2002-10-09 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "gdb-stabs.h"
42 #include "gdb_obstack.h"
43 #include "completer.h"
44 #include "bcache.h"
45
46 #include <sys/types.h>
47 #include <fcntl.h>
48 #include "gdb_string.h"
49 #include "gdb_stat.h"
50 #include <ctype.h>
51 #include <time.h>
52
53 #ifndef O_BINARY
54 #define O_BINARY 0
55 #endif
56
57 #ifdef HPUXHPPA
58
59 /* Some HP-UX related globals to clear when a new "main"
60 symbol file is loaded. HP-specific. */
61
62 extern int hp_som_som_object_present;
63 extern int hp_cxx_exception_support_initialized;
64 #define RESET_HP_UX_GLOBALS() do {\
65 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
66 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
67 } while (0)
68 #endif
69
70 int (*ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*pre_add_symbol_hook) (char *);
77 void (*post_add_symbol_hook) (void);
78 void (*target_new_objfile_hook) (struct objfile *);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file */
83 int readnow_symbol_files; /* Read full symbols immediately */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines */
90
91 #if 0
92 static int simple_read_overlay_region_table (void);
93 static void simple_free_overlay_region_table (void);
94 #endif
95
96 static void set_initial_language (void);
97
98 static void load_command (char *, int);
99
100 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
101
102 static void add_symbol_file_command (char *, int);
103
104 static void add_shared_symbol_files_command (char *, int);
105
106 static void cashier_psymtab (struct partial_symtab *);
107
108 bfd *symfile_bfd_open (char *);
109
110 int get_section_index (struct objfile *, char *);
111
112 static void find_sym_fns (struct objfile *);
113
114 static void decrement_reading_symtab (void *);
115
116 static void overlay_invalidate_all (void);
117
118 static int overlay_is_mapped (struct obj_section *);
119
120 void list_overlays_command (char *, int);
121
122 void map_overlay_command (char *, int);
123
124 void unmap_overlay_command (char *, int);
125
126 static void overlay_auto_command (char *, int);
127
128 static void overlay_manual_command (char *, int);
129
130 static void overlay_off_command (char *, int);
131
132 static void overlay_load_command (char *, int);
133
134 static void overlay_command (char *, int);
135
136 static void simple_free_overlay_table (void);
137
138 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
139
140 static int simple_read_overlay_table (void);
141
142 static int simple_overlay_update_1 (struct obj_section *);
143
144 static void add_filename_language (char *ext, enum language lang);
145
146 static void set_ext_lang_command (char *args, int from_tty);
147
148 static void info_ext_lang_command (char *args, int from_tty);
149
150 static void init_filename_language_table (void);
151
152 void _initialize_symfile (void);
153
154 /* List of all available sym_fns. On gdb startup, each object file reader
155 calls add_symtab_fns() to register information on each format it is
156 prepared to read. */
157
158 static struct sym_fns *symtab_fns = NULL;
159
160 /* Flag for whether user will be reloading symbols multiple times.
161 Defaults to ON for VxWorks, otherwise OFF. */
162
163 #ifdef SYMBOL_RELOADING_DEFAULT
164 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
165 #else
166 int symbol_reloading = 0;
167 #endif
168
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
178
179 int auto_solib_add = 1;
180
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189 int auto_solib_limit;
190 \f
191
192 /* Since this function is called from within qsort, in an ANSI environment
193 it must conform to the prototype for qsort, which specifies that the
194 comparison function takes two "void *" pointers. */
195
196 static int
197 compare_symbols (const void *s1p, const void *s2p)
198 {
199 register struct symbol **s1, **s2;
200
201 s1 = (struct symbol **) s1p;
202 s2 = (struct symbol **) s2p;
203 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
204 }
205
206 /*
207
208 LOCAL FUNCTION
209
210 compare_psymbols -- compare two partial symbols by name
211
212 DESCRIPTION
213
214 Given pointers to pointers to two partial symbol table entries,
215 compare them by name and return -N, 0, or +N (ala strcmp).
216 Typically used by sorting routines like qsort().
217
218 NOTES
219
220 Does direct compare of first two characters before punting
221 and passing to strcmp for longer compares. Note that the
222 original version had a bug whereby two null strings or two
223 identically named one character strings would return the
224 comparison of memory following the null byte.
225
226 */
227
228 static int
229 compare_psymbols (const void *s1p, const void *s2p)
230 {
231 register struct partial_symbol **s1, **s2;
232 register char *st1, *st2;
233
234 s1 = (struct partial_symbol **) s1p;
235 s2 = (struct partial_symbol **) s2p;
236 st1 = SYMBOL_SOURCE_NAME (*s1);
237 st2 = SYMBOL_SOURCE_NAME (*s2);
238
239
240 if ((st1[0] - st2[0]) || !st1[0])
241 {
242 return (st1[0] - st2[0]);
243 }
244 else if ((st1[1] - st2[1]) || !st1[1])
245 {
246 return (st1[1] - st2[1]);
247 }
248 else
249 {
250 return (strcmp (st1, st2));
251 }
252 }
253
254 void
255 sort_pst_symbols (struct partial_symtab *pst)
256 {
257 /* Sort the global list; don't sort the static list */
258
259 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
260 pst->n_global_syms, sizeof (struct partial_symbol *),
261 compare_psymbols);
262 }
263
264 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
265
266 void
267 sort_block_syms (register struct block *b)
268 {
269 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
270 sizeof (struct symbol *), compare_symbols);
271 }
272
273 /* Call sort_symtab_syms to sort alphabetically
274 the symbols of each block of one symtab. */
275
276 void
277 sort_symtab_syms (register struct symtab *s)
278 {
279 register struct blockvector *bv;
280 int nbl;
281 int i;
282 register struct block *b;
283
284 if (s == 0)
285 return;
286 bv = BLOCKVECTOR (s);
287 nbl = BLOCKVECTOR_NBLOCKS (bv);
288 for (i = 0; i < nbl; i++)
289 {
290 b = BLOCKVECTOR_BLOCK (bv, i);
291 if (BLOCK_SHOULD_SORT (b))
292 sort_block_syms (b);
293 }
294 }
295
296 /* Make a null terminated copy of the string at PTR with SIZE characters in
297 the obstack pointed to by OBSTACKP . Returns the address of the copy.
298 Note that the string at PTR does not have to be null terminated, I.E. it
299 may be part of a larger string and we are only saving a substring. */
300
301 char *
302 obsavestring (const char *ptr, int size, struct obstack *obstackp)
303 {
304 register char *p = (char *) obstack_alloc (obstackp, size + 1);
305 /* Open-coded memcpy--saves function call time. These strings are usually
306 short. FIXME: Is this really still true with a compiler that can
307 inline memcpy? */
308 {
309 register const char *p1 = ptr;
310 register char *p2 = p;
311 const char *end = ptr + size;
312 while (p1 != end)
313 *p2++ = *p1++;
314 }
315 p[size] = 0;
316 return p;
317 }
318
319 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
320 in the obstack pointed to by OBSTACKP. */
321
322 char *
323 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
324 const char *s3)
325 {
326 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
327 register char *val = (char *) obstack_alloc (obstackp, len);
328 strcpy (val, s1);
329 strcat (val, s2);
330 strcat (val, s3);
331 return val;
332 }
333
334 /* True if we are nested inside psymtab_to_symtab. */
335
336 int currently_reading_symtab = 0;
337
338 static void
339 decrement_reading_symtab (void *dummy)
340 {
341 currently_reading_symtab--;
342 }
343
344 /* Get the symbol table that corresponds to a partial_symtab.
345 This is fast after the first time you do it. In fact, there
346 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
347 case inline. */
348
349 struct symtab *
350 psymtab_to_symtab (register struct partial_symtab *pst)
351 {
352 /* If it's been looked up before, return it. */
353 if (pst->symtab)
354 return pst->symtab;
355
356 /* If it has not yet been read in, read it. */
357 if (!pst->readin)
358 {
359 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
360 currently_reading_symtab++;
361 (*pst->read_symtab) (pst);
362 do_cleanups (back_to);
363 }
364
365 return pst->symtab;
366 }
367
368 /* Initialize entry point information for this objfile. */
369
370 void
371 init_entry_point_info (struct objfile *objfile)
372 {
373 /* Save startup file's range of PC addresses to help blockframe.c
374 decide where the bottom of the stack is. */
375
376 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
377 {
378 /* Executable file -- record its entry point so we'll recognize
379 the startup file because it contains the entry point. */
380 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
381 }
382 else
383 {
384 /* Examination of non-executable.o files. Short-circuit this stuff. */
385 objfile->ei.entry_point = INVALID_ENTRY_POINT;
386 }
387 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
388 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
389 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
390 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
391 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
392 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
393 }
394
395 /* Get current entry point address. */
396
397 CORE_ADDR
398 entry_point_address (void)
399 {
400 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
401 }
402
403 /* Remember the lowest-addressed loadable section we've seen.
404 This function is called via bfd_map_over_sections.
405
406 In case of equal vmas, the section with the largest size becomes the
407 lowest-addressed loadable section.
408
409 If the vmas and sizes are equal, the last section is considered the
410 lowest-addressed loadable section. */
411
412 void
413 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
414 {
415 asection **lowest = (asection **) obj;
416
417 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
418 return;
419 if (!*lowest)
420 *lowest = sect; /* First loadable section */
421 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
422 *lowest = sect; /* A lower loadable section */
423 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
424 && (bfd_section_size (abfd, (*lowest))
425 <= bfd_section_size (abfd, sect)))
426 *lowest = sect;
427 }
428
429
430 /* Build (allocate and populate) a section_addr_info struct from
431 an existing section table. */
432
433 extern struct section_addr_info *
434 build_section_addr_info_from_section_table (const struct section_table *start,
435 const struct section_table *end)
436 {
437 struct section_addr_info *sap;
438 const struct section_table *stp;
439 int oidx;
440
441 sap = xmalloc (sizeof (struct section_addr_info));
442 memset (sap, 0, sizeof (struct section_addr_info));
443
444 for (stp = start, oidx = 0; stp != end; stp++)
445 {
446 if (bfd_get_section_flags (stp->bfd,
447 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
448 && oidx < MAX_SECTIONS)
449 {
450 sap->other[oidx].addr = stp->addr;
451 sap->other[oidx].name
452 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
453 sap->other[oidx].sectindex = stp->the_bfd_section->index;
454 oidx++;
455 }
456 }
457
458 return sap;
459 }
460
461
462 /* Free all memory allocated by build_section_addr_info_from_section_table. */
463
464 extern void
465 free_section_addr_info (struct section_addr_info *sap)
466 {
467 int idx;
468
469 for (idx = 0; idx < MAX_SECTIONS; idx++)
470 if (sap->other[idx].name)
471 xfree (sap->other[idx].name);
472 xfree (sap);
473 }
474
475
476 /* Parse the user's idea of an offset for dynamic linking, into our idea
477 of how to represent it for fast symbol reading. This is the default
478 version of the sym_fns.sym_offsets function for symbol readers that
479 don't need to do anything special. It allocates a section_offsets table
480 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
481
482 void
483 default_symfile_offsets (struct objfile *objfile,
484 struct section_addr_info *addrs)
485 {
486 int i;
487 asection *sect = NULL;
488
489 objfile->num_sections = SECT_OFF_MAX;
490 objfile->section_offsets = (struct section_offsets *)
491 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
492 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
493
494 /* Now calculate offsets for section that were specified by the
495 caller. */
496 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
497 {
498 struct other_sections *osp ;
499
500 osp = &addrs->other[i] ;
501 if (osp->addr == 0)
502 continue;
503
504 /* Record all sections in offsets */
505 /* The section_offsets in the objfile are here filled in using
506 the BFD index. */
507 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
508 }
509
510 /* Remember the bfd indexes for the .text, .data, .bss and
511 .rodata sections. */
512
513 sect = bfd_get_section_by_name (objfile->obfd, ".text");
514 if (sect)
515 objfile->sect_index_text = sect->index;
516
517 sect = bfd_get_section_by_name (objfile->obfd, ".data");
518 if (sect)
519 objfile->sect_index_data = sect->index;
520
521 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
522 if (sect)
523 objfile->sect_index_bss = sect->index;
524
525 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
526 if (sect)
527 objfile->sect_index_rodata = sect->index;
528
529 /* This is where things get really weird... We MUST have valid
530 indices for the various sect_index_* members or gdb will abort.
