* bfd-target.c (target_bfd_reopen): Update.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
158 library symbols are not loaded, commands like "info fun" will *not*
159 report all the functions that are actually present. */
160
161 int auto_solib_add = 1;
162 \f
163
164 /* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
166 Note that the string at PTR does not have to be null terminated, I.e. it
167 may be part of a larger string and we are only saving a substring. */
168
169 char *
170 obsavestring (const char *ptr, int size, struct obstack *obstackp)
171 {
172 char *p = (char *) obstack_alloc (obstackp, size + 1);
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
175 inline memcpy? */
176 {
177 const char *p1 = ptr;
178 char *p2 = p;
179 const char *end = ptr + size;
180
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186 }
187
188 /* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
192
193 char *
194 obconcat (struct obstack *obstackp, ...)
195 {
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
212 }
213
214 /* True if we are reading a symbol table. */
215
216 int currently_reading_symtab = 0;
217
218 static void
219 decrement_reading_symtab (void *dummy)
220 {
221 currently_reading_symtab--;
222 }
223
224 /* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226 struct cleanup *
227 increment_reading_symtab (void)
228 {
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
231 }
232
233 /* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242 void
243 find_lowest_section (bfd *abfd, asection *sect, void *obj)
244 {
245 asection **lowest = (asection **) obj;
246
247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257 }
258
259 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261 struct section_addr_info *
262 alloc_section_addr_info (size_t num_sections)
263 {
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274 }
275
276 /* Build (allocate and populate) a section_addr_info struct from
277 an existing section table. */
278
279 extern struct section_addr_info *
280 build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
282 {
283 struct section_addr_info *sap;
284 const struct target_section *stp;
285 int oidx;
286
287 sap = alloc_section_addr_info (end - start);
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
291 if (bfd_get_section_flags (stp->bfd,
292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
293 && oidx < end - start)
294 {
295 sap->other[oidx].addr = stp->addr;
296 sap->other[oidx].name
297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in ABFD. */
307
308 static struct section_addr_info *
309 build_section_addr_info_from_bfd (bfd *abfd)
310 {
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
318 {
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
324 return sap;
325 }
326
327 /* Create a section_addr_info from section offsets in OBJFILE. */
328
329 struct section_addr_info *
330 build_section_addr_info_from_objfile (const struct objfile *objfile)
331 {
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346 }
347
348 /* Free all memory allocated by build_section_addr_info_from_section_table. */
349
350 extern void
351 free_section_addr_info (struct section_addr_info *sap)
352 {
353 int idx;
354
355 for (idx = 0; idx < sap->num_sections; idx++)
356 if (sap->other[idx].name)
357 xfree (sap->other[idx].name);
358 xfree (sap);
359 }
360
361
362 /* Initialize OBJFILE's sect_index_* members. */
363 static void
364 init_objfile_sect_indices (struct objfile *objfile)
365 {
366 asection *sect;
367 int i;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
370 if (sect)
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
374 if (sect)
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
378 if (sect)
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
382 if (sect)
383 objfile->sect_index_rodata = sect->index;
384
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
420 }
421
422 /* The arguments to place_section. */
423
424 struct place_section_arg
425 {
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428 };
429
430 /* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
433 static void
434 place_section (bfd *abfd, asection *sect, void *obj)
435 {
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
440
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
450 start_addr = (arg->lowest + align - 1) & -align;
451
452 do {
453 asection *cur_sec;
454
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
482 break;
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
492 }
493
494 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
497
498 void
499 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
502 {
503 int i;
504
505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
506
507 /* Now calculate offsets for section that were specified by the caller. */
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp;
511
512 osp = &addrs->other[i];
513 if (osp->sectindex == -1)
514 continue;
515
516 /* Record all sections in offsets. */
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521 }
522
523 /* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529 static const char *
530 addr_section_name (const char *s)
531 {
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval;
549
550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
551 if (retval)
552 return retval;
553
554 return a->sectindex - b->sectindex;
555 }
556
557 /* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560 static struct other_sections **
561 addrs_section_sort (struct section_addr_info *addrs)
562 {
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575 }
576
577 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
580
581 void
582 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583 {
584 asection *lower_sect;
585 CORE_ADDR lower_offset;
586 int i;
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
591
592 /* Find lowest loadable section to be used as starting point for
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
601 }
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
633
634 while (*abfd_addrs_sorted
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 struct other_sections *sect = addrs_to_abfd_addrs[i];
670
671 if (sect)
672 {
673 /* This is the index used by BFD. */
674 addrs->other[i].sectindex = sect->sectindex;
675
676 if (addrs->other[i].addr != 0)
677 {
678 addrs->other[i].addr -= sect->addr;
679 lower_offset = addrs->other[i].addr;
680 }
681 else
682 addrs->other[i].addr = lower_offset;
683 }
684 else
685 {
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
704 || strcmp (sect_name, ".gnu.conflict") == 0
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717 addrs->other[i].sectindex = -1;
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1013
1014 void
1015 new_symfile_objfile (struct objfile *objfile, int add_flags)
1016 {
1017 /* If this is the main symbol file we have to clean up all users of the
1018 old main symbol file. Otherwise it is sufficient to fixup all the
1019 breakpoints that may have been redefined by this symbol file. */
1020 if (add_flags & SYMFILE_MAINLINE)
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
1025 clear_symtab_users (add_flags);
1026 }
1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1028 {
1029 breakpoint_re_set ();
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1034 }
1035
1036 /* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 This BFD will be closed on error, and is always consumed by this function.
1041
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1048
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
1052 Upon success, returns a pointer to the objfile that was added.
1053 Upon failure, jumps back to command level (never returns). */
1054
1055 static struct objfile *
1056 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
1061 int flags, struct objfile *parent)
1062 {
1063 struct objfile *objfile;
1064 struct cleanup *my_cleanups;
1065 const char *name = bfd_get_filename (abfd);
1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
1067 const int mainline = add_flags & SYMFILE_MAINLINE;
1068 const int should_print = ((from_tty || info_verbose)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
1071
1072 if (readnow_symbol_files)
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
1077
1078 my_cleanups = make_cleanup_bfd_unref (abfd);
1079
1080 /* Give user a chance to burp if we'd be
1081 interactively wiping out any existing symbols. */
1082
1083 if ((have_full_symbols () || have_partial_symbols ())
1084 && mainline
1085 && from_tty
1086 && !query (_("Load new symbol table from \"%s\"? "), name))
1087 error (_("Not confirmed."));
1088
1089 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1090 discard_cleanups (my_cleanups);
1091
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
1097 performed, or need to read an unmapped symbol table. */
1098 if (should_print)
1099 {
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
1102 else
1103 {
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
1107 }
1108 }
1109 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1110 add_flags);
1111
1112 /* We now have at least a partial symbol table. Check to see if the
1113 user requested that all symbols be read on initial access via either
1114 the gdb startup command line or on a per symbol file basis. Expand
1115 all partial symbol tables for this objfile if so. */
1116
1117 if ((flags & OBJF_READNOW))
1118 {
1119 if (should_print)
1120 {
1121 printf_unfiltered (_("expanding to full symbols..."));
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125
1126 if (objfile->sf)
1127 objfile->sf->qf->expand_all_symtabs (objfile);
1128 }
1129
1130 if (should_print && !objfile_has_symbols (objfile))
1131 {
1132 wrap_here ("");
1133 printf_unfiltered (_("(no debugging symbols found)..."));
1134 wrap_here ("");
1135 }
1136
1137 if (should_print)
1138 {
1139 if (deprecated_post_add_symbol_hook)
1140 deprecated_post_add_symbol_hook ();
1141 else
1142 printf_unfiltered (_("done.\n"));
1143 }
1144
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
1150 if (objfile->sf == NULL)
1151 {
1152 observer_notify_new_objfile (objfile);
1153 return objfile; /* No symbols. */
1154 }
1155
1156 new_symfile_objfile (objfile, add_flags);
1157
1158 observer_notify_new_objfile (objfile);
1159
1160 bfd_cache_close_all ();
1161 return (objfile);
1162 }
1163
1164 /* Add BFD as a separate debug file for OBJFILE. */
1165
1166 void
1167 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1168 {
1169 struct objfile *new_objfile;
1170 struct section_addr_info *sap;
1171 struct cleanup *my_cleanup;
1172
1173 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1174 because sections of BFD may not match sections of OBJFILE and because
1175 vma may have been modified by tools such as prelink. */
1176 sap = build_section_addr_info_from_objfile (objfile);
1177 my_cleanup = make_cleanup_free_section_addr_info (sap);
1178
1179 new_objfile = symbol_file_add_with_addrs_or_offsets
1180 (bfd, symfile_flags,
1181 sap, NULL, 0,
1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1183 | OBJF_USERLOADED),
1184 objfile);
1185
1186 do_cleanups (my_cleanup);
1187 }
1188
1189 /* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191
1192 See symbol_file_add_with_addrs_or_offsets's comments for
1193 details. */
1194 struct objfile *
1195 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1196 struct section_addr_info *addrs,
1197 int flags, struct objfile *parent)
1198 {
1199 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1200 flags, parent);
1201 }
1202
1203
1204 /* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1206 for details. */
1207 struct objfile *
1208 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1209 int flags)
1210 {
1211 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1212 flags, NULL);
1213 }
1214
1215
1216 /* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
1223
1224 void
1225 symbol_file_add_main (char *args, int from_tty)
1226 {
1227 symbol_file_add_main_1 (args, from_tty, 0);
1228 }
1229
1230 static void
1231 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1232 {
1233 const int add_flags = (current_inferior ()->symfile_flags
1234 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1235
1236 symbol_file_add (args, add_flags, NULL, flags);
1237
1238 /* Getting new symbols may change our opinion about
1239 what is frameless. */
1240 reinit_frame_cache ();
1241
1242 if ((flags & SYMFILE_NO_READ) == 0)
1243 set_initial_language ();
1244 }
1245
1246 void
1247 symbol_file_clear (int from_tty)
1248 {
1249 if ((have_full_symbols () || have_partial_symbols ())
1250 && from_tty
1251 && (symfile_objfile
1252 ? !query (_("Discard symbol table from `%s'? "),
1253 symfile_objfile->name)
1254 : !query (_("Discard symbol table? "))))
1255 error (_("Not confirmed."));
1256
1257 /* solib descriptors may have handles to objfiles. Wipe them before their
1258 objfiles get stale by free_all_objfiles. */
1259 no_shared_libraries (NULL, from_tty);
1260
1261 free_all_objfiles ();
1262
1263 gdb_assert (symfile_objfile == NULL);
1264 if (from_tty)
1265 printf_unfiltered (_("No symbol file now.\n"));
1266 }
1267
1268 static char *
1269 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270 {
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
1276
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
1283
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1293
1294 *crc32_out = crc32;
1295 return contents;
1296 }
1297
1298 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1299 return 1. Otherwise print a warning and return 0. ABFD seek position is
1300 not preserved. */
1301
1302 static int
1303 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1304 {
1305 unsigned long file_crc = 0;
1306
1307 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1308 {
1309 warning (_("Problem reading \"%s\" for CRC: %s"),
1310 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1311 return 0;
1312 }
1313
1314 for (;;)
1315 {
1316 gdb_byte buffer[8 * 1024];
1317 bfd_size_type count;
1318
1319 count = bfd_bread (buffer, sizeof (buffer), abfd);
1320 if (count == (bfd_size_type) -1)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326 if (count == 0)
1327 break;
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 }
1330
1331 *file_crc_return = file_crc;
1332 return 1;
1333 }
1334
1335 static int
1336 separate_debug_file_exists (const char *name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 bfd *abfd;
1342 struct stat parent_stat, abfd_stat;
1343 int verified_as_different;
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1349 the separate debug infos with the same basename can exist. */
1350
1351 if (filename_cmp (name, parent_objfile->name) == 0)
1352 return 0;
1353
1354 abfd = bfd_open_maybe_remote (name);
1355
1356 if (!abfd)
1357 return 0;
1358
1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Do not indicate a duplicate library in that
1364 case. While there is no guarantee that a system that provides
1365 meaningful inode numbers will never set st_ino to zero, this is
1366 merely an optimization, so we do not need to worry about false
1367 negatives. */
1368
1369 if (bfd_stat (abfd, &abfd_stat) == 0
1370 && abfd_stat.st_ino != 0
1371 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1372 {
1373 if (abfd_stat.st_dev == parent_stat.st_dev
1374 && abfd_stat.st_ino == parent_stat.st_ino)
1375 {
1376 gdb_bfd_unref (abfd);
1377 return 0;
1378 }
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = get_file_crc (abfd, &file_crc);
1385
1386 gdb_bfd_unref (abfd);
1387
1388 if (!file_crc_p)
1389 return 0;
1390
1391 if (crc != file_crc)
1392 {
1393 /* If one (or both) the files are accessed for example the via "remote:"
1394 gdbserver way it does not support the bfd_stat operation. Verify
1395 whether those two files are not the same manually. */
1396
1397 if (!verified_as_different && !parent_objfile->crc32_p)
1398 {
1399 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1400 &parent_objfile->crc32);
1401 if (!parent_objfile->crc32_p)
1402 return 0;
1403 }
1404
1405 if (verified_as_different || parent_objfile->crc32 != file_crc)
1406 warning (_("the debug information found in \"%s\""
1407 " does not match \"%s\" (CRC mismatch).\n"),
1408 name, parent_objfile->name);
1409
1410 return 0;
1411 }
1412
1413 return 1;
1414 }
1415
1416 char *debug_file_directory = NULL;
1417 static void
1418 show_debug_file_directory (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420 {
1421 fprintf_filtered (file,
1422 _("The directory where separate debug "
1423 "symbols are searched for is \"%s\".\n"),
1424 value);
1425 }
1426
1427 #if ! defined (DEBUG_SUBDIRECTORY)
1428 #define DEBUG_SUBDIRECTORY ".debug"
1429 #endif
1430
1431 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1432 where the original file resides (may not be the same as
1433 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1434 looking for. Returns the name of the debuginfo, of NULL. */
1435
1436 static char *
1437 find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
1441 {
1442 char *debugdir;
1443 char *debugfile;
1444 int i;
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
1448
1449 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1450 i = strlen (dir);
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1453
1454 debugfile = xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1463 strcat (debugfile, debuglink);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* Then try in the global debugfile directories.
