2003-10-28 Jeff Johnston <jjohnstn@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include <readline/readline.h>
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206 static int
207 compare_symbols (const void *s1p, const void *s2p)
208 {
209 struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
214 }
215
216 /* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
218
219 static int
220 compare_psymbols (const void *s1p, const void *s2p)
221 {
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
227 }
228
229 void
230 sort_pst_symbols (struct partial_symtab *pst)
231 {
232 /* Sort the global list; don't sort the static list */
233
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
236 compare_psymbols);
237 }
238
239 /* Make a null terminated copy of the string at PTR with SIZE characters in
240 the obstack pointed to by OBSTACKP . Returns the address of the copy.
241 Note that the string at PTR does not have to be null terminated, I.E. it
242 may be part of a larger string and we are only saving a substring. */
243
244 char *
245 obsavestring (const char *ptr, int size, struct obstack *obstackp)
246 {
247 char *p = (char *) obstack_alloc (obstackp, size + 1);
248 /* Open-coded memcpy--saves function call time. These strings are usually
249 short. FIXME: Is this really still true with a compiler that can
250 inline memcpy? */
251 {
252 const char *p1 = ptr;
253 char *p2 = p;
254 const char *end = ptr + size;
255 while (p1 != end)
256 *p2++ = *p1++;
257 }
258 p[size] = 0;
259 return p;
260 }
261
262 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
263 in the obstack pointed to by OBSTACKP. */
264
265 char *
266 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
267 const char *s3)
268 {
269 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
270 char *val = (char *) obstack_alloc (obstackp, len);
271 strcpy (val, s1);
272 strcat (val, s2);
273 strcat (val, s3);
274 return val;
275 }
276
277 /* True if we are nested inside psymtab_to_symtab. */
278
279 int currently_reading_symtab = 0;
280
281 static void
282 decrement_reading_symtab (void *dummy)
283 {
284 currently_reading_symtab--;
285 }
286
287 /* Get the symbol table that corresponds to a partial_symtab.
288 This is fast after the first time you do it. In fact, there
289 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
290 case inline. */
291
292 struct symtab *
293 psymtab_to_symtab (struct partial_symtab *pst)
294 {
295 /* If it's been looked up before, return it. */
296 if (pst->symtab)
297 return pst->symtab;
298
299 /* If it has not yet been read in, read it. */
300 if (!pst->readin)
301 {
302 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
303 currently_reading_symtab++;
304 (*pst->read_symtab) (pst);
305 do_cleanups (back_to);
306 }
307
308 return pst->symtab;
309 }
310
311 /* Initialize entry point information for this objfile. */
312
313 void
314 init_entry_point_info (struct objfile *objfile)
315 {
316 /* Save startup file's range of PC addresses to help blockframe.c
317 decide where the bottom of the stack is. */
318
319 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
320 {
321 /* Executable file -- record its entry point so we'll recognize
322 the startup file because it contains the entry point. */
323 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
324 }
325 else
326 {
327 /* Examination of non-executable.o files. Short-circuit this stuff. */
328 objfile->ei.entry_point = INVALID_ENTRY_POINT;
329 }
330 objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
331 objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
332 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
333 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
334 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
335 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
336 }
337
338 /* Get current entry point address. */
339
340 CORE_ADDR
341 entry_point_address (void)
342 {
343 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
344 }
345
346 /* Remember the lowest-addressed loadable section we've seen.
347 This function is called via bfd_map_over_sections.
348
349 In case of equal vmas, the section with the largest size becomes the
350 lowest-addressed loadable section.
351
352 If the vmas and sizes are equal, the last section is considered the
353 lowest-addressed loadable section. */
354
355 void
356 find_lowest_section (bfd *abfd, asection *sect, void *obj)
357 {
358 asection **lowest = (asection **) obj;
359
360 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
361 return;
362 if (!*lowest)
363 *lowest = sect; /* First loadable section */
364 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
365 *lowest = sect; /* A lower loadable section */
366 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
367 && (bfd_section_size (abfd, (*lowest))
368 <= bfd_section_size (abfd, sect)))
369 *lowest = sect;
370 }
371
372 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
373
374 struct section_addr_info *
375 alloc_section_addr_info (size_t num_sections)
376 {
377 struct section_addr_info *sap;
378 size_t size;
379
380 size = (sizeof (struct section_addr_info)
381 + sizeof (struct other_sections) * (num_sections - 1));
382 sap = (struct section_addr_info *) xmalloc (size);
383 memset (sap, 0, size);
384 sap->num_sections = num_sections;
385
386 return sap;
387 }
388
389 /* Build (allocate and populate) a section_addr_info struct from
390 an existing section table. */
391
392 extern struct section_addr_info *
393 build_section_addr_info_from_section_table (const struct section_table *start,
394 const struct section_table *end)
395 {
396 struct section_addr_info *sap;
397 const struct section_table *stp;
398 int oidx;
399
400 sap = alloc_section_addr_info (end - start);
401
402 for (stp = start, oidx = 0; stp != end; stp++)
403 {
404 if (bfd_get_section_flags (stp->bfd,
405 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
406 && oidx < end - start)
407 {
408 sap->other[oidx].addr = stp->addr;
409 sap->other[oidx].name
410 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
411 sap->other[oidx].sectindex = stp->the_bfd_section->index;
412 oidx++;
413 }
414 }
415
416 return sap;
417 }
418
419
420 /* Free all memory allocated by build_section_addr_info_from_section_table. */
421
422 extern void
423 free_section_addr_info (struct section_addr_info *sap)
424 {
425 int idx;
426
427 for (idx = 0; idx < sap->num_sections; idx++)
428 if (sap->other[idx].name)
429 xfree (sap->other[idx].name);
430 xfree (sap);
431 }
432
433
434 /* Initialize OBJFILE's sect_index_* members. */
435 static void
436 init_objfile_sect_indices (struct objfile *objfile)
437 {
438 asection *sect;
439 int i;
440
441 sect = bfd_get_section_by_name (objfile->obfd, ".text");
442 if (sect)
443 objfile->sect_index_text = sect->index;
444
445 sect = bfd_get_section_by_name (objfile->obfd, ".data");
446 if (sect)
447 objfile->sect_index_data = sect->index;
448
449 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
450 if (sect)
451 objfile->sect_index_bss = sect->index;
452
453 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
454 if (sect)
455 objfile->sect_index_rodata = sect->index;
456
457 /* This is where things get really weird... We MUST have valid
458 indices for the various sect_index_* members or gdb will abort.
459 So if for example, there is no ".text" section, we have to
460 accomodate that. Except when explicitly adding symbol files at
461 some address, section_offsets contains nothing but zeros, so it
462 doesn't matter which slot in section_offsets the individual
463 sect_index_* members index into. So if they are all zero, it is
464 safe to just point all the currently uninitialized indices to the
465 first slot. */
466
467 for (i = 0; i < objfile->num_sections; i++)
468 {
469 if (ANOFFSET (objfile->section_offsets, i) != 0)
470 {
471 break;
472 }
473 }
474 if (i == objfile->num_sections)
475 {
476 if (objfile->sect_index_text == -1)
477 objfile->sect_index_text = 0;
478 if (objfile->sect_index_data == -1)
479 objfile->sect_index_data = 0;
480 if (objfile->sect_index_bss == -1)
481 objfile->sect_index_bss = 0;
482 if (objfile->sect_index_rodata == -1)
483 objfile->sect_index_rodata = 0;
484 }
485 }
486
487
488 /* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
494 void
495 default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
497 {
498 int i;
499
500 objfile->num_sections = bfd_count_sections (objfile->obfd);
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack,
503 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
504 memset (objfile->section_offsets, 0,
505 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525 init_objfile_sect_indices (objfile);
526 }
527
528
529 /* Process a symbol file, as either the main file or as a dynamically
530 loaded file.
531
532 OBJFILE is where the symbols are to be read from.
533
534 ADDRS is the list of section load addresses. If the user has given
535 an 'add-symbol-file' command, then this is the list of offsets and
536 addresses he or she provided as arguments to the command; or, if
537 we're handling a shared library, these are the actual addresses the
538 sections are loaded at, according to the inferior's dynamic linker
539 (as gleaned by GDB's shared library code). We convert each address
540 into an offset from the section VMA's as it appears in the object
541 file, and then call the file's sym_offsets function to convert this
542 into a format-specific offset table --- a `struct section_offsets'.
543 If ADDRS is non-zero, OFFSETS must be zero.
544
545 OFFSETS is a table of section offsets already in the right
546 format-specific representation. NUM_OFFSETS is the number of
547 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
548 assume this is the proper table the call to sym_offsets described
549 above would produce. Instead of calling sym_offsets, we just dump
550 it right into objfile->section_offsets. (When we're re-reading
551 symbols from an objfile, we don't have the original load address
552 list any more; all we have is the section offset table.) If
553 OFFSETS is non-zero, ADDRS must be zero.
554
555 MAINLINE is nonzero if this is the main symbol file, or zero if
556 it's an extra symbol file such as dynamically loaded code.
557
558 VERBO is nonzero if the caller has printed a verbose message about
559 the symbol reading (and complaints can be more terse about it). */
560
561 void
562 syms_from_objfile (struct objfile *objfile,
563 struct section_addr_info *addrs,
564 struct section_offsets *offsets,
565 int num_offsets,
566 int mainline,
567 int verbo)
568 {
569 struct section_addr_info *local_addr = NULL;
570 struct cleanup *old_chain;
571
572 gdb_assert (! (addrs && offsets));
573
574 init_entry_point_info (objfile);
575 find_sym_fns (objfile);
576
577 if (objfile->sf == NULL)
578 return; /* No symbols. */
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
582 old_chain = make_cleanup_free_objfile (objfile);
583
584 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
585 list. We now establish the convention that an addr of zero means
586 no load address was specified. */
587 if (! addrs && ! offsets)
588 {
589 local_addr
590 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
591 make_cleanup (xfree, local_addr);
592 addrs = local_addr;
593 }
594
595 /* Now either addrs or offsets is non-zero. */
596
597 if (mainline)
598 {
599 /* We will modify the main symbol table, make sure that all its users
600 will be cleaned up if an error occurs during symbol reading. */
601 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
602
603 /* Since no error yet, throw away the old symbol table. */
604
605 if (symfile_objfile != NULL)
606 {
607 free_objfile (symfile_objfile);
608 symfile_objfile = NULL;
609 }
610
611 /* Currently we keep symbols from the add-symbol-file command.
612 If the user wants to get rid of them, they should do "symbol-file"
613 without arguments first. Not sure this is the best behavior
614 (PR 2207). */
615
616 (*objfile->sf->sym_new_init) (objfile);
617 }
618
619 /* Convert addr into an offset rather than an absolute address.
620 We find the lowest address of a loaded segment in the objfile,
621 and assume that <addr> is where that got loaded.
622
623 We no longer warn if the lowest section is not a text segment (as
624 happens for the PA64 port. */
625 if (!mainline && addrs && addrs->other[0].name)
626 {
627 asection *lower_sect;
628 asection *sect;
629 CORE_ADDR lower_offset;
630 int i;
631
632 /* Find lowest loadable section to be used as starting point for
633 continguous sections. FIXME!! won't work without call to find
634 .text first, but this assumes text is lowest section. */
635 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
636 if (lower_sect == NULL)
637 bfd_map_over_sections (objfile->obfd, find_lowest_section,
638 &lower_sect);
639 if (lower_sect == NULL)
640 warning ("no loadable sections found in added symbol-file %s",
641 objfile->name);
642 else
643 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
644 warning ("Lowest section in %s is %s at %s",
645 objfile->name,
646 bfd_section_name (objfile->obfd, lower_sect),
647 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
648 if (lower_sect != NULL)
649 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
650 else
651 lower_offset = 0;
652
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
665 if (addrs->other[i].addr != 0)
666 {
667 sect = bfd_get_section_by_name (objfile->obfd,
668 addrs->other[i].name);
669 if (sect)
670 {
671 addrs->other[i].addr
672 -= bfd_section_vma (objfile->obfd, sect);
673 lower_offset = addrs->other[i].addr;
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->index ;
676 }
677 else
678 {
679 warning ("section %s not found in %s",
680 addrs->other[i].name,
681 objfile->name);
682 addrs->other[i].addr = 0;
683 }
684 }
685 else
686 addrs->other[i].addr = lower_offset;
687 }
688 }
689
690 /* Initialize symbol reading routines for this objfile, allow complaints to
691 appear for this new file, and record how verbose to be, then do the
692 initial symbol reading for this file. */
693
694 (*objfile->sf->sym_init) (objfile);
695 clear_complaints (&symfile_complaints, 1, verbo);
696
697 if (addrs)
698 (*objfile->sf->sym_offsets) (objfile, addrs);
699 else
700 {
701 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
702
703 /* Just copy in the offset table directly as given to us. */
704 objfile->num_sections = num_offsets;
705 objfile->section_offsets
706 = ((struct section_offsets *)
707 obstack_alloc (&objfile->psymbol_obstack, size));
708 memcpy (objfile->section_offsets, offsets, size);
709
710 init_objfile_sect_indices (objfile);
711 }
712
713 #ifndef DEPRECATED_IBM6000_TARGET
714 /* This is a SVR4/SunOS specific hack, I think. In any event, it
715 screws RS/6000. sym_offsets should be doing this sort of thing,
716 because it knows the mapping between bfd sections and
717 section_offsets. */
718 /* This is a hack. As far as I can tell, section offsets are not
719 target dependent. They are all set to addr with a couple of
720 exceptions. The exceptions are sysvr4 shared libraries, whose
721 offsets are kept in solib structures anyway and rs6000 xcoff
722 which handles shared libraries in a completely unique way.