531 So if for example, there is no ".text" section, we have to
532 accomodate that. Except when explicitly adding symbol files at
533 some address, section_offsets contains nothing but zeros, so it
534 doesn't matter which slot in section_offsets the individual
535 sect_index_* members index into. So if they are all zero, it is
536 safe to just point all the currently uninitialized indices to the
537 first slot. */
538
539 for (i = 0; i < objfile->num_sections; i++)
540 {
541 if (ANOFFSET (objfile->section_offsets, i) != 0)
542 {
543 break;
544 }
545 }
546 if (i == objfile->num_sections)
547 {
548 if (objfile->sect_index_text == -1)
549 objfile->sect_index_text = 0;
550 if (objfile->sect_index_data == -1)
551 objfile->sect_index_data = 0;
552 if (objfile->sect_index_bss == -1)
553 objfile->sect_index_bss = 0;
554 if (objfile->sect_index_rodata == -1)
555 objfile->sect_index_rodata = 0;
556 }
557 }
558
559 /* Process a symbol file, as either the main file or as a dynamically
560 loaded file.
561
562 OBJFILE is where the symbols are to be read from.
563
564 ADDR is the address where the text segment was loaded, unless the
565 objfile is the main symbol file, in which case it is zero.
566
567 MAINLINE is nonzero if this is the main symbol file, or zero if
568 it's an extra symbol file such as dynamically loaded code.
569
570 VERBO is nonzero if the caller has printed a verbose message about
571 the symbol reading (and complaints can be more terse about it). */
572
573 void
574 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
575 int mainline, int verbo)
576 {
577 asection *lower_sect;
578 asection *sect;
579 CORE_ADDR lower_offset;
580 struct section_addr_info local_addr;
581 struct cleanup *old_chain;
582 int i;
583
584 /* If ADDRS is NULL, initialize the local section_addr_info struct and
585 point ADDRS to it. We now establish the convention that an addr of
586 zero means no load address was specified. */
587
588 if (addrs == NULL)
589 {
590 memset (&local_addr, 0, sizeof (local_addr));
591 addrs = &local_addr;
592 }
593
594 init_entry_point_info (objfile);
595 find_sym_fns (objfile);
596
597 if (objfile->sf == NULL)
598 return; /* No symbols. */
599
600 /* Make sure that partially constructed symbol tables will be cleaned up
601 if an error occurs during symbol reading. */
602 old_chain = make_cleanup_free_objfile (objfile);
603
604 if (mainline)
605 {
606 /* We will modify the main symbol table, make sure that all its users
607 will be cleaned up if an error occurs during symbol reading. */
608 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
609
610 /* Since no error yet, throw away the old symbol table. */
611
612 if (symfile_objfile != NULL)
613 {
614 free_objfile (symfile_objfile);
615 symfile_objfile = NULL;
616 }
617
618 /* Currently we keep symbols from the add-symbol-file command.
619 If the user wants to get rid of them, they should do "symbol-file"
620 without arguments first. Not sure this is the best behavior
621 (PR 2207). */
622
623 (*objfile->sf->sym_new_init) (objfile);
624 }
625
626 /* Convert addr into an offset rather than an absolute address.
627 We find the lowest address of a loaded segment in the objfile,
628 and assume that <addr> is where that got loaded.
629
630 We no longer warn if the lowest section is not a text segment (as
631 happens for the PA64 port. */
632 if (!mainline)
633 {
634 /* Find lowest loadable section to be used as starting point for
635 continguous sections. FIXME!! won't work without call to find
636 .text first, but this assumes text is lowest section. */
637 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
638 if (lower_sect == NULL)
639 bfd_map_over_sections (objfile->obfd, find_lowest_section,
640 (PTR) &lower_sect);
641 if (lower_sect == NULL)
642 warning ("no loadable sections found in added symbol-file %s",
643 objfile->name);
644 else
645 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
646 warning ("Lowest section in %s is %s at %s",
647 objfile->name,
648 bfd_section_name (objfile->obfd, lower_sect),
649 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
650 if (lower_sect != NULL)
651 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
652 else
653 lower_offset = 0;
654
655 /* Calculate offsets for the loadable sections.
656 FIXME! Sections must be in order of increasing loadable section
657 so that contiguous sections can use the lower-offset!!!
658
659 Adjust offsets if the segments are not contiguous.
660 If the section is contiguous, its offset should be set to
661 the offset of the highest loadable section lower than it
662 (the loadable section directly below it in memory).
663 this_offset = lower_offset = lower_addr - lower_orig_addr */
664
665 /* Calculate offsets for sections. */
666 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
667 {
668 if (addrs->other[i].addr != 0)
669 {
670 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
671 if (sect)
672 {
673 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
674 lower_offset = addrs->other[i].addr;
675 /* This is the index used by BFD. */
676 addrs->other[i].sectindex = sect->index ;
677 }
678 else
679 {
680 warning ("section %s not found in %s", addrs->other[i].name,
681 objfile->name);
682 addrs->other[i].addr = 0;
683 }
684 }
685 else
686 addrs->other[i].addr = lower_offset;
687 }
688 }
689
690 /* Initialize symbol reading routines for this objfile, allow complaints to
691 appear for this new file, and record how verbose to be, then do the
692 initial symbol reading for this file. */
693
694 (*objfile->sf->sym_init) (objfile);
695 clear_complaints (&symfile_complaints, 1, verbo);
696
697 (*objfile->sf->sym_offsets) (objfile, addrs);
698
699 #ifndef IBM6000_TARGET
700 /* This is a SVR4/SunOS specific hack, I think. In any event, it
701 screws RS/6000. sym_offsets should be doing this sort of thing,
702 because it knows the mapping between bfd sections and
703 section_offsets. */
704 /* This is a hack. As far as I can tell, section offsets are not
705 target dependent. They are all set to addr with a couple of
706 exceptions. The exceptions are sysvr4 shared libraries, whose
707 offsets are kept in solib structures anyway and rs6000 xcoff
708 which handles shared libraries in a completely unique way.
709
710 Section offsets are built similarly, except that they are built
711 by adding addr in all cases because there is no clear mapping
712 from section_offsets into actual sections. Note that solib.c
713 has a different algorithm for finding section offsets.
714
715 These should probably all be collapsed into some target
716 independent form of shared library support. FIXME. */
717
718 if (addrs)
719 {
720 struct obj_section *s;
721
722 /* Map section offsets in "addr" back to the object's
723 sections by comparing the section names with bfd's
724 section names. Then adjust the section address by
725 the offset. */ /* for gdb/13815 */
726
727 ALL_OBJFILE_OSECTIONS (objfile, s)
728 {
729 CORE_ADDR s_addr = 0;
730 int i;
731
732 for (i = 0;
733 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
734 i++)
735 if (strcmp (bfd_section_name (s->objfile->obfd,
736 s->the_bfd_section),
737 addrs->other[i].name) == 0)
738 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
739
740 s->addr -= s->offset;
741 s->addr += s_addr;
742 s->endaddr -= s->offset;
743 s->endaddr += s_addr;
744 s->offset += s_addr;
745 }
746 }
747 #endif /* not IBM6000_TARGET */
748
749 (*objfile->sf->sym_read) (objfile, mainline);
750
751 if (!have_partial_symbols () && !have_full_symbols ())
752 {
753 wrap_here ("");
754 printf_filtered ("(no debugging symbols found)...");
755 wrap_here ("");
756 }
757
758 /* Don't allow char * to have a typename (else would get caddr_t).
759 Ditto void *. FIXME: Check whether this is now done by all the
760 symbol readers themselves (many of them now do), and if so remove
761 it from here. */
762
763 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
764 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
765
766 /* Mark the objfile has having had initial symbol read attempted. Note
767 that this does not mean we found any symbols... */
768
769 objfile->flags |= OBJF_SYMS;
770
771 /* Discard cleanups as symbol reading was successful. */
772
773 discard_cleanups (old_chain);
774
775 /* Call this after reading in a new symbol table to give target
776 dependent code a crack at the new symbols. For instance, this
777 could be used to update the values of target-specific symbols GDB
778 needs to keep track of (such as _sigtramp, or whatever). */
779
780 TARGET_SYMFILE_POSTREAD (objfile);
781 }
782
783 /* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
786
787 void
788 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
789 {
790
791 /* If this is the main symbol file we have to clean up all users of the
792 old main symbol file. Otherwise it is sufficient to fixup all the
793 breakpoints that may have been redefined by this symbol file. */
794 if (mainline)
795 {
796 /* OK, make it the "real" symbol file. */
797 symfile_objfile = objfile;
798
799 clear_symtab_users ();
800 }
801 else
802 {
803 breakpoint_re_set ();
804 }
805
806 /* We're done reading the symbol file; finish off complaints. */
807 clear_complaints (&symfile_complaints, 0, verbo);
808 }
809
810 /* Process a symbol file, as either the main file or as a dynamically
811 loaded file.
812
813 NAME is the file name (which will be tilde-expanded and made
814 absolute herein) (but we don't free or modify NAME itself).
815 FROM_TTY says how verbose to be. MAINLINE specifies whether this
816 is the main symbol file, or whether it's an extra symbol file such
817 as dynamically loaded code. If !mainline, ADDR is the address
818 where the text segment was loaded.
819
820 Upon success, returns a pointer to the objfile that was added.
821 Upon failure, jumps back to command level (never returns). */
822
823 struct objfile *
824 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
825 int mainline, int flags)
826 {
827 struct objfile *objfile;
828 struct partial_symtab *psymtab;
829 bfd *abfd;
830
831 /* Open a bfd for the file, and give user a chance to burp if we'd be
832 interactively wiping out any existing symbols. */
833
834 abfd = symfile_bfd_open (name);
835
836 if ((have_full_symbols () || have_partial_symbols ())
837 && mainline
838 && from_tty
839 && !query ("Load new symbol table from \"%s\"? ", name))
840 error ("Not confirmed.");
841
842 objfile = allocate_objfile (abfd, flags);
843
844 /* If the objfile uses a mapped symbol file, and we have a psymtab for
845 it, then skip reading any symbols at this time. */
846
847 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
848 {
849 /* We mapped in an existing symbol table file that already has had
850 initial symbol reading performed, so we can skip that part. Notify
851 the user that instead of reading the symbols, they have been mapped.
852 */
853 if (from_tty || info_verbose)
854 {
855 printf_filtered ("Mapped symbols for %s...", name);
856 wrap_here ("");
857 gdb_flush (gdb_stdout);
858 }
859 init_entry_point_info (objfile);
860 find_sym_fns (objfile);
861 }
862 else
863 {
864 /* We either created a new mapped symbol table, mapped an existing
865 symbol table file which has not had initial symbol reading
866 performed, or need to read an unmapped symbol table. */
867 if (from_tty || info_verbose)
868 {
869 if (pre_add_symbol_hook)
870 pre_add_symbol_hook (name);
871 else
872 {
873 printf_filtered ("Reading symbols from %s...", name);
874 wrap_here ("");
875 gdb_flush (gdb_stdout);
876 }
877 }
878 syms_from_objfile (objfile, addrs, mainline, from_tty);
879 }
880
881 /* We now have at least a partial symbol table. Check to see if the
882 user requested that all symbols be read on initial access via either
883 the gdb startup command line or on a per symbol file basis. Expand
884 all partial symbol tables for this objfile if so. */
885
886 if ((flags & OBJF_READNOW) || readnow_symbol_files)
887 {
888 if (from_tty || info_verbose)
889 {
890 printf_filtered ("expanding to full symbols...");
891 wrap_here ("");
892 gdb_flush (gdb_stdout);
893 }
894
895 for (psymtab = objfile->psymtabs;
896 psymtab != NULL;
897 psymtab = psymtab->next)
898 {
899 psymtab_to_symtab (psymtab);
900 }
901 }
902
903 if (from_tty || info_verbose)
904 {
905 if (post_add_symbol_hook)
906 post_add_symbol_hook ();
907 else
908 {
909 printf_filtered ("done.\n");
910 gdb_flush (gdb_stdout);
911 }
912 }
913
914 if (objfile->sf == NULL)
915 return objfile; /* No symbols. */
916
917 new_symfile_objfile (objfile, mainline, from_tty);
918
919 if (target_new_objfile_hook)
920 target_new_objfile_hook (objfile);
921
922 return (objfile);
923 }
924
925 /* Call symbol_file_add() with default values and update whatever is
926 affected by the loading of a new main().
