Implement remote_bfd_iovec_stat
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void add_filename_language (char *ext, enum language lang);
118
119 static void info_ext_lang_command (char *args, int from_tty);
120
121 static void init_filename_language_table (void);
122
123 static void symfile_find_segment_sections (struct objfile *objfile);
124
125 void _initialize_symfile (void);
126
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131 typedef struct
132 {
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139
140 DEF_VEC_O (registered_sym_fns);
141
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144 /* Values for "set print symbol-loading". */
145
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168 int auto_solib_add = 1;
169 \f
170
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194 }
195
196 /* True if we are reading a symbol table. */
197
198 int currently_reading_symtab = 0;
199
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205 }
206
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216 }
217
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242 }
243
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260 }
261
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268 {
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in ABFD. */
296
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317 }
318
319 /* Create a section_addr_info from section offsets in OBJFILE. */
320
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338 }
339
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350 }
351
352 /* Initialize OBJFILE's sect_index_* members. */
353
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411 }
412
413 /* The arguments to place_section. */
414
415 struct place_section_arg
416 {
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419 };
420
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493 {
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512 }
513
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520 static const char *
521 addr_section_name (const char *s)
522 {
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529 }
530
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546 }
547
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566 }
567
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
624
625 while (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
658 for (i = 0; i < addrs->num_sections; i++)
659 {
660 struct other_sections *sect = addrs_to_abfd_addrs[i];
661
662 if (sect)
663 {
664 /* This is the index used by BFD. */
665 addrs->other[i].sectindex = sect->sectindex;
666
667 if (addrs->other[i].addr != 0)
668 {
669 addrs->other[i].addr -= sect->addr;
670 lower_offset = addrs->other[i].addr;
671 }
672 else
673 addrs->other[i].addr = lower_offset;
674 }
675 else
676 {
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
695 || strcmp (sect_name, ".gnu.conflict") == 0
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
707 addrs->other[i].addr = 0;
708 addrs->other[i].sectindex = -1;
709 }
710 }
711
712 do_cleanups (my_cleanup);
713 }
714
715 /* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721 void
722 default_symfile_offsets (struct objfile *objfile,
723 const struct section_addr_info *addrs)
724 {
725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
731
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
794 offsets[cur_sec->index]);
795 offsets[cur_sec->index] = 0;
796 }
797 }
798 }
799
800 /* Remember the bfd indexes for the .text, .data, .bss and
801 .rodata sections. */
802 init_objfile_sect_indices (objfile);
803 }
804
805 /* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811 struct symfile_segment_data *
812 default_symfile_segments (bfd *abfd)
813 {
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
839 data = XCNEW (struct symfile_segment_data);
840 data->num_segments = 1;
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
843
844 num_sections = bfd_count_sections (abfd);
845 data->segment_info = XCNEWVEC (int, num_sections);
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867 }
868
869 /* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872 static void
873 read_symbols (struct objfile *objfile, int add_flags)
874 {
875 (*objfile->sf->sym_read) (objfile, add_flags);
876 objfile->per_bfd->minsyms_read = 1;
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901 }
902
903 /* Initialize entry point information for this objfile. */
904
905 static void
906 init_entry_point_info (struct objfile *objfile)
907 {
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
936 ei->entry_point_p = 0;
937 }
938
939 if (ei->entry_point_p)
940 {
941 struct obj_section *osect;
942 CORE_ADDR entry_point = ei->entry_point;
943 int found;
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
954 ei->entry_point
955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
966 ei->the_bfd_section_index
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
975 }
976 }
977
978 /* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
981 This function does not set the OBJFILE's entry-point info.
982
983 OBJFILE is where the symbols are to be read from.
984
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
994
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
998
999 static void
1000 syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
1002 int add_flags)
1003 {
1004 struct section_addr_info *local_addr = NULL;
1005 struct cleanup *old_chain;
1006 const int mainline = add_flags & SYMFILE_MAINLINE;
1007
1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1009
1010 if (objfile->sf == NULL)
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
1023
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1027
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1031 if (! addrs)
1032 {
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
1038 if (mainline)
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
1056
1057 (*objfile->sf->sym_new_init) (objfile);
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1063
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1072
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1077
1078 read_symbols (objfile, add_flags);
1079
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
1083 xfree (local_addr);
1084 }
1085
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
1089 static void
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1092 int add_flags)
1093 {
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1096 }
1097
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102 static void
1103 finish_new_objfile (struct objfile *objfile, int add_flags)
1104 {
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123
1124 /* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 For NAME description see allocate_objfile's definition.
1131
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1134
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1143
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1148 {
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1155
1156 if (readnow_symbol_files)
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
1161
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && mainline
1167 && from_tty
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1170
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1173
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1180 if (should_print)
1181 {
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1184 else
1185 {
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190 }
1191 syms_from_objfile (objfile, addrs, add_flags);
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1197
1198 if ((flags & OBJF_READNOW))
1199 {
1200 if (should_print)
1201 {
1202 printf_unfiltered (_("expanding to full symbols..."));
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1209 }
1210
1211 if (should_print && !objfile_has_symbols (objfile))
1212 {
1213 wrap_here ("");
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1215 wrap_here ("");
1216 }
1217
1218 if (should_print)
1219 {
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1222 else
1223 printf_unfiltered (_("done.\n"));
1224 }
1225
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
1231 if (objfile->sf == NULL)
1232 {
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1235 }
1236
1237 finish_new_objfile (objfile, add_flags);
1238
1239 observer_notify_new_objfile (objfile);
1240
1241 bfd_cache_close_all ();
1242 return (objfile);
1243 }
1244
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1247
1248 void
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct objfile *new_objfile;
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
1261
1262 new_objfile = symbol_file_add_with_addrs
1263 (bfd, name, symfile_flags, sap,
1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1265 | OBJF_USERLOADED),
1266 objfile);
1267
1268 do_cleanups (my_cleanup);
1269 }
1270
1271 /* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
1273 See symbol_file_add_with_addrs's comments for details. */
1274
1275 struct objfile *
1276 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277 struct section_addr_info *addrs,
1278 int flags, struct objfile *parent)
1279 {
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282 }
1283
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287 struct objfile *
1288 symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
1290 {
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298 }
1299
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308 void
1309 symbol_file_add_main (const char *args, int from_tty)
1310 {
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312 }
1313
1314 static void
1315 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316 {
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
1320 symbol_file_add (args, add_flags, NULL, flags);
1321
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1328 }
1329
1330 void
1331 symbol_file_clear (int from_tty)
1332 {
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1340
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1344
1345 free_all_objfiles ();
1346
1347 gdb_assert (symfile_objfile == NULL);
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1350 }
1351
1352 static int
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1355 {
1356 unsigned long file_crc;
1357 int file_crc_p;
1358 bfd *abfd;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1367
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369 return 0;
1370
1371 abfd = gdb_bfd_open_maybe_remote (name);
1372
1373 if (!abfd)
1374 return 0;
1375
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1390 {
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
1394 gdb_bfd_unref (abfd);
1395 return 0;
1396 }
1397 verified_as_different = 1;
1398 }
1399 else
1400 verified_as_different = 0;
1401
1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1403
1404 gdb_bfd_unref (abfd);
1405
1406 if (!file_crc_p)
1407 return 0;
1408
1409 if (crc != file_crc)
1410 {
1411 unsigned long parent_crc;
1412
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
1416
1417 if (!verified_as_different)
1418 {
1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1420 return 0;
1421 }
1422
1423 if (verified_as_different || parent_crc != file_crc)
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
1426 name, objfile_name (parent_objfile));
1427
1428 return 0;
1429 }
1430
1431 return 1;
1432 }
1433
1434 char *debug_file_directory = NULL;
1435 static void
1436 show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
1442 value);
1443 }
1444
1445 #if ! defined (DEBUG_SUBDIRECTORY)
1446 #define DEBUG_SUBDIRECTORY ".debug"
1447 #endif
1448
1449 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1455
1456 static char *
1457 find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
1461 {
1462 char *debugdir;
1463 char *debugfile;
1464 int i;
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
1468
1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1470 i = strlen (dir);
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1473
1474 debugfile = xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, debuglink);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 return debugfile;
1487
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1492 strcat (debugfile, debuglink);
1493
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1495 return debugfile;
1496
1497 /* Then try in the global debugfile directories.
1498
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
1501
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1504
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
1508 strcat (debugfile, "/");
1509 strcat (debugfile, dir);
1510 strcat (debugfile, debuglink);
1511
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
1522 strlen (gdb_sysroot)) == 0
1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1524 {
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1527 strcat (debugfile, "/");
1528 strcat (debugfile, debuglink);
1529
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
1535 }
1536 }
1537
1538 do_cleanups (back_to);
1539 xfree (debugfile);
1540 return NULL;
1541 }
1542
1543 /* Modify PATH to contain only "[/]directory/" part of PATH.
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547 static void
1548 terminate_after_last_dir_separator (char *path)
1549 {
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560 }
1561
1562 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565 char *
1566 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567 {
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
1583 cleanups = make_cleanup (xfree, debuglink);
1584 dir = xstrdup (objfile_name (objfile));
1585 make_cleanup (xfree, dir);
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1602 {
1603 char *symlink_dir;
1604
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1621 }
1622
1623 do_cleanups (cleanups);
1624 return debugfile;
1625 }
1626
1627 /* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
1639 conventions (because it is confusing and inconvenient). */
1640
1641 void
1642 symbol_file_command (char *args, int from_tty)
1643 {
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1648 symbol_file_clear (from_tty);
1649 }
1650 else
1651 {
1652 char **argv = gdb_buildargv (args);
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1655 char *name = NULL;
1656
1657 cleanups = make_cleanup_freeargv (argv);
1658 while (*argv != NULL)
1659 {
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
1663 error (_("unknown option `%s'"), *argv);
1664 else
1665 {
1666 symbol_file_add_main_1 (*argv, from_tty, flags);
1667 name = *argv;
1668 }
1669
1670 argv++;
1671 }
1672
1673 if (name == NULL)
1674 error (_("no symbol file name was specified"));
1675
1676 do_cleanups (cleanups);
1677 }
1678 }
1679
1680 /* Set the initial language.
