gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
367 {
368 struct section_addr_info *sap;
369 const struct target_section *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
464 }
465
466 /* The arguments to place_section. */
467
468 struct place_section_arg
469 {
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472 };
473
474 /* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
477 static void
478 place_section (bfd *abfd, asection *sect, void *obj)
479 {
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
484
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
494 start_addr = (arg->lowest + align - 1) & -align;
495
496 do {
497 asection *cur_sec;
498
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 break;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
637 offsets[cur_sec->index] = 0;
638 }
639 }
640 }
641
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645 }
646
647
648 /* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654 struct symfile_segment_data *
655 default_symfile_segments (bfd *abfd)
656 {
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710 }
711
712 /* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
715 OBJFILE is where the symbols are to be read from.
716
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
737
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
741
742 void
743 syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
747 int add_flags)
748 {
749 struct section_addr_info *local_addr = NULL;
750 struct cleanup *old_chain;
751 const int mainline = add_flags & SYMFILE_MAINLINE;
752
753 gdb_assert (! (addrs && offsets));
754
755 init_entry_point_info (objfile);
756 objfile->sf = find_sym_fns (objfile->obfd);
757
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
763 old_chain = make_cleanup_free_objfile (objfile);
764
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
770 local_addr
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
778 if (mainline)
779 {
780 /* We will modify the main symbol table, make sure that all its users
781 will be cleaned up if an error occurs during symbol reading. */
782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
789 gdb_assert (symfile_objfile == NULL);
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
796
797 (*objfile->sf->sym_new_init) (objfile);
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
802 and assume that <addr> is where that got loaded.
803
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
806 if (!mainline && addrs && addrs->other[0].name)
807 {
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
813 /* Find lowest loadable section to be used as starting point for
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
819 &lower_sect);
820 if (lower_sect == NULL)
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
826 else
827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
828
829 /* Calculate offsets for the loadable sections.
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
832
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
855 warning (_("section %s not found in %s"),
856 addrs->other[i].name,
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
870 (*objfile->sf->sym_init) (objfile);
871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
872
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
883 obstack_alloc (&objfile->objfile_obstack, size));
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
888
889 (*objfile->sf->sym_read) (objfile, mainline);
890
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
894 xfree (local_addr);
895 }
896
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
900
901 void
902 new_symfile_objfile (struct objfile *objfile, int add_flags)
903 {
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
908 if (add_flags & SYMFILE_MAINLINE)
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
916 {
917 breakpoint_re_set ();
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
922 }
923
924 /* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
929
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
936
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
939
940 static struct objfile *
941 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int flags)
947 {
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
950 char *debugfile = NULL;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
954 const int from_tty = add_flags & SYMFILE_VERBOSE;
955
956 my_cleanups = make_cleanup_bfd_close (abfd);
957
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
960
961 if ((have_full_symbols () || have_partial_symbols ())
962 && (add_flags & SYMFILE_MAINLINE)
963 && from_tty
964 && !query (_("Load new symbol table from \"%s\"? "), name))
965 error (_("Not confirmed."));
966
967 objfile = allocate_objfile (abfd, flags);
968 discard_cleanups (my_cleanups);
969
970 if (addrs)
971 {
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
974 }
975
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
980 {
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
983 else
984 {
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
988 }
989 }
990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
991 add_flags);
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 {
1000 if (from_tty || info_verbose)
1001 {
1002 printf_unfiltered (_("expanding to full symbols..."));
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
1007 for (psymtab = objfile->psymtabs;
1008 psymtab != NULL;
1009 psymtab = psymtab->next)
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
1020 if (debugfile)
1021 {
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
1034
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
1038
1039 xfree (debugfile);
1040 }
1041
1042 if ((from_tty || info_verbose)
1043 && !objfile_has_symbols (objfile))
1044 {
1045 wrap_here ("");
1046 printf_unfiltered (_("(no debugging symbols found)..."));
1047 wrap_here ("");
1048 }
1049
1050 if (from_tty || info_verbose)
1051 {
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
1054 else
1055 printf_unfiltered (_("done.\n"));
1056 }
1057
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (my_cleanups);
1064
1065 if (objfile->sf == NULL)
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
1070
1071 new_symfile_objfile (objfile, add_flags);
1072
1073 observer_notify_new_objfile (objfile);
1074
1075 bfd_cache_close_all ();
1076 return (objfile);
1077 }
1078
1079
1080 /* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085 struct objfile *
1086 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1087 struct section_addr_info *addrs,
1088 int flags)
1089 {
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
1092 }
1093
1094
1095 /* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098 struct objfile *
1099 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
1101 {
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
1104 }
1105
1106
1107 /* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
1114
1115 void
1116 symbol_file_add_main (char *args, int from_tty)
1117 {
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119 }
1120
1121 static void
1122 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123 {
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
1126
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1132 }
1133
1134 void
1135 symbol_file_clear (int from_tty)
1136 {
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
1143 error (_("Not confirmed."));
1144
1145 free_all_objfiles ();
1146
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
1152 gdb_assert (symfile_objfile == NULL);
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1155 }
1156
1157 struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165 static struct build_id *
1166 build_id_bfd_get (bfd *abfd)
1167 {
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180 }
1181
1182 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184 static int
1185 build_id_verify (const char *filename, struct build_id *check)
1186 {
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
1212
1213 xfree (found);
1214
1215 return retval;
1216 }
1217
1218 static char *
1219 build_id_to_debug_filename (struct build_id *build_id)
1220 {
1221 char *link, *s, *retval = NULL;
1222 gdb_byte *data = build_id->data;
1223 size_t size = build_id->size;
1224
1225 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1226 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1227 + 2 * size + (sizeof ".debug" - 1) + 1);
1228 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1229 if (size > 0)
1230 {
1231 size--;
1232 s += sprintf (s, "%02x", (unsigned) *data++);
1233 }
1234 if (size > 0)
1235 *s++ = '/';
1236 while (size-- > 0)
1237 s += sprintf (s, "%02x", (unsigned) *data++);
1238 strcpy (s, ".debug");
1239
1240 /* lrealpath() is expensive even for the usually non-existent files. */
1241 if (access (link, F_OK) == 0)
1242 retval = lrealpath (link);
1243 xfree (link);
1244
1245 if (retval != NULL && !build_id_verify (retval, build_id))
1246 {
1247 xfree (retval);
1248 retval = NULL;
1249 }
1250
1251 return retval;
1252 }
1253
1254 static char *
1255 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1256 {
1257 asection *sect;
1258 bfd_size_type debuglink_size;
1259 unsigned long crc32;
1260 char *contents;
1261 int crc_offset;
1262 unsigned char *p;
1263
1264 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1265
1266 if (sect == NULL)
1267 return NULL;
1268
1269 debuglink_size = bfd_section_size (objfile->obfd, sect);
1270
1271 contents = xmalloc (debuglink_size);
1272 bfd_get_section_contents (objfile->obfd, sect, contents,
1273 (file_ptr)0, (bfd_size_type)debuglink_size);
1274
1275 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1276 crc_offset = strlen (contents) + 1;
1277 crc_offset = (crc_offset + 3) & ~3;
1278
1279 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1280
1281 *crc32_out = crc32;
1282 return contents;
1283 }
1284
1285 static int
1286 separate_debug_file_exists (const char *name, unsigned long crc,
1287 const char *parent_name)
1288 {
1289 unsigned long file_crc = 0;
1290 bfd *abfd;
1291 gdb_byte buffer[8*1024];
1292 int count;
1293
1294 if (remote_filename_p (name))
1295 abfd = remote_bfd_open (name, gnutarget);
1296 else
1297 abfd = bfd_openr (name, gnutarget);
1298
1299 if (!abfd)
1300 return 0;
1301
1302 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1303 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1304
1305 bfd_close (abfd);
1306
1307 if (crc != file_crc)
1308 {
1309 warning (_("the debug information found in \"%s\""
1310 " does not match \"%s\" (CRC mismatch).\n"),
1311 name, parent_name);
1312 return 0;
1313 }
1314
1315 return 1;
1316 }
1317
1318 char *debug_file_directory = NULL;
1319 static void
1320 show_debug_file_directory (struct ui_file *file, int from_tty,
1321 struct cmd_list_element *c, const char *value)
1322 {
1323 fprintf_filtered (file, _("\
1324 The directory where separate debug symbols are searched for is \"%s\".\n"),
1325 value);
1326 }
1327
1328 #if ! defined (DEBUG_SUBDIRECTORY)
1329 #define DEBUG_SUBDIRECTORY ".debug"
1330 #endif
1331
1332 static char *
1333 find_separate_debug_file (struct objfile *objfile)
1334 {
1335 asection *sect;
1336 char *basename, *name_copy;
1337 char *dir = NULL;
1338 char *debugfile = NULL;
1339 char *canon_name = NULL;
1340 bfd_size_type debuglink_size;
1341 unsigned long crc32;
1342 int i;
1343 struct build_id *build_id;
1344
1345 build_id = build_id_bfd_get (objfile->obfd);
1346 if (build_id != NULL)
1347 {
1348 char *build_id_name;
1349
1350 build_id_name = build_id_to_debug_filename (build_id);
1351 xfree (build_id);
1352 /* Prevent looping on a stripped .debug file. */
1353 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1354 {
1355 warning (_("\"%s\": separate debug info file has no debug info"),
1356 build_id_name);
1357 xfree (build_id_name);
1358 }
1359 else if (build_id_name != NULL)
1360 return build_id_name;
1361 }
1362
1363 basename = get_debug_link_info (objfile, &crc32);
1364
1365 if (basename == NULL)
1366 /* There's no separate debug info, hence there's no way we could
1367 load it => no warning. */
1368 goto cleanup_return_debugfile;
1369
1370 dir = xstrdup (objfile->name);
1371
1372 /* Strip off the final filename part, leaving the directory name,
1373 followed by a slash. Objfile names should always be absolute and
1374 tilde-expanded, so there should always be a slash in there
1375 somewhere. */
1376 for (i = strlen(dir) - 1; i >= 0; i--)
1377 {
1378 if (IS_DIR_SEPARATOR (dir[i]))
1379 break;
1380 }
1381 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1382 dir[i+1] = '\0';
1383
1384 /* Set I to max (strlen (canon_name), strlen (dir)). */
1385 canon_name = lrealpath (dir);
1386 i = strlen (dir);
1387 if (canon_name && strlen (canon_name) > i)
1388 i = strlen (canon_name);
1389
1390 debugfile = xmalloc (strlen (debug_file_directory) + 1
1391 + i
1392 + strlen (DEBUG_SUBDIRECTORY)
1393 + strlen ("/")
1394 + strlen (basename)
1395 + 1);
1396
1397 /* First try in the same directory as the original file. */
1398 strcpy (debugfile, dir);
1399 strcat (debugfile, basename);
1400
1401 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1402 goto cleanup_return_debugfile;
1403
1404 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, DEBUG_SUBDIRECTORY);
1407 strcat (debugfile, "/");
1408 strcat (debugfile, basename);
1409
1410 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1411 goto cleanup_return_debugfile;
1412
1413 /* Then try in the global debugfile directory. */
1414 strcpy (debugfile, debug_file_directory);
1415 strcat (debugfile, "/");
1416 strcat (debugfile, dir);
1417 strcat (debugfile, basename);
1418
1419 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1420 goto cleanup_return_debugfile;
1421
1422 /* If the file is in the sysroot, try using its base path in the
1423 global debugfile directory. */
1424 if (canon_name
1425 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1426 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1427 {
1428 strcpy (debugfile, debug_file_directory);
1429 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1430 strcat (debugfile, "/");
1431 strcat (debugfile, basename);
1432
1433 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
1434 goto cleanup_return_debugfile;
1435 }
1436
1437 xfree (debugfile);
1438 debugfile = NULL;
1439
1440 cleanup_return_debugfile:
1441 xfree (canon_name);
1442 xfree (basename);
1443 xfree (dir);
1444 return debugfile;
1445 }
1446
1447
1448 /* This is the symbol-file command. Read the file, analyze its
1449 symbols, and add a struct symtab to a symtab list. The syntax of
1450 the command is rather bizarre:
1451
1452 1. The function buildargv implements various quoting conventions
1453 which are undocumented and have little or nothing in common with
1454 the way things are quoted (or not quoted) elsewhere in GDB.