723
724 Section offsets are built similarly, except that they are built
725 by adding addr in all cases because there is no clear mapping
726 from section_offsets into actual sections. Note that solib.c
727 has a different algorithm for finding section offsets.
728
729 These should probably all be collapsed into some target
730 independent form of shared library support. FIXME. */
731
732 if (addrs)
733 {
734 struct obj_section *s;
735
736 /* Map section offsets in "addr" back to the object's
737 sections by comparing the section names with bfd's
738 section names. Then adjust the section address by
739 the offset. */ /* for gdb/13815 */
740
741 ALL_OBJFILE_OSECTIONS (objfile, s)
742 {
743 CORE_ADDR s_addr = 0;
744 int i;
745
746 for (i = 0;
747 !s_addr && i < addrs->num_sections && addrs->other[i].name;
748 i++)
749 if (strcmp (bfd_section_name (s->objfile->obfd,
750 s->the_bfd_section),
751 addrs->other[i].name) == 0)
752 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
753
754 s->addr -= s->offset;
755 s->addr += s_addr;
756 s->endaddr -= s->offset;
757 s->endaddr += s_addr;
758 s->offset += s_addr;
759 }
760 }
761 #endif /* not DEPRECATED_IBM6000_TARGET */
762
763 (*objfile->sf->sym_read) (objfile, mainline);
764
765 /* Don't allow char * to have a typename (else would get caddr_t).
766 Ditto void *. FIXME: Check whether this is now done by all the
767 symbol readers themselves (many of them now do), and if so remove
768 it from here. */
769
770 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
771 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
772
773 /* Mark the objfile has having had initial symbol read attempted. Note
774 that this does not mean we found any symbols... */
775
776 objfile->flags |= OBJF_SYMS;
777
778 /* Discard cleanups as symbol reading was successful. */
779
780 discard_cleanups (old_chain);
781 }
782
783 /* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
786
787 void
788 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
789 {
790
791 /* If this is the main symbol file we have to clean up all users of the
792 old main symbol file. Otherwise it is sufficient to fixup all the
793 breakpoints that may have been redefined by this symbol file. */
794 if (mainline)
795 {
796 /* OK, make it the "real" symbol file. */
797 symfile_objfile = objfile;
798
799 clear_symtab_users ();
800 }
801 else
802 {
803 breakpoint_re_set ();
804 }
805
806 /* We're done reading the symbol file; finish off complaints. */
807 clear_complaints (&symfile_complaints, 0, verbo);
808 }
809
810 /* Process a symbol file, as either the main file or as a dynamically
811 loaded file.
812
813 NAME is the file name (which will be tilde-expanded and made
814 absolute herein) (but we don't free or modify NAME itself).
815
816 FROM_TTY says how verbose to be.
817
818 MAINLINE specifies whether this is the main symbol file, or whether
819 it's an extra symbol file such as dynamically loaded code.
820
821 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
822 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
823 non-zero.
824
825 Upon success, returns a pointer to the objfile that was added.
826 Upon failure, jumps back to command level (never returns). */
827 static struct objfile *
828 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
829 struct section_addr_info *addrs,
830 struct section_offsets *offsets,
831 int num_offsets,
832 int mainline, int flags)
833 {
834 struct objfile *objfile;
835 struct partial_symtab *psymtab;
836 char *debugfile;
837 bfd *abfd;
838 struct section_addr_info *orig_addrs;
839 struct cleanup *my_cleanups;
840
841 /* Open a bfd for the file, and give user a chance to burp if we'd be
842 interactively wiping out any existing symbols. */
843
844 abfd = symfile_bfd_open (name);
845
846 if ((have_full_symbols () || have_partial_symbols ())
847 && mainline
848 && from_tty
849 && !query ("Load new symbol table from \"%s\"? ", name))
850 error ("Not confirmed.");
851
852 objfile = allocate_objfile (abfd, flags);
853
854 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
855 my_cleanups = make_cleanup (xfree, orig_addrs);
856 if (addrs)
857 {
858 int i;
859 orig_addrs->num_sections = addrs->num_sections;
860 for (i = 0; i < addrs->num_sections; i++)
861 orig_addrs->other[i] = addrs->other[i];
862 }
863
864 /* If the objfile uses a mapped symbol file, and we have a psymtab for
865 it, then skip reading any symbols at this time. */
866
867 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
868 {
869 /* We mapped in an existing symbol table file that already has had
870 initial symbol reading performed, so we can skip that part. Notify
871 the user that instead of reading the symbols, they have been mapped.
872 */
873 if (from_tty || info_verbose)
874 {
875 printf_unfiltered ("Mapped symbols for %s...", name);
876 wrap_here ("");
877 gdb_flush (gdb_stdout);
878 }
879 init_entry_point_info (objfile);
880 find_sym_fns (objfile);
881 }
882 else
883 {
884 /* We either created a new mapped symbol table, mapped an existing
885 symbol table file which has not had initial symbol reading
886 performed, or need to read an unmapped symbol table. */
887 if (from_tty || info_verbose)
888 {
889 if (pre_add_symbol_hook)
890 pre_add_symbol_hook (name);
891 else
892 {
893 printf_unfiltered ("Reading symbols from %s...", name);
894 wrap_here ("");
895 gdb_flush (gdb_stdout);
896 }
897 }
898 syms_from_objfile (objfile, addrs, offsets, num_offsets,
899 mainline, from_tty);
900 }
901
902 /* We now have at least a partial symbol table. Check to see if the
903 user requested that all symbols be read on initial access via either
904 the gdb startup command line or on a per symbol file basis. Expand
905 all partial symbol tables for this objfile if so. */
906
907 if ((flags & OBJF_READNOW) || readnow_symbol_files)
908 {
909 if (from_tty || info_verbose)
910 {
911 printf_unfiltered ("expanding to full symbols...");
912 wrap_here ("");
913 gdb_flush (gdb_stdout);
914 }
915
916 for (psymtab = objfile->psymtabs;
917 psymtab != NULL;
918 psymtab = psymtab->next)
919 {
920 psymtab_to_symtab (psymtab);
921 }
922 }
923
924 debugfile = find_separate_debug_file (objfile);
925 if (debugfile)
926 {
927 if (addrs != NULL)
928 {
929 objfile->separate_debug_objfile
930 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
931 }
932 else
933 {
934 objfile->separate_debug_objfile
935 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
936 }
937 objfile->separate_debug_objfile->separate_debug_objfile_backlink
938 = objfile;
939
940 /* Put the separate debug object before the normal one, this is so that
941 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
942 put_objfile_before (objfile->separate_debug_objfile, objfile);
943
944 xfree (debugfile);
945 }
946
947 if (!have_partial_symbols () && !have_full_symbols ())
948 {
949 wrap_here ("");
950 printf_unfiltered ("(no debugging symbols found)...");
951 wrap_here ("");
952 }
953
954 if (from_tty || info_verbose)
955 {
956 if (post_add_symbol_hook)
957 post_add_symbol_hook ();
958 else
959 {
960 printf_unfiltered ("done.\n");
961 }
962 }
963
964 /* We print some messages regardless of whether 'from_tty ||
965 info_verbose' is true, so make sure they go out at the right
966 time. */
967 gdb_flush (gdb_stdout);
968
969 do_cleanups (my_cleanups);
970
971 if (objfile->sf == NULL)
972 return objfile; /* No symbols. */
973
974 new_symfile_objfile (objfile, mainline, from_tty);
975
976 if (target_new_objfile_hook)
977 target_new_objfile_hook (objfile);
978
979 return (objfile);
980 }
981
982
983 /* Process a symbol file, as either the main file or as a dynamically
984 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
985 for details. */
986 struct objfile *
987 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
988 int mainline, int flags)
989 {
990 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
991 mainline, flags);
992 }
993
994
995 /* Call symbol_file_add() with default values and update whatever is
996 affected by the loading of a new main().
997 Used when the file is supplied in the gdb command line
998 and by some targets with special loading requirements.
999 The auxiliary function, symbol_file_add_main_1(), has the flags
1000 argument for the switches that can only be specified in the symbol_file
1001 command itself. */
1002
1003 void
1004 symbol_file_add_main (char *args, int from_tty)
1005 {
1006 symbol_file_add_main_1 (args, from_tty, 0);
1007 }
1008
1009 static void
1010 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1011 {
1012 symbol_file_add (args, from_tty, NULL, 1, flags);
1013
1014 #ifdef HPUXHPPA
1015 RESET_HP_UX_GLOBALS ();
1016 #endif
1017
1018 /* Getting new symbols may change our opinion about
1019 what is frameless. */
1020 reinit_frame_cache ();
1021
1022 set_initial_language ();
1023 }
1024
1025 void
1026 symbol_file_clear (int from_tty)
1027 {
1028 if ((have_full_symbols () || have_partial_symbols ())
1029 && from_tty
1030 && !query ("Discard symbol table from `%s'? ",
1031 symfile_objfile->name))
1032 error ("Not confirmed.");
1033 free_all_objfiles ();
1034
1035 /* solib descriptors may have handles to objfiles. Since their
1036 storage has just been released, we'd better wipe the solib
1037 descriptors as well.
1038 */
1039 #if defined(SOLIB_RESTART)
1040 SOLIB_RESTART ();
1041 #endif
1042
1043 symfile_objfile = NULL;
1044 if (from_tty)
1045 printf_unfiltered ("No symbol file now.\n");
1046 #ifdef HPUXHPPA
1047 RESET_HP_UX_GLOBALS ();
1048 #endif
1049 }
1050
1051 static char *
1052 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1053 {
1054 asection *sect;
1055 bfd_size_type debuglink_size;
1056 unsigned long crc32;
1057 char *contents;
1058 int crc_offset;
1059 unsigned char *p;
1060
1061 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1062
1063 if (sect == NULL)
1064 return NULL;
1065
1066 debuglink_size = bfd_section_size (objfile->obfd, sect);
1067
1068 contents = xmalloc (debuglink_size);
1069 bfd_get_section_contents (objfile->obfd, sect, contents,
1070 (file_ptr)0, (bfd_size_type)debuglink_size);
1071
1072 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1073 crc_offset = strlen (contents) + 1;
1074 crc_offset = (crc_offset + 3) & ~3;
1075
1076 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1077
1078 *crc32_out = crc32;
1079 return contents;
1080 }
1081
1082 static int
1083 separate_debug_file_exists (const char *name, unsigned long crc)
1084 {
1085 unsigned long file_crc = 0;
1086 int fd;
1087 char buffer[8*1024];
1088 int count;
1089
1090 fd = open (name, O_RDONLY | O_BINARY);
1091 if (fd < 0)
1092 return 0;
1093
1094 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1095 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1096
1097 close (fd);
1098
1099 return crc == file_crc;
1100 }
1101
1102 static char *debug_file_directory = NULL;
1103
1104 #if ! defined (DEBUG_SUBDIRECTORY)
1105 #define DEBUG_SUBDIRECTORY ".debug"
1106 #endif
1107
1108 static char *
1109 find_separate_debug_file (struct objfile *objfile)
1110 {
1111 asection *sect;
1112 char *basename;
1113 char *dir;
1114 char *debugfile;
1115 char *name_copy;
1116 bfd_size_type debuglink_size;
1117 unsigned long crc32;
1118 int i;
1119
1120 basename = get_debug_link_info (objfile, &crc32);
1121
1122 if (basename == NULL)
1123 return NULL;
1124
1125 dir = xstrdup (objfile->name);
1126
1127 /* Strip off the final filename part, leaving the directory name,
1128 followed by a slash. Objfile names should always be absolute and
1129 tilde-expanded, so there should always be a slash in there
1130 somewhere. */
1131 for (i = strlen(dir) - 1; i >= 0; i--)
1132 {
1133 if (IS_DIR_SEPARATOR (dir[i]))
1134 break;
1135 }
1136 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1137 dir[i+1] = '\0';
1138
1139 debugfile = alloca (strlen (debug_file_directory) + 1
1140 + strlen (dir)
1141 + strlen (DEBUG_SUBDIRECTORY)
1142 + strlen ("/")
1143 + strlen (basename)
1144 + 1);
1145
1146 /* First try in the same directory as the original file. */
1147 strcpy (debugfile, dir);
1148 strcat (debugfile, basename);
1149
1150 if (separate_debug_file_exists (debugfile, crc32))
1151 {
1152 xfree (basename);
1153 xfree (dir);
1154 return xstrdup (debugfile);
1155 }
1156
1157 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1158 strcpy (debugfile, dir);
1159 strcat (debugfile, DEBUG_SUBDIRECTORY);
1160 strcat (debugfile, "/");
1161 strcat (debugfile, basename);
1162
1163 if (separate_debug_file_exists (debugfile, crc32))
1164 {
1165 xfree (basename);
1166 xfree (dir);
1167 return xstrdup (debugfile);
1168 }
1169
1170 /* Then try in the global debugfile directory. */
1171 strcpy (debugfile, debug_file_directory);
1172 strcat (debugfile, "/");
1173 strcat (debugfile, dir);
1174 strcat (debugfile, basename);
1175
1176 if (separate_debug_file_exists (debugfile, crc32))
1177 {
1178 xfree (basename);
1179 xfree (dir);
1180 return xstrdup (debugfile);
1181 }
1182
1183 xfree (basename);
1184 xfree (dir);
1185 return NULL;
1186 }
1187
1188
1189 /* This is the symbol-file command. Read the file, analyze its
1190 symbols, and add a struct symtab to a symtab list. The syntax of
1191 the command is rather bizarre--(1) buildargv implements various
1192 quoting conventions which are undocumented and have little or
1193 nothing in common with the way things are quoted (or not quoted)
1194 elsewhere in GDB, (2) options are used, which are not generally
1195 used in GDB (perhaps "set mapped on", "set readnow on" would be
1196 better), (3) the order of options matters, which is contrary to GNU
1197 conventions (because it is confusing and inconvenient). */
1198 /* Note: ezannoni 2000-04-17. This function used to have support for
1199 rombug (see remote-os9k.c). It consisted of a call to target_link()
1200 (target.c) to get the address of the text segment from the target,
1201 and pass that to symbol_file_add(). This is no longer supported. */
1202
1203 void
1204 symbol_file_command (char *args, int from_tty)
1205 {
1206 char **argv;
1207 char *name = NULL;
1208 struct cleanup *cleanups;
1209 int flags = OBJF_USERLOADED;
1210
1211 dont_repeat ();
1212
1213 if (args == NULL)
1214 {
1215 symbol_file_clear (from_tty);
1216 }
1217 else
1218 {
1219 if ((argv = buildargv (args)) == NULL)
1220 {
1221 nomem (0);
1222 }
1223 cleanups = make_cleanup_freeargv (argv);
1224 while (*argv != NULL)
1225 {
1226 if (STREQ (*argv, "-mapped"))
1227 flags |= OBJF_MAPPED;
1228 else
1229 if (STREQ (*argv, "-readnow"))
1230 flags |= OBJF_READNOW;
1231 else
1232 if (**argv == '-')
1233 error ("unknown option `%s'", *argv);
1234 else
1235 {
1236 name = *argv;
1237
1238 symbol_file_add_main_1 (name, from_tty, flags);
1239 }
1240 argv++;
1241 }
1242
1243 if (name == NULL)
1244 {
1245 error ("no symbol file name was specified");
1246 }
1247 do_cleanups (cleanups);
1248 }
1249 }
1250
1251 /* Set the initial language.