1681
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1689 full symbols. */
1690
1691 void
1692 set_initial_language (void)
1693 {
1694 enum language lang = main_language ();
1695
1696 if (lang == language_unknown)
1697 {
1698 char *name = main_name ();
1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1700
1701 if (sym != NULL)
1702 lang = SYMBOL_LANGUAGE (sym);
1703 }
1704
1705 if (lang == language_unknown)
1706 {
1707 /* Make C the default language */
1708 lang = language_c;
1709 }
1710
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
1713 }
1714
1715 /* If NAME is a remote name open the file using remote protocol, otherwise
1716 open it normally. Returns a new reference to the BFD. On error,
1717 returns NULL with the BFD error set. */
1718
1719 bfd *
1720 gdb_bfd_open_maybe_remote (const char *name)
1721 {
1722 bfd *result;
1723
1724 if (remote_filename_p (name))
1725 result = remote_bfd_open (name, gnutarget);
1726 else
1727 result = gdb_bfd_open (name, gnutarget, -1);
1728
1729 return result;
1730 }
1731
1732 /* Open the file specified by NAME and hand it off to BFD for
1733 preliminary analysis. Return a newly initialized bfd *, which
1734 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1735 absolute). In case of trouble, error() is called. */
1736
1737 bfd *
1738 symfile_bfd_open (const char *cname)
1739 {
1740 bfd *sym_bfd;
1741 int desc;
1742 char *name, *absolute_name;
1743 struct cleanup *back_to;
1744
1745 if (remote_filename_p (cname))
1746 {
1747 sym_bfd = remote_bfd_open (cname, gnutarget);
1748 if (!sym_bfd)
1749 error (_("`%s': can't open to read symbols: %s."), cname,
1750 bfd_errmsg (bfd_get_error ()));
1751
1752 if (!bfd_check_format (sym_bfd, bfd_object))
1753 {
1754 make_cleanup_bfd_unref (sym_bfd);
1755 error (_("`%s': can't read symbols: %s."), cname,
1756 bfd_errmsg (bfd_get_error ()));
1757 }
1758
1759 return sym_bfd;
1760 }
1761
1762 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1763
1764 /* Look down path for it, allocate 2nd new malloc'd copy. */
1765 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1766 O_RDONLY | O_BINARY, &absolute_name);
1767 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1768 if (desc < 0)
1769 {
1770 char *exename = alloca (strlen (name) + 5);
1771
1772 strcat (strcpy (exename, name), ".exe");
1773 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1774 exename, O_RDONLY | O_BINARY, &absolute_name);
1775 }
1776 #endif
1777 if (desc < 0)
1778 {
1779 make_cleanup (xfree, name);
1780 perror_with_name (name);
1781 }
1782
1783 xfree (name);
1784 name = absolute_name;
1785 back_to = make_cleanup (xfree, name);
1786
1787 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1788 if (!sym_bfd)
1789 error (_("`%s': can't open to read symbols: %s."), name,
1790 bfd_errmsg (bfd_get_error ()));
1791 bfd_set_cacheable (sym_bfd, 1);
1792
1793 if (!bfd_check_format (sym_bfd, bfd_object))
1794 {
1795 make_cleanup_bfd_unref (sym_bfd);
1796 error (_("`%s': can't read symbols: %s."), name,
1797 bfd_errmsg (bfd_get_error ()));
1798 }
1799
1800 do_cleanups (back_to);
1801
1802 return sym_bfd;
1803 }
1804
1805 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1806 the section was not found. */
1807
1808 int
1809 get_section_index (struct objfile *objfile, char *section_name)
1810 {
1811 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1812
1813 if (sect)
1814 return sect->index;
1815 else
1816 return -1;
1817 }
1818
1819 /* Link SF into the global symtab_fns list.
1820 FLAVOUR is the file format that SF handles.
1821 Called on startup by the _initialize routine in each object file format
1822 reader, to register information about each format the reader is prepared
1823 to handle. */
1824
1825 void
1826 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1827 {
1828 registered_sym_fns fns = { flavour, sf };
1829
1830 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1831 }
1832
1833 /* Initialize OBJFILE to read symbols from its associated BFD. It
1834 either returns or calls error(). The result is an initialized
1835 struct sym_fns in the objfile structure, that contains cached
1836 information about the symbol file. */
1837
1838 static const struct sym_fns *
1839 find_sym_fns (bfd *abfd)
1840 {
1841 registered_sym_fns *rsf;
1842 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1843 int i;
1844
1845 if (our_flavour == bfd_target_srec_flavour
1846 || our_flavour == bfd_target_ihex_flavour
1847 || our_flavour == bfd_target_tekhex_flavour)
1848 return NULL; /* No symbols. */
1849
1850 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1851 if (our_flavour == rsf->sym_flavour)
1852 return rsf->sym_fns;
1853
1854 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1855 bfd_get_target (abfd));
1856 }
1857 \f
1858
1859 /* This function runs the load command of our current target. */
1860
1861 static void
1862 load_command (char *arg, int from_tty)
1863 {
1864 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1865
1866 dont_repeat ();
1867
1868 /* The user might be reloading because the binary has changed. Take
1869 this opportunity to check. */
1870 reopen_exec_file ();
1871 reread_symbols ();
1872
1873 if (arg == NULL)
1874 {
1875 char *parg;
1876 int count = 0;
1877
1878 parg = arg = get_exec_file (1);
1879
1880 /* Count how many \ " ' tab space there are in the name. */
1881 while ((parg = strpbrk (parg, "\\\"'\t ")))
1882 {
1883 parg++;
1884 count++;
1885 }
1886
1887 if (count)
1888 {
1889 /* We need to quote this string so buildargv can pull it apart. */
1890 char *temp = xmalloc (strlen (arg) + count + 1 );
1891 char *ptemp = temp;
1892 char *prev;
1893
1894 make_cleanup (xfree, temp);
1895
1896 prev = parg = arg;
1897 while ((parg = strpbrk (parg, "\\\"'\t ")))
1898 {
1899 strncpy (ptemp, prev, parg - prev);
1900 ptemp += parg - prev;
1901 prev = parg++;
1902 *ptemp++ = '\\';
1903 }
1904 strcpy (ptemp, prev);
1905
1906 arg = temp;
1907 }
1908 }
1909
1910 target_load (arg, from_tty);
1911
1912 /* After re-loading the executable, we don't really know which
1913 overlays are mapped any more. */
1914 overlay_cache_invalid = 1;
1915
1916 do_cleanups (cleanup);
1917 }
1918
1919 /* This version of "load" should be usable for any target. Currently
1920 it is just used for remote targets, not inftarg.c or core files,
1921 on the theory that only in that case is it useful.
1922
1923 Avoiding xmodem and the like seems like a win (a) because we don't have
1924 to worry about finding it, and (b) On VMS, fork() is very slow and so
1925 we don't want to run a subprocess. On the other hand, I'm not sure how
1926 performance compares. */
1927
1928 static int validate_download = 0;
1929
1930 /* Callback service function for generic_load (bfd_map_over_sections). */
1931
1932 static void
1933 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1934 {
1935 bfd_size_type *sum = data;
1936
1937 *sum += bfd_get_section_size (asec);
1938 }
1939
1940 /* Opaque data for load_section_callback. */
1941 struct load_section_data {
1942 CORE_ADDR load_offset;
1943 struct load_progress_data *progress_data;
1944 VEC(memory_write_request_s) *requests;
1945 };
1946
1947 /* Opaque data for load_progress. */
1948 struct load_progress_data {
1949 /* Cumulative data. */
1950 unsigned long write_count;
1951 unsigned long data_count;
1952 bfd_size_type total_size;
1953 };
1954
1955 /* Opaque data for load_progress for a single section. */
1956 struct load_progress_section_data {
1957 struct load_progress_data *cumulative;
1958
1959 /* Per-section data. */
1960 const char *section_name;
1961 ULONGEST section_sent;
1962 ULONGEST section_size;
1963 CORE_ADDR lma;
1964 gdb_byte *buffer;
1965 };
1966
1967 /* Target write callback routine for progress reporting. */
1968
1969 static void
1970 load_progress (ULONGEST bytes, void *untyped_arg)
1971 {
1972 struct load_progress_section_data *args = untyped_arg;
1973 struct load_progress_data *totals;
1974
1975 if (args == NULL)
1976 /* Writing padding data. No easy way to get at the cumulative
1977 stats, so just ignore this. */
1978 return;
1979
1980 totals = args->cumulative;
1981
1982 if (bytes == 0 && args->section_sent == 0)
1983 {
1984 /* The write is just starting. Let the user know we've started
1985 this section. */
1986 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1987 args->section_name, hex_string (args->section_size),
1988 paddress (target_gdbarch (), args->lma));
1989 return;
1990 }
1991
1992 if (validate_download)
1993 {
1994 /* Broken memories and broken monitors manifest themselves here
1995 when bring new computers to life. This doubles already slow
1996 downloads. */
1997 /* NOTE: cagney/1999-10-18: A more efficient implementation
1998 might add a verify_memory() method to the target vector and
1999 then use that. remote.c could implement that method using
2000 the ``qCRC'' packet. */
2001 gdb_byte *check = xmalloc (bytes);
2002 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2003
2004 if (target_read_memory (args->lma, check, bytes) != 0)
2005 error (_("Download verify read failed at %s"),
2006 paddress (target_gdbarch (), args->lma));
2007 if (memcmp (args->buffer, check, bytes) != 0)
2008 error (_("Download verify compare failed at %s"),
2009 paddress (target_gdbarch (), args->lma));
2010 do_cleanups (verify_cleanups);
2011 }
2012 totals->data_count += bytes;
2013 args->lma += bytes;
2014 args->buffer += bytes;
2015 totals->write_count += 1;
2016 args->section_sent += bytes;
2017 if (check_quit_flag ()
2018 || (deprecated_ui_load_progress_hook != NULL
2019 && deprecated_ui_load_progress_hook (args->section_name,
2020 args->section_sent)))
2021 error (_("Canceled the download"));
2022
2023 if (deprecated_show_load_progress != NULL)
2024 deprecated_show_load_progress (args->section_name,
2025 args->section_sent,
2026 args->section_size,
2027 totals->data_count,
2028 totals->total_size);
2029 }
2030
2031 /* Callback service function for generic_load (bfd_map_over_sections). */
2032
2033 static void
2034 load_section_callback (bfd *abfd, asection *asec, void *data)
2035 {
2036 struct memory_write_request *new_request;
2037 struct load_section_data *args = data;
2038 struct load_progress_section_data *section_data;
2039 bfd_size_type size = bfd_get_section_size (asec);
2040 gdb_byte *buffer;
2041 const char *sect_name = bfd_get_section_name (abfd, asec);
2042
2043 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2044 return;
2045
2046 if (size == 0)
2047 return;
2048
2049 new_request = VEC_safe_push (memory_write_request_s,
2050 args->requests, NULL);
