack so it is
2555 empty. We could use obstack_specify_allocation but
2556 gdb_obstack.h specifies the alloc/dealloc functions. */
2557 obstack_init (&objfile->objfile_obstack);
2558
2559 /* set_objfile_per_bfd potentially allocates the per-bfd
2560 data on the objfile's obstack (if sharing data across
2561 multiple users is not possible), so it's important to
2562 do it *after* the obstack has been initialized. */
2563 set_objfile_per_bfd (objfile);
2564
2565 objfile->original_name
2566 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2567 original_name.c_str (),
2568 original_name.size ());
2569
2570 /* Reset the sym_fns pointer. The ELF reader can change it
2571 based on whether .gdb_index is present, and we need it to
2572 start over. PR symtab/15885 */
2573 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2574
2575 build_objfile_section_table (objfile);
2576 terminate_minimal_symbol_table (objfile);
2577
2578 /* We use the same section offsets as from last time. I'm not
2579 sure whether that is always correct for shared libraries. */
2580 objfile->section_offsets = (struct section_offsets *)
2581 obstack_alloc (&objfile->objfile_obstack,
2582 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2583 memcpy (objfile->section_offsets, offsets,
2584 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2585 objfile->num_sections = num_offsets;
2586
2587 /* What the hell is sym_new_init for, anyway? The concept of
2588 distinguishing between the main file and additional files
2589 in this way seems rather dubious. */
2590 if (objfile == symfile_objfile)
2591 {
2592 (*objfile->sf->sym_new_init) (objfile);
2593 }
2594
2595 (*objfile->sf->sym_init) (objfile);
2596 clear_complaints ();
2597
2598 objfile->flags &= ~OBJF_PSYMTABS_READ;
2599
2600 /* We are about to read new symbols and potentially also
2601 DWARF information. Some targets may want to pass addresses
2602 read from DWARF DIE's through an adjustment function before
2603 saving them, like MIPS, which may call into
2604 "find_pc_section". When called, that function will make
2605 use of per-objfile program space data.
2606
2607 Since we discarded our section information above, we have
2608 dangling pointers in the per-objfile program space data
2609 structure. Force GDB to update the section mapping
2610 information by letting it know the objfile has changed,
2611 making the dangling pointers point to correct data
2612 again. */
2613
2614 objfiles_changed ();
2615
2616 read_symbols (objfile, 0);
2617
2618 if (!objfile_has_symbols (objfile))
2619 {
2620 wrap_here ("");
2621 printf_filtered (_("(no debugging symbols found)\n"));
2622 wrap_here ("");
2623 }
2624
2625 /* We're done reading the symbol file; finish off complaints. */
2626 clear_complaints ();
2627
2628 /* Getting new symbols may change our opinion about what is
2629 frameless. */
2630
2631 reinit_frame_cache ();
2632
2633 /* Discard cleanups as symbol reading was successful. */
2634 objfile_holder.release ();
2635 defer_clear_users.release ();
2636
2637 /* If the mtime has changed between the time we set new_modtime
2638 and now, we *want* this to be out of date, so don't call stat
2639 again now. */
2640 objfile->mtime = new_modtime;
2641 init_entry_point_info (objfile);
2642
2643 new_objfiles.push_back (objfile);
2644 }
2645 }
2646
2647 if (!new_objfiles.empty ())
2648 {
2649 clear_symtab_users (0);
2650
2651 /* clear_objfile_data for each objfile was called before freeing it and
2652 gdb::observers::new_objfile.notify (NULL) has been called by
2653 clear_symtab_users above. Notify the new files now. */
2654 for (auto iter : new_objfiles)
2655 gdb::observers::new_objfile.notify (iter);
2656
2657 /* At least one objfile has changed, so we can consider that
2658 the executable we're debugging has changed too. */
2659 gdb::observers::executable_changed.notify ();
2660 }
2661 }
2662 \f
2663
2664 struct filename_language
2665 {
2666 filename_language (const std::string &ext_, enum language lang_)
2667 : ext (ext_), lang (lang_)
2668 {}
2669
2670 std::string ext;
2671 enum language lang;
2672 };
2673
2674 static std::vector<filename_language> filename_language_table;
2675
2676 /* See symfile.h. */
2677
2678 void
2679 add_filename_language (const char *ext, enum language lang)
2680 {
2681 filename_language_table.emplace_back (ext, lang);
2682 }
2683
2684 static char *ext_args;
2685 static void
2686 show_ext_args (struct ui_file *file, int from_tty,
2687 struct cmd_list_element *c, const char *value)
2688 {
2689 fprintf_filtered (file,
2690 _("Mapping between filename extension "
2691 "and source language is \"%s\".\n"),
2692 value);
2693 }
2694
2695 static void
2696 set_ext_lang_command (const char *args,
2697 int from_tty, struct cmd_list_element *e)
2698 {
2699 char *cp = ext_args;
2700 enum language lang;
2701
2702 /* First arg is filename extension, starting with '.' */
2703 if (*cp != '.')