1455
1456 2. Options are used, which are not generally used in GDB (perhaps
1457 "set mapped on", "set readnow on" would be better)
1458
1459 3. The order of options matters, which is contrary to GNU
1460 conventions (because it is confusing and inconvenient). */
1461
1462 void
1463 symbol_file_command (char *args, int from_tty)
1464 {
1465 dont_repeat ();
1466
1467 if (args == NULL)
1468 {
1469 symbol_file_clear (from_tty);
1470 }
1471 else
1472 {
1473 char **argv = gdb_buildargv (args);
1474 int flags = OBJF_USERLOADED;
1475 struct cleanup *cleanups;
1476 char *name = NULL;
1477
1478 cleanups = make_cleanup_freeargv (argv);
1479 while (*argv != NULL)
1480 {
1481 if (strcmp (*argv, "-readnow") == 0)
1482 flags |= OBJF_READNOW;
1483 else if (**argv == '-')
1484 error (_("unknown option `%s'"), *argv);
1485 else
1486 {
1487 symbol_file_add_main_1 (*argv, from_tty, flags);
1488 name = *argv;
1489 }
1490
1491 argv++;
1492 }
1493
1494 if (name == NULL)
1495 error (_("no symbol file name was specified"));
1496
1497 do_cleanups (cleanups);
1498 }
1499 }
1500
1501 /* Set the initial language.
1502
1503 FIXME: A better solution would be to record the language in the
1504 psymtab when reading partial symbols, and then use it (if known) to
1505 set the language. This would be a win for formats that encode the
1506 language in an easily discoverable place, such as DWARF. For
1507 stabs, we can jump through hoops looking for specially named
1508 symbols or try to intuit the language from the specific type of
1509 stabs we find, but we can't do that until later when we read in
1510 full symbols. */
1511
1512 void
1513 set_initial_language (void)
1514 {
1515 struct partial_symtab *pst;
1516 enum language lang = language_unknown;
1517
1518 pst = find_main_psymtab ();
1519 if (pst != NULL)
1520 {
1521 if (pst->filename != NULL)
1522 lang = deduce_language_from_filename (pst->filename);
1523
1524 if (lang == language_unknown)
1525 {
1526 /* Make C the default language */
1527 lang = language_c;
1528 }
1529
1530 set_language (lang);
1531 expected_language = current_language; /* Don't warn the user. */
1532 }
1533 }
1534
1535 /* Open the file specified by NAME and hand it off to BFD for
1536 preliminary analysis. Return a newly initialized bfd *, which
1537 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1538 absolute). In case of trouble, error() is called. */
1539
1540 bfd *
1541 symfile_bfd_open (char *name)
1542 {
1543 bfd *sym_bfd;
1544 int desc;
1545 char *absolute_name;
1546
1547 if (remote_filename_p (name))
1548 {
1549 name = xstrdup (name);
1550 sym_bfd = remote_bfd_open (name, gnutarget);
1551 if (!sym_bfd)
1552 {
1553 make_cleanup (xfree, name);
1554 error (_("`%s': can't open to read symbols: %s."), name,
1555 bfd_errmsg (bfd_get_error ()));
1556 }
1557
1558 if (!bfd_check_format (sym_bfd, bfd_object))
1559 {
1560 bfd_close (sym_bfd);
1561 make_cleanup (xfree, name);
1562 error (_("`%s': can't read symbols: %s."), name,
1563 bfd_errmsg (bfd_get_error ()));
1564 }
1565
1566 return sym_bfd;
1567 }
1568
1569 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1570
1571 /* Look down path for it, allocate 2nd new malloc'd copy. */
1572 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1573 O_RDONLY | O_BINARY, &absolute_name);
1574 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1575 if (desc < 0)
1576 {
1577 char *exename = alloca (strlen (name) + 5);
1578 strcat (strcpy (exename, name), ".exe");
1579 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1580 O_RDONLY | O_BINARY, &absolute_name);
1581 }
1582 #endif
1583 if (desc < 0)
1584 {
1585 make_cleanup (xfree, name);
1586 perror_with_name (name);
1587 }
1588
1589 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1590 bfd. It'll be freed in free_objfile(). */
1591 xfree (name);
1592 name = absolute_name;
1593
1594 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1595 if (!sym_bfd)
1596 {
1597 close (desc);
1598 make_cleanup (xfree, name);
1599 error (_("`%s': can't open to read symbols: %s."), name,
1600 bfd_errmsg (bfd_get_error ()));
1601 }
1602 bfd_set_cacheable (sym_bfd, 1);
1603
1604 if (!bfd_check_format (sym_bfd, bfd_object))
1605 {
1606 /* FIXME: should be checking for errors from bfd_close (for one
1607 thing, on error it does not free all the storage associated
1608 with the bfd). */
1609 bfd_close (sym_bfd); /* This also closes desc. */
1610 make_cleanup (xfree, name);
1611 error (_("`%s': can't read symbols: %s."), name,
1612 bfd_errmsg (bfd_get_error ()));
1613 }
1614
1615 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1616 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1617
1618 return sym_bfd;
1619 }
1620
1621 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1622 the section was not found. */
1623
1624 int
1625 get_section_index (struct objfile *objfile, char *section_name)
1626 {
1627 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1628
1629 if (sect)
1630 return sect->index;
1631 else
1632 return -1;
1633 }
1634
1635 /* Link SF into the global symtab_fns list. Called on startup by the
1636 _initialize routine in each object file format reader, to register
1637 information about each format the the reader is prepared to
1638 handle. */
1639
1640 void
1641 add_symtab_fns (struct sym_fns *sf)
1642 {
1643 sf->next = symtab_fns;
1644 symtab_fns = sf;
1645 }
1646
1647 /* Initialize OBJFILE to read symbols from its associated BFD. It
1648 either returns or calls error(). The result is an initialized
1649 struct sym_fns in the objfile structure, that contains cached
1650 information about the symbol file. */
1651
1652 static struct sym_fns *
1653 find_sym_fns (bfd *abfd)
1654 {
1655 struct sym_fns *sf;
1656 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1657
1658 if (our_flavour == bfd_target_srec_flavour
1659 || our_flavour == bfd_target_ihex_flavour
1660 || our_flavour == bfd_target_tekhex_flavour)
1661 return NULL; /* No symbols. */
1662
1663 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1664 if (our_flavour == sf->sym_flavour)
1665 return sf;
1666
1667 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1668 bfd_get_target (abfd));
1669 }
1670 \f
1671
1672 /* This function runs the load command of our current target. */
1673
1674 static void
1675 load_command (char *arg, int from_tty)
1676 {
1677 /* The user might be reloading because the binary has changed. Take
1678 this opportunity to check. */
1679 reopen_exec_file ();
1680 reread_symbols ();
1681
1682 if (arg == NULL)
1683 {
1684 char *parg;
1685 int count = 0;
1686
1687 parg = arg = get_exec_file (1);
1688
1689 /* Count how many \ " ' tab space there are in the name. */
1690 while ((parg = strpbrk (parg, "\\\"'\t ")))
1691 {
1692 parg++;
1693 count++;
1694 }
1695
1696 if (count)
1697 {
1698 /* We need to quote this string so buildargv can pull it apart. */
1699 char *temp = xmalloc (strlen (arg) + count + 1 );
1700 char *ptemp = temp;
1701 char *prev;
1702
1703 make_cleanup (xfree, temp);
1704
1705 prev = parg = arg;
1706 while ((parg = strpbrk (parg, "\\\"'\t ")))
1707 {
1708 strncpy (ptemp, prev, parg - prev);
1709 ptemp += parg - prev;
1710 prev = parg++;
1711 *ptemp++ = '\\';
1712 }
1713 strcpy (ptemp, prev);
1714
1715 arg = temp;
1716 }
1717 }
1718
1719 target_load (arg, from_tty);
1720
1721 /* After re-loading the executable, we don't really know which
1722 overlays are mapped any more. */
1723 overlay_cache_invalid = 1;
1724 }
1725
1726 /* This version of "load" should be usable for any target. Currently
1727 it is just used for remote targets, not inftarg.c or core files,
1728 on the theory that only in that case is it useful.
1729
1730 Avoiding xmodem and the like seems like a win (a) because we don't have
1731 to worry about finding it, and (b) On VMS, fork() is very slow and so
1732 we don't want to run a subprocess. On the other hand, I'm not sure how
1733 performance compares. */
1734
1735 static int validate_download = 0;
1736
1737 /* Callback service function for generic_load (bfd_map_over_sections). */
1738
1739 static void
1740 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1741 {
1742 bfd_size_type *sum = data;
1743
1744 *sum += bfd_get_section_size (asec);
1745 }
1746
1747 /* Opaque data for load_section_callback. */
1748 struct load_section_data {
1749 unsigned long load_offset;
1750 struct load_progress_data *progress_data;
1751 VEC(memory_write_request_s) *requests;
1752 };
1753
1754 /* Opaque data for load_progress. */
1755 struct load_progress_data {
1756 /* Cumulative data. */
1757 unsigned long write_count;
1758 unsigned long data_count;
1759 bfd_size_type total_size;
1760 };
1761
1762 /* Opaque data for load_progress for a single section. */
1763 struct load_progress_section_data {
1764 struct load_progress_data *cumulative;
1765
1766 /* Per-section data. */
1767 const char *section_name;
1768 ULONGEST section_sent;
1769 ULONGEST section_size;
1770 CORE_ADDR lma;
1771 gdb_byte *buffer;
1772 };
1773
1774 /* Target write callback routine for progress reporting. */
1775
1776 static void
1777 load_progress (ULONGEST bytes, void *untyped_arg)
1778 {
1779 struct load_progress_section_data *args = untyped_arg;
1780 struct load_progress_data *totals;
1781
1782 if (args == NULL)
1783 /* Writing padding data. No easy way to get at the cumulative
1784 stats, so just ignore this. */
1785 return;
1786
1787 totals = args->cumulative;
1788
1789 if (bytes == 0 && args->section_sent == 0)
1790 {
1791 /* The write is just starting. Let the user know we've started
1792 this section. */
1793 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1794 args->section_name, hex_string (args->section_size),
1795 paddress (target_gdbarch, args->lma));
1796 return;
1797 }
1798
1799 if (validate_download)
1800 {
1801 /* Broken memories and broken monitors manifest themselves here
1802 when bring new computers to life. This doubles already slow
1803 downloads. */
1804 /* NOTE: cagney/1999-10-18: A more efficient implementation
1805 might add a verify_memory() method to the target vector and
1806 then use that. remote.c could implement that method using
1807 the ``qCRC'' packet. */
1808 gdb_byte *check = xmalloc (bytes);
1809 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1810
1811 if (target_read_memory (args->lma, check, bytes) != 0)
1812 error (_("Download verify read failed at %s"),
1813 paddress (target_gdbarch, args->lma));
1814 if (memcmp (args->buffer, check, bytes) != 0)
1815 error (_("Download verify compare failed at %s"),
1816 paddress (target_gdbarch, args->lma));
1817 do_cleanups (verify_cleanups);
1818 }
1819 totals->data_count += bytes;
1820 args->lma += bytes;
1821 args->buffer += bytes;
1822 totals->write_count += 1;
1823 args->section_sent += bytes;
1824 if (quit_flag
1825 || (deprecated_ui_load_progress_hook != NULL
1826 && deprecated_ui_load_progress_hook (args->section_name,
1827 args->section_sent)))
1828 error (_("Canceled the download"));
1829
1830 if (deprecated_show_load_progress != NULL)
1831 deprecated_show_load_progress (args->section_name,
1832 args->section_sent,
1833 args->section_size,
1834 totals->data_count,
1835 totals->total_size);
1836 }
1837
1838 /* Callback service function for generic_load (bfd_map_over_sections). */
1839
1840 static void
1841 load_section_callback (bfd *abfd, asection *asec, void *data)
1842 {
1843 struct memory_write_request *new_request;
1844 struct load_section_data *args = data;
1845 struct load_progress_section_data *section_data;
1846 bfd_size_type size = bfd_get_section_size (asec);
1847 gdb_byte *buffer;
1848 const char *sect_name = bfd_get_section_name (abfd, asec);
1849
1850 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1851 return;
1852
1853 if (size == 0)
1854 return;
1855
1856 new_request = VEC_safe_push (memory_write_request_s,
1857 args->requests, NULL);
1858 memset (new_request, 0, sizeof (struct memory_write_request));
1859 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1860 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1861 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1862 new_request->data = xmalloc (size);
1863 new_request->baton = section_data;
1864
1865 buffer = new_request->data;
1866
1867 section_data->cumulative = args->progress_data;
1868 section_data->section_name = sect_name;
1869 section_data->section_size = size;
1870 section_data->lma = new_request->begin;
1871 section_data->buffer = buffer;
1872
1873 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1874 }
1875
1876 /* Clean up an entire memory request vector, including load
1877 data and progress records. */
1878
1879 static void
1880 clear_memory_write_data (void *arg)
1881 {
1882 VEC(memory_write_request_s) **vec_p = arg;
1883 VEC(memory_write_request_s) *vec = *vec_p;
1884 int i;
1885 struct memory_write_request *mr;
1886
1887 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1888 {
1889 xfree (mr->data);
1890 xfree (mr->baton);
1891 }
1892 VEC_free (memory_write_request_s, vec);
1893 }
1894
1895 void
1896 generic_load (char *args, int from_tty)
1897 {
1898 bfd *loadfile_bfd;
1899 struct timeval start_time, end_time;
1900 char *filename;
1901 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1902 struct load_section_data cbdata;
1903 struct load_progress_data total_progress;
1904
1905 CORE_ADDR entry;
1906 char **argv;
1907
1908 memset (&cbdata, 0, sizeof (cbdata));
1909 memset (&total_progress, 0, sizeof (total_progress));
1910 cbdata.progress_data = &total_progress;
1911
