2013-09-04 Muhammad Bilal <mbilal@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef const struct sym_fns *sym_fns_ptr;
134 DEF_VEC_P (sym_fns_ptr);
135
136 static VEC (sym_fns_ptr) *symtab_fns = NULL;
137
138 /* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
145 library symbols are not loaded, commands like "info fun" will *not*
146 report all the functions that are actually present. */
147
148 int auto_solib_add = 1;
149 \f
150
151 /* True if we are reading a symbol table. */
152
153 int currently_reading_symtab = 0;
154
155 static void
156 decrement_reading_symtab (void *dummy)
157 {
158 currently_reading_symtab--;
159 gdb_assert (currently_reading_symtab >= 0);
160 }
161
162 /* Increment currently_reading_symtab and return a cleanup that can be
163 used to decrement it. */
164
165 struct cleanup *
166 increment_reading_symtab (void)
167 {
168 ++currently_reading_symtab;
169 gdb_assert (currently_reading_symtab > 0);
170 return make_cleanup (decrement_reading_symtab, NULL);
171 }
172
173 /* Remember the lowest-addressed loadable section we've seen.
174 This function is called via bfd_map_over_sections.
175
176 In case of equal vmas, the section with the largest size becomes the
177 lowest-addressed loadable section.
178
179 If the vmas and sizes are equal, the last section is considered the
180 lowest-addressed loadable section. */
181
182 void
183 find_lowest_section (bfd *abfd, asection *sect, void *obj)
184 {
185 asection **lowest = (asection **) obj;
186
187 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
188 return;
189 if (!*lowest)
190 *lowest = sect; /* First loadable section */
191 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
192 *lowest = sect; /* A lower loadable section */
193 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
194 && (bfd_section_size (abfd, (*lowest))
195 <= bfd_section_size (abfd, sect)))
196 *lowest = sect;
197 }
198
199 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
200 new object's 'num_sections' field is set to 0; it must be updated
201 by the caller. */
202
203 struct section_addr_info *
204 alloc_section_addr_info (size_t num_sections)
205 {
206 struct section_addr_info *sap;
207 size_t size;
208
209 size = (sizeof (struct section_addr_info)
210 + sizeof (struct other_sections) * (num_sections - 1));
211 sap = (struct section_addr_info *) xmalloc (size);
212 memset (sap, 0, size);
213
214 return sap;
215 }
216
217 /* Build (allocate and populate) a section_addr_info struct from
218 an existing section table. */
219
220 extern struct section_addr_info *
221 build_section_addr_info_from_section_table (const struct target_section *start,
222 const struct target_section *end)
223 {
224 struct section_addr_info *sap;
225 const struct target_section *stp;
226 int oidx;
227
228 sap = alloc_section_addr_info (end - start);
229
230 for (stp = start, oidx = 0; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && oidx < end - start)
237 {
238 sap->other[oidx].addr = stp->addr;
239 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
240 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
241 oidx++;
242 }
243 }
244
245 sap->num_sections = oidx;
246
247 return sap;
248 }
249
250 /* Create a section_addr_info from section offsets in ABFD. */
251
252 static struct section_addr_info *
253 build_section_addr_info_from_bfd (bfd *abfd)
254 {
255 struct section_addr_info *sap;
256 int i;
257 struct bfd_section *sec;
258
259 sap = alloc_section_addr_info (bfd_count_sections (abfd));
260 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
261 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
262 {
263 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
264 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
265 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
266 i++;
267 }
268
269 sap->num_sections = i;
270
271 return sap;
272 }
273
274 /* Create a section_addr_info from section offsets in OBJFILE. */
275
276 struct section_addr_info *
277 build_section_addr_info_from_objfile (const struct objfile *objfile)
278 {
279 struct section_addr_info *sap;
280 int i;
281
282 /* Before reread_symbols gets rewritten it is not safe to call:
283 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
284 */
285 sap = build_section_addr_info_from_bfd (objfile->obfd);
286 for (i = 0; i < sap->num_sections; i++)
287 {
288 int sectindex = sap->other[i].sectindex;
289
290 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
291 }
292 return sap;
293 }
294
295 /* Free all memory allocated by build_section_addr_info_from_section_table. */
296
297 extern void
298 free_section_addr_info (struct section_addr_info *sap)
299 {
300 int idx;
301
302 for (idx = 0; idx < sap->num_sections; idx++)
303 xfree (sap->other[idx].name);
304 xfree (sap);
305 }
306
307 /* Initialize OBJFILE's sect_index_* members. */
308
309 static void
310 init_objfile_sect_indices (struct objfile *objfile)
311 {
312 asection *sect;
313 int i;
314
315 sect = bfd_get_section_by_name (objfile->obfd, ".text");
316 if (sect)
317 objfile->sect_index_text = sect->index;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".data");
320 if (sect)
321 objfile->sect_index_data = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
324 if (sect)
325 objfile->sect_index_bss = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
328 if (sect)
329 objfile->sect_index_rodata = sect->index;
330
331 /* This is where things get really weird... We MUST have valid
332 indices for the various sect_index_* members or gdb will abort.
333 So if for example, there is no ".text" section, we have to
334 accomodate that. First, check for a file with the standard
335 one or two segments. */
336
337 symfile_find_segment_sections (objfile);
338
339 /* Except when explicitly adding symbol files at some address,
340 section_offsets contains nothing but zeros, so it doesn't matter
341 which slot in section_offsets the individual sect_index_* members
342 index into. So if they are all zero, it is safe to just point
343 all the currently uninitialized indices to the first slot. But
344 beware: if this is the main executable, it may be relocated
345 later, e.g. by the remote qOffsets packet, and then this will
346 be wrong! That's why we try segments first. */
347
348 for (i = 0; i < objfile->num_sections; i++)
349 {
350 if (ANOFFSET (objfile->section_offsets, i) != 0)
351 {
352 break;
353 }
354 }
355 if (i == objfile->num_sections)
356 {
357 if (objfile->sect_index_text == -1)
358 objfile->sect_index_text = 0;
359 if (objfile->sect_index_data == -1)
360 objfile->sect_index_data = 0;
361 if (objfile->sect_index_bss == -1)
362 objfile->sect_index_bss = 0;
363 if (objfile->sect_index_rodata == -1)
364 objfile->sect_index_rodata = 0;
365 }
366 }
367
368 /* The arguments to place_section. */
369
370 struct place_section_arg
371 {
372 struct section_offsets *offsets;
373 CORE_ADDR lowest;
374 };
375
376 /* Find a unique offset to use for loadable section SECT if
377 the user did not provide an offset. */
378
379 static void
380 place_section (bfd *abfd, asection *sect, void *obj)
381 {
382 struct place_section_arg *arg = obj;
383 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
384 int done;
385 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
386
387 /* We are only interested in allocated sections. */
388 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
389 return;
390
391 /* If the user specified an offset, honor it. */
392 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
393 return;
394
395 /* Otherwise, let's try to find a place for the section. */
396 start_addr = (arg->lowest + align - 1) & -align;
397
398 do {
399 asection *cur_sec;
400
401 done = 1;
402
403 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
404 {
405 int indx = cur_sec->index;
406
407 /* We don't need to compare against ourself. */
408 if (cur_sec == sect)
409 continue;
410
411 /* We can only conflict with allocated sections. */
412 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
413 continue;
414
415 /* If the section offset is 0, either the section has not been placed
416 yet, or it was the lowest section placed (in which case LOWEST
417 will be past its end). */
418 if (offsets[indx] == 0)
419 continue;
420
421 /* If this section would overlap us, then we must move up. */
422 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
423 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
424 {
425 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
426 start_addr = (start_addr + align - 1) & -align;
427 done = 0;
428 break;
429 }
430
431 /* Otherwise, we appear to be OK. So far. */
432 }
433 }
434 while (!done);
435
436 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
437 arg->lowest = start_addr + bfd_get_section_size (sect);
438 }
439
440 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
441 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
442 entries. */
443
444 void
445 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
446 int num_sections,
447 const struct section_addr_info *addrs)
448 {
449 int i;
450
451 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
452
453 /* Now calculate offsets for section that were specified by the caller. */
454 for (i = 0; i < addrs->num_sections; i++)
455 {
456 const struct other_sections *osp;
457
458 osp = &addrs->other[i];
459 if (osp->sectindex == -1)
460 continue;
461
462 /* Record all sections in offsets. */
463 /* The section_offsets in the objfile are here filled in using
464 the BFD index. */
465 section_offsets->offsets[osp->sectindex] = osp->addr;
466 }
467 }
468
469 /* Transform section name S for a name comparison. prelink can split section
470 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
471 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
472 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
473 (`.sbss') section has invalid (increased) virtual address. */
474
475 static const char *
476 addr_section_name (const char *s)
477 {
478 if (strcmp (s, ".dynbss") == 0)
479 return ".bss";
480 if (strcmp (s, ".sdynbss") == 0)
481 return ".sbss";
482
483 return s;
484 }
485
486 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
487 their (name, sectindex) pair. sectindex makes the sort by name stable. */
488
489 static int
490 addrs_section_compar (const void *ap, const void *bp)
491 {
492 const struct other_sections *a = *((struct other_sections **) ap);
493 const struct other_sections *b = *((struct other_sections **) bp);
494 int retval;
495
496 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
497 if (retval)
498 return retval;
499
500 return a->sectindex - b->sectindex;
501 }
502
503 /* Provide sorted array of pointers to sections of ADDRS. The array is
504 terminated by NULL. Caller is responsible to call xfree for it. */
505
506 static struct other_sections **
507 addrs_section_sort (struct section_addr_info *addrs)
508 {
509 struct other_sections **array;
510 int i;
511
512 /* `+ 1' for the NULL terminator. */
513 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
514 for (i = 0; i < addrs->num_sections; i++)
515 array[i] = &addrs->other[i];
516 array[i] = NULL;
517
518 qsort (array, i, sizeof (*array), addrs_section_compar);
519
520 return array;
521 }
522
523 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
524 also SECTINDEXes specific to ABFD there. This function can be used to
525 rebase ADDRS to start referencing different BFD than before. */
526
527 void
528 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
529 {
530 asection *lower_sect;
531 CORE_ADDR lower_offset;
532 int i;
533 struct cleanup *my_cleanup;
534 struct section_addr_info *abfd_addrs;
535 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
536 struct other_sections **addrs_to_abfd_addrs;
537
538 /* Find lowest loadable section to be used as starting point for
539 continguous sections. */
540 lower_sect = NULL;
541 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
542 if (lower_sect == NULL)
543 {
544 warning (_("no loadable sections found in added symbol-file %s"),
545 bfd_get_filename (abfd));
546 lower_offset = 0;
547 }
548 else
549 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
550
551 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
552 in ABFD. Section names are not unique - there can be multiple sections of
553 the same name. Also the sections of the same name do not have to be
554 adjacent to each other. Some sections may be present only in one of the
555 files. Even sections present in both files do not have to be in the same
556 order.
557
558 Use stable sort by name for the sections in both files. Then linearly
559 scan both lists matching as most of the entries as possible. */
560
561 addrs_sorted = addrs_section_sort (addrs);
562 my_cleanup = make_cleanup (xfree, addrs_sorted);
563
564 abfd_addrs = build_section_addr_info_from_bfd (abfd);
565 make_cleanup_free_section_addr_info (abfd_addrs);
566 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
567 make_cleanup (xfree, abfd_addrs_sorted);
568
569 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
570 ABFD_ADDRS_SORTED. */
571
572 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
573 * addrs->num_sections);
574 make_cleanup (xfree, addrs_to_abfd_addrs);
575
576 while (*addrs_sorted)
577 {
578 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
579
580 while (*abfd_addrs_sorted
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
582 sect_name) < 0)
583 abfd_addrs_sorted++;
584
585 if (*abfd_addrs_sorted
586 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
587 sect_name) == 0)
588 {
589 int index_in_addrs;
590
591 /* Make the found item directly addressable from ADDRS. */
592 index_in_addrs = *addrs_sorted - addrs->other;
593 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
594 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
595
596 /* Never use the same ABFD entry twice. */
597 abfd_addrs_sorted++;
598 }
599
600 addrs_sorted++;
601 }
602
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
606
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
613 for (i = 0; i < addrs->num_sections; i++)
614 {
615 struct other_sections *sect = addrs_to_abfd_addrs[i];
616
617 if (sect)
618 {
619 /* This is the index used by BFD. */
620 addrs->other[i].sectindex = sect->sectindex;
621
622 if (addrs->other[i].addr != 0)
623 {
624 addrs->other[i].addr -= sect->addr;
625 lower_offset = addrs->other[i].addr;
626 }
627 else
628 addrs->other[i].addr = lower_offset;
629 }
630 else
631 {
632 /* addr_section_name transformation is not used for SECT_NAME. */
633 const char *sect_name = addrs->other[i].name;
634
635 /* This section does not exist in ABFD, which is normally
636 unexpected and we want to issue a warning.
637
638 However, the ELF prelinker does create a few sections which are
639 marked in the main executable as loadable (they are loaded in
640 memory from the DYNAMIC segment) and yet are not present in
641 separate debug info files. This is fine, and should not cause
642 a warning. Shared libraries contain just the section
643 ".gnu.liblist" but it is not marked as loadable there. There is
644 no other way to identify them than by their name as the sections
645 created by prelink have no special flags.
646
647 For the sections `.bss' and `.sbss' see addr_section_name. */
648
649 if (!(strcmp (sect_name, ".gnu.liblist") == 0
650 || strcmp (sect_name, ".gnu.conflict") == 0
651 || (strcmp (sect_name, ".bss") == 0
652 && i > 0
653 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
654 && addrs_to_abfd_addrs[i - 1] != NULL)
655 || (strcmp (sect_name, ".sbss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)))
659 warning (_("section %s not found in %s"), sect_name,
660 bfd_get_filename (abfd));
661
662 addrs->other[i].addr = 0;
663 addrs->other[i].sectindex = -1;
664 }
665 }
666
667 do_cleanups (my_cleanup);
668 }
669
670 /* Parse the user's idea of an offset for dynamic linking, into our idea
671 of how to represent it for fast symbol reading. This is the default
672 version of the sym_fns.sym_offsets function for symbol readers that
673 don't need to do anything special. It allocates a section_offsets table
674 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
675
676 void
677 default_symfile_offsets (struct objfile *objfile,
678 const struct section_addr_info *addrs)
679 {
680 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
681 objfile->section_offsets = (struct section_offsets *)
682 obstack_alloc (&objfile->objfile_obstack,
683 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
684 relative_addr_info_to_section_offsets (objfile->section_offsets,
685 objfile->num_sections, addrs);
686
687 /* For relocatable files, all loadable sections will start at zero.