2704 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2705
2706 /* Find end of first arg. */
2707 while (*cp && !isspace (*cp))
2708 cp++;
2709
2710 if (*cp == '\0')
2711 error (_("'%s': two arguments required -- "
2712 "filename extension and language"),
2713 ext_args);
2714
2715 /* Null-terminate first arg. */
2716 *cp++ = '\0';
2717
2718 /* Find beginning of second arg, which should be a source language. */
2719 cp = skip_spaces (cp);
2720
2721 if (*cp == '\0')
2722 error (_("'%s': two arguments required -- "
2723 "filename extension and language"),
2724 ext_args);
2725
2726 /* Lookup the language from among those we know. */
2727 lang = language_enum (cp);
2728
2729 auto it = filename_language_table.begin ();
2730 /* Now lookup the filename extension: do we already know it? */
2731 for (; it != filename_language_table.end (); it++)
2732 {
2733 if (it->ext == ext_args)
2734 break;
2735 }
2736
2737 if (it == filename_language_table.end ())
2738 {
2739 /* New file extension. */
2740 add_filename_language (ext_args, lang);
2741 }
2742 else
2743 {
2744 /* Redefining a previously known filename extension. */
2745
2746 /* if (from_tty) */
2747 /* query ("Really make files of type %s '%s'?", */
2748 /* ext_args, language_str (lang)); */
2749
2750 it->lang = lang;
2751 }
2752 }
2753
2754 static void
2755 info_ext_lang_command (const char *args, int from_tty)
2756 {
2757 printf_filtered (_("Filename extensions and the languages they represent:"));
2758 printf_filtered ("\n\n");
2759 for (const filename_language &entry : filename_language_table)
2760 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2761 language_str (entry.lang));
2762 }
2763
2764 enum language
2765 deduce_language_from_filename (const char *filename)
2766 {
2767 const char *cp;
2768
2769 if (filename != NULL)
2770 if ((cp = strrchr (filename, '.')) != NULL)
2771 {
2772 for (const filename_language &entry : filename_language_table)
2773 if (entry.ext == cp)
2774 return entry.lang;
2775 }
2776
2777 return language_unknown;
2778 }
2779 \f
2780 /* Allocate and initialize a new symbol table.
2781 CUST is from the result of allocate_compunit_symtab. */
2782
2783 struct symtab *
2784 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2785 {
2786 struct objfile *objfile = cust->objfile;
2787 struct symtab *symtab
2788 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2789
2790 symtab->filename
2791 = (const char *) bcache (filename, strlen (filename) + 1,
2792 objfile->per_bfd->filename_cache);
2793 symtab->fullname = NULL;
2794 symtab->language = deduce_language_from_filename (filename);
2795
2796 /* This can be very verbose with lots of headers.
2797 Only print at higher debug levels. */
2798 if (symtab_create_debug >= 2)
2799 {
2800 /* Be a bit clever with debugging messages, and don't print objfile
2801 every time, only when it changes. */
2802 static char *last_objfile_name = NULL;
2803
2804 if (last_objfile_name == NULL
2805 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2806 {
2807 xfree (last_objfile_name);
2808 last_objfile_name = xstrdup (objfile_name (objfile));
2809 fprintf_filtered (gdb_stdlog,
2810 "Creating one or more symtabs for objfile %s ...\n",
2811 last_objfile_name);
2812 }
2813 fprintf_filtered (gdb_stdlog,
2814 "Created symtab %s for module %s.\n",
2815 host_address_to_string (symtab), filename);
2816 }
2817
2818 /* Add it to CUST's list of symtabs. */
2819 if (cust->filetabs == NULL)
2820 {
2821 cust->filetabs = symtab;
2822 cust->last_filetab = symtab;
2823 }
2824 else
2825 {
2826 cust->last_filetab->next = symtab;
2827 cust->last_filetab = symtab;
2828 }
2829
2830 /* Backlink to the containing compunit symtab. */
2831 symtab->compunit_symtab = cust;
2832
2833 return symtab;
2834 }
2835
2836 /* Allocate and initialize a new compunit.
2837 NAME is the name of the main source file, if there is one, or some
2838 descriptive text if there are no source files. */
2839
2840 struct compunit_symtab *
2841 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2842 {
2843 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2844 struct compunit_symtab);
2845 const char *saved_name;
2846
2847 cu->objfile = objfile;
2848
2849 /* The name we record here is only for display/debugging purposes.
2850 Just save the basename to avoid path issues (too long for display,
2851 relative vs absolute, etc.). */
2852 saved_name = lbasename (name);
2853 cu->name
2854 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2855 strlen (saved_name));
2856
2857 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2858
2859 if (symtab_create_debug)
2860 {
2861 fprintf_filtered (gdb_stdlog,
2862 "Created compunit symtab %s for %s.\n",
2863 host_address_to_string (cu),
2864 cu->name);
2865 }
2866
2867 return cu;
2868 }
2869
2870 /* Hook CU to the objfile it comes from. */
2871
2872 void
2873 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2874 {
2875 cu->next = cu->objfile->compunit_symtabs;
2876 cu->objfile->compunit_symtabs = cu;
2877 }
2878 \f
2879
2880 /* Reset all data structures in gdb which may contain references to
2881 symbol table data. */
2882
2883 void
2884 clear_symtab_users (symfile_add_flags add_flags)
2885 {
2886 /* Someday, we should do better than this, by only blowing away
2887 the things that really need to be blown. */
2888
2889 /* Clear the "current" symtab first, because it is no longer valid.
2890 breakpoint_re_set may try to access the current symtab. */
2891 clear_current_source_symtab_and_line ();
2892
2893 clear_displays ();
2894 clear_last_displayed_sal ();
2895 clear_pc_function_cache ();
2896 gdb::observers::new_objfile.notify (NULL);
2897
2898 /* Clear globals which might have pointed into a removed objfile.
2899 FIXME: It's not clear which of these are supposed to persist
2900 between expressions and which ought to be reset each time. */
2901 expression_context_block = NULL;
2902 innermost_block.reset ();
2903
2904 /* Varobj may refer to old symbols, perform a cleanup. */
2905 varobj_invalidate ();
2906
2907 /* Now that the various caches have been cleared, we can re_set
2908 our breakpoints without risking it using stale data. */
2909 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2910 breakpoint_re_set ();
2911 }
2912 \f
2913 /* OVERLAYS:
2914 The following code implements an abstraction for debugging overlay sections.
2915
2916 The target model is as follows:
2917 1) The gnu linker will permit multiple sections to be mapped into the
2918 same VMA, each with its own unique LMA (or load address).
2919 2) It is assumed that some runtime mechanism exists for mapping the
2920 sections, one by one, from the load address into the VMA address.
2921 3) This code provides a mechanism for gdb to keep track of which
2922 sections should be considered to be mapped from the VMA to the LMA.
2923 This information is used for symbol lookup, and memory read/write.
2924 For instance, if a section has been mapped then its contents
2925 should be read from the VMA, otherwise from the LMA.
2926
2927 Two levels of debugger support for overlays are available. One is
2928 "manual", in which the debugger relies on the user to tell it which
2929 overlays are currently mapped. This level of support is
2930 implemented entirely in the core debugger, and the information about
2931 whether a section is mapped is kept in the objfile->obj_section table.