1912 make_cleanup (clear_memory_write_data, &cbdata.requests);
1913
1914 if (args == NULL)
1915 error_no_arg (_("file to load"));
1916
1917 argv = gdb_buildargv (args);
1918 make_cleanup_freeargv (argv);
1919
1920 filename = tilde_expand (argv[0]);
1921 make_cleanup (xfree, filename);
1922
1923 if (argv[1] != NULL)
1924 {
1925 char *endptr;
1926
1927 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1928
1929 /* If the last word was not a valid number then
1930 treat it as a file name with spaces in. */
1931 if (argv[1] == endptr)
1932 error (_("Invalid download offset:%s."), argv[1]);
1933
1934 if (argv[2] != NULL)
1935 error (_("Too many parameters."));
1936 }
1937
1938 /* Open the file for loading. */
1939 loadfile_bfd = bfd_openr (filename, gnutarget);
1940 if (loadfile_bfd == NULL)
1941 {
1942 perror_with_name (filename);
1943 return;
1944 }
1945
1946 /* FIXME: should be checking for errors from bfd_close (for one thing,
1947 on error it does not free all the storage associated with the
1948 bfd). */
1949 make_cleanup_bfd_close (loadfile_bfd);
1950
1951 if (!bfd_check_format (loadfile_bfd, bfd_object))
1952 {
1953 error (_("\"%s\" is not an object file: %s"), filename,
1954 bfd_errmsg (bfd_get_error ()));
1955 }
1956
1957 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1958 (void *) &total_progress.total_size);
1959
1960 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1961
1962 gettimeofday (&start_time, NULL);
1963
1964 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1965 load_progress) != 0)
1966 error (_("Load failed"));
1967
1968 gettimeofday (&end_time, NULL);
1969
1970 entry = bfd_get_start_address (loadfile_bfd);
1971 ui_out_text (uiout, "Start address ");
1972 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1973 ui_out_text (uiout, ", load size ");
1974 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1975 ui_out_text (uiout, "\n");
1976 /* We were doing this in remote-mips.c, I suspect it is right
1977 for other targets too. */
1978 regcache_write_pc (get_current_regcache (), entry);
1979
1980 /* FIXME: are we supposed to call symbol_file_add or not? According
1981 to a comment from remote-mips.c (where a call to symbol_file_add
1982 was commented out), making the call confuses GDB if more than one
1983 file is loaded in. Some targets do (e.g., remote-vx.c) but
1984 others don't (or didn't - perhaps they have all been deleted). */
1985
1986 print_transfer_performance (gdb_stdout, total_progress.data_count,
1987 total_progress.write_count,
1988 &start_time, &end_time);
1989
1990 do_cleanups (old_cleanups);
1991 }
1992
1993 /* Report how fast the transfer went. */
1994
1995 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1996 replaced by print_transfer_performance (with a very different
1997 function signature). */
1998
1999 void
2000 report_transfer_performance (unsigned long data_count, time_t start_time,
2001 time_t end_time)
2002 {
2003 struct timeval start, end;
2004
2005 start.tv_sec = start_time;
2006 start.tv_usec = 0;
2007 end.tv_sec = end_time;
2008 end.tv_usec = 0;
2009
2010 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2011 }
2012
2013 void
2014 print_transfer_performance (struct ui_file *stream,
2015 unsigned long data_count,
2016 unsigned long write_count,
2017 const struct timeval *start_time,
2018 const struct timeval *end_time)
2019 {
2020 ULONGEST time_count;
2021
2022 /* Compute the elapsed time in milliseconds, as a tradeoff between
2023 accuracy and overflow. */
2024 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2025 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2026
2027 ui_out_text (uiout, "Transfer rate: ");
2028 if (time_count > 0)
2029 {
2030 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2031
2032 if (ui_out_is_mi_like_p (uiout))
2033 {
2034 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2035 ui_out_text (uiout, " bits/sec");
2036 }
2037 else if (rate < 1024)
2038 {
2039 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2040 ui_out_text (uiout, " bytes/sec");
2041 }
2042 else
2043 {
2044 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2045 ui_out_text (uiout, " KB/sec");
2046 }
2047 }
2048 else
2049 {
2050 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2051 ui_out_text (uiout, " bits in <1 sec");
2052 }
2053 if (write_count > 0)
2054 {
2055 ui_out_text (uiout, ", ");
2056 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2057 ui_out_text (uiout, " bytes/write");
2058 }
2059 ui_out_text (uiout, ".\n");
2060 }
2061
2062 /* This function allows the addition of incrementally linked object files.
2063 It does not modify any state in the target, only in the debugger. */
2064 /* Note: ezannoni 2000-04-13 This function/command used to have a
2065 special case syntax for the rombug target (Rombug is the boot
2066 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2067 rombug case, the user doesn't need to supply a text address,
2068 instead a call to target_link() (in target.c) would supply the
2069 value to use. We are now discontinuing this type of ad hoc syntax. */
2070
2071 static void
2072 add_symbol_file_command (char *args, int from_tty)
2073 {
2074 struct gdbarch *gdbarch = get_current_arch ();
2075 char *filename = NULL;
2076 int flags = OBJF_USERLOADED;
2077 char *arg;
2078 int expecting_option = 0;
2079 int section_index = 0;
2080 int argcnt = 0;
2081 int sec_num = 0;
2082 int i;
2083 int expecting_sec_name = 0;
2084 int expecting_sec_addr = 0;
2085 char **argv;
2086
2087 struct sect_opt
2088 {
2089 char *name;
2090 char *value;
2091 };
2092
2093 struct section_addr_info *section_addrs;
2094 struct sect_opt *sect_opts = NULL;
2095 size_t num_sect_opts = 0;
2096 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2097
2098 num_sect_opts = 16;
2099 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2100 * sizeof (struct sect_opt));
2101
2102 dont_repeat ();
2103
2104 if (args == NULL)
2105 error (_("add-symbol-file takes a file name and an address"));
2106
2107 argv = gdb_buildargv (args);
2108 make_cleanup_freeargv (argv);
2109
2110 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2111 {
2112 /* Process the argument. */
2113 if (argcnt == 0)
2114 {
2115 /* The first argument is the file name. */
2116 filename = tilde_expand (arg);
2117 make_cleanup (xfree, filename);
2118 }
2119 else
2120 if (argcnt == 1)
2121 {
2122 /* The second argument is always the text address at which
2123 to load the program. */
2124 sect_opts[section_index].name = ".text";
2125 sect_opts[section_index].value = arg;
2126 if (++section_index >= num_sect_opts)
2127 {
2128 num_sect_opts *= 2;
2129 sect_opts = ((struct sect_opt *)
2130 xrealloc (sect_opts,
2131 num_sect_opts
2132 * sizeof (struct sect_opt)));
2133 }
2134 }
2135 else
2136 {
2137 /* It's an option (starting with '-') or it's an argument
2138 to an option */
2139
2140 if (*arg == '-')
2141 {
2142 if (strcmp (arg, "-readnow") == 0)
2143 flags |= OBJF_READNOW;
2144 else if (strcmp (arg, "-s") == 0)
2145 {
2146 expecting_sec_name = 1;
2147 expecting_sec_addr = 1;
2148 }
2149 }
2150 else
2151 {
2152 if (expecting_sec_name)
2153 {
2154 sect_opts[section_index].name = arg;
2155 expecting_sec_name = 0;
2156 }
2157 else
2158 if (expecting_sec_addr)
2159 {
2160 sect_opts[section_index].value = arg;
2161 expecting_sec_addr = 0;
2162 if (++section_index >= num_sect_opts)
2163 {
2164 num_sect_opts *= 2;
2165 sect_opts = ((struct sect_opt *)
2166 xrealloc (sect_opts,
2167 num_sect_opts
2168 * sizeof (struct sect_opt)));
2169 }
2170 }
2171 else
2172 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2173 }
2174 }
2175 }
2176
2177 /* This command takes at least two arguments. The first one is a
2178 filename, and the second is the address where this file has been
2179 loaded. Abort now if this address hasn't been provided by the
2180 user. */
2181 if (section_index < 1)
2182 error (_("The address where %s has been loaded is missing"), filename);
2183
2184 /* Print the prompt for the query below. And save the arguments into
2185 a sect_addr_info structure to be passed around to other
2186 functions. We have to split this up into separate print
2187 statements because hex_string returns a local static
2188 string. */
2189
2190 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2191 section_addrs = alloc_section_addr_info (section_index);
2192 make_cleanup (xfree, section_addrs);
2193 for (i = 0; i < section_index; i++)
2194 {
2195 CORE_ADDR addr;
2196 char *val = sect_opts[i].value;
2197 char *sec = sect_opts[i].name;
2198
2199 addr = parse_and_eval_address (val);
2200
2201 /* Here we store the section offsets in the order they were
2202 entered on the command line. */
2203 section_addrs->other[sec_num].name = sec;
2204 section_addrs->other[sec_num].addr = addr;
2205 printf_unfiltered ("\t%s_addr = %s\n", sec,
2206 paddress (gdbarch, addr));
2207 sec_num++;
2208
2209 /* The object's sections are initialized when a
2210 call is made to build_objfile_section_table (objfile).
2211 This happens in reread_symbols.
2212 At this point, we don't know what file type this is,
2213 so we can't determine what section names are valid. */
2214 }
2215
2216 if (from_tty && (!query ("%s", "")))
2217 error (_("Not confirmed."));
2218
2219 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2220 section_addrs, flags);
2221
2222 /* Getting new symbols may change our opinion about what is
2223 frameless. */
2224 reinit_frame_cache ();
2225 do_cleanups (my_cleanups);
2226 }
2227 \f
2228
2229 /* Re-read symbols if a symbol-file has changed. */
2230 void
2231 reread_symbols (void)
2232 {
2233 struct objfile *objfile;
2234 long new_modtime;
2235 int reread_one = 0;
2236 struct stat new_statbuf;
2237 int res;
2238
2239 /* With the addition of shared libraries, this should be modified,
2240 the load time should be saved in the partial symbol tables, since
2241 different tables may come from different source files. FIXME.
2242 This routine should then walk down each partial symbol table
2243 and see if the symbol table that it originates from has been changed */
2244
2245 for (objfile = object_files; objfile; objfile = objfile->next)
2246 {
2247 if (objfile->obfd)
2248 {
2249 #ifdef DEPRECATED_IBM6000_TARGET
2250 /* If this object is from a shared library, then you should
2251 stat on the library name, not member name. */
2252
2253 if (objfile->obfd->my_archive)
2254 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2255 else
2256 #endif
2257 res = stat (objfile->name, &new_statbuf);
2258 if (res != 0)
2259 {
2260 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2261 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2262 objfile->name);
2263 continue;
2264 }
2265 new_modtime = new_statbuf.st_mtime;
2266 if (new_modtime != objfile->mtime)
2267 {
2268 struct cleanup *old_cleanups;
2269 struct section_offsets *offsets;
2270 int num_offsets;
2271 char *obfd_filename;
2272
2273 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2274 objfile->name);
2275
2276 /* There are various functions like symbol_file_add,
2277 symfile_bfd_open, syms_from_objfile, etc., which might
2278 appear to do what we want. But they have various other
2279 effects which we *don't* want. So we just do stuff
2280 ourselves. We don't worry about mapped files (for one thing,
2281 any mapped file will be out of date). */
2282
2283 /* If we get an error, blow away this objfile (not sure if
2284 that is the correct response for things like shared
2285 libraries). */
2286 old_cleanups = make_cleanup_free_objfile (objfile);
2287 /* We need to do this whenever any symbols go away. */
2288 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2289
2290 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2291 bfd_get_filename (exec_bfd)) == 0)
2292 {
2293 /* Reload EXEC_BFD without asking anything. */
2294
2295 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2296 }
2297
2298 /* Clean up any state BFD has sitting around. We don't need
2299 to close the descriptor but BFD lacks a way of closing the
2300 BFD without closing the descriptor. */
2301 obfd_filename = bfd_get_filename (objfile->obfd);
2302 if (!bfd_close (objfile->obfd))
2303 error (_("Can't close BFD for %s: %s"), objfile->name,
2304 bfd_errmsg (bfd_get_error ()));
2305 if (remote_filename_p (obfd_filename))
2306 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2307 else
2308 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2309 if (objfile->obfd == NULL)
2310 error (_("Can't open %s to read symbols."), objfile->name);
2311 else
2312 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2313 /* bfd_openr sets cacheable to true, which is what we want. */
2314 if (!bfd_check_format (objfile->obfd, bfd_object))
2315 error (_("Can't read symbols from %s: %s."), objfile->name,
2316 bfd_errmsg (bfd_get_error ()));
2317
2318 /* Save the offsets, we will nuke them with the rest of the
2319 objfile_obstack. */
2320 num_offsets = objfile->num_sections;
2321 offsets = ((struct section_offsets *)
2322 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2323 memcpy (offsets, objfile->section_offsets,
2324 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2325
2326 /* Remove any references to this objfile in the global
2327 value lists. */
2328 preserve_values (objfile);
2329
2330 /* Nuke all the state that we will re-read. Much of the following
2331 code which sets things to NULL really is necessary to tell
2332 other parts of GDB that there is nothing currently there.