1478
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
1481
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1484
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
1488 strcat (debugfile, "/");
1489 strcat (debugfile, dir);
1490 strcat (debugfile, debuglink);
1491
1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1493 return debugfile;
1494
1495 /* If the file is in the sysroot, try using its base path in the
1496 global debugfile directory. */
1497 if (canon_dir != NULL
1498 && filename_ncmp (canon_dir, gdb_sysroot,
1499 strlen (gdb_sysroot)) == 0
1500 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1501 {
1502 strcpy (debugfile, debugdir);
1503 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1504 strcat (debugfile, "/");
1505 strcat (debugfile, debuglink);
1506
1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1508 return debugfile;
1509 }
1510 }
1511
1512 do_cleanups (back_to);
1513 xfree (debugfile);
1514 return NULL;
1515 }
1516
1517 /* Modify PATH to contain only "directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521 static void
1522 terminate_after_last_dir_separator (char *path)
1523 {
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534 }
1535
1536 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539 char *
1540 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541 {
1542 char *debuglink;
1543 char *dir, *canon_dir;
1544 char *debugfile;
1545 unsigned long crc32;
1546 struct cleanup *cleanups;
1547
1548 debuglink = get_debug_link_info (objfile, &crc32);
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return NULL;
1555 }
1556
1557 cleanups = make_cleanup (xfree, debuglink);
1558 dir = xstrdup (objfile->name);
1559 make_cleanup (xfree, dir);
1560 terminate_after_last_dir_separator (dir);
1561 canon_dir = lrealpath (dir);
1562
1563 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1564 crc32, objfile);
1565 xfree (canon_dir);
1566
1567 if (debugfile == NULL)
1568 {
1569 #ifdef HAVE_LSTAT
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1576 {
1577 char *symlink_dir;
1578
1579 symlink_dir = lrealpath (objfile->name);
1580 if (symlink_dir != NULL)
1581 {
1582 make_cleanup (xfree, symlink_dir);
1583 terminate_after_last_dir_separator (symlink_dir);
1584 if (strcmp (dir, symlink_dir) != 0)
1585 {
1586 /* Different directory, so try using it. */
1587 debugfile = find_separate_debug_file (symlink_dir,
1588 symlink_dir,
1589 debuglink,
1590 crc32,
1591 objfile);
1592 }
1593 }
1594 }
1595 #endif /* HAVE_LSTAT */
1596 }
1597
1598 do_cleanups (cleanups);
1599 return debugfile;
1600 }
1601
1602
1603 /* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
1615 conventions (because it is confusing and inconvenient). */
1616
1617 void
1618 symbol_file_command (char *args, int from_tty)
1619 {
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1624 symbol_file_clear (from_tty);
1625 }
1626 else
1627 {
1628 char **argv = gdb_buildargv (args);
1629 int flags = OBJF_USERLOADED;
1630 struct cleanup *cleanups;
1631 char *name = NULL;
1632
1633 cleanups = make_cleanup_freeargv (argv);
1634 while (*argv != NULL)
1635 {
1636 if (strcmp (*argv, "-readnow") == 0)
1637 flags |= OBJF_READNOW;
1638 else if (**argv == '-')
1639 error (_("unknown option `%s'"), *argv);
1640 else
1641 {
1642 symbol_file_add_main_1 (*argv, from_tty, flags);
1643 name = *argv;
1644 }
1645
1646 argv++;
1647 }
1648
1649 if (name == NULL)
1650 error (_("no symbol file name was specified"));
1651
1652 do_cleanups (cleanups);
1653 }
1654 }
1655
1656 /* Set the initial language.
1657
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
1666
1667 void
1668 set_initial_language (void)
1669 {
1670 enum language lang = language_unknown;
1671
1672 if (language_of_main != language_unknown)
1673 lang = language_of_main;
1674 else
1675 {
1676 const char *filename;
1677
1678 filename = find_main_filename ();
1679 if (filename != NULL)
1680 lang = deduce_language_from_filename (filename);
1681 }
1682
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
1687 }
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
1691 }
1692
1693 /* If NAME is a remote name open the file using remote protocol, otherwise
1694 open it normally. Returns a new reference to the BFD. On error,
1695 returns NULL with the BFD error set. */
1696
1697 bfd *
1698 bfd_open_maybe_remote (const char *name)
1699 {
1700 bfd *result;
1701
1702 if (remote_filename_p (name))
1703 result = remote_bfd_open (name, gnutarget);
1704 else
1705 {
1706 result = bfd_openr (name, gnutarget);
1707 if (result != NULL)
1708 gdb_bfd_stash_filename (result);
1709 }
1710
1711 gdb_bfd_ref (result);
1712 return result;
1713 }
1714
1715
1716 /* Open the file specified by NAME and hand it off to BFD for
1717 preliminary analysis. Return a newly initialized bfd *, which
1718 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1719 absolute). In case of trouble, error() is called. */
1720
1721 bfd *
1722 symfile_bfd_open (char *name)
1723 {
1724 bfd *sym_bfd;
1725 int desc;
1726 char *absolute_name;
1727
1728 if (remote_filename_p (name))
1729 {
1730 sym_bfd = remote_bfd_open (name, gnutarget);
1731 gdb_bfd_ref (sym_bfd);
1732 if (!sym_bfd)
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735
1736 if (!bfd_check_format (sym_bfd, bfd_object))
1737 {
1738 make_cleanup_bfd_unref (sym_bfd);
1739 error (_("`%s': can't read symbols: %s."), name,
1740 bfd_errmsg (bfd_get_error ()));
1741 }
1742
1743 return sym_bfd;
1744 }
1745
1746 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1747
1748 /* Look down path for it, allocate 2nd new malloc'd copy. */
1749 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1750 O_RDONLY | O_BINARY, &absolute_name);
1751 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1752 if (desc < 0)
1753 {
1754 char *exename = alloca (strlen (name) + 5);
1755
1756 strcat (strcpy (exename, name), ".exe");
1757 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1758 O_RDONLY | O_BINARY, &absolute_name);
1759 }
1760 #endif
1761 if (desc < 0)
1762 {
1763 make_cleanup (xfree, name);
1764 perror_with_name (name);
1765 }
1766
1767 xfree (name);
1768 name = absolute_name;
1769 make_cleanup (xfree, name);
1770
1771 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1772 gdb_bfd_ref (sym_bfd);
1773 if (!sym_bfd)
1774 {
1775 make_cleanup (xfree, name);
1776 error (_("`%s': can't open to read symbols: %s."), name,
1777 bfd_errmsg (bfd_get_error ()));
1778 }
1779 bfd_set_cacheable (sym_bfd, 1);
1780
1781 if (!bfd_check_format (sym_bfd, bfd_object))
1782 {
1783 make_cleanup_bfd_unref (sym_bfd);
1784 error (_("`%s': can't read symbols: %s."), name,
1785 bfd_errmsg (bfd_get_error ()));
1786 }
1787
1788 gdb_bfd_stash_filename (sym_bfd);
1789
1790 return sym_bfd;
1791 }
1792
1793 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1794 the section was not found. */
1795
1796 int
1797 get_section_index (struct objfile *objfile, char *section_name)
1798 {
1799 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1800
1801 if (sect)
1802 return sect->index;
1803 else
1804 return -1;
1805 }
1806
1807 /* Link SF into the global symtab_fns list. Called on startup by the
1808 _initialize routine in each object file format reader, to register
1809 information about each format the reader is prepared to handle. */
1810
1811 void
1812 add_symtab_fns (const struct sym_fns *sf)
1813 {
1814 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1815 }
1816
1817 /* Initialize OBJFILE to read symbols from its associated BFD. It
1818 either returns or calls error(). The result is an initialized
1819 struct sym_fns in the objfile structure, that contains cached
1820 information about the symbol file. */
1821
1822 static const struct sym_fns *
1823 find_sym_fns (bfd *abfd)
1824 {
1825 const struct sym_fns *sf;
1826 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1827 int i;
1828
1829 if (our_flavour == bfd_target_srec_flavour
1830 || our_flavour == bfd_target_ihex_flavour
1831 || our_flavour == bfd_target_tekhex_flavour)
1832 return NULL; /* No symbols. */
1833
1834 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1835 if (our_flavour == sf->sym_flavour)
1836 return sf;
1837
1838 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1839 bfd_get_target (abfd));
1840 }
1841 \f
1842
1843 /* This function runs the load command of our current target. */
1844
1845 static void
1846 load_command (char *arg, int from_tty)
1847 {
1848 dont_repeat ();
1849
1850 /* The user might be reloading because the binary has changed. Take
1851 this opportunity to check. */
1852 reopen_exec_file ();
1853 reread_symbols ();
1854
1855 if (arg == NULL)
1856 {
1857 char *parg;
1858 int count = 0;
1859
1860 parg = arg = get_exec_file (1);
1861
1862 /* Count how many \ " ' tab space there are in the name. */
1863 while ((parg = strpbrk (parg, "\\\"'\t ")))
1864 {
1865 parg++;
1866 count++;
1867 }
1868
1869 if (count)
1870 {
1871 /* We need to quote this string so buildargv can pull it apart. */
1872 char *temp = xmalloc (strlen (arg) + count + 1 );
1873 char *ptemp = temp;
1874 char *prev;
1875
1876 make_cleanup (xfree, temp);
1877
1878 prev = parg = arg;
1879 while ((parg = strpbrk (parg, "\\\"'\t ")))
1880 {
1881 strncpy (ptemp, prev, parg - prev);
1882 ptemp += parg - prev;
1883 prev = parg++;
1884 *ptemp++ = '\\';
1885 }
1886 strcpy (ptemp, prev);
1887
1888 arg = temp;
1889 }
1890 }
1891
1892 target_load (arg, from_tty);
1893
1894 /* After re-loading the executable, we don't really know which
1895 overlays are mapped any more. */
1896 overlay_cache_invalid = 1;
1897 }
1898
1899 /* This version of "load" should be usable for any target. Currently
1900 it is just used for remote targets, not inftarg.c or core files,
1901 on the theory that only in that case is it useful.