2932
2933 The second level of support is "automatic", and is only available if
2934 the target-specific code provides functionality to read the target's
2935 overlay mapping table, and translate its contents for the debugger
2936 (by updating the mapped state information in the obj_section tables).
2937
2938 The interface is as follows:
2939 User commands:
2940 overlay map <name> -- tell gdb to consider this section mapped
2941 overlay unmap <name> -- tell gdb to consider this section unmapped
2942 overlay list -- list the sections that GDB thinks are mapped
2943 overlay read-target -- get the target's state of what's mapped
2944 overlay off/manual/auto -- set overlay debugging state
2945 Functional interface:
2946 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2947 section, return that section.
2948 find_pc_overlay(pc): find any overlay section that contains
2949 the pc, either in its VMA or its LMA
2950 section_is_mapped(sect): true if overlay is marked as mapped
2951 section_is_overlay(sect): true if section's VMA != LMA
2952 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2953 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2954 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2955 overlay_mapped_address(...): map an address from section's LMA to VMA
2956 overlay_unmapped_address(...): map an address from section's VMA to LMA
2957 symbol_overlayed_address(...): Return a "current" address for symbol:
2958 either in VMA or LMA depending on whether
2959 the symbol's section is currently mapped. */
2960
2961 /* Overlay debugging state: */
2962
2963 enum overlay_debugging_state overlay_debugging = ovly_off;
2964 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2965
2966 /* Function: section_is_overlay (SECTION)
2967 Returns true if SECTION has VMA not equal to LMA, ie.
2968 SECTION is loaded at an address different from where it will "run". */
2969
2970 int
2971 section_is_overlay (struct obj_section *section)
2972 {
2973 if (overlay_debugging && section)
2974 {
2975 asection *bfd_section = section->the_bfd_section;
2976
2977 if (bfd_section_lma (abfd, bfd_section) != 0
2978 && bfd_section_lma (abfd, bfd_section)
2979 != bfd_section_vma (abfd, bfd_section))
2980 return 1;
2981 }
2982
2983 return 0;
2984 }
2985
2986 /* Function: overlay_invalidate_all (void)
2987 Invalidate the mapped state of all overlay sections (mark it as stale). */
2988
2989 static void
2990 overlay_invalidate_all (void)
2991 {
2992 struct obj_section *sect;
2993
2994 for (objfile *objfile : current_program_space->objfiles ())
2995 ALL_OBJFILE_OSECTIONS (objfile, sect)
2996 if (section_is_overlay (sect))
2997 sect->ovly_mapped = -1;
2998 }
2999
3000 /* Function: section_is_mapped (SECTION)
3001 Returns true if section is an overlay, and is currently mapped.
3002
3003 Access to the ovly_mapped flag is restricted to this function, so
3004 that we can do automatic update. If the global flag
3005 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3006 overlay_invalidate_all. If the mapped state of the particular
3007 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3008
3009 int
3010 section_is_mapped (struct obj_section *osect)
3011 {
3012 struct gdbarch *gdbarch;
3013
3014 if (osect == 0 || !section_is_overlay (osect))
3015 return 0;
3016
3017 switch (overlay_debugging)
3018 {
3019 default:
3020 case ovly_off:
3021 return 0; /* overlay debugging off */
3022 case ovly_auto: /* overlay debugging automatic */
3023 /* Unles there is a gdbarch_overlay_update function,
3024 there's really nothing useful to do here (can't really go auto). */
3025 gdbarch = get_objfile_arch (osect->objfile);
3026 if (gdbarch_overlay_update_p (gdbarch))
3027 {
3028 if (overlay_cache_invalid)
3029 {
3030 overlay_invalidate_all ();
3031 overlay_cache_invalid = 0;
3032 }
3033 if (osect->ovly_mapped == -1)
3034 gdbarch_overlay_update (gdbarch, osect);
3035 }
3036 /* fall thru */
3037 case ovly_on: /* overlay debugging manual */
3038 return osect->ovly_mapped == 1;
3039 }
3040 }
3041
3042 /* Function: pc_in_unmapped_range
3043 If PC falls into the lma range of SECTION, return true, else false. */
3044
3045 CORE_ADDR
3046 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3047 {
3048 if (section_is_overlay (section))
3049 {
3050 bfd *abfd = section->objfile->obfd;
3051 asection *bfd_section = section->the_bfd_section;
3052
3053 /* We assume the LMA is relocated by the same offset as the VMA. */
3054 bfd_vma size = bfd_get_section_size (bfd_section);
3055 CORE_ADDR offset = obj_section_offset (section);
3056
3057 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3058 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3059 return 1;
3060 }
3061
3062 return 0;
3063 }
3064
3065 /* Function: pc_in_mapped_range
3066 If PC falls into the vma range of SECTION, return true, else false. */
3067
3068 CORE_ADDR
3069 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3070 {
3071 if (section_is_overlay (section))
3072 {
3073 if (obj_section_addr (section) <= pc
3074 && pc < obj_section_endaddr (section))
3075 return 1;
3076 }
3077
3078 return 0;
3079 }
3080
3081 /* Return true if the mapped ranges of sections A and B overlap, false
3082 otherwise. */
3083
3084 static int
3085 sections_overlap (struct obj_section *a, struct obj_section *b)
3086 {
3087 CORE_ADDR a_start = obj_section_addr (a);
3088 CORE_ADDR a_end = obj_section_endaddr (a);
3089 CORE_ADDR b_start = obj_section_addr (b);
3090 CORE_ADDR b_end = obj_section_endaddr (b);
3091
3092 return (a_start < b_end && b_start < a_end);
3093 }
3094
3095 /* Function: overlay_unmapped_address (PC, SECTION)