2333
2334 Try to keep the freeing order compatible with free_objfile. */
2335
2336 if (objfile->sf != NULL)
2337 {
2338 (*objfile->sf->sym_finish) (objfile);
2339 }
2340
2341 clear_objfile_data (objfile);
2342
2343 /* FIXME: Do we have to free a whole linked list, or is this
2344 enough? */
2345 if (objfile->global_psymbols.list)
2346 xfree (objfile->global_psymbols.list);
2347 memset (&objfile->global_psymbols, 0,
2348 sizeof (objfile->global_psymbols));
2349 if (objfile->static_psymbols.list)
2350 xfree (objfile->static_psymbols.list);
2351 memset (&objfile->static_psymbols, 0,
2352 sizeof (objfile->static_psymbols));
2353
2354 /* Free the obstacks for non-reusable objfiles */
2355 bcache_xfree (objfile->psymbol_cache);
2356 objfile->psymbol_cache = bcache_xmalloc ();
2357 bcache_xfree (objfile->macro_cache);
2358 objfile->macro_cache = bcache_xmalloc ();
2359 if (objfile->demangled_names_hash != NULL)
2360 {
2361 htab_delete (objfile->demangled_names_hash);
2362 objfile->demangled_names_hash = NULL;
2363 }
2364 obstack_free (&objfile->objfile_obstack, 0);
2365 objfile->sections = NULL;
2366 objfile->symtabs = NULL;
2367 objfile->psymtabs = NULL;
2368 objfile->psymtabs_addrmap = NULL;
2369 objfile->free_psymtabs = NULL;
2370 objfile->cp_namespace_symtab = NULL;
2371 objfile->msymbols = NULL;
2372 objfile->deprecated_sym_private = NULL;
2373 objfile->minimal_symbol_count = 0;
2374 memset (&objfile->msymbol_hash, 0,
2375 sizeof (objfile->msymbol_hash));
2376 memset (&objfile->msymbol_demangled_hash, 0,
2377 sizeof (objfile->msymbol_demangled_hash));
2378
2379 objfile->psymbol_cache = bcache_xmalloc ();
2380 objfile->macro_cache = bcache_xmalloc ();
2381 /* obstack_init also initializes the obstack so it is
2382 empty. We could use obstack_specify_allocation but
2383 gdb_obstack.h specifies the alloc/dealloc
2384 functions. */
2385 obstack_init (&objfile->objfile_obstack);
2386 if (build_objfile_section_table (objfile))
2387 {
2388 error (_("Can't find the file sections in `%s': %s"),
2389 objfile->name, bfd_errmsg (bfd_get_error ()));
2390 }
2391 terminate_minimal_symbol_table (objfile);
2392
2393 /* We use the same section offsets as from last time. I'm not
2394 sure whether that is always correct for shared libraries. */
2395 objfile->section_offsets = (struct section_offsets *)
2396 obstack_alloc (&objfile->objfile_obstack,
2397 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2398 memcpy (objfile->section_offsets, offsets,
2399 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2400 objfile->num_sections = num_offsets;
2401
2402 /* What the hell is sym_new_init for, anyway? The concept of
2403 distinguishing between the main file and additional files
2404 in this way seems rather dubious. */
2405 if (objfile == symfile_objfile)
2406 {
2407 (*objfile->sf->sym_new_init) (objfile);
2408 }
2409
2410 (*objfile->sf->sym_init) (objfile);
2411 clear_complaints (&symfile_complaints, 1, 1);
2412 /* The "mainline" parameter is a hideous hack; I think leaving it
2413 zero is OK since dbxread.c also does what it needs to do if
2414 objfile->global_psymbols.size is 0. */
2415 (*objfile->sf->sym_read) (objfile, 0);
2416 if (!objfile_has_symbols (objfile))
2417 {
2418 wrap_here ("");
2419 printf_unfiltered (_("(no debugging symbols found)\n"));
2420 wrap_here ("");
2421 }
2422
2423 /* We're done reading the symbol file; finish off complaints. */
2424 clear_complaints (&symfile_complaints, 0, 1);
2425
2426 /* Getting new symbols may change our opinion about what is
2427 frameless. */
2428
2429 reinit_frame_cache ();
2430
2431 /* Discard cleanups as symbol reading was successful. */
2432 discard_cleanups (old_cleanups);
2433
2434 /* If the mtime has changed between the time we set new_modtime
2435 and now, we *want* this to be out of date, so don't call stat
2436 again now. */
2437 objfile->mtime = new_modtime;
2438 reread_one = 1;
2439 reread_separate_symbols (objfile);
2440 init_entry_point_info (objfile);
2441 }
2442 }
2443 }
2444
2445 if (reread_one)
2446 {
2447 /* Notify objfiles that we've modified objfile sections. */
2448 objfiles_changed ();
2449
2450 clear_symtab_users ();
2451 /* At least one objfile has changed, so we can consider that
2452 the executable we're debugging has changed too. */
2453 observer_notify_executable_changed ();
2454 }
2455 }
2456
2457
2458 /* Handle separate debug info for OBJFILE, which has just been
2459 re-read:
2460 - If we had separate debug info before, but now we don't, get rid
2461 of the separated objfile.
2462 - If we didn't have separated debug info before, but now we do,
2463 read in the new separated debug info file.
2464 - If the debug link points to a different file, toss the old one
2465 and read the new one.
2466 This function does *not* handle the case where objfile is still
2467 using the same separate debug info file, but that file's timestamp
2468 has changed. That case should be handled by the loop in
2469 reread_symbols already. */
2470 static void
2471 reread_separate_symbols (struct objfile *objfile)
2472 {
2473 char *debug_file;
2474 unsigned long crc32;
2475
2476 /* Does the updated objfile's debug info live in a
2477 separate file? */
2478 debug_file = find_separate_debug_file (objfile);
2479
2480 if (objfile->separate_debug_objfile)
2481 {
2482 /* There are two cases where we need to get rid of
2483 the old separated debug info objfile:
2484 - if the new primary objfile doesn't have
2485 separated debug info, or
2486 - if the new primary objfile has separate debug
2487 info, but it's under a different filename.
2488
2489 If the old and new objfiles both have separate
2490 debug info, under the same filename, then we're
2491 okay --- if the separated file's contents have
2492 changed, we will have caught that when we
2493 visited it in this function's outermost
2494 loop. */
2495 if (! debug_file
2496 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2497 free_objfile (objfile->separate_debug_objfile);
2498 }
2499
2500 /* If the new objfile has separate debug info, and we
2501 haven't loaded it already, do so now. */
2502 if (debug_file
2503 && ! objfile->separate_debug_objfile)
2504 {
2505 /* Use the same section offset table as objfile itself.
2506 Preserve the flags from objfile that make sense. */
2507 objfile->separate_debug_objfile
2508 = (symbol_file_add_with_addrs_or_offsets
2509 (symfile_bfd_open (debug_file),
2510 info_verbose ? SYMFILE_VERBOSE : 0,
2511 0, /* No addr table. */
2512 objfile->section_offsets, objfile->num_sections,
2513 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2514 | OBJF_USERLOADED)));
2515 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2516 = objfile;
2517 }
2518 if (debug_file)
2519 xfree (debug_file);
2520 }
2521
2522
2523 \f
2524
2525
2526 typedef struct
2527 {
2528 char *ext;
2529 enum language lang;
2530 }
2531 filename_language;
2532
2533 static filename_language *filename_language_table;
2534 static int fl_table_size, fl_table_next;
2535
2536 static void
2537 add_filename_language (char *ext, enum language lang)
2538 {
2539 if (fl_table_next >= fl_table_size)
2540 {
2541 fl_table_size += 10;
2542 filename_language_table =
2543 xrealloc (filename_language_table,
2544 fl_table_size * sizeof (*filename_language_table));
2545 }
2546
2547 filename_language_table[fl_table_next].ext = xstrdup (ext);
2548 filename_language_table[fl_table_next].lang = lang;
2549 fl_table_next++;
2550 }
2551
2552 static char *ext_args;
2553 static void
2554 show_ext_args (struct ui_file *file, int from_tty,
2555 struct cmd_list_element *c, const char *value)
2556 {
2557 fprintf_filtered (file, _("\
2558 Mapping between filename extension and source language is \"%s\".\n"),
2559 value);
2560 }
2561
2562 static void
2563 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2564 {
2565 int i;
2566 char *cp = ext_args;
2567 enum language lang;
2568
2569 /* First arg is filename extension, starting with '.' */
2570 if (*cp != '.')
2571 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2572
2573 /* Find end of first arg. */
2574 while (*cp && !isspace (*cp))
2575 cp++;
2576
2577 if (*cp == '\0')
2578 error (_("'%s': two arguments required -- filename extension and language"),
2579 ext_args);
2580
2581 /* Null-terminate first arg */
2582 *cp++ = '\0';
2583
2584 /* Find beginning of second arg, which should be a source language. */
2585 while (*cp && isspace (*cp))
2586 cp++;
2587
2588 if (*cp == '\0')
2589 error (_("'%s': two arguments required -- filename extension and language"),
2590 ext_args);
2591
2592 /* Lookup the language from among those we know. */
2593 lang = language_enum (cp);
2594
2595 /* Now lookup the filename extension: do we already know it? */
2596 for (i = 0; i < fl_table_next; i++)
2597 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2598 break;
2599
2600 if (i >= fl_table_next)
2601 {
2602 /* new file extension */
2603 add_filename_language (ext_args, lang);
2604 }
2605 else
2606 {
2607 /* redefining a previously known filename extension */
2608
2609 /* if (from_tty) */
2610 /* query ("Really make files of type %s '%s'?", */
2611 /* ext_args, language_str (lang)); */
2612
2613 xfree (filename_language_table[i].ext);
2614 filename_language_table[i].ext = xstrdup (ext_args);
2615 filename_language_table[i].lang = lang;
2616 }
2617 }
2618
2619 static void
2620 info_ext_lang_command (char *args, int from_tty)
2621 {
2622 int i;
2623
2624 printf_filtered (_("Filename extensions and the languages they represent:"));
2625 printf_filtered ("\n\n");
2626 for (i = 0; i < fl_table_next; i++)
2627 printf_filtered ("\t%s\t- %s\n",
2628 filename_language_table[i].ext,
2629 language_str (filename_language_table[i].lang));
2630 }
2631
2632 static void
2633 init_filename_language_table (void)
2634 {
2635 if (fl_table_size == 0) /* protect against repetition */
2636 {
2637 fl_table_size = 20;
2638 fl_table_next = 0;
2639 filename_language_table =
2640 xmalloc (fl_table_size * sizeof (*filename_language_table));
2641 add_filename_language (".c", language_c);
2642 add_filename_language (".C", language_cplus);
2643 add_filename_language (".cc", language_cplus);
2644 add_filename_language (".cp", language_cplus);
2645 add_filename_language (".cpp", language_cplus);
2646 add_filename_language (".cxx", language_cplus);
2647 add_filename_language (".c++", language_cplus);
2648 add_filename_language (".java", language_java);
2649 add_filename_language (".class", language_java);
2650 add_filename_language (".m", language_objc);
2651 add_filename_language (".f", language_fortran);
2652 add_filename_language (".F", language_fortran);
2653 add_filename_language (".s", language_asm);
2654 add_filename_language (".sx", language_asm);
2655 add_filename_language (".S", language_asm);
2656 add_filename_language (".pas", language_pascal);
2657 add_filename_language (".p", language_pascal);
2658 add_filename_language (".pp", language_pascal);
2659 add_filename_language (".adb", language_ada);
2660 add_filename_language (".ads", language_ada);
2661 add_filename_language (".a", language_ada);
2662 add_filename_language (".ada", language_ada);
2663 }
2664 }
2665
2666 enum language
2667 deduce_language_from_filename (char *filename)
2668 {
2669 int i;
2670 char *cp;
2671
2672 if (filename != NULL)
2673 if ((cp = strrchr (filename, '.')) != NULL)
2674 for (i = 0; i < fl_table_next; i++)
2675 if (strcmp (cp, filename_language_table[i].ext) == 0)
2676 return filename_language_table[i].lang;
2677
2678 return language_unknown;
2679 }
2680 \f
2681 /* allocate_symtab:
2682
2683 Allocate and partly initialize a new symbol table. Return a pointer
2684 to it. error() if no space.