688 The zero is meaningless, so try to pick arbitrary addresses such
689 that no loadable sections overlap. This algorithm is quadratic,
690 but the number of sections in a single object file is generally
691 small. */
692 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
693 {
694 struct place_section_arg arg;
695 bfd *abfd = objfile->obfd;
696 asection *cur_sec;
697
698 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
699 /* We do not expect this to happen; just skip this step if the
700 relocatable file has a section with an assigned VMA. */
701 if (bfd_section_vma (abfd, cur_sec) != 0)
702 break;
703
704 if (cur_sec == NULL)
705 {
706 CORE_ADDR *offsets = objfile->section_offsets->offsets;
707
708 /* Pick non-overlapping offsets for sections the user did not
709 place explicitly. */
710 arg.offsets = objfile->section_offsets;
711 arg.lowest = 0;
712 bfd_map_over_sections (objfile->obfd, place_section, &arg);
713
714 /* Correctly filling in the section offsets is not quite
715 enough. Relocatable files have two properties that
716 (most) shared objects do not:
717
718 - Their debug information will contain relocations. Some
719 shared libraries do also, but many do not, so this can not
720 be assumed.
721
722 - If there are multiple code sections they will be loaded
723 at different relative addresses in memory than they are
724 in the objfile, since all sections in the file will start
725 at address zero.
726
727 Because GDB has very limited ability to map from an
728 address in debug info to the correct code section,
729 it relies on adding SECT_OFF_TEXT to things which might be
730 code. If we clear all the section offsets, and set the
731 section VMAs instead, then symfile_relocate_debug_section
732 will return meaningful debug information pointing at the
733 correct sections.
734
735 GDB has too many different data structures for section
736 addresses - a bfd, objfile, and so_list all have section
737 tables, as does exec_ops. Some of these could probably
738 be eliminated. */
739
740 for (cur_sec = abfd->sections; cur_sec != NULL;
741 cur_sec = cur_sec->next)
742 {
743 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
744 continue;
745
746 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
747 exec_set_section_address (bfd_get_filename (abfd),
748 cur_sec->index,
749 offsets[cur_sec->index]);
750 offsets[cur_sec->index] = 0;
751 }
752 }
753 }
754
755 /* Remember the bfd indexes for the .text, .data, .bss and
756 .rodata sections. */
757 init_objfile_sect_indices (objfile);
758 }
759
760 /* Divide the file into segments, which are individual relocatable units.
761 This is the default version of the sym_fns.sym_segments function for
762 symbol readers that do not have an explicit representation of segments.
763 It assumes that object files do not have segments, and fully linked
764 files have a single segment. */
765
766 struct symfile_segment_data *
767 default_symfile_segments (bfd *abfd)
768 {
769 int num_sections, i;
770 asection *sect;
771 struct symfile_segment_data *data;
772 CORE_ADDR low, high;
773
774 /* Relocatable files contain enough information to position each
775 loadable section independently; they should not be relocated
776 in segments. */
777 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
778 return NULL;
779
780 /* Make sure there is at least one loadable section in the file. */
781 for (sect = abfd->sections; sect != NULL; sect = sect->next)
782 {
783 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
784 continue;
785
786 break;
787 }
788 if (sect == NULL)
789 return NULL;
790
791 low = bfd_get_section_vma (abfd, sect);
792 high = low + bfd_get_section_size (sect);
793
794 data = XZALLOC (struct symfile_segment_data);
795 data->num_segments = 1;
796 data->segment_bases = XCALLOC (1, CORE_ADDR);
797 data->segment_sizes = XCALLOC (1, CORE_ADDR);
798
799 num_sections = bfd_count_sections (abfd);
800 data->segment_info = XCALLOC (num_sections, int);
801
802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
803 {
804 CORE_ADDR vma;
805
806 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
807 continue;
808
809 vma = bfd_get_section_vma (abfd, sect);
810 if (vma < low)
811 low = vma;
812 if (vma + bfd_get_section_size (sect) > high)
813 high = vma + bfd_get_section_size (sect);
814
815 data->segment_info[i] = 1;
816 }
817
818 data->segment_bases[0] = low;
819 data->segment_sizes[0] = high - low;
820
821 return data;
822 }
823
824 /* This is a convenience function to call sym_read for OBJFILE and
825 possibly force the partial symbols to be read. */
826
827 static void
828 read_symbols (struct objfile *objfile, int add_flags)
829 {
830 (*objfile->sf->sym_read) (objfile, add_flags);
831
832 /* find_separate_debug_file_in_section should be called only if there is
833 single binary with no existing separate debug info file. */
834 if (!objfile_has_partial_symbols (objfile)
835 && objfile->separate_debug_objfile == NULL
836 && objfile->separate_debug_objfile_backlink == NULL)
837 {
838 bfd *abfd = find_separate_debug_file_in_section (objfile);
839 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
840
841 if (abfd != NULL)
842 symbol_file_add_separate (abfd, add_flags, objfile);
843
844 do_cleanups (cleanup);
845 }
846 if ((add_flags & SYMFILE_NO_READ) == 0)
847 require_partial_symbols (objfile, 0);
848 }
849
850 /* Initialize entry point information for this objfile. */
851
852 static void
853 init_entry_point_info (struct objfile *objfile)
854 {
855 /* Save startup file's range of PC addresses to help blockframe.c
856 decide where the bottom of the stack is. */
857
858 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
859 {
860 /* Executable file -- record its entry point so we'll recognize
861 the startup file because it contains the entry point. */
862 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
863 objfile->ei.entry_point_p = 1;
864 }
865 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
866 && bfd_get_start_address (objfile->obfd) != 0)
867 {
868 /* Some shared libraries may have entry points set and be
869 runnable. There's no clear way to indicate this, so just check
870 for values other than zero. */
871 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
872 objfile->ei.entry_point_p = 1;
873 }
874 else
875 {
876 /* Examination of non-executable.o files. Short-circuit this stuff. */
877 objfile->ei.entry_point_p = 0;
878 }
879
880 if (objfile->ei.entry_point_p)
881 {
882 CORE_ADDR entry_point = objfile->ei.entry_point;
883
884 /* Make certain that the address points at real code, and not a
885 function descriptor. */
886 entry_point
887 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
888 entry_point,
889 &current_target);
890
891 /* Remove any ISA markers, so that this matches entries in the
892 symbol table. */
893 objfile->ei.entry_point
894 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
895 }
896 }
897
898 /* Process a symbol file, as either the main file or as a dynamically
899 loaded file.
900
901 This function does not set the OBJFILE's entry-point info.
902
903 OBJFILE is where the symbols are to be read from.
904
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
914
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
918
919 static void
920 syms_from_objfile_1 (struct objfile *objfile,
921 struct section_addr_info *addrs,
922 int add_flags)
923 {
924 struct section_addr_info *local_addr = NULL;
925 struct cleanup *old_chain;
926 const int mainline = add_flags & SYMFILE_MAINLINE;
927
928 objfile->sf = find_sym_fns (objfile->obfd);
929
930 if (objfile->sf == NULL)
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = obstack_alloc (&objfile->objfile_obstack, size);
940 memset (objfile->section_offsets, 0, size);
941 return;
942 }
943
944 /* Make sure that partially constructed symbol tables will be cleaned up
945 if an error occurs during symbol reading. */
946 old_chain = make_cleanup_free_objfile (objfile);
947
948 /* If ADDRS is NULL, put together a dummy address list.
949 We now establish the convention that an addr of zero means
950 no load address was specified. */
951 if (! addrs)
952 {
953 local_addr = alloc_section_addr_info (1);
954 make_cleanup (xfree, local_addr);
955 addrs = local_addr;
956 }
957
958 if (mainline)
959 {
960 /* We will modify the main symbol table, make sure that all its users
961 will be cleaned up if an error occurs during symbol reading. */
962 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
963
964 /* Since no error yet, throw away the old symbol table. */
965
966 if (symfile_objfile != NULL)
967 {
968 free_objfile (symfile_objfile);
969 gdb_assert (symfile_objfile == NULL);
970 }
971
972 /* Currently we keep symbols from the add-symbol-file command.
973 If the user wants to get rid of them, they should do "symbol-file"
974 without arguments first. Not sure this is the best behavior
975 (PR 2207). */
976
977 (*objfile->sf->sym_new_init) (objfile);
978 }
979
980 /* Convert addr into an offset rather than an absolute address.
981 We find the lowest address of a loaded segment in the objfile,
982 and assume that <addr> is where that got loaded.
983
984 We no longer warn if the lowest section is not a text segment (as
985 happens for the PA64 port. */
986 if (addrs->num_sections > 0)
987 addr_info_make_relative (addrs, objfile->obfd);
988
989 /* Initialize symbol reading routines for this objfile, allow complaints to
990 appear for this new file, and record how verbose to be, then do the
991 initial symbol reading for this file. */
992
993 (*objfile->sf->sym_init) (objfile);
994 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
995
996 (*objfile->sf->sym_offsets) (objfile, addrs);
997
998 read_symbols (objfile, add_flags);
999
1000 /* Discard cleanups as symbol reading was successful. */
1001
1002 discard_cleanups (old_chain);
1003 xfree (local_addr);
1004 }
1005
1006 /* Same as syms_from_objfile_1, but also initializes the objfile
1007 entry-point info. */
1008
1009 static void
1010 syms_from_objfile (struct objfile *objfile,
1011 struct section_addr_info *addrs,
1012 int add_flags)
1013 {
1014 syms_from_objfile_1 (objfile, addrs, add_flags);
1015 init_entry_point_info (objfile);
1016 }
1017
1018 /* Perform required actions after either reading in the initial
1019 symbols for a new objfile, or mapping in the symbols from a reusable
1020 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1021
1022 void
1023 new_symfile_objfile (struct objfile *objfile, int add_flags)
1024 {
1025 /* If this is the main symbol file we have to clean up all users of the
1026 old main symbol file. Otherwise it is sufficient to fixup all the
1027 breakpoints that may have been redefined by this symbol file. */
1028 if (add_flags & SYMFILE_MAINLINE)
1029 {
1030 /* OK, make it the "real" symbol file. */
1031 symfile_objfile = objfile;
1032
1033 clear_symtab_users (add_flags);
1034 }
1035 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1036 {
1037 breakpoint_re_set ();
1038 }
1039
1040 /* We're done reading the symbol file; finish off complaints. */
1041 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1042 }
1043
1044 /* Process a symbol file, as either the main file or as a dynamically
1045 loaded file.
1046
1047 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1048 A new reference is acquired by this function.
1049
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
1052
1053 ADDRS is as described for syms_from_objfile_1, above.
1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1055
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
1059 Upon success, returns a pointer to the objfile that was added.
1060 Upon failure, jumps back to command level (never returns). */
1061
1062 static struct objfile *
1063 symbol_file_add_with_addrs (bfd *abfd, int add_flags,
1064 struct section_addr_info *addrs,
1065 int flags, struct objfile *parent)
1066 {
1067 struct objfile *objfile;
1068 const char *name = bfd_get_filename (abfd);
1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
1070 const int mainline = add_flags & SYMFILE_MAINLINE;
1071 const int should_print = ((from_tty || info_verbose)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
1074
1075 if (readnow_symbol_files)
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
1080
1081 /* Give user a chance to burp if we'd be
1082 interactively wiping out any existing symbols. */
1083
1084 if ((have_full_symbols () || have_partial_symbols ())
1085 && mainline
1086 && from_tty
1087 && !query (_("Load new symbol table from \"%s\"? "), name))
1088 error (_("Not confirmed."));
1089
1090 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1091
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
1097 performed, or need to read an unmapped symbol table. */
1098 if (should_print)
1099 {
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
1102 else
1103 {
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
1107 }
1108 }
1109 syms_from_objfile (objfile, addrs, add_flags);
1110
1111 /* We now have at least a partial symbol table. Check to see if the
1112 user requested that all symbols be read on initial access via either
1113 the gdb startup command line or on a per symbol file basis. Expand
1114 all partial symbol tables for this objfile if so. */
1115
1116 if ((flags & OBJF_READNOW))
1117 {
1118 if (should_print)
1119 {
1120 printf_unfiltered (_("expanding to full symbols..."));
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124
1125 if (objfile->sf)
1126 objfile->sf->qf->expand_all_symtabs (objfile);
1127 }
1128
1129 if (should_print && !objfile_has_symbols (objfile))
1130 {
1131 wrap_here ("");
1132 printf_unfiltered (_("(no debugging symbols found)..."));
1133 wrap_here ("");
1134 }
1135
1136 if (should_print)
1137 {
1138 if (deprecated_post_add_symbol_hook)
1139 deprecated_post_add_symbol_hook ();
1140 else
1141 printf_unfiltered (_("done.\n"));
1142 }
1143
1144 /* We print some messages regardless of whether 'from_tty ||
1145 info_verbose' is true, so make sure they go out at the right
1146 time. */
1147 gdb_flush (gdb_stdout);
1148
1149 if (objfile->sf == NULL)
1150 {
1151 observer_notify_new_objfile (objfile);
1152 return objfile; /* No symbols. */
1153 }
1154
1155 new_symfile_objfile (objfile, add_flags);
1156
1157 observer_notify_new_objfile (objfile);
1158
1159 bfd_cache_close_all ();
1160 return (objfile);
1161 }
1162
1163 /* Add BFD as a separate debug file for OBJFILE. */
1164
1165 void
1166 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1167 {
1168 struct objfile *new_objfile;
1169 struct section_addr_info *sap;
1170 struct cleanup *my_cleanup;
1171
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 sap = build_section_addr_info_from_objfile (objfile);
1176 my_cleanup = make_cleanup_free_section_addr_info (sap);
1177
1178 new_objfile = symbol_file_add_with_addrs
1179 (bfd, symfile_flags, sap,
1180 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1181 | OBJF_USERLOADED),
1182 objfile);
1183
1184 do_cleanups (my_cleanup);
1185 }
1186
1187 /* Process the symbol file ABFD, as either the main file or as a
1188 dynamically loaded file.