927 Used when the file is supplied in the gdb command line
928 and by some targets with special loading requirements.
929 The auxiliary function, symbol_file_add_main_1(), has the flags
930 argument for the switches that can only be specified in the symbol_file
931 command itself. */
932
933 void
934 symbol_file_add_main (char *args, int from_tty)
935 {
936 symbol_file_add_main_1 (args, from_tty, 0);
937 }
938
939 static void
940 symbol_file_add_main_1 (char *args, int from_tty, int flags)
941 {
942 symbol_file_add (args, from_tty, NULL, 1, flags);
943
944 #ifdef HPUXHPPA
945 RESET_HP_UX_GLOBALS ();
946 #endif
947
948 /* Getting new symbols may change our opinion about
949 what is frameless. */
950 reinit_frame_cache ();
951
952 set_initial_language ();
953 }
954
955 void
956 symbol_file_clear (int from_tty)
957 {
958 if ((have_full_symbols () || have_partial_symbols ())
959 && from_tty
960 && !query ("Discard symbol table from `%s'? ",
961 symfile_objfile->name))
962 error ("Not confirmed.");
963 free_all_objfiles ();
964
965 /* solib descriptors may have handles to objfiles. Since their
966 storage has just been released, we'd better wipe the solib
967 descriptors as well.
968 */
969 #if defined(SOLIB_RESTART)
970 SOLIB_RESTART ();
971 #endif
972
973 symfile_objfile = NULL;
974 if (from_tty)
975 printf_unfiltered ("No symbol file now.\n");
976 #ifdef HPUXHPPA
977 RESET_HP_UX_GLOBALS ();
978 #endif
979 }
980
981 /* This is the symbol-file command. Read the file, analyze its
982 symbols, and add a struct symtab to a symtab list. The syntax of
983 the command is rather bizarre--(1) buildargv implements various
984 quoting conventions which are undocumented and have little or
985 nothing in common with the way things are quoted (or not quoted)
986 elsewhere in GDB, (2) options are used, which are not generally
987 used in GDB (perhaps "set mapped on", "set readnow on" would be
988 better), (3) the order of options matters, which is contrary to GNU
989 conventions (because it is confusing and inconvenient). */
990 /* Note: ezannoni 2000-04-17. This function used to have support for
991 rombug (see remote-os9k.c). It consisted of a call to target_link()
992 (target.c) to get the address of the text segment from the target,
993 and pass that to symbol_file_add(). This is no longer supported. */
994
995 void
996 symbol_file_command (char *args, int from_tty)
997 {
998 char **argv;
999 char *name = NULL;
1000 struct cleanup *cleanups;
1001 int flags = OBJF_USERLOADED;
1002
1003 dont_repeat ();
1004
1005 if (args == NULL)
1006 {
1007 symbol_file_clear (from_tty);
1008 }
1009 else
1010 {
1011 if ((argv = buildargv (args)) == NULL)
1012 {
1013 nomem (0);
1014 }
1015 cleanups = make_cleanup_freeargv (argv);
1016 while (*argv != NULL)
1017 {
1018 if (STREQ (*argv, "-mapped"))
1019 flags |= OBJF_MAPPED;
1020 else
1021 if (STREQ (*argv, "-readnow"))
1022 flags |= OBJF_READNOW;
1023 else
1024 if (**argv == '-')
1025 error ("unknown option `%s'", *argv);
1026 else
1027 {
1028 name = *argv;
1029
1030 symbol_file_add_main_1 (name, from_tty, flags);
1031 }
1032 argv++;
1033 }
1034
1035 if (name == NULL)
1036 {
1037 error ("no symbol file name was specified");
1038 }
1039 do_cleanups (cleanups);
1040 }
1041 }
1042
1043 /* Set the initial language.
1044
1045 A better solution would be to record the language in the psymtab when reading
1046 partial symbols, and then use it (if known) to set the language. This would
1047 be a win for formats that encode the language in an easily discoverable place,
1048 such as DWARF. For stabs, we can jump through hoops looking for specially
1049 named symbols or try to intuit the language from the specific type of stabs
1050 we find, but we can't do that until later when we read in full symbols.
1051 FIXME. */
1052
1053 static void
1054 set_initial_language (void)
1055 {
1056 struct partial_symtab *pst;
1057 enum language lang = language_unknown;
1058
1059 pst = find_main_psymtab ();
1060 if (pst != NULL)
1061 {
1062 if (pst->filename != NULL)
1063 {
1064 lang = deduce_language_from_filename (pst->filename);
1065 }
1066 if (lang == language_unknown)
1067 {
1068 /* Make C the default language */
1069 lang = language_c;
1070 }
1071 set_language (lang);
1072 expected_language = current_language; /* Don't warn the user */
1073 }
1074 }
1075
1076 /* Open file specified by NAME and hand it off to BFD for preliminary
1077 analysis. Result is a newly initialized bfd *, which includes a newly
1078 malloc'd` copy of NAME (tilde-expanded and made absolute).
1079 In case of trouble, error() is called. */
1080
1081 bfd *
1082 symfile_bfd_open (char *name)
1083 {
1084 bfd *sym_bfd;
1085 int desc;
1086 char *absolute_name;
1087
1088
1089
1090 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1091
1092 /* Look down path for it, allocate 2nd new malloc'd copy. */
1093 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1094 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1095 if (desc < 0)
1096 {
1097 char *exename = alloca (strlen (name) + 5);
1098 strcat (strcpy (exename, name), ".exe");
1099 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1100 0, &absolute_name);
1101 }
1102 #endif
1103 if (desc < 0)
1104 {
1105 make_cleanup (xfree, name);
1106 perror_with_name (name);
1107 }
1108 xfree (name); /* Free 1st new malloc'd copy */
1109 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1110 /* It'll be freed in free_objfile(). */
1111
1112 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1113 if (!sym_bfd)
1114 {
1115 close (desc);
1116 make_cleanup (xfree, name);
1117 error ("\"%s\": can't open to read symbols: %s.", name,
1118 bfd_errmsg (bfd_get_error ()));
1119 }
1120 sym_bfd->cacheable = 1;
1121
1122 if (!bfd_check_format (sym_bfd, bfd_object))
1123 {
1124 /* FIXME: should be checking for errors from bfd_close (for one thing,
1125 on error it does not free all the storage associated with the
1126 bfd). */
1127 bfd_close (sym_bfd); /* This also closes desc */
1128 make_cleanup (xfree, name);
1129 error ("\"%s\": can't read symbols: %s.", name,
1130 bfd_errmsg (bfd_get_error ()));
1131 }
1132 return (sym_bfd);
1133 }
1134
1135 /* Return the section index for the given section name. Return -1 if
1136 the section was not found. */
1137 int
1138 get_section_index (struct objfile *objfile, char *section_name)
1139 {
1140 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1141 if (sect)
1142 return sect->index;
1143 else
1144 return -1;
1145 }
1146
1147 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1148 startup by the _initialize routine in each object file format reader,
1149 to register information about each format the the reader is prepared
1150 to handle. */
1151
1152 void
1153 add_symtab_fns (struct sym_fns *sf)
1154 {
1155 sf->next = symtab_fns;
1156 symtab_fns = sf;
1157 }
1158
1159
1160 /* Initialize to read symbols from the symbol file sym_bfd. It either
1161 returns or calls error(). The result is an initialized struct sym_fns
1162 in the objfile structure, that contains cached information about the
1163 symbol file. */
1164
1165 static void
1166 find_sym_fns (struct objfile *objfile)
1167 {
1168 struct sym_fns *sf;
1169 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1170 char *our_target = bfd_get_target (objfile->obfd);
1171
1172 if (our_flavour == bfd_target_srec_flavour
1173 || our_flavour == bfd_target_ihex_flavour
1174 || our_flavour == bfd_target_tekhex_flavour)
1175 return; /* No symbols. */
1176
1177 /* Special kludge for apollo. See dstread.c. */
1178 if (STREQN (our_target, "apollo", 6))
1179 our_flavour = (enum bfd_flavour) -2;
1180
1181 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1182 {
1183 if (our_flavour == sf->sym_flavour)
1184 {
1185 objfile->sf = sf;
1186 return;
1187 }
1188 }
1189 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1190 bfd_get_target (objfile->obfd));
1191 }
1192 \f
1193 /* This function runs the load command of our current target. */
1194
1195 static void
1196 load_command (char *arg, int from_tty)
1197 {
1198 if (arg == NULL)
1199 arg = get_exec_file (1);
1200 target_load (arg, from_tty);
1201
1202 /* After re-loading the executable, we don't really know which
1203 overlays are mapped any more. */
1204 overlay_cache_invalid = 1;
1205 }
1206
1207 /* This version of "load" should be usable for any target. Currently
1208 it is just used for remote targets, not inftarg.c or core files,
1209 on the theory that only in that case is it useful.