2685
2686 Caller must set these fields:
2687 LINETABLE(symtab)
2688 symtab->blockvector
2689 symtab->dirname
2690 symtab->free_code
2691 symtab->free_ptr
2692 possibly free_named_symtabs (symtab->filename);
2693 */
2694
2695 struct symtab *
2696 allocate_symtab (char *filename, struct objfile *objfile)
2697 {
2698 struct symtab *symtab;
2699
2700 symtab = (struct symtab *)
2701 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2702 memset (symtab, 0, sizeof (*symtab));
2703 symtab->filename = obsavestring (filename, strlen (filename),
2704 &objfile->objfile_obstack);
2705 symtab->fullname = NULL;
2706 symtab->language = deduce_language_from_filename (filename);
2707 symtab->debugformat = obsavestring ("unknown", 7,
2708 &objfile->objfile_obstack);
2709
2710 /* Hook it to the objfile it comes from */
2711
2712 symtab->objfile = objfile;
2713 symtab->next = objfile->symtabs;
2714 objfile->symtabs = symtab;
2715
2716 return (symtab);
2717 }
2718
2719 struct partial_symtab *
2720 allocate_psymtab (char *filename, struct objfile *objfile)
2721 {
2722 struct partial_symtab *psymtab;
2723
2724 if (objfile->free_psymtabs)
2725 {
2726 psymtab = objfile->free_psymtabs;
2727 objfile->free_psymtabs = psymtab->next;
2728 }
2729 else
2730 psymtab = (struct partial_symtab *)
2731 obstack_alloc (&objfile->objfile_obstack,
2732 sizeof (struct partial_symtab));
2733
2734 memset (psymtab, 0, sizeof (struct partial_symtab));
2735 psymtab->filename = obsavestring (filename, strlen (filename),
2736 &objfile->objfile_obstack);
2737 psymtab->symtab = NULL;
2738
2739 /* Prepend it to the psymtab list for the objfile it belongs to.
2740 Psymtabs are searched in most recent inserted -> least recent
2741 inserted order. */
2742
2743 psymtab->objfile = objfile;
2744 psymtab->next = objfile->psymtabs;
2745 objfile->psymtabs = psymtab;
2746 #if 0
2747 {
2748 struct partial_symtab **prev_pst;
2749 psymtab->objfile = objfile;
2750 psymtab->next = NULL;
2751 prev_pst = &(objfile->psymtabs);
2752 while ((*prev_pst) != NULL)
2753 prev_pst = &((*prev_pst)->next);
2754 (*prev_pst) = psymtab;
2755 }
2756 #endif
2757
2758 return (psymtab);
2759 }
2760
2761 void
2762 discard_psymtab (struct partial_symtab *pst)
2763 {
2764 struct partial_symtab **prev_pst;
2765
2766 /* From dbxread.c:
2767 Empty psymtabs happen as a result of header files which don't
2768 have any symbols in them. There can be a lot of them. But this
2769 check is wrong, in that a psymtab with N_SLINE entries but
2770 nothing else is not empty, but we don't realize that. Fixing
2771 that without slowing things down might be tricky. */
2772
2773 /* First, snip it out of the psymtab chain */
2774
2775 prev_pst = &(pst->objfile->psymtabs);
2776 while ((*prev_pst) != pst)
2777 prev_pst = &((*prev_pst)->next);
2778 (*prev_pst) = pst->next;
2779
2780 /* Next, put it on a free list for recycling */
2781
2782 pst->next = pst->objfile->free_psymtabs;
2783 pst->objfile->free_psymtabs = pst;
2784 }
2785 \f
2786
2787 /* Reset all data structures in gdb which may contain references to symbol
2788 table data. */
2789
2790 void
2791 clear_symtab_users (void)
2792 {
2793 /* Someday, we should do better than this, by only blowing away
2794 the things that really need to be blown. */
2795
2796 /* Clear the "current" symtab first, because it is no longer valid.
2797 breakpoint_re_set may try to access the current symtab. */
2798 clear_current_source_symtab_and_line ();
2799
2800 clear_displays ();
2801 breakpoint_re_set ();
2802 set_default_breakpoint (0, NULL, 0, 0, 0);
2803 clear_pc_function_cache ();
2804 observer_notify_new_objfile (NULL);
2805
2806 /* Clear globals which might have pointed into a removed objfile.
2807 FIXME: It's not clear which of these are supposed to persist
2808 between expressions and which ought to be reset each time. */
2809 expression_context_block = NULL;
2810 innermost_block = NULL;
2811
2812 /* Varobj may refer to old symbols, perform a cleanup. */
2813 varobj_invalidate ();
2814
2815 }
2816
2817 static void
2818 clear_symtab_users_cleanup (void *ignore)
2819 {
2820 clear_symtab_users ();
2821 }
2822
2823 /* clear_symtab_users_once:
2824
2825 This function is run after symbol reading, or from a cleanup.
2826 If an old symbol table was obsoleted, the old symbol table
2827 has been blown away, but the other GDB data structures that may
2828 reference it have not yet been cleared or re-directed. (The old
2829 symtab was zapped, and the cleanup queued, in free_named_symtab()
2830 below.)
2831
2832 This function can be queued N times as a cleanup, or called
2833 directly; it will do all the work the first time, and then will be a
2834 no-op until the next time it is queued. This works by bumping a
2835 counter at queueing time. Much later when the cleanup is run, or at
2836 the end of symbol processing (in case the cleanup is discarded), if
2837 the queued count is greater than the "done-count", we do the work
2838 and set the done-count to the queued count. If the queued count is
2839 less than or equal to the done-count, we just ignore the call. This
2840 is needed because reading a single .o file will often replace many
2841 symtabs (one per .h file, for example), and we don't want to reset
2842 the breakpoints N times in the user's face.
2843
2844 The reason we both queue a cleanup, and call it directly after symbol
2845 reading, is because the cleanup protects us in case of errors, but is
2846 discarded if symbol reading is successful. */
2847
2848 #if 0
2849 /* FIXME: As free_named_symtabs is currently a big noop this function
2850 is no longer needed. */
2851 static void clear_symtab_users_once (void);
2852
2853 static int clear_symtab_users_queued;
2854 static int clear_symtab_users_done;
2855
2856 static void
2857 clear_symtab_users_once (void)
2858 {
2859 /* Enforce once-per-`do_cleanups'-semantics */
2860 if (clear_symtab_users_queued <= clear_symtab_users_done)
2861 return;
2862 clear_symtab_users_done = clear_symtab_users_queued;
2863
2864 clear_symtab_users ();
2865 }
2866 #endif
2867
2868 /* Delete the specified psymtab, and any others that reference it. */
2869
2870 static void
2871 cashier_psymtab (struct partial_symtab *pst)
2872 {
2873 struct partial_symtab *ps, *pprev = NULL;
2874 int i;
2875
2876 /* Find its previous psymtab in the chain */
2877 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2878 {
2879 if (ps == pst)
2880 break;
2881 pprev = ps;
2882 }
2883
2884 if (ps)
2885 {
2886 /* Unhook it from the chain. */
2887 if (ps == pst->objfile->psymtabs)
2888 pst->objfile->psymtabs = ps->next;
2889 else
2890 pprev->next = ps->next;
2891
2892 /* FIXME, we can't conveniently deallocate the entries in the
2893 partial_symbol lists (global_psymbols/static_psymbols) that
2894 this psymtab points to. These just take up space until all
2895 the psymtabs are reclaimed. Ditto the dependencies list and
2896 filename, which are all in the objfile_obstack. */
2897
2898 /* We need to cashier any psymtab that has this one as a dependency... */
2899 again:
2900 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2901 {
2902 for (i = 0; i < ps->number_of_dependencies; i++)
2903 {
2904 if (ps->dependencies[i] == pst)
2905 {
2906 cashier_psymtab (ps);
2907 goto again; /* Must restart, chain has been munged. */
2908 }
2909 }
2910 }
2911 }
2912 }
2913
2914 /* If a symtab or psymtab for filename NAME is found, free it along
2915 with any dependent breakpoints, displays, etc.
2916 Used when loading new versions of object modules with the "add-file"
2917 command. This is only called on the top-level symtab or psymtab's name;
2918 it is not called for subsidiary files such as .h files.
2919
2920 Return value is 1 if we blew away the environment, 0 if not.
2921 FIXME. The return value appears to never be used.
2922
2923 FIXME. I think this is not the best way to do this. We should
2924 work on being gentler to the environment while still cleaning up
2925 all stray pointers into the freed symtab. */
2926
2927 int
2928 free_named_symtabs (char *name)
2929 {
2930 #if 0
2931 /* FIXME: With the new method of each objfile having it's own
2932 psymtab list, this function needs serious rethinking. In particular,
2933 why was it ever necessary to toss psymtabs with specific compilation
2934 unit filenames, as opposed to all psymtabs from a particular symbol
2935 file? -- fnf
2936 Well, the answer is that some systems permit reloading of particular
2937 compilation units. We want to blow away any old info about these
2938 compilation units, regardless of which objfiles they arrived in. --gnu. */
2939
2940 struct symtab *s;
2941 struct symtab *prev;
2942 struct partial_symtab *ps;
2943 struct blockvector *bv;
2944 int blewit = 0;
2945
2946 /* We only wack things if the symbol-reload switch is set. */
2947 if (!symbol_reloading)
2948 return 0;
2949
2950 /* Some symbol formats have trouble providing file names... */
2951 if (name == 0 || *name == '\0')
2952 return 0;
2953
2954 /* Look for a psymtab with the specified name. */
2955
2956 again2:
2957 for (ps = partial_symtab_list; ps; ps = ps->next)
2958 {
2959 if (strcmp (name, ps->filename) == 0)
2960 {
2961 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2962 goto again2; /* Must restart, chain has been munged */
2963 }
2964 }
2965
2966 /* Look for a symtab with the specified name. */
2967
2968 for (s = symtab_list; s; s = s->next)
2969 {
2970 if (strcmp (name, s->filename) == 0)
2971 break;
2972 prev = s;
2973 }
2974
2975 if (s)
2976 {
2977 if (s == symtab_list)
2978 symtab_list = s->next;
2979 else
2980 prev->next = s->next;
2981
2982 /* For now, queue a delete for all breakpoints, displays, etc., whether
2983 or not they depend on the symtab being freed. This should be
2984 changed so that only those data structures affected are deleted. */
2985
2986 /* But don't delete anything if the symtab is empty.
2987 This test is necessary due to a bug in "dbxread.c" that
2988 causes empty symtabs to be created for N_SO symbols that
2989 contain the pathname of the object file. (This problem
2990 has been fixed in GDB 3.9x). */
2991
2992 bv = BLOCKVECTOR (s);
2993 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2994 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2995 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2996 {
2997 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2998 name);
2999 clear_symtab_users_queued++;
3000 make_cleanup (clear_symtab_users_once, 0);
3001 blewit = 1;
3002 }
3003 else
3004 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3005 name);
3006
3007 free_symtab (s);
3008 }
3009 else
3010 {
3011 /* It is still possible that some breakpoints will be affected
3012 even though no symtab was found, since the file might have
3013 been compiled without debugging, and hence not be associated
3014 with a symtab. In order to handle this correctly, we would need
3015 to keep a list of text address ranges for undebuggable files.
3016 For now, we do nothing, since this is a fairly obscure case. */
3017 ;
3018 }
3019
3020 /* FIXME, what about the minimal symbol table? */
3021 return blewit;
3022 #else
3023 return (0);
3024 #endif
3025 }
3026 \f
3027 /* Allocate and partially fill a partial symtab. It will be
3028 completely filled at the end of the symbol list.