1252
1253 A better solution would be to record the language in the psymtab when reading
1254 partial symbols, and then use it (if known) to set the language. This would
1255 be a win for formats that encode the language in an easily discoverable place,
1256 such as DWARF. For stabs, we can jump through hoops looking for specially
1257 named symbols or try to intuit the language from the specific type of stabs
1258 we find, but we can't do that until later when we read in full symbols.
1259 FIXME. */
1260
1261 static void
1262 set_initial_language (void)
1263 {
1264 struct partial_symtab *pst;
1265 enum language lang = language_unknown;
1266
1267 pst = find_main_psymtab ();
1268 if (pst != NULL)
1269 {
1270 if (pst->filename != NULL)
1271 {
1272 lang = deduce_language_from_filename (pst->filename);
1273 }
1274 if (lang == language_unknown)
1275 {
1276 /* Make C the default language */
1277 lang = language_c;
1278 }
1279 set_language (lang);
1280 expected_language = current_language; /* Don't warn the user */
1281 }
1282 }
1283
1284 /* Open file specified by NAME and hand it off to BFD for preliminary
1285 analysis. Result is a newly initialized bfd *, which includes a newly
1286 malloc'd` copy of NAME (tilde-expanded and made absolute).
1287 In case of trouble, error() is called. */
1288
1289 bfd *
1290 symfile_bfd_open (char *name)
1291 {
1292 bfd *sym_bfd;
1293 int desc;
1294 char *absolute_name;
1295
1296
1297
1298 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1299
1300 /* Look down path for it, allocate 2nd new malloc'd copy. */
1301 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1302 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1303 if (desc < 0)
1304 {
1305 char *exename = alloca (strlen (name) + 5);
1306 strcat (strcpy (exename, name), ".exe");
1307 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1308 0, &absolute_name);
1309 }
1310 #endif
1311 if (desc < 0)
1312 {
1313 make_cleanup (xfree, name);
1314 perror_with_name (name);
1315 }
1316 xfree (name); /* Free 1st new malloc'd copy */
1317 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1318 /* It'll be freed in free_objfile(). */
1319
1320 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1321 if (!sym_bfd)
1322 {
1323 close (desc);
1324 make_cleanup (xfree, name);
1325 error ("\"%s\": can't open to read symbols: %s.", name,
1326 bfd_errmsg (bfd_get_error ()));
1327 }
1328 sym_bfd->cacheable = 1;
1329
1330 if (!bfd_check_format (sym_bfd, bfd_object))
1331 {
1332 /* FIXME: should be checking for errors from bfd_close (for one thing,
1333 on error it does not free all the storage associated with the
1334 bfd). */
1335 bfd_close (sym_bfd); /* This also closes desc */
1336 make_cleanup (xfree, name);
1337 error ("\"%s\": can't read symbols: %s.", name,
1338 bfd_errmsg (bfd_get_error ()));
1339 }
1340 return (sym_bfd);
1341 }
1342
1343 /* Return the section index for the given section name. Return -1 if
1344 the section was not found. */
1345 int
1346 get_section_index (struct objfile *objfile, char *section_name)
1347 {
1348 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1349 if (sect)
1350 return sect->index;
1351 else
1352 return -1;
1353 }
1354
1355 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1356 startup by the _initialize routine in each object file format reader,
1357 to register information about each format the the reader is prepared
1358 to handle. */
1359
1360 void
1361 add_symtab_fns (struct sym_fns *sf)
1362 {
1363 sf->next = symtab_fns;
1364 symtab_fns = sf;
1365 }
1366
1367
1368 /* Initialize to read symbols from the symbol file sym_bfd. It either
1369 returns or calls error(). The result is an initialized struct sym_fns
1370 in the objfile structure, that contains cached information about the
1371 symbol file. */
1372
1373 static void
1374 find_sym_fns (struct objfile *objfile)
1375 {
1376 struct sym_fns *sf;
1377 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1378 char *our_target = bfd_get_target (objfile->obfd);
1379
1380 if (our_flavour == bfd_target_srec_flavour
1381 || our_flavour == bfd_target_ihex_flavour
1382 || our_flavour == bfd_target_tekhex_flavour)
1383 return; /* No symbols. */
1384
1385 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1386 {
1387 if (our_flavour == sf->sym_flavour)
1388 {
1389 objfile->sf = sf;
1390 return;
1391 }
1392 }
1393 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1394 bfd_get_target (objfile->obfd));
1395 }
1396 \f
1397 /* This function runs the load command of our current target. */
1398
1399 static void
1400 load_command (char *arg, int from_tty)
1401 {
1402 if (arg == NULL)
1403 arg = get_exec_file (1);
1404 target_load (arg, from_tty);
1405
1406 /* After re-loading the executable, we don't really know which
1407 overlays are mapped any more. */
1408 overlay_cache_invalid = 1;
1409 }
1410
1411 /* This version of "load" should be usable for any target. Currently
1412 it is just used for remote targets, not inftarg.c or core files,
1413 on the theory that only in that case is it useful.
1414
1415 Avoiding xmodem and the like seems like a win (a) because we don't have
1416 to worry about finding it, and (b) On VMS, fork() is very slow and so
1417 we don't want to run a subprocess. On the other hand, I'm not sure how
1418 performance compares. */
1419
1420 static int download_write_size = 512;
1421 static int validate_download = 0;
1422
1423 /* Callback service function for generic_load (bfd_map_over_sections). */
1424
1425 static void
1426 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1427 {
1428 bfd_size_type *sum = data;
1429
1430 *sum += bfd_get_section_size_before_reloc (asec);
1431 }
1432
1433 /* Opaque data for load_section_callback. */
1434 struct load_section_data {
1435 unsigned long load_offset;
1436 unsigned long write_count;
1437 unsigned long data_count;
1438 bfd_size_type total_size;
1439 };
1440
1441 /* Callback service function for generic_load (bfd_map_over_sections). */
1442
1443 static void
1444 load_section_callback (bfd *abfd, asection *asec, void *data)
1445 {
1446 struct load_section_data *args = data;
1447
1448 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1449 {
1450 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1451 if (size > 0)
1452 {
1453 char *buffer;
1454 struct cleanup *old_chain;
1455 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1456 bfd_size_type block_size;
1457 int err;
1458 const char *sect_name = bfd_get_section_name (abfd, asec);
1459 bfd_size_type sent;
1460
1461 if (download_write_size > 0 && size > download_write_size)
1462 block_size = download_write_size;
1463 else
1464 block_size = size;
1465
1466 buffer = xmalloc (size);
1467 old_chain = make_cleanup (xfree, buffer);
1468
1469 /* Is this really necessary? I guess it gives the user something
1470 to look at during a long download. */
1471 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1472 sect_name, paddr_nz (size), paddr_nz (lma));
1473
1474 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1475
1476 sent = 0;
1477 do
1478 {
1479 int len;
1480 bfd_size_type this_transfer = size - sent;
1481
1482 if (this_transfer >= block_size)
1483 this_transfer = block_size;
1484 len = target_write_memory_partial (lma, buffer,
1485 this_transfer, &err);
1486 if (err)
1487 break;
1488 if (validate_download)
1489 {
1490 /* Broken memories and broken monitors manifest
1491 themselves here when bring new computers to
1492 life. This doubles already slow downloads. */
1493 /* NOTE: cagney/1999-10-18: A more efficient
1494 implementation might add a verify_memory()
1495 method to the target vector and then use
1496 that. remote.c could implement that method
1497 using the ``qCRC'' packet. */
1498 char *check = xmalloc (len);
1499 struct cleanup *verify_cleanups =
1500 make_cleanup (xfree, check);
1501
1502 if (target_read_memory (lma, check, len) != 0)
1503 error ("Download verify read failed at 0x%s",
1504 paddr (lma));
1505 if (memcmp (buffer, check, len) != 0)
1506 error ("Download verify compare failed at 0x%s",
1507 paddr (lma));
1508 do_cleanups (verify_cleanups);
1509 }
1510 args->data_count += len;
1511 lma += len;
1512 buffer += len;
1513 args->write_count += 1;
1514 sent += len;
1515 if (quit_flag
1516 || (ui_load_progress_hook != NULL
1517 && ui_load_progress_hook (sect_name, sent)))
1518 error ("Canceled the download");
1519
1520 if (show_load_progress != NULL)
1521 show_load_progress (sect_name, sent, size,
1522 args->data_count, args->total_size);
1523 }
1524 while (sent < size);
1525
1526 if (err != 0)
1527 error ("Memory access error while loading section %s.", sect_name);
1528
1529 do_cleanups (old_chain);
1530 }
1531 }
1532 }
1533
1534 void
1535 generic_load (char *args, int from_tty)
1536 {
1537 asection *s;
1538 bfd *loadfile_bfd;
1539 time_t start_time, end_time; /* Start and end times of download */
1540 char *filename;
1541 struct cleanup *old_cleanups;
1542 char *offptr;
1543 struct load_section_data cbdata;
1544 CORE_ADDR entry;
1545
1546 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1547 cbdata.write_count = 0; /* Number of writes needed. */
1548 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1549 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1550
1551 /* Parse the input argument - the user can specify a load offset as
1552 a second argument. */
1553 filename = xmalloc (strlen (args) + 1);
1554 old_cleanups = make_cleanup (xfree, filename);
1555 strcpy (filename, args);
1556 offptr = strchr (filename, ' ');
1557 if (offptr != NULL)
1558 {
1559 char *endptr;
1560
1561 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1562 if (offptr == endptr)
1563 error ("Invalid download offset:%s\n", offptr);
1564 *offptr = '\0';
1565 }
1566 else
1567 cbdata.load_offset = 0;
1568
1569 /* Open the file for loading. */
1570 loadfile_bfd = bfd_openr (filename, gnutarget);
1571 if (loadfile_bfd == NULL)
1572 {
1573 perror_with_name (filename);
1574 return;
1575 }
1576
1577 /* FIXME: should be checking for errors from bfd_close (for one thing,
1578 on error it does not free all the storage associated with the
1579 bfd). */
1580 make_cleanup_bfd_close (loadfile_bfd);
1581
1582 if (!bfd_check_format (loadfile_bfd, bfd_object))
1583 {
1584 error ("\"%s\" is not an object file: %s", filename,
1585 bfd_errmsg (bfd_get_error ()));
1586 }
1587
1588 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1589 (void *) &cbdata.total_size);
1590
1591 start_time = time (NULL);
1592
1593 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1594
1595 end_time = time (NULL);
1596
1597 entry = bfd_get_start_address (loadfile_bfd);
1598 ui_out_text (uiout, "Start address ");
1599 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1600 ui_out_text (uiout, ", load size ");
1601 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1602 ui_out_text (uiout, "\n");
1603 /* We were doing this in remote-mips.c, I suspect it is right
1604 for other targets too. */
1605 write_pc (entry);
1606
1607 /* FIXME: are we supposed to call symbol_file_add or not? According
1608 to a comment from remote-mips.c (where a call to symbol_file_add
1609 was commented out), making the call confuses GDB if more than one
1610 file is loaded in. Some targets do (e.g., remote-vx.c) but
1611 others don't (or didn't - perhaphs they have all been deleted). */
1612
1613 print_transfer_performance (gdb_stdout, cbdata.data_count,
1614 cbdata.write_count, end_time - start_time);
1615
1616 do_cleanups (old_cleanups);
1617 }
1618
1619 /* Report how fast the transfer went. */
1620
1621 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1622 replaced by print_transfer_performance (with a very different
1623 function signature). */
1624
1625 void
1626 report_transfer_performance (unsigned long data_count, time_t start_time,
1627 time_t end_time)
1628 {
1629 print_transfer_performance (gdb_stdout, data_count,
1630 end_time - start_time, 0);
1631 }
1632
1633 void
1634 print_transfer_performance (struct ui_file *stream,
1635 unsigned long data_count,
1636 unsigned long write_count,
1637 unsigned long time_count)
1638 {
1639 ui_out_text (uiout, "Transfer rate: ");
1640 if (time_count > 0)
1641 {
1642 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1643 (data_count * 8) / time_count);
1644 ui_out_text (uiout, " bits/sec");
1645 }
1646 else
1647 {
1648 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1649 ui_out_text (uiout, " bits in <1 sec");
1650 }
1651 if (write_count > 0)
1652 {
1653 ui_out_text (uiout, ", ");
1654 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1655 ui_out_text (uiout, " bytes/write");
1656 }
1657 ui_out_text (uiout, ".\n");
1658 }
1659
1660 /* This function allows the addition of incrementally linked object files.