1210
1211 Avoiding xmodem and the like seems like a win (a) because we don't have
1212 to worry about finding it, and (b) On VMS, fork() is very slow and so
1213 we don't want to run a subprocess. On the other hand, I'm not sure how
1214 performance compares. */
1215
1216 static int download_write_size = 512;
1217 static int validate_download = 0;
1218
1219 /* Callback service function for generic_load (bfd_map_over_sections). */
1220
1221 static void
1222 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1223 {
1224 bfd_size_type *sum = data;
1225
1226 *sum += bfd_get_section_size_before_reloc (asec);
1227 }
1228
1229 /* Opaque data for load_section_callback. */
1230 struct load_section_data {
1231 unsigned long load_offset;
1232 unsigned long write_count;
1233 unsigned long data_count;
1234 bfd_size_type total_size;
1235 };
1236
1237 /* Callback service function for generic_load (bfd_map_over_sections). */
1238
1239 static void
1240 load_section_callback (bfd *abfd, asection *asec, void *data)
1241 {
1242 struct load_section_data *args = data;
1243
1244 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1245 {
1246 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1247 if (size > 0)
1248 {
1249 char *buffer;
1250 struct cleanup *old_chain;
1251 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1252 bfd_size_type block_size;
1253 int err;
1254 const char *sect_name = bfd_get_section_name (abfd, asec);
1255 bfd_size_type sent;
1256
1257 if (download_write_size > 0 && size > download_write_size)
1258 block_size = download_write_size;
1259 else
1260 block_size = size;
1261
1262 buffer = xmalloc (size);
1263 old_chain = make_cleanup (xfree, buffer);
1264
1265 /* Is this really necessary? I guess it gives the user something
1266 to look at during a long download. */
1267 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1268 sect_name, paddr_nz (size), paddr_nz (lma));
1269
1270 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1271
1272 sent = 0;
1273 do
1274 {
1275 int len;
1276 bfd_size_type this_transfer = size - sent;
1277
1278 if (this_transfer >= block_size)
1279 this_transfer = block_size;
1280 len = target_write_memory_partial (lma, buffer,
1281 this_transfer, &err);
1282 if (err)
1283 break;
1284 if (validate_download)
1285 {
1286 /* Broken memories and broken monitors manifest
1287 themselves here when bring new computers to
1288 life. This doubles already slow downloads. */
1289 /* NOTE: cagney/1999-10-18: A more efficient
1290 implementation might add a verify_memory()
1291 method to the target vector and then use
1292 that. remote.c could implement that method
1293 using the ``qCRC'' packet. */
1294 char *check = xmalloc (len);
1295 struct cleanup *verify_cleanups =
1296 make_cleanup (xfree, check);
1297
1298 if (target_read_memory (lma, check, len) != 0)
1299 error ("Download verify read failed at 0x%s",
1300 paddr (lma));
1301 if (memcmp (buffer, check, len) != 0)
1302 error ("Download verify compare failed at 0x%s",
1303 paddr (lma));
1304 do_cleanups (verify_cleanups);
1305 }
1306 args->data_count += len;
1307 lma += len;
1308 buffer += len;
1309 args->write_count += 1;
1310 sent += len;
1311 if (quit_flag
1312 || (ui_load_progress_hook != NULL
1313 && ui_load_progress_hook (sect_name, sent)))
1314 error ("Canceled the download");
1315
1316 if (show_load_progress != NULL)
1317 show_load_progress (sect_name, sent, size,
1318 args->data_count, args->total_size);
1319 }
1320 while (sent < size);
1321
1322 if (err != 0)
1323 error ("Memory access error while loading section %s.", sect_name);
1324
1325 do_cleanups (old_chain);
1326 }
1327 }
1328 }
1329
1330 void
1331 generic_load (char *args, int from_tty)
1332 {
1333 asection *s;
1334 bfd *loadfile_bfd;
1335 time_t start_time, end_time; /* Start and end times of download */
1336 char *filename;
1337 struct cleanup *old_cleanups;
1338 char *offptr;
1339 struct load_section_data cbdata;
1340 CORE_ADDR entry;
1341
1342 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1343 cbdata.write_count = 0; /* Number of writes needed. */
1344 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1345 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1346
1347 /* Parse the input argument - the user can specify a load offset as
1348 a second argument. */
1349 filename = xmalloc (strlen (args) + 1);
1350 old_cleanups = make_cleanup (xfree, filename);
1351 strcpy (filename, args);
1352 offptr = strchr (filename, ' ');
1353 if (offptr != NULL)
1354 {
1355 char *endptr;
1356
1357 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1358 if (offptr == endptr)
1359 error ("Invalid download offset:%s\n", offptr);
1360 *offptr = '\0';
1361 }
1362 else
1363 cbdata.load_offset = 0;
1364
1365 /* Open the file for loading. */
1366 loadfile_bfd = bfd_openr (filename, gnutarget);
1367 if (loadfile_bfd == NULL)
1368 {
1369 perror_with_name (filename);
1370 return;
1371 }
1372
1373 /* FIXME: should be checking for errors from bfd_close (for one thing,
1374 on error it does not free all the storage associated with the
1375 bfd). */
1376 make_cleanup_bfd_close (loadfile_bfd);
1377
1378 if (!bfd_check_format (loadfile_bfd, bfd_object))
1379 {
1380 error ("\"%s\" is not an object file: %s", filename,
1381 bfd_errmsg (bfd_get_error ()));
1382 }
1383
1384 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1385 (void *) &cbdata.total_size);
1386
1387 start_time = time (NULL);
1388
1389 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1390
1391 end_time = time (NULL);
1392
1393 entry = bfd_get_start_address (loadfile_bfd);
1394 ui_out_text (uiout, "Start address ");
1395 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1396 ui_out_text (uiout, ", load size ");
1397 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1398 ui_out_text (uiout, "\n");
1399 /* We were doing this in remote-mips.c, I suspect it is right
1400 for other targets too. */
1401 write_pc (entry);
1402
1403 /* FIXME: are we supposed to call symbol_file_add or not? According to
1404 a comment from remote-mips.c (where a call to symbol_file_add was
1405 commented out), making the call confuses GDB if more than one file is
1406 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1407 does. */
1408
1409 print_transfer_performance (gdb_stdout, cbdata.data_count,
1410 cbdata.write_count, end_time - start_time);
1411
1412 do_cleanups (old_cleanups);
1413 }
1414
1415 /* Report how fast the transfer went. */
1416
1417 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1418 replaced by print_transfer_performance (with a very different
1419 function signature). */
1420
1421 void
1422 report_transfer_performance (unsigned long data_count, time_t start_time,
1423 time_t end_time)
1424 {
1425 print_transfer_performance (gdb_stdout, data_count,
1426 end_time - start_time, 0);
1427 }
1428
1429 void
1430 print_transfer_performance (struct ui_file *stream,
1431 unsigned long data_count,
1432 unsigned long write_count,
1433 unsigned long time_count)
1434 {
1435 ui_out_text (uiout, "Transfer rate: ");
1436 if (time_count > 0)
1437 {
1438 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1439 (data_count * 8) / time_count);
1440 ui_out_text (uiout, " bits/sec");
1441 }
1442 else
1443 {
1444 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1445 ui_out_text (uiout, " bits in <1 sec");
1446 }
1447 if (write_count > 0)
1448 {
1449 ui_out_text (uiout, ", ");
1450 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1451 ui_out_text (uiout, " bytes/write");
1452 }
1453 ui_out_text (uiout, ".\n");
1454 }
1455
1456 /* This function allows the addition of incrementally linked object files.
1457 It does not modify any state in the target, only in the debugger. */
1458 /* Note: ezannoni 2000-04-13 This function/command used to have a
1459 special case syntax for the rombug target (Rombug is the boot
1460 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1461 rombug case, the user doesn't need to supply a text address,
1462 instead a call to target_link() (in target.c) would supply the
1463 value to use. We are now discontinuing this type of ad hoc syntax. */
1464
1465 /* ARGSUSED */
1466 static void
1467 add_symbol_file_command (char *args, int from_tty)
1468 {
1469 char *filename = NULL;
1470 int flags = OBJF_USERLOADED;
1471 char *arg;
1472 int expecting_option = 0;
1473 int section_index = 0;
1474 int argcnt = 0;
1475 int sec_num = 0;
1476 int i;
1477 int expecting_sec_name = 0;
1478 int expecting_sec_addr = 0;
1479
1480 struct
1481 {
1482 char *name;
1483 char *value;
1484 } sect_opts[SECT_OFF_MAX];
1485
1486 struct section_addr_info section_addrs;
1487 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1488
1489 dont_repeat ();
1490
1491 if (args == NULL)
1492 error ("add-symbol-file takes a file name and an address");
1493
1494 /* Make a copy of the string that we can safely write into. */
1495 args = xstrdup (args);
1496
1497 /* Ensure section_addrs is initialized */
1498 memset (&section_addrs, 0, sizeof (section_addrs));
1499
1500 while (*args != '\000')
1501 {
1502 /* Any leading spaces? */
1503 while (isspace (*args))
1504 args++;
1505
1506 /* Point arg to the beginning of the argument. */
1507 arg = args;
1508
1509 /* Move args pointer over the argument. */
1510 while ((*args != '\000') && !isspace (*args))
1511 args++;
1512
1513 /* If there are more arguments, terminate arg and
1514 proceed past it. */
1515 if (*args != '\000')
1516 *args++ = '\000';
1517
1518 /* Now process the argument. */
1519 if (argcnt == 0)
1520 {
1521 /* The first argument is the file name. */
1522 filename = tilde_expand (arg);
1523 make_cleanup (xfree, filename);
1524 }
1525 else
1526 if (argcnt == 1)
1527 {
1528 /* The second argument is always the text address at which
1529 to load the program. */
1530 sect_opts[section_index].name = ".text";
1531 sect_opts[section_index].value = arg;
1532 section_index++;
1533 }
1534 else
1535 {
1536 /* It's an option (starting with '-') or it's an argument
1537 to an option */
1538
1539 if (*arg == '-')
1540 {
1541 if (strcmp (arg, "-mapped") == 0)
1542 flags |= OBJF_MAPPED;
1543 else
1544 if (strcmp (arg, "-readnow") == 0)
1545 flags |= OBJF_READNOW;
1546 else
1547 if (strcmp (arg, "-s") == 0)
1548 {
1549 if (section_index >= SECT_OFF_MAX)
1550 error ("Too many sections specified.");
1551 expecting_sec_name = 1;
1552 expecting_sec_addr = 1;
1553 }
1554 }
1555 else
1556 {
1557 if (expecting_sec_name)
1558 {
1559 sect_opts[section_index].name = arg;
1560 expecting_sec_name = 0;
1561 }
1562 else
1563 if (expecting_sec_addr)
1564 {
1565 sect_opts[section_index].value = arg;
1566 expecting_sec_addr = 0;
1567 section_index++;
1568 }
1569 else
1570 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1571 }
1572 }
1573 argcnt++;
1574 }
1575
1576 /* Print the prompt for the query below. And save the arguments into
1577 a sect_addr_info structure to be passed around to other
1578 functions. We have to split this up into separate print
1579 statements because local_hex_string returns a local static
1580 string. */
1581
1582 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1583 for (i = 0; i < section_index; i++)
1584 {
1585 CORE_ADDR addr;
1586 char *val = sect_opts[i].value;
1587 char *sec = sect_opts[i].name;
1588
1589 val = sect_opts[i].value;
1590 if (val[0] == '0' && val[1] == 'x')
1591 addr = strtoul (val+2, NULL, 16);
1592 else
1593 addr = strtoul (val, NULL, 10);
1594
1595 /* Here we store the section offsets in the order they were
1596 entered on the command line. */
1597 section_addrs.other[sec_num].name = sec;
1598 section_addrs.other[sec_num].addr = addr;
1599 printf_filtered ("\t%s_addr = %s\n",
1600 sec,
1601 local_hex_string ((unsigned long)addr));
1602 sec_num++;
1603
1604 /* The object's sections are initialized when a
1605 call is made to build_objfile_section_table (objfile).
1606 This happens in reread_symbols.
1607 At this point, we don't know what file type this is,
1608 so we can't determine what section names are valid. */
1609 }
1610
1611 if (from_tty && (!query ("%s", "")))
1612 error ("Not confirmed.");
1613
1614 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1615
1616 /* Getting new symbols may change our opinion about what is
1617 frameless. */
1618 reinit_frame_cache ();
1619 do_cleanups (my_cleanups);
1620 }
1621 \f
1622 static void
1623 add_shared_symbol_files_command (char *args, int from_tty)
1624 {
1625 #ifdef ADD_SHARED_SYMBOL_FILES
1626 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1627 #else
1628 error ("This command is not available in this configuration of GDB.");
1629 #endif
1630 }
1631 \f
1632 /* Re-read symbols if a symbol-file has changed. */
1633 void
1634 reread_symbols (void)
1635 {
1636 struct objfile *objfile;
1637 long new_modtime;
1638 int reread_one = 0;
1639 struct stat new_statbuf;
1640 int res;
1641
1642 /* With the addition of shared libraries, this should be modified,
1643 the load time should be saved in the partial symbol tables, since
1644 different tables may come from different source files. FIXME.