2051 memset (new_request, 0, sizeof (struct memory_write_request));
2052 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2053 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2054 new_request->end = new_request->begin + size; /* FIXME Should size
2055 be in instead? */
2056 new_request->data = xmalloc (size);
2057 new_request->baton = section_data;
2058
2059 buffer = new_request->data;
2060
2061 section_data->cumulative = args->progress_data;
2062 section_data->section_name = sect_name;
2063 section_data->section_size = size;
2064 section_data->lma = new_request->begin;
2065 section_data->buffer = buffer;
2066
2067 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2068 }
2069
2070 /* Clean up an entire memory request vector, including load
2071 data and progress records. */
2072
2073 static void
2074 clear_memory_write_data (void *arg)
2075 {
2076 VEC(memory_write_request_s) **vec_p = arg;
2077 VEC(memory_write_request_s) *vec = *vec_p;
2078 int i;
2079 struct memory_write_request *mr;
2080
2081 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2082 {
2083 xfree (mr->data);
2084 xfree (mr->baton);
2085 }
2086 VEC_free (memory_write_request_s, vec);
2087 }
2088
2089 void
2090 generic_load (const char *args, int from_tty)
2091 {
2092 bfd *loadfile_bfd;
2093 struct timeval start_time, end_time;
2094 char *filename;
2095 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2096 struct load_section_data cbdata;
2097 struct load_progress_data total_progress;
2098 struct ui_out *uiout = current_uiout;
2099
2100 CORE_ADDR entry;
2101 char **argv;
2102
2103 memset (&cbdata, 0, sizeof (cbdata));
2104 memset (&total_progress, 0, sizeof (total_progress));
2105 cbdata.progress_data = &total_progress;
2106
2107 make_cleanup (clear_memory_write_data, &cbdata.requests);
2108
2109 if (args == NULL)
2110 error_no_arg (_("file to load"));
2111
2112 argv = gdb_buildargv (args);
2113 make_cleanup_freeargv (argv);
2114
2115 filename = tilde_expand (argv[0]);
2116 make_cleanup (xfree, filename);
2117
2118 if (argv[1] != NULL)
2119 {
2120 const char *endptr;
2121
2122 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2123
2124 /* If the last word was not a valid number then
2125 treat it as a file name with spaces in. */
2126 if (argv[1] == endptr)
2127 error (_("Invalid download offset:%s."), argv[1]);
2128
2129 if (argv[2] != NULL)
2130 error (_("Too many parameters."));
2131 }
2132
2133 /* Open the file for loading. */
2134 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2135 if (loadfile_bfd == NULL)
2136 {
2137 perror_with_name (filename);
2138 return;
2139 }
2140
2141 make_cleanup_bfd_unref (loadfile_bfd);
2142
2143 if (!bfd_check_format (loadfile_bfd, bfd_object))
2144 {
2145 error (_("\"%s\" is not an object file: %s"), filename,
2146 bfd_errmsg (bfd_get_error ()));
2147 }
2148
2149 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2150 (void *) &total_progress.total_size);
2151
2152 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2153
2154 gettimeofday (&start_time, NULL);
2155
2156 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2157 load_progress) != 0)
2158 error (_("Load failed"));
2159
2160 gettimeofday (&end_time, NULL);
2161
2162 entry = bfd_get_start_address (loadfile_bfd);
2163 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2164 ui_out_text (uiout, "Start address ");
2165 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2166 ui_out_text (uiout, ", load size ");
2167 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2168 ui_out_text (uiout, "\n");
2169 /* We were doing this in remote-mips.c, I suspect it is right
2170 for other targets too. */
2171 regcache_write_pc (get_current_regcache (), entry);
2172
2173 /* Reset breakpoints, now that we have changed the load image. For
2174 instance, breakpoints may have been set (or reset, by
2175 post_create_inferior) while connected to the target but before we
2176 loaded the program. In that case, the prologue analyzer could
2177 have read instructions from the target to find the right
2178 breakpoint locations. Loading has changed the contents of that
2179 memory. */
2180
2181 breakpoint_re_set ();
2182
2183 /* FIXME: are we supposed to call symbol_file_add or not? According
2184 to a comment from remote-mips.c (where a call to symbol_file_add
2185 was commented out), making the call confuses GDB if more than one
2186 file is loaded in. Some targets do (e.g., remote-vx.c) but
2187 others don't (or didn't - perhaps they have all been deleted). */
2188
2189 print_transfer_performance (gdb_stdout, total_progress.data_count,
2190 total_progress.write_count,
2191 &start_time, &end_time);
2192
2193 do_cleanups (old_cleanups);
2194 }
2195
2196 /* Report how fast the transfer went. */
2197
2198 void
2199 print_transfer_performance (struct ui_file *stream,
2200 unsigned long data_count,
2201 unsigned long write_count,
2202 const struct timeval *start_time,
2203 const struct timeval *end_time)
2204 {
2205 ULONGEST time_count;
2206 struct ui_out *uiout = current_uiout;
2207
2208 /* Compute the elapsed time in milliseconds, as a tradeoff between
2209 accuracy and overflow. */
2210 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2211 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2212
2213 ui_out_text (uiout, "Transfer rate: ");
2214 if (time_count > 0)
2215 {
2216 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2217
2218 if (ui_out_is_mi_like_p (uiout))
2219 {
2220 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2221 ui_out_text (uiout, " bits/sec");
2222 }
2223 else if (rate < 1024)
2224 {
2225 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2226 ui_out_text (uiout, " bytes/sec");
2227 }
2228 else
2229 {
2230 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2231 ui_out_text (uiout, " KB/sec");
2232 }
2233 }
2234 else
2235 {
2236 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2237 ui_out_text (uiout, " bits in <1 sec");
2238 }
2239 if (write_count > 0)
2240 {
2241 ui_out_text (uiout, ", ");
2242 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2243 ui_out_text (uiout, " bytes/write");
2244 }
2245 ui_out_text (uiout, ".\n");
2246 }
2247
2248 /* This function allows the addition of incrementally linked object files.
2249 It does not modify any state in the target, only in the debugger. */
2250 /* Note: ezannoni 2000-04-13 This function/command used to have a
2251 special case syntax for the rombug target (Rombug is the boot
2252 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2253 rombug case, the user doesn't need to supply a text address,
2254 instead a call to target_link() (in target.c) would supply the
2255 value to use. We are now discontinuing this type of ad hoc syntax. */
2256
2257 static void
2258 add_symbol_file_command (char *args, int from_tty)
2259 {
2260 struct gdbarch *gdbarch = get_current_arch ();
2261 char *filename = NULL;
2262 int flags = OBJF_USERLOADED | OBJF_SHARED;
2263 char *arg;
2264 int section_index = 0;
2265 int argcnt = 0;
2266 int sec_num = 0;
2267 int i;
2268 int expecting_sec_name = 0;
2269 int expecting_sec_addr = 0;
2270 char **argv;
2271 struct objfile *objf;
2272
2273 struct sect_opt
2274 {
2275 char *name;
2276 char *value;
2277 };
2278
2279 struct section_addr_info *section_addrs;
2280 struct sect_opt *sect_opts = NULL;
2281 size_t num_sect_opts = 0;
2282 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2283
2284 num_sect_opts = 16;
2285 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2286 * sizeof (struct sect_opt));
2287
2288 dont_repeat ();
2289
2290 if (args == NULL)
2291 error (_("add-symbol-file takes a file name and an address"));
2292
2293 argv = gdb_buildargv (args);
2294 make_cleanup_freeargv (argv);
2295
2296 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2297 {
2298 /* Process the argument. */
2299 if (argcnt == 0)
2300 {
2301 /* The first argument is the file name. */
2302 filename = tilde_expand (arg);
2303 make_cleanup (xfree, filename);
2304 }
2305 else if (argcnt == 1)
2306 {
2307 /* The second argument is always the text address at which
2308 to load the program. */
2309 sect_opts[section_index].name = ".text";
2310 sect_opts[section_index].value = arg;
2311 if (++section_index >= num_sect_opts)
2312 {
2313 num_sect_opts *= 2;
2314 sect_opts = ((struct sect_opt *)
2315 xrealloc (sect_opts,
2316 num_sect_opts
2317 * sizeof (struct sect_opt)));
2318 }
2319 }
2320 else
2321 {
2322 /* It's an option (starting with '-') or it's an argument
2323 to an option. */
2324 if (expecting_sec_name)
2325 {
2326 sect_opts[section_index].name = arg;
2327 expecting_sec_name = 0;
2328 }
2329 else if (expecting_sec_addr)
2330 {
2331 sect_opts[section_index].value = arg;
2332 expecting_sec_addr = 0;
2333 if (++section_index >= num_sect_opts)
2334 {
2335 num_sect_opts *= 2;
2336 sect_opts = ((struct sect_opt *)
2337 xrealloc (sect_opts,
2338 num_sect_opts
2339 * sizeof (struct sect_opt)));
2340 }
2341 }
2342 else if (strcmp (arg, "-readnow") == 0)
2343 flags |= OBJF_READNOW;
2344 else if (strcmp (arg, "-s") == 0)
2345 {
2346 expecting_sec_name = 1;
2347 expecting_sec_addr = 1;
2348 }
2349 else
2350 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2351 " [-readnow] [-s <secname> <addr>]*"));
2352 }
2353 }
2354
2355 /* This command takes at least two arguments. The first one is a
2356 filename, and the second is the address where this file has been
2357 loaded. Abort now if this address hasn't been provided by the
2358 user. */
2359 if (section_index < 1)
2360 error (_("The address where %s has been loaded is missing"), filename);
2361
2362 /* Print the prompt for the query below. And save the arguments into
2363 a sect_addr_info structure to be passed around to other
2364 functions. We have to split this up into separate print
2365 statements because hex_string returns a local static
2366 string. */
2367
2368 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2369 section_addrs = alloc_section_addr_info (section_index);
2370 make_cleanup (xfree, section_addrs);
2371 for (i = 0; i < section_index; i++)
2372 {
2373 CORE_ADDR addr;
2374 char *val = sect_opts[i].value;
2375 char *sec = sect_opts[i].name;
2376
2377 addr = parse_and_eval_address (val);
2378
2379 /* Here we store the section offsets in the order they were
2380 entered on the command line. */
2381 section_addrs->other[sec_num].name = sec;
2382 section_addrs->other[sec_num].addr = addr;
2383 printf_unfiltered ("\t%s_addr = %s\n", sec,
2384 paddress (gdbarch, addr));
2385 sec_num++;
2386
2387 /* The object's sections are initialized when a
2388 call is made to build_objfile_section_table (objfile).