1661 It does not modify any state in the target, only in the debugger. */
1662 /* Note: ezannoni 2000-04-13 This function/command used to have a
1663 special case syntax for the rombug target (Rombug is the boot
1664 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1665 rombug case, the user doesn't need to supply a text address,
1666 instead a call to target_link() (in target.c) would supply the
1667 value to use. We are now discontinuing this type of ad hoc syntax. */
1668
1669 static void
1670 add_symbol_file_command (char *args, int from_tty)
1671 {
1672 char *filename = NULL;
1673 int flags = OBJF_USERLOADED;
1674 char *arg;
1675 int expecting_option = 0;
1676 int section_index = 0;
1677 int argcnt = 0;
1678 int sec_num = 0;
1679 int i;
1680 int expecting_sec_name = 0;
1681 int expecting_sec_addr = 0;
1682
1683 struct sect_opt
1684 {
1685 char *name;
1686 char *value;
1687 };
1688
1689 struct section_addr_info *section_addrs;
1690 struct sect_opt *sect_opts = NULL;
1691 size_t num_sect_opts = 0;
1692 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1693
1694 num_sect_opts = 16;
1695 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1696 * sizeof (struct sect_opt));
1697
1698 dont_repeat ();
1699
1700 if (args == NULL)
1701 error ("add-symbol-file takes a file name and an address");
1702
1703 /* Make a copy of the string that we can safely write into. */
1704 args = xstrdup (args);
1705
1706 while (*args != '\000')
1707 {
1708 /* Any leading spaces? */
1709 while (isspace (*args))
1710 args++;
1711
1712 /* Point arg to the beginning of the argument. */
1713 arg = args;
1714
1715 /* Move args pointer over the argument. */
1716 while ((*args != '\000') && !isspace (*args))
1717 args++;
1718
1719 /* If there are more arguments, terminate arg and
1720 proceed past it. */
1721 if (*args != '\000')
1722 *args++ = '\000';
1723
1724 /* Now process the argument. */
1725 if (argcnt == 0)
1726 {
1727 /* The first argument is the file name. */
1728 filename = tilde_expand (arg);
1729 make_cleanup (xfree, filename);
1730 }
1731 else
1732 if (argcnt == 1)
1733 {
1734 /* The second argument is always the text address at which
1735 to load the program. */
1736 sect_opts[section_index].name = ".text";
1737 sect_opts[section_index].value = arg;
1738 if (++section_index > num_sect_opts)
1739 {
1740 num_sect_opts *= 2;
1741 sect_opts = ((struct sect_opt *)
1742 xrealloc (sect_opts,
1743 num_sect_opts
1744 * sizeof (struct sect_opt)));
1745 }
1746 }
1747 else
1748 {
1749 /* It's an option (starting with '-') or it's an argument
1750 to an option */
1751
1752 if (*arg == '-')
1753 {
1754 if (strcmp (arg, "-mapped") == 0)
1755 flags |= OBJF_MAPPED;
1756 else
1757 if (strcmp (arg, "-readnow") == 0)
1758 flags |= OBJF_READNOW;
1759 else
1760 if (strcmp (arg, "-s") == 0)
1761 {
1762 expecting_sec_name = 1;
1763 expecting_sec_addr = 1;
1764 }
1765 }
1766 else
1767 {
1768 if (expecting_sec_name)
1769 {
1770 sect_opts[section_index].name = arg;
1771 expecting_sec_name = 0;
1772 }
1773 else
1774 if (expecting_sec_addr)
1775 {
1776 sect_opts[section_index].value = arg;
1777 expecting_sec_addr = 0;
1778 if (++section_index > num_sect_opts)
1779 {
1780 num_sect_opts *= 2;
1781 sect_opts = ((struct sect_opt *)
1782 xrealloc (sect_opts,
1783 num_sect_opts
1784 * sizeof (struct sect_opt)));
1785 }
1786 }
1787 else
1788 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1789 }
1790 }
1791 argcnt++;
1792 }
1793
1794 /* Print the prompt for the query below. And save the arguments into
1795 a sect_addr_info structure to be passed around to other
1796 functions. We have to split this up into separate print
1797 statements because local_hex_string returns a local static
1798 string. */
1799
1800 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1801 section_addrs = alloc_section_addr_info (section_index);
1802 make_cleanup (xfree, section_addrs);
1803 for (i = 0; i < section_index; i++)
1804 {
1805 CORE_ADDR addr;
1806 char *val = sect_opts[i].value;
1807 char *sec = sect_opts[i].name;
1808
1809 addr = parse_and_eval_address (val);
1810
1811 /* Here we store the section offsets in the order they were
1812 entered on the command line. */
1813 section_addrs->other[sec_num].name = sec;
1814 section_addrs->other[sec_num].addr = addr;
1815 printf_unfiltered ("\t%s_addr = %s\n",
1816 sec,
1817 local_hex_string ((unsigned long)addr));
1818 sec_num++;
1819
1820 /* The object's sections are initialized when a
1821 call is made to build_objfile_section_table (objfile).
1822 This happens in reread_symbols.
1823 At this point, we don't know what file type this is,
1824 so we can't determine what section names are valid. */
1825 }
1826
1827 if (from_tty && (!query ("%s", "")))
1828 error ("Not confirmed.");
1829
1830 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1831
1832 /* Getting new symbols may change our opinion about what is
1833 frameless. */
1834 reinit_frame_cache ();
1835 do_cleanups (my_cleanups);
1836 }
1837 \f
1838 static void
1839 add_shared_symbol_files_command (char *args, int from_tty)
1840 {
1841 #ifdef ADD_SHARED_SYMBOL_FILES
1842 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1843 #else
1844 error ("This command is not available in this configuration of GDB.");
1845 #endif
1846 }
1847 \f
1848 /* Re-read symbols if a symbol-file has changed. */
1849 void
1850 reread_symbols (void)
1851 {
1852 struct objfile *objfile;
1853 long new_modtime;
1854 int reread_one = 0;
1855 struct stat new_statbuf;
1856 int res;
1857
1858 /* With the addition of shared libraries, this should be modified,
1859 the load time should be saved in the partial symbol tables, since
1860 different tables may come from different source files. FIXME.
1861 This routine should then walk down each partial symbol table
1862 and see if the symbol table that it originates from has been changed */
1863
1864 for (objfile = object_files; objfile; objfile = objfile->next)
1865 {
1866 if (objfile->obfd)
1867 {
1868 #ifdef DEPRECATED_IBM6000_TARGET
1869 /* If this object is from a shared library, then you should
1870 stat on the library name, not member name. */
1871
1872 if (objfile->obfd->my_archive)
1873 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1874 else
1875 #endif
1876 res = stat (objfile->name, &new_statbuf);
1877 if (res != 0)
1878 {
1879 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1880 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1881 objfile->name);
1882 continue;
1883 }
1884 new_modtime = new_statbuf.st_mtime;
1885 if (new_modtime != objfile->mtime)
1886 {
1887 struct cleanup *old_cleanups;
1888 struct section_offsets *offsets;
1889 int num_offsets;
1890 char *obfd_filename;
1891
1892 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1893 objfile->name);
1894
1895 /* There are various functions like symbol_file_add,
1896 symfile_bfd_open, syms_from_objfile, etc., which might
1897 appear to do what we want. But they have various other
1898 effects which we *don't* want. So we just do stuff
1899 ourselves. We don't worry about mapped files (for one thing,
1900 any mapped file will be out of date). */
1901
1902 /* If we get an error, blow away this objfile (not sure if
1903 that is the correct response for things like shared
1904 libraries). */
1905 old_cleanups = make_cleanup_free_objfile (objfile);
1906 /* We need to do this whenever any symbols go away. */
1907 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1908
1909 /* Clean up any state BFD has sitting around. We don't need
1910 to close the descriptor but BFD lacks a way of closing the
1911 BFD without closing the descriptor. */
1912 obfd_filename = bfd_get_filename (objfile->obfd);
1913 if (!bfd_close (objfile->obfd))
1914 error ("Can't close BFD for %s: %s", objfile->name,
1915 bfd_errmsg (bfd_get_error ()));
1916 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1917 if (objfile->obfd == NULL)
1918 error ("Can't open %s to read symbols.", objfile->name);
1919 /* bfd_openr sets cacheable to true, which is what we want. */
1920 if (!bfd_check_format (objfile->obfd, bfd_object))
1921 error ("Can't read symbols from %s: %s.", objfile->name,
1922 bfd_errmsg (bfd_get_error ()));
1923
1924 /* Save the offsets, we will nuke them with the rest of the
1925 psymbol_obstack. */
1926 num_offsets = objfile->num_sections;
1927 offsets = ((struct section_offsets *)
1928 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1929 memcpy (offsets, objfile->section_offsets,
1930 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1931
1932 /* Nuke all the state that we will re-read. Much of the following
1933 code which sets things to NULL really is necessary to tell
1934 other parts of GDB that there is nothing currently there. */
1935
1936 /* FIXME: Do we have to free a whole linked list, or is this
1937 enough? */
1938 if (objfile->global_psymbols.list)
1939 xmfree (objfile->md, objfile->global_psymbols.list);
1940 memset (&objfile->global_psymbols, 0,
1941 sizeof (objfile->global_psymbols));
1942 if (objfile->static_psymbols.list)
1943 xmfree (objfile->md, objfile->static_psymbols.list);
1944 memset (&objfile->static_psymbols, 0,
1945 sizeof (objfile->static_psymbols));
1946
1947 /* Free the obstacks for non-reusable objfiles */
1948 bcache_xfree (objfile->psymbol_cache);
1949 objfile->psymbol_cache = bcache_xmalloc ();
1950 bcache_xfree (objfile->macro_cache);
1951 objfile->macro_cache = bcache_xmalloc ();
1952 if (objfile->demangled_names_hash != NULL)
1953 {
1954 htab_delete (objfile->demangled_names_hash);
1955 objfile->demangled_names_hash = NULL;
1956 }
1957 obstack_free (&objfile->psymbol_obstack, 0);
1958 obstack_free (&objfile->symbol_obstack, 0);
1959 obstack_free (&objfile->type_obstack, 0);
1960 objfile->sections = NULL;
1961 objfile->symtabs = NULL;
1962 objfile->psymtabs = NULL;
1963 objfile->free_psymtabs = NULL;
1964 objfile->msymbols = NULL;
1965 objfile->sym_private = NULL;
1966 objfile->minimal_symbol_count = 0;
1967 memset (&objfile->msymbol_hash, 0,
1968 sizeof (objfile->msymbol_hash));
1969 memset (&objfile->msymbol_demangled_hash, 0,
1970 sizeof (objfile->msymbol_demangled_hash));
1971 objfile->fundamental_types = NULL;
1972 if (objfile->sf != NULL)
1973 {
1974 (*objfile->sf->sym_finish) (objfile);
1975 }
1976
1977 /* We never make this a mapped file. */
1978 objfile->md = NULL;
1979 /* obstack_specify_allocation also initializes the obstack so
1980 it is empty. */
1981 objfile->psymbol_cache = bcache_xmalloc ();
1982 objfile->macro_cache = bcache_xmalloc ();
1983 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1984 xmalloc, xfree);
1985 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1986 xmalloc, xfree);
1987 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1988 xmalloc, xfree);
1989 if (build_objfile_section_table (objfile))
1990 {
1991 error ("Can't find the file sections in `%s': %s",
1992 objfile->name, bfd_errmsg (bfd_get_error ()));
1993 }
1994 terminate_minimal_symbol_table (objfile);
1995
1996 /* We use the same section offsets as from last time. I'm not
1997 sure whether that is always correct for shared libraries. */
1998 objfile->section_offsets = (struct section_offsets *)
1999 obstack_alloc (&objfile->psymbol_obstack,
2000 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2001 memcpy (objfile->section_offsets, offsets,
2002 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2003 objfile->num_sections = num_offsets;
2004
2005 /* What the hell is sym_new_init for, anyway? The concept of
2006 distinguishing between the main file and additional files
2007 in this way seems rather dubious. */
2008 if (objfile == symfile_objfile)
2009 {
2010 (*objfile->sf->sym_new_init) (objfile);
2011 #ifdef HPUXHPPA
2012 RESET_HP_UX_GLOBALS ();
2013 #endif
2014 }
2015
2016 (*objfile->sf->sym_init) (objfile);
2017 clear_complaints (&symfile_complaints, 1, 1);
2018 /* The "mainline" parameter is a hideous hack; I think leaving it
2019 zero is OK since dbxread.c also does what it needs to do if
2020 objfile->global_psymbols.size is 0. */
2021 (*objfile->sf->sym_read) (objfile, 0);
2022 if (!have_partial_symbols () && !have_full_symbols ())
2023 {
2024 wrap_here ("");
2025 printf_unfiltered ("(no debugging symbols found)\n");
2026 wrap_here ("");
2027 }
2028 objfile->flags |= OBJF_SYMS;
2029
2030 /* We're done reading the symbol file; finish off complaints. */
2031 clear_complaints (&symfile_complaints, 0, 1);
2032
2033 /* Getting new symbols may change our opinion about what is
2034 frameless. */
2035
2036 reinit_frame_cache ();
2037
2038 /* Discard cleanups as symbol reading was successful. */
2039 discard_cleanups (old_cleanups);
2040
2041 /* If the mtime has changed between the time we set new_modtime
2042 and now, we *want* this to be out of date, so don't call stat
2043 again now. */
2044 objfile->mtime = new_modtime;
2045 reread_one = 1;
2046 reread_separate_symbols (objfile);
2047 }
2048 }
2049 }
2050
2051 if (reread_one)
2052 clear_symtab_users ();
2053 }
2054
2055
2056 /* Handle separate debug info for OBJFILE, which has just been
2057 re-read:
2058 - If we had separate debug info before, but now we don't, get rid
2059 of the separated objfile.