1645 This routine should then walk down each partial symbol table
1646 and see if the symbol table that it originates from has been changed */
1647
1648 for (objfile = object_files; objfile; objfile = objfile->next)
1649 {
1650 if (objfile->obfd)
1651 {
1652 #ifdef IBM6000_TARGET
1653 /* If this object is from a shared library, then you should
1654 stat on the library name, not member name. */
1655
1656 if (objfile->obfd->my_archive)
1657 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1658 else
1659 #endif
1660 res = stat (objfile->name, &new_statbuf);
1661 if (res != 0)
1662 {
1663 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1664 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1665 objfile->name);
1666 continue;
1667 }
1668 new_modtime = new_statbuf.st_mtime;
1669 if (new_modtime != objfile->mtime)
1670 {
1671 struct cleanup *old_cleanups;
1672 struct section_offsets *offsets;
1673 int num_offsets;
1674 char *obfd_filename;
1675
1676 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1677 objfile->name);
1678
1679 /* There are various functions like symbol_file_add,
1680 symfile_bfd_open, syms_from_objfile, etc., which might
1681 appear to do what we want. But they have various other
1682 effects which we *don't* want. So we just do stuff
1683 ourselves. We don't worry about mapped files (for one thing,
1684 any mapped file will be out of date). */
1685
1686 /* If we get an error, blow away this objfile (not sure if
1687 that is the correct response for things like shared
1688 libraries). */
1689 old_cleanups = make_cleanup_free_objfile (objfile);
1690 /* We need to do this whenever any symbols go away. */
1691 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1692
1693 /* Clean up any state BFD has sitting around. We don't need
1694 to close the descriptor but BFD lacks a way of closing the
1695 BFD without closing the descriptor. */
1696 obfd_filename = bfd_get_filename (objfile->obfd);
1697 if (!bfd_close (objfile->obfd))
1698 error ("Can't close BFD for %s: %s", objfile->name,
1699 bfd_errmsg (bfd_get_error ()));
1700 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1701 if (objfile->obfd == NULL)
1702 error ("Can't open %s to read symbols.", objfile->name);
1703 /* bfd_openr sets cacheable to true, which is what we want. */
1704 if (!bfd_check_format (objfile->obfd, bfd_object))
1705 error ("Can't read symbols from %s: %s.", objfile->name,
1706 bfd_errmsg (bfd_get_error ()));
1707
1708 /* Save the offsets, we will nuke them with the rest of the
1709 psymbol_obstack. */
1710 num_offsets = objfile->num_sections;
1711 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1712 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1713
1714 /* Nuke all the state that we will re-read. Much of the following
1715 code which sets things to NULL really is necessary to tell
1716 other parts of GDB that there is nothing currently there. */
1717
1718 /* FIXME: Do we have to free a whole linked list, or is this
1719 enough? */
1720 if (objfile->global_psymbols.list)
1721 xmfree (objfile->md, objfile->global_psymbols.list);
1722 memset (&objfile->global_psymbols, 0,
1723 sizeof (objfile->global_psymbols));
1724 if (objfile->static_psymbols.list)
1725 xmfree (objfile->md, objfile->static_psymbols.list);
1726 memset (&objfile->static_psymbols, 0,
1727 sizeof (objfile->static_psymbols));
1728
1729 /* Free the obstacks for non-reusable objfiles */
1730 bcache_xfree (objfile->psymbol_cache);
1731 objfile->psymbol_cache = bcache_xmalloc ();
1732 bcache_xfree (objfile->macro_cache);
1733 objfile->macro_cache = bcache_xmalloc ();
1734 obstack_free (&objfile->psymbol_obstack, 0);
1735 obstack_free (&objfile->symbol_obstack, 0);
1736 obstack_free (&objfile->type_obstack, 0);
1737 objfile->sections = NULL;
1738 objfile->symtabs = NULL;
1739 objfile->psymtabs = NULL;
1740 objfile->free_psymtabs = NULL;
1741 objfile->msymbols = NULL;
1742 objfile->minimal_symbol_count = 0;
1743 memset (&objfile->msymbol_hash, 0,
1744 sizeof (objfile->msymbol_hash));
1745 memset (&objfile->msymbol_demangled_hash, 0,
1746 sizeof (objfile->msymbol_demangled_hash));
1747 objfile->fundamental_types = NULL;
1748 if (objfile->sf != NULL)
1749 {
1750 (*objfile->sf->sym_finish) (objfile);
1751 }
1752
1753 /* We never make this a mapped file. */
1754 objfile->md = NULL;
1755 /* obstack_specify_allocation also initializes the obstack so
1756 it is empty. */
1757 objfile->psymbol_cache = bcache_xmalloc ();
1758 objfile->macro_cache = bcache_xmalloc ();
1759 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1760 xmalloc, xfree);
1761 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1762 xmalloc, xfree);
1763 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1764 xmalloc, xfree);
1765 if (build_objfile_section_table (objfile))
1766 {
1767 error ("Can't find the file sections in `%s': %s",
1768 objfile->name, bfd_errmsg (bfd_get_error ()));
1769 }
1770
1771 /* We use the same section offsets as from last time. I'm not
1772 sure whether that is always correct for shared libraries. */
1773 objfile->section_offsets = (struct section_offsets *)
1774 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1775 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1776 objfile->num_sections = num_offsets;
1777
1778 /* What the hell is sym_new_init for, anyway? The concept of
1779 distinguishing between the main file and additional files
1780 in this way seems rather dubious. */
1781 if (objfile == symfile_objfile)
1782 {
1783 (*objfile->sf->sym_new_init) (objfile);
1784 #ifdef HPUXHPPA
1785 RESET_HP_UX_GLOBALS ();
1786 #endif
1787 }
1788
1789 (*objfile->sf->sym_init) (objfile);
1790 clear_complaints (&symfile_complaints, 1, 1);
1791 /* The "mainline" parameter is a hideous hack; I think leaving it
1792 zero is OK since dbxread.c also does what it needs to do if
1793 objfile->global_psymbols.size is 0. */
1794 (*objfile->sf->sym_read) (objfile, 0);
1795 if (!have_partial_symbols () && !have_full_symbols ())
1796 {
1797 wrap_here ("");
1798 printf_filtered ("(no debugging symbols found)\n");
1799 wrap_here ("");
1800 }
1801 objfile->flags |= OBJF_SYMS;
1802
1803 /* We're done reading the symbol file; finish off complaints. */
1804 clear_complaints (&symfile_complaints, 0, 1);
1805
1806 /* Getting new symbols may change our opinion about what is
1807 frameless. */
1808
1809 reinit_frame_cache ();
1810
1811 /* Discard cleanups as symbol reading was successful. */
1812 discard_cleanups (old_cleanups);
1813
1814 /* If the mtime has changed between the time we set new_modtime
1815 and now, we *want* this to be out of date, so don't call stat
1816 again now. */
1817 objfile->mtime = new_modtime;
1818 reread_one = 1;
1819
1820 /* Call this after reading in a new symbol table to give target
1821 dependent code a crack at the new symbols. For instance, this
1822 could be used to update the values of target-specific symbols GDB
1823 needs to keep track of (such as _sigtramp, or whatever). */
1824
1825 TARGET_SYMFILE_POSTREAD (objfile);
1826 }
1827 }
1828 }
1829
1830 if (reread_one)
1831 clear_symtab_users ();
1832 }
1833 \f
1834
1835
1836 typedef struct
1837 {
1838 char *ext;
1839 enum language lang;
1840 }
1841 filename_language;
1842
1843 static filename_language *filename_language_table;
1844 static int fl_table_size, fl_table_next;
1845
1846 static void
1847 add_filename_language (char *ext, enum language lang)
1848 {
1849 if (fl_table_next >= fl_table_size)
1850 {
1851 fl_table_size += 10;
1852 filename_language_table =
1853 xrealloc (filename_language_table,
1854 fl_table_size * sizeof (*filename_language_table));
1855 }
1856
1857 filename_language_table[fl_table_next].ext = xstrdup (ext);
1858 filename_language_table[fl_table_next].lang = lang;
1859 fl_table_next++;
1860 }
1861
1862 static char *ext_args;
1863
1864 static void
1865 set_ext_lang_command (char *args, int from_tty)
1866 {
1867 int i;
1868 char *cp = ext_args;
1869 enum language lang;
1870
1871 /* First arg is filename extension, starting with '.' */
1872 if (*cp != '.')
1873 error ("'%s': Filename extension must begin with '.'", ext_args);
1874
1875 /* Find end of first arg. */
1876 while (*cp && !isspace (*cp))
1877 cp++;
1878
1879 if (*cp == '\0')
1880 error ("'%s': two arguments required -- filename extension and language",
1881 ext_args);
1882
1883 /* Null-terminate first arg */
1884 *cp++ = '\0';
1885
1886 /* Find beginning of second arg, which should be a source language. */
1887 while (*cp && isspace (*cp))
1888 cp++;
1889
1890 if (*cp == '\0')
1891 error ("'%s': two arguments required -- filename extension and language",
1892 ext_args);
1893
1894 /* Lookup the language from among those we know. */
1895 lang = language_enum (cp);
1896
1897 /* Now lookup the filename extension: do we already know it? */
1898 for (i = 0; i < fl_table_next; i++)
1899 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1900 break;
1901
1902 if (i >= fl_table_next)
1903 {
1904 /* new file extension */
1905 add_filename_language (ext_args, lang);
1906 }
1907 else
1908 {
1909 /* redefining a previously known filename extension */
1910
1911 /* if (from_tty) */
1912 /* query ("Really make files of type %s '%s'?", */
1913 /* ext_args, language_str (lang)); */
1914
1915 xfree (filename_language_table[i].ext);
1916 filename_language_table[i].ext = xstrdup (ext_args);
1917 filename_language_table[i].lang = lang;
1918 }
1919 }
1920
1921 static void
1922 info_ext_lang_command (char *args, int from_tty)
1923 {
1924 int i;
1925
1926 printf_filtered ("Filename extensions and the languages they represent:");
1927 printf_filtered ("\n\n");
1928 for (i = 0; i < fl_table_next; i++)
1929 printf_filtered ("\t%s\t- %s\n",
1930 filename_language_table[i].ext,
1931 language_str (filename_language_table[i].lang));
1932 }
1933
1934 static void
1935 init_filename_language_table (void)
1936 {
1937 if (fl_table_size == 0) /* protect against repetition */
1938 {
1939 fl_table_size = 20;
1940 fl_table_next = 0;
1941 filename_language_table =
1942 xmalloc (fl_table_size * sizeof (*filename_language_table));
1943 add_filename_language (".c", language_c);
1944 add_filename_language (".C", language_cplus);
1945 add_filename_language (".cc", language_cplus);
1946 add_filename_language (".cp", language_cplus);
1947 add_filename_language (".cpp", language_cplus);
1948 add_filename_language (".cxx", language_cplus);
1949 add_filename_language (".c++", language_cplus);
1950 add_filename_language (".java", language_java);
1951 add_filename_language (".class", language_java);
1952 /* OBSOLETE add_filename_language (".ch", language_chill); */
1953 /* OBSOLETE add_filename_language (".c186", language_chill); */
1954 /* OBSOLETE add_filename_language (".c286", language_chill); */
1955 add_filename_language (".m", language_objc);
1956 add_filename_language (".f", language_fortran);
1957 add_filename_language (".F", language_fortran);
1958 add_filename_language (".s", language_asm);
1959 add_filename_language (".S", language_asm);
1960 add_filename_language (".pas", language_pascal);
1961 add_filename_language (".p", language_pascal);
1962 add_filename_language (".pp", language_pascal);
1963 }
1964 }
1965
1966 enum language
1967 deduce_language_from_filename (char *filename)
1968 {
1969 int i;
1970 char *cp;
1971
1972 if (filename != NULL)
1973 if ((cp = strrchr (filename, '.')) != NULL)
1974 for (i = 0; i < fl_table_next; i++)
1975 if (strcmp (cp, filename_language_table[i].ext) == 0)
1976 return filename_language_table[i].lang;
1977
1978 return language_unknown;
1979 }
1980 \f
1981 /* allocate_symtab:
1982
1983 Allocate and partly initialize a new symbol table. Return a pointer
1984 to it. error() if no space.