2389 This happens in reread_symbols.
2390 At this point, we don't know what file type this is,
2391 so we can't determine what section names are valid. */
2392 }
2393 section_addrs->num_sections = sec_num;
2394
2395 if (from_tty && (!query ("%s", "")))
2396 error (_("Not confirmed."));
2397
2398 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2399 section_addrs, flags);
2400
2401 add_target_sections_of_objfile (objf);
2402
2403 /* Getting new symbols may change our opinion about what is
2404 frameless. */
2405 reinit_frame_cache ();
2406 do_cleanups (my_cleanups);
2407 }
2408 \f
2409
2410 /* This function removes a symbol file that was added via add-symbol-file. */
2411
2412 static void
2413 remove_symbol_file_command (char *args, int from_tty)
2414 {
2415 char **argv;
2416 struct objfile *objf = NULL;
2417 struct cleanup *my_cleanups;
2418 struct program_space *pspace = current_program_space;
2419 struct gdbarch *gdbarch = get_current_arch ();
2420
2421 dont_repeat ();
2422
2423 if (args == NULL)
2424 error (_("remove-symbol-file: no symbol file provided"));
2425
2426 my_cleanups = make_cleanup (null_cleanup, NULL);
2427
2428 argv = gdb_buildargv (args);
2429
2430 if (strcmp (argv[0], "-a") == 0)
2431 {
2432 /* Interpret the next argument as an address. */
2433 CORE_ADDR addr;
2434
2435 if (argv[1] == NULL)
2436 error (_("Missing address argument"));
2437
2438 if (argv[2] != NULL)
2439 error (_("Junk after %s"), argv[1]);
2440
2441 addr = parse_and_eval_address (argv[1]);
2442
2443 ALL_OBJFILES (objf)
2444 {
2445 if ((objf->flags & OBJF_USERLOADED) != 0
2446 && (objf->flags & OBJF_SHARED) != 0
2447 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2448 break;
2449 }
2450 }
2451 else if (argv[0] != NULL)
2452 {
2453 /* Interpret the current argument as a file name. */
2454 char *filename;
2455
2456 if (argv[1] != NULL)
2457 error (_("Junk after %s"), argv[0]);
2458
2459 filename = tilde_expand (argv[0]);
2460 make_cleanup (xfree, filename);
2461
2462 ALL_OBJFILES (objf)
2463 {
2464 if ((objf->flags & OBJF_USERLOADED) != 0
2465 && (objf->flags & OBJF_SHARED) != 0
2466 && objf->pspace == pspace
2467 && filename_cmp (filename, objfile_name (objf)) == 0)
2468 break;
2469 }
2470 }
2471
2472 if (objf == NULL)
2473 error (_("No symbol file found"));
2474
2475 if (from_tty
2476 && !query (_("Remove symbol table from file \"%s\"? "),
2477 objfile_name (objf)))
2478 error (_("Not confirmed."));
2479
2480 free_objfile (objf);
2481 clear_symtab_users (0);
2482
2483 do_cleanups (my_cleanups);
2484 }
2485
2486 typedef struct objfile *objfilep;
2487
2488 DEF_VEC_P (objfilep);
2489
2490 /* Re-read symbols if a symbol-file has changed. */
2491
2492 void
2493 reread_symbols (void)
2494 {
2495 struct objfile *objfile;
2496 long new_modtime;
2497 struct stat new_statbuf;
2498 int res;
2499 VEC (objfilep) *new_objfiles = NULL;
2500 struct cleanup *all_cleanups;
2501
2502 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2503
2504 /* With the addition of shared libraries, this should be modified,
2505 the load time should be saved in the partial symbol tables, since
2506 different tables may come from different source files. FIXME.
2507 This routine should then walk down each partial symbol table
2508 and see if the symbol table that it originates from has been changed. */
2509
2510 for (objfile = object_files; objfile; objfile = objfile->next)
2511 {
2512 if (objfile->obfd == NULL)
2513 continue;
2514
2515 /* Separate debug objfiles are handled in the main objfile. */
2516 if (objfile->separate_debug_objfile_backlink)
2517 continue;
2518
2519 /* If this object is from an archive (what you usually create with
2520 `ar', often called a `static library' on most systems, though
2521 a `shared library' on AIX is also an archive), then you should
2522 stat on the archive name, not member name. */
2523 if (objfile->obfd->my_archive)
2524 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2525 else
2526 res = stat (objfile_name (objfile), &new_statbuf);
2527 if (res != 0)
2528 {
2529 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2530 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2531 objfile_name (objfile));
2532 continue;
2533 }
2534 new_modtime = new_statbuf.st_mtime;
2535 if (new_modtime != objfile->mtime)
2536 {
2537 struct cleanup *old_cleanups;
2538 struct section_offsets *offsets;
2539 int num_offsets;
2540 char *original_name;
2541
2542 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2543 objfile_name (objfile));
2544
2545 /* There are various functions like symbol_file_add,
2546 symfile_bfd_open, syms_from_objfile, etc., which might
2547 appear to do what we want. But they have various other
2548 effects which we *don't* want. So we just do stuff
2549 ourselves. We don't worry about mapped files (for one thing,
2550 any mapped file will be out of date). */
2551
2552 /* If we get an error, blow away this objfile (not sure if
2553 that is the correct response for things like shared
2554 libraries). */
2555 old_cleanups = make_cleanup_free_objfile (objfile);
2556 /* We need to do this whenever any symbols go away. */
2557 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2558
2559 if (exec_bfd != NULL
2560 && filename_cmp (bfd_get_filename (objfile->obfd),
2561 bfd_get_filename (exec_bfd)) == 0)
2562 {
2563 /* Reload EXEC_BFD without asking anything. */
2564
2565 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2566 }
2567
2568 /* Keep the calls order approx. the same as in free_objfile. */
2569
2570 /* Free the separate debug objfiles. It will be
2571 automatically recreated by sym_read. */
2572 free_objfile_separate_debug (objfile);
2573
2574 /* Remove any references to this objfile in the global
2575 value lists. */
2576 preserve_values (objfile);
2577
2578 /* Nuke all the state that we will re-read. Much of the following
2579 code which sets things to NULL really is necessary to tell
2580 other parts of GDB that there is nothing currently there.
2581
2582 Try to keep the freeing order compatible with free_objfile. */
2583
2584 if (objfile->sf != NULL)
2585 {
2586 (*objfile->sf->sym_finish) (objfile);
2587 }
2588
2589 clear_objfile_data (objfile);
2590
2591 /* Clean up any state BFD has sitting around. */
2592 {
2593 struct bfd *obfd = objfile->obfd;
2594 char *obfd_filename;
2595
2596 obfd_filename = bfd_get_filename (objfile->obfd);
2597 /* Open the new BFD before freeing the old one, so that
2598 the filename remains live. */
2599 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2600 if (objfile->obfd == NULL)
2601 {
2602 /* We have to make a cleanup and error here, rather
2603 than erroring later, because once we unref OBFD,
2604 OBFD_FILENAME will be freed. */
2605 make_cleanup_bfd_unref (obfd);
2606 error (_("Can't open %s to read symbols."), obfd_filename);
2607 }
2608 gdb_bfd_unref (obfd);
2609 }
2610
2611 original_name = xstrdup (objfile->original_name);
2612 make_cleanup (xfree, original_name);
2613
2614 /* bfd_openr sets cacheable to true, which is what we want. */
2615 if (!bfd_check_format (objfile->obfd, bfd_object))
2616 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2617 bfd_errmsg (bfd_get_error ()));
2618
2619 /* Save the offsets, we will nuke them with the rest of the
2620 objfile_obstack. */
2621 num_offsets = objfile->num_sections;
2622 offsets = ((struct section_offsets *)
2623 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2624 memcpy (offsets, objfile->section_offsets,
2625 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2626
2627 /* FIXME: Do we have to free a whole linked list, or is this
2628 enough? */
2629 if (objfile->global_psymbols.list)
2630 xfree (objfile->global_psymbols.list);
2631 memset (&objfile->global_psymbols, 0,
2632 sizeof (objfile->global_psymbols));
2633 if (objfile->static_psymbols.list)
2634 xfree (objfile->static_psymbols.list);
2635 memset (&objfile->static_psymbols, 0,
2636 sizeof (objfile->static_psymbols));
2637
2638 /* Free the obstacks for non-reusable objfiles. */
2639 psymbol_bcache_free (objfile->psymbol_cache);
2640 objfile->psymbol_cache = psymbol_bcache_init ();
2641 obstack_free (&objfile->objfile_obstack, 0);
2642 objfile->sections = NULL;
2643 objfile->compunit_symtabs = NULL;
2644 objfile->psymtabs = NULL;
2645 objfile->psymtabs_addrmap = NULL;
2646 objfile->free_psymtabs = NULL;
2647 objfile->template_symbols = NULL;
2648
2649 /* obstack_init also initializes the obstack so it is
2650 empty. We could use obstack_specify_allocation but
2651 gdb_obstack.h specifies the alloc/dealloc functions. */
2652 obstack_init (&objfile->objfile_obstack);
2653
2654 /* set_objfile_per_bfd potentially allocates the per-bfd
2655 data on the objfile's obstack (if sharing data across
2656 multiple users is not possible), so it's important to
2657 do it *after* the obstack has been initialized. */
2658 set_objfile_per_bfd (objfile);
2659
2660 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2661 original_name,
2662 strlen (original_name));
2663
2664 /* Reset the sym_fns pointer. The ELF reader can change it
2665 based on whether .gdb_index is present, and we need it to
2666 start over. PR symtab/15885 */
2667 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2668
2669 build_objfile_section_table (objfile);
2670 terminate_minimal_symbol_table (objfile);
2671
2672 /* We use the same section offsets as from last time. I'm not
2673 sure whether that is always correct for shared libraries. */
2674 objfile->section_offsets = (struct section_offsets *)
2675 obstack_alloc (&objfile->objfile_obstack,
2676 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2677 memcpy (objfile->section_offsets, offsets,
2678 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2679 objfile->num_sections = num_offsets;
2680
2681 /* What the hell is sym_new_init for, anyway? The concept of
2682 distinguishing between the main file and additional files
2683 in this way seems rather dubious. */
2684 if (objfile == symfile_objfile)
2685 {
2686 (*objfile->sf->sym_new_init) (objfile);
2687 }
2688
2689 (*objfile->sf->sym_init) (objfile);
2690 clear_complaints (&symfile_complaints, 1, 1);
2691
2692 objfile->flags &= ~OBJF_PSYMTABS_READ;
2693 read_symbols (objfile, 0);
2694
2695 if (!objfile_has_symbols (objfile))
2696 {
2697 wrap_here ("");
2698 printf_unfiltered (_("(no debugging symbols found)\n"));
2699 wrap_here ("");
2700 }
2701
2702 /* We're done reading the symbol file; finish off complaints. */
2703 clear_complaints (&symfile_complaints, 0, 1);
2704
2705 /* Getting new symbols may change our opinion about what is
2706 frameless. */
2707
2708 reinit_frame_cache ();
2709
2710 /* Discard cleanups as symbol reading was successful. */
2711 discard_cleanups (old_cleanups);
2712
2713 /* If the mtime has changed between the time we set new_modtime
2714 and now, we *want* this to be out of date, so don't call stat
2715 again now. */
2716 objfile->mtime = new_modtime;
2717 init_entry_point_info (objfile);
2718
2719 VEC_safe_push (objfilep, new_objfiles, objfile);
2720 }
2721 }
2722
2723 if (new_objfiles)
2724 {
2725 int ix;
2726
2727 /* Notify objfiles that we've modified objfile sections. */
2728 objfiles_changed ();
2729
2730 clear_symtab_users (0);
2731
2732 /* clear_objfile_data for each objfile was called before freeing it and
2733 observer_notify_new_objfile (NULL) has been called by
2734 clear_symtab_users above. Notify the new files now. */
2735 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2736 observer_notify_new_objfile (objfile);
2737
2738 /* At least one objfile has changed, so we can consider that
2739 the executable we're debugging has changed too. */
2740 observer_notify_executable_changed ();
2741 }
2742
2743 do_cleanups (all_cleanups);
2744 }
2745 \f
2746
2747 typedef struct
2748 {
2749 char *ext;
2750 enum language lang;
2751 }
2752 filename_language;
2753
2754 static filename_language *filename_language_table;
2755 static int fl_table_size, fl_table_next;
2756
2757 static void
2758 add_filename_language (char *ext, enum language lang)
2759 {
2760 if (fl_table_next >= fl_table_size)
2761 {
2762 fl_table_size += 10;
2763 filename_language_table =
2764 xrealloc (filename_language_table,
2765 fl_table_size * sizeof (*filename_language_table));
2766 }
2767
2768 filename_language_table[fl_table_next].ext = xstrdup (ext);
2769 filename_language_table[fl_table_next].lang = lang;
2770 fl_table_next++;
2771 }
2772
2773 static char *ext_args;
2774 static void
2775 show_ext_args (struct ui_file *file, int from_tty,
2776 struct cmd_list_element *c, const char *value)
2777 {
2778 fprintf_filtered (file,
2779 _("Mapping between filename extension "
2780 "and source language is \"%s\".\n"),
2781 value);
2782 }
2783
2784 static void
2785 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2786 {
2787 int i;
2788 char *cp = ext_args;
2789 enum language lang;
2790
2791 /* First arg is filename extension, starting with '.' */
2792 if (*cp != '.')