2060 - If we didn't have separated debug info before, but now we do,
2061 read in the new separated debug info file.
2062 - If the debug link points to a different file, toss the old one
2063 and read the new one.
2064 This function does *not* handle the case where objfile is still
2065 using the same separate debug info file, but that file's timestamp
2066 has changed. That case should be handled by the loop in
2067 reread_symbols already. */
2068 static void
2069 reread_separate_symbols (struct objfile *objfile)
2070 {
2071 char *debug_file;
2072 unsigned long crc32;
2073
2074 /* Does the updated objfile's debug info live in a
2075 separate file? */
2076 debug_file = find_separate_debug_file (objfile);
2077
2078 if (objfile->separate_debug_objfile)
2079 {
2080 /* There are two cases where we need to get rid of
2081 the old separated debug info objfile:
2082 - if the new primary objfile doesn't have
2083 separated debug info, or
2084 - if the new primary objfile has separate debug
2085 info, but it's under a different filename.
2086
2087 If the old and new objfiles both have separate
2088 debug info, under the same filename, then we're
2089 okay --- if the separated file's contents have
2090 changed, we will have caught that when we
2091 visited it in this function's outermost
2092 loop. */
2093 if (! debug_file
2094 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2095 free_objfile (objfile->separate_debug_objfile);
2096 }
2097
2098 /* If the new objfile has separate debug info, and we
2099 haven't loaded it already, do so now. */
2100 if (debug_file
2101 && ! objfile->separate_debug_objfile)
2102 {
2103 /* Use the same section offset table as objfile itself.
2104 Preserve the flags from objfile that make sense. */
2105 objfile->separate_debug_objfile
2106 = (symbol_file_add_with_addrs_or_offsets
2107 (debug_file,
2108 info_verbose, /* from_tty: Don't override the default. */
2109 0, /* No addr table. */
2110 objfile->section_offsets, objfile->num_sections,
2111 0, /* Not mainline. See comments about this above. */
2112 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2113 | OBJF_SHARED | OBJF_READNOW
2114 | OBJF_USERLOADED)));
2115 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2116 = objfile;
2117 }
2118 }
2119
2120
2121 \f
2122
2123
2124 typedef struct
2125 {
2126 char *ext;
2127 enum language lang;
2128 }
2129 filename_language;
2130
2131 static filename_language *filename_language_table;
2132 static int fl_table_size, fl_table_next;
2133
2134 static void
2135 add_filename_language (char *ext, enum language lang)
2136 {
2137 if (fl_table_next >= fl_table_size)
2138 {
2139 fl_table_size += 10;
2140 filename_language_table =
2141 xrealloc (filename_language_table,
2142 fl_table_size * sizeof (*filename_language_table));
2143 }
2144
2145 filename_language_table[fl_table_next].ext = xstrdup (ext);
2146 filename_language_table[fl_table_next].lang = lang;
2147 fl_table_next++;
2148 }
2149
2150 static char *ext_args;
2151
2152 static void
2153 set_ext_lang_command (char *args, int from_tty)
2154 {
2155 int i;
2156 char *cp = ext_args;
2157 enum language lang;
2158
2159 /* First arg is filename extension, starting with '.' */
2160 if (*cp != '.')
2161 error ("'%s': Filename extension must begin with '.'", ext_args);
2162
2163 /* Find end of first arg. */
2164 while (*cp && !isspace (*cp))
2165 cp++;
2166
2167 if (*cp == '\0')
2168 error ("'%s': two arguments required -- filename extension and language",
2169 ext_args);
2170
2171 /* Null-terminate first arg */
2172 *cp++ = '\0';
2173
2174 /* Find beginning of second arg, which should be a source language. */
2175 while (*cp && isspace (*cp))
2176 cp++;
2177
2178 if (*cp == '\0')
2179 error ("'%s': two arguments required -- filename extension and language",
2180 ext_args);
2181
2182 /* Lookup the language from among those we know. */
2183 lang = language_enum (cp);
2184
2185 /* Now lookup the filename extension: do we already know it? */
2186 for (i = 0; i < fl_table_next; i++)
2187 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2188 break;
2189
2190 if (i >= fl_table_next)
2191 {
2192 /* new file extension */
2193 add_filename_language (ext_args, lang);
2194 }
2195 else
2196 {
2197 /* redefining a previously known filename extension */
2198
2199 /* if (from_tty) */
2200 /* query ("Really make files of type %s '%s'?", */
2201 /* ext_args, language_str (lang)); */
2202
2203 xfree (filename_language_table[i].ext);
2204 filename_language_table[i].ext = xstrdup (ext_args);
2205 filename_language_table[i].lang = lang;
2206 }
2207 }
2208
2209 static void
2210 info_ext_lang_command (char *args, int from_tty)
2211 {
2212 int i;
2213
2214 printf_filtered ("Filename extensions and the languages they represent:");
2215 printf_filtered ("\n\n");
2216 for (i = 0; i < fl_table_next; i++)
2217 printf_filtered ("\t%s\t- %s\n",
2218 filename_language_table[i].ext,
2219 language_str (filename_language_table[i].lang));
2220 }
2221
2222 static void
2223 init_filename_language_table (void)
2224 {
2225 if (fl_table_size == 0) /* protect against repetition */
2226 {
2227 fl_table_size = 20;
2228 fl_table_next = 0;
2229 filename_language_table =
2230 xmalloc (fl_table_size * sizeof (*filename_language_table));
2231 add_filename_language (".c", language_c);
2232 add_filename_language (".C", language_cplus);
2233 add_filename_language (".cc", language_cplus);
2234 add_filename_language (".cp", language_cplus);
2235 add_filename_language (".cpp", language_cplus);
2236 add_filename_language (".cxx", language_cplus);
2237 add_filename_language (".c++", language_cplus);
2238 add_filename_language (".java", language_java);
2239 add_filename_language (".class", language_java);
2240 add_filename_language (".m", language_objc);
2241 add_filename_language (".f", language_fortran);
2242 add_filename_language (".F", language_fortran);
2243 add_filename_language (".s", language_asm);
2244 add_filename_language (".S", language_asm);
2245 add_filename_language (".pas", language_pascal);
2246 add_filename_language (".p", language_pascal);
2247 add_filename_language (".pp", language_pascal);
2248 }
2249 }
2250
2251 enum language
2252 deduce_language_from_filename (char *filename)
2253 {
2254 int i;
2255 char *cp;
2256
2257 if (filename != NULL)
2258 if ((cp = strrchr (filename, '.')) != NULL)
2259 for (i = 0; i < fl_table_next; i++)
2260 if (strcmp (cp, filename_language_table[i].ext) == 0)
2261 return filename_language_table[i].lang;
2262
2263 return language_unknown;
2264 }
2265 \f
2266 /* allocate_symtab:
2267
2268 Allocate and partly initialize a new symbol table. Return a pointer
2269 to it. error() if no space.
2270
2271 Caller must set these fields:
2272 LINETABLE(symtab)
2273 symtab->blockvector
2274 symtab->dirname
2275 symtab->free_code
2276 symtab->free_ptr
2277 possibly free_named_symtabs (symtab->filename);
2278 */
2279
2280 struct symtab *
2281 allocate_symtab (char *filename, struct objfile *objfile)
2282 {
2283 struct symtab *symtab;
2284
2285 symtab = (struct symtab *)
2286 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2287 memset (symtab, 0, sizeof (*symtab));
2288 symtab->filename = obsavestring (filename, strlen (filename),
2289 &objfile->symbol_obstack);
2290 symtab->fullname = NULL;
2291 symtab->language = deduce_language_from_filename (filename);
2292 symtab->debugformat = obsavestring ("unknown", 7,
2293 &objfile->symbol_obstack);
2294
2295 /* Hook it to the objfile it comes from */
2296
2297 symtab->objfile = objfile;
2298 symtab->next = objfile->symtabs;
2299 objfile->symtabs = symtab;
2300
2301 /* FIXME: This should go away. It is only defined for the Z8000,
2302 and the Z8000 definition of this macro doesn't have anything to
2303 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2304 here for convenience. */
2305 #ifdef INIT_EXTRA_SYMTAB_INFO
2306 INIT_EXTRA_SYMTAB_INFO (symtab);
2307 #endif
2308
2309 return (symtab);
2310 }
2311
2312 struct partial_symtab *
2313 allocate_psymtab (char *filename, struct objfile *objfile)
2314 {
2315 struct partial_symtab *psymtab;
2316
2317 if (objfile->free_psymtabs)
2318 {
2319 psymtab = objfile->free_psymtabs;
2320 objfile->free_psymtabs = psymtab->next;
2321 }
2322 else
2323 psymtab = (struct partial_symtab *)
2324 obstack_alloc (&objfile->psymbol_obstack,
2325 sizeof (struct partial_symtab));
2326
2327 memset (psymtab, 0, sizeof (struct partial_symtab));
2328 psymtab->filename = obsavestring (filename, strlen (filename),
2329 &objfile->psymbol_obstack);
2330 psymtab->symtab = NULL;
2331
2332 /* Prepend it to the psymtab list for the objfile it belongs to.
2333 Psymtabs are searched in most recent inserted -> least recent
2334 inserted order. */
2335
2336 psymtab->objfile = objfile;
2337 psymtab->next = objfile->psymtabs;
2338 objfile->psymtabs = psymtab;
2339 #if 0
2340 {
2341 struct partial_symtab **prev_pst;
2342 psymtab->objfile = objfile;
2343 psymtab->next = NULL;
2344 prev_pst = &(objfile->psymtabs);
2345 while ((*prev_pst) != NULL)
2346 prev_pst = &((*prev_pst)->next);
2347 (*prev_pst) = psymtab;
2348 }
2349 #endif
2350
2351 return (psymtab);
2352 }
2353
2354 void
2355 discard_psymtab (struct partial_symtab *pst)
2356 {
2357 struct partial_symtab **prev_pst;
2358
2359 /* From dbxread.c:
2360 Empty psymtabs happen as a result of header files which don't
2361 have any symbols in them. There can be a lot of them. But this
2362 check is wrong, in that a psymtab with N_SLINE entries but
2363 nothing else is not empty, but we don't realize that. Fixing
2364 that without slowing things down might be tricky. */
2365
2366 /* First, snip it out of the psymtab chain */
2367
2368 prev_pst = &(pst->objfile->psymtabs);
2369 while ((*prev_pst) != pst)
2370 prev_pst = &((*prev_pst)->next);
2371 (*prev_pst) = pst->next;
2372
2373 /* Next, put it on a free list for recycling */
2374
2375 pst->next = pst->objfile->free_psymtabs;
2376 pst->objfile->free_psymtabs = pst;
2377 }
2378 \f
2379
2380 /* Reset all data structures in gdb which may contain references to symbol
2381 table data. */
2382
2383 void
2384 clear_symtab_users (void)
2385 {
2386 /* Someday, we should do better than this, by only blowing away
2387 the things that really need to be blown. */
2388 clear_value_history ();
2389 clear_displays ();
2390 clear_internalvars ();
2391 breakpoint_re_set ();
2392 set_default_breakpoint (0, 0, 0, 0);
2393 clear_current_source_symtab_and_line ();
2394 clear_pc_function_cache ();
2395 if (target_new_objfile_hook)
2396 target_new_objfile_hook (NULL);
2397 }
2398
2399 static void
2400 clear_symtab_users_cleanup (void *ignore)
2401 {
2402 clear_symtab_users ();
2403 }
2404
2405 /* clear_symtab_users_once:
2406
2407 This function is run after symbol reading, or from a cleanup.
2408 If an old symbol table was obsoleted, the old symbol table
2409 has been blown away, but the other GDB data structures that may
2410 reference it have not yet been cleared or re-directed. (The old
2411 symtab was zapped, and the cleanup queued, in free_named_symtab()
2412 below.)
2413
2414 This function can be queued N times as a cleanup, or called
2415 directly; it will do all the work the first time, and then will be a
2416 no-op until the next time it is queued. This works by bumping a
2417 counter at queueing time. Much later when the cleanup is run, or at
2418 the end of symbol processing (in case the cleanup is discarded), if
2419 the queued count is greater than the "done-count", we do the work
2420 and set the done-count to the queued count. If the queued count is
2421 less than or equal to the done-count, we just ignore the call. This
2422 is needed because reading a single .o file will often replace many
2423 symtabs (one per .h file, for example), and we don't want to reset
2424 the breakpoints N times in the user's face.