1189 See symbol_file_add_with_addrs's comments for details. */
1190
1191 struct objfile *
1192 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1193 struct section_addr_info *addrs,
1194 int flags, struct objfile *parent)
1195 {
1196 return symbol_file_add_with_addrs (abfd, add_flags, addrs, flags, parent);
1197 }
1198
1199 /* Process a symbol file, as either the main file or as a dynamically
1200 loaded file. See symbol_file_add_with_addrs's comments for details. */
1201
1202 struct objfile *
1203 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1204 int flags)
1205 {
1206 bfd *bfd = symfile_bfd_open (name);
1207 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1208 struct objfile *objf;
1209
1210 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1211 do_cleanups (cleanup);
1212 return objf;
1213 }
1214
1215 /* Call symbol_file_add() with default values and update whatever is
1216 affected by the loading of a new main().
1217 Used when the file is supplied in the gdb command line
1218 and by some targets with special loading requirements.
1219 The auxiliary function, symbol_file_add_main_1(), has the flags
1220 argument for the switches that can only be specified in the symbol_file
1221 command itself. */
1222
1223 void
1224 symbol_file_add_main (char *args, int from_tty)
1225 {
1226 symbol_file_add_main_1 (args, from_tty, 0);
1227 }
1228
1229 static void
1230 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1231 {
1232 const int add_flags = (current_inferior ()->symfile_flags
1233 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1234
1235 symbol_file_add (args, add_flags, NULL, flags);
1236
1237 /* Getting new symbols may change our opinion about
1238 what is frameless. */
1239 reinit_frame_cache ();
1240
1241 if ((flags & SYMFILE_NO_READ) == 0)
1242 set_initial_language ();
1243 }
1244
1245 void
1246 symbol_file_clear (int from_tty)
1247 {
1248 if ((have_full_symbols () || have_partial_symbols ())
1249 && from_tty
1250 && (symfile_objfile
1251 ? !query (_("Discard symbol table from `%s'? "),
1252 symfile_objfile->name)
1253 : !query (_("Discard symbol table? "))))
1254 error (_("Not confirmed."));
1255
1256 /* solib descriptors may have handles to objfiles. Wipe them before their
1257 objfiles get stale by free_all_objfiles. */
1258 no_shared_libraries (NULL, from_tty);
1259
1260 free_all_objfiles ();
1261
1262 gdb_assert (symfile_objfile == NULL);
1263 if (from_tty)
1264 printf_unfiltered (_("No symbol file now.\n"));
1265 }
1266
1267 static int
1268 separate_debug_file_exists (const char *name, unsigned long crc,
1269 struct objfile *parent_objfile)
1270 {
1271 unsigned long file_crc;
1272 int file_crc_p;
1273 bfd *abfd;
1274 struct stat parent_stat, abfd_stat;
1275 int verified_as_different;
1276
1277 /* Find a separate debug info file as if symbols would be present in
1278 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1279 section can contain just the basename of PARENT_OBJFILE without any
1280 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1281 the separate debug infos with the same basename can exist. */
1282
1283 if (filename_cmp (name, parent_objfile->name) == 0)
1284 return 0;
1285
1286 abfd = gdb_bfd_open_maybe_remote (name);
1287
1288 if (!abfd)
1289 return 0;
1290
1291 /* Verify symlinks were not the cause of filename_cmp name difference above.
1292
1293 Some operating systems, e.g. Windows, do not provide a meaningful
1294 st_ino; they always set it to zero. (Windows does provide a
1295 meaningful st_dev.) Do not indicate a duplicate library in that
1296 case. While there is no guarantee that a system that provides
1297 meaningful inode numbers will never set st_ino to zero, this is
1298 merely an optimization, so we do not need to worry about false
1299 negatives. */
1300
1301 if (bfd_stat (abfd, &abfd_stat) == 0
1302 && abfd_stat.st_ino != 0
1303 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1304 {
1305 if (abfd_stat.st_dev == parent_stat.st_dev
1306 && abfd_stat.st_ino == parent_stat.st_ino)
1307 {
1308 gdb_bfd_unref (abfd);
1309 return 0;
1310 }
1311 verified_as_different = 1;
1312 }
1313 else
1314 verified_as_different = 0;
1315
1316 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1317
1318 gdb_bfd_unref (abfd);
1319
1320 if (!file_crc_p)
1321 return 0;
1322
1323 if (crc != file_crc)
1324 {
1325 unsigned long parent_crc;
1326
1327 /* If one (or both) the files are accessed for example the via "remote:"
1328 gdbserver way it does not support the bfd_stat operation. Verify
1329 whether those two files are not the same manually. */
1330
1331 if (!verified_as_different)
1332 {
1333 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1334 return 0;
1335 }
1336
1337 if (verified_as_different || parent_crc != file_crc)
1338 warning (_("the debug information found in \"%s\""
1339 " does not match \"%s\" (CRC mismatch).\n"),
1340 name, parent_objfile->name);
1341
1342 return 0;
1343 }
1344
1345 return 1;
1346 }
1347
1348 char *debug_file_directory = NULL;
1349 static void
1350 show_debug_file_directory (struct ui_file *file, int from_tty,
1351 struct cmd_list_element *c, const char *value)
1352 {
1353 fprintf_filtered (file,
1354 _("The directory where separate debug "
1355 "symbols are searched for is \"%s\".\n"),
1356 value);
1357 }
1358
1359 #if ! defined (DEBUG_SUBDIRECTORY)
1360 #define DEBUG_SUBDIRECTORY ".debug"
1361 #endif
1362
1363 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1364 where the original file resides (may not be the same as
1365 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1366 looking for. CANON_DIR is the "realpath" form of DIR.
1367 DIR must contain a trailing '/'.
1368 Returns the path of the file with separate debug info, of NULL. */
1369
1370 static char *
1371 find_separate_debug_file (const char *dir,
1372 const char *canon_dir,
1373 const char *debuglink,
1374 unsigned long crc32, struct objfile *objfile)
1375 {
1376 char *debugdir;
1377 char *debugfile;
1378 int i;
1379 VEC (char_ptr) *debugdir_vec;
1380 struct cleanup *back_to;
1381 int ix;
1382
1383 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1384 i = strlen (dir);
1385 if (canon_dir != NULL && strlen (canon_dir) > i)
1386 i = strlen (canon_dir);
1387
1388 debugfile = xmalloc (strlen (debug_file_directory) + 1
1389 + i
1390 + strlen (DEBUG_SUBDIRECTORY)
1391 + strlen ("/")
1392 + strlen (debuglink)
1393 + 1);
1394
1395 /* First try in the same directory as the original file. */
1396 strcpy (debugfile, dir);
1397 strcat (debugfile, debuglink);
1398
1399 if (separate_debug_file_exists (debugfile, crc32, objfile))
1400 return debugfile;
1401
1402 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1403 strcpy (debugfile, dir);
1404 strcat (debugfile, DEBUG_SUBDIRECTORY);
1405 strcat (debugfile, "/");
1406 strcat (debugfile, debuglink);
1407
1408 if (separate_debug_file_exists (debugfile, crc32, objfile))
1409 return debugfile;
1410
1411 /* Then try in the global debugfile directories.
1412
1413 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1414 cause "/..." lookups. */
1415
1416 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1417 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1418
1419 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1420 {
1421 strcpy (debugfile, debugdir);
1422 strcat (debugfile, "/");
1423 strcat (debugfile, dir);
1424 strcat (debugfile, debuglink);
1425
1426 if (separate_debug_file_exists (debugfile, crc32, objfile))
1427 {
1428 do_cleanups (back_to);
1429 return debugfile;
1430 }
1431
1432 /* If the file is in the sysroot, try using its base path in the
1433 global debugfile directory. */
1434 if (canon_dir != NULL
1435 && filename_ncmp (canon_dir, gdb_sysroot,
1436 strlen (gdb_sysroot)) == 0
1437 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1438 {
1439 strcpy (debugfile, debugdir);
1440 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1441 strcat (debugfile, "/");
1442 strcat (debugfile, debuglink);
1443
1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
1445 {
1446 do_cleanups (back_to);
1447 return debugfile;
1448 }
1449 }
1450 }
1451
1452 do_cleanups (back_to);
1453 xfree (debugfile);
1454 return NULL;
1455 }
1456
1457 /* Modify PATH to contain only "[/]directory/" part of PATH.
1458 If there were no directory separators in PATH, PATH will be empty
1459 string on return. */
1460
1461 static void
1462 terminate_after_last_dir_separator (char *path)
1463 {
1464 int i;
1465
1466 /* Strip off the final filename part, leaving the directory name,
1467 followed by a slash. The directory can be relative or absolute. */
1468 for (i = strlen(path) - 1; i >= 0; i--)
1469 if (IS_DIR_SEPARATOR (path[i]))
1470 break;
1471
1472 /* If I is -1 then no directory is present there and DIR will be "". */
1473 path[i + 1] = '\0';
1474 }
1475
1476 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1477 Returns pathname, or NULL. */
1478
1479 char *
1480 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1481 {
1482 char *debuglink;
1483 char *dir, *canon_dir;
1484 char *debugfile;
1485 unsigned long crc32;
1486 struct cleanup *cleanups;
1487
1488 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1489
1490 if (debuglink == NULL)
1491 {
1492 /* There's no separate debug info, hence there's no way we could
1493 load it => no warning. */
1494 return NULL;
1495 }
1496
1497 cleanups = make_cleanup (xfree, debuglink);
1498 dir = xstrdup (objfile->name);
1499 make_cleanup (xfree, dir);
1500 terminate_after_last_dir_separator (dir);
1501 canon_dir = lrealpath (dir);
1502
1503 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1504 crc32, objfile);
1505 xfree (canon_dir);
1506
1507 if (debugfile == NULL)
1508 {
1509 #ifdef HAVE_LSTAT
1510 /* For PR gdb/9538, try again with realpath (if different from the
1511 original). */
1512
1513 struct stat st_buf;
1514
1515 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1516 {
1517 char *symlink_dir;
1518
1519 symlink_dir = lrealpath (objfile->name);
1520 if (symlink_dir != NULL)
1521 {
1522 make_cleanup (xfree, symlink_dir);
1523 terminate_after_last_dir_separator (symlink_dir);
1524 if (strcmp (dir, symlink_dir) != 0)
1525 {
1526 /* Different directory, so try using it. */
1527 debugfile = find_separate_debug_file (symlink_dir,
1528 symlink_dir,
1529 debuglink,
1530 crc32,
1531 objfile);
1532 }
1533 }
1534 }
1535 #endif /* HAVE_LSTAT */
1536 }
1537
1538 do_cleanups (cleanups);
1539 return debugfile;
1540 }
1541
1542 /* This is the symbol-file command. Read the file, analyze its
1543 symbols, and add a struct symtab to a symtab list. The syntax of
1544 the command is rather bizarre:
1545
1546 1. The function buildargv implements various quoting conventions
1547 which are undocumented and have little or nothing in common with
1548 the way things are quoted (or not quoted) elsewhere in GDB.
1549
1550 2. Options are used, which are not generally used in GDB (perhaps
1551 "set mapped on", "set readnow on" would be better)
1552
1553 3. The order of options matters, which is contrary to GNU
1554 conventions (because it is confusing and inconvenient). */
1555
1556 void
1557 symbol_file_command (char *args, int from_tty)
1558 {
1559 dont_repeat ();
1560
1561 if (args == NULL)
1562 {
1563 symbol_file_clear (from_tty);
1564 }
1565 else
1566 {
1567 char **argv = gdb_buildargv (args);
1568 int flags = OBJF_USERLOADED;
1569 struct cleanup *cleanups;
1570 char *name = NULL;
1571
1572 cleanups = make_cleanup_freeargv (argv);
1573 while (*argv != NULL)
1574 {
1575 if (strcmp (*argv, "-readnow") == 0)
1576 flags |= OBJF_READNOW;
1577 else if (**argv == '-')
1578 error (_("unknown option `%s'"), *argv);
1579 else
1580 {
1581 symbol_file_add_main_1 (*argv, from_tty, flags);
1582 name = *argv;
1583 }
1584
1585 argv++;
1586 }
1587
1588 if (name == NULL)
1589 error (_("no symbol file name was specified"));
1590
1591 do_cleanups (cleanups);
1592 }
1593 }
1594
1595 /* Set the initial language.