2793 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2794
2795 /* Find end of first arg. */
2796 while (*cp && !isspace (*cp))
2797 cp++;
2798
2799 if (*cp == '\0')
2800 error (_("'%s': two arguments required -- "
2801 "filename extension and language"),
2802 ext_args);
2803
2804 /* Null-terminate first arg. */
2805 *cp++ = '\0';
2806
2807 /* Find beginning of second arg, which should be a source language. */
2808 cp = skip_spaces (cp);
2809
2810 if (*cp == '\0')
2811 error (_("'%s': two arguments required -- "
2812 "filename extension and language"),
2813 ext_args);
2814
2815 /* Lookup the language from among those we know. */
2816 lang = language_enum (cp);
2817
2818 /* Now lookup the filename extension: do we already know it? */
2819 for (i = 0; i < fl_table_next; i++)
2820 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2821 break;
2822
2823 if (i >= fl_table_next)
2824 {
2825 /* New file extension. */
2826 add_filename_language (ext_args, lang);
2827 }
2828 else
2829 {
2830 /* Redefining a previously known filename extension. */
2831
2832 /* if (from_tty) */
2833 /* query ("Really make files of type %s '%s'?", */
2834 /* ext_args, language_str (lang)); */
2835
2836 xfree (filename_language_table[i].ext);
2837 filename_language_table[i].ext = xstrdup (ext_args);
2838 filename_language_table[i].lang = lang;
2839 }
2840 }
2841
2842 static void
2843 info_ext_lang_command (char *args, int from_tty)
2844 {
2845 int i;
2846
2847 printf_filtered (_("Filename extensions and the languages they represent:"));
2848 printf_filtered ("\n\n");
2849 for (i = 0; i < fl_table_next; i++)
2850 printf_filtered ("\t%s\t- %s\n",
2851 filename_language_table[i].ext,
2852 language_str (filename_language_table[i].lang));
2853 }
2854
2855 static void
2856 init_filename_language_table (void)
2857 {
2858 if (fl_table_size == 0) /* Protect against repetition. */
2859 {
2860 fl_table_size = 20;
2861 fl_table_next = 0;
2862 filename_language_table =
2863 xmalloc (fl_table_size * sizeof (*filename_language_table));
2864 add_filename_language (".c", language_c);
2865 add_filename_language (".d", language_d);
2866 add_filename_language (".C", language_cplus);
2867 add_filename_language (".cc", language_cplus);
2868 add_filename_language (".cp", language_cplus);
2869 add_filename_language (".cpp", language_cplus);
2870 add_filename_language (".cxx", language_cplus);
2871 add_filename_language (".c++", language_cplus);
2872 add_filename_language (".java", language_java);
2873 add_filename_language (".class", language_java);
2874 add_filename_language (".m", language_objc);
2875 add_filename_language (".f", language_fortran);
2876 add_filename_language (".F", language_fortran);
2877 add_filename_language (".for", language_fortran);
2878 add_filename_language (".FOR", language_fortran);
2879 add_filename_language (".ftn", language_fortran);
2880 add_filename_language (".FTN", language_fortran);
2881 add_filename_language (".fpp", language_fortran);
2882 add_filename_language (".FPP", language_fortran);
2883 add_filename_language (".f90", language_fortran);
2884 add_filename_language (".F90", language_fortran);
2885 add_filename_language (".f95", language_fortran);
2886 add_filename_language (".F95", language_fortran);
2887 add_filename_language (".f03", language_fortran);
2888 add_filename_language (".F03", language_fortran);
2889 add_filename_language (".f08", language_fortran);
2890 add_filename_language (".F08", language_fortran);
2891 add_filename_language (".s", language_asm);
2892 add_filename_language (".sx", language_asm);
2893 add_filename_language (".S", language_asm);
2894 add_filename_language (".pas", language_pascal);
2895 add_filename_language (".p", language_pascal);
2896 add_filename_language (".pp", language_pascal);
2897 add_filename_language (".adb", language_ada);
2898 add_filename_language (".ads", language_ada);
2899 add_filename_language (".a", language_ada);
2900 add_filename_language (".ada", language_ada);
2901 add_filename_language (".dg", language_ada);
2902 }
2903 }
2904
2905 enum language
2906 deduce_language_from_filename (const char *filename)
2907 {
2908 int i;
2909 char *cp;
2910
2911 if (filename != NULL)
2912 if ((cp = strrchr (filename, '.')) != NULL)
2913 for (i = 0; i < fl_table_next; i++)
2914 if (strcmp (cp, filename_language_table[i].ext) == 0)
2915 return filename_language_table[i].lang;
2916
2917 return language_unknown;
2918 }
2919 \f
2920 /* Allocate and initialize a new symbol table.
2921 CUST is from the result of allocate_compunit_symtab. */
2922
2923 struct symtab *
2924 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2925 {
2926 struct objfile *objfile = cust->objfile;
2927 struct symtab *symtab
2928 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2929
2930 symtab->filename = bcache (filename, strlen (filename) + 1,
2931 objfile->per_bfd->filename_cache);
2932 symtab->fullname = NULL;
2933 symtab->language = deduce_language_from_filename (filename);
2934
2935 /* This can be very verbose with lots of headers.
2936 Only print at higher debug levels. */
2937 if (symtab_create_debug >= 2)
2938 {
2939 /* Be a bit clever with debugging messages, and don't print objfile
2940 every time, only when it changes. */
2941 static char *last_objfile_name = NULL;
2942
2943 if (last_objfile_name == NULL
2944 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2945 {
2946 xfree (last_objfile_name);
2947 last_objfile_name = xstrdup (objfile_name (objfile));
2948 fprintf_unfiltered (gdb_stdlog,
2949 "Creating one or more symtabs for objfile %s ...\n",
2950 last_objfile_name);
2951 }
2952 fprintf_unfiltered (gdb_stdlog,
2953 "Created symtab %s for module %s.\n",
2954 host_address_to_string (symtab), filename);
2955 }
2956
2957 /* Add it to CUST's list of symtabs. */
2958 if (cust->filetabs == NULL)
2959 {
2960 cust->filetabs = symtab;
2961 cust->last_filetab = symtab;
2962 }
2963 else
2964 {
2965 cust->last_filetab->next = symtab;
2966 cust->last_filetab = symtab;
2967 }
2968
2969 /* Backlink to the containing compunit symtab. */
2970 symtab->compunit_symtab = cust;
2971
2972 return symtab;
2973 }
2974
2975 /* Allocate and initialize a new compunit.
2976 NAME is the name of the main source file, if there is one, or some
2977 descriptive text if there are no source files. */
2978
2979 struct compunit_symtab *
2980 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2981 {
2982 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2983 struct compunit_symtab);
2984 const char *saved_name;
2985
2986 cu->objfile = objfile;
2987
2988 /* The name we record here is only for display/debugging purposes.
2989 Just save the basename to avoid path issues (too long for display,
2990 relative vs absolute, etc.). */
2991 saved_name = lbasename (name);
2992 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2993 strlen (saved_name));
2994
2995 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2996
2997 if (symtab_create_debug)
2998 {
2999 fprintf_unfiltered (gdb_stdlog,
3000 "Created compunit symtab %s for %s.\n",
3001 host_address_to_string (cu),
3002 cu->name);
3003 }
3004
3005 return cu;
3006 }
3007
3008 /* Hook CU to the objfile it comes from. */
3009
3010 void
3011 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
3012 {
3013 cu->next = cu->objfile->compunit_symtabs;
3014 cu->objfile->compunit_symtabs = cu;
3015 }
3016 \f
3017
3018 /* Reset all data structures in gdb which may contain references to symbol
3019 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
3020
3021 void
3022 clear_symtab_users (int add_flags)
3023 {
3024 /* Someday, we should do better than this, by only blowing away
3025 the things that really need to be blown. */
3026
3027 /* Clear the "current" symtab first, because it is no longer valid.
3028 breakpoint_re_set may try to access the current symtab. */
3029 clear_current_source_symtab_and_line ();
3030
3031 clear_displays ();
3032 clear_last_displayed_sal ();
3033 clear_pc_function_cache ();
3034 observer_notify_new_objfile (NULL);
3035
3036 /* Clear globals which might have pointed into a removed objfile.
3037 FIXME: It's not clear which of these are supposed to persist
3038 between expressions and which ought to be reset each time. */
3039 expression_context_block = NULL;
3040 innermost_block = NULL;
3041
3042 /* Varobj may refer to old symbols, perform a cleanup. */
3043 varobj_invalidate ();
3044
3045 /* Now that the various caches have been cleared, we can re_set
3046 our breakpoints without risking it using stale data. */
3047 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3048 breakpoint_re_set ();
3049 }
3050
3051 static void
3052 clear_symtab_users_cleanup (void *ignore)
3053 {
3054 clear_symtab_users (0);
3055 }
3056 \f
3057 /* OVERLAYS:
3058 The following code implements an abstraction for debugging overlay sections.
3059
3060 The target model is as follows:
3061 1) The gnu linker will permit multiple sections to be mapped into the
3062 same VMA, each with its own unique LMA (or load address).
3063 2) It is assumed that some runtime mechanism exists for mapping the
3064 sections, one by one, from the load address into the VMA address.
3065 3) This code provides a mechanism for gdb to keep track of which
3066 sections should be considered to be mapped from the VMA to the LMA.
3067 This information is used for symbol lookup, and memory read/write.
3068 For instance, if a section has been mapped then its contents
3069 should be read from the VMA, otherwise from the LMA.
3070
3071 Two levels of debugger support for overlays are available. One is
3072 "manual", in which the debugger relies on the user to tell it which
3073 overlays are currently mapped. This level of support is
3074 implemented entirely in the core debugger, and the information about
3075 whether a section is mapped is kept in the objfile->obj_section table.