1985
1986 Caller must set these fields:
1987 LINETABLE(symtab)
1988 symtab->blockvector
1989 symtab->dirname
1990 symtab->free_code
1991 symtab->free_ptr
1992 possibly free_named_symtabs (symtab->filename);
1993 */
1994
1995 struct symtab *
1996 allocate_symtab (char *filename, struct objfile *objfile)
1997 {
1998 register struct symtab *symtab;
1999
2000 symtab = (struct symtab *)
2001 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2002 memset (symtab, 0, sizeof (*symtab));
2003 symtab->filename = obsavestring (filename, strlen (filename),
2004 &objfile->symbol_obstack);
2005 symtab->fullname = NULL;
2006 symtab->language = deduce_language_from_filename (filename);
2007 symtab->debugformat = obsavestring ("unknown", 7,
2008 &objfile->symbol_obstack);
2009
2010 /* Hook it to the objfile it comes from */
2011
2012 symtab->objfile = objfile;
2013 symtab->next = objfile->symtabs;
2014 objfile->symtabs = symtab;
2015
2016 /* FIXME: This should go away. It is only defined for the Z8000,
2017 and the Z8000 definition of this macro doesn't have anything to
2018 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2019 here for convenience. */
2020 #ifdef INIT_EXTRA_SYMTAB_INFO
2021 INIT_EXTRA_SYMTAB_INFO (symtab);
2022 #endif
2023
2024 return (symtab);
2025 }
2026
2027 struct partial_symtab *
2028 allocate_psymtab (char *filename, struct objfile *objfile)
2029 {
2030 struct partial_symtab *psymtab;
2031
2032 if (objfile->free_psymtabs)
2033 {
2034 psymtab = objfile->free_psymtabs;
2035 objfile->free_psymtabs = psymtab->next;
2036 }
2037 else
2038 psymtab = (struct partial_symtab *)
2039 obstack_alloc (&objfile->psymbol_obstack,
2040 sizeof (struct partial_symtab));
2041
2042 memset (psymtab, 0, sizeof (struct partial_symtab));
2043 psymtab->filename = obsavestring (filename, strlen (filename),
2044 &objfile->psymbol_obstack);
2045 psymtab->symtab = NULL;
2046
2047 /* Prepend it to the psymtab list for the objfile it belongs to.
2048 Psymtabs are searched in most recent inserted -> least recent
2049 inserted order. */
2050
2051 psymtab->objfile = objfile;
2052 psymtab->next = objfile->psymtabs;
2053 objfile->psymtabs = psymtab;
2054 #if 0
2055 {
2056 struct partial_symtab **prev_pst;
2057 psymtab->objfile = objfile;
2058 psymtab->next = NULL;
2059 prev_pst = &(objfile->psymtabs);
2060 while ((*prev_pst) != NULL)
2061 prev_pst = &((*prev_pst)->next);
2062 (*prev_pst) = psymtab;
2063 }
2064 #endif
2065
2066 return (psymtab);
2067 }
2068
2069 void
2070 discard_psymtab (struct partial_symtab *pst)
2071 {
2072 struct partial_symtab **prev_pst;
2073
2074 /* From dbxread.c:
2075 Empty psymtabs happen as a result of header files which don't
2076 have any symbols in them. There can be a lot of them. But this
2077 check is wrong, in that a psymtab with N_SLINE entries but
2078 nothing else is not empty, but we don't realize that. Fixing
2079 that without slowing things down might be tricky. */
2080
2081 /* First, snip it out of the psymtab chain */
2082
2083 prev_pst = &(pst->objfile->psymtabs);
2084 while ((*prev_pst) != pst)
2085 prev_pst = &((*prev_pst)->next);
2086 (*prev_pst) = pst->next;
2087
2088 /* Next, put it on a free list for recycling */
2089
2090 pst->next = pst->objfile->free_psymtabs;
2091 pst->objfile->free_psymtabs = pst;
2092 }
2093 \f
2094
2095 /* Reset all data structures in gdb which may contain references to symbol
2096 table data. */
2097
2098 void
2099 clear_symtab_users (void)
2100 {
2101 /* Someday, we should do better than this, by only blowing away
2102 the things that really need to be blown. */
2103 clear_value_history ();
2104 clear_displays ();
2105 clear_internalvars ();
2106 breakpoint_re_set ();
2107 set_default_breakpoint (0, 0, 0, 0);
2108 clear_current_source_symtab_and_line ();
2109 clear_pc_function_cache ();
2110 if (target_new_objfile_hook)
2111 target_new_objfile_hook (NULL);
2112 }
2113
2114 static void
2115 clear_symtab_users_cleanup (void *ignore)
2116 {
2117 clear_symtab_users ();
2118 }
2119
2120 /* clear_symtab_users_once:
2121
2122 This function is run after symbol reading, or from a cleanup.
2123 If an old symbol table was obsoleted, the old symbol table
2124 has been blown away, but the other GDB data structures that may
2125 reference it have not yet been cleared or re-directed. (The old
2126 symtab was zapped, and the cleanup queued, in free_named_symtab()
2127 below.)
2128
2129 This function can be queued N times as a cleanup, or called
2130 directly; it will do all the work the first time, and then will be a
2131 no-op until the next time it is queued. This works by bumping a
2132 counter at queueing time. Much later when the cleanup is run, or at
2133 the end of symbol processing (in case the cleanup is discarded), if
2134 the queued count is greater than the "done-count", we do the work
2135 and set the done-count to the queued count. If the queued count is
2136 less than or equal to the done-count, we just ignore the call. This
2137 is needed because reading a single .o file will often replace many
2138 symtabs (one per .h file, for example), and we don't want to reset
2139 the breakpoints N times in the user's face.
2140
2141 The reason we both queue a cleanup, and call it directly after symbol
2142 reading, is because the cleanup protects us in case of errors, but is
2143 discarded if symbol reading is successful. */
2144
2145 #if 0
2146 /* FIXME: As free_named_symtabs is currently a big noop this function
2147 is no longer needed. */
2148 static void clear_symtab_users_once (void);
2149
2150 static int clear_symtab_users_queued;
2151 static int clear_symtab_users_done;
2152
2153 static void
2154 clear_symtab_users_once (void)
2155 {
2156 /* Enforce once-per-`do_cleanups'-semantics */
2157 if (clear_symtab_users_queued <= clear_symtab_users_done)
2158 return;
2159 clear_symtab_users_done = clear_symtab_users_queued;
2160
2161 clear_symtab_users ();
2162 }
2163 #endif
2164
2165 /* Delete the specified psymtab, and any others that reference it. */
2166
2167 static void
2168 cashier_psymtab (struct partial_symtab *pst)
2169 {
2170 struct partial_symtab *ps, *pprev = NULL;
2171 int i;
2172
2173 /* Find its previous psymtab in the chain */
2174 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2175 {
2176 if (ps == pst)
2177 break;
2178 pprev = ps;
2179 }
2180
2181 if (ps)
2182 {
2183 /* Unhook it from the chain. */
2184 if (ps == pst->objfile->psymtabs)
2185 pst->objfile->psymtabs = ps->next;
2186 else
2187 pprev->next = ps->next;
2188
2189 /* FIXME, we can't conveniently deallocate the entries in the
2190 partial_symbol lists (global_psymbols/static_psymbols) that
2191 this psymtab points to. These just take up space until all
2192 the psymtabs are reclaimed. Ditto the dependencies list and
2193 filename, which are all in the psymbol_obstack. */
2194
2195 /* We need to cashier any psymtab that has this one as a dependency... */
2196 again:
2197 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2198 {
2199 for (i = 0; i < ps->number_of_dependencies; i++)
2200 {
2201 if (ps->dependencies[i] == pst)
2202 {
2203 cashier_psymtab (ps);
2204 goto again; /* Must restart, chain has been munged. */
2205 }
2206 }
2207 }
2208 }
2209 }
2210
2211 /* If a symtab or psymtab for filename NAME is found, free it along
2212 with any dependent breakpoints, displays, etc.
2213 Used when loading new versions of object modules with the "add-file"
2214 command. This is only called on the top-level symtab or psymtab's name;
2215 it is not called for subsidiary files such as .h files.
2216
2217 Return value is 1 if we blew away the environment, 0 if not.
2218 FIXME. The return value appears to never be used.
2219
2220 FIXME. I think this is not the best way to do this. We should
2221 work on being gentler to the environment while still cleaning up
2222 all stray pointers into the freed symtab. */
2223
2224 int
2225 free_named_symtabs (char *name)
2226 {
2227 #if 0
2228 /* FIXME: With the new method of each objfile having it's own
2229 psymtab list, this function needs serious rethinking. In particular,
2230 why was it ever necessary to toss psymtabs with specific compilation
2231 unit filenames, as opposed to all psymtabs from a particular symbol
2232 file? -- fnf
2233 Well, the answer is that some systems permit reloading of particular
2234 compilation units. We want to blow away any old info about these
2235 compilation units, regardless of which objfiles they arrived in. --gnu. */
2236
2237 register struct symtab *s;
2238 register struct symtab *prev;
2239 register struct partial_symtab *ps;
2240 struct blockvector *bv;
2241 int blewit = 0;
2242
2243 /* We only wack things if the symbol-reload switch is set. */
2244 if (!symbol_reloading)
2245 return 0;
2246
2247 /* Some symbol formats have trouble providing file names... */
2248 if (name == 0 || *name == '\0')
2249 return 0;
2250
2251 /* Look for a psymtab with the specified name. */
2252
2253 again2:
2254 for (ps = partial_symtab_list; ps; ps = ps->next)
2255 {
2256 if (STREQ (name, ps->filename))
2257 {
2258 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2259 goto again2; /* Must restart, chain has been munged */
2260 }
2261 }
2262
2263 /* Look for a symtab with the specified name. */
2264
2265 for (s = symtab_list; s; s = s->next)
2266 {
2267 if (STREQ (name, s->filename))
2268 break;
2269 prev = s;
2270 }
2271
2272 if (s)
2273 {
2274 if (s == symtab_list)
2275 symtab_list = s->next;
2276 else
2277 prev->next = s->next;
2278
2279 /* For now, queue a delete for all breakpoints, displays, etc., whether
2280 or not they depend on the symtab being freed. This should be
2281 changed so that only those data structures affected are deleted. */
2282
2283 /* But don't delete anything if the symtab is empty.
2284 This test is necessary due to a bug in "dbxread.c" that
2285 causes empty symtabs to be created for N_SO symbols that
2286 contain the pathname of the object file. (This problem
2287 has been fixed in GDB 3.9x). */
2288
2289 bv = BLOCKVECTOR (s);
2290 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2291 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2292 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2293 {
2294 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2295 name);
2296 clear_symtab_users_queued++;
2297 make_cleanup (clear_symtab_users_once, 0);
2298 blewit = 1;
2299 }
2300 else
2301 {
2302 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2303 name);
2304 }
2305
2306 free_symtab (s);
2307 }
2308 else
2309 {
2310 /* It is still possible that some breakpoints will be affected
2311 even though no symtab was found, since the file might have
2312 been compiled without debugging, and hence not be associated
2313 with a symtab. In order to handle this correctly, we would need
2314 to keep a list of text address ranges for undebuggable files.
2315 For now, we do nothing, since this is a fairly obscure case. */
2316 ;
2317 }
2318
2319 /* FIXME, what about the minimal symbol table? */
2320 return blewit;
2321 #else
2322 return (0);
2323 #endif
2324 }
2325 \f
2326 /* Allocate and partially fill a partial symtab. It will be
2327 completely filled at the end of the symbol list.
2328
2329 FILENAME is the name of the symbol-file we are reading from. */
2330
2331 struct partial_symtab *
2332 start_psymtab_common (struct objfile *objfile,
2333 struct section_offsets *section_offsets, char *filename,
2334 CORE_ADDR textlow, struct partial_symbol **global_syms,
2335 struct partial_symbol **static_syms)
2336 {
2337 struct partial_symtab *psymtab;
2338
2339 psymtab = allocate_psymtab (filename, objfile);
2340 psymtab->section_offsets = section_offsets;
2341 psymtab->textlow = textlow;
2342 psymtab->texthigh = psymtab->textlow; /* default */
2343 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2344 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2345 return (psymtab);
2346 }
2347 \f
2348 /* Add a symbol with a long value to a psymtab.