2425
2426 The reason we both queue a cleanup, and call it directly after symbol
2427 reading, is because the cleanup protects us in case of errors, but is
2428 discarded if symbol reading is successful. */
2429
2430 #if 0
2431 /* FIXME: As free_named_symtabs is currently a big noop this function
2432 is no longer needed. */
2433 static void clear_symtab_users_once (void);
2434
2435 static int clear_symtab_users_queued;
2436 static int clear_symtab_users_done;
2437
2438 static void
2439 clear_symtab_users_once (void)
2440 {
2441 /* Enforce once-per-`do_cleanups'-semantics */
2442 if (clear_symtab_users_queued <= clear_symtab_users_done)
2443 return;
2444 clear_symtab_users_done = clear_symtab_users_queued;
2445
2446 clear_symtab_users ();
2447 }
2448 #endif
2449
2450 /* Delete the specified psymtab, and any others that reference it. */
2451
2452 static void
2453 cashier_psymtab (struct partial_symtab *pst)
2454 {
2455 struct partial_symtab *ps, *pprev = NULL;
2456 int i;
2457
2458 /* Find its previous psymtab in the chain */
2459 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2460 {
2461 if (ps == pst)
2462 break;
2463 pprev = ps;
2464 }
2465
2466 if (ps)
2467 {
2468 /* Unhook it from the chain. */
2469 if (ps == pst->objfile->psymtabs)
2470 pst->objfile->psymtabs = ps->next;
2471 else
2472 pprev->next = ps->next;
2473
2474 /* FIXME, we can't conveniently deallocate the entries in the
2475 partial_symbol lists (global_psymbols/static_psymbols) that
2476 this psymtab points to. These just take up space until all
2477 the psymtabs are reclaimed. Ditto the dependencies list and
2478 filename, which are all in the psymbol_obstack. */
2479
2480 /* We need to cashier any psymtab that has this one as a dependency... */
2481 again:
2482 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2483 {
2484 for (i = 0; i < ps->number_of_dependencies; i++)
2485 {
2486 if (ps->dependencies[i] == pst)
2487 {
2488 cashier_psymtab (ps);
2489 goto again; /* Must restart, chain has been munged. */
2490 }
2491 }
2492 }
2493 }
2494 }
2495
2496 /* If a symtab or psymtab for filename NAME is found, free it along
2497 with any dependent breakpoints, displays, etc.
2498 Used when loading new versions of object modules with the "add-file"
2499 command. This is only called on the top-level symtab or psymtab's name;
2500 it is not called for subsidiary files such as .h files.
2501
2502 Return value is 1 if we blew away the environment, 0 if not.
2503 FIXME. The return value appears to never be used.
2504
2505 FIXME. I think this is not the best way to do this. We should
2506 work on being gentler to the environment while still cleaning up
2507 all stray pointers into the freed symtab. */
2508
2509 int
2510 free_named_symtabs (char *name)
2511 {
2512 #if 0
2513 /* FIXME: With the new method of each objfile having it's own
2514 psymtab list, this function needs serious rethinking. In particular,
2515 why was it ever necessary to toss psymtabs with specific compilation
2516 unit filenames, as opposed to all psymtabs from a particular symbol
2517 file? -- fnf
2518 Well, the answer is that some systems permit reloading of particular
2519 compilation units. We want to blow away any old info about these
2520 compilation units, regardless of which objfiles they arrived in. --gnu. */
2521
2522 struct symtab *s;
2523 struct symtab *prev;
2524 struct partial_symtab *ps;
2525 struct blockvector *bv;
2526 int blewit = 0;
2527
2528 /* We only wack things if the symbol-reload switch is set. */
2529 if (!symbol_reloading)
2530 return 0;
2531
2532 /* Some symbol formats have trouble providing file names... */
2533 if (name == 0 || *name == '\0')
2534 return 0;
2535
2536 /* Look for a psymtab with the specified name. */
2537
2538 again2:
2539 for (ps = partial_symtab_list; ps; ps = ps->next)
2540 {
2541 if (STREQ (name, ps->filename))
2542 {
2543 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2544 goto again2; /* Must restart, chain has been munged */
2545 }
2546 }
2547
2548 /* Look for a symtab with the specified name. */
2549
2550 for (s = symtab_list; s; s = s->next)
2551 {
2552 if (STREQ (name, s->filename))
2553 break;
2554 prev = s;
2555 }
2556
2557 if (s)
2558 {
2559 if (s == symtab_list)
2560 symtab_list = s->next;
2561 else
2562 prev->next = s->next;
2563
2564 /* For now, queue a delete for all breakpoints, displays, etc., whether
2565 or not they depend on the symtab being freed. This should be
2566 changed so that only those data structures affected are deleted. */
2567
2568 /* But don't delete anything if the symtab is empty.
2569 This test is necessary due to a bug in "dbxread.c" that
2570 causes empty symtabs to be created for N_SO symbols that
2571 contain the pathname of the object file. (This problem
2572 has been fixed in GDB 3.9x). */
2573
2574 bv = BLOCKVECTOR (s);
2575 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2576 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2577 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2578 {
2579 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2580 name);
2581 clear_symtab_users_queued++;
2582 make_cleanup (clear_symtab_users_once, 0);
2583 blewit = 1;
2584 }
2585 else
2586 {
2587 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2588 name);
2589 }
2590
2591 free_symtab (s);
2592 }
2593 else
2594 {
2595 /* It is still possible that some breakpoints will be affected
2596 even though no symtab was found, since the file might have
2597 been compiled without debugging, and hence not be associated
2598 with a symtab. In order to handle this correctly, we would need
2599 to keep a list of text address ranges for undebuggable files.
2600 For now, we do nothing, since this is a fairly obscure case. */
2601 ;
2602 }
2603
2604 /* FIXME, what about the minimal symbol table? */
2605 return blewit;
2606 #else
2607 return (0);
2608 #endif
2609 }
2610 \f
2611 /* Allocate and partially fill a partial symtab. It will be
2612 completely filled at the end of the symbol list.
2613
2614 FILENAME is the name of the symbol-file we are reading from. */
2615
2616 struct partial_symtab *
2617 start_psymtab_common (struct objfile *objfile,
2618 struct section_offsets *section_offsets, char *filename,
2619 CORE_ADDR textlow, struct partial_symbol **global_syms,
2620 struct partial_symbol **static_syms)
2621 {
2622 struct partial_symtab *psymtab;
2623
2624 psymtab = allocate_psymtab (filename, objfile);
2625 psymtab->section_offsets = section_offsets;
2626 psymtab->textlow = textlow;
2627 psymtab->texthigh = psymtab->textlow; /* default */
2628 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2629 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2630 return (psymtab);
2631 }
2632 \f
2633 /* Add a symbol with a long value to a psymtab.
2634 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2635 Return the partial symbol that has been added. */
2636
2637 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2638 symbol is so that callers can get access to the symbol's demangled
2639 name, which they don't have any cheap way to determine otherwise.
2640 (Currenly, dwarf2read.c is the only file who uses that information,
2641 though it's possible that other readers might in the future.)
2642 Elena wasn't thrilled about that, and I don't blame her, but we
2643 couldn't come up with a better way to get that information. If
2644 it's needed in other situations, we could consider breaking up
2645 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2646 cache. */
2647
2648 const struct partial_symbol *
2649 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2650 enum address_class class,
2651 struct psymbol_allocation_list *list, long val, /* Value as a long */
2652 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2653 enum language language, struct objfile *objfile)
2654 {
2655 struct partial_symbol *psym;
2656 char *buf = alloca (namelength + 1);
2657 /* psymbol is static so that there will be no uninitialized gaps in the
2658 structure which might contain random data, causing cache misses in
2659 bcache. */
2660 static struct partial_symbol psymbol;
2661
2662 /* Create local copy of the partial symbol */
2663 memcpy (buf, name, namelength);
2664 buf[namelength] = '\0';
2665 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2666 if (val != 0)
2667 {
2668 SYMBOL_VALUE (&psymbol) = val;
2669 }
2670 else
2671 {
2672 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2673 }
2674 SYMBOL_SECTION (&psymbol) = 0;
2675 SYMBOL_LANGUAGE (&psymbol) = language;
2676 PSYMBOL_DOMAIN (&psymbol) = domain;
2677 PSYMBOL_CLASS (&psymbol) = class;
2678
2679 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2680
2681 /* Stash the partial symbol away in the cache */
2682 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2683
2684 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2685 if (list->next >= list->list + list->size)
2686 {
2687 extend_psymbol_list (list, objfile);
2688 }
2689 *list->next++ = psym;
2690 OBJSTAT (objfile, n_psyms++);
2691
2692 return psym;
2693 }
2694
2695 /* Add a symbol with a long value to a psymtab. This differs from
2696 * add_psymbol_to_list above in taking both a mangled and a demangled
2697 * name. */
2698
2699 void
2700 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2701 int dem_namelength, domain_enum domain,
2702 enum address_class class,
2703 struct psymbol_allocation_list *list, long val, /* Value as a long */
2704 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2705 enum language language,
2706 struct objfile *objfile)
2707 {
2708 struct partial_symbol *psym;
2709 char *buf = alloca (namelength + 1);
2710 /* psymbol is static so that there will be no uninitialized gaps in the
2711 structure which might contain random data, causing cache misses in
2712 bcache. */
2713 static struct partial_symbol psymbol;
2714
2715 /* Create local copy of the partial symbol */
2716
2717 memcpy (buf, name, namelength);
2718 buf[namelength] = '\0';
2719 DEPRECATED_SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2720
2721 buf = alloca (dem_namelength + 1);
2722 memcpy (buf, dem_name, dem_namelength);
2723 buf[dem_namelength] = '\0';
2724
2725 switch (language)
2726 {
2727 case language_c:
2728 case language_cplus:
2729 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2730 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2731 break;
2732 /* FIXME What should be done for the default case? Ignoring for now. */
2733 }
2734
2735 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2736 if (val != 0)
2737 {
2738 SYMBOL_VALUE (&psymbol) = val;
2739 }
2740 else
2741 {
2742 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2743 }
2744 SYMBOL_SECTION (&psymbol) = 0;
2745 SYMBOL_LANGUAGE (&psymbol) = language;
2746 PSYMBOL_DOMAIN (&psymbol) = domain;
2747 PSYMBOL_CLASS (&psymbol) = class;
2748 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2749
2750 /* Stash the partial symbol away in the cache */
2751 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2752
2753 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2754 if (list->next >= list->list + list->size)
2755 {
2756 extend_psymbol_list (list, objfile);
2757 }
2758 *list->next++ = psym;
2759 OBJSTAT (objfile, n_psyms++);
2760 }
2761
2762 /* Initialize storage for partial symbols. */
2763
2764 void
2765 init_psymbol_list (struct objfile *objfile, int total_symbols)
2766 {
2767 /* Free any previously allocated psymbol lists. */
2768
2769 if (objfile->global_psymbols.list)
2770 {
2771 xmfree (objfile->md, objfile->global_psymbols.list);
2772 }
2773 if (objfile->static_psymbols.list)
2774 {
2775 xmfree (objfile->md, objfile->static_psymbols.list);
2776 }
2777
2778 /* Current best guess is that approximately a twentieth
2779 of the total symbols (in a debugging file) are global or static
2780 oriented symbols */
2781
2782 objfile->global_psymbols.size = total_symbols / 10;
2783 objfile->static_psymbols.size = total_symbols / 10;
2784
2785 if (objfile->global_psymbols.size > 0)
2786 {
2787 objfile->global_psymbols.next =
2788 objfile->global_psymbols.list = (struct partial_symbol **)
2789 xmmalloc (objfile->md, (objfile->global_psymbols.size
2790 * sizeof (struct partial_symbol *)));
2791 }
2792 if (objfile->static_psymbols.size > 0)
2793 {
2794 objfile->static_psymbols.next =
2795 objfile->static_psymbols.list = (struct partial_symbol **)
2796 xmmalloc (objfile->md, (objfile->static_psymbols.size
2797 * sizeof (struct partial_symbol *)));
2798 }
2799 }
2800
2801 /* OVERLAYS:
2802 The following code implements an abstraction for debugging overlay sections.
2803
2804 The target model is as follows:
2805 1) The gnu linker will permit multiple sections to be mapped into the
2806 same VMA, each with its own unique LMA (or load address).
2807 2) It is assumed that some runtime mechanism exists for mapping the
2808 sections, one by one, from the load address into the VMA address.
2809 3) This code provides a mechanism for gdb to keep track of which
2810 sections should be considered to be mapped from the VMA to the LMA.
2811 This information is used for symbol lookup, and memory read/write.
2812 For instance, if a section has been mapped then its contents
2813 should be read from the VMA, otherwise from the LMA.
2814
2815 Two levels of debugger support for overlays are available. One is
2816 "manual", in which the debugger relies on the user to tell it which
2817 overlays are currently mapped. This level of support is
2818 implemented entirely in the core debugger, and the information about
2819 whether a section is mapped is kept in the objfile->obj_section table.
2820
2821 The second level of support is "automatic", and is only available if
2822 the target-specific code provides functionality to read the target's
2823 overlay mapping table, and translate its contents for the debugger
2824 (by updating the mapped state information in the obj_section tables).
2825
2826 The interface is as follows:
2827 User commands:
2828 overlay map <name> -- tell gdb to consider this section mapped
2829 overlay unmap <name> -- tell gdb to consider this section unmapped
2830 overlay list -- list the sections that GDB thinks are mapped
2831 overlay read-target -- get the target's state of what's mapped
2832 overlay off/manual/auto -- set overlay debugging state
2833 Functional interface:
2834 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2835 section, return that section.