3076
3077 The second level of support is "automatic", and is only available if
3078 the target-specific code provides functionality to read the target's
3079 overlay mapping table, and translate its contents for the debugger
3080 (by updating the mapped state information in the obj_section tables).
3081
3082 The interface is as follows:
3083 User commands:
3084 overlay map <name> -- tell gdb to consider this section mapped
3085 overlay unmap <name> -- tell gdb to consider this section unmapped
3086 overlay list -- list the sections that GDB thinks are mapped
3087 overlay read-target -- get the target's state of what's mapped
3088 overlay off/manual/auto -- set overlay debugging state
3089 Functional interface:
3090 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3091 section, return that section.
3092 find_pc_overlay(pc): find any overlay section that contains
3093 the pc, either in its VMA or its LMA
3094 section_is_mapped(sect): true if overlay is marked as mapped
3095 section_is_overlay(sect): true if section's VMA != LMA
3096 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3097 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3098 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3099 overlay_mapped_address(...): map an address from section's LMA to VMA
3100 overlay_unmapped_address(...): map an address from section's VMA to LMA
3101 symbol_overlayed_address(...): Return a "current" address for symbol:
3102 either in VMA or LMA depending on whether
3103 the symbol's section is currently mapped. */
3104
3105 /* Overlay debugging state: */
3106
3107 enum overlay_debugging_state overlay_debugging = ovly_off;
3108 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3109
3110 /* Function: section_is_overlay (SECTION)
3111 Returns true if SECTION has VMA not equal to LMA, ie.
3112 SECTION is loaded at an address different from where it will "run". */
3113
3114 int
3115 section_is_overlay (struct obj_section *section)
3116 {
3117 if (overlay_debugging && section)
3118 {
3119 bfd *abfd = section->objfile->obfd;
3120 asection *bfd_section = section->the_bfd_section;
3121
3122 if (bfd_section_lma (abfd, bfd_section) != 0
3123 && bfd_section_lma (abfd, bfd_section)
3124 != bfd_section_vma (abfd, bfd_section))
3125 return 1;
3126 }
3127
3128 return 0;
3129 }
3130
3131 /* Function: overlay_invalidate_all (void)
3132 Invalidate the mapped state of all overlay sections (mark it as stale). */
3133
3134 static void
3135 overlay_invalidate_all (void)
3136 {
3137 struct objfile *objfile;
3138 struct obj_section *sect;
3139
3140 ALL_OBJSECTIONS (objfile, sect)
3141 if (section_is_overlay (sect))
3142 sect->ovly_mapped = -1;
3143 }
3144
3145 /* Function: section_is_mapped (SECTION)
3146 Returns true if section is an overlay, and is currently mapped.
3147
3148 Access to the ovly_mapped flag is restricted to this function, so
3149 that we can do automatic update. If the global flag
3150 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3151 overlay_invalidate_all. If the mapped state of the particular
3152 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3153
3154 int
3155 section_is_mapped (struct obj_section *osect)
3156 {
3157 struct gdbarch *gdbarch;
3158
3159 if (osect == 0 || !section_is_overlay (osect))
3160 return 0;
3161
3162 switch (overlay_debugging)
3163 {
3164 default:
3165 case ovly_off:
3166 return 0; /* overlay debugging off */
3167 case ovly_auto: /* overlay debugging automatic */
3168 /* Unles there is a gdbarch_overlay_update function,
3169 there's really nothing useful to do here (can't really go auto). */
3170 gdbarch = get_objfile_arch (osect->objfile);
3171 if (gdbarch_overlay_update_p (gdbarch))
3172 {
3173 if (overlay_cache_invalid)
3174 {
3175 overlay_invalidate_all ();
3176 overlay_cache_invalid = 0;
3177 }
3178 if (osect->ovly_mapped == -1)
3179 gdbarch_overlay_update (gdbarch, osect);
3180 }
3181 /* fall thru to manual case */
3182 case ovly_on: /* overlay debugging manual */
3183 return osect->ovly_mapped == 1;
3184 }
3185 }
3186
3187 /* Function: pc_in_unmapped_range
3188 If PC falls into the lma range of SECTION, return true, else false. */
3189
3190 CORE_ADDR
3191 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3192 {
3193 if (section_is_overlay (section))
3194 {
3195 bfd *abfd = section->objfile->obfd;
3196 asection *bfd_section = section->the_bfd_section;
3197
3198 /* We assume the LMA is relocated by the same offset as the VMA. */
3199 bfd_vma size = bfd_get_section_size (bfd_section);
3200 CORE_ADDR offset = obj_section_offset (section);
3201
3202 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3203 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3204 return 1;
3205 }
3206
3207 return 0;
3208 }
3209
3210 /* Function: pc_in_mapped_range
3211 If PC falls into the vma range of SECTION, return true, else false. */
3212
3213 CORE_ADDR
3214 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3215 {
3216 if (section_is_overlay (section))
3217 {
3218 if (obj_section_addr (section) <= pc
3219 && pc < obj_section_endaddr (section))
3220 return 1;
3221 }
3222
3223 return 0;
3224 }
3225
3226 /* Return true if the mapped ranges of sections A and B overlap, false
3227 otherwise. */
3228
3229 static int
3230 sections_overlap (struct obj_section *a, struct obj_section *b)
3231 {
3232 CORE_ADDR a_start = obj_section_addr (a);
3233 CORE_ADDR a_end = obj_section_endaddr (a);
3234 CORE_ADDR b_start = obj_section_addr (b);
3235 CORE_ADDR b_end = obj_section_endaddr (b);
3236
3237 return (a_start < b_end && b_start < a_end);
3238 }
3239
3240 /* Function: overlay_unmapped_address (PC, SECTION)
3241 Returns the address corresponding to PC in the unmapped (load) range.
3242 May be the same as PC. */
3243
3244 CORE_ADDR
3245 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3246 {
3247 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3248 {
3249 bfd *abfd = section->objfile->obfd;
3250 asection *bfd_section = section->the_bfd_section;
3251
3252 return pc + bfd_section_lma (abfd, bfd_section)
3253 - bfd_section_vma (abfd, bfd_section);
3254 }
3255
3256 return pc;
3257 }
3258
3259 /* Function: overlay_mapped_address (PC, SECTION)
3260 Returns the address corresponding to PC in the mapped (runtime) range.
3261 May be the same as PC. */
3262
3263 CORE_ADDR
3264 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3265 {
3266 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3267 {
3268 bfd *abfd = section->objfile->obfd;
3269 asection *bfd_section = section->the_bfd_section;
3270
3271 return pc + bfd_section_vma (abfd, bfd_section)
3272 - bfd_section_lma (abfd, bfd_section);
3273 }
3274
3275 return pc;
3276 }
3277
3278 /* Function: symbol_overlayed_address
3279 Return one of two addresses (relative to the VMA or to the LMA),
3280 depending on whether the section is mapped or not. */
3281
3282 CORE_ADDR
3283 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3284 {
3285 if (overlay_debugging)
3286 {
3287 /* If the symbol has no section, just return its regular address. */
3288 if (section == 0)
3289 return address;
3290 /* If the symbol's section is not an overlay, just return its
3291 address. */
3292 if (!section_is_overlay (section))
3293 return address;
3294 /* If the symbol's section is mapped, just return its address. */
3295 if (section_is_mapped (section))
3296 return address;
3297 /*
3298 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3299 * then return its LOADED address rather than its vma address!!
3300 */
3301 return overlay_unmapped_address (address, section);
3302 }
3303 return address;
3304 }
3305
3306 /* Function: find_pc_overlay (PC)
3307 Return the best-match overlay section for PC:
3308 If PC matches a mapped overlay section's VMA, return that section.
3309 Else if PC matches an unmapped section's VMA, return that section.
3310 Else if PC matches an unmapped section's LMA, return that section. */
3311
3312 struct obj_section *
3313 find_pc_overlay (CORE_ADDR pc)
3314 {
3315 struct objfile *objfile;
3316 struct obj_section *osect, *best_match = NULL;
3317
3318 if (overlay_debugging)
3319 ALL_OBJSECTIONS (objfile, osect)
3320 if (section_is_overlay (osect))
3321 {
3322 if (pc_in_mapped_range (pc, osect))
3323 {
3324 if (section_is_mapped (osect))
3325 return osect;
3326 else
3327 best_match = osect;
3328 }
3329 else if (pc_in_unmapped_range (pc, osect))
3330 best_match = osect;
3331 }
3332 return best_match;
3333 }
3334
3335 /* Function: find_pc_mapped_section (PC)
3336 If PC falls into the VMA address range of an overlay section that is
3337 currently marked as MAPPED, return that section. Else return NULL. */
3338
3339 struct obj_section *
3340 find_pc_mapped_section (CORE_ADDR pc)
3341 {
3342 struct objfile *objfile;
3343 struct obj_section *osect;
3344
3345 if (overlay_debugging)
3346 ALL_OBJSECTIONS (objfile, osect)
3347 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3348 return osect;
3349
3350 return NULL;
3351 }
3352
3353 /* Function: list_overlays_command
3354 Print a list of mapped sections and their PC ranges. */
3355
3356 static void
3357 list_overlays_command (char *args, int from_tty)
3358 {
3359 int nmapped = 0;
3360 struct objfile *objfile;
3361 struct obj_section *osect;
3362
3363 if (overlay_debugging)
3364 ALL_OBJSECTIONS (objfile, osect)
3365 if (section_is_mapped (osect))
3366 {
3367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3368 const char *name;
3369 bfd_vma lma, vma;
3370 int size;
3371
3372 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3373 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3374 size = bfd_get_section_size (osect->the_bfd_section);
3375 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3376
3377 printf_filtered ("Section %s, loaded at ", name);
3378 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3379 puts_filtered (" - ");
3380 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3381 printf_filtered (", mapped at ");
3382 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3383 puts_filtered (" - ");
3384 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3385 puts_filtered ("\n");
3386
3387 nmapped++;
3388 }
3389 if (nmapped == 0)
3390 printf_filtered (_("No sections are mapped.\n"));
3391 }
3392
3393 /* Function: map_overlay_command
3394 Mark the named section as mapped (ie. residing at its VMA address). */
3395
3396 static void
3397 map_overlay_command (char *args, int from_tty)
3398 {
3399 struct objfile *objfile, *objfile2;
3400 struct obj_section *sec, *sec2;
3401
3402 if (!overlay_debugging)
3403 error (_("Overlay debugging not enabled. Use "
3404 "either the 'overlay auto' or\n"
3405 "the 'overlay manual' command."));
3406
3407 if (args == 0 || *args == 0)
3408 error (_("Argument required: name of an overlay section"));
3409
3410 /* First, find a section matching the user supplied argument. */
3411 ALL_OBJSECTIONS (objfile, sec)
3412 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3413 {
3414 /* Now, check to see if the section is an overlay. */
3415 if (!section_is_overlay (sec))
3416 continue; /* not an overlay section */
3417
3418 /* Mark the overlay as "mapped". */
3419 sec->ovly_mapped = 1;
3420
3421 /* Next, make a pass and unmap any sections that are
3422 overlapped by this new section: */
3423 ALL_OBJSECTIONS (objfile2, sec2)
3424 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3425 {
3426 if (info_verbose)
3427 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3428 bfd_section_name (objfile->obfd,
3429 sec2->the_bfd_section));
3430 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3431 }
3432 return;
3433 }
3434 error (_("No overlay section called %s"), args);
3435 }
3436
3437 /* Function: unmap_overlay_command
3438 Mark the overlay section as unmapped
3439 (ie. resident in its LMA address range, rather than the VMA range). */
3440
3441 static void
3442 unmap_overlay_command (char *args, int from_tty)
3443 {
3444 struct objfile *objfile;
3445 struct obj_section *sec = NULL;
3446
3447 if (!overlay_debugging)
3448 error (_("Overlay debugging not enabled. "
3449 "Use either the 'overlay auto' or\n"
3450 "the 'overlay manual' command."));
3451
3452 if (args == 0 || *args == 0)
3453 error (_("Argument required: name of an overlay section"));
3454
3455 /* First, find a section matching the user supplied argument. */
3456 ALL_OBJSECTIONS (objfile, sec)
3457 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3458 {
3459 if (!sec->ovly_mapped)
3460 error (_("Section %s is not mapped"), args);
3461 sec->ovly_mapped = 0;
3462 return;
3463 }
3464 error (_("No overlay section called %s"), args);