1596
1597 FIXME: A better solution would be to record the language in the
1598 psymtab when reading partial symbols, and then use it (if known) to
1599 set the language. This would be a win for formats that encode the
1600 language in an easily discoverable place, such as DWARF. For
1601 stabs, we can jump through hoops looking for specially named
1602 symbols or try to intuit the language from the specific type of
1603 stabs we find, but we can't do that until later when we read in
1604 full symbols. */
1605
1606 void
1607 set_initial_language (void)
1608 {
1609 enum language lang = language_unknown;
1610
1611 if (language_of_main != language_unknown)
1612 lang = language_of_main;
1613 else
1614 {
1615 char *name = main_name ();
1616 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1617
1618 if (sym != NULL)
1619 lang = SYMBOL_LANGUAGE (sym);
1620 }
1621
1622 if (lang == language_unknown)
1623 {
1624 /* Make C the default language */
1625 lang = language_c;
1626 }
1627
1628 set_language (lang);
1629 expected_language = current_language; /* Don't warn the user. */
1630 }
1631
1632 /* If NAME is a remote name open the file using remote protocol, otherwise
1633 open it normally. Returns a new reference to the BFD. On error,
1634 returns NULL with the BFD error set. */
1635
1636 bfd *
1637 gdb_bfd_open_maybe_remote (const char *name)
1638 {
1639 bfd *result;
1640
1641 if (remote_filename_p (name))
1642 result = remote_bfd_open (name, gnutarget);
1643 else
1644 result = gdb_bfd_open (name, gnutarget, -1);
1645
1646 return result;
1647 }
1648
1649 /* Open the file specified by NAME and hand it off to BFD for
1650 preliminary analysis. Return a newly initialized bfd *, which
1651 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1652 absolute). In case of trouble, error() is called. */
1653
1654 bfd *
1655 symfile_bfd_open (char *name)
1656 {
1657 bfd *sym_bfd;
1658 int desc;
1659 char *absolute_name;
1660 struct cleanup *back_to;
1661
1662 if (remote_filename_p (name))
1663 {
1664 sym_bfd = remote_bfd_open (name, gnutarget);
1665 if (!sym_bfd)
1666 error (_("`%s': can't open to read symbols: %s."), name,
1667 bfd_errmsg (bfd_get_error ()));
1668
1669 if (!bfd_check_format (sym_bfd, bfd_object))
1670 {
1671 make_cleanup_bfd_unref (sym_bfd);
1672 error (_("`%s': can't read symbols: %s."), name,
1673 bfd_errmsg (bfd_get_error ()));
1674 }
1675
1676 return sym_bfd;
1677 }
1678
1679 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1680
1681 /* Look down path for it, allocate 2nd new malloc'd copy. */
1682 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1683 O_RDONLY | O_BINARY, &absolute_name);
1684 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1685 if (desc < 0)
1686 {
1687 char *exename = alloca (strlen (name) + 5);
1688
1689 strcat (strcpy (exename, name), ".exe");
1690 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1691 O_RDONLY | O_BINARY, &absolute_name);
1692 }
1693 #endif
1694 if (desc < 0)
1695 {
1696 make_cleanup (xfree, name);
1697 perror_with_name (name);
1698 }
1699
1700 xfree (name);
1701 name = absolute_name;
1702 back_to = make_cleanup (xfree, name);
1703
1704 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1705 if (!sym_bfd)
1706 error (_("`%s': can't open to read symbols: %s."), name,
1707 bfd_errmsg (bfd_get_error ()));
1708 bfd_set_cacheable (sym_bfd, 1);
1709
1710 if (!bfd_check_format (sym_bfd, bfd_object))
1711 {
1712 make_cleanup_bfd_unref (sym_bfd);
1713 error (_("`%s': can't read symbols: %s."), name,
1714 bfd_errmsg (bfd_get_error ()));
1715 }
1716
1717 do_cleanups (back_to);
1718
1719 return sym_bfd;
1720 }
1721
1722 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1723 the section was not found. */
1724
1725 int
1726 get_section_index (struct objfile *objfile, char *section_name)
1727 {
1728 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1729
1730 if (sect)
1731 return sect->index;
1732 else
1733 return -1;
1734 }
1735
1736 /* Link SF into the global symtab_fns list. Called on startup by the
1737 _initialize routine in each object file format reader, to register
1738 information about each format the reader is prepared to handle. */
1739
1740 void
1741 add_symtab_fns (const struct sym_fns *sf)
1742 {
1743 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1744 }
1745
1746 /* Initialize OBJFILE to read symbols from its associated BFD. It
1747 either returns or calls error(). The result is an initialized
1748 struct sym_fns in the objfile structure, that contains cached
1749 information about the symbol file. */
1750
1751 static const struct sym_fns *
1752 find_sym_fns (bfd *abfd)
1753 {
1754 const struct sym_fns *sf;
1755 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1756 int i;
1757
1758 if (our_flavour == bfd_target_srec_flavour
1759 || our_flavour == bfd_target_ihex_flavour
1760 || our_flavour == bfd_target_tekhex_flavour)
1761 return NULL; /* No symbols. */
1762
1763 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1764 if (our_flavour == sf->sym_flavour)
1765 return sf;
1766
1767 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1768 bfd_get_target (abfd));
1769 }
1770 \f
1771
1772 /* This function runs the load command of our current target. */
1773
1774 static void
1775 load_command (char *arg, int from_tty)
1776 {
1777 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1778
1779 dont_repeat ();
1780
1781 /* The user might be reloading because the binary has changed. Take
1782 this opportunity to check. */
1783 reopen_exec_file ();
1784 reread_symbols ();
1785
1786 if (arg == NULL)
1787 {
1788 char *parg;
1789 int count = 0;
1790
1791 parg = arg = get_exec_file (1);
1792
1793 /* Count how many \ " ' tab space there are in the name. */
1794 while ((parg = strpbrk (parg, "\\\"'\t ")))
1795 {
1796 parg++;
1797 count++;
1798 }
1799
1800 if (count)
1801 {
1802 /* We need to quote this string so buildargv can pull it apart. */
1803 char *temp = xmalloc (strlen (arg) + count + 1 );
1804 char *ptemp = temp;
1805 char *prev;
1806
1807 make_cleanup (xfree, temp);
1808
1809 prev = parg = arg;
1810 while ((parg = strpbrk (parg, "\\\"'\t ")))
1811 {
1812 strncpy (ptemp, prev, parg - prev);
1813 ptemp += parg - prev;
1814 prev = parg++;
1815 *ptemp++ = '\\';
1816 }
1817 strcpy (ptemp, prev);
1818
1819 arg = temp;
1820 }
1821 }
1822
1823 target_load (arg, from_tty);
1824
1825 /* After re-loading the executable, we don't really know which
1826 overlays are mapped any more. */
1827 overlay_cache_invalid = 1;
1828
1829 do_cleanups (cleanup);
1830 }
1831
1832 /* This version of "load" should be usable for any target. Currently
1833 it is just used for remote targets, not inftarg.c or core files,
1834 on the theory that only in that case is it useful.
1835
1836 Avoiding xmodem and the like seems like a win (a) because we don't have
1837 to worry about finding it, and (b) On VMS, fork() is very slow and so
1838 we don't want to run a subprocess. On the other hand, I'm not sure how
1839 performance compares. */
1840
1841 static int validate_download = 0;
1842
1843 /* Callback service function for generic_load (bfd_map_over_sections). */
1844
1845 static void
1846 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1847 {
1848 bfd_size_type *sum = data;
1849
1850 *sum += bfd_get_section_size (asec);
1851 }
1852
1853 /* Opaque data for load_section_callback. */
1854 struct load_section_data {
1855 CORE_ADDR load_offset;
1856 struct load_progress_data *progress_data;
1857 VEC(memory_write_request_s) *requests;
1858 };
1859
1860 /* Opaque data for load_progress. */
1861 struct load_progress_data {
1862 /* Cumulative data. */
1863 unsigned long write_count;
1864 unsigned long data_count;
1865 bfd_size_type total_size;
1866 };
1867
1868 /* Opaque data for load_progress for a single section. */
1869 struct load_progress_section_data {
1870 struct load_progress_data *cumulative;
1871
1872 /* Per-section data. */
1873 const char *section_name;
1874 ULONGEST section_sent;
1875 ULONGEST section_size;
1876 CORE_ADDR lma;
1877 gdb_byte *buffer;
1878 };
1879
1880 /* Target write callback routine for progress reporting. */
1881
1882 static void
1883 load_progress (ULONGEST bytes, void *untyped_arg)
1884 {
1885 struct load_progress_section_data *args = untyped_arg;
1886 struct load_progress_data *totals;
1887
1888 if (args == NULL)
1889 /* Writing padding data. No easy way to get at the cumulative
1890 stats, so just ignore this. */
1891 return;
1892
1893 totals = args->cumulative;
1894
1895 if (bytes == 0 && args->section_sent == 0)
1896 {
1897 /* The write is just starting. Let the user know we've started
1898 this section. */
1899 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1900 args->section_name, hex_string (args->section_size),
1901 paddress (target_gdbarch (), args->lma));
1902 return;
1903 }
1904
1905 if (validate_download)
1906 {
1907 /* Broken memories and broken monitors manifest themselves here
1908 when bring new computers to life. This doubles already slow
1909 downloads. */
1910 /* NOTE: cagney/1999-10-18: A more efficient implementation
1911 might add a verify_memory() method to the target vector and
1912 then use that. remote.c could implement that method using
1913 the ``qCRC'' packet. */
1914 gdb_byte *check = xmalloc (bytes);
1915 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1916
1917 if (target_read_memory (args->lma, check, bytes) != 0)
1918 error (_("Download verify read failed at %s"),
1919 paddress (target_gdbarch (), args->lma));
1920 if (memcmp (args->buffer, check, bytes) != 0)
1921 error (_("Download verify compare failed at %s"),
1922 paddress (target_gdbarch (), args->lma));
1923 do_cleanups (verify_cleanups);
1924 }
1925 totals->data_count += bytes;
1926 args->lma += bytes;
1927 args->buffer += bytes;
1928 totals->write_count += 1;
1929 args->section_sent += bytes;
1930 if (check_quit_flag ()
1931 || (deprecated_ui_load_progress_hook != NULL
1932 && deprecated_ui_load_progress_hook (args->section_name,
1933 args->section_sent)))
1934 error (_("Canceled the download"));
1935
1936 if (deprecated_show_load_progress != NULL)
1937 deprecated_show_load_progress (args->section_name,
1938 args->section_sent,
1939 args->section_size,
1940 totals->data_count,
1941 totals->total_size);
1942 }
1943
1944 /* Callback service function for generic_load (bfd_map_over_sections). */
1945
1946 static void
1947 load_section_callback (bfd *abfd, asection *asec, void *data)
1948 {
1949 struct memory_write_request *new_request;
1950 struct load_section_data *args = data;
1951 struct load_progress_section_data *section_data;
1952 bfd_size_type size = bfd_get_section_size (asec);
1953 gdb_byte *buffer;
1954 const char *sect_name = bfd_get_section_name (abfd, asec);
1955
1956 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1957 return;
1958
1959 if (size == 0)
1960 return;
1961
1962 new_request = VEC_safe_push (memory_write_request_s,
1963 args->requests, NULL);
1964 memset (new_request, 0, sizeof (struct memory_write_request));
1965 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1966 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1967 new_request->end = new_request->begin + size; /* FIXME Should size
1968 be in instead? */
1969 new_request->data = xmalloc (size);
1970 new_request->baton = section_data;
1971
1972 buffer = new_request->data;
1973
1974 section_data->cumulative = args->progress_data;
1975 section_data->section_name = sect_name;
1976 section_data->section_size = size;
1977 section_data->lma = new_request->begin;
1978 section_data->buffer = buffer;
1979
1980 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1981 }
1982
1983 /* Clean up an entire memory request vector, including load
1984 data and progress records. */
1985
1986 static void
1987 clear_memory_write_data (void *arg)
1988 {
1989 VEC(memory_write_request_s) **vec_p = arg;
1990 VEC(memory_write_request_s) *vec = *vec_p;
1991 int i;
1992 struct memory_write_request *mr;
1993
1994 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1995 {
1996 xfree (mr->data);
1997 xfree (mr->baton);
1998 }
1999 VEC_free (memory_write_request_s, vec);
2000 }
2001
2002 void
2003 generic_load (char *args, int from_tty)
2004 {
2005 bfd *loadfile_bfd;
2006 struct timeval start_time, end_time;
2007 char *filename;
2008 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2009 struct load_section_data cbdata;
2010 struct load_progress_data total_progress;
2011 struct ui_out *uiout = current_uiout;
2012
2013 CORE_ADDR entry;
2014 char **argv;
2015
2016 memset (&cbdata, 0, sizeof (cbdata));
2017 memset (&total_progress, 0, sizeof (total_progress));
2018 cbdata.progress_data = &total_progress;
2019
2020 make_cleanup (clear_memory_write_data, &cbdata.requests);
2021
2022 if (args == NULL)
2023 error_no_arg (_("file to load"));
2024
2025 argv = gdb_buildargv (args);
2026 make_cleanup_freeargv (argv);
2027
2028 filename = tilde_expand (argv[0]);
2029 make_cleanup (xfree, filename);
2030
2031 if (argv[1] != NULL)
2032 {
2033 const char *endptr;
2034
2035 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2036
2037 /* If the last word was not a valid number then
2038 treat it as a file name with spaces in. */
2039 if (argv[1] == endptr)
2040 error (_("Invalid download offset:%s."), argv[1]);
2041
2042 if (argv[2] != NULL)
2043 error (_("Too many parameters."));
2044 }
2045
2046 /* Open the file for loading. */
2047 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2048 if (loadfile_bfd == NULL)
2049 {
2050 perror_with_name (filename);
2051 return;
2052 }
2053
2054 make_cleanup_bfd_unref (loadfile_bfd);
2055
2056 if (!bfd_check_format (loadfile_bfd, bfd_object))
2057 {
2058 error (_("\"%s\" is not an object file: %s"), filename,
2059 bfd_errmsg (bfd_get_error ()));
2060 }
2061
2062 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2063 (void *) &total_progress.total_size);
2064
2065 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2066
2067 gettimeofday (&start_time, NULL);
2068
2069 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2070 load_progress) != 0)
2071 error (_("Load failed"));
2072
2073 gettimeofday (&end_time, NULL);
2074
2075 entry = bfd_get_start_address (loadfile_bfd);
2076 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2077 ui_out_text (uiout, "Start address ");
2078 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2079 ui_out_text (uiout, ", load size ");
2080 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2081 ui_out_text (uiout, "\n");
2082 /* We were doing this in remote-mips.c, I suspect it is right
2083 for other targets too. */
2084 regcache_write_pc (get_current_regcache (), entry);
2085
2086 /* Reset breakpoints, now that we have changed the load image. For
2087 instance, breakpoints may have been set (or reset, by
2088 post_create_inferior) while connected to the target but before we
2089 loaded the program. In that case, the prologue analyzer could
2090 have read instructions from the target to find the right
2091 breakpoint locations. Loading has changed the contents of that
2092 memory. */
2093
2094 breakpoint_re_set ();
2095
2096 /* FIXME: are we supposed to call symbol_file_add or not? According
2097 to a comment from remote-mips.c (where a call to symbol_file_add
2098 was commented out), making the call confuses GDB if more than one
2099 file is loaded in. Some targets do (e.g., remote-vx.c) but
2100 others don't (or didn't - perhaps they have all been deleted). */
2101
2102 print_transfer_performance (gdb_stdout, total_progress.data_count,
2103 total_progress.write_count,
2104 &start_time, &end_time);
2105
2106 do_cleanups (old_cleanups);
2107 }
2108
2109 /* Report how fast the transfer went. */
2110
2111 void
2112 print_transfer_performance (struct ui_file *stream,
2113 unsigned long data_count,
2114 unsigned long write_count,
2115 const struct timeval *start_time,
2116 const struct timeval *end_time)
2117 {
2118 ULONGEST time_count;
2119 struct ui_out *uiout = current_uiout;
2120
2121 /* Compute the elapsed time in milliseconds, as a tradeoff between
2122 accuracy and overflow. */
2123 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2124 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2125
2126 ui_out_text (uiout, "Transfer rate: ");
2127 if (time_count > 0)
2128 {
2129 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2130
2131 if (ui_out_is_mi_like_p (uiout))
2132 {
2133 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2134 ui_out_text (uiout, " bits/sec");
2135 }
2136 else if (rate < 1024)
2137 {
2138 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2139 ui_out_text (uiout, " bytes/sec");
2140 }
2141 else
2142 {
2143 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2144 ui_out_text (uiout, " KB/sec");
2145 }
2146 }
2147 else
2148 {
2149 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2150 ui_out_text (uiout, " bits in <1 sec");
2151 }
2152 if (write_count > 0)
2153 {
2154 ui_out_text (uiout, ", ");
2155 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2156 ui_out_text (uiout, " bytes/write");
2157 }
2158 ui_out_text (uiout, ".\n");
2159 }
2160
2161 /* This function allows the addition of incrementally linked object files.