2836 find_pc_overlay(pc): find any overlay section that contains
2837 the pc, either in its VMA or its LMA
2838 overlay_is_mapped(sect): true if overlay is marked as mapped
2839 section_is_overlay(sect): true if section's VMA != LMA
2840 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2841 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2842 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2843 overlay_mapped_address(...): map an address from section's LMA to VMA
2844 overlay_unmapped_address(...): map an address from section's VMA to LMA
2845 symbol_overlayed_address(...): Return a "current" address for symbol:
2846 either in VMA or LMA depending on whether
2847 the symbol's section is currently mapped
2848 */
2849
2850 /* Overlay debugging state: */
2851
2852 enum overlay_debugging_state overlay_debugging = ovly_off;
2853 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2854
2855 /* Target vector for refreshing overlay mapped state */
2856 static void simple_overlay_update (struct obj_section *);
2857 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2858
2859 /* Function: section_is_overlay (SECTION)
2860 Returns true if SECTION has VMA not equal to LMA, ie.
2861 SECTION is loaded at an address different from where it will "run". */
2862
2863 int
2864 section_is_overlay (asection *section)
2865 {
2866 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2867
2868 if (overlay_debugging)
2869 if (section && section->lma != 0 &&
2870 section->vma != section->lma)
2871 return 1;
2872
2873 return 0;
2874 }
2875
2876 /* Function: overlay_invalidate_all (void)
2877 Invalidate the mapped state of all overlay sections (mark it as stale). */
2878
2879 static void
2880 overlay_invalidate_all (void)
2881 {
2882 struct objfile *objfile;
2883 struct obj_section *sect;
2884
2885 ALL_OBJSECTIONS (objfile, sect)
2886 if (section_is_overlay (sect->the_bfd_section))
2887 sect->ovly_mapped = -1;
2888 }
2889
2890 /* Function: overlay_is_mapped (SECTION)
2891 Returns true if section is an overlay, and is currently mapped.
2892 Private: public access is thru function section_is_mapped.
2893
2894 Access to the ovly_mapped flag is restricted to this function, so
2895 that we can do automatic update. If the global flag
2896 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2897 overlay_invalidate_all. If the mapped state of the particular
2898 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2899
2900 static int
2901 overlay_is_mapped (struct obj_section *osect)
2902 {
2903 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2904 return 0;
2905
2906 switch (overlay_debugging)
2907 {
2908 default:
2909 case ovly_off:
2910 return 0; /* overlay debugging off */
2911 case ovly_auto: /* overlay debugging automatic */
2912 /* Unles there is a target_overlay_update function,
2913 there's really nothing useful to do here (can't really go auto) */
2914 if (target_overlay_update)
2915 {
2916 if (overlay_cache_invalid)
2917 {
2918 overlay_invalidate_all ();
2919 overlay_cache_invalid = 0;
2920 }
2921 if (osect->ovly_mapped == -1)
2922 (*target_overlay_update) (osect);
2923 }
2924 /* fall thru to manual case */
2925 case ovly_on: /* overlay debugging manual */
2926 return osect->ovly_mapped == 1;
2927 }
2928 }
2929
2930 /* Function: section_is_mapped
2931 Returns true if section is an overlay, and is currently mapped. */
2932
2933 int
2934 section_is_mapped (asection *section)
2935 {
2936 struct objfile *objfile;
2937 struct obj_section *osect;
2938
2939 if (overlay_debugging)
2940 if (section && section_is_overlay (section))
2941 ALL_OBJSECTIONS (objfile, osect)
2942 if (osect->the_bfd_section == section)
2943 return overlay_is_mapped (osect);
2944
2945 return 0;
2946 }
2947
2948 /* Function: pc_in_unmapped_range
2949 If PC falls into the lma range of SECTION, return true, else false. */
2950
2951 CORE_ADDR
2952 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2953 {
2954 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2955
2956 int size;
2957
2958 if (overlay_debugging)
2959 if (section && section_is_overlay (section))
2960 {
2961 size = bfd_get_section_size_before_reloc (section);
2962 if (section->lma <= pc && pc < section->lma + size)
2963 return 1;
2964 }
2965 return 0;
2966 }
2967
2968 /* Function: pc_in_mapped_range
2969 If PC falls into the vma range of SECTION, return true, else false. */
2970
2971 CORE_ADDR
2972 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2973 {
2974 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2975
2976 int size;
2977
2978 if (overlay_debugging)
2979 if (section && section_is_overlay (section))
2980 {
2981 size = bfd_get_section_size_before_reloc (section);
2982 if (section->vma <= pc && pc < section->vma + size)
2983 return 1;
2984 }
2985 return 0;
2986 }
2987
2988
2989 /* Return true if the mapped ranges of sections A and B overlap, false
2990 otherwise. */
2991 static int
2992 sections_overlap (asection *a, asection *b)
2993 {
2994 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2995
2996 CORE_ADDR a_start = a->vma;
2997 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2998 CORE_ADDR b_start = b->vma;
2999 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3000
3001 return (a_start < b_end && b_start < a_end);
3002 }
3003
3004 /* Function: overlay_unmapped_address (PC, SECTION)
3005 Returns the address corresponding to PC in the unmapped (load) range.
3006 May be the same as PC. */
3007
3008 CORE_ADDR
3009 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3010 {
3011 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3012
3013 if (overlay_debugging)
3014 if (section && section_is_overlay (section) &&
3015 pc_in_mapped_range (pc, section))
3016 return pc + section->lma - section->vma;
3017
3018 return pc;
3019 }
3020
3021 /* Function: overlay_mapped_address (PC, SECTION)
3022 Returns the address corresponding to PC in the mapped (runtime) range.
3023 May be the same as PC. */
3024
3025 CORE_ADDR
3026 overlay_mapped_address (CORE_ADDR pc, asection *section)
3027 {
3028 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3029
3030 if (overlay_debugging)
3031 if (section && section_is_overlay (section) &&
3032 pc_in_unmapped_range (pc, section))
3033 return pc + section->vma - section->lma;
3034
3035 return pc;
3036 }
3037
3038
3039 /* Function: symbol_overlayed_address
3040 Return one of two addresses (relative to the VMA or to the LMA),
3041 depending on whether the section is mapped or not. */
3042
3043 CORE_ADDR
3044 symbol_overlayed_address (CORE_ADDR address, asection *section)
3045 {
3046 if (overlay_debugging)
3047 {
3048 /* If the symbol has no section, just return its regular address. */
3049 if (section == 0)
3050 return address;
3051 /* If the symbol's section is not an overlay, just return its address */
3052 if (!section_is_overlay (section))
3053 return address;
3054 /* If the symbol's section is mapped, just return its address */
3055 if (section_is_mapped (section))
3056 return address;
3057 /*
3058 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3059 * then return its LOADED address rather than its vma address!!
3060 */
3061 return overlay_unmapped_address (address, section);
3062 }
3063 return address;
3064 }
3065
3066 /* Function: find_pc_overlay (PC)
3067 Return the best-match overlay section for PC:
3068 If PC matches a mapped overlay section's VMA, return that section.
3069 Else if PC matches an unmapped section's VMA, return that section.
3070 Else if PC matches an unmapped section's LMA, return that section. */
3071
3072 asection *
3073 find_pc_overlay (CORE_ADDR pc)
3074 {
3075 struct objfile *objfile;
3076 struct obj_section *osect, *best_match = NULL;
3077
3078 if (overlay_debugging)
3079 ALL_OBJSECTIONS (objfile, osect)
3080 if (section_is_overlay (osect->the_bfd_section))
3081 {
3082 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3083 {
3084 if (overlay_is_mapped (osect))
3085 return osect->the_bfd_section;
3086 else
3087 best_match = osect;
3088 }
3089 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3090 best_match = osect;
3091 }
3092 return best_match ? best_match->the_bfd_section : NULL;
3093 }
3094
3095 /* Function: find_pc_mapped_section (PC)
3096 If PC falls into the VMA address range of an overlay section that is
3097 currently marked as MAPPED, return that section. Else return NULL. */
3098
3099 asection *
3100 find_pc_mapped_section (CORE_ADDR pc)
3101 {
3102 struct objfile *objfile;
3103 struct obj_section *osect;
3104
3105 if (overlay_debugging)
3106 ALL_OBJSECTIONS (objfile, osect)
3107 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3108 overlay_is_mapped (osect))
3109 return osect->the_bfd_section;
3110
3111 return NULL;
3112 }
3113
3114 /* Function: list_overlays_command
3115 Print a list of mapped sections and their PC ranges */
3116
3117 void
3118 list_overlays_command (char *args, int from_tty)
3119 {
3120 int nmapped = 0;
3121 struct objfile *objfile;
3122 struct obj_section *osect;
3123
3124 if (overlay_debugging)
3125 ALL_OBJSECTIONS (objfile, osect)
3126 if (overlay_is_mapped (osect))
3127 {
3128 const char *name;
3129 bfd_vma lma, vma;
3130 int size;
3131
3132 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3133 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3134 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3135 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3136
3137 printf_filtered ("Section %s, loaded at ", name);
3138 print_address_numeric (lma, 1, gdb_stdout);
3139 puts_filtered (" - ");
3140 print_address_numeric (lma + size, 1, gdb_stdout);
3141 printf_filtered (", mapped at ");
3142 print_address_numeric (vma, 1, gdb_stdout);
3143 puts_filtered (" - ");
3144 print_address_numeric (vma + size, 1, gdb_stdout);
3145 puts_filtered ("\n");
3146
3147 nmapped++;
3148 }
3149 if (nmapped == 0)
3150 printf_filtered ("No sections are mapped.\n");
3151 }
3152
3153 /* Function: map_overlay_command
3154 Mark the named section as mapped (ie. residing at its VMA address). */
3155
3156 void
3157 map_overlay_command (char *args, int from_tty)
3158 {
3159 struct objfile *objfile, *objfile2;
3160 struct obj_section *sec, *sec2;
3161 asection *bfdsec;
3162
3163 if (!overlay_debugging)
3164 error ("\
3165 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3166 the 'overlay manual' command.");
3167
3168 if (args == 0 || *args == 0)
3169 error ("Argument required: name of an overlay section");
3170
3171 /* First, find a section matching the user supplied argument */
3172 ALL_OBJSECTIONS (objfile, sec)
3173 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3174 {
3175 /* Now, check to see if the section is an overlay. */
3176 bfdsec = sec->the_bfd_section;
3177 if (!section_is_overlay (bfdsec))
3178 continue; /* not an overlay section */
3179
3180 /* Mark the overlay as "mapped" */
3181 sec->ovly_mapped = 1;
3182
3183 /* Next, make a pass and unmap any sections that are
3184 overlapped by this new section: */
3185 ALL_OBJSECTIONS (objfile2, sec2)
3186 if (sec2->ovly_mapped
3187 && sec != sec2
3188 && sec->the_bfd_section != sec2->the_bfd_section
3189 && sections_overlap (sec->the_bfd_section,
3190 sec2->the_bfd_section))
3191 {
3192 if (info_verbose)
3193 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3194 bfd_section_name (objfile->obfd,
3195 sec2->the_bfd_section));
3196 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3197 }
3198 return;
3199 }
3200 error ("No overlay section called %s", args);
3201 }
3202
3203 /* Function: unmap_overlay_command
3204 Mark the overlay section as unmapped
3205 (ie. resident in its LMA address range, rather than the VMA range). */
3206
3207 void
3208 unmap_overlay_command (char *args, int from_tty)
3209 {
3210 struct objfile *objfile;
3211 struct obj_section *sec;
3212
3213 if (!overlay_debugging)
3214 error ("\
3215 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3216 the 'overlay manual' command.");
3217
3218 if (args == 0 || *args == 0)
3219 error ("Argument required: name of an overlay section");
3220
3221 /* First, find a section matching the user supplied argument */
3222 ALL_OBJSECTIONS (objfile, sec)
3223 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3224 {
3225 if (!sec->ovly_mapped)
3226 error ("Section %s is not mapped", args);
3227 sec->ovly_mapped = 0;
3228 return;
3229 }
3230 error ("No overlay section called %s", args);
3231 }
3232
3233 /* Function: overlay_auto_command
3234 A utility command to turn on overlay debugging.
3235 Possibly this should be done via a set/show command. */
3236
3237 static void
3238 overlay_auto_command (char *args, int from_tty)
3239 {
3240 overlay_debugging = ovly_auto;
3241 enable_overlay_breakpoints ();
3242 if (info_verbose)
3243 printf_unfiltered ("Automatic overlay debugging enabled.");
3244 }
3245
3246 /* Function: overlay_manual_command
3247 A utility command to turn on overlay debugging.
3248 Possibly this should be done via a set/show command. */
3249
3250 static void
3251 overlay_manual_command (char *args, int from_tty)
3252 {
3253 overlay_debugging = ovly_on;
3254 disable_overlay_breakpoints ();
3255 if (info_verbose)
3256 printf_unfiltered ("Overlay debugging enabled.");
3257 }
3258
3259 /* Function: overlay_off_command
3260 A utility command to turn on overlay debugging.
3261 Possibly this should be done via a set/show command. */
3262
3263 static void
3264 overlay_off_command (char *args, int from_tty)
3265 {
3266 overlay_debugging = ovly_off;
3267 disable_overlay_breakpoints ();
3268 if (info_verbose)
3269 printf_unfiltered ("Overlay debugging disabled.");
3270 }
3271
3272 static void
3273 overlay_load_command (char *args, int from_tty)
3274 {
3275 if (target_overlay_update)
3276 (*target_overlay_update) (NULL);
3277 else
3278 error ("This target does not know how to read its overlay state.");
3279 }
3280
3281 /* Function: overlay_command
3282 A place-holder for a mis-typed command */
3283
3284 /* Command list chain containing all defined "overlay" subcommands. */
3285 struct cmd_list_element *overlaylist;
3286
3287 static void
3288 overlay_command (char *args, int from_tty)
3289 {
3290 printf_unfiltered
3291 ("\"overlay\" must be followed by the name of an overlay command.\n");
3292 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3293 }
3294
3295
3296 /* Target Overlays for the "Simplest" overlay manager:
3297
3298 This is GDB's default target overlay layer. It works with the
3299 minimal overlay manager supplied as an example by Cygnus. The
3300 entry point is via a function pointer "target_overlay_update",
3301 so targets that use a different runtime overlay manager can
3302 substitute their own overlay_update function and take over the
3303 function pointer.