3029
3030 FILENAME is the name of the symbol-file we are reading from. */
3031
3032 struct partial_symtab *
3033 start_psymtab_common (struct objfile *objfile,
3034 struct section_offsets *section_offsets, char *filename,
3035 CORE_ADDR textlow, struct partial_symbol **global_syms,
3036 struct partial_symbol **static_syms)
3037 {
3038 struct partial_symtab *psymtab;
3039
3040 psymtab = allocate_psymtab (filename, objfile);
3041 psymtab->section_offsets = section_offsets;
3042 psymtab->textlow = textlow;
3043 psymtab->texthigh = psymtab->textlow; /* default */
3044 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3045 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3046 return (psymtab);
3047 }
3048 \f
3049 /* Helper function, initialises partial symbol structure and stashes
3050 it into objfile's bcache. Note that our caching mechanism will
3051 use all fields of struct partial_symbol to determine hash value of the
3052 structure. In other words, having two symbols with the same name but
3053 different domain (or address) is possible and correct. */
3054
3055 static const struct partial_symbol *
3056 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3057 enum address_class class,
3058 long val, /* Value as a long */
3059 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3060 enum language language, struct objfile *objfile,
3061 int *added)
3062 {
3063 char *buf = name;
3064 /* psymbol is static so that there will be no uninitialized gaps in the
3065 structure which might contain random data, causing cache misses in
3066 bcache. */
3067 static struct partial_symbol psymbol;
3068
3069 if (name[namelength] != '\0')
3070 {
3071 buf = alloca (namelength + 1);
3072 /* Create local copy of the partial symbol */
3073 memcpy (buf, name, namelength);
3074 buf[namelength] = '\0';
3075 }
3076 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3077 if (val != 0)
3078 {
3079 SYMBOL_VALUE (&psymbol) = val;
3080 }
3081 else
3082 {
3083 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3084 }
3085 SYMBOL_SECTION (&psymbol) = 0;
3086 SYMBOL_LANGUAGE (&psymbol) = language;
3087 PSYMBOL_DOMAIN (&psymbol) = domain;
3088 PSYMBOL_CLASS (&psymbol) = class;
3089
3090 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3091
3092 /* Stash the partial symbol away in the cache */
3093 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3094 objfile->psymbol_cache, added);
3095 }
3096
3097 /* Helper function, adds partial symbol to the given partial symbol
3098 list. */
3099
3100 static void
3101 append_psymbol_to_list (struct psymbol_allocation_list *list,
3102 const struct partial_symbol *psym,
3103 struct objfile *objfile)
3104 {
3105 if (list->next >= list->list + list->size)
3106 extend_psymbol_list (list, objfile);
3107 *list->next++ = (struct partial_symbol *) psym;
3108 OBJSTAT (objfile, n_psyms++);
3109 }
3110
3111 /* Add a symbol with a long value to a psymtab.
3112 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3113 Return the partial symbol that has been added. */
3114
3115 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3116 symbol is so that callers can get access to the symbol's demangled
3117 name, which they don't have any cheap way to determine otherwise.
3118 (Currenly, dwarf2read.c is the only file who uses that information,
3119 though it's possible that other readers might in the future.)
3120 Elena wasn't thrilled about that, and I don't blame her, but we
3121 couldn't come up with a better way to get that information. If
3122 it's needed in other situations, we could consider breaking up
3123 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3124 cache. */
3125
3126 const struct partial_symbol *
3127 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3128 enum address_class class,
3129 struct psymbol_allocation_list *list,
3130 long val, /* Value as a long */
3131 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3132 enum language language, struct objfile *objfile)
3133 {
3134 const struct partial_symbol *psym;
3135
3136 int added;
3137
3138 /* Stash the partial symbol away in the cache */
3139 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3140 val, coreaddr, language, objfile, &added);
3141
3142 /* Do not duplicate global partial symbols. */
3143 if (list == &objfile->global_psymbols
3144 && !added)
3145 return psym;
3146
3147 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3148 append_psymbol_to_list (list, psym, objfile);
3149 return psym;
3150 }
3151
3152 /* Initialize storage for partial symbols. */
3153
3154 void
3155 init_psymbol_list (struct objfile *objfile, int total_symbols)
3156 {
3157 /* Free any previously allocated psymbol lists. */
3158
3159 if (objfile->global_psymbols.list)
3160 {
3161 xfree (objfile->global_psymbols.list);
3162 }
3163 if (objfile->static_psymbols.list)
3164 {
3165 xfree (objfile->static_psymbols.list);
3166 }
3167
3168 /* Current best guess is that approximately a twentieth
3169 of the total symbols (in a debugging file) are global or static
3170 oriented symbols */
3171
3172 objfile->global_psymbols.size = total_symbols / 10;
3173 objfile->static_psymbols.size = total_symbols / 10;
3174
3175 if (objfile->global_psymbols.size > 0)
3176 {
3177 objfile->global_psymbols.next =
3178 objfile->global_psymbols.list = (struct partial_symbol **)
3179 xmalloc ((objfile->global_psymbols.size
3180 * sizeof (struct partial_symbol *)));
3181 }
3182 if (objfile->static_psymbols.size > 0)
3183 {
3184 objfile->static_psymbols.next =
3185 objfile->static_psymbols.list = (struct partial_symbol **)
3186 xmalloc ((objfile->static_psymbols.size
3187 * sizeof (struct partial_symbol *)));
3188 }
3189 }
3190
3191 /* OVERLAYS:
3192 The following code implements an abstraction for debugging overlay sections.
3193
3194 The target model is as follows:
3195 1) The gnu linker will permit multiple sections to be mapped into the
3196 same VMA, each with its own unique LMA (or load address).
3197 2) It is assumed that some runtime mechanism exists for mapping the
3198 sections, one by one, from the load address into the VMA address.
3199 3) This code provides a mechanism for gdb to keep track of which
3200 sections should be considered to be mapped from the VMA to the LMA.
3201 This information is used for symbol lookup, and memory read/write.
3202 For instance, if a section has been mapped then its contents
3203 should be read from the VMA, otherwise from the LMA.
3204
3205 Two levels of debugger support for overlays are available. One is
3206 "manual", in which the debugger relies on the user to tell it which
3207 overlays are currently mapped. This level of support is
3208 implemented entirely in the core debugger, and the information about
3209 whether a section is mapped is kept in the objfile->obj_section table.
3210
3211 The second level of support is "automatic", and is only available if
3212 the target-specific code provides functionality to read the target's
3213 overlay mapping table, and translate its contents for the debugger
3214 (by updating the mapped state information in the obj_section tables).
3215
3216 The interface is as follows:
3217 User commands:
3218 overlay map <name> -- tell gdb to consider this section mapped
3219 overlay unmap <name> -- tell gdb to consider this section unmapped
3220 overlay list -- list the sections that GDB thinks are mapped
3221 overlay read-target -- get the target's state of what's mapped
3222 overlay off/manual/auto -- set overlay debugging state
3223 Functional interface:
3224 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3225 section, return that section.
3226 find_pc_overlay(pc): find any overlay section that contains
3227 the pc, either in its VMA or its LMA
3228 section_is_mapped(sect): true if overlay is marked as mapped
3229 section_is_overlay(sect): true if section's VMA != LMA
3230 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3231 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3232 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3233 overlay_mapped_address(...): map an address from section's LMA to VMA
3234 overlay_unmapped_address(...): map an address from section's VMA to LMA
3235 symbol_overlayed_address(...): Return a "current" address for symbol:
3236 either in VMA or LMA depending on whether
3237 the symbol's section is currently mapped
3238 */
3239
3240 /* Overlay debugging state: */
3241
3242 enum overlay_debugging_state overlay_debugging = ovly_off;
3243 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3244
3245 /* Function: section_is_overlay (SECTION)
3246 Returns true if SECTION has VMA not equal to LMA, ie.
3247 SECTION is loaded at an address different from where it will "run". */
3248
3249 int
3250 section_is_overlay (struct obj_section *section)
3251 {
3252 if (overlay_debugging && section)
3253 {
3254 bfd *abfd = section->objfile->obfd;
3255 asection *bfd_section = section->the_bfd_section;
3256
3257 if (bfd_section_lma (abfd, bfd_section) != 0
3258 && bfd_section_lma (abfd, bfd_section)
3259 != bfd_section_vma (abfd, bfd_section))
3260 return 1;
3261 }
3262
3263 return 0;
3264 }
3265
3266 /* Function: overlay_invalidate_all (void)
3267 Invalidate the mapped state of all overlay sections (mark it as stale). */
3268
3269 static void
3270 overlay_invalidate_all (void)
3271 {
3272 struct objfile *objfile;
3273 struct obj_section *sect;
3274
3275 ALL_OBJSECTIONS (objfile, sect)
3276 if (section_is_overlay (sect))
3277 sect->ovly_mapped = -1;
3278 }
3279
3280 /* Function: section_is_mapped (SECTION)
3281 Returns true if section is an overlay, and is currently mapped.
3282
3283 Access to the ovly_mapped flag is restricted to this function, so
3284 that we can do automatic update. If the global flag
3285 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3286 overlay_invalidate_all. If the mapped state of the particular
3287 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3288
3289 int
3290 section_is_mapped (struct obj_section *osect)
3291 {
3292 struct gdbarch *gdbarch;
3293
3294 if (osect == 0 || !section_is_overlay (osect))
3295 return 0;
3296
3297 switch (overlay_debugging)
3298 {
3299 default:
3300 case ovly_off:
3301 return 0; /* overlay debugging off */
3302 case ovly_auto: /* overlay debugging automatic */
3303 /* Unles there is a gdbarch_overlay_update function,
3304 there's really nothing useful to do here (can't really go auto) */
3305 gdbarch = get_objfile_arch (osect->objfile);
3306 if (gdbarch_overlay_update_p (gdbarch))
3307 {
3308 if (overlay_cache_invalid)
3309 {
3310 overlay_invalidate_all ();
3311 overlay_cache_invalid = 0;
3312 }
3313 if (osect->ovly_mapped == -1)
3314 gdbarch_overlay_update (gdbarch, osect);
3315 }
3316 /* fall thru to manual case */
3317 case ovly_on: /* overlay debugging manual */
3318 return osect->ovly_mapped == 1;
3319 }
3320 }
3321
3322 /* Function: pc_in_unmapped_range
3323 If PC falls into the lma range of SECTION, return true, else false. */
3324
3325 CORE_ADDR
3326 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3327 {
3328 if (section_is_overlay (section))
3329 {
3330 bfd *abfd = section->objfile->obfd;
3331 asection *bfd_section = section->the_bfd_section;
3332
3333 /* We assume the LMA is relocated by the same offset as the VMA. */
3334 bfd_vma size = bfd_get_section_size (bfd_section);
3335 CORE_ADDR offset = obj_section_offset (section);
3336
3337 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3338 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3339 return 1;
3340 }
3341
3342 return 0;
3343 }
3344
3345 /* Function: pc_in_mapped_range
3346 If PC falls into the vma range of SECTION, return true, else false. */
3347
3348 CORE_ADDR
3349 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3350 {
3351 if (section_is_overlay (section))
3352 {
3353 if (obj_section_addr (section) <= pc
3354 && pc < obj_section_endaddr (section))
3355 return 1;
3356 }
3357
3358 return 0;
3359 }
3360
3361
3362 /* Return true if the mapped ranges of sections A and B overlap, false
3363 otherwise. */
3364 static int
3365 sections_overlap (struct obj_section *a, struct obj_section *b)
3366 {
3367 CORE_ADDR a_start = obj_section_addr (a);
3368 CORE_ADDR a_end = obj_section_endaddr (a);
3369 CORE_ADDR b_start = obj_section_addr (b);
3370 CORE_ADDR b_end = obj_section_endaddr (b);
3371
3372 return (a_start < b_end && b_start < a_end);
3373 }
3374
3375 /* Function: overlay_unmapped_address (PC, SECTION)
3376 Returns the address corresponding to PC in the unmapped (load) range.
3377 May be the same as PC. */
3378
3379 CORE_ADDR
3380 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3381 {
3382 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3383 {
3384 bfd *abfd = section->objfile->obfd;
3385 asection *bfd_section = section->the_bfd_section;
3386
3387 return pc + bfd_section_lma (abfd, bfd_section)
3388 - bfd_section_vma (abfd, bfd_section);
3389 }
3390
3391 return pc;
3392 }
3393
3394 /* Function: overlay_mapped_address (PC, SECTION)
3395 Returns the address corresponding to PC in the mapped (runtime) range.
3396 May be the same as PC. */
3397
3398 CORE_ADDR
3399 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3400 {
3401 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3402 {
3403 bfd *abfd = section->objfile->obfd;
3404 asection *bfd_section = section->the_bfd_section;
3405
3406 return pc + bfd_section_vma (abfd, bfd_section)
3407 - bfd_section_lma (abfd, bfd_section);
3408 }
3409
3410 return pc;
3411 }
3412
3413
3414 /* Function: symbol_overlayed_address
3415 Return one of two addresses (relative to the VMA or to the LMA),
3416 depending on whether the section is mapped or not. */
3417
3418 CORE_ADDR
3419 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3420 {
3421 if (overlay_debugging)
3422 {
3423 /* If the symbol has no section, just return its regular address. */
3424 if (section == 0)
3425 return address;
3426 /* If the symbol's section is not an overlay, just return its address */
3427 if (!section_is_overlay (section))
3428 return address;
3429 /* If the symbol's section is mapped, just return its address */
3430 if (section_is_mapped (section))
3431 return address;
3432 /*
3433 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3434 * then return its LOADED address rather than its vma address!!