2162 It does not modify any state in the target, only in the debugger. */
2163 /* Note: ezannoni 2000-04-13 This function/command used to have a
2164 special case syntax for the rombug target (Rombug is the boot
2165 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2166 rombug case, the user doesn't need to supply a text address,
2167 instead a call to target_link() (in target.c) would supply the
2168 value to use. We are now discontinuing this type of ad hoc syntax. */
2169
2170 static void
2171 add_symbol_file_command (char *args, int from_tty)
2172 {
2173 struct gdbarch *gdbarch = get_current_arch ();
2174 char *filename = NULL;
2175 int flags = OBJF_USERLOADED;
2176 char *arg;
2177 int section_index = 0;
2178 int argcnt = 0;
2179 int sec_num = 0;
2180 int i;
2181 int expecting_sec_name = 0;
2182 int expecting_sec_addr = 0;
2183 char **argv;
2184
2185 struct sect_opt
2186 {
2187 char *name;
2188 char *value;
2189 };
2190
2191 struct section_addr_info *section_addrs;
2192 struct sect_opt *sect_opts = NULL;
2193 size_t num_sect_opts = 0;
2194 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2195
2196 num_sect_opts = 16;
2197 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2198 * sizeof (struct sect_opt));
2199
2200 dont_repeat ();
2201
2202 if (args == NULL)
2203 error (_("add-symbol-file takes a file name and an address"));
2204
2205 argv = gdb_buildargv (args);
2206 make_cleanup_freeargv (argv);
2207
2208 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2209 {
2210 /* Process the argument. */
2211 if (argcnt == 0)
2212 {
2213 /* The first argument is the file name. */
2214 filename = tilde_expand (arg);
2215 make_cleanup (xfree, filename);
2216 }
2217 else if (argcnt == 1)
2218 {
2219 /* The second argument is always the text address at which
2220 to load the program. */
2221 sect_opts[section_index].name = ".text";
2222 sect_opts[section_index].value = arg;
2223 if (++section_index >= num_sect_opts)
2224 {
2225 num_sect_opts *= 2;
2226 sect_opts = ((struct sect_opt *)
2227 xrealloc (sect_opts,
2228 num_sect_opts
2229 * sizeof (struct sect_opt)));
2230 }
2231 }
2232 else
2233 {
2234 /* It's an option (starting with '-') or it's an argument
2235 to an option. */
2236
2237 if (expecting_sec_name)
2238 {
2239 sect_opts[section_index].name = arg;
2240 expecting_sec_name = 0;
2241 }
2242 else if (expecting_sec_addr)
2243 {
2244 sect_opts[section_index].value = arg;
2245 expecting_sec_addr = 0;
2246 if (++section_index >= num_sect_opts)
2247 {
2248 num_sect_opts *= 2;
2249 sect_opts = ((struct sect_opt *)
2250 xrealloc (sect_opts,
2251 num_sect_opts
2252 * sizeof (struct sect_opt)));
2253 }
2254 }
2255 else if (strcmp (arg, "-readnow") == 0)
2256 flags |= OBJF_READNOW;
2257 else if (strcmp (arg, "-s") == 0)
2258 {
2259 expecting_sec_name = 1;
2260 expecting_sec_addr = 1;
2261 }
2262 else
2263 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2264 " [-readnow] [-s <secname> <addr>]*"));
2265 }
2266 }
2267
2268 /* This command takes at least two arguments. The first one is a
2269 filename, and the second is the address where this file has been
2270 loaded. Abort now if this address hasn't been provided by the
2271 user. */
2272 if (section_index < 1)
2273 error (_("The address where %s has been loaded is missing"), filename);
2274
2275 /* Print the prompt for the query below. And save the arguments into
2276 a sect_addr_info structure to be passed around to other
2277 functions. We have to split this up into separate print
2278 statements because hex_string returns a local static
2279 string. */
2280
2281 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2282 section_addrs = alloc_section_addr_info (section_index);
2283 make_cleanup (xfree, section_addrs);
2284 for (i = 0; i < section_index; i++)
2285 {
2286 CORE_ADDR addr;
2287 char *val = sect_opts[i].value;
2288 char *sec = sect_opts[i].name;
2289
2290 addr = parse_and_eval_address (val);
2291
2292 /* Here we store the section offsets in the order they were
2293 entered on the command line. */
2294 section_addrs->other[sec_num].name = sec;
2295 section_addrs->other[sec_num].addr = addr;
2296 printf_unfiltered ("\t%s_addr = %s\n", sec,
2297 paddress (gdbarch, addr));
2298 sec_num++;
2299
2300 /* The object's sections are initialized when a
2301 call is made to build_objfile_section_table (objfile).
2302 This happens in reread_symbols.
2303 At this point, we don't know what file type this is,
2304 so we can't determine what section names are valid. */
2305 }
2306 section_addrs->num_sections = sec_num;
2307
2308 if (from_tty && (!query ("%s", "")))
2309 error (_("Not confirmed."));
2310
2311 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2312 section_addrs, flags);
2313
2314 /* Getting new symbols may change our opinion about what is
2315 frameless. */
2316 reinit_frame_cache ();
2317 do_cleanups (my_cleanups);
2318 }
2319 \f
2320
2321 typedef struct objfile *objfilep;
2322
2323 DEF_VEC_P (objfilep);
2324
2325 /* Re-read symbols if a symbol-file has changed. */
2326
2327 void
2328 reread_symbols (void)
2329 {
2330 struct objfile *objfile;
2331 long new_modtime;
2332 struct stat new_statbuf;
2333 int res;
2334 VEC (objfilep) *new_objfiles = NULL;
2335 struct cleanup *all_cleanups;
2336
2337 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2338
2339 /* With the addition of shared libraries, this should be modified,
2340 the load time should be saved in the partial symbol tables, since
2341 different tables may come from different source files. FIXME.
2342 This routine should then walk down each partial symbol table
2343 and see if the symbol table that it originates from has been changed. */
2344
2345 for (objfile = object_files; objfile; objfile = objfile->next)
2346 {
2347 /* solib-sunos.c creates one objfile with obfd. */
2348 if (objfile->obfd == NULL)
2349 continue;
2350
2351 /* Separate debug objfiles are handled in the main objfile. */
2352 if (objfile->separate_debug_objfile_backlink)
2353 continue;
2354
2355 /* If this object is from an archive (what you usually create with
2356 `ar', often called a `static library' on most systems, though
2357 a `shared library' on AIX is also an archive), then you should
2358 stat on the archive name, not member name. */
2359 if (objfile->obfd->my_archive)
2360 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2361 else
2362 res = stat (objfile->name, &new_statbuf);
2363 if (res != 0)
2364 {
2365 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2366 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2367 objfile->name);
2368 continue;
2369 }
2370 new_modtime = new_statbuf.st_mtime;
2371 if (new_modtime != objfile->mtime)
2372 {
2373 struct cleanup *old_cleanups;
2374 struct section_offsets *offsets;
2375 int num_offsets;
2376 char *obfd_filename;
2377
2378 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2379 objfile->name);
2380
2381 /* There are various functions like symbol_file_add,
2382 symfile_bfd_open, syms_from_objfile, etc., which might
2383 appear to do what we want. But they have various other
2384 effects which we *don't* want. So we just do stuff
2385 ourselves. We don't worry about mapped files (for one thing,
2386 any mapped file will be out of date). */
2387
2388 /* If we get an error, blow away this objfile (not sure if
2389 that is the correct response for things like shared
2390 libraries). */
2391 old_cleanups = make_cleanup_free_objfile (objfile);
2392 /* We need to do this whenever any symbols go away. */
2393 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2394
2395 if (exec_bfd != NULL
2396 && filename_cmp (bfd_get_filename (objfile->obfd),
2397 bfd_get_filename (exec_bfd)) == 0)
2398 {
2399 /* Reload EXEC_BFD without asking anything. */
2400
2401 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2402 }
2403
2404 /* Keep the calls order approx. the same as in free_objfile. */
2405
2406 /* Free the separate debug objfiles. It will be
2407 automatically recreated by sym_read. */
2408 free_objfile_separate_debug (objfile);
2409
2410 /* Remove any references to this objfile in the global
2411 value lists. */
2412 preserve_values (objfile);
2413
2414 /* Nuke all the state that we will re-read. Much of the following
2415 code which sets things to NULL really is necessary to tell
2416 other parts of GDB that there is nothing currently there.
2417
2418 Try to keep the freeing order compatible with free_objfile. */
2419
2420 if (objfile->sf != NULL)
2421 {
2422 (*objfile->sf->sym_finish) (objfile);
2423 }
2424
2425 clear_objfile_data (objfile);
2426
2427 /* Clean up any state BFD has sitting around. */
2428 {
2429 struct bfd *obfd = objfile->obfd;
2430
2431 obfd_filename = bfd_get_filename (objfile->obfd);
2432 /* Open the new BFD before freeing the old one, so that
2433 the filename remains live. */
2434 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2435 if (objfile->obfd == NULL)
2436 {
2437 /* We have to make a cleanup and error here, rather
2438 than erroring later, because once we unref OBFD,
2439 OBFD_FILENAME will be freed. */
2440 make_cleanup_bfd_unref (obfd);
2441 error (_("Can't open %s to read symbols."), obfd_filename);
2442 }
2443 gdb_bfd_unref (obfd);
2444 }
2445
2446 objfile->name = bfd_get_filename (objfile->obfd);
2447 /* bfd_openr sets cacheable to true, which is what we want. */
2448 if (!bfd_check_format (objfile->obfd, bfd_object))
2449 error (_("Can't read symbols from %s: %s."), objfile->name,
2450 bfd_errmsg (bfd_get_error ()));
2451
2452 /* Save the offsets, we will nuke them with the rest of the
2453 objfile_obstack. */
2454 num_offsets = objfile->num_sections;
2455 offsets = ((struct section_offsets *)
2456 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2457 memcpy (offsets, objfile->section_offsets,
2458 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2459
2460 /* FIXME: Do we have to free a whole linked list, or is this
2461 enough? */
2462 if (objfile->global_psymbols.list)
2463 xfree (objfile->global_psymbols.list);
2464 memset (&objfile->global_psymbols, 0,
2465 sizeof (objfile->global_psymbols));
2466 if (objfile->static_psymbols.list)
2467 xfree (objfile->static_psymbols.list);
2468 memset (&objfile->static_psymbols, 0,
2469 sizeof (objfile->static_psymbols));
2470
2471 /* Free the obstacks for non-reusable objfiles. */
2472 psymbol_bcache_free (objfile->psymbol_cache);
2473 objfile->psymbol_cache = psymbol_bcache_init ();
2474 if (objfile->demangled_names_hash != NULL)
2475 {
2476 htab_delete (objfile->demangled_names_hash);
2477 objfile->demangled_names_hash = NULL;
2478 }
2479 obstack_free (&objfile->objfile_obstack, 0);
2480 objfile->sections = NULL;
2481 objfile->symtabs = NULL;
2482 objfile->psymtabs = NULL;
2483 objfile->psymtabs_addrmap = NULL;
2484 objfile->free_psymtabs = NULL;
2485 objfile->template_symbols = NULL;
2486 objfile->msymbols = NULL;
2487 objfile->minimal_symbol_count = 0;
2488 memset (&objfile->msymbol_hash, 0,
2489 sizeof (objfile->msymbol_hash));
2490 memset (&objfile->msymbol_demangled_hash, 0,
2491 sizeof (objfile->msymbol_demangled_hash));
2492
2493 set_objfile_per_bfd (objfile);
2494
2495 /* obstack_init also initializes the obstack so it is
2496 empty. We could use obstack_specify_allocation but
2497 gdb_obstack.h specifies the alloc/dealloc functions. */
2498 obstack_init (&objfile->objfile_obstack);
2499
2500 /* Reset the sym_fns pointer. The ELF reader can change it
2501 based on whether .gdb_index is present, and we need it to
2502 start over. PR symtab/15885 */
2503 objfile->sf = find_sym_fns (objfile->obfd);
2504
2505 build_objfile_section_table (objfile);
2506 terminate_minimal_symbol_table (objfile);
2507
2508 /* We use the same section offsets as from last time. I'm not
2509 sure whether that is always correct for shared libraries. */
2510 objfile->section_offsets = (struct section_offsets *)
2511 obstack_alloc (&objfile->objfile_obstack,
2512 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2513 memcpy (objfile->section_offsets, offsets,
2514 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2515 objfile->num_sections = num_offsets;
2516
2517 /* What the hell is sym_new_init for, anyway? The concept of
2518 distinguishing between the main file and additional files
2519 in this way seems rather dubious. */
2520 if (objfile == symfile_objfile)
2521 {
2522 (*objfile->sf->sym_new_init) (objfile);
2523 }
2524
2525 (*objfile->sf->sym_init) (objfile);
2526 clear_complaints (&symfile_complaints, 1, 1);
2527
2528 objfile->flags &= ~OBJF_PSYMTABS_READ;
2529 read_symbols (objfile, 0);
2530
2531 if (!objfile_has_symbols (objfile))
2532 {
2533 wrap_here ("");
2534 printf_unfiltered (_("(no debugging symbols found)\n"));
2535 wrap_here ("");
2536 }
2537
2538 /* We're done reading the symbol file; finish off complaints. */
2539 clear_complaints (&symfile_complaints, 0, 1);
2540
2541 /* Getting new symbols may change our opinion about what is
2542 frameless. */
2543
2544 reinit_frame_cache ();
2545
2546 /* Discard cleanups as symbol reading was successful. */
2547 discard_cleanups (old_cleanups);
2548
2549 /* If the mtime has changed between the time we set new_modtime
2550 and now, we *want* this to be out of date, so don't call stat
2551 again now. */
2552 objfile->mtime = new_modtime;
2553 init_entry_point_info (objfile);
2554
2555 VEC_safe_push (objfilep, new_objfiles, objfile);
2556 }
2557 }
2558
2559 if (new_objfiles)
2560 {
2561 int ix;
2562
2563 /* Notify objfiles that we've modified objfile sections. */
2564 objfiles_changed ();
2565
2566 clear_symtab_users (0);
2567
2568 /* clear_objfile_data for each objfile was called before freeing it and
2569 observer_notify_new_objfile (NULL) has been called by
2570 clear_symtab_users above. Notify the new files now. */
2571 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2572 observer_notify_new_objfile (objfile);
2573
2574 /* At least one objfile has changed, so we can consider that
2575 the executable we're debugging has changed too. */
2576 observer_notify_executable_changed ();
2577 }
2578
2579 do_cleanups (all_cleanups);
2580 }
2581 \f
2582
2583 typedef struct
2584 {
2585 char *ext;
2586 enum language lang;
2587 }
2588 filename_language;
2589
2590 static filename_language *filename_language_table;
2591 static int fl_table_size, fl_table_next;
2592
2593 static void
2594 add_filename_language (char *ext, enum language lang)
2595 {
2596 if (fl_table_next >= fl_table_size)
2597 {
2598 fl_table_size += 10;
2599 filename_language_table =
2600 xrealloc (filename_language_table,
2601 fl_table_size * sizeof (*filename_language_table));
2602 }
2603
2604 filename_language_table[fl_table_next].ext = xstrdup (ext);
2605 filename_language_table[fl_table_next].lang = lang;
2606 fl_table_next++;
2607 }
2608
2609 static char *ext_args;
2610 static void
2611 show_ext_args (struct ui_file *file, int from_tty,
2612 struct cmd_list_element *c, const char *value)
2613 {
2614 fprintf_filtered (file,
2615 _("Mapping between filename extension "
2616 "and source language is \"%s\".\n"),
2617 value);
2618 }
2619
2620 static void
2621 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2622 {
2623 int i;
2624 char *cp = ext_args;
2625 enum language lang;
2626
2627 /* First arg is filename extension, starting with '.' */
2628 if (*cp != '.')