2349 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2350
2351 void
2352 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2353 enum address_class class,
2354 struct psymbol_allocation_list *list, long val, /* Value as a long */
2355 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2356 enum language language, struct objfile *objfile)
2357 {
2358 register struct partial_symbol *psym;
2359 char *buf = alloca (namelength + 1);
2360 /* psymbol is static so that there will be no uninitialized gaps in the
2361 structure which might contain random data, causing cache misses in
2362 bcache. */
2363 static struct partial_symbol psymbol;
2364
2365 /* Create local copy of the partial symbol */
2366 memcpy (buf, name, namelength);
2367 buf[namelength] = '\0';
2368 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2369 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2370 if (val != 0)
2371 {
2372 SYMBOL_VALUE (&psymbol) = val;
2373 }
2374 else
2375 {
2376 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2377 }
2378 SYMBOL_SECTION (&psymbol) = 0;
2379 SYMBOL_LANGUAGE (&psymbol) = language;
2380 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2381 PSYMBOL_CLASS (&psymbol) = class;
2382 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2383
2384 /* Stash the partial symbol away in the cache */
2385 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2386
2387 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2388 if (list->next >= list->list + list->size)
2389 {
2390 extend_psymbol_list (list, objfile);
2391 }
2392 *list->next++ = psym;
2393 OBJSTAT (objfile, n_psyms++);
2394 }
2395
2396 /* Add a symbol with a long value to a psymtab. This differs from
2397 * add_psymbol_to_list above in taking both a mangled and a demangled
2398 * name. */
2399
2400 void
2401 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2402 int dem_namelength, namespace_enum namespace,
2403 enum address_class class,
2404 struct psymbol_allocation_list *list, long val, /* Value as a long */
2405 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2406 enum language language,
2407 struct objfile *objfile)
2408 {
2409 register struct partial_symbol *psym;
2410 char *buf = alloca (namelength + 1);
2411 /* psymbol is static so that there will be no uninitialized gaps in the
2412 structure which might contain random data, causing cache misses in
2413 bcache. */
2414 static struct partial_symbol psymbol;
2415
2416 /* Create local copy of the partial symbol */
2417
2418 memcpy (buf, name, namelength);
2419 buf[namelength] = '\0';
2420 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2421
2422 buf = alloca (dem_namelength + 1);
2423 memcpy (buf, dem_name, dem_namelength);
2424 buf[dem_namelength] = '\0';
2425
2426 switch (language)
2427 {
2428 case language_c:
2429 case language_cplus:
2430 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2431 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2432 break;
2433 /* OBSOLETE case language_chill: */
2434 /* OBSOLETE SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) = */
2435 /* OBSOLETE bcache (buf, dem_namelength + 1, objfile->psymbol_cache); */
2436
2437 /* FIXME What should be done for the default case? Ignoring for now. */
2438 }
2439
2440 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2441 if (val != 0)
2442 {
2443 SYMBOL_VALUE (&psymbol) = val;
2444 }
2445 else
2446 {
2447 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2448 }
2449 SYMBOL_SECTION (&psymbol) = 0;
2450 SYMBOL_LANGUAGE (&psymbol) = language;
2451 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2452 PSYMBOL_CLASS (&psymbol) = class;
2453 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2454
2455 /* Stash the partial symbol away in the cache */
2456 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2457
2458 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2459 if (list->next >= list->list + list->size)
2460 {
2461 extend_psymbol_list (list, objfile);
2462 }
2463 *list->next++ = psym;
2464 OBJSTAT (objfile, n_psyms++);
2465 }
2466
2467 /* Initialize storage for partial symbols. */
2468
2469 void
2470 init_psymbol_list (struct objfile *objfile, int total_symbols)
2471 {
2472 /* Free any previously allocated psymbol lists. */
2473
2474 if (objfile->global_psymbols.list)
2475 {
2476 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2477 }
2478 if (objfile->static_psymbols.list)
2479 {
2480 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2481 }
2482
2483 /* Current best guess is that approximately a twentieth
2484 of the total symbols (in a debugging file) are global or static
2485 oriented symbols */
2486
2487 objfile->global_psymbols.size = total_symbols / 10;
2488 objfile->static_psymbols.size = total_symbols / 10;
2489
2490 if (objfile->global_psymbols.size > 0)
2491 {
2492 objfile->global_psymbols.next =
2493 objfile->global_psymbols.list = (struct partial_symbol **)
2494 xmmalloc (objfile->md, (objfile->global_psymbols.size
2495 * sizeof (struct partial_symbol *)));
2496 }
2497 if (objfile->static_psymbols.size > 0)
2498 {
2499 objfile->static_psymbols.next =
2500 objfile->static_psymbols.list = (struct partial_symbol **)
2501 xmmalloc (objfile->md, (objfile->static_psymbols.size
2502 * sizeof (struct partial_symbol *)));
2503 }
2504 }
2505
2506 /* OVERLAYS:
2507 The following code implements an abstraction for debugging overlay sections.
2508
2509 The target model is as follows:
2510 1) The gnu linker will permit multiple sections to be mapped into the
2511 same VMA, each with its own unique LMA (or load address).
2512 2) It is assumed that some runtime mechanism exists for mapping the
2513 sections, one by one, from the load address into the VMA address.
2514 3) This code provides a mechanism for gdb to keep track of which
2515 sections should be considered to be mapped from the VMA to the LMA.
2516 This information is used for symbol lookup, and memory read/write.
2517 For instance, if a section has been mapped then its contents
2518 should be read from the VMA, otherwise from the LMA.
2519
2520 Two levels of debugger support for overlays are available. One is
2521 "manual", in which the debugger relies on the user to tell it which
2522 overlays are currently mapped. This level of support is
2523 implemented entirely in the core debugger, and the information about
2524 whether a section is mapped is kept in the objfile->obj_section table.
2525
2526 The second level of support is "automatic", and is only available if
2527 the target-specific code provides functionality to read the target's
2528 overlay mapping table, and translate its contents for the debugger
2529 (by updating the mapped state information in the obj_section tables).
2530
2531 The interface is as follows:
2532 User commands:
2533 overlay map <name> -- tell gdb to consider this section mapped
2534 overlay unmap <name> -- tell gdb to consider this section unmapped
2535 overlay list -- list the sections that GDB thinks are mapped
2536 overlay read-target -- get the target's state of what's mapped
2537 overlay off/manual/auto -- set overlay debugging state
2538 Functional interface:
2539 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2540 section, return that section.
2541 find_pc_overlay(pc): find any overlay section that contains
2542 the pc, either in its VMA or its LMA
2543 overlay_is_mapped(sect): true if overlay is marked as mapped
2544 section_is_overlay(sect): true if section's VMA != LMA
2545 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2546 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2547 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2548 overlay_mapped_address(...): map an address from section's LMA to VMA
2549 overlay_unmapped_address(...): map an address from section's VMA to LMA
2550 symbol_overlayed_address(...): Return a "current" address for symbol:
2551 either in VMA or LMA depending on whether
2552 the symbol's section is currently mapped
2553 */
2554
2555 /* Overlay debugging state: */
2556
2557 enum overlay_debugging_state overlay_debugging = ovly_off;
2558 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2559
2560 /* Target vector for refreshing overlay mapped state */
2561 static void simple_overlay_update (struct obj_section *);
2562 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2563
2564 /* Function: section_is_overlay (SECTION)
2565 Returns true if SECTION has VMA not equal to LMA, ie.
2566 SECTION is loaded at an address different from where it will "run". */
2567
2568 int
2569 section_is_overlay (asection *section)
2570 {
2571 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2572
2573 if (overlay_debugging)
2574 if (section && section->lma != 0 &&
2575 section->vma != section->lma)
2576 return 1;
2577
2578 return 0;
2579 }
2580
2581 /* Function: overlay_invalidate_all (void)
2582 Invalidate the mapped state of all overlay sections (mark it as stale). */
2583
2584 static void
2585 overlay_invalidate_all (void)
2586 {
2587 struct objfile *objfile;
2588 struct obj_section *sect;
2589
2590 ALL_OBJSECTIONS (objfile, sect)
2591 if (section_is_overlay (sect->the_bfd_section))
2592 sect->ovly_mapped = -1;
2593 }
2594
2595 /* Function: overlay_is_mapped (SECTION)
2596 Returns true if section is an overlay, and is currently mapped.
2597 Private: public access is thru function section_is_mapped.
2598
2599 Access to the ovly_mapped flag is restricted to this function, so
2600 that we can do automatic update. If the global flag
2601 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2602 overlay_invalidate_all. If the mapped state of the particular
2603 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2604
2605 static int
2606 overlay_is_mapped (struct obj_section *osect)
2607 {
2608 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2609 return 0;
2610
2611 switch (overlay_debugging)
2612 {
2613 default:
2614 case ovly_off:
2615 return 0; /* overlay debugging off */
2616 case ovly_auto: /* overlay debugging automatic */
2617 /* Unles there is a target_overlay_update function,
2618 there's really nothing useful to do here (can't really go auto) */
2619 if (target_overlay_update)
2620 {
2621 if (overlay_cache_invalid)
2622 {
2623 overlay_invalidate_all ();
2624 overlay_cache_invalid = 0;
2625 }
2626 if (osect->ovly_mapped == -1)
2627 (*target_overlay_update) (osect);
2628 }
2629 /* fall thru to manual case */
2630 case ovly_on: /* overlay debugging manual */
2631 return osect->ovly_mapped == 1;
2632 }
2633 }
2634
2635 /* Function: section_is_mapped
2636 Returns true if section is an overlay, and is currently mapped. */
2637
2638 int
2639 section_is_mapped (asection *section)
2640 {
2641 struct objfile *objfile;
2642 struct obj_section *osect;
2643
2644 if (overlay_debugging)
2645 if (section && section_is_overlay (section))
2646 ALL_OBJSECTIONS (objfile, osect)
2647 if (osect->the_bfd_section == section)
2648 return overlay_is_mapped (osect);
2649
2650 return 0;
2651 }
2652
2653 /* Function: pc_in_unmapped_range
2654 If PC falls into the lma range of SECTION, return true, else false. */
2655
2656 CORE_ADDR
2657 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2658 {
2659 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2660
2661 int size;
2662
2663 if (overlay_debugging)
2664 if (section && section_is_overlay (section))
2665 {
2666 size = bfd_get_section_size_before_reloc (section);
2667 if (section->lma <= pc && pc < section->lma + size)
2668 return 1;
2669 }
2670 return 0;
2671 }
2672
2673 /* Function: pc_in_mapped_range
2674 If PC falls into the vma range of SECTION, return true, else false. */
2675
2676 CORE_ADDR
2677 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2678 {
2679 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2680
2681 int size;
2682
2683 if (overlay_debugging)
2684 if (section && section_is_overlay (section))
2685 {
2686 size = bfd_get_section_size_before_reloc (section);
2687 if (section->vma <= pc && pc < section->vma + size)
2688 return 1;
2689 }
2690 return 0;
2691 }
2692
2693
2694 /* Return true if the mapped ranges of sections A and B overlap, false
2695 otherwise. */
2696 int
2697 sections_overlap (asection *a, asection *b)
2698 {
2699 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2700
2701 CORE_ADDR a_start = a->vma;
2702 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2703 CORE_ADDR b_start = b->vma;
2704 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2705
2706 return (a_start < b_end && b_start < a_end);
2707 }
2708
2709 /* Function: overlay_unmapped_address (PC, SECTION)
2710 Returns the address corresponding to PC in the unmapped (load) range.
2711 May be the same as PC. */
2712
2713 CORE_ADDR
2714 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2715 {
2716 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2717
2718 if (overlay_debugging)
2719 if (section && section_is_overlay (section) &&
2720 pc_in_mapped_range (pc, section))
2721 return pc + section->lma - section->vma;
2722
2723 return pc;
2724 }
2725
2726 /* Function: overlay_mapped_address (PC, SECTION)
2727 Returns the address corresponding to PC in the mapped (runtime) range.
2728 May be the same as PC. */
2729
2730 CORE_ADDR
2731 overlay_mapped_address (CORE_ADDR pc, asection *section)
2732 {
2733 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2734
2735 if (overlay_debugging)
2736 if (section && section_is_overlay (section) &&
2737 pc_in_unmapped_range (pc, section))
2738 return pc + section->vma - section->lma;
2739
2740 return pc;
2741 }
2742
2743
2744 /* Function: symbol_overlayed_address
2745 Return one of two addresses (relative to the VMA or to the LMA),
2746 depending on whether the section is mapped or not. */
2747
2748 CORE_ADDR
2749 symbol_overlayed_address (CORE_ADDR address, asection *section)
2750 {
2751 if (overlay_debugging)
2752 {
2753 /* If the symbol has no section, just return its regular address. */
2754 if (section == 0)
2755 return address;
2756 /* If the symbol's section is not an overlay, just return its address */
2757 if (!section_is_overlay (section))
2758 return address;
2759 /* If the symbol's section is mapped, just return its address */
2760 if (section_is_mapped (section))
2761 return address;
2762 /*
2763 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2764 * then return its LOADED address rather than its vma address!!