1902
1903 Avoiding xmodem and the like seems like a win (a) because we don't have
1904 to worry about finding it, and (b) On VMS, fork() is very slow and so
1905 we don't want to run a subprocess. On the other hand, I'm not sure how
1906 performance compares. */
1907
1908 static int validate_download = 0;
1909
1910 /* Callback service function for generic_load (bfd_map_over_sections). */
1911
1912 static void
1913 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1914 {
1915 bfd_size_type *sum = data;
1916
1917 *sum += bfd_get_section_size (asec);
1918 }
1919
1920 /* Opaque data for load_section_callback. */
1921 struct load_section_data {
1922 unsigned long load_offset;
1923 struct load_progress_data *progress_data;
1924 VEC(memory_write_request_s) *requests;
1925 };
1926
1927 /* Opaque data for load_progress. */
1928 struct load_progress_data {
1929 /* Cumulative data. */
1930 unsigned long write_count;
1931 unsigned long data_count;
1932 bfd_size_type total_size;
1933 };
1934
1935 /* Opaque data for load_progress for a single section. */
1936 struct load_progress_section_data {
1937 struct load_progress_data *cumulative;
1938
1939 /* Per-section data. */
1940 const char *section_name;
1941 ULONGEST section_sent;
1942 ULONGEST section_size;
1943 CORE_ADDR lma;
1944 gdb_byte *buffer;
1945 };
1946
1947 /* Target write callback routine for progress reporting. */
1948
1949 static void
1950 load_progress (ULONGEST bytes, void *untyped_arg)
1951 {
1952 struct load_progress_section_data *args = untyped_arg;
1953 struct load_progress_data *totals;
1954
1955 if (args == NULL)
1956 /* Writing padding data. No easy way to get at the cumulative
1957 stats, so just ignore this. */
1958 return;
1959
1960 totals = args->cumulative;
1961
1962 if (bytes == 0 && args->section_sent == 0)
1963 {
1964 /* The write is just starting. Let the user know we've started
1965 this section. */
1966 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1967 args->section_name, hex_string (args->section_size),
1968 paddress (target_gdbarch, args->lma));
1969 return;
1970 }
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
1981 gdb_byte *check = xmalloc (bytes);
1982 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1983
1984 if (target_read_memory (args->lma, check, bytes) != 0)
1985 error (_("Download verify read failed at %s"),
1986 paddress (target_gdbarch, args->lma));
1987 if (memcmp (args->buffer, check, bytes) != 0)
1988 error (_("Download verify compare failed at %s"),
1989 paddress (target_gdbarch, args->lma));
1990 do_cleanups (verify_cleanups);
1991 }
1992 totals->data_count += bytes;
1993 args->lma += bytes;
1994 args->buffer += bytes;
1995 totals->write_count += 1;
1996 args->section_sent += bytes;
1997 if (quit_flag
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
2007 totals->data_count,
2008 totals->total_size);
2009 }
2010
2011 /* Callback service function for generic_load (bfd_map_over_sections). */
2012
2013 static void
2014 load_section_callback (bfd *abfd, asection *asec, void *data)
2015 {
2016 struct memory_write_request *new_request;
2017 struct load_section_data *args = data;
2018 struct load_progress_section_data *section_data;
2019 bfd_size_type size = bfd_get_section_size (asec);
2020 gdb_byte *buffer;
2021 const char *sect_name = bfd_get_section_name (abfd, asec);
2022
2023 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 return;
2025
2026 if (size == 0)
2027 return;
2028
2029 new_request = VEC_safe_push (memory_write_request_s,
2030 args->requests, NULL);
2031 memset (new_request, 0, sizeof (struct memory_write_request));
2032 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2033 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2034 new_request->end = new_request->begin + size; /* FIXME Should size
2035 be in instead? */
2036 new_request->data = xmalloc (size);
2037 new_request->baton = section_data;
2038
2039 buffer = new_request->data;
2040
2041 section_data->cumulative = args->progress_data;
2042 section_data->section_name = sect_name;
2043 section_data->section_size = size;
2044 section_data->lma = new_request->begin;
2045 section_data->buffer = buffer;
2046
2047 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2048 }
2049
2050 /* Clean up an entire memory request vector, including load
2051 data and progress records. */
2052
2053 static void
2054 clear_memory_write_data (void *arg)
2055 {
2056 VEC(memory_write_request_s) **vec_p = arg;
2057 VEC(memory_write_request_s) *vec = *vec_p;
2058 int i;
2059 struct memory_write_request *mr;
2060
2061 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2062 {
2063 xfree (mr->data);
2064 xfree (mr->baton);
2065 }
2066 VEC_free (memory_write_request_s, vec);
2067 }
2068
2069 void
2070 generic_load (char *args, int from_tty)
2071 {
2072 bfd *loadfile_bfd;
2073 struct timeval start_time, end_time;
2074 char *filename;
2075 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2076 struct load_section_data cbdata;
2077 struct load_progress_data total_progress;
2078 struct ui_out *uiout = current_uiout;
2079
2080 CORE_ADDR entry;
2081 char **argv;
2082
2083 memset (&cbdata, 0, sizeof (cbdata));
2084 memset (&total_progress, 0, sizeof (total_progress));
2085 cbdata.progress_data = &total_progress;
2086
2087 make_cleanup (clear_memory_write_data, &cbdata.requests);
2088
2089 if (args == NULL)
2090 error_no_arg (_("file to load"));
2091
2092 argv = gdb_buildargv (args);
2093 make_cleanup_freeargv (argv);
2094
2095 filename = tilde_expand (argv[0]);
2096 make_cleanup (xfree, filename);
2097
2098 if (argv[1] != NULL)
2099 {
2100 char *endptr;
2101
2102 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2103
2104 /* If the last word was not a valid number then
2105 treat it as a file name with spaces in. */
2106 if (argv[1] == endptr)
2107 error (_("Invalid download offset:%s."), argv[1]);
2108
2109 if (argv[2] != NULL)
2110 error (_("Too many parameters."));
2111 }
2112
2113 /* Open the file for loading. */
2114 loadfile_bfd = bfd_openr (filename, gnutarget);
2115 gdb_bfd_ref (loadfile_bfd);
2116 if (loadfile_bfd == NULL)
2117 {
2118 perror_with_name (filename);
2119 return;
2120 }
2121
2122 make_cleanup_bfd_unref (loadfile_bfd);
2123
2124 if (!bfd_check_format (loadfile_bfd, bfd_object))
2125 {
2126 error (_("\"%s\" is not an object file: %s"), filename,
2127 bfd_errmsg (bfd_get_error ()));
2128 }
2129
2130 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2131 (void *) &total_progress.total_size);
2132
2133 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2134
2135 gettimeofday (&start_time, NULL);
2136
2137 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2138 load_progress) != 0)
2139 error (_("Load failed"));
2140
2141 gettimeofday (&end_time, NULL);
2142
2143 entry = bfd_get_start_address (loadfile_bfd);
2144 ui_out_text (uiout, "Start address ");
2145 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2146 ui_out_text (uiout, ", load size ");
2147 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2148 ui_out_text (uiout, "\n");
2149 /* We were doing this in remote-mips.c, I suspect it is right
2150 for other targets too. */
2151 regcache_write_pc (get_current_regcache (), entry);
2152
2153 /* Reset breakpoints, now that we have changed the load image. For
2154 instance, breakpoints may have been set (or reset, by
2155 post_create_inferior) while connected to the target but before we
2156 loaded the program. In that case, the prologue analyzer could
2157 have read instructions from the target to find the right
2158 breakpoint locations. Loading has changed the contents of that
2159 memory. */
2160
2161 breakpoint_re_set ();
2162
2163 /* FIXME: are we supposed to call symbol_file_add or not? According
2164 to a comment from remote-mips.c (where a call to symbol_file_add
2165 was commented out), making the call confuses GDB if more than one
2166 file is loaded in. Some targets do (e.g., remote-vx.c) but
2167 others don't (or didn't - perhaps they have all been deleted). */
2168
2169 print_transfer_performance (gdb_stdout, total_progress.data_count,
2170 total_progress.write_count,
2171 &start_time, &end_time);
2172
2173 do_cleanups (old_cleanups);
2174 }
2175
2176 /* Report how fast the transfer went. */
2177
2178 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2179 replaced by print_transfer_performance (with a very different
2180 function signature). */
2181
2182 void
2183 report_transfer_performance (unsigned long data_count, time_t start_time,
2184 time_t end_time)
2185 {
2186 struct timeval start, end;
2187
2188 start.tv_sec = start_time;
2189 start.tv_usec = 0;
2190 end.tv_sec = end_time;
2191 end.tv_usec = 0;
2192
2193 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2194 }
2195
2196 void
2197 print_transfer_performance (struct ui_file *stream,
2198 unsigned long data_count,
2199 unsigned long write_count,
2200 const struct timeval *start_time,
2201 const struct timeval *end_time)
2202 {
2203 ULONGEST time_count;
2204 struct ui_out *uiout = current_uiout;
2205
2206 /* Compute the elapsed time in milliseconds, as a tradeoff between
2207 accuracy and overflow. */
2208 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2209 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2210
2211 ui_out_text (uiout, "Transfer rate: ");
2212 if (time_count > 0)
2213 {
2214 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2215
2216 if (ui_out_is_mi_like_p (uiout))
2217 {
2218 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2219 ui_out_text (uiout, " bits/sec");
2220 }
2221 else if (rate < 1024)
2222 {
2223 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2224 ui_out_text (uiout, " bytes/sec");
2225 }
2226 else
2227 {
2228 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2229 ui_out_text (uiout, " KB/sec");
2230 }
2231 }
2232 else
2233 {
2234 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2235 ui_out_text (uiout, " bits in <1 sec");
2236 }
2237 if (write_count > 0)
2238 {
2239 ui_out_text (uiout, ", ");
2240 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2241 ui_out_text (uiout, " bytes/write");
2242 }
2243 ui_out_text (uiout, ".\n");
2244 }
2245
2246 /* This function allows the addition of incrementally linked object files.