3096 Returns the address corresponding to PC in the unmapped (load) range.
3097 May be the same as PC. */
3098
3099 CORE_ADDR
3100 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3101 {
3102 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3103 {
3104 asection *bfd_section = section->the_bfd_section;
3105
3106 return pc + bfd_section_lma (abfd, bfd_section)
3107 - bfd_section_vma (abfd, bfd_section);
3108 }
3109
3110 return pc;
3111 }
3112
3113 /* Function: overlay_mapped_address (PC, SECTION)
3114 Returns the address corresponding to PC in the mapped (runtime) range.
3115 May be the same as PC. */
3116
3117 CORE_ADDR
3118 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3119 {
3120 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3121 {
3122 asection *bfd_section = section->the_bfd_section;
3123
3124 return pc + bfd_section_vma (abfd, bfd_section)
3125 - bfd_section_lma (abfd, bfd_section);
3126 }
3127
3128 return pc;
3129 }
3130
3131 /* Function: symbol_overlayed_address
3132 Return one of two addresses (relative to the VMA or to the LMA),
3133 depending on whether the section is mapped or not. */
3134
3135 CORE_ADDR
3136 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3137 {
3138 if (overlay_debugging)
3139 {
3140 /* If the symbol has no section, just return its regular address. */
3141 if (section == 0)
3142 return address;
3143 /* If the symbol's section is not an overlay, just return its
3144 address. */
3145 if (!section_is_overlay (section))
3146 return address;
3147 /* If the symbol's section is mapped, just return its address. */
3148 if (section_is_mapped (section))
3149 return address;
3150 /*
3151 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3152 * then return its LOADED address rather than its vma address!!
3153 */
3154 return overlay_unmapped_address (address, section);
3155 }
3156 return address;
3157 }
3158
3159 /* Function: find_pc_overlay (PC)
3160 Return the best-match overlay section for PC:
3161 If PC matches a mapped overlay section's VMA, return that section.
3162 Else if PC matches an unmapped section's VMA, return that section.
3163 Else if PC matches an unmapped section's LMA, return that section. */
3164
3165 struct obj_section *
3166 find_pc_overlay (CORE_ADDR pc)
3167 {
3168 struct obj_section *osect, *best_match = NULL;
3169
3170 if (overlay_debugging)
3171 {
3172 for (objfile *objfile : current_program_space->objfiles ())
3173 ALL_OBJFILE_OSECTIONS (objfile, osect)
3174 if (section_is_overlay (osect))
3175 {
3176 if (pc_in_mapped_range (pc, osect))
3177 {
3178 if (section_is_mapped (osect))
3179 return osect;
3180 else
3181 best_match = osect;
3182 }
3183 else if (pc_in_unmapped_range (pc, osect))
3184 best_match = osect;
3185 }
3186 }
3187 return best_match;
3188 }
3189
3190 /* Function: find_pc_mapped_section (PC)
3191 If PC falls into the VMA address range of an overlay section that is
3192 currently marked as MAPPED, return that section. Else return NULL. */
3193
3194 struct obj_section *
3195 find_pc_mapped_section (CORE_ADDR pc)
3196 {
3197 struct obj_section *osect;
3198
3199 if (overlay_debugging)
3200 {
3201 for (objfile *objfile : current_program_space->objfiles ())
3202 ALL_OBJFILE_OSECTIONS (objfile, osect)
3203 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3204 return osect;
3205 }
3206
3207 return NULL;
3208 }
3209
3210 /* Function: list_overlays_command
3211 Print a list of mapped sections and their PC ranges. */
3212
3213 static void
3214 list_overlays_command (const char *args, int from_tty)
3215 {
3216 int nmapped = 0;
3217 struct obj_section *osect;
3218
3219 if (overlay_debugging)
3220 {
3221 for (objfile *objfile : current_program_space->objfiles ())
3222 ALL_OBJFILE_OSECTIONS (objfile, osect)
3223 if (section_is_mapped (osect))
3224 {
3225 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3226 const char *name;
3227 bfd_vma lma, vma;
3228 int size;
3229
3230 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3231 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3232 size = bfd_get_section_size (osect->the_bfd_section);
3233 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3234
3235 printf_filtered ("Section %s, loaded at ", name);
3236 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3237 puts_filtered (" - ");
3238 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3239 printf_filtered (", mapped at ");
3240 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3241 puts_filtered (" - ");
3242 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3243 puts_filtered ("\n");
3244
3245 nmapped++;
3246 }
3247 }
3248 if (nmapped == 0)
3249 printf_filtered (_("No sections are mapped.\n"));
3250 }
3251
3252 /* Function: map_overlay_command
3253 Mark the named section as mapped (ie. residing at its VMA address). */
3254
3255 static void
3256 map_overlay_command (const char *args, int from_tty)
3257 {
3258 struct obj_section *sec, *sec2;
3259
3260 if (!overlay_debugging)
3261 error (_("Overlay debugging not enabled. Use "
3262 "either the 'overlay auto' or\n"
3263 "the 'overlay manual' command."));
3264
3265 if (args == 0 || *args == 0)
3266 error (_("Argument required: name of an overlay section"));
3267
3268 /* First, find a section matching the user supplied argument. */
3269 for (objfile *obj_file : current_program_space->objfiles ())
3270 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3271 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3272 args))
3273 {
3274 /* Now, check to see if the section is an overlay. */
3275 if (!section_is_overlay (sec))
3276 continue; /* not an overlay section */
3277
3278 /* Mark the overlay as "mapped". */
3279 sec->ovly_mapped = 1;
3280
3281 /* Next, make a pass and unmap any sections that are
3282 overlapped by this new section: */
3283 for (objfile *objfile2 : current_program_space->objfiles ())
3284 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3285 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3286 sec2))
3287 {
3288 if (info_verbose)
3289 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3290 bfd_section_name (obj_file->obfd,
3291 sec2->the_bfd_section));
3292 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3293 }
3294 return;
3295 }
3296 error (_("No overlay section called %s"), args);
3297 }
3298
3299 /* Function: unmap_overlay_command
3300 Mark the overlay section as unmapped
3301 (ie. resident in its LMA address range, rather than the VMA range). */
3302
3303 static void
3304 unmap_overlay_command (const char *args, int from_tty)
3305 {
3306 struct obj_section *sec = NULL;
3307
3308 if (!overlay_debugging)
3309 error (_("Overlay debugging not enabled. "
3310 "Use either the 'overlay auto' or\n"
3311 "the 'overlay manual' command."));
3312
3313 if (args == 0 || *args == 0)
3314 error (_("Argument required: name of an overlay section"));
3315
3316 /* First, find a section matching the user supplied argument. */
3317 for (objfile *objfile : current_program_space->objfiles ())
3318 ALL_OBJFILE_OSECTIONS (objfile, sec)
3319 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3320 {
3321 if (!sec->ovly_mapped)
3322 error (_("Section %s is not mapped"), args);
3323 sec->ovly_mapped = 0;
3324 return;
3325 }
3326 error (_("No overlay section called %s"), args);