3465 }
3466
3467 /* Function: overlay_auto_command
3468 A utility command to turn on overlay debugging.
3469 Possibly this should be done via a set/show command. */
3470
3471 static void
3472 overlay_auto_command (char *args, int from_tty)
3473 {
3474 overlay_debugging = ovly_auto;
3475 enable_overlay_breakpoints ();
3476 if (info_verbose)
3477 printf_unfiltered (_("Automatic overlay debugging enabled."));
3478 }
3479
3480 /* Function: overlay_manual_command
3481 A utility command to turn on overlay debugging.
3482 Possibly this should be done via a set/show command. */
3483
3484 static void
3485 overlay_manual_command (char *args, int from_tty)
3486 {
3487 overlay_debugging = ovly_on;
3488 disable_overlay_breakpoints ();
3489 if (info_verbose)
3490 printf_unfiltered (_("Overlay debugging enabled."));
3491 }
3492
3493 /* Function: overlay_off_command
3494 A utility command to turn on overlay debugging.
3495 Possibly this should be done via a set/show command. */
3496
3497 static void
3498 overlay_off_command (char *args, int from_tty)
3499 {
3500 overlay_debugging = ovly_off;
3501 disable_overlay_breakpoints ();
3502 if (info_verbose)
3503 printf_unfiltered (_("Overlay debugging disabled."));
3504 }
3505
3506 static void
3507 overlay_load_command (char *args, int from_tty)
3508 {
3509 struct gdbarch *gdbarch = get_current_arch ();
3510
3511 if (gdbarch_overlay_update_p (gdbarch))
3512 gdbarch_overlay_update (gdbarch, NULL);
3513 else
3514 error (_("This target does not know how to read its overlay state."));
3515 }
3516
3517 /* Function: overlay_command
3518 A place-holder for a mis-typed command. */
3519
3520 /* Command list chain containing all defined "overlay" subcommands. */
3521 static struct cmd_list_element *overlaylist;
3522
3523 static void
3524 overlay_command (char *args, int from_tty)
3525 {
3526 printf_unfiltered
3527 ("\"overlay\" must be followed by the name of an overlay command.\n");
3528 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3529 }
3530
3531 /* Target Overlays for the "Simplest" overlay manager:
3532
3533 This is GDB's default target overlay layer. It works with the
3534 minimal overlay manager supplied as an example by Cygnus. The
3535 entry point is via a function pointer "gdbarch_overlay_update",
3536 so targets that use a different runtime overlay manager can
3537 substitute their own overlay_update function and take over the
3538 function pointer.
3539
3540 The overlay_update function pokes around in the target's data structures
3541 to see what overlays are mapped, and updates GDB's overlay mapping with
3542 this information.
3543
3544 In this simple implementation, the target data structures are as follows:
3545 unsigned _novlys; /# number of overlay sections #/
3546 unsigned _ovly_table[_novlys][4] = {
3547 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3548 {..., ..., ..., ...},
3549 }
3550 unsigned _novly_regions; /# number of overlay regions #/
3551 unsigned _ovly_region_table[_novly_regions][3] = {
3552 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3553 {..., ..., ...},
3554 }
3555 These functions will attempt to update GDB's mappedness state in the
3556 symbol section table, based on the target's mappedness state.
3557
3558 To do this, we keep a cached copy of the target's _ovly_table, and
3559 attempt to detect when the cached copy is invalidated. The main
3560 entry point is "simple_overlay_update(SECT), which looks up SECT in
3561 the cached table and re-reads only the entry for that section from
3562 the target (whenever possible). */
3563
3564 /* Cached, dynamically allocated copies of the target data structures: */
3565 static unsigned (*cache_ovly_table)[4] = 0;
3566 static unsigned cache_novlys = 0;
3567 static CORE_ADDR cache_ovly_table_base = 0;
3568 enum ovly_index
3569 {
3570 VMA, SIZE, LMA, MAPPED
3571 };
3572
3573 /* Throw away the cached copy of _ovly_table. */
3574
3575 static void
3576 simple_free_overlay_table (void)
3577 {
3578 if (cache_ovly_table)
3579 xfree (cache_ovly_table);
3580 cache_novlys = 0;
3581 cache_ovly_table = NULL;
3582 cache_ovly_table_base = 0;
3583 }
3584
3585 /* Read an array of ints of size SIZE from the target into a local buffer.
3586 Convert to host order. int LEN is number of ints. */
3587
3588 static void
3589 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3590 int len, int size, enum bfd_endian byte_order)
3591 {
3592 /* FIXME (alloca): Not safe if array is very large. */
3593 gdb_byte *buf = alloca (len * size);
3594 int i;
3595
3596 read_memory (memaddr, buf, len * size);
3597 for (i = 0; i < len; i++)
3598 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3599 }
3600
3601 /* Find and grab a copy of the target _ovly_table
3602 (and _novlys, which is needed for the table's size). */
3603
3604 static int
3605 simple_read_overlay_table (void)
3606 {
3607 struct bound_minimal_symbol novlys_msym;
3608 struct bound_minimal_symbol ovly_table_msym;
3609 struct gdbarch *gdbarch;
3610 int word_size;
3611 enum bfd_endian byte_order;
3612
3613 simple_free_overlay_table ();
3614 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3615 if (! novlys_msym.minsym)
3616 {
3617 error (_("Error reading inferior's overlay table: "
3618 "couldn't find `_novlys' variable\n"
3619 "in inferior. Use `overlay manual' mode."));
3620 return 0;
3621 }
3622
3623 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3624 if (! ovly_table_msym.minsym)
3625 {
3626 error (_("Error reading inferior's overlay table: couldn't find "
3627 "`_ovly_table' array\n"
3628 "in inferior. Use `overlay manual' mode."));
3629 return 0;
3630 }
3631
3632 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3633 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3634 byte_order = gdbarch_byte_order (gdbarch);
3635
3636 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3637 4, byte_order);
3638 cache_ovly_table
3639 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3640 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3641 read_target_long_array (cache_ovly_table_base,
3642 (unsigned int *) cache_ovly_table,
3643 cache_novlys * 4, word_size, byte_order);
3644
3645 return 1; /* SUCCESS */
3646 }
3647
3648 /* Function: simple_overlay_update_1
3649 A helper function for simple_overlay_update. Assuming a cached copy
3650 of _ovly_table exists, look through it to find an entry whose vma,
3651 lma and size match those of OSECT. Re-read the entry and make sure
3652 it still matches OSECT (else the table may no longer be valid).
3653 Set OSECT's mapped state to match the entry. Return: 1 for
3654 success, 0 for failure. */
3655
3656 static int
3657 simple_overlay_update_1 (struct obj_section *osect)
3658 {
3659 int i, size;
3660 bfd *obfd = osect->objfile->obfd;
3661 asection *bsect = osect->the_bfd_section;
3662 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3663 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3665
3666 size = bfd_get_section_size (osect->the_bfd_section);
3667 for (i = 0; i < cache_novlys; i++)
3668 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3669 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3670 /* && cache_ovly_table[i][SIZE] == size */ )
3671 {
3672 read_target_long_array (cache_ovly_table_base + i * word_size,
3673 (unsigned int *) cache_ovly_table[i],
3674 4, word_size, byte_order);
3675 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3676 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3677 /* && cache_ovly_table[i][SIZE] == size */ )
3678 {
3679 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3680 return 1;
3681 }
3682 else /* Warning! Warning! Target's ovly table has changed! */
3683 return 0;
3684 }
3685 return 0;
3686 }
3687
3688 /* Function: simple_overlay_update
3689 If OSECT is NULL, then update all sections' mapped state
3690 (after re-reading the entire target _ovly_table).
3691 If OSECT is non-NULL, then try to find a matching entry in the
3692 cached ovly_table and update only OSECT's mapped state.
3693 If a cached entry can't be found or the cache isn't valid, then
3694 re-read the entire cache, and go ahead and update all sections. */
3695
3696 void
3697 simple_overlay_update (struct obj_section *osect)
3698 {
3699 struct objfile *objfile;
3700
3701 /* Were we given an osect to look up? NULL means do all of them. */
3702 if (osect)
3703 /* Have we got a cached copy of the target's overlay table? */
3704 if (cache_ovly_table != NULL)
3705 {
3706 /* Does its cached location match what's currently in the
3707 symtab? */
3708 struct bound_minimal_symbol minsym
3709 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3710
3711 if (minsym.minsym == NULL)
3712 error (_("Error reading inferior's overlay table: couldn't "
3713 "find `_ovly_table' array\n"
3714 "in inferior. Use `overlay manual' mode."));
3715
3716 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3717 /* Then go ahead and try to look up this single section in
3718 the cache. */
3719 if (simple_overlay_update_1 (osect))
3720 /* Found it! We're done. */
3721 return;
3722 }
3723
3724 /* Cached table no good: need to read the entire table anew.