2629 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2630
2631 /* Find end of first arg. */
2632 while (*cp && !isspace (*cp))
2633 cp++;
2634
2635 if (*cp == '\0')
2636 error (_("'%s': two arguments required -- "
2637 "filename extension and language"),
2638 ext_args);
2639
2640 /* Null-terminate first arg. */
2641 *cp++ = '\0';
2642
2643 /* Find beginning of second arg, which should be a source language. */
2644 cp = skip_spaces (cp);
2645
2646 if (*cp == '\0')
2647 error (_("'%s': two arguments required -- "
2648 "filename extension and language"),
2649 ext_args);
2650
2651 /* Lookup the language from among those we know. */
2652 lang = language_enum (cp);
2653
2654 /* Now lookup the filename extension: do we already know it? */
2655 for (i = 0; i < fl_table_next; i++)
2656 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2657 break;
2658
2659 if (i >= fl_table_next)
2660 {
2661 /* New file extension. */
2662 add_filename_language (ext_args, lang);
2663 }
2664 else
2665 {
2666 /* Redefining a previously known filename extension. */
2667
2668 /* if (from_tty) */
2669 /* query ("Really make files of type %s '%s'?", */
2670 /* ext_args, language_str (lang)); */
2671
2672 xfree (filename_language_table[i].ext);
2673 filename_language_table[i].ext = xstrdup (ext_args);
2674 filename_language_table[i].lang = lang;
2675 }
2676 }
2677
2678 static void
2679 info_ext_lang_command (char *args, int from_tty)
2680 {
2681 int i;
2682
2683 printf_filtered (_("Filename extensions and the languages they represent:"));
2684 printf_filtered ("\n\n");
2685 for (i = 0; i < fl_table_next; i++)
2686 printf_filtered ("\t%s\t- %s\n",
2687 filename_language_table[i].ext,
2688 language_str (filename_language_table[i].lang));
2689 }
2690
2691 static void
2692 init_filename_language_table (void)
2693 {
2694 if (fl_table_size == 0) /* Protect against repetition. */
2695 {
2696 fl_table_size = 20;
2697 fl_table_next = 0;
2698 filename_language_table =
2699 xmalloc (fl_table_size * sizeof (*filename_language_table));
2700 add_filename_language (".c", language_c);
2701 add_filename_language (".d", language_d);
2702 add_filename_language (".C", language_cplus);
2703 add_filename_language (".cc", language_cplus);
2704 add_filename_language (".cp", language_cplus);
2705 add_filename_language (".cpp", language_cplus);
2706 add_filename_language (".cxx", language_cplus);
2707 add_filename_language (".c++", language_cplus);
2708 add_filename_language (".java", language_java);
2709 add_filename_language (".class", language_java);
2710 add_filename_language (".m", language_objc);
2711 add_filename_language (".f", language_fortran);
2712 add_filename_language (".F", language_fortran);
2713 add_filename_language (".for", language_fortran);
2714 add_filename_language (".FOR", language_fortran);
2715 add_filename_language (".ftn", language_fortran);
2716 add_filename_language (".FTN", language_fortran);
2717 add_filename_language (".fpp", language_fortran);
2718 add_filename_language (".FPP", language_fortran);
2719 add_filename_language (".f90", language_fortran);
2720 add_filename_language (".F90", language_fortran);
2721 add_filename_language (".f95", language_fortran);
2722 add_filename_language (".F95", language_fortran);
2723 add_filename_language (".f03", language_fortran);
2724 add_filename_language (".F03", language_fortran);
2725 add_filename_language (".f08", language_fortran);
2726 add_filename_language (".F08", language_fortran);
2727 add_filename_language (".s", language_asm);
2728 add_filename_language (".sx", language_asm);
2729 add_filename_language (".S", language_asm);
2730 add_filename_language (".pas", language_pascal);
2731 add_filename_language (".p", language_pascal);
2732 add_filename_language (".pp", language_pascal);
2733 add_filename_language (".adb", language_ada);
2734 add_filename_language (".ads", language_ada);
2735 add_filename_language (".a", language_ada);
2736 add_filename_language (".ada", language_ada);
2737 add_filename_language (".dg", language_ada);
2738 }
2739 }
2740
2741 enum language
2742 deduce_language_from_filename (const char *filename)
2743 {
2744 int i;
2745 char *cp;
2746
2747 if (filename != NULL)
2748 if ((cp = strrchr (filename, '.')) != NULL)
2749 for (i = 0; i < fl_table_next; i++)
2750 if (strcmp (cp, filename_language_table[i].ext) == 0)
2751 return filename_language_table[i].lang;
2752
2753 return language_unknown;
2754 }
2755 \f
2756 /* allocate_symtab:
2757
2758 Allocate and partly initialize a new symbol table. Return a pointer
2759 to it. error() if no space.
2760
2761 Caller must set these fields:
2762 LINETABLE(symtab)
2763 symtab->blockvector
2764 symtab->dirname
2765 symtab->free_code
2766 symtab->free_ptr
2767 */
2768
2769 struct symtab *
2770 allocate_symtab (const char *filename, struct objfile *objfile)
2771 {
2772 struct symtab *symtab;
2773
2774 symtab = (struct symtab *)
2775 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2776 memset (symtab, 0, sizeof (*symtab));
2777 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2778 objfile->per_bfd->filename_cache);
2779 symtab->fullname = NULL;
2780 symtab->language = deduce_language_from_filename (filename);
2781 symtab->debugformat = "unknown";
2782
2783 /* Hook it to the objfile it comes from. */
2784
2785 symtab->objfile = objfile;
2786 symtab->next = objfile->symtabs;
2787 objfile->symtabs = symtab;
2788
2789 if (symtab_create_debug)
2790 {
2791 /* Be a bit clever with debugging messages, and don't print objfile
2792 every time, only when it changes. */
2793 static char *last_objfile_name = NULL;
2794
2795 if (last_objfile_name == NULL
2796 || strcmp (last_objfile_name, objfile->name) != 0)
2797 {
2798 xfree (last_objfile_name);
2799 last_objfile_name = xstrdup (objfile->name);
2800 fprintf_unfiltered (gdb_stdlog,
2801 "Creating one or more symtabs for objfile %s ...\n",
2802 last_objfile_name);
2803 }
2804 fprintf_unfiltered (gdb_stdlog,
2805 "Created symtab %s for module %s.\n",
2806 host_address_to_string (symtab), filename);
2807 }
2808
2809 return (symtab);
2810 }
2811 \f
2812
2813 /* Reset all data structures in gdb which may contain references to symbol
2814 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2815
2816 void
2817 clear_symtab_users (int add_flags)
2818 {
2819 /* Someday, we should do better than this, by only blowing away
2820 the things that really need to be blown. */
2821
2822 /* Clear the "current" symtab first, because it is no longer valid.
2823 breakpoint_re_set may try to access the current symtab. */
2824 clear_current_source_symtab_and_line ();
2825
2826 clear_displays ();
2827 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2828 breakpoint_re_set ();
2829 clear_last_displayed_sal ();
2830 clear_pc_function_cache ();
2831 observer_notify_new_objfile (NULL);
2832
2833 /* Clear globals which might have pointed into a removed objfile.
2834 FIXME: It's not clear which of these are supposed to persist
2835 between expressions and which ought to be reset each time. */
2836 expression_context_block = NULL;
2837 innermost_block = NULL;
2838
2839 /* Varobj may refer to old symbols, perform a cleanup. */
2840 varobj_invalidate ();
2841
2842 }
2843
2844 static void
2845 clear_symtab_users_cleanup (void *ignore)
2846 {
2847 clear_symtab_users (0);
2848 }
2849 \f
2850 /* OVERLAYS:
2851 The following code implements an abstraction for debugging overlay sections.
2852
2853 The target model is as follows:
2854 1) The gnu linker will permit multiple sections to be mapped into the
2855 same VMA, each with its own unique LMA (or load address).
2856 2) It is assumed that some runtime mechanism exists for mapping the
2857 sections, one by one, from the load address into the VMA address.
2858 3) This code provides a mechanism for gdb to keep track of which
2859 sections should be considered to be mapped from the VMA to the LMA.
2860 This information is used for symbol lookup, and memory read/write.
2861 For instance, if a section has been mapped then its contents
2862 should be read from the VMA, otherwise from the LMA.
2863
2864 Two levels of debugger support for overlays are available. One is
2865 "manual", in which the debugger relies on the user to tell it which
2866 overlays are currently mapped. This level of support is
2867 implemented entirely in the core debugger, and the information about
2868 whether a section is mapped is kept in the objfile->obj_section table.
2869
2870 The second level of support is "automatic", and is only available if
2871 the target-specific code provides functionality to read the target's
2872 overlay mapping table, and translate its contents for the debugger
2873 (by updating the mapped state information in the obj_section tables).
2874
2875 The interface is as follows:
2876 User commands:
2877 overlay map <name> -- tell gdb to consider this section mapped
2878 overlay unmap <name> -- tell gdb to consider this section unmapped
2879 overlay list -- list the sections that GDB thinks are mapped
2880 overlay read-target -- get the target's state of what's mapped
2881 overlay off/manual/auto -- set overlay debugging state
2882 Functional interface:
2883 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2884 section, return that section.