3327 }
3328
3329 /* Function: overlay_auto_command
3330 A utility command to turn on overlay debugging.
3331 Possibly this should be done via a set/show command. */
3332
3333 static void
3334 overlay_auto_command (const char *args, int from_tty)
3335 {
3336 overlay_debugging = ovly_auto;
3337 enable_overlay_breakpoints ();
3338 if (info_verbose)
3339 printf_unfiltered (_("Automatic overlay debugging enabled."));
3340 }
3341
3342 /* Function: overlay_manual_command
3343 A utility command to turn on overlay debugging.
3344 Possibly this should be done via a set/show command. */
3345
3346 static void
3347 overlay_manual_command (const char *args, int from_tty)
3348 {
3349 overlay_debugging = ovly_on;
3350 disable_overlay_breakpoints ();
3351 if (info_verbose)
3352 printf_unfiltered (_("Overlay debugging enabled."));
3353 }
3354
3355 /* Function: overlay_off_command
3356 A utility command to turn on overlay debugging.
3357 Possibly this should be done via a set/show command. */
3358
3359 static void
3360 overlay_off_command (const char *args, int from_tty)
3361 {
3362 overlay_debugging = ovly_off;
3363 disable_overlay_breakpoints ();
3364 if (info_verbose)
3365 printf_unfiltered (_("Overlay debugging disabled."));
3366 }
3367
3368 static void
3369 overlay_load_command (const char *args, int from_tty)
3370 {
3371 struct gdbarch *gdbarch = get_current_arch ();
3372
3373 if (gdbarch_overlay_update_p (gdbarch))
3374 gdbarch_overlay_update (gdbarch, NULL);
3375 else
3376 error (_("This target does not know how to read its overlay state."));
3377 }
3378
3379 /* Function: overlay_command
3380 A place-holder for a mis-typed command. */
3381
3382 /* Command list chain containing all defined "overlay" subcommands. */
3383 static struct cmd_list_element *overlaylist;
3384
3385 static void
3386 overlay_command (const char *args, int from_tty)
3387 {
3388 printf_unfiltered
3389 ("\"overlay\" must be followed by the name of an overlay command.\n");
3390 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3391 }
3392
3393 /* Target Overlays for the "Simplest" overlay manager:
3394
3395 This is GDB's default target overlay layer. It works with the
3396 minimal overlay manager supplied as an example by Cygnus. The
3397 entry point is via a function pointer "gdbarch_overlay_update",
3398 so targets that use a different runtime overlay manager can
3399 substitute their own overlay_update function and take over the
3400 function pointer.
3401
3402 The overlay_update function pokes around in the target's data structures
3403 to see what overlays are mapped, and updates GDB's overlay mapping with
3404 this information.
3405
3406 In this simple implementation, the target data structures are as follows:
3407 unsigned _novlys; /# number of overlay sections #/
3408 unsigned _ovly_table[_novlys][4] = {
3409 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3410 {..., ..., ..., ...},
3411 }
3412 unsigned _novly_regions; /# number of overlay regions #/
3413 unsigned _ovly_region_table[_novly_regions][3] = {
3414 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3415 {..., ..., ...},
3416 }
3417 These functions will attempt to update GDB's mappedness state in the
3418 symbol section table, based on the target's mappedness state.
3419
3420 To do this, we keep a cached copy of the target's _ovly_table, and
3421 attempt to detect when the cached copy is invalidated. The main
3422 entry point is "simple_overlay_update(SECT), which looks up SECT in
3423 the cached table and re-reads only the entry for that section from
3424 the target (whenever possible). */
3425
3426 /* Cached, dynamically allocated copies of the target data structures: */
3427 static unsigned (*cache_ovly_table)[4] = 0;
3428 static unsigned cache_novlys = 0;
3429 static CORE_ADDR cache_ovly_table_base = 0;
3430 enum ovly_index
3431 {
3432 VMA, OSIZE, LMA, MAPPED
3433 };
3434
3435 /* Throw away the cached copy of _ovly_table. */
3436
3437 static void
3438 simple_free_overlay_table (void)
3439 {
3440 if (cache_ovly_table)
3441 xfree (cache_ovly_table);
3442 cache_novlys = 0;
3443 cache_ovly_table = NULL;
3444 cache_ovly_table_base = 0;
3445 }
3446
3447 /* Read an array of ints of size SIZE from the target into a local buffer.