3435 */
3436 return overlay_unmapped_address (address, section);
3437 }
3438 return address;
3439 }
3440
3441 /* Function: find_pc_overlay (PC)
3442 Return the best-match overlay section for PC:
3443 If PC matches a mapped overlay section's VMA, return that section.
3444 Else if PC matches an unmapped section's VMA, return that section.
3445 Else if PC matches an unmapped section's LMA, return that section. */
3446
3447 struct obj_section *
3448 find_pc_overlay (CORE_ADDR pc)
3449 {
3450 struct objfile *objfile;
3451 struct obj_section *osect, *best_match = NULL;
3452
3453 if (overlay_debugging)
3454 ALL_OBJSECTIONS (objfile, osect)
3455 if (section_is_overlay (osect))
3456 {
3457 if (pc_in_mapped_range (pc, osect))
3458 {
3459 if (section_is_mapped (osect))
3460 return osect;
3461 else
3462 best_match = osect;
3463 }
3464 else if (pc_in_unmapped_range (pc, osect))
3465 best_match = osect;
3466 }
3467 return best_match;
3468 }
3469
3470 /* Function: find_pc_mapped_section (PC)
3471 If PC falls into the VMA address range of an overlay section that is
3472 currently marked as MAPPED, return that section. Else return NULL. */
3473
3474 struct obj_section *
3475 find_pc_mapped_section (CORE_ADDR pc)
3476 {
3477 struct objfile *objfile;
3478 struct obj_section *osect;
3479
3480 if (overlay_debugging)
3481 ALL_OBJSECTIONS (objfile, osect)
3482 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3483 return osect;
3484
3485 return NULL;
3486 }
3487
3488 /* Function: list_overlays_command
3489 Print a list of mapped sections and their PC ranges */
3490
3491 void
3492 list_overlays_command (char *args, int from_tty)
3493 {
3494 int nmapped = 0;
3495 struct objfile *objfile;
3496 struct obj_section *osect;
3497
3498 if (overlay_debugging)
3499 ALL_OBJSECTIONS (objfile, osect)
3500 if (section_is_mapped (osect))
3501 {
3502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3503 const char *name;
3504 bfd_vma lma, vma;
3505 int size;
3506
3507 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3508 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3509 size = bfd_get_section_size (osect->the_bfd_section);
3510 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3511
3512 printf_filtered ("Section %s, loaded at ", name);
3513 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3514 puts_filtered (" - ");
3515 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3516 printf_filtered (", mapped at ");
3517 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3518 puts_filtered (" - ");
3519 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3520 puts_filtered ("\n");
3521
3522 nmapped++;
3523 }
3524 if (nmapped == 0)
3525 printf_filtered (_("No sections are mapped.\n"));
3526 }
3527
3528 /* Function: map_overlay_command
3529 Mark the named section as mapped (ie. residing at its VMA address). */
3530
3531 void
3532 map_overlay_command (char *args, int from_tty)
3533 {
3534 struct objfile *objfile, *objfile2;
3535 struct obj_section *sec, *sec2;
3536
3537 if (!overlay_debugging)
3538 error (_("\
3539 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3540 the 'overlay manual' command."));
3541
3542 if (args == 0 || *args == 0)
3543 error (_("Argument required: name of an overlay section"));
3544
3545 /* First, find a section matching the user supplied argument */
3546 ALL_OBJSECTIONS (objfile, sec)
3547 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3548 {
3549 /* Now, check to see if the section is an overlay. */
3550 if (!section_is_overlay (sec))
3551 continue; /* not an overlay section */
3552
3553 /* Mark the overlay as "mapped" */
3554 sec->ovly_mapped = 1;
3555
3556 /* Next, make a pass and unmap any sections that are
3557 overlapped by this new section: */
3558 ALL_OBJSECTIONS (objfile2, sec2)
3559 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3560 {
3561 if (info_verbose)
3562 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3563 bfd_section_name (objfile->obfd,
3564 sec2->the_bfd_section));
3565 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3566 }
3567 return;
3568 }
3569 error (_("No overlay section called %s"), args);
3570 }
3571
3572 /* Function: unmap_overlay_command
3573 Mark the overlay section as unmapped
3574 (ie. resident in its LMA address range, rather than the VMA range). */
3575
3576 void
3577 unmap_overlay_command (char *args, int from_tty)
3578 {
3579 struct objfile *objfile;
3580 struct obj_section *sec;
3581
3582 if (!overlay_debugging)
3583 error (_("\
3584 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3585 the 'overlay manual' command."));
3586
3587 if (args == 0 || *args == 0)
3588 error (_("Argument required: name of an overlay section"));
3589
3590 /* First, find a section matching the user supplied argument */
3591 ALL_OBJSECTIONS (objfile, sec)
3592 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3593 {
3594 if (!sec->ovly_mapped)
3595 error (_("Section %s is not mapped"), args);
3596 sec->ovly_mapped = 0;
3597 return;
3598 }
3599 error (_("No overlay section called %s"), args);
3600 }
3601
3602 /* Function: overlay_auto_command
3603 A utility command to turn on overlay debugging.
3604 Possibly this should be done via a set/show command. */
3605
3606 static void
3607 overlay_auto_command (char *args, int from_tty)
3608 {
3609 overlay_debugging = ovly_auto;
3610 enable_overlay_breakpoints ();
3611 if (info_verbose)
3612 printf_unfiltered (_("Automatic overlay debugging enabled."));
3613 }
3614
3615 /* Function: overlay_manual_command
3616 A utility command to turn on overlay debugging.
3617 Possibly this should be done via a set/show command. */
3618
3619 static void
3620 overlay_manual_command (char *args, int from_tty)
3621 {
3622 overlay_debugging = ovly_on;
3623 disable_overlay_breakpoints ();
3624 if (info_verbose)
3625 printf_unfiltered (_("Overlay debugging enabled."));
3626 }
3627
3628 /* Function: overlay_off_command
3629 A utility command to turn on overlay debugging.
3630 Possibly this should be done via a set/show command. */
3631
3632 static void
3633 overlay_off_command (char *args, int from_tty)
3634 {
3635 overlay_debugging = ovly_off;
3636 disable_overlay_breakpoints ();
3637 if (info_verbose)
3638 printf_unfiltered (_("Overlay debugging disabled."));
3639 }
3640
3641 static void
3642 overlay_load_command (char *args, int from_tty)
3643 {
3644 struct gdbarch *gdbarch = get_current_arch ();
3645
3646 if (gdbarch_overlay_update_p (gdbarch))
3647 gdbarch_overlay_update (gdbarch, NULL);
3648 else
3649 error (_("This target does not know how to read its overlay state."));
3650 }
3651
3652 /* Function: overlay_command
3653 A place-holder for a mis-typed command */
3654
3655 /* Command list chain containing all defined "overlay" subcommands. */
3656 struct cmd_list_element *overlaylist;
3657
3658 static void
3659 overlay_command (char *args, int from_tty)
3660 {
3661 printf_unfiltered
3662 ("\"overlay\" must be followed by the name of an overlay command.\n");
3663 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3664 }
3665
3666
3667 /* Target Overlays for the "Simplest" overlay manager:
3668
3669 This is GDB's default target overlay layer. It works with the
3670 minimal overlay manager supplied as an example by Cygnus. The
3671 entry point is via a function pointer "gdbarch_overlay_update",
3672 so targets that use a different runtime overlay manager can
3673 substitute their own overlay_update function and take over the
3674 function pointer.
3675
3676 The overlay_update function pokes around in the target's data structures
3677 to see what overlays are mapped, and updates GDB's overlay mapping with
3678 this information.
3679
3680 In this simple implementation, the target data structures are as follows:
3681 unsigned _novlys; /# number of overlay sections #/
3682 unsigned _ovly_table[_novlys][4] = {
3683 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3684 {..., ..., ..., ...},
3685 }
3686 unsigned _novly_regions; /# number of overlay regions #/
3687 unsigned _ovly_region_table[_novly_regions][3] = {
3688 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3689 {..., ..., ...},
3690 }
3691 These functions will attempt to update GDB's mappedness state in the
3692 symbol section table, based on the target's mappedness state.
3693
3694 To do this, we keep a cached copy of the target's _ovly_table, and
3695 attempt to detect when the cached copy is invalidated. The main
3696 entry point is "simple_overlay_update(SECT), which looks up SECT in
3697 the cached table and re-reads only the entry for that section from
3698 the target (whenever possible).
3699 */
3700
3701 /* Cached, dynamically allocated copies of the target data structures: */
3702 static unsigned (*cache_ovly_table)[4] = 0;
3703 #if 0
3704 static unsigned (*cache_ovly_region_table)[3] = 0;
3705 #endif
3706 static unsigned cache_novlys = 0;
3707 #if 0
3708 static unsigned cache_novly_regions = 0;
3709 #endif
3710 static CORE_ADDR cache_ovly_table_base = 0;
3711 #if 0
3712 static CORE_ADDR cache_ovly_region_table_base = 0;
3713 #endif
3714 enum ovly_index
3715 {
3716 VMA, SIZE, LMA, MAPPED
3717 };
3718
3719 /* Throw away the cached copy of _ovly_table */
3720 static void
3721 simple_free_overlay_table (void)
3722 {
3723 if (cache_ovly_table)
3724 xfree (cache_ovly_table);
3725 cache_novlys = 0;
3726 cache_ovly_table = NULL;
3727 cache_ovly_table_base = 0;
3728 }
3729
3730 #if 0
3731 /* Throw away the cached copy of _ovly_region_table */
3732 static void
3733 simple_free_overlay_region_table (void)
3734 {
3735 if (cache_ovly_region_table)
3736 xfree (cache_ovly_region_table);
3737 cache_novly_regions = 0;
3738 cache_ovly_region_table = NULL;
3739 cache_ovly_region_table_base = 0;
3740 }
3741 #endif
3742
3743 /* Read an array of ints of size SIZE from the target into a local buffer.
3744 Convert to host order. int LEN is number of ints */
3745 static void
3746 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3747 int len, int size, enum bfd_endian byte_order)
3748 {
3749 /* FIXME (alloca): Not safe if array is very large. */
3750 gdb_byte *buf = alloca (len * size);
3751 int i;
3752
3753 read_memory (memaddr, buf, len * size);
3754 for (i = 0; i < len; i++)
3755 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3756 }
3757
3758 /* Find and grab a copy of the target _ovly_table
3759 (and _novlys, which is needed for the table's size) */
3760 static int
3761 simple_read_overlay_table (void)
3762 {
3763 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3764 struct gdbarch *gdbarch;
3765 int word_size;
3766 enum bfd_endian byte_order;
3767
3768 simple_free_overlay_table ();
3769 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3770 if (! novlys_msym)
3771 {
3772 error (_("Error reading inferior's overlay table: "
3773 "couldn't find `_novlys' variable\n"
3774 "in inferior. Use `overlay manual' mode."));
3775 return 0;
3776 }
3777
3778 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3779 if (! ovly_table_msym)
3780 {
3781 error (_("Error reading inferior's overlay table: couldn't find "
3782 "`_ovly_table' array\n"
3783 "in inferior. Use `overlay manual' mode."));
3784 return 0;
3785 }
3786
3787 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3788 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3789 byte_order = gdbarch_byte_order (gdbarch);
3790
3791 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3792 4, byte_order);
3793 cache_ovly_table
3794 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3795 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3796 read_target_long_array (cache_ovly_table_base,
3797 (unsigned int *) cache_ovly_table,
3798 cache_novlys * 4, word_size, byte_order);
3799
3800 return 1; /* SUCCESS */
3801 }
3802
3803 #if 0
3804 /* Find and grab a copy of the target _ovly_region_table
3805 (and _novly_regions, which is needed for the table's size) */
3806 static int
3807 simple_read_overlay_region_table (void)
3808 {
3809 struct minimal_symbol *msym;
3810 struct gdbarch *gdbarch;
3811 int word_size;
3812 enum bfd_endian byte_order;
3813
3814 simple_free_overlay_region_table ();
3815 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3816 if (msym == NULL)
3817 return 0; /* failure */
3818
3819 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3820 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3821 byte_order = gdbarch_byte_order (gdbarch);
3822
3823 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3824 4, byte_order);
3825
3826 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3827 if (cache_ovly_region_table != NULL)
3828 {
3829 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3830 if (msym != NULL)
3831 {
3832 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3833 read_target_long_array (cache_ovly_region_table_base,
3834 (unsigned int *) cache_ovly_region_table,
3835 cache_novly_regions * 3,
3836 word_size, byte_order);
3837 }
3838 else
3839 return 0; /* failure */
3840 }
3841 else
3842 return 0; /* failure */
3843 return 1; /* SUCCESS */
3844 }
3845 #endif
3846
3847 /* Function: simple_overlay_update_1
3848 A helper function for simple_overlay_update. Assuming a cached copy
3849 of _ovly_table exists, look through it to find an entry whose vma,
3850 lma and size match those of OSECT. Re-read the entry and make sure
3851 it still matches OSECT (else the table may no longer be valid).