2885 find_pc_overlay(pc): find any overlay section that contains
2886 the pc, either in its VMA or its LMA
2887 section_is_mapped(sect): true if overlay is marked as mapped
2888 section_is_overlay(sect): true if section's VMA != LMA
2889 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2890 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2891 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2892 overlay_mapped_address(...): map an address from section's LMA to VMA
2893 overlay_unmapped_address(...): map an address from section's VMA to LMA
2894 symbol_overlayed_address(...): Return a "current" address for symbol:
2895 either in VMA or LMA depending on whether
2896 the symbol's section is currently mapped. */
2897
2898 /* Overlay debugging state: */
2899
2900 enum overlay_debugging_state overlay_debugging = ovly_off;
2901 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2902
2903 /* Function: section_is_overlay (SECTION)
2904 Returns true if SECTION has VMA not equal to LMA, ie.
2905 SECTION is loaded at an address different from where it will "run". */
2906
2907 int
2908 section_is_overlay (struct obj_section *section)
2909 {
2910 if (overlay_debugging && section)
2911 {
2912 bfd *abfd = section->objfile->obfd;
2913 asection *bfd_section = section->the_bfd_section;
2914
2915 if (bfd_section_lma (abfd, bfd_section) != 0
2916 && bfd_section_lma (abfd, bfd_section)
2917 != bfd_section_vma (abfd, bfd_section))
2918 return 1;
2919 }
2920
2921 return 0;
2922 }
2923
2924 /* Function: overlay_invalidate_all (void)
2925 Invalidate the mapped state of all overlay sections (mark it as stale). */
2926
2927 static void
2928 overlay_invalidate_all (void)
2929 {
2930 struct objfile *objfile;
2931 struct obj_section *sect;
2932
2933 ALL_OBJSECTIONS (objfile, sect)
2934 if (section_is_overlay (sect))
2935 sect->ovly_mapped = -1;
2936 }
2937
2938 /* Function: section_is_mapped (SECTION)
2939 Returns true if section is an overlay, and is currently mapped.
2940
2941 Access to the ovly_mapped flag is restricted to this function, so
2942 that we can do automatic update. If the global flag
2943 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2944 overlay_invalidate_all. If the mapped state of the particular
2945 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2946
2947 int
2948 section_is_mapped (struct obj_section *osect)
2949 {
2950 struct gdbarch *gdbarch;
2951
2952 if (osect == 0 || !section_is_overlay (osect))
2953 return 0;
2954
2955 switch (overlay_debugging)
2956 {
2957 default:
2958 case ovly_off:
2959 return 0; /* overlay debugging off */
2960 case ovly_auto: /* overlay debugging automatic */
2961 /* Unles there is a gdbarch_overlay_update function,
2962 there's really nothing useful to do here (can't really go auto). */
2963 gdbarch = get_objfile_arch (osect->objfile);
2964 if (gdbarch_overlay_update_p (gdbarch))
2965 {
2966 if (overlay_cache_invalid)
2967 {
2968 overlay_invalidate_all ();
2969 overlay_cache_invalid = 0;
2970 }
2971 if (osect->ovly_mapped == -1)
2972 gdbarch_overlay_update (gdbarch, osect);
2973 }
2974 /* fall thru to manual case */
2975 case ovly_on: /* overlay debugging manual */
2976 return osect->ovly_mapped == 1;
2977 }
2978 }
2979
2980 /* Function: pc_in_unmapped_range
2981 If PC falls into the lma range of SECTION, return true, else false. */
2982
2983 CORE_ADDR
2984 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2985 {
2986 if (section_is_overlay (section))
2987 {
2988 bfd *abfd = section->objfile->obfd;
2989 asection *bfd_section = section->the_bfd_section;
2990
2991 /* We assume the LMA is relocated by the same offset as the VMA. */
2992 bfd_vma size = bfd_get_section_size (bfd_section);
2993 CORE_ADDR offset = obj_section_offset (section);
2994
2995 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2996 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2997 return 1;
2998 }
2999
3000 return 0;
3001 }
3002
3003 /* Function: pc_in_mapped_range
3004 If PC falls into the vma range of SECTION, return true, else false. */
3005
3006 CORE_ADDR
3007 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3008 {
3009 if (section_is_overlay (section))
3010 {
3011 if (obj_section_addr (section) <= pc
3012 && pc < obj_section_endaddr (section))
3013 return 1;
3014 }
3015
3016 return 0;
3017 }
3018
3019 /* Return true if the mapped ranges of sections A and B overlap, false
3020 otherwise. */
3021
3022 static int
3023 sections_overlap (struct obj_section *a, struct obj_section *b)
3024 {
3025 CORE_ADDR a_start = obj_section_addr (a);
3026 CORE_ADDR a_end = obj_section_endaddr (a);
3027 CORE_ADDR b_start = obj_section_addr (b);
3028 CORE_ADDR b_end = obj_section_endaddr (b);
3029
3030 return (a_start < b_end && b_start < a_end);
3031 }
3032
3033 /* Function: overlay_unmapped_address (PC, SECTION)
3034 Returns the address corresponding to PC in the unmapped (load) range.
3035 May be the same as PC. */
3036
3037 CORE_ADDR
3038 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3039 {
3040 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3041 {
3042 bfd *abfd = section->objfile->obfd;
3043 asection *bfd_section = section->the_bfd_section;
3044
3045 return pc + bfd_section_lma (abfd, bfd_section)
3046 - bfd_section_vma (abfd, bfd_section);
3047 }
3048
3049 return pc;
3050 }
3051
3052 /* Function: overlay_mapped_address (PC, SECTION)
3053 Returns the address corresponding to PC in the mapped (runtime) range.
3054 May be the same as PC. */
3055
3056 CORE_ADDR
3057 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3058 {
3059 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3060 {
3061 bfd *abfd = section->objfile->obfd;
3062 asection *bfd_section = section->the_bfd_section;
3063
3064 return pc + bfd_section_vma (abfd, bfd_section)
3065 - bfd_section_lma (abfd, bfd_section);
3066 }
3067
3068 return pc;
3069 }
3070
3071 /* Function: symbol_overlayed_address
3072 Return one of two addresses (relative to the VMA or to the LMA),
3073 depending on whether the section is mapped or not. */
3074
3075 CORE_ADDR
3076 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3077 {
3078 if (overlay_debugging)
3079 {
3080 /* If the symbol has no section, just return its regular address. */
3081 if (section == 0)
3082 return address;
3083 /* If the symbol's section is not an overlay, just return its
3084 address. */
3085 if (!section_is_overlay (section))
3086 return address;
3087 /* If the symbol's section is mapped, just return its address. */
3088 if (section_is_mapped (section))
3089 return address;
3090 /*
3091 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3092 * then return its LOADED address rather than its vma address!!
3093 */
3094 return overlay_unmapped_address (address, section);
3095 }
3096 return address;
3097 }
3098
3099 /* Function: find_pc_overlay (PC)
3100 Return the best-match overlay section for PC:
3101 If PC matches a mapped overlay section's VMA, return that section.
3102 Else if PC matches an unmapped section's VMA, return that section.
3103 Else if PC matches an unmapped section's LMA, return that section. */
3104
3105 struct obj_section *
3106 find_pc_overlay (CORE_ADDR pc)
3107 {
3108 struct objfile *objfile;
3109 struct obj_section *osect, *best_match = NULL;
3110
3111 if (overlay_debugging)
3112 ALL_OBJSECTIONS (objfile, osect)
3113 if (section_is_overlay (osect))
3114 {
3115 if (pc_in_mapped_range (pc, osect))
3116 {
3117 if (section_is_mapped (osect))
3118 return osect;
3119 else
3120 best_match = osect;
3121 }
3122 else if (pc_in_unmapped_range (pc, osect))
3123 best_match = osect;
3124 }
3125 return best_match;
3126 }
3127
3128 /* Function: find_pc_mapped_section (PC)
3129 If PC falls into the VMA address range of an overlay section that is
3130 currently marked as MAPPED, return that section. Else return NULL. */
3131
3132 struct obj_section *
3133 find_pc_mapped_section (CORE_ADDR pc)
3134 {
3135 struct objfile *objfile;
3136 struct obj_section *osect;
3137
3138 if (overlay_debugging)
3139 ALL_OBJSECTIONS (objfile, osect)
3140 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3141 return osect;
3142
3143 return NULL;
3144 }
3145
3146 /* Function: list_overlays_command
3147 Print a list of mapped sections and their PC ranges. */
3148
3149 static void
3150 list_overlays_command (char *args, int from_tty)
3151 {
3152 int nmapped = 0;
3153 struct objfile *objfile;
3154 struct obj_section *osect;
3155
3156 if (overlay_debugging)
3157 ALL_OBJSECTIONS (objfile, osect)
3158 if (section_is_mapped (osect))
3159 {
3160 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3161 const char *name;
3162 bfd_vma lma, vma;
3163 int size;
3164
3165 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3166 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3167 size = bfd_get_section_size (osect->the_bfd_section);
3168 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3169
3170 printf_filtered ("Section %s, loaded at ", name);
3171 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3172 puts_filtered (" - ");
3173 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3174 printf_filtered (", mapped at ");
3175 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3176 puts_filtered (" - ");
3177 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3178 puts_filtered ("\n");
3179
3180 nmapped++;
3181 }
3182 if (nmapped == 0)
3183 printf_filtered (_("No sections are mapped.\n"));
3184 }
3185
3186 /* Function: map_overlay_command
3187 Mark the named section as mapped (ie. residing at its VMA address). */
3188
3189 static void
3190 map_overlay_command (char *args, int from_tty)
3191 {
3192 struct objfile *objfile, *objfile2;
3193 struct obj_section *sec, *sec2;
3194
3195 if (!overlay_debugging)
3196 error (_("Overlay debugging not enabled. Use "
3197 "either the 'overlay auto' or\n"
3198 "the 'overlay manual' command."));
3199
3200 if (args == 0 || *args == 0)
3201 error (_("Argument required: name of an overlay section"));
3202
3203 /* First, find a section matching the user supplied argument. */
3204 ALL_OBJSECTIONS (objfile, sec)
3205 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3206 {
3207 /* Now, check to see if the section is an overlay. */
3208 if (!section_is_overlay (sec))
3209 continue; /* not an overlay section */
3210
3211 /* Mark the overlay as "mapped". */
3212 sec->ovly_mapped = 1;
3213
3214 /* Next, make a pass and unmap any sections that are
3215 overlapped by this new section: */
3216 ALL_OBJSECTIONS (objfile2, sec2)
3217 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3218 {
3219 if (info_verbose)
3220 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3221 bfd_section_name (objfile->obfd,
3222 sec2->the_bfd_section));
3223 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3224 }
3225 return;
3226 }
3227 error (_("No overlay section called %s"), args);
3228 }
3229
3230 /* Function: unmap_overlay_command
3231 Mark the overlay section as unmapped
3232 (ie. resident in its LMA address range, rather than the VMA range). */
3233
3234 static void
3235 unmap_overlay_command (char *args, int from_tty)
3236 {
3237 struct objfile *objfile;
3238 struct obj_section *sec;
3239
3240 if (!overlay_debugging)
3241 error (_("Overlay debugging not enabled. "
3242 "Use either the 'overlay auto' or\n"
3243 "the 'overlay manual' command."));
3244
3245 if (args == 0 || *args == 0)
3246 error (_("Argument required: name of an overlay section"));
3247
3248 /* First, find a section matching the user supplied argument. */
3249 ALL_OBJSECTIONS (objfile, sec)
3250 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3251 {
3252 if (!sec->ovly_mapped)
3253 error (_("Section %s is not mapped"), args);
3254 sec->ovly_mapped = 0;
3255 return;
3256 }
3257 error (_("No overlay section called %s"), args);
3258 }
3259
3260 /* Function: overlay_auto_command
3261 A utility command to turn on overlay debugging.
3262 Possibly this should be done via a set/show command. */
3263
3264 static void
3265 overlay_auto_command (char *args, int from_tty)
3266 {
3267 overlay_debugging = ovly_auto;
3268 enable_overlay_breakpoints ();
3269 if (info_verbose)
3270 printf_unfiltered (_("Automatic overlay debugging enabled."));
3271 }
3272
3273 /* Function: overlay_manual_command
3274 A utility command to turn on overlay debugging.
3275 Possibly this should be done via a set/show command. */
3276
3277 static void
3278 overlay_manual_command (char *args, int from_tty)
3279 {
3280 overlay_debugging = ovly_on;
3281 disable_overlay_breakpoints ();
3282 if (info_verbose)
3283 printf_unfiltered (_("Overlay debugging enabled."));
3284 }
3285
3286 /* Function: overlay_off_command
3287 A utility command to turn on overlay debugging.
3288 Possibly this should be done via a set/show command. */
3289
3290 static void
3291 overlay_off_command (char *args, int from_tty)
3292 {
3293 overlay_debugging = ovly_off;
3294 disable_overlay_breakpoints ();
3295 if (info_verbose)
3296 printf_unfiltered (_("Overlay debugging disabled."));
3297 }
3298
3299 static void
3300 overlay_load_command (char *args, int from_tty)
3301 {
3302 struct gdbarch *gdbarch = get_current_arch ();
3303
3304 if (gdbarch_overlay_update_p (gdbarch))
3305 gdbarch_overlay_update (gdbarch, NULL);
3306 else
3307 error (_("This target does not know how to read its overlay state."));
3308 }
3309
3310 /* Function: overlay_command
3311 A place-holder for a mis-typed command. */
3312
3313 /* Command list chain containing all defined "overlay" subcommands. */
3314 static struct cmd_list_element *overlaylist;
3315
3316 static void
3317 overlay_command (char *args, int from_tty)
3318 {
3319 printf_unfiltered
3320 ("\"overlay\" must be followed by the name of an overlay command.\n");
3321 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3322 }
3323
3324 /* Target Overlays for the "Simplest" overlay manager:
3325
3326 This is GDB's default target overlay layer. It works with the
3327 minimal overlay manager supplied as an example by Cygnus. The
3328 entry point is via a function pointer "gdbarch_overlay_update",
3329 so targets that use a different runtime overlay manager can
3330 substitute their own overlay_update function and take over the
3331 function pointer.
3332
3333 The overlay_update function pokes around in the target's data structures
3334 to see what overlays are mapped, and updates GDB's overlay mapping with
3335 this information.
3336
3337 In this simple implementation, the target data structures are as follows:
3338 unsigned _novlys; /# number of overlay sections #/
3339 unsigned _ovly_table[_novlys][4] = {
3340 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3341 {..., ..., ..., ...},
3342 }
3343 unsigned _novly_regions; /# number of overlay regions #/
3344 unsigned _ovly_region_table[_novly_regions][3] = {
3345 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3346 {..., ..., ...},
3347 }
3348 These functions will attempt to update GDB's mappedness state in the
3349 symbol section table, based on the target's mappedness state.
3350
3351 To do this, we keep a cached copy of the target's _ovly_table, and
3352 attempt to detect when the cached copy is invalidated. The main
3353 entry point is "simple_overlay_update(SECT), which looks up SECT in
3354 the cached table and re-reads only the entry for that section from
3355 the target (whenever possible). */
3356
3357 /* Cached, dynamically allocated copies of the target data structures: */
3358 static unsigned (*cache_ovly_table)[4] = 0;
3359 static unsigned cache_novlys = 0;
3360 static CORE_ADDR cache_ovly_table_base = 0;
3361 enum ovly_index
3362 {
3363 VMA, SIZE, LMA, MAPPED
3364 };
3365
3366 /* Throw away the cached copy of _ovly_table. */
3367
3368 static void
3369 simple_free_overlay_table (void)
3370 {
3371 if (cache_ovly_table)
3372 xfree (cache_ovly_table);
3373 cache_novlys = 0;
3374 cache_ovly_table = NULL;
3375 cache_ovly_table_base = 0;
3376 }
3377
3378 /* Read an array of ints of size SIZE from the target into a local buffer.