2247 It does not modify any state in the target, only in the debugger. */
2248 /* Note: ezannoni 2000-04-13 This function/command used to have a
2249 special case syntax for the rombug target (Rombug is the boot
2250 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2251 rombug case, the user doesn't need to supply a text address,
2252 instead a call to target_link() (in target.c) would supply the
2253 value to use. We are now discontinuing this type of ad hoc syntax. */
2254
2255 static void
2256 add_symbol_file_command (char *args, int from_tty)
2257 {
2258 struct gdbarch *gdbarch = get_current_arch ();
2259 char *filename = NULL;
2260 int flags = OBJF_USERLOADED;
2261 char *arg;
2262 int section_index = 0;
2263 int argcnt = 0;
2264 int sec_num = 0;
2265 int i;
2266 int expecting_sec_name = 0;
2267 int expecting_sec_addr = 0;
2268 char **argv;
2269
2270 struct sect_opt
2271 {
2272 char *name;
2273 char *value;
2274 };
2275
2276 struct section_addr_info *section_addrs;
2277 struct sect_opt *sect_opts = NULL;
2278 size_t num_sect_opts = 0;
2279 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2280
2281 num_sect_opts = 16;
2282 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2283 * sizeof (struct sect_opt));
2284
2285 dont_repeat ();
2286
2287 if (args == NULL)
2288 error (_("add-symbol-file takes a file name and an address"));
2289
2290 argv = gdb_buildargv (args);
2291 make_cleanup_freeargv (argv);
2292
2293 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2294 {
2295 /* Process the argument. */
2296 if (argcnt == 0)
2297 {
2298 /* The first argument is the file name. */
2299 filename = tilde_expand (arg);
2300 make_cleanup (xfree, filename);
2301 }
2302 else
2303 if (argcnt == 1)
2304 {
2305 /* The second argument is always the text address at which
2306 to load the program. */
2307 sect_opts[section_index].name = ".text";
2308 sect_opts[section_index].value = arg;
2309 if (++section_index >= num_sect_opts)
2310 {
2311 num_sect_opts *= 2;
2312 sect_opts = ((struct sect_opt *)
2313 xrealloc (sect_opts,
2314 num_sect_opts
2315 * sizeof (struct sect_opt)));
2316 }
2317 }
2318 else
2319 {
2320 /* It's an option (starting with '-') or it's an argument
2321 to an option. */
2322
2323 if (*arg == '-')
2324 {
2325 if (strcmp (arg, "-readnow") == 0)
2326 flags |= OBJF_READNOW;
2327 else if (strcmp (arg, "-s") == 0)
2328 {
2329 expecting_sec_name = 1;
2330 expecting_sec_addr = 1;
2331 }
2332 }
2333 else
2334 {
2335 if (expecting_sec_name)
2336 {
2337 sect_opts[section_index].name = arg;
2338 expecting_sec_name = 0;
2339 }
2340 else
2341 if (expecting_sec_addr)
2342 {
2343 sect_opts[section_index].value = arg;
2344 expecting_sec_addr = 0;
2345 if (++section_index >= num_sect_opts)
2346 {
2347 num_sect_opts *= 2;
2348 sect_opts = ((struct sect_opt *)
2349 xrealloc (sect_opts,
2350 num_sect_opts
2351 * sizeof (struct sect_opt)));
2352 }
2353 }
2354 else
2355 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2356 " [-readnow] [-s <secname> <addr>]*"));
2357 }
2358 }
2359 }
2360
2361 /* This command takes at least two arguments. The first one is a
2362 filename, and the second is the address where this file has been
2363 loaded. Abort now if this address hasn't been provided by the
2364 user. */
2365 if (section_index < 1)
2366 error (_("The address where %s has been loaded is missing"), filename);
2367
2368 /* Print the prompt for the query below. And save the arguments into
2369 a sect_addr_info structure to be passed around to other
2370 functions. We have to split this up into separate print
2371 statements because hex_string returns a local static
2372 string. */
2373
2374 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2375 section_addrs = alloc_section_addr_info (section_index);
2376 make_cleanup (xfree, section_addrs);
2377 for (i = 0; i < section_index; i++)
2378 {
2379 CORE_ADDR addr;
2380 char *val = sect_opts[i].value;
2381 char *sec = sect_opts[i].name;
2382
2383 addr = parse_and_eval_address (val);
2384
2385 /* Here we store the section offsets in the order they were
2386 entered on the command line. */
2387 section_addrs->other[sec_num].name = sec;
2388 section_addrs->other[sec_num].addr = addr;
2389 printf_unfiltered ("\t%s_addr = %s\n", sec,
2390 paddress (gdbarch, addr));
2391 sec_num++;
2392
2393 /* The object's sections are initialized when a
2394 call is made to build_objfile_section_table (objfile).
2395 This happens in reread_symbols.
2396 At this point, we don't know what file type this is,
2397 so we can't determine what section names are valid. */
2398 }
2399
2400 if (from_tty && (!query ("%s", "")))
2401 error (_("Not confirmed."));
2402
2403 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2404 section_addrs, flags);
2405
2406 /* Getting new symbols may change our opinion about what is
2407 frameless. */
2408 reinit_frame_cache ();
2409 do_cleanups (my_cleanups);
2410 }
2411 \f
2412
2413 typedef struct objfile *objfilep;
2414
2415 DEF_VEC_P (objfilep);
2416
2417 /* Re-read symbols if a symbol-file has changed. */
2418 void
2419 reread_symbols (void)
2420 {
2421 struct objfile *objfile;
2422 long new_modtime;
2423 struct stat new_statbuf;
2424 int res;
2425 VEC (objfilep) *new_objfiles = NULL;
2426 struct cleanup *all_cleanups;
2427
2428 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2429
2430 /* With the addition of shared libraries, this should be modified,
2431 the load time should be saved in the partial symbol tables, since
2432 different tables may come from different source files. FIXME.
2433 This routine should then walk down each partial symbol table
2434 and see if the symbol table that it originates from has been changed. */
2435
2436 for (objfile = object_files; objfile; objfile = objfile->next)
2437 {
2438 /* solib-sunos.c creates one objfile with obfd. */
2439 if (objfile->obfd == NULL)
2440 continue;
2441
2442 /* Separate debug objfiles are handled in the main objfile. */
2443 if (objfile->separate_debug_objfile_backlink)
2444 continue;
2445
2446 /* If this object is from an archive (what you usually create with
2447 `ar', often called a `static library' on most systems, though
2448 a `shared library' on AIX is also an archive), then you should
2449 stat on the archive name, not member name. */
2450 if (objfile->obfd->my_archive)
2451 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2452 else
2453 res = stat (objfile->name, &new_statbuf);
2454 if (res != 0)
2455 {
2456 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2457 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2458 objfile->name);
2459 continue;
2460 }
2461 new_modtime = new_statbuf.st_mtime;
2462 if (new_modtime != objfile->mtime)
2463 {
2464 struct cleanup *old_cleanups;
2465 struct section_offsets *offsets;
2466 int num_offsets;
2467 char *obfd_filename;
2468
2469 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2470 objfile->name);
2471
2472 /* There are various functions like symbol_file_add,
2473 symfile_bfd_open, syms_from_objfile, etc., which might
2474 appear to do what we want. But they have various other
2475 effects which we *don't* want. So we just do stuff
2476 ourselves. We don't worry about mapped files (for one thing,
2477 any mapped file will be out of date). */
2478
2479 /* If we get an error, blow away this objfile (not sure if
2480 that is the correct response for things like shared
2481 libraries). */
2482 old_cleanups = make_cleanup_free_objfile (objfile);
2483 /* We need to do this whenever any symbols go away. */
2484 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2485
2486 if (exec_bfd != NULL
2487 && filename_cmp (bfd_get_filename (objfile->obfd),
2488 bfd_get_filename (exec_bfd)) == 0)
2489 {
2490 /* Reload EXEC_BFD without asking anything. */
2491
2492 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2493 }
2494
2495 /* Keep the calls order approx. the same as in free_objfile. */
2496
2497 /* Free the separate debug objfiles. It will be
2498 automatically recreated by sym_read. */
2499 free_objfile_separate_debug (objfile);
2500
2501 /* Remove any references to this objfile in the global
2502 value lists. */
2503 preserve_values (objfile);
2504
2505 /* Nuke all the state that we will re-read. Much of the following
2506 code which sets things to NULL really is necessary to tell
2507 other parts of GDB that there is nothing currently there.