3448 Convert to host order. int LEN is number of ints. */
3449
3450 static void
3451 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3452 int len, int size, enum bfd_endian byte_order)
3453 {
3454 /* FIXME (alloca): Not safe if array is very large. */
3455 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3456 int i;
3457
3458 read_memory (memaddr, buf, len * size);
3459 for (i = 0; i < len; i++)
3460 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3461 }
3462
3463 /* Find and grab a copy of the target _ovly_table
3464 (and _novlys, which is needed for the table's size). */
3465
3466 static int
3467 simple_read_overlay_table (void)
3468 {
3469 struct bound_minimal_symbol novlys_msym;
3470 struct bound_minimal_symbol ovly_table_msym;
3471 struct gdbarch *gdbarch;
3472 int word_size;
3473 enum bfd_endian byte_order;
3474
3475 simple_free_overlay_table ();
3476 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3477 if (! novlys_msym.minsym)
3478 {
3479 error (_("Error reading inferior's overlay table: "
3480 "couldn't find `_novlys' variable\n"
3481 "in inferior. Use `overlay manual' mode."));
3482 return 0;
3483 }
3484
3485 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3486 if (! ovly_table_msym.minsym)
3487 {
3488 error (_("Error reading inferior's overlay table: couldn't find "
3489 "`_ovly_table' array\n"
3490 "in inferior. Use `overlay manual' mode."));
3491 return 0;
3492 }
3493
3494 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3495 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3496 byte_order = gdbarch_byte_order (gdbarch);
3497
3498 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3499 4, byte_order);
3500 cache_ovly_table
3501 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3502 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3503 read_target_long_array (cache_ovly_table_base,
3504 (unsigned int *) cache_ovly_table,
3505 cache_novlys * 4, word_size, byte_order);
3506
3507 return 1; /* SUCCESS */
3508 }
3509
3510 /* Function: simple_overlay_update_1
3511 A helper function for simple_overlay_update. Assuming a cached copy
3512 of _ovly_table exists, look through it to find an entry whose vma,
3513 lma and size match those of OSECT. Re-read the entry and make sure
3514 it still matches OSECT (else the table may no longer be valid).
3515 Set OSECT's mapped state to match the entry. Return: 1 for
3516 success, 0 for failure. */
3517
3518 static int
3519 simple_overlay_update_1 (struct obj_section *osect)
3520 {
3521 int i;
3522 asection *bsect = osect->the_bfd_section;
3523 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3524 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3525 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3526
3527 for (i = 0; i < cache_novlys; i++)
3528 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3529 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3530 {
3531 read_target_long_array (cache_ovly_table_base + i * word_size,
3532 (unsigned int *) cache_ovly_table[i],
3533 4, word_size, byte_order);
3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3536 {
3537 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3538 return 1;
3539 }
3540 else /* Warning! Warning! Target's ovly table has changed! */
3541 return 0;
3542 }
3543 return 0;
3544 }
3545
3546 /* Function: simple_overlay_update
3547 If OSECT is NULL, then update all sections' mapped state
3548 (after re-reading the entire target _ovly_table).
3549 If OSECT is non-NULL, then try to find a matching entry in the
3550 cached ovly_table and update only OSECT's mapped state.
3551 If a cached entry can't be found or the cache isn't valid, then
3552 re-read the entire cache, and go ahead and update all sections. */
3553
3554 void
3555 simple_overlay_update (struct obj_section *osect)
3556 {
3557 /* Were we given an osect to look up? NULL means do all of them. */
3558 if (osect)
3559 /* Have we got a cached copy of the target's overlay table? */
3560 if (cache_ovly_table != NULL)
3561 {
3562 /* Does its cached location match what's currently in the
3563 symtab? */
3564 struct bound_minimal_symbol minsym
3565 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3566
3567 if (minsym.minsym == NULL)
3568 error (_("Error reading inferior's overlay table: couldn't "
3569 "find `_ovly_table' array\n"
3570 "in inferior. Use `overlay manual' mode."));
3571
3572 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3573 /* Then go ahead and try to look up this single section in
3574 the cache. */
3575 if (simple_overlay_update_1 (osect))
3576 /* Found it! We're done. */
3577 return;
3578 }
3579
3580 /* Cached table no good: need to read the entire table anew.
3581 Or else we want all the sections, in which case it's actually
3582 more efficient to read the whole table in one block anyway. */
3583
3584 if (! simple_read_overlay_table ())
3585 return;
3586
3587 /* Now may as well update all sections, even if only one was requested. */
3588 for (objfile *objfile : current_program_space->objfiles ())
3589 ALL_OBJFILE_OSECTIONS (objfile, osect)
3590 if (section_is_overlay (osect))
3591 {
3592 int i;
3593 asection *bsect = osect->the_bfd_section;
3594
3595 for (i = 0; i < cache_novlys; i++)
3596 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3597 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3598 { /* obj_section matches i'th entry in ovly_table. */
3599 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3600 break; /* finished with inner for loop: break out. */
3601 }
3602 }
3603 }
3604
3605 /* Set the output sections and output offsets for section SECTP in
3606 ABFD. The relocation code in BFD will read these offsets, so we
3607 need to be sure they're initialized. We map each section to itself,
3608 with no offset; this means that SECTP->vma will be honored. */
3609
3610 static void
3611 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3612 {
3613 sectp->output_section = sectp;
3614 sectp->output_offset = 0;
3615 }
3616
3617 /* Default implementation for sym_relocate. */
3618
3619 bfd_byte *
3620 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3621 bfd_byte *buf)
3622 {
3623 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3624 DWO file. */
3625 bfd *abfd = sectp->owner;
3626
3627 /* We're only interested in sections with relocation
3628 information. */
3629 if ((sectp->flags & SEC_RELOC) == 0)
3630 return NULL;
3631
3632 /* We will handle section offsets properly elsewhere, so relocate as if
3633 all sections begin at 0. */
3634 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3635
3636 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3637 }
3638
3639 /* Relocate the contents of a debug section SECTP in ABFD. The
3640 contents are stored in BUF if it is non-NULL, or returned in a
3641 malloc'd buffer otherwise.
3642
3643 For some platforms and debug info formats, shared libraries contain
3644 relocations against the debug sections (particularly for DWARF-2;
3645 one affected platform is PowerPC GNU/Linux, although it depends on
3646 the version of the linker in use). Also, ELF object files naturally
3647 have unresolved relocations for their debug sections. We need to apply
3648 the relocations in order to get the locations of symbols correct.
3649 Another example that may require relocation processing, is the
3650 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3651 debug section. */
3652
3653 bfd_byte *
3654 symfile_relocate_debug_section (struct objfile *objfile,
3655 asection *sectp, bfd_byte *buf)
3656 {
3657 gdb_assert (objfile->sf->sym_relocate);
3658
3659 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3660 }
3661
3662 struct symfile_segment_data *
3663 get_symfile_segment_data (bfd *abfd)
3664 {
3665 const struct sym_fns *sf = find_sym_fns (abfd);
3666
3667 if (sf == NULL)
3668 return NULL;
3669
3670 return sf->sym_segments (abfd);
3671 }
3672
3673 void
3674 free_symfile_segment_data (struct symfile_segment_data *data)
3675 {
3676 xfree (data->segment_bases);
3677 xfree (data->segment_sizes);
3678 xfree (data->segment_info);
3679 xfree (data);
3680 }
3681
3682 /* Given:
3683 - DATA, containing segment addresses from the object file ABFD, and
3684 the mapping from ABFD's sections onto the segments that own them,
3685 and
3686 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3687 segment addresses reported by the target,
3688 store the appropriate offsets for each section in OFFSETS.