3725 Or else we want all the sections, in which case it's actually
3726 more efficient to read the whole table in one block anyway. */
3727
3728 if (! simple_read_overlay_table ())
3729 return;
3730
3731 /* Now may as well update all sections, even if only one was requested. */
3732 ALL_OBJSECTIONS (objfile, osect)
3733 if (section_is_overlay (osect))
3734 {
3735 int i, size;
3736 bfd *obfd = osect->objfile->obfd;
3737 asection *bsect = osect->the_bfd_section;
3738
3739 size = bfd_get_section_size (bsect);
3740 for (i = 0; i < cache_novlys; i++)
3741 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3742 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3743 /* && cache_ovly_table[i][SIZE] == size */ )
3744 { /* obj_section matches i'th entry in ovly_table. */
3745 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3746 break; /* finished with inner for loop: break out. */
3747 }
3748 }
3749 }
3750
3751 /* Set the output sections and output offsets for section SECTP in
3752 ABFD. The relocation code in BFD will read these offsets, so we
3753 need to be sure they're initialized. We map each section to itself,
3754 with no offset; this means that SECTP->vma will be honored. */
3755
3756 static void
3757 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3758 {
3759 sectp->output_section = sectp;
3760 sectp->output_offset = 0;
3761 }
3762
3763 /* Default implementation for sym_relocate. */
3764
3765 bfd_byte *
3766 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3767 bfd_byte *buf)
3768 {
3769 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3770 DWO file. */
3771 bfd *abfd = sectp->owner;
3772
3773 /* We're only interested in sections with relocation
3774 information. */
3775 if ((sectp->flags & SEC_RELOC) == 0)
3776 return NULL;
3777
3778 /* We will handle section offsets properly elsewhere, so relocate as if
3779 all sections begin at 0. */
3780 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3781
3782 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3783 }
3784
3785 /* Relocate the contents of a debug section SECTP in ABFD. The
3786 contents are stored in BUF if it is non-NULL, or returned in a
3787 malloc'd buffer otherwise.
3788
3789 For some platforms and debug info formats, shared libraries contain
3790 relocations against the debug sections (particularly for DWARF-2;
3791 one affected platform is PowerPC GNU/Linux, although it depends on
3792 the version of the linker in use). Also, ELF object files naturally
3793 have unresolved relocations for their debug sections. We need to apply
3794 the relocations in order to get the locations of symbols correct.
3795 Another example that may require relocation processing, is the
3796 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3797 debug section. */
3798
3799 bfd_byte *
3800 symfile_relocate_debug_section (struct objfile *objfile,
3801 asection *sectp, bfd_byte *buf)
3802 {
3803 gdb_assert (objfile->sf->sym_relocate);
3804
3805 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3806 }
3807
3808 struct symfile_segment_data *
3809 get_symfile_segment_data (bfd *abfd)
3810 {
3811 const struct sym_fns *sf = find_sym_fns (abfd);
3812
3813 if (sf == NULL)
3814 return NULL;
3815
3816 return sf->sym_segments (abfd);
3817 }
3818
3819 void
3820 free_symfile_segment_data (struct symfile_segment_data *data)
3821 {
3822 xfree (data->segment_bases);
3823 xfree (data->segment_sizes);
3824 xfree (data->segment_info);
3825 xfree (data);
3826 }
3827
3828 /* Given:
3829 - DATA, containing segment addresses from the object file ABFD, and
3830 the mapping from ABFD's sections onto the segments that own them,
3831 and
3832 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3833 segment addresses reported by the target,
3834 store the appropriate offsets for each section in OFFSETS.
3835
3836 If there are fewer entries in SEGMENT_BASES than there are segments
3837 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3838
3839 If there are more entries, then ignore the extra. The target may
3840 not be able to distinguish between an empty data segment and a
3841 missing data segment; a missing text segment is less plausible. */
3842
3843 int
3844 symfile_map_offsets_to_segments (bfd *abfd,
3845 const struct symfile_segment_data *data,
3846 struct section_offsets *offsets,
3847 int num_segment_bases,
3848 const CORE_ADDR *segment_bases)
3849 {
3850 int i;
3851 asection *sect;
3852
3853 /* It doesn't make sense to call this function unless you have some
3854 segment base addresses. */
3855 gdb_assert (num_segment_bases > 0);
3856
3857 /* If we do not have segment mappings for the object file, we
3858 can not relocate it by segments. */
3859 gdb_assert (data != NULL);
3860 gdb_assert (data->num_segments > 0);
3861
3862 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3863 {
3864 int which = data->segment_info[i];
3865
3866 gdb_assert (0 <= which && which <= data->num_segments);
3867
3868 /* Don't bother computing offsets for sections that aren't
3869 loaded as part of any segment. */
3870 if (! which)
3871 continue;
3872
3873 /* Use the last SEGMENT_BASES entry as the address of any extra
3874 segments mentioned in DATA->segment_info. */
3875 if (which > num_segment_bases)
3876 which = num_segment_bases;
3877
3878 offsets->offsets[i] = (segment_bases[which - 1]
3879 - data->segment_bases[which - 1]);
3880 }
3881
3882 return 1;
3883 }
3884
3885 static void
3886 symfile_find_segment_sections (struct objfile *objfile)
3887 {
3888 bfd *abfd = objfile->obfd;
3889 int i;
3890 asection *sect;
3891 struct symfile_segment_data *data;
3892
3893 data = get_symfile_segment_data (objfile->obfd);
3894 if (data == NULL)
3895 return;
3896
3897 if (data->num_segments != 1 && data->num_segments != 2)
3898 {
3899 free_symfile_segment_data (data);
3900 return;
3901 }
3902
3903 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3904 {
3905 int which = data->segment_info[i];
3906
3907 if (which == 1)
3908 {
3909 if (objfile->sect_index_text == -1)
3910 objfile->sect_index_text = sect->index;
3911
3912 if (objfile->sect_index_rodata == -1)
3913 objfile->sect_index_rodata = sect->index;
3914 }
3915 else if (which == 2)
3916 {
3917 if (objfile->sect_index_data == -1)
3918 objfile->sect_index_data = sect->index;
3919
3920 if (objfile->sect_index_bss == -1)
3921 objfile->sect_index_bss = sect->index;
3922 }
3923 }
3924
3925 free_symfile_segment_data (data);
3926 }
3927
3928 /* Listen for free_objfile events. */
3929
3930 static void
3931 symfile_free_objfile (struct objfile *objfile)
3932 {
3933 /* Remove the target sections owned by this objfile. */
3934 if (objfile != NULL)
3935 remove_target_sections ((void *) objfile);
3936 }
3937
3938 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3939 Expand all symtabs that match the specified criteria.
3940 See quick_symbol_functions.expand_symtabs_matching for details. */
3941
3942 void
3943 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3944 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3945 expand_symtabs_exp_notify_ftype *expansion_notify,
3946 enum search_domain kind,
3947 void *data)
3948 {
3949 struct objfile *objfile;
3950
3951 ALL_OBJFILES (objfile)
3952 {
3953 if (objfile->sf)
3954 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3955 symbol_matcher,
3956 expansion_notify, kind,
3957 data);
3958 }
3959 }
3960
3961 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3962 Map function FUN over every file.
3963 See quick_symbol_functions.map_symbol_filenames for details. */
3964
3965 void
3966 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3967 int need_fullname)
3968 {
3969 struct objfile *objfile;
3970
3971 ALL_OBJFILES (objfile)
3972 {
3973 if (objfile->sf)
3974 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3975 need_fullname);
3976 }
3977 }
3978
3979 void
3980 _initialize_symfile (void)
3981 {
3982 struct cmd_list_element *c;
3983
3984 observer_attach_free_objfile (symfile_free_objfile);
3985
3986 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3987 Load symbol table from executable file FILE.\n\
3988 The `file' command can also load symbol tables, as well as setting the file\n\
3989 to execute."), &cmdlist);
3990 set_cmd_completer (c, filename_completer);
3991
3992 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3993 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3994 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3995 ...]\nADDR is the starting address of the file's text.\n\
3996 The optional arguments are section-name section-address pairs and\n\
3997 should be specified if the data and bss segments are not contiguous\n\
3998 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3999 &cmdlist);
4000 set_cmd_completer (c, filename_completer);
4001
4002 c = add_cmd ("remove-symbol-file", class_files,
4003 remove_symbol_file_command, _("\
4004 Remove a symbol file added via the add-symbol-file command.\n\
4005 Usage: remove-symbol-file FILENAME\n\
4006 remove-symbol-file -a ADDRESS\n\
4007 The file to remove can be identified by its filename or by an address\n\
4008 that lies within the boundaries of this symbol file in memory."),
4009 &cmdlist);
4010
4011 c = add_cmd ("load", class_files, load_command, _("\
4012 Dynamically load FILE into the running program, and record its symbols\n\
4013 for access from GDB.\n\
4014 A load OFFSET may also be given."), &cmdlist);
4015 set_cmd_completer (c, filename_completer);
4016
4017 add_prefix_cmd ("overlay", class_support, overlay_command,
4018 _("Commands for debugging overlays."), &overlaylist,
4019 "overlay ", 0, &cmdlist);
4020
4021 add_com_alias ("ovly", "overlay", class_alias, 1);
4022 add_com_alias ("ov", "overlay", class_alias, 1);
4023
4024 add_cmd ("map-overlay", class_support, map_overlay_command,
4025 _("Assert that an overlay section is mapped."), &overlaylist);
4026
4027 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4028 _("Assert that an overlay section is unmapped."), &overlaylist);
4029
4030 add_cmd ("list-overlays", class_support, list_overlays_command,
4031 _("List mappings of overlay sections."), &overlaylist);
4032
4033 add_cmd ("manual", class_support, overlay_manual_command,
4034 _("Enable overlay debugging."), &overlaylist);
4035 add_cmd ("off", class_support, overlay_off_command,
4036 _("Disable overlay debugging."), &overlaylist);
4037 add_cmd ("auto", class_support, overlay_auto_command,
4038 _("Enable automatic overlay debugging."), &overlaylist);
4039 add_cmd ("load-target", class_support, overlay_load_command,
4040 _("Read the overlay mapping state from the target."), &overlaylist);
4041
4042 /* Filename extension to source language lookup table: */
4043 init_filename_language_table ();
4044 add_setshow_string_noescape_cmd ("extension-language", class_files,
4045 &ext_args, _("\
4046 Set mapping between filename extension and source language."), _("\
4047 Show mapping between filename extension and source language."), _("\
4048 Usage: set extension-language .foo bar"),
4049 set_ext_lang_command,
4050 show_ext_args,
4051 &setlist, &showlist);
4052
4053 add_info ("extensions", info_ext_lang_command,
4054 _("All filename extensions associated with a source language."));
4055
4056 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4057 &debug_file_directory, _("\
4058 Set the directories where separate debug symbols are searched for."), _("\
4059 Show the directories where separate debug symbols are searched for."), _("\
4060 Separate debug symbols are first searched for in the same\n\
4061 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4062 and lastly at the path of the directory of the binary with\n\
4063 each global debug-file-directory component prepended."),
4064 NULL,
4065 show_debug_file_directory,
4066 &setlist, &showlist);
4067
4068 add_setshow_enum_cmd ("symbol-loading", no_class,
4069 print_symbol_loading_enums, &print_symbol_loading,
4070 _("\
4071 Set printing of symbol loading messages."), _("\
4072 Show printing of symbol loading messages."), _("\
4073 off == turn all messages off\n\
4074 brief == print messages for the executable,\n\
4075 and brief messages for shared libraries\n\
4076 full == print messages for the executable,\n\
4077 and messages for each shared library."),
4078 NULL,
4079 NULL,
4080 &setprintlist, &showprintlist);
4081 }
This page took 0.129326 seconds and 5 git commands to generate.