2508
2509 Try to keep the freeing order compatible with free_objfile. */
2510
2511 if (objfile->sf != NULL)
2512 {
2513 (*objfile->sf->sym_finish) (objfile);
2514 }
2515
2516 clear_objfile_data (objfile);
2517
2518 /* Clean up any state BFD has sitting around. We don't need
2519 to close the descriptor but BFD lacks a way of closing the
2520 BFD without closing the descriptor. */
2521 {
2522 struct bfd *obfd = objfile->obfd;
2523
2524 obfd_filename = bfd_get_filename (objfile->obfd);
2525 /* Open the new BFD before freeing the old one, so that
2526 the filename remains live. */
2527 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2528 gdb_bfd_unref (obfd);
2529 }
2530
2531 if (objfile->obfd == NULL)
2532 error (_("Can't open %s to read symbols."), objfile->name);
2533 /* bfd_openr sets cacheable to true, which is what we want. */
2534 if (!bfd_check_format (objfile->obfd, bfd_object))
2535 error (_("Can't read symbols from %s: %s."), objfile->name,
2536 bfd_errmsg (bfd_get_error ()));
2537
2538 /* Save the offsets, we will nuke them with the rest of the
2539 objfile_obstack. */
2540 num_offsets = objfile->num_sections;
2541 offsets = ((struct section_offsets *)
2542 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2543 memcpy (offsets, objfile->section_offsets,
2544 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2545
2546 /* FIXME: Do we have to free a whole linked list, or is this
2547 enough? */
2548 if (objfile->global_psymbols.list)
2549 xfree (objfile->global_psymbols.list);
2550 memset (&objfile->global_psymbols, 0,
2551 sizeof (objfile->global_psymbols));
2552 if (objfile->static_psymbols.list)
2553 xfree (objfile->static_psymbols.list);
2554 memset (&objfile->static_psymbols, 0,
2555 sizeof (objfile->static_psymbols));
2556
2557 /* Free the obstacks for non-reusable objfiles. */
2558 psymbol_bcache_free (objfile->psymbol_cache);
2559 objfile->psymbol_cache = psymbol_bcache_init ();
2560 bcache_xfree (objfile->macro_cache);
2561 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2562 bcache_xfree (objfile->filename_cache);
2563 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2564 if (objfile->demangled_names_hash != NULL)
2565 {
2566 htab_delete (objfile->demangled_names_hash);
2567 objfile->demangled_names_hash = NULL;
2568 }
2569 obstack_free (&objfile->objfile_obstack, 0);
2570 objfile->sections = NULL;
2571 objfile->symtabs = NULL;
2572 objfile->psymtabs = NULL;
2573 objfile->psymtabs_addrmap = NULL;
2574 objfile->free_psymtabs = NULL;
2575 objfile->template_symbols = NULL;
2576 objfile->msymbols = NULL;
2577 objfile->deprecated_sym_private = NULL;
2578 objfile->minimal_symbol_count = 0;
2579 memset (&objfile->msymbol_hash, 0,
2580 sizeof (objfile->msymbol_hash));
2581 memset (&objfile->msymbol_demangled_hash, 0,
2582 sizeof (objfile->msymbol_demangled_hash));
2583
2584 /* obstack_init also initializes the obstack so it is
2585 empty. We could use obstack_specify_allocation but
2586 gdb_obstack.h specifies the alloc/dealloc functions. */
2587 obstack_init (&objfile->objfile_obstack);
2588 build_objfile_section_table (objfile);
2589 terminate_minimal_symbol_table (objfile);
2590
2591 /* We use the same section offsets as from last time. I'm not
2592 sure whether that is always correct for shared libraries. */
2593 objfile->section_offsets = (struct section_offsets *)
2594 obstack_alloc (&objfile->objfile_obstack,
2595 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2596 memcpy (objfile->section_offsets, offsets,
2597 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2598 objfile->num_sections = num_offsets;
2599
2600 /* What the hell is sym_new_init for, anyway? The concept of
2601 distinguishing between the main file and additional files
2602 in this way seems rather dubious. */
2603 if (objfile == symfile_objfile)
2604 {
2605 (*objfile->sf->sym_new_init) (objfile);
2606 }
2607
2608 (*objfile->sf->sym_init) (objfile);
2609 clear_complaints (&symfile_complaints, 1, 1);
2610 /* Do not set flags as this is safe and we don't want to be
2611 verbose. */
2612 (*objfile->sf->sym_read) (objfile, 0);
2613 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2614 {
2615 objfile->flags &= ~OBJF_PSYMTABS_READ;
2616 require_partial_symbols (objfile, 0);
2617 }
2618
2619 if (!objfile_has_symbols (objfile))
2620 {
2621 wrap_here ("");
2622 printf_unfiltered (_("(no debugging symbols found)\n"));
2623 wrap_here ("");
2624 }
2625
2626 /* We're done reading the symbol file; finish off complaints. */
2627 clear_complaints (&symfile_complaints, 0, 1);
2628
2629 /* Getting new symbols may change our opinion about what is
2630 frameless. */
2631
2632 reinit_frame_cache ();
2633
2634 /* Discard cleanups as symbol reading was successful. */
2635 discard_cleanups (old_cleanups);
2636
2637 /* If the mtime has changed between the time we set new_modtime
2638 and now, we *want* this to be out of date, so don't call stat
2639 again now. */
2640 objfile->mtime = new_modtime;
2641 init_entry_point_info (objfile);
2642
2643 VEC_safe_push (objfilep, new_objfiles, objfile);
2644 }
2645 }
2646
2647 if (new_objfiles)
2648 {
2649 int ix;
2650
2651 /* Notify objfiles that we've modified objfile sections. */
2652 objfiles_changed ();
2653
2654 clear_symtab_users (0);
2655
2656 /* clear_objfile_data for each objfile was called before freeing it and
2657 observer_notify_new_objfile (NULL) has been called by
2658 clear_symtab_users above. Notify the new files now. */
2659 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2660 observer_notify_new_objfile (objfile);
2661
2662 /* At least one objfile has changed, so we can consider that
2663 the executable we're debugging has changed too. */
2664 observer_notify_executable_changed ();
2665 }
2666
2667 do_cleanups (all_cleanups);
2668 }
2669 \f
2670
2671
2672 typedef struct
2673 {
2674 char *ext;
2675 enum language lang;
2676 }
2677 filename_language;
2678
2679 static filename_language *filename_language_table;
2680 static int fl_table_size, fl_table_next;
2681
2682 static void
2683 add_filename_language (char *ext, enum language lang)
2684 {
2685 if (fl_table_next >= fl_table_size)
2686 {
2687 fl_table_size += 10;
2688 filename_language_table =
2689 xrealloc (filename_language_table,
2690 fl_table_size * sizeof (*filename_language_table));
2691 }
2692
2693 filename_language_table[fl_table_next].ext = xstrdup (ext);
2694 filename_language_table[fl_table_next].lang = lang;
2695 fl_table_next++;
2696 }
2697
2698 static char *ext_args;
2699 static void
2700 show_ext_args (struct ui_file *file, int from_tty,
2701 struct cmd_list_element *c, const char *value)
2702 {
2703 fprintf_filtered (file,
2704 _("Mapping between filename extension "
2705 "and source language is \"%s\".\n"),
2706 value);
2707 }
2708
2709 static void
2710 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2711 {
2712 int i;
2713 char *cp = ext_args;
2714 enum language lang;
2715
2716 /* First arg is filename extension, starting with '.' */
2717 if (*cp != '.')
2718 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2719
2720 /* Find end of first arg. */
2721 while (*cp && !isspace (*cp))
2722 cp++;
2723
2724 if (*cp == '\0')
2725 error (_("'%s': two arguments required -- "
2726 "filename extension and language"),
2727 ext_args);
2728
2729 /* Null-terminate first arg. */
2730 *cp++ = '\0';
2731
2732 /* Find beginning of second arg, which should be a source language. */
2733 while (*cp && isspace (*cp))
2734 cp++;
2735
2736 if (*cp == '\0')
2737 error (_("'%s': two arguments required -- "
2738 "filename extension and language"),
2739 ext_args);
2740
2741 /* Lookup the language from among those we know. */
2742 lang = language_enum (cp);
2743
2744 /* Now lookup the filename extension: do we already know it? */
2745 for (i = 0; i < fl_table_next; i++)
2746 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2747 break;
2748
2749 if (i >= fl_table_next)
2750 {
2751 /* New file extension. */
2752 add_filename_language (ext_args, lang);
2753 }
2754 else
2755 {
2756 /* Redefining a previously known filename extension. */
2757
2758 /* if (from_tty) */
2759 /* query ("Really make files of type %s '%s'?", */
2760 /* ext_args, language_str (lang)); */
2761
2762 xfree (filename_language_table[i].ext);
2763 filename_language_table[i].ext = xstrdup (ext_args);
2764 filename_language_table[i].lang = lang;
2765 }
2766 }
2767
2768 static void
2769 info_ext_lang_command (char *args, int from_tty)
2770 {
2771 int i;
2772
2773 printf_filtered (_("Filename extensions and the languages they represent:"));
2774 printf_filtered ("\n\n");
2775 for (i = 0; i < fl_table_next; i++)
2776 printf_filtered ("\t%s\t- %s\n",
2777 filename_language_table[i].ext,
2778 language_str (filename_language_table[i].lang));
2779 }
2780
2781 static void
2782 init_filename_language_table (void)
2783 {
2784 if (fl_table_size == 0) /* Protect against repetition. */
2785 {
2786 fl_table_size = 20;
2787 fl_table_next = 0;
2788 filename_language_table =
2789 xmalloc (fl_table_size * sizeof (*filename_language_table));
2790 add_filename_language (".c", language_c);
2791 add_filename_language (".d", language_d);
2792 add_filename_language (".C", language_cplus);
2793 add_filename_language (".cc", language_cplus);
2794 add_filename_language (".cp", language_cplus);
2795 add_filename_language (".cpp", language_cplus);
2796 add_filename_language (".cxx", language_cplus);
2797 add_filename_language (".c++", language_cplus);
2798 add_filename_language (".java", language_java);
2799 add_filename_language (".class", language_java);
2800 add_filename_language (".m", language_objc);
2801 add_filename_language (".f", language_fortran);
2802 add_filename_language (".F", language_fortran);
2803 add_filename_language (".for", language_fortran);
2804 add_filename_language (".FOR", language_fortran);
2805 add_filename_language (".ftn", language_fortran);
2806 add_filename_language (".FTN", language_fortran);
2807 add_filename_language (".fpp", language_fortran);
2808 add_filename_language (".FPP", language_fortran);
2809 add_filename_language (".f90", language_fortran);
2810 add_filename_language (".F90", language_fortran);
2811 add_filename_language (".f95", language_fortran);
2812 add_filename_language (".F95", language_fortran);
2813 add_filename_language (".f03", language_fortran);
2814 add_filename_language (".F03", language_fortran);
2815 add_filename_language (".f08", language_fortran);
2816 add_filename_language (".F08", language_fortran);
2817 add_filename_language (".s", language_asm);
2818 add_filename_language (".sx", language_asm);
2819 add_filename_language (".S", language_asm);
2820 add_filename_language (".pas", language_pascal);
2821 add_filename_language (".p", language_pascal);
2822 add_filename_language (".pp", language_pascal);
2823 add_filename_language (".adb", language_ada);
2824 add_filename_language (".ads", language_ada);
2825 add_filename_language (".a", language_ada);
2826 add_filename_language (".ada", language_ada);
2827 add_filename_language (".dg", language_ada);
2828 }
2829 }
2830
2831 enum language
2832 deduce_language_from_filename (const char *filename)
2833 {
2834 int i;
2835 char *cp;
2836
2837 if (filename != NULL)
2838 if ((cp = strrchr (filename, '.')) != NULL)
2839 for (i = 0; i < fl_table_next; i++)
2840 if (strcmp (cp, filename_language_table[i].ext) == 0)
2841 return filename_language_table[i].lang;
2842
2843 return language_unknown;
2844 }
2845 \f
2846 /* allocate_symtab:
2847
2848 Allocate and partly initialize a new symbol table. Return a pointer
2849 to it. error() if no space.