3689
3690 If there are fewer entries in SEGMENT_BASES than there are segments
3691 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3692
3693 If there are more entries, then ignore the extra. The target may
3694 not be able to distinguish between an empty data segment and a
3695 missing data segment; a missing text segment is less plausible. */
3696
3697 int
3698 symfile_map_offsets_to_segments (bfd *abfd,
3699 const struct symfile_segment_data *data,
3700 struct section_offsets *offsets,
3701 int num_segment_bases,
3702 const CORE_ADDR *segment_bases)
3703 {
3704 int i;
3705 asection *sect;
3706
3707 /* It doesn't make sense to call this function unless you have some
3708 segment base addresses. */
3709 gdb_assert (num_segment_bases > 0);
3710
3711 /* If we do not have segment mappings for the object file, we
3712 can not relocate it by segments. */
3713 gdb_assert (data != NULL);
3714 gdb_assert (data->num_segments > 0);
3715
3716 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3717 {
3718 int which = data->segment_info[i];
3719
3720 gdb_assert (0 <= which && which <= data->num_segments);
3721
3722 /* Don't bother computing offsets for sections that aren't
3723 loaded as part of any segment. */
3724 if (! which)
3725 continue;
3726
3727 /* Use the last SEGMENT_BASES entry as the address of any extra
3728 segments mentioned in DATA->segment_info. */
3729 if (which > num_segment_bases)
3730 which = num_segment_bases;
3731
3732 offsets->offsets[i] = (segment_bases[which - 1]
3733 - data->segment_bases[which - 1]);
3734 }
3735
3736 return 1;
3737 }
3738
3739 static void
3740 symfile_find_segment_sections (struct objfile *objfile)
3741 {
3742 bfd *abfd = objfile->obfd;
3743 int i;
3744 asection *sect;
3745 struct symfile_segment_data *data;
3746
3747 data = get_symfile_segment_data (objfile->obfd);
3748 if (data == NULL)
3749 return;
3750
3751 if (data->num_segments != 1 && data->num_segments != 2)
3752 {
3753 free_symfile_segment_data (data);
3754 return;
3755 }
3756
3757 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3758 {
3759 int which = data->segment_info[i];
3760
3761 if (which == 1)
3762 {
3763 if (objfile->sect_index_text == -1)
3764 objfile->sect_index_text = sect->index;
3765
3766 if (objfile->sect_index_rodata == -1)
3767 objfile->sect_index_rodata = sect->index;
3768 }
3769 else if (which == 2)
3770 {
3771 if (objfile->sect_index_data == -1)
3772 objfile->sect_index_data = sect->index;
3773
3774 if (objfile->sect_index_bss == -1)
3775 objfile->sect_index_bss = sect->index;
3776 }
3777 }
3778
3779 free_symfile_segment_data (data);
3780 }
3781
3782 /* Listen for free_objfile events. */
3783
3784 static void
3785 symfile_free_objfile (struct objfile *objfile)
3786 {
3787 /* Remove the target sections owned by this objfile. */
3788 if (objfile != NULL)
3789 remove_target_sections ((void *) objfile);
3790 }
3791
3792 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3793 Expand all symtabs that match the specified criteria.
3794 See quick_symbol_functions.expand_symtabs_matching for details. */
3795
3796 void
3797 expand_symtabs_matching
3798 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3799 const lookup_name_info &lookup_name,
3800 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3801 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3802 enum search_domain kind)
3803 {
3804 for (objfile *objfile : current_program_space->objfiles ())
3805 {
3806 if (objfile->sf)
3807 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3808 lookup_name,
3809 symbol_matcher,
3810 expansion_notify, kind);
3811 }
3812 }
3813
3814 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3815 Map function FUN over every file.
3816 See quick_symbol_functions.map_symbol_filenames for details. */
3817
3818 void
3819 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3820 int need_fullname)
3821 {
3822 for (objfile *objfile : current_program_space->objfiles ())
3823 {
3824 if (objfile->sf)
3825 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3826 need_fullname);
3827 }
3828 }
3829
3830 #if GDB_SELF_TEST
3831
3832 namespace selftests {
3833 namespace filename_language {
3834
3835 static void test_filename_language ()
3836 {
3837 /* This test messes up the filename_language_table global. */
3838 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3839
3840 /* Test deducing an unknown extension. */
3841 language lang = deduce_language_from_filename ("myfile.blah");
3842 SELF_CHECK (lang == language_unknown);
3843
3844 /* Test deducing a known extension. */
3845 lang = deduce_language_from_filename ("myfile.c");
3846 SELF_CHECK (lang == language_c);
3847
3848 /* Test adding a new extension using the internal API. */
3849 add_filename_language (".blah", language_pascal);
3850 lang = deduce_language_from_filename ("myfile.blah");
3851 SELF_CHECK (lang == language_pascal);
3852 }
3853
3854 static void
3855 test_set_ext_lang_command ()
3856 {
3857 /* This test messes up the filename_language_table global. */
3858 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3859
3860 /* Confirm that the .hello extension is not known. */
3861 language lang = deduce_language_from_filename ("cake.hello");
3862 SELF_CHECK (lang == language_unknown);
3863
3864 /* Test adding a new extension using the CLI command. */
3865 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3866 ext_args = args_holder.get ();
3867 set_ext_lang_command (NULL, 1, NULL);
3868
3869 lang = deduce_language_from_filename ("cake.hello");
3870 SELF_CHECK (lang == language_rust);
3871
3872 /* Test overriding an existing extension using the CLI command. */
3873 int size_before = filename_language_table.size ();
3874 args_holder.reset (xstrdup (".hello pascal"));
3875 ext_args = args_holder.get ();
3876 set_ext_lang_command (NULL, 1, NULL);
3877 int size_after = filename_language_table.size ();
3878
3879 lang = deduce_language_from_filename ("cake.hello");
3880 SELF_CHECK (lang == language_pascal);
3881 SELF_CHECK (size_before == size_after);
3882 }
3883
3884 } /* namespace filename_language */
3885 } /* namespace selftests */
3886
3887 #endif /* GDB_SELF_TEST */
3888
3889 void
3890 _initialize_symfile (void)
3891 {
3892 struct cmd_list_element *c;
3893
3894 gdb::observers::free_objfile.attach (symfile_free_objfile);
3895
3896 #define READNOW_READNEVER_HELP \
3897 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3898 immediately. This makes the command slower, but may make future operations\n\
3899 faster.\n\
3900 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3901 symbolic debug information."