3304
3305 The overlay_update function pokes around in the target's data structures
3306 to see what overlays are mapped, and updates GDB's overlay mapping with
3307 this information.
3308
3309 In this simple implementation, the target data structures are as follows:
3310 unsigned _novlys; /# number of overlay sections #/
3311 unsigned _ovly_table[_novlys][4] = {
3312 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3313 {..., ..., ..., ...},
3314 }
3315 unsigned _novly_regions; /# number of overlay regions #/
3316 unsigned _ovly_region_table[_novly_regions][3] = {
3317 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3318 {..., ..., ...},
3319 }
3320 These functions will attempt to update GDB's mappedness state in the
3321 symbol section table, based on the target's mappedness state.
3322
3323 To do this, we keep a cached copy of the target's _ovly_table, and
3324 attempt to detect when the cached copy is invalidated. The main
3325 entry point is "simple_overlay_update(SECT), which looks up SECT in
3326 the cached table and re-reads only the entry for that section from
3327 the target (whenever possible).
3328 */
3329
3330 /* Cached, dynamically allocated copies of the target data structures: */
3331 static unsigned (*cache_ovly_table)[4] = 0;
3332 #if 0
3333 static unsigned (*cache_ovly_region_table)[3] = 0;
3334 #endif
3335 static unsigned cache_novlys = 0;
3336 #if 0
3337 static unsigned cache_novly_regions = 0;
3338 #endif
3339 static CORE_ADDR cache_ovly_table_base = 0;
3340 #if 0
3341 static CORE_ADDR cache_ovly_region_table_base = 0;
3342 #endif
3343 enum ovly_index
3344 {
3345 VMA, SIZE, LMA, MAPPED
3346 };
3347 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3348
3349 /* Throw away the cached copy of _ovly_table */
3350 static void
3351 simple_free_overlay_table (void)
3352 {
3353 if (cache_ovly_table)
3354 xfree (cache_ovly_table);
3355 cache_novlys = 0;
3356 cache_ovly_table = NULL;
3357 cache_ovly_table_base = 0;
3358 }
3359
3360 #if 0
3361 /* Throw away the cached copy of _ovly_region_table */
3362 static void
3363 simple_free_overlay_region_table (void)
3364 {
3365 if (cache_ovly_region_table)
3366 xfree (cache_ovly_region_table);
3367 cache_novly_regions = 0;
3368 cache_ovly_region_table = NULL;
3369 cache_ovly_region_table_base = 0;
3370 }
3371 #endif
3372
3373 /* Read an array of ints from the target into a local buffer.
3374 Convert to host order. int LEN is number of ints */
3375 static void
3376 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3377 {
3378 /* FIXME (alloca): Not safe if array is very large. */
3379 char *buf = alloca (len * TARGET_LONG_BYTES);
3380 int i;
3381
3382 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3383 for (i = 0; i < len; i++)
3384 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3385 TARGET_LONG_BYTES);
3386 }
3387
3388 /* Find and grab a copy of the target _ovly_table
3389 (and _novlys, which is needed for the table's size) */
3390 static int
3391 simple_read_overlay_table (void)
3392 {
3393 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3394
3395 simple_free_overlay_table ();
3396 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3397 if (! novlys_msym)
3398 {
3399 error ("Error reading inferior's overlay table: "
3400 "couldn't find `_novlys' variable\n"
3401 "in inferior. Use `overlay manual' mode.");
3402 return 0;
3403 }
3404
3405 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3406 if (! ovly_table_msym)
3407 {
3408 error ("Error reading inferior's overlay table: couldn't find "
3409 "`_ovly_table' array\n"
3410 "in inferior. Use `overlay manual' mode.");
3411 return 0;
3412 }
3413
3414 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3415 cache_ovly_table
3416 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3417 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3418 read_target_long_array (cache_ovly_table_base,
3419 (int *) cache_ovly_table,
3420 cache_novlys * 4);
3421
3422 return 1; /* SUCCESS */
3423 }
3424
3425 #if 0
3426 /* Find and grab a copy of the target _ovly_region_table
3427 (and _novly_regions, which is needed for the table's size) */
3428 static int
3429 simple_read_overlay_region_table (void)
3430 {
3431 struct minimal_symbol *msym;
3432
3433 simple_free_overlay_region_table ();
3434 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3435 if (msym != NULL)
3436 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3437 else
3438 return 0; /* failure */
3439 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3440 if (cache_ovly_region_table != NULL)
3441 {
3442 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3443 if (msym != NULL)
3444 {
3445 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3446 read_target_long_array (cache_ovly_region_table_base,
3447 (int *) cache_ovly_region_table,
3448 cache_novly_regions * 3);
3449 }
3450 else
3451 return 0; /* failure */
3452 }
3453 else
3454 return 0; /* failure */
3455 return 1; /* SUCCESS */
3456 }
3457 #endif
3458
3459 /* Function: simple_overlay_update_1
3460 A helper function for simple_overlay_update. Assuming a cached copy
3461 of _ovly_table exists, look through it to find an entry whose vma,
3462 lma and size match those of OSECT. Re-read the entry and make sure
3463 it still matches OSECT (else the table may no longer be valid).
3464 Set OSECT's mapped state to match the entry. Return: 1 for
3465 success, 0 for failure. */
3466
3467 static int
3468 simple_overlay_update_1 (struct obj_section *osect)
3469 {
3470 int i, size;
3471 bfd *obfd = osect->objfile->obfd;
3472 asection *bsect = osect->the_bfd_section;
3473
3474 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3475 for (i = 0; i < cache_novlys; i++)
3476 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3477 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3478 /* && cache_ovly_table[i][SIZE] == size */ )
3479 {
3480 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3481 (int *) cache_ovly_table[i], 4);
3482 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3483 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3484 /* && cache_ovly_table[i][SIZE] == size */ )
3485 {
3486 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3487 return 1;
3488 }
3489 else /* Warning! Warning! Target's ovly table has changed! */
3490 return 0;
3491 }
3492 return 0;
3493 }
3494
3495 /* Function: simple_overlay_update
3496 If OSECT is NULL, then update all sections' mapped state
3497 (after re-reading the entire target _ovly_table).
3498 If OSECT is non-NULL, then try to find a matching entry in the
3499 cached ovly_table and update only OSECT's mapped state.
3500 If a cached entry can't be found or the cache isn't valid, then
3501 re-read the entire cache, and go ahead and update all sections. */
3502
3503 static void
3504 simple_overlay_update (struct obj_section *osect)
3505 {
3506 struct objfile *objfile;
3507
3508 /* Were we given an osect to look up? NULL means do all of them. */
3509 if (osect)
3510 /* Have we got a cached copy of the target's overlay table? */
3511 if (cache_ovly_table != NULL)
3512 /* Does its cached location match what's currently in the symtab? */
3513 if (cache_ovly_table_base ==
3514 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3515 /* Then go ahead and try to look up this single section in the cache */
3516 if (simple_overlay_update_1 (osect))
3517 /* Found it! We're done. */
3518 return;
3519
3520 /* Cached table no good: need to read the entire table anew.
3521 Or else we want all the sections, in which case it's actually
3522 more efficient to read the whole table in one block anyway. */
3523
3524 if (! simple_read_overlay_table ())
3525 return;
3526
3527 /* Now may as well update all sections, even if only one was requested. */
3528 ALL_OBJSECTIONS (objfile, osect)
3529 if (section_is_overlay (osect->the_bfd_section))
3530 {
3531 int i, size;
3532 bfd *obfd = osect->objfile->obfd;
3533 asection *bsect = osect->the_bfd_section;
3534
3535 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3536 for (i = 0; i < cache_novlys; i++)
3537 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3538 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3539 /* && cache_ovly_table[i][SIZE] == size */ )
3540 { /* obj_section matches i'th entry in ovly_table */
3541 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3542 break; /* finished with inner for loop: break out */
3543 }
3544 }
3545 }
3546
3547 /* Set the output sections and output offsets for section SECTP in
3548 ABFD. The relocation code in BFD will read these offsets, so we
3549 need to be sure they're initialized. We map each section to itself,
3550 with no offset; this means that SECTP->vma will be honored. */
3551
3552 static void
3553 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3554 {
3555 sectp->output_section = sectp;
3556 sectp->output_offset = 0;
3557 }
3558
3559 /* Relocate the contents of a debug section SECTP in ABFD. The
3560 contents are stored in BUF if it is non-NULL, or returned in a
3561 malloc'd buffer otherwise.
3562
3563 For some platforms and debug info formats, shared libraries contain
3564 relocations against the debug sections (particularly for DWARF-2;
3565 one affected platform is PowerPC GNU/Linux, although it depends on
3566 the version of the linker in use). Also, ELF object files naturally
3567 have unresolved relocations for their debug sections. We need to apply
3568 the relocations in order to get the locations of symbols correct. */
3569
3570 bfd_byte *
3571 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3572 {
3573 /* We're only interested in debugging sections with relocation
3574 information. */
3575 if ((sectp->flags & SEC_RELOC) == 0)
3576 return NULL;
3577 if ((sectp->flags & SEC_DEBUGGING) == 0)
3578 return NULL;
3579
3580 /* We will handle section offsets properly elsewhere, so relocate as if
3581 all sections begin at 0. */
3582 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3583
3584 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3585 }
3586
3587 void
3588 _initialize_symfile (void)
3589 {
3590 struct cmd_list_element *c;
3591
3592 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3593 "Load symbol table from executable file FILE.\n\
3594 The `file' command can also load symbol tables, as well as setting the file\n\
3595 to execute.", &cmdlist);
3596 set_cmd_completer (c, filename_completer);
3597
3598 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3599 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3600 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3601 ADDR is the starting address of the file's text.\n\
3602 The optional arguments are section-name section-address pairs and\n\
3603 should be specified if the data and bss segments are not contiguous\n\
3604 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3605 &cmdlist);
3606 set_cmd_completer (c, filename_completer);
3607
3608 c = add_cmd ("add-shared-symbol-files", class_files,
3609 add_shared_symbol_files_command,
3610 "Load the symbols from shared objects in the dynamic linker's link map.",
3611 &cmdlist);
3612 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3613 &cmdlist);
3614
3615 c = add_cmd ("load", class_files, load_command,
3616 "Dynamically load FILE into the running program, and record its symbols\n\
3617 for access from GDB.", &cmdlist);
3618 set_cmd_completer (c, filename_completer);
3619
3620 add_show_from_set
3621 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3622 (char *) &symbol_reloading,
3623 "Set dynamic symbol table reloading multiple times in one run.",
3624 &setlist),
3625 &showlist);
3626
3627 add_prefix_cmd ("overlay", class_support, overlay_command,
3628 "Commands for debugging overlays.", &overlaylist,
3629 "overlay ", 0, &cmdlist);
3630
3631 add_com_alias ("ovly", "overlay", class_alias, 1);
3632 add_com_alias ("ov", "overlay", class_alias, 1);
3633
3634 add_cmd ("map-overlay", class_support, map_overlay_command,
3635 "Assert that an overlay section is mapped.", &overlaylist);
3636
3637 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3638 "Assert that an overlay section is unmapped.", &overlaylist);
3639
3640 add_cmd ("list-overlays", class_support, list_overlays_command,
3641 "List mappings of overlay sections.", &overlaylist);
3642
3643 add_cmd ("manual", class_support, overlay_manual_command,
3644 "Enable overlay debugging.", &overlaylist);
3645 add_cmd ("off", class_support, overlay_off_command,
3646 "Disable overlay debugging.", &overlaylist);
3647 add_cmd ("auto", class_support, overlay_auto_command,
3648 "Enable automatic overlay debugging.", &overlaylist);
3649 add_cmd ("load-target", class_support, overlay_load_command,
3650 "Read the overlay mapping state from the target.", &overlaylist);
3651
3652 /* Filename extension to source language lookup table: */
3653 init_filename_language_table ();
3654 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3655 (char *) &ext_args,
3656 "Set mapping between filename extension and source language.\n\
3657 Usage: set extension-language .foo bar",
3658 &setlist);
3659 set_cmd_cfunc (c, set_ext_lang_command);
3660
3661 add_info ("extensions", info_ext_lang_command,
3662 "All filename extensions associated with a source language.");
3663
3664 add_show_from_set
3665 (add_set_cmd ("download-write-size", class_obscure,
3666 var_integer, (char *) &download_write_size,
3667 "Set the write size used when downloading a program.\n"
3668 "Only used when downloading a program onto a remote\n"
3669 "target. Specify zero, or a negative value, to disable\n"
3670 "blocked writes. The actual size of each transfer is also\n"
3671 "limited by the size of the target packet and the memory\n"
3672 "cache.\n",
3673 &setlist),
3674 &showlist);
3675
3676 debug_file_directory = xstrdup (DEBUGDIR);
3677 c = (add_set_cmd
3678 ("debug-file-directory", class_support, var_string,
3679 (char *) &debug_file_directory,
3680 "Set the directory where separate debug symbols are searched for.\n"
3681 "Separate debug symbols are first searched for in the same\n"
3682 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3683 "' subdirectory,\n"
3684 "and lastly at the path of the directory of the binary with\n"
3685 "the global debug-file directory prepended\n",
3686 &setlist));
3687 add_show_from_set (c, &showlist);
3688 set_cmd_completer (c, filename_completer);
3689 }
This page took 0.147748 seconds and 5 git commands to generate.