2850
2851 Caller must set these fields:
2852 LINETABLE(symtab)
2853 symtab->blockvector
2854 symtab->dirname
2855 symtab->free_code
2856 symtab->free_ptr
2857 */
2858
2859 struct symtab *
2860 allocate_symtab (const char *filename, struct objfile *objfile)
2861 {
2862 struct symtab *symtab;
2863
2864 symtab = (struct symtab *)
2865 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2866 memset (symtab, 0, sizeof (*symtab));
2867 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2868 objfile->filename_cache);
2869 symtab->fullname = NULL;
2870 symtab->language = deduce_language_from_filename (filename);
2871 symtab->debugformat = "unknown";
2872
2873 /* Hook it to the objfile it comes from. */
2874
2875 symtab->objfile = objfile;
2876 symtab->next = objfile->symtabs;
2877 objfile->symtabs = symtab;
2878
2879 if (symtab_create_debug)
2880 {
2881 /* Be a bit clever with debugging messages, and don't print objfile
2882 every time, only when it changes. */
2883 static char *last_objfile_name = NULL;
2884
2885 if (last_objfile_name == NULL
2886 || strcmp (last_objfile_name, objfile->name) != 0)
2887 {
2888 xfree (last_objfile_name);
2889 last_objfile_name = xstrdup (objfile->name);
2890 fprintf_unfiltered (gdb_stdlog,
2891 "Creating one or more symtabs for objfile %s ...\n",
2892 last_objfile_name);
2893 }
2894 fprintf_unfiltered (gdb_stdlog,
2895 "Created symtab 0x%lx for module %s.\n",
2896 (long) symtab, filename);
2897 }
2898
2899 return (symtab);
2900 }
2901 \f
2902
2903 /* Reset all data structures in gdb which may contain references to symbol
2904 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2905
2906 void
2907 clear_symtab_users (int add_flags)
2908 {
2909 /* Someday, we should do better than this, by only blowing away
2910 the things that really need to be blown. */
2911
2912 /* Clear the "current" symtab first, because it is no longer valid.
2913 breakpoint_re_set may try to access the current symtab. */
2914 clear_current_source_symtab_and_line ();
2915
2916 clear_displays ();
2917 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2918 breakpoint_re_set ();
2919 clear_last_displayed_sal ();
2920 clear_pc_function_cache ();
2921 observer_notify_new_objfile (NULL);
2922
2923 /* Clear globals which might have pointed into a removed objfile.
2924 FIXME: It's not clear which of these are supposed to persist
2925 between expressions and which ought to be reset each time. */
2926 expression_context_block = NULL;
2927 innermost_block = NULL;
2928
2929 /* Varobj may refer to old symbols, perform a cleanup. */
2930 varobj_invalidate ();
2931
2932 }
2933
2934 static void
2935 clear_symtab_users_cleanup (void *ignore)
2936 {
2937 clear_symtab_users (0);
2938 }
2939 \f
2940 /* OVERLAYS:
2941 The following code implements an abstraction for debugging overlay sections.
2942
2943 The target model is as follows:
2944 1) The gnu linker will permit multiple sections to be mapped into the
2945 same VMA, each with its own unique LMA (or load address).
2946 2) It is assumed that some runtime mechanism exists for mapping the
2947 sections, one by one, from the load address into the VMA address.
2948 3) This code provides a mechanism for gdb to keep track of which
2949 sections should be considered to be mapped from the VMA to the LMA.
2950 This information is used for symbol lookup, and memory read/write.
2951 For instance, if a section has been mapped then its contents
2952 should be read from the VMA, otherwise from the LMA.
2953
2954 Two levels of debugger support for overlays are available. One is
2955 "manual", in which the debugger relies on the user to tell it which
2956 overlays are currently mapped. This level of support is
2957 implemented entirely in the core debugger, and the information about
2958 whether a section is mapped is kept in the objfile->obj_section table.
2959
2960 The second level of support is "automatic", and is only available if
2961 the target-specific code provides functionality to read the target's
2962 overlay mapping table, and translate its contents for the debugger
2963 (by updating the mapped state information in the obj_section tables).
2964
2965 The interface is as follows:
2966 User commands:
2967 overlay map <name> -- tell gdb to consider this section mapped
2968 overlay unmap <name> -- tell gdb to consider this section unmapped
2969 overlay list -- list the sections that GDB thinks are mapped
2970 overlay read-target -- get the target's state of what's mapped
2971 overlay off/manual/auto -- set overlay debugging state
2972 Functional interface:
2973 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2974 section, return that section.
2975 find_pc_overlay(pc): find any overlay section that contains
2976 the pc, either in its VMA or its LMA
2977 section_is_mapped(sect): true if overlay is marked as mapped
2978 section_is_overlay(sect): true if section's VMA != LMA
2979 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2980 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2981 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2982 overlay_mapped_address(...): map an address from section's LMA to VMA
2983 overlay_unmapped_address(...): map an address from section's VMA to LMA
2984 symbol_overlayed_address(...): Return a "current" address for symbol:
2985 either in VMA or LMA depending on whether
2986 the symbol's section is currently mapped. */
2987
2988 /* Overlay debugging state: */
2989
2990 enum overlay_debugging_state overlay_debugging = ovly_off;
2991 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2992
2993 /* Function: section_is_overlay (SECTION)
2994 Returns true if SECTION has VMA not equal to LMA, ie.
2995 SECTION is loaded at an address different from where it will "run". */
2996
2997 int
2998 section_is_overlay (struct obj_section *section)
2999 {
3000 if (overlay_debugging && section)
3001 {
3002 bfd *abfd = section->objfile->obfd;
3003 asection *bfd_section = section->the_bfd_section;
3004
3005 if (bfd_section_lma (abfd, bfd_section) != 0
3006 && bfd_section_lma (abfd, bfd_section)
3007 != bfd_section_vma (abfd, bfd_section))
3008 return 1;
3009 }
3010
3011 return 0;
3012 }
3013
3014 /* Function: overlay_invalidate_all (void)
3015 Invalidate the mapped state of all overlay sections (mark it as stale). */
3016
3017 static void
3018 overlay_invalidate_all (void)
3019 {
3020 struct objfile *objfile;
3021 struct obj_section *sect;
3022
3023 ALL_OBJSECTIONS (objfile, sect)
3024 if (section_is_overlay (sect))
3025 sect->ovly_mapped = -1;
3026 }
3027
3028 /* Function: section_is_mapped (SECTION)
3029 Returns true if section is an overlay, and is currently mapped.
3030
3031 Access to the ovly_mapped flag is restricted to this function, so
3032 that we can do automatic update. If the global flag
3033 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3034 overlay_invalidate_all. If the mapped state of the particular
3035 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3036
3037 int
3038 section_is_mapped (struct obj_section *osect)
3039 {
3040 struct gdbarch *gdbarch;
3041
3042 if (osect == 0 || !section_is_overlay (osect))
3043 return 0;
3044
3045 switch (overlay_debugging)
3046 {
3047 default:
3048 case ovly_off:
3049 return 0; /* overlay debugging off */
3050 case ovly_auto: /* overlay debugging automatic */
3051 /* Unles there is a gdbarch_overlay_update function,
3052 there's really nothing useful to do here (can't really go auto). */
3053 gdbarch = get_objfile_arch (osect->objfile);
3054 if (gdbarch_overlay_update_p (gdbarch))
3055 {
3056 if (overlay_cache_invalid)
3057 {
3058 overlay_invalidate_all ();
3059 overlay_cache_invalid = 0;
3060 }
3061 if (osect->ovly_mapped == -1)
3062 gdbarch_overlay_update (gdbarch, osect);
3063 }
3064 /* fall thru to manual case */
3065 case ovly_on: /* overlay debugging manual */
3066 return osect->ovly_mapped == 1;
3067 }
3068 }
3069
3070 /* Function: pc_in_unmapped_range
3071 If PC falls into the lma range of SECTION, return true, else false. */
3072
3073 CORE_ADDR
3074 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3075 {
3076 if (section_is_overlay (section))
3077 {
3078 bfd *abfd = section->objfile->obfd;
3079 asection *bfd_section = section->the_bfd_section;
3080
3081 /* We assume the LMA is relocated by the same offset as the VMA. */
3082 bfd_vma size = bfd_get_section_size (bfd_section);
3083 CORE_ADDR offset = obj_section_offset (section);
3084
3085 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3086 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3087 return 1;
3088 }
3089
3090 return 0;
3091 }
3092
3093 /* Function: pc_in_mapped_range
3094 If PC falls into the vma range of SECTION, return true, else false. */
3095
3096 CORE_ADDR
3097 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3098 {
3099 if (section_is_overlay (section))
3100 {
3101 if (obj_section_addr (section) <= pc
3102 && pc < obj_section_endaddr (section))
3103 return 1;
3104 }
3105
3106 return 0;
3107 }
3108
3109
3110 /* Return true if the mapped ranges of sections A and B overlap, false
3111 otherwise. */
3112 static int
3113 sections_overlap (struct obj_section *a, struct obj_section *b)
3114 {
3115 CORE_ADDR a_start = obj_section_addr (a);
3116 CORE_ADDR a_end = obj_section_endaddr (a);
3117 CORE_ADDR b_start = obj_section_addr (b);
3118 CORE_ADDR b_end = obj_section_endaddr (b);
3119
3120 return (a_start < b_end && b_start < a_end);
3121 }
3122
3123 /* Function: overlay_unmapped_address (PC, SECTION)
3124 Returns the address corresponding to PC in the unmapped (load) range.
3125 May be the same as PC. */
3126
3127 CORE_ADDR
3128 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3129 {
3130 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3131 {
3132 bfd *abfd = section->objfile->obfd;
3133 asection *bfd_section = section->the_bfd_section;
3134
3135 return pc + bfd_section_lma (abfd, bfd_section)
3136 - bfd_section_vma (abfd, bfd_section);
3137 }
3138
3139 return pc;
3140 }
3141
3142 /* Function: overlay_mapped_address (PC, SECTION)
3143 Returns the address corresponding to PC in the mapped (runtime) range.
3144 May be the same as PC. */
3145
3146 CORE_ADDR
3147 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3148 {
3149 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3150 {
3151 bfd *abfd = section->objfile->obfd;
3152 asection *bfd_section = section->the_bfd_section;
3153
3154 return pc + bfd_section_vma (abfd, bfd_section)
3155 - bfd_section_lma (abfd, bfd_section);
3156 }
3157
3158 return pc;
3159 }
3160
3161
3162 /* Function: symbol_overlayed_address
3163 Return one of two addresses (relative to the VMA or to the LMA),
3164 depending on whether the section is mapped or not. */
3165
3166 CORE_ADDR
3167 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3168 {
3169 if (overlay_debugging)
3170 {
3171 /* If the symbol has no section, just return its regular address. */
3172 if (section == 0)
3173 return address;
3174 /* If the symbol's section is not an overlay, just return its
3175 address. */
3176 if (!section_is_overlay (section))
3177 return address;
3178 /* If the symbol's section is mapped, just return its address. */
3179 if (section_is_mapped (section))
3180 return address;
3181 /*
3182 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3183 * then return its LOADED address rather than its vma address!!