3852 Set OSECT's mapped state to match the entry. Return: 1 for
3853 success, 0 for failure. */
3854
3855 static int
3856 simple_overlay_update_1 (struct obj_section *osect)
3857 {
3858 int i, size;
3859 bfd *obfd = osect->objfile->obfd;
3860 asection *bsect = osect->the_bfd_section;
3861 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3862 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3863 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3864
3865 size = bfd_get_section_size (osect->the_bfd_section);
3866 for (i = 0; i < cache_novlys; i++)
3867 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3868 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3869 /* && cache_ovly_table[i][SIZE] == size */ )
3870 {
3871 read_target_long_array (cache_ovly_table_base + i * word_size,
3872 (unsigned int *) cache_ovly_table[i],
3873 4, word_size, byte_order);
3874 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3875 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3876 /* && cache_ovly_table[i][SIZE] == size */ )
3877 {
3878 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3879 return 1;
3880 }
3881 else /* Warning! Warning! Target's ovly table has changed! */
3882 return 0;
3883 }
3884 return 0;
3885 }
3886
3887 /* Function: simple_overlay_update
3888 If OSECT is NULL, then update all sections' mapped state
3889 (after re-reading the entire target _ovly_table).
3890 If OSECT is non-NULL, then try to find a matching entry in the
3891 cached ovly_table and update only OSECT's mapped state.
3892 If a cached entry can't be found or the cache isn't valid, then
3893 re-read the entire cache, and go ahead and update all sections. */
3894
3895 void
3896 simple_overlay_update (struct obj_section *osect)
3897 {
3898 struct objfile *objfile;
3899
3900 /* Were we given an osect to look up? NULL means do all of them. */
3901 if (osect)
3902 /* Have we got a cached copy of the target's overlay table? */
3903 if (cache_ovly_table != NULL)
3904 /* Does its cached location match what's currently in the symtab? */
3905 if (cache_ovly_table_base ==
3906 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3907 /* Then go ahead and try to look up this single section in the cache */
3908 if (simple_overlay_update_1 (osect))
3909 /* Found it! We're done. */
3910 return;
3911
3912 /* Cached table no good: need to read the entire table anew.
3913 Or else we want all the sections, in which case it's actually
3914 more efficient to read the whole table in one block anyway. */
3915
3916 if (! simple_read_overlay_table ())
3917 return;
3918
3919 /* Now may as well update all sections, even if only one was requested. */
3920 ALL_OBJSECTIONS (objfile, osect)
3921 if (section_is_overlay (osect))
3922 {
3923 int i, size;
3924 bfd *obfd = osect->objfile->obfd;
3925 asection *bsect = osect->the_bfd_section;
3926
3927 size = bfd_get_section_size (bsect);
3928 for (i = 0; i < cache_novlys; i++)
3929 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3930 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3931 /* && cache_ovly_table[i][SIZE] == size */ )
3932 { /* obj_section matches i'th entry in ovly_table */
3933 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3934 break; /* finished with inner for loop: break out */
3935 }
3936 }
3937 }
3938
3939 /* Set the output sections and output offsets for section SECTP in
3940 ABFD. The relocation code in BFD will read these offsets, so we
3941 need to be sure they're initialized. We map each section to itself,
3942 with no offset; this means that SECTP->vma will be honored. */
3943
3944 static void
3945 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3946 {
3947 sectp->output_section = sectp;
3948 sectp->output_offset = 0;
3949 }
3950
3951 /* Relocate the contents of a debug section SECTP in ABFD. The
3952 contents are stored in BUF if it is non-NULL, or returned in a
3953 malloc'd buffer otherwise.
3954
3955 For some platforms and debug info formats, shared libraries contain
3956 relocations against the debug sections (particularly for DWARF-2;
3957 one affected platform is PowerPC GNU/Linux, although it depends on
3958 the version of the linker in use). Also, ELF object files naturally
3959 have unresolved relocations for their debug sections. We need to apply
3960 the relocations in order to get the locations of symbols correct.
3961 Another example that may require relocation processing, is the
3962 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3963 debug section. */
3964
3965 bfd_byte *
3966 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3967 {
3968 /* We're only interested in sections with relocation
3969 information. */
3970 if ((sectp->flags & SEC_RELOC) == 0)
3971 return NULL;
3972
3973 /* We will handle section offsets properly elsewhere, so relocate as if
3974 all sections begin at 0. */
3975 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3976
3977 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3978 }
3979
3980 struct symfile_segment_data *
3981 get_symfile_segment_data (bfd *abfd)
3982 {
3983 struct sym_fns *sf = find_sym_fns (abfd);
3984
3985 if (sf == NULL)
3986 return NULL;
3987
3988 return sf->sym_segments (abfd);
3989 }
3990
3991 void
3992 free_symfile_segment_data (struct symfile_segment_data *data)
3993 {
3994 xfree (data->segment_bases);
3995 xfree (data->segment_sizes);
3996 xfree (data->segment_info);
3997 xfree (data);
3998 }
3999
4000
4001 /* Given:
4002 - DATA, containing segment addresses from the object file ABFD, and
4003 the mapping from ABFD's sections onto the segments that own them,
4004 and
4005 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4006 segment addresses reported by the target,
4007 store the appropriate offsets for each section in OFFSETS.
4008
4009 If there are fewer entries in SEGMENT_BASES than there are segments
4010 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4011
4012 If there are more entries, then ignore the extra. The target may
4013 not be able to distinguish between an empty data segment and a
4014 missing data segment; a missing text segment is less plausible. */
4015 int
4016 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4017 struct section_offsets *offsets,
4018 int num_segment_bases,
4019 const CORE_ADDR *segment_bases)
4020 {
4021 int i;
4022 asection *sect;
4023
4024 /* It doesn't make sense to call this function unless you have some
4025 segment base addresses. */
4026 gdb_assert (segment_bases > 0);
4027
4028 /* If we do not have segment mappings for the object file, we
4029 can not relocate it by segments. */
4030 gdb_assert (data != NULL);
4031 gdb_assert (data->num_segments > 0);
4032
4033 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4034 {
4035 int which = data->segment_info[i];
4036
4037 gdb_assert (0 <= which && which <= data->num_segments);
4038
4039 /* Don't bother computing offsets for sections that aren't
4040 loaded as part of any segment. */
4041 if (! which)
4042 continue;
4043
4044 /* Use the last SEGMENT_BASES entry as the address of any extra
4045 segments mentioned in DATA->segment_info. */
4046 if (which > num_segment_bases)
4047 which = num_segment_bases;
4048
4049 offsets->offsets[i] = (segment_bases[which - 1]
4050 - data->segment_bases[which - 1]);
4051 }
4052
4053 return 1;
4054 }
4055
4056 static void
4057 symfile_find_segment_sections (struct objfile *objfile)
4058 {
4059 bfd *abfd = objfile->obfd;
4060 int i;
4061 asection *sect;
4062 struct symfile_segment_data *data;
4063
4064 data = get_symfile_segment_data (objfile->obfd);
4065 if (data == NULL)
4066 return;
4067
4068 if (data->num_segments != 1 && data->num_segments != 2)
4069 {
4070 free_symfile_segment_data (data);
4071 return;
4072 }
4073
4074 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4075 {
4076 CORE_ADDR vma;
4077 int which = data->segment_info[i];
4078
4079 if (which == 1)
4080 {
4081 if (objfile->sect_index_text == -1)
4082 objfile->sect_index_text = sect->index;
4083
4084 if (objfile->sect_index_rodata == -1)
4085 objfile->sect_index_rodata = sect->index;
4086 }
4087 else if (which == 2)
4088 {
4089 if (objfile->sect_index_data == -1)
4090 objfile->sect_index_data = sect->index;
4091
4092 if (objfile->sect_index_bss == -1)
4093 objfile->sect_index_bss = sect->index;
4094 }
4095 }
4096
4097 free_symfile_segment_data (data);
4098 }
4099
4100 void
4101 _initialize_symfile (void)
4102 {
4103 struct cmd_list_element *c;
4104
4105 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4106 Load symbol table from executable file FILE.\n\
4107 The `file' command can also load symbol tables, as well as setting the file\n\
4108 to execute."), &cmdlist);
4109 set_cmd_completer (c, filename_completer);
4110
4111 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4112 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4113 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4114 ADDR is the starting address of the file's text.\n\
4115 The optional arguments are section-name section-address pairs and\n\
4116 should be specified if the data and bss segments are not contiguous\n\
4117 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4118 &cmdlist);
4119 set_cmd_completer (c, filename_completer);
4120
4121 c = add_cmd ("load", class_files, load_command, _("\
4122 Dynamically load FILE into the running program, and record its symbols\n\
4123 for access from GDB.\n\
4124 A load OFFSET may also be given."), &cmdlist);
4125 set_cmd_completer (c, filename_completer);
4126
4127 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4128 &symbol_reloading, _("\
4129 Set dynamic symbol table reloading multiple times in one run."), _("\
4130 Show dynamic symbol table reloading multiple times in one run."), NULL,
4131 NULL,
4132 show_symbol_reloading,
4133 &setlist, &showlist);
4134
4135 add_prefix_cmd ("overlay", class_support, overlay_command,
4136 _("Commands for debugging overlays."), &overlaylist,
4137 "overlay ", 0, &cmdlist);
4138
4139 add_com_alias ("ovly", "overlay", class_alias, 1);
4140 add_com_alias ("ov", "overlay", class_alias, 1);
4141
4142 add_cmd ("map-overlay", class_support, map_overlay_command,
4143 _("Assert that an overlay section is mapped."), &overlaylist);
4144
4145 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4146 _("Assert that an overlay section is unmapped."), &overlaylist);
4147
4148 add_cmd ("list-overlays", class_support, list_overlays_command,
4149 _("List mappings of overlay sections."), &overlaylist);
4150
4151 add_cmd ("manual", class_support, overlay_manual_command,
4152 _("Enable overlay debugging."), &overlaylist);
4153 add_cmd ("off", class_support, overlay_off_command,
4154 _("Disable overlay debugging."), &overlaylist);
4155 add_cmd ("auto", class_support, overlay_auto_command,
4156 _("Enable automatic overlay debugging."), &overlaylist);
4157 add_cmd ("load-target", class_support, overlay_load_command,
4158 _("Read the overlay mapping state from the target."), &overlaylist);
4159
4160 /* Filename extension to source language lookup table: */
4161 init_filename_language_table ();
4162 add_setshow_string_noescape_cmd ("extension-language", class_files,
4163 &ext_args, _("\
4164 Set mapping between filename extension and source language."), _("\
4165 Show mapping between filename extension and source language."), _("\
4166 Usage: set extension-language .foo bar"),
4167 set_ext_lang_command,
4168 show_ext_args,
4169 &setlist, &showlist);
4170
4171 add_info ("extensions", info_ext_lang_command,
4172 _("All filename extensions associated with a source language."));
4173
4174 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4175 &debug_file_directory, _("\
4176 Set the directory where separate debug symbols are searched for."), _("\
4177 Show the directory where separate debug symbols are searched for."), _("\
4178 Separate debug symbols are first searched for in the same\n\
4179 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4180 and lastly at the path of the directory of the binary with\n\
4181 the global debug-file directory prepended."),
4182 NULL,
4183 show_debug_file_directory,
4184 &setlist, &showlist);
4185 }
This page took 0.125047 seconds and 5 git commands to generate.