3379 Convert to host order. int LEN is number of ints. */
3380
3381 static void
3382 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3383 int len, int size, enum bfd_endian byte_order)
3384 {
3385 /* FIXME (alloca): Not safe if array is very large. */
3386 gdb_byte *buf = alloca (len * size);
3387 int i;
3388
3389 read_memory (memaddr, buf, len * size);
3390 for (i = 0; i < len; i++)
3391 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3392 }
3393
3394 /* Find and grab a copy of the target _ovly_table
3395 (and _novlys, which is needed for the table's size). */
3396
3397 static int
3398 simple_read_overlay_table (void)
3399 {
3400 struct minimal_symbol *novlys_msym;
3401 struct bound_minimal_symbol ovly_table_msym;
3402 struct gdbarch *gdbarch;
3403 int word_size;
3404 enum bfd_endian byte_order;
3405
3406 simple_free_overlay_table ();
3407 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3408 if (! novlys_msym)
3409 {
3410 error (_("Error reading inferior's overlay table: "
3411 "couldn't find `_novlys' variable\n"
3412 "in inferior. Use `overlay manual' mode."));
3413 return 0;
3414 }
3415
3416 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3417 if (! ovly_table_msym.minsym)
3418 {
3419 error (_("Error reading inferior's overlay table: couldn't find "
3420 "`_ovly_table' array\n"
3421 "in inferior. Use `overlay manual' mode."));
3422 return 0;
3423 }
3424
3425 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3426 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3427 byte_order = gdbarch_byte_order (gdbarch);
3428
3429 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3430 4, byte_order);
3431 cache_ovly_table
3432 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3433 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3434 read_target_long_array (cache_ovly_table_base,
3435 (unsigned int *) cache_ovly_table,
3436 cache_novlys * 4, word_size, byte_order);
3437
3438 return 1; /* SUCCESS */
3439 }
3440
3441 /* Function: simple_overlay_update_1
3442 A helper function for simple_overlay_update. Assuming a cached copy
3443 of _ovly_table exists, look through it to find an entry whose vma,
3444 lma and size match those of OSECT. Re-read the entry and make sure
3445 it still matches OSECT (else the table may no longer be valid).
3446 Set OSECT's mapped state to match the entry. Return: 1 for
3447 success, 0 for failure. */
3448
3449 static int
3450 simple_overlay_update_1 (struct obj_section *osect)
3451 {
3452 int i, size;
3453 bfd *obfd = osect->objfile->obfd;
3454 asection *bsect = osect->the_bfd_section;
3455 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3456 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3457 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3458
3459 size = bfd_get_section_size (osect->the_bfd_section);
3460 for (i = 0; i < cache_novlys; i++)
3461 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3462 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3463 /* && cache_ovly_table[i][SIZE] == size */ )
3464 {
3465 read_target_long_array (cache_ovly_table_base + i * word_size,
3466 (unsigned int *) cache_ovly_table[i],
3467 4, word_size, byte_order);
3468 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3469 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3470 /* && cache_ovly_table[i][SIZE] == size */ )
3471 {
3472 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3473 return 1;
3474 }
3475 else /* Warning! Warning! Target's ovly table has changed! */
3476 return 0;
3477 }
3478 return 0;
3479 }
3480
3481 /* Function: simple_overlay_update
3482 If OSECT is NULL, then update all sections' mapped state
3483 (after re-reading the entire target _ovly_table).
3484 If OSECT is non-NULL, then try to find a matching entry in the
3485 cached ovly_table and update only OSECT's mapped state.
3486 If a cached entry can't be found or the cache isn't valid, then
3487 re-read the entire cache, and go ahead and update all sections. */
3488
3489 void
3490 simple_overlay_update (struct obj_section *osect)
3491 {
3492 struct objfile *objfile;
3493
3494 /* Were we given an osect to look up? NULL means do all of them. */
3495 if (osect)
3496 /* Have we got a cached copy of the target's overlay table? */
3497 if (cache_ovly_table != NULL)
3498 {
3499 /* Does its cached location match what's currently in the
3500 symtab? */
3501 struct minimal_symbol *minsym
3502 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3503
3504 if (minsym == NULL)
3505 error (_("Error reading inferior's overlay table: couldn't "
3506 "find `_ovly_table' array\n"
3507 "in inferior. Use `overlay manual' mode."));
3508
3509 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3510 /* Then go ahead and try to look up this single section in
3511 the cache. */
3512 if (simple_overlay_update_1 (osect))
3513 /* Found it! We're done. */
3514 return;
3515 }
3516
3517 /* Cached table no good: need to read the entire table anew.
3518 Or else we want all the sections, in which case it's actually
3519 more efficient to read the whole table in one block anyway. */
3520
3521 if (! simple_read_overlay_table ())
3522 return;
3523
3524 /* Now may as well update all sections, even if only one was requested. */
3525 ALL_OBJSECTIONS (objfile, osect)
3526 if (section_is_overlay (osect))
3527 {
3528 int i, size;
3529 bfd *obfd = osect->objfile->obfd;
3530 asection *bsect = osect->the_bfd_section;
3531
3532 size = bfd_get_section_size (bsect);
3533 for (i = 0; i < cache_novlys; i++)
3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3536 /* && cache_ovly_table[i][SIZE] == size */ )
3537 { /* obj_section matches i'th entry in ovly_table. */
3538 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3539 break; /* finished with inner for loop: break out. */
3540 }
3541 }
3542 }
3543
3544 /* Set the output sections and output offsets for section SECTP in
3545 ABFD. The relocation code in BFD will read these offsets, so we
3546 need to be sure they're initialized. We map each section to itself,
3547 with no offset; this means that SECTP->vma will be honored. */
3548
3549 static void
3550 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3551 {
3552 sectp->output_section = sectp;
3553 sectp->output_offset = 0;
3554 }
3555
3556 /* Default implementation for sym_relocate. */
3557
3558 bfd_byte *
3559 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3560 bfd_byte *buf)
3561 {
3562 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3563 DWO file. */
3564 bfd *abfd = sectp->owner;
3565
3566 /* We're only interested in sections with relocation
3567 information. */
3568 if ((sectp->flags & SEC_RELOC) == 0)
3569 return NULL;
3570
3571 /* We will handle section offsets properly elsewhere, so relocate as if
3572 all sections begin at 0. */
3573 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3574
3575 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3576 }
3577
3578 /* Relocate the contents of a debug section SECTP in ABFD. The
3579 contents are stored in BUF if it is non-NULL, or returned in a
3580 malloc'd buffer otherwise.
3581
3582 For some platforms and debug info formats, shared libraries contain
3583 relocations against the debug sections (particularly for DWARF-2;
3584 one affected platform is PowerPC GNU/Linux, although it depends on
3585 the version of the linker in use). Also, ELF object files naturally
3586 have unresolved relocations for their debug sections. We need to apply
3587 the relocations in order to get the locations of symbols correct.
3588 Another example that may require relocation processing, is the
3589 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3590 debug section. */
3591
3592 bfd_byte *
3593 symfile_relocate_debug_section (struct objfile *objfile,
3594 asection *sectp, bfd_byte *buf)
3595 {
3596 gdb_assert (objfile->sf->sym_relocate);
3597
3598 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3599 }
3600
3601 struct symfile_segment_data *
3602 get_symfile_segment_data (bfd *abfd)
3603 {
3604 const struct sym_fns *sf = find_sym_fns (abfd);
3605
3606 if (sf == NULL)
3607 return NULL;
3608
3609 return sf->sym_segments (abfd);
3610 }
3611
3612 void
3613 free_symfile_segment_data (struct symfile_segment_data *data)
3614 {
3615 xfree (data->segment_bases);
3616 xfree (data->segment_sizes);
3617 xfree (data->segment_info);
3618 xfree (data);
3619 }
3620
3621 /* Given:
3622 - DATA, containing segment addresses from the object file ABFD, and
3623 the mapping from ABFD's sections onto the segments that own them,
3624 and
3625 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3626 segment addresses reported by the target,
3627 store the appropriate offsets for each section in OFFSETS.
3628
3629 If there are fewer entries in SEGMENT_BASES than there are segments
3630 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3631
3632 If there are more entries, then ignore the extra. The target may
3633 not be able to distinguish between an empty data segment and a
3634 missing data segment; a missing text segment is less plausible. */
3635
3636 int
3637 symfile_map_offsets_to_segments (bfd *abfd,
3638 const struct symfile_segment_data *data,
3639 struct section_offsets *offsets,
3640 int num_segment_bases,
3641 const CORE_ADDR *segment_bases)
3642 {
3643 int i;
3644 asection *sect;
3645
3646 /* It doesn't make sense to call this function unless you have some
3647 segment base addresses. */
3648 gdb_assert (num_segment_bases > 0);
3649
3650 /* If we do not have segment mappings for the object file, we
3651 can not relocate it by segments. */
3652 gdb_assert (data != NULL);
3653 gdb_assert (data->num_segments > 0);
3654
3655 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3656 {
3657 int which = data->segment_info[i];
3658
3659 gdb_assert (0 <= which && which <= data->num_segments);
3660
3661 /* Don't bother computing offsets for sections that aren't
3662 loaded as part of any segment. */
3663 if (! which)
3664 continue;
3665
3666 /* Use the last SEGMENT_BASES entry as the address of any extra
3667 segments mentioned in DATA->segment_info. */
3668 if (which > num_segment_bases)
3669 which = num_segment_bases;
3670
3671 offsets->offsets[i] = (segment_bases[which - 1]
3672 - data->segment_bases[which - 1]);
3673 }
3674
3675 return 1;
3676 }
3677
3678 static void
3679 symfile_find_segment_sections (struct objfile *objfile)
3680 {
3681 bfd *abfd = objfile->obfd;
3682 int i;
3683 asection *sect;
3684 struct symfile_segment_data *data;
3685
3686 data = get_symfile_segment_data (objfile->obfd);
3687 if (data == NULL)
3688 return;
3689
3690 if (data->num_segments != 1 && data->num_segments != 2)
3691 {
3692 free_symfile_segment_data (data);
3693 return;
3694 }
3695
3696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3697 {
3698 int which = data->segment_info[i];
3699
3700 if (which == 1)
3701 {
3702 if (objfile->sect_index_text == -1)
3703 objfile->sect_index_text = sect->index;
3704
3705 if (objfile->sect_index_rodata == -1)
3706 objfile->sect_index_rodata = sect->index;
3707 }
3708 else if (which == 2)
3709 {
3710 if (objfile->sect_index_data == -1)
3711 objfile->sect_index_data = sect->index;
3712
3713 if (objfile->sect_index_bss == -1)
3714 objfile->sect_index_bss = sect->index;
3715 }
3716 }
3717
3718 free_symfile_segment_data (data);
3719 }
3720
3721 void
3722 _initialize_symfile (void)
3723 {
3724 struct cmd_list_element *c;
3725
3726 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3727 Load symbol table from executable file FILE.\n\
3728 The `file' command can also load symbol tables, as well as setting the file\n\
3729 to execute."), &cmdlist);
3730 set_cmd_completer (c, filename_completer);
3731
3732 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3733 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3734 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3735 ...]\nADDR is the starting address of the file's text.\n\
3736 The optional arguments are section-name section-address pairs and\n\
3737 should be specified if the data and bss segments are not contiguous\n\
3738 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3739 &cmdlist);
3740 set_cmd_completer (c, filename_completer);
3741
3742 c = add_cmd ("load", class_files, load_command, _("\
3743 Dynamically load FILE into the running program, and record its symbols\n\
3744 for access from GDB.\n\
3745 A load OFFSET may also be given."), &cmdlist);
3746 set_cmd_completer (c, filename_completer);
3747
3748 add_prefix_cmd ("overlay", class_support, overlay_command,
3749 _("Commands for debugging overlays."), &overlaylist,
3750 "overlay ", 0, &cmdlist);
3751
3752 add_com_alias ("ovly", "overlay", class_alias, 1);
3753 add_com_alias ("ov", "overlay", class_alias, 1);
3754
3755 add_cmd ("map-overlay", class_support, map_overlay_command,
3756 _("Assert that an overlay section is mapped."), &overlaylist);
3757
3758 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3759 _("Assert that an overlay section is unmapped."), &overlaylist);
3760
3761 add_cmd ("list-overlays", class_support, list_overlays_command,
3762 _("List mappings of overlay sections."), &overlaylist);
3763
3764 add_cmd ("manual", class_support, overlay_manual_command,
3765 _("Enable overlay debugging."), &overlaylist);
3766 add_cmd ("off", class_support, overlay_off_command,
3767 _("Disable overlay debugging."), &overlaylist);
3768 add_cmd ("auto", class_support, overlay_auto_command,
3769 _("Enable automatic overlay debugging."), &overlaylist);
3770 add_cmd ("load-target", class_support, overlay_load_command,
3771 _("Read the overlay mapping state from the target."), &overlaylist);
3772
3773 /* Filename extension to source language lookup table: */
3774 init_filename_language_table ();
3775 add_setshow_string_noescape_cmd ("extension-language", class_files,
3776 &ext_args, _("\
3777 Set mapping between filename extension and source language."), _("\
3778 Show mapping between filename extension and source language."), _("\
3779 Usage: set extension-language .foo bar"),
3780 set_ext_lang_command,
3781 show_ext_args,
3782 &setlist, &showlist);
3783
3784 add_info ("extensions", info_ext_lang_command,
3785 _("All filename extensions associated with a source language."));
3786
3787 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3788 &debug_file_directory, _("\
3789 Set the directories where separate debug symbols are searched for."), _("\
3790 Show the directories where separate debug symbols are searched for."), _("\
3791 Separate debug symbols are first searched for in the same\n\
3792 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3793 and lastly at the path of the directory of the binary with\n\
3794 each global debug-file-directory component prepended."),
3795 NULL,
3796 show_debug_file_directory,
3797 &setlist, &showlist);
3798 }
This page took 0.134257 seconds and 5 git commands to generate.