3184 */
3185 return overlay_unmapped_address (address, section);
3186 }
3187 return address;
3188 }
3189
3190 /* Function: find_pc_overlay (PC)
3191 Return the best-match overlay section for PC:
3192 If PC matches a mapped overlay section's VMA, return that section.
3193 Else if PC matches an unmapped section's VMA, return that section.
3194 Else if PC matches an unmapped section's LMA, return that section. */
3195
3196 struct obj_section *
3197 find_pc_overlay (CORE_ADDR pc)
3198 {
3199 struct objfile *objfile;
3200 struct obj_section *osect, *best_match = NULL;
3201
3202 if (overlay_debugging)
3203 ALL_OBJSECTIONS (objfile, osect)
3204 if (section_is_overlay (osect))
3205 {
3206 if (pc_in_mapped_range (pc, osect))
3207 {
3208 if (section_is_mapped (osect))
3209 return osect;
3210 else
3211 best_match = osect;
3212 }
3213 else if (pc_in_unmapped_range (pc, osect))
3214 best_match = osect;
3215 }
3216 return best_match;
3217 }
3218
3219 /* Function: find_pc_mapped_section (PC)
3220 If PC falls into the VMA address range of an overlay section that is
3221 currently marked as MAPPED, return that section. Else return NULL. */
3222
3223 struct obj_section *
3224 find_pc_mapped_section (CORE_ADDR pc)
3225 {
3226 struct objfile *objfile;
3227 struct obj_section *osect;
3228
3229 if (overlay_debugging)
3230 ALL_OBJSECTIONS (objfile, osect)
3231 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3232 return osect;
3233
3234 return NULL;
3235 }
3236
3237 /* Function: list_overlays_command
3238 Print a list of mapped sections and their PC ranges. */
3239
3240 void
3241 list_overlays_command (char *args, int from_tty)
3242 {
3243 int nmapped = 0;
3244 struct objfile *objfile;
3245 struct obj_section *osect;
3246
3247 if (overlay_debugging)
3248 ALL_OBJSECTIONS (objfile, osect)
3249 if (section_is_mapped (osect))
3250 {
3251 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3252 const char *name;
3253 bfd_vma lma, vma;
3254 int size;
3255
3256 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3257 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3258 size = bfd_get_section_size (osect->the_bfd_section);
3259 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3260
3261 printf_filtered ("Section %s, loaded at ", name);
3262 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3263 puts_filtered (" - ");
3264 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3265 printf_filtered (", mapped at ");
3266 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3267 puts_filtered (" - ");
3268 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3269 puts_filtered ("\n");
3270
3271 nmapped++;
3272 }
3273 if (nmapped == 0)
3274 printf_filtered (_("No sections are mapped.\n"));
3275 }
3276
3277 /* Function: map_overlay_command
3278 Mark the named section as mapped (ie. residing at its VMA address). */
3279
3280 void
3281 map_overlay_command (char *args, int from_tty)
3282 {
3283 struct objfile *objfile, *objfile2;
3284 struct obj_section *sec, *sec2;
3285
3286 if (!overlay_debugging)
3287 error (_("Overlay debugging not enabled. Use "
3288 "either the 'overlay auto' or\n"
3289 "the 'overlay manual' command."));
3290
3291 if (args == 0 || *args == 0)
3292 error (_("Argument required: name of an overlay section"));
3293
3294 /* First, find a section matching the user supplied argument. */
3295 ALL_OBJSECTIONS (objfile, sec)
3296 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3297 {
3298 /* Now, check to see if the section is an overlay. */
3299 if (!section_is_overlay (sec))
3300 continue; /* not an overlay section */
3301
3302 /* Mark the overlay as "mapped". */
3303 sec->ovly_mapped = 1;
3304
3305 /* Next, make a pass and unmap any sections that are
3306 overlapped by this new section: */
3307 ALL_OBJSECTIONS (objfile2, sec2)
3308 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3309 {
3310 if (info_verbose)
3311 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3312 bfd_section_name (objfile->obfd,
3313 sec2->the_bfd_section));
3314 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3315 }
3316 return;
3317 }
3318 error (_("No overlay section called %s"), args);
3319 }
3320
3321 /* Function: unmap_overlay_command
3322 Mark the overlay section as unmapped
3323 (ie. resident in its LMA address range, rather than the VMA range). */
3324
3325 void
3326 unmap_overlay_command (char *args, int from_tty)
3327 {
3328 struct objfile *objfile;
3329 struct obj_section *sec;
3330
3331 if (!overlay_debugging)
3332 error (_("Overlay debugging not enabled. "
3333 "Use either the 'overlay auto' or\n"
3334 "the 'overlay manual' command."));
3335
3336 if (args == 0 || *args == 0)
3337 error (_("Argument required: name of an overlay section"));
3338
3339 /* First, find a section matching the user supplied argument. */
3340 ALL_OBJSECTIONS (objfile, sec)
3341 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3342 {
3343 if (!sec->ovly_mapped)
3344 error (_("Section %s is not mapped"), args);
3345 sec->ovly_mapped = 0;
3346 return;
3347 }
3348 error (_("No overlay section called %s"), args);
3349 }
3350
3351 /* Function: overlay_auto_command
3352 A utility command to turn on overlay debugging.
3353 Possibly this should be done via a set/show command. */
3354
3355 static void
3356 overlay_auto_command (char *args, int from_tty)
3357 {
3358 overlay_debugging = ovly_auto;
3359 enable_overlay_breakpoints ();
3360 if (info_verbose)
3361 printf_unfiltered (_("Automatic overlay debugging enabled."));
3362 }
3363
3364 /* Function: overlay_manual_command
3365 A utility command to turn on overlay debugging.
3366 Possibly this should be done via a set/show command. */
3367
3368 static void
3369 overlay_manual_command (char *args, int from_tty)
3370 {
3371 overlay_debugging = ovly_on;
3372 disable_overlay_breakpoints ();
3373 if (info_verbose)
3374 printf_unfiltered (_("Overlay debugging enabled."));
3375 }
3376
3377 /* Function: overlay_off_command
3378 A utility command to turn on overlay debugging.
3379 Possibly this should be done via a set/show command. */
3380
3381 static void
3382 overlay_off_command (char *args, int from_tty)
3383 {
3384 overlay_debugging = ovly_off;
3385 disable_overlay_breakpoints ();
3386 if (info_verbose)
3387 printf_unfiltered (_("Overlay debugging disabled."));
3388 }
3389
3390 static void
3391 overlay_load_command (char *args, int from_tty)
3392 {
3393 struct gdbarch *gdbarch = get_current_arch ();
3394
3395 if (gdbarch_overlay_update_p (gdbarch))
3396 gdbarch_overlay_update (gdbarch, NULL);
3397 else
3398 error (_("This target does not know how to read its overlay state."));
3399 }
3400
3401 /* Function: overlay_command
3402 A place-holder for a mis-typed command. */
3403
3404 /* Command list chain containing all defined "overlay" subcommands. */
3405 struct cmd_list_element *overlaylist;
3406
3407 static void
3408 overlay_command (char *args, int from_tty)
3409 {
3410 printf_unfiltered
3411 ("\"overlay\" must be followed by the name of an overlay command.\n");
3412 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3413 }
3414
3415
3416 /* Target Overlays for the "Simplest" overlay manager:
3417
3418 This is GDB's default target overlay layer. It works with the
3419 minimal overlay manager supplied as an example by Cygnus. The
3420 entry point is via a function pointer "gdbarch_overlay_update",
3421 so targets that use a different runtime overlay manager can
3422 substitute their own overlay_update function and take over the
3423 function pointer.
3424
3425 The overlay_update function pokes around in the target's data structures
3426 to see what overlays are mapped, and updates GDB's overlay mapping with
3427 this information.
3428
3429 In this simple implementation, the target data structures are as follows:
3430 unsigned _novlys; /# number of overlay sections #/
3431 unsigned _ovly_table[_novlys][4] = {
3432 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3433 {..., ..., ..., ...},
3434 }
3435 unsigned _novly_regions; /# number of overlay regions #/
3436 unsigned _ovly_region_table[_novly_regions][3] = {
3437 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3438 {..., ..., ...},
3439 }
3440 These functions will attempt to update GDB's mappedness state in the
3441 symbol section table, based on the target's mappedness state.
3442
3443 To do this, we keep a cached copy of the target's _ovly_table, and
3444 attempt to detect when the cached copy is invalidated. The main
3445 entry point is "simple_overlay_update(SECT), which looks up SECT in
3446 the cached table and re-reads only the entry for that section from
3447 the target (whenever possible). */
3448
3449 /* Cached, dynamically allocated copies of the target data structures: */
3450 static unsigned (*cache_ovly_table)[4] = 0;
3451 static unsigned cache_novlys = 0;
3452 static CORE_ADDR cache_ovly_table_base = 0;
3453 enum ovly_index
3454 {
3455 VMA, SIZE, LMA, MAPPED
3456 };
3457
3458 /* Throw away the cached copy of _ovly_table. */
3459 static void
3460 simple_free_overlay_table (void)
3461 {
3462 if (cache_ovly_table)
3463 xfree (cache_ovly_table);
3464 cache_novlys = 0;
3465 cache_ovly_table = NULL;
3466 cache_ovly_table_base = 0;
3467 }
3468
3469 /* Read an array of ints of size SIZE from the target into a local buffer.
3470 Convert to host order. int LEN is number of ints. */
3471 static void
3472 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3473 int len, int size, enum bfd_endian byte_order)
3474 {
3475 /* FIXME (alloca): Not safe if array is very large. */
3476 gdb_byte *buf = alloca (len * size);
3477 int i;
3478
3479 read_memory (memaddr, buf, len * size);
3480 for (i = 0; i < len; i++)
3481 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3482 }
3483
3484 /* Find and grab a copy of the target _ovly_table
3485 (and _novlys, which is needed for the table's size). */
3486 static int
3487 simple_read_overlay_table (void)
3488 {
3489 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3490 struct gdbarch *gdbarch;
3491 int word_size;
3492 enum bfd_endian byte_order;
3493
3494 simple_free_overlay_table ();
3495 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3496 if (! novlys_msym)
3497 {
3498 error (_("Error reading inferior's overlay table: "
3499 "couldn't find `_novlys' variable\n"
3500 "in inferior. Use `overlay manual' mode."));
3501 return 0;
3502 }
3503
3504 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3505 if (! ovly_table_msym)
3506 {
3507 error (_("Error reading inferior's overlay table: couldn't find "
3508 "`_ovly_table' array\n"
3509 "in inferior. Use `overlay manual' mode."));
3510 return 0;
3511 }
3512
3513 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3514 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3515 byte_order = gdbarch_byte_order (gdbarch);
3516
3517 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3518 4, byte_order);
3519 cache_ovly_table
3520 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3521 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3522 read_target_long_array (cache_ovly_table_base,
3523 (unsigned int *) cache_ovly_table,
3524 cache_novlys * 4, word_size, byte_order);
3525
3526 return 1; /* SUCCESS */
3527 }
3528
3529 /* Function: simple_overlay_update_1
3530 A helper function for simple_overlay_update. Assuming a cached copy
3531 of _ovly_table exists, look through it to find an entry whose vma,
3532 lma and size match those of OSECT. Re-read the entry and make sure
3533 it still matches OSECT (else the table may no longer be valid).
3534 Set OSECT's mapped state to match the entry. Return: 1 for
3535 success, 0 for failure. */
3536
3537 static int
3538 simple_overlay_update_1 (struct obj_section *osect)
3539 {
3540 int i, size;
3541 bfd *obfd = osect->objfile->obfd;
3542 asection *bsect = osect->the_bfd_section;
3543 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3544 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3546
3547 size = bfd_get_section_size (osect->the_bfd_section);
3548 for (i = 0; i < cache_novlys; i++)
3549 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3550 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3551 /* && cache_ovly_table[i][SIZE] == size */ )
3552 {
3553 read_target_long_array (cache_ovly_table_base + i * word_size,
3554 (unsigned int *) cache_ovly_table[i],
3555 4, word_size, byte_order);
3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3558 /* && cache_ovly_table[i][SIZE] == size */ )
3559 {
3560 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3561 return 1;
3562 }
3563 else /* Warning! Warning! Target's ovly table has changed! */
3564 return 0;
3565 }
3566 return 0;
3567 }
3568
3569 /* Function: simple_overlay_update
3570 If OSECT is NULL, then update all sections' mapped state
3571 (after re-reading the entire target _ovly_table).