3902
3903 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3904 Load symbol table from executable file FILE.\n\
3905 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3906 OFF is an optional offset which is added to each section address.\n\
3907 The `file' command can also load symbol tables, as well as setting the file\n\
3908 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3909 set_cmd_completer (c, filename_completer);
3910
3911 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3912 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3913 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3914 [-s SECT-NAME SECT-ADDR]...\n\
3915 ADDR is the starting address of the file's text.\n\
3916 Each '-s' argument provides a section name and address, and\n\
3917 should be specified if the data and bss segments are not contiguous\n\
3918 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3919 OFF is an optional offset which is added to the default load addresses\n\
3920 of all sections for which no other address was specified.\n"
3921 READNOW_READNEVER_HELP),
3922 &cmdlist);
3923 set_cmd_completer (c, filename_completer);
3924
3925 c = add_cmd ("remove-symbol-file", class_files,
3926 remove_symbol_file_command, _("\
3927 Remove a symbol file added via the add-symbol-file command.\n\
3928 Usage: remove-symbol-file FILENAME\n\
3929 remove-symbol-file -a ADDRESS\n\
3930 The file to remove can be identified by its filename or by an address\n\
3931 that lies within the boundaries of this symbol file in memory."),
3932 &cmdlist);
3933
3934 c = add_cmd ("load", class_files, load_command, _("\
3935 Dynamically load FILE into the running program, and record its symbols\n\
3936 for access from GDB.\n\
3937 Usage: load [FILE] [OFFSET]\n\
3938 An optional load OFFSET may also be given as a literal address.\n\
3939 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3940 on its own."), &cmdlist);
3941 set_cmd_completer (c, filename_completer);
3942
3943 add_prefix_cmd ("overlay", class_support, overlay_command,
3944 _("Commands for debugging overlays."), &overlaylist,
3945 "overlay ", 0, &cmdlist);
3946
3947 add_com_alias ("ovly", "overlay", class_alias, 1);
3948 add_com_alias ("ov", "overlay", class_alias, 1);
3949
3950 add_cmd ("map-overlay", class_support, map_overlay_command,
3951 _("Assert that an overlay section is mapped."), &overlaylist);
3952
3953 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3954 _("Assert that an overlay section is unmapped."), &overlaylist);
3955
3956 add_cmd ("list-overlays", class_support, list_overlays_command,
3957 _("List mappings of overlay sections."), &overlaylist);
3958
3959 add_cmd ("manual", class_support, overlay_manual_command,
3960 _("Enable overlay debugging."), &overlaylist);
3961 add_cmd ("off", class_support, overlay_off_command,
3962 _("Disable overlay debugging."), &overlaylist);
3963 add_cmd ("auto", class_support, overlay_auto_command,
3964 _("Enable automatic overlay debugging."), &overlaylist);
3965 add_cmd ("load-target", class_support, overlay_load_command,
3966 _("Read the overlay mapping state from the target."), &overlaylist);
3967
3968 /* Filename extension to source language lookup table: */
3969 add_setshow_string_noescape_cmd ("extension-language", class_files,
3970 &ext_args, _("\
3971 Set mapping between filename extension and source language."), _("\
3972 Show mapping between filename extension and source language."), _("\
3973 Usage: set extension-language .foo bar"),
3974 set_ext_lang_command,
3975 show_ext_args,
3976 &setlist, &showlist);
3977
3978 add_info ("extensions", info_ext_lang_command,
3979 _("All filename extensions associated with a source language."));
3980
3981 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3982 &debug_file_directory, _("\
3983 Set the directories where separate debug symbols are searched for."), _("\
3984 Show the directories where separate debug symbols are searched for."), _("\
3985 Separate debug symbols are first searched for in the same\n\
3986 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3987 and lastly at the path of the directory of the binary with\n\
3988 each global debug-file-directory component prepended."),
3989 NULL,
3990 show_debug_file_directory,
3991 &setlist, &showlist);
3992
3993 add_setshow_enum_cmd ("symbol-loading", no_class,
3994 print_symbol_loading_enums, &print_symbol_loading,
3995 _("\
3996 Set printing of symbol loading messages."), _("\
3997 Show printing of symbol loading messages."), _("\
3998 off == turn all messages off\n\
3999 brief == print messages for the executable,\n\
4000 and brief messages for shared libraries\n\
4001 full == print messages for the executable,\n\
4002 and messages for each shared library."),
4003 NULL,
4004 NULL,
4005 &setprintlist, &showprintlist);
4006
4007 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4008 &separate_debug_file_debug, _("\
4009 Set printing of separate debug info file search debug."), _("\
4010 Show printing of separate debug info file search debug."), _("\
4011 When on, GDB prints the searched locations while looking for separate debug \
4012 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4013
4014 #if GDB_SELF_TEST
4015 selftests::register_test
4016 ("filename_language", selftests::filename_language::test_filename_language);
4017 selftests::register_test
4018 ("set_ext_lang_command",
4019 selftests::filename_language::test_set_ext_lang_command);
4020 #endif
4021 }
This page took 0.163389 seconds and 4 git commands to generate.