3572 If OSECT is non-NULL, then try to find a matching entry in the
3573 cached ovly_table and update only OSECT's mapped state.
3574 If a cached entry can't be found or the cache isn't valid, then
3575 re-read the entire cache, and go ahead and update all sections. */
3576
3577 void
3578 simple_overlay_update (struct obj_section *osect)
3579 {
3580 struct objfile *objfile;
3581
3582 /* Were we given an osect to look up? NULL means do all of them. */
3583 if (osect)
3584 /* Have we got a cached copy of the target's overlay table? */
3585 if (cache_ovly_table != NULL)
3586 {
3587 /* Does its cached location match what's currently in the
3588 symtab? */
3589 struct minimal_symbol *minsym
3590 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3591
3592 if (minsym == NULL)
3593 error (_("Error reading inferior's overlay table: couldn't "
3594 "find `_ovly_table' array\n"
3595 "in inferior. Use `overlay manual' mode."));
3596
3597 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3598 /* Then go ahead and try to look up this single section in
3599 the cache. */
3600 if (simple_overlay_update_1 (osect))
3601 /* Found it! We're done. */
3602 return;
3603 }
3604
3605 /* Cached table no good: need to read the entire table anew.
3606 Or else we want all the sections, in which case it's actually
3607 more efficient to read the whole table in one block anyway. */
3608
3609 if (! simple_read_overlay_table ())
3610 return;
3611
3612 /* Now may as well update all sections, even if only one was requested. */
3613 ALL_OBJSECTIONS (objfile, osect)
3614 if (section_is_overlay (osect))
3615 {
3616 int i, size;
3617 bfd *obfd = osect->objfile->obfd;
3618 asection *bsect = osect->the_bfd_section;
3619
3620 size = bfd_get_section_size (bsect);
3621 for (i = 0; i < cache_novlys; i++)
3622 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3623 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3624 /* && cache_ovly_table[i][SIZE] == size */ )
3625 { /* obj_section matches i'th entry in ovly_table. */
3626 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3627 break; /* finished with inner for loop: break out. */
3628 }
3629 }
3630 }
3631
3632 /* Set the output sections and output offsets for section SECTP in
3633 ABFD. The relocation code in BFD will read these offsets, so we
3634 need to be sure they're initialized. We map each section to itself,
3635 with no offset; this means that SECTP->vma will be honored. */
3636
3637 static void
3638 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3639 {
3640 sectp->output_section = sectp;
3641 sectp->output_offset = 0;
3642 }
3643
3644 /* Default implementation for sym_relocate. */
3645
3646
3647 bfd_byte *
3648 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3649 bfd_byte *buf)
3650 {
3651 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3652 DWO file. */
3653 bfd *abfd = sectp->owner;
3654
3655 /* We're only interested in sections with relocation
3656 information. */
3657 if ((sectp->flags & SEC_RELOC) == 0)
3658 return NULL;
3659
3660 /* We will handle section offsets properly elsewhere, so relocate as if
3661 all sections begin at 0. */
3662 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3663
3664 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3665 }
3666
3667 /* Relocate the contents of a debug section SECTP in ABFD. The
3668 contents are stored in BUF if it is non-NULL, or returned in a
3669 malloc'd buffer otherwise.
3670
3671 For some platforms and debug info formats, shared libraries contain
3672 relocations against the debug sections (particularly for DWARF-2;
3673 one affected platform is PowerPC GNU/Linux, although it depends on
3674 the version of the linker in use). Also, ELF object files naturally
3675 have unresolved relocations for their debug sections. We need to apply
3676 the relocations in order to get the locations of symbols correct.
3677 Another example that may require relocation processing, is the
3678 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3679 debug section. */
3680
3681 bfd_byte *
3682 symfile_relocate_debug_section (struct objfile *objfile,
3683 asection *sectp, bfd_byte *buf)
3684 {
3685 gdb_assert (objfile->sf->sym_relocate);
3686
3687 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3688 }
3689
3690 struct symfile_segment_data *
3691 get_symfile_segment_data (bfd *abfd)
3692 {
3693 const struct sym_fns *sf = find_sym_fns (abfd);
3694
3695 if (sf == NULL)
3696 return NULL;
3697
3698 return sf->sym_segments (abfd);
3699 }
3700
3701 void
3702 free_symfile_segment_data (struct symfile_segment_data *data)
3703 {
3704 xfree (data->segment_bases);
3705 xfree (data->segment_sizes);
3706 xfree (data->segment_info);
3707 xfree (data);
3708 }
3709
3710
3711 /* Given:
3712 - DATA, containing segment addresses from the object file ABFD, and
3713 the mapping from ABFD's sections onto the segments that own them,
3714 and
3715 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3716 segment addresses reported by the target,
3717 store the appropriate offsets for each section in OFFSETS.
3718
3719 If there are fewer entries in SEGMENT_BASES than there are segments
3720 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3721
3722 If there are more entries, then ignore the extra. The target may
3723 not be able to distinguish between an empty data segment and a
3724 missing data segment; a missing text segment is less plausible. */
3725 int
3726 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3727 struct section_offsets *offsets,
3728 int num_segment_bases,
3729 const CORE_ADDR *segment_bases)
3730 {
3731 int i;
3732 asection *sect;
3733
3734 /* It doesn't make sense to call this function unless you have some
3735 segment base addresses. */
3736 gdb_assert (num_segment_bases > 0);
3737
3738 /* If we do not have segment mappings for the object file, we
3739 can not relocate it by segments. */
3740 gdb_assert (data != NULL);
3741 gdb_assert (data->num_segments > 0);
3742
3743 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3744 {
3745 int which = data->segment_info[i];
3746
3747 gdb_assert (0 <= which && which <= data->num_segments);
3748
3749 /* Don't bother computing offsets for sections that aren't
3750 loaded as part of any segment. */
3751 if (! which)
3752 continue;
3753
3754 /* Use the last SEGMENT_BASES entry as the address of any extra
3755 segments mentioned in DATA->segment_info. */
3756 if (which > num_segment_bases)
3757 which = num_segment_bases;
3758
3759 offsets->offsets[i] = (segment_bases[which - 1]
3760 - data->segment_bases[which - 1]);
3761 }
3762
3763 return 1;
3764 }
3765
3766 static void
3767 symfile_find_segment_sections (struct objfile *objfile)
3768 {
3769 bfd *abfd = objfile->obfd;
3770 int i;
3771 asection *sect;
3772 struct symfile_segment_data *data;
3773
3774 data = get_symfile_segment_data (objfile->obfd);
3775 if (data == NULL)
3776 return;
3777
3778 if (data->num_segments != 1 && data->num_segments != 2)
3779 {
3780 free_symfile_segment_data (data);
3781 return;
3782 }
3783
3784 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3785 {
3786 int which = data->segment_info[i];
3787
3788 if (which == 1)
3789 {
3790 if (objfile->sect_index_text == -1)
3791 objfile->sect_index_text = sect->index;
3792
3793 if (objfile->sect_index_rodata == -1)
3794 objfile->sect_index_rodata = sect->index;
3795 }
3796 else if (which == 2)
3797 {
3798 if (objfile->sect_index_data == -1)
3799 objfile->sect_index_data = sect->index;
3800
3801 if (objfile->sect_index_bss == -1)
3802 objfile->sect_index_bss = sect->index;
3803 }
3804 }
3805
3806 free_symfile_segment_data (data);
3807 }
3808
3809 void
3810 _initialize_symfile (void)
3811 {
3812 struct cmd_list_element *c;
3813
3814 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3815 Load symbol table from executable file FILE.\n\
3816 The `file' command can also load symbol tables, as well as setting the file\n\
3817 to execute."), &cmdlist);
3818 set_cmd_completer (c, filename_completer);
3819
3820 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3821 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3822 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3823 ...]\nADDR is the starting address of the file's text.\n\
3824 The optional arguments are section-name section-address pairs and\n\
3825 should be specified if the data and bss segments are not contiguous\n\
3826 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3827 &cmdlist);
3828 set_cmd_completer (c, filename_completer);
3829
3830 c = add_cmd ("load", class_files, load_command, _("\
3831 Dynamically load FILE into the running program, and record its symbols\n\
3832 for access from GDB.\n\
3833 A load OFFSET may also be given."), &cmdlist);
3834 set_cmd_completer (c, filename_completer);
3835
3836 add_prefix_cmd ("overlay", class_support, overlay_command,
3837 _("Commands for debugging overlays."), &overlaylist,
3838 "overlay ", 0, &cmdlist);
3839
3840 add_com_alias ("ovly", "overlay", class_alias, 1);
3841 add_com_alias ("ov", "overlay", class_alias, 1);
3842
3843 add_cmd ("map-overlay", class_support, map_overlay_command,
3844 _("Assert that an overlay section is mapped."), &overlaylist);
3845
3846 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3847 _("Assert that an overlay section is unmapped."), &overlaylist);
3848
3849 add_cmd ("list-overlays", class_support, list_overlays_command,
3850 _("List mappings of overlay sections."), &overlaylist);
3851
3852 add_cmd ("manual", class_support, overlay_manual_command,
3853 _("Enable overlay debugging."), &overlaylist);
3854 add_cmd ("off", class_support, overlay_off_command,
3855 _("Disable overlay debugging."), &overlaylist);
3856 add_cmd ("auto", class_support, overlay_auto_command,
3857 _("Enable automatic overlay debugging."), &overlaylist);
3858 add_cmd ("load-target", class_support, overlay_load_command,
3859 _("Read the overlay mapping state from the target."), &overlaylist);
3860
3861 /* Filename extension to source language lookup table: */
3862 init_filename_language_table ();
3863 add_setshow_string_noescape_cmd ("extension-language", class_files,
3864 &ext_args, _("\
3865 Set mapping between filename extension and source language."), _("\
3866 Show mapping between filename extension and source language."), _("\
3867 Usage: set extension-language .foo bar"),
3868 set_ext_lang_command,
3869 show_ext_args,
3870 &setlist, &showlist);
3871
3872 add_info ("extensions", info_ext_lang_command,
3873 _("All filename extensions associated with a source language."));
3874
3875 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3876 &debug_file_directory, _("\
3877 Set the directories where separate debug symbols are searched for."), _("\
3878 Show the directories where separate debug symbols are searched for."), _("\
3879 Separate debug symbols are first searched for in the same\n\
3880 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3881 and lastly at the path of the directory of the binary with\n\
3882 each global debug-file-directory component prepended."),
3883 NULL,
3884 show_debug_file_directory,
3885 &setlist, &showlist);
3886 }
This page took 0.107136 seconds and 5 git commands to generate.