2765 */
2766 return overlay_unmapped_address (address, section);
2767 }
2768 return address;
2769 }
2770
2771 /* Function: find_pc_overlay (PC)
2772 Return the best-match overlay section for PC:
2773 If PC matches a mapped overlay section's VMA, return that section.
2774 Else if PC matches an unmapped section's VMA, return that section.
2775 Else if PC matches an unmapped section's LMA, return that section. */
2776
2777 asection *
2778 find_pc_overlay (CORE_ADDR pc)
2779 {
2780 struct objfile *objfile;
2781 struct obj_section *osect, *best_match = NULL;
2782
2783 if (overlay_debugging)
2784 ALL_OBJSECTIONS (objfile, osect)
2785 if (section_is_overlay (osect->the_bfd_section))
2786 {
2787 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2788 {
2789 if (overlay_is_mapped (osect))
2790 return osect->the_bfd_section;
2791 else
2792 best_match = osect;
2793 }
2794 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2795 best_match = osect;
2796 }
2797 return best_match ? best_match->the_bfd_section : NULL;
2798 }
2799
2800 /* Function: find_pc_mapped_section (PC)
2801 If PC falls into the VMA address range of an overlay section that is
2802 currently marked as MAPPED, return that section. Else return NULL. */
2803
2804 asection *
2805 find_pc_mapped_section (CORE_ADDR pc)
2806 {
2807 struct objfile *objfile;
2808 struct obj_section *osect;
2809
2810 if (overlay_debugging)
2811 ALL_OBJSECTIONS (objfile, osect)
2812 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2813 overlay_is_mapped (osect))
2814 return osect->the_bfd_section;
2815
2816 return NULL;
2817 }
2818
2819 /* Function: list_overlays_command
2820 Print a list of mapped sections and their PC ranges */
2821
2822 void
2823 list_overlays_command (char *args, int from_tty)
2824 {
2825 int nmapped = 0;
2826 struct objfile *objfile;
2827 struct obj_section *osect;
2828
2829 if (overlay_debugging)
2830 ALL_OBJSECTIONS (objfile, osect)
2831 if (overlay_is_mapped (osect))
2832 {
2833 const char *name;
2834 bfd_vma lma, vma;
2835 int size;
2836
2837 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2838 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2839 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2840 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2841
2842 printf_filtered ("Section %s, loaded at ", name);
2843 print_address_numeric (lma, 1, gdb_stdout);
2844 puts_filtered (" - ");
2845 print_address_numeric (lma + size, 1, gdb_stdout);
2846 printf_filtered (", mapped at ");
2847 print_address_numeric (vma, 1, gdb_stdout);
2848 puts_filtered (" - ");
2849 print_address_numeric (vma + size, 1, gdb_stdout);
2850 puts_filtered ("\n");
2851
2852 nmapped++;
2853 }
2854 if (nmapped == 0)
2855 printf_filtered ("No sections are mapped.\n");
2856 }
2857
2858 /* Function: map_overlay_command
2859 Mark the named section as mapped (ie. residing at its VMA address). */
2860
2861 void
2862 map_overlay_command (char *args, int from_tty)
2863 {
2864 struct objfile *objfile, *objfile2;
2865 struct obj_section *sec, *sec2;
2866 asection *bfdsec;
2867
2868 if (!overlay_debugging)
2869 error ("\
2870 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2871 the 'overlay manual' command.");
2872
2873 if (args == 0 || *args == 0)
2874 error ("Argument required: name of an overlay section");
2875
2876 /* First, find a section matching the user supplied argument */
2877 ALL_OBJSECTIONS (objfile, sec)
2878 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2879 {
2880 /* Now, check to see if the section is an overlay. */
2881 bfdsec = sec->the_bfd_section;
2882 if (!section_is_overlay (bfdsec))
2883 continue; /* not an overlay section */
2884
2885 /* Mark the overlay as "mapped" */
2886 sec->ovly_mapped = 1;
2887
2888 /* Next, make a pass and unmap any sections that are
2889 overlapped by this new section: */
2890 ALL_OBJSECTIONS (objfile2, sec2)
2891 if (sec2->ovly_mapped
2892 && sec != sec2
2893 && sec->the_bfd_section != sec2->the_bfd_section
2894 && sections_overlap (sec->the_bfd_section,
2895 sec2->the_bfd_section))
2896 {
2897 if (info_verbose)
2898 printf_filtered ("Note: section %s unmapped by overlap\n",
2899 bfd_section_name (objfile->obfd,
2900 sec2->the_bfd_section));
2901 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2902 }
2903 return;
2904 }
2905 error ("No overlay section called %s", args);
2906 }
2907
2908 /* Function: unmap_overlay_command
2909 Mark the overlay section as unmapped
2910 (ie. resident in its LMA address range, rather than the VMA range). */
2911
2912 void
2913 unmap_overlay_command (char *args, int from_tty)
2914 {
2915 struct objfile *objfile;
2916 struct obj_section *sec;
2917
2918 if (!overlay_debugging)
2919 error ("\
2920 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2921 the 'overlay manual' command.");
2922
2923 if (args == 0 || *args == 0)
2924 error ("Argument required: name of an overlay section");
2925
2926 /* First, find a section matching the user supplied argument */
2927 ALL_OBJSECTIONS (objfile, sec)
2928 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2929 {
2930 if (!sec->ovly_mapped)
2931 error ("Section %s is not mapped", args);
2932 sec->ovly_mapped = 0;
2933 return;
2934 }
2935 error ("No overlay section called %s", args);
2936 }
2937
2938 /* Function: overlay_auto_command
2939 A utility command to turn on overlay debugging.
2940 Possibly this should be done via a set/show command. */
2941
2942 static void
2943 overlay_auto_command (char *args, int from_tty)
2944 {
2945 overlay_debugging = ovly_auto;
2946 enable_overlay_breakpoints ();
2947 if (info_verbose)
2948 printf_filtered ("Automatic overlay debugging enabled.");
2949 }
2950
2951 /* Function: overlay_manual_command
2952 A utility command to turn on overlay debugging.
2953 Possibly this should be done via a set/show command. */
2954
2955 static void
2956 overlay_manual_command (char *args, int from_tty)
2957 {
2958 overlay_debugging = ovly_on;
2959 disable_overlay_breakpoints ();
2960 if (info_verbose)
2961 printf_filtered ("Overlay debugging enabled.");
2962 }
2963
2964 /* Function: overlay_off_command
2965 A utility command to turn on overlay debugging.
2966 Possibly this should be done via a set/show command. */
2967
2968 static void
2969 overlay_off_command (char *args, int from_tty)
2970 {
2971 overlay_debugging = ovly_off;
2972 disable_overlay_breakpoints ();
2973 if (info_verbose)
2974 printf_filtered ("Overlay debugging disabled.");
2975 }
2976
2977 static void
2978 overlay_load_command (char *args, int from_tty)
2979 {
2980 if (target_overlay_update)
2981 (*target_overlay_update) (NULL);
2982 else
2983 error ("This target does not know how to read its overlay state.");
2984 }
2985
2986 /* Function: overlay_command
2987 A place-holder for a mis-typed command */
2988
2989 /* Command list chain containing all defined "overlay" subcommands. */
2990 struct cmd_list_element *overlaylist;
2991
2992 static void
2993 overlay_command (char *args, int from_tty)
2994 {
2995 printf_unfiltered
2996 ("\"overlay\" must be followed by the name of an overlay command.\n");
2997 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2998 }
2999
3000
3001 /* Target Overlays for the "Simplest" overlay manager:
3002
3003 This is GDB's default target overlay layer. It works with the
3004 minimal overlay manager supplied as an example by Cygnus. The
3005 entry point is via a function pointer "target_overlay_update",
3006 so targets that use a different runtime overlay manager can
3007 substitute their own overlay_update function and take over the
3008 function pointer.
3009
3010 The overlay_update function pokes around in the target's data structures
3011 to see what overlays are mapped, and updates GDB's overlay mapping with
3012 this information.
3013
3014 In this simple implementation, the target data structures are as follows:
3015 unsigned _novlys; /# number of overlay sections #/
3016 unsigned _ovly_table[_novlys][4] = {
3017 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3018 {..., ..., ..., ...},
3019 }
3020 unsigned _novly_regions; /# number of overlay regions #/
3021 unsigned _ovly_region_table[_novly_regions][3] = {
3022 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3023 {..., ..., ...},
3024 }
3025 These functions will attempt to update GDB's mappedness state in the
3026 symbol section table, based on the target's mappedness state.
3027
3028 To do this, we keep a cached copy of the target's _ovly_table, and
3029 attempt to detect when the cached copy is invalidated. The main
3030 entry point is "simple_overlay_update(SECT), which looks up SECT in
3031 the cached table and re-reads only the entry for that section from
3032 the target (whenever possible).
3033 */
3034
3035 /* Cached, dynamically allocated copies of the target data structures: */
3036 static unsigned (*cache_ovly_table)[4] = 0;
3037 #if 0
3038 static unsigned (*cache_ovly_region_table)[3] = 0;
3039 #endif
3040 static unsigned cache_novlys = 0;
3041 #if 0
3042 static unsigned cache_novly_regions = 0;
3043 #endif
3044 static CORE_ADDR cache_ovly_table_base = 0;
3045 #if 0
3046 static CORE_ADDR cache_ovly_region_table_base = 0;
3047 #endif
3048 enum ovly_index
3049 {
3050 VMA, SIZE, LMA, MAPPED
3051 };
3052 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3053
3054 /* Throw away the cached copy of _ovly_table */
3055 static void
3056 simple_free_overlay_table (void)
3057 {
3058 if (cache_ovly_table)
3059 xfree (cache_ovly_table);
3060 cache_novlys = 0;
3061 cache_ovly_table = NULL;
3062 cache_ovly_table_base = 0;
3063 }
3064
3065 #if 0
3066 /* Throw away the cached copy of _ovly_region_table */
3067 static void
3068 simple_free_overlay_region_table (void)
3069 {
3070 if (cache_ovly_region_table)
3071 xfree (cache_ovly_region_table);
3072 cache_novly_regions = 0;
3073 cache_ovly_region_table = NULL;
3074 cache_ovly_region_table_base = 0;
3075 }
3076 #endif
3077
3078 /* Read an array of ints from the target into a local buffer.
3079 Convert to host order. int LEN is number of ints */
3080 static void
3081 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3082 {
3083 /* FIXME (alloca): Not safe if array is very large. */
3084 char *buf = alloca (len * TARGET_LONG_BYTES);
3085 int i;
3086
3087 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3088 for (i = 0; i < len; i++)
3089 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3090 TARGET_LONG_BYTES);
3091 }
3092
3093 /* Find and grab a copy of the target _ovly_table
3094 (and _novlys, which is needed for the table's size) */
3095 static int
3096 simple_read_overlay_table (void)
3097 {
3098 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3099
3100 simple_free_overlay_table ();
3101 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3102 if (! novlys_msym)
3103 {
3104 error ("Error reading inferior's overlay table: "
3105 "couldn't find `_novlys' variable\n"
3106 "in inferior. Use `overlay manual' mode.");
3107 return 0;
3108 }
3109
3110 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3111 if (! ovly_table_msym)
3112 {
3113 error ("Error reading inferior's overlay table: couldn't find "
3114 "`_ovly_table' array\n"
3115 "in inferior. Use `overlay manual' mode.");
3116 return 0;
3117 }
3118
3119 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3120 cache_ovly_table
3121 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3122 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3123 read_target_long_array (cache_ovly_table_base,
3124 (int *) cache_ovly_table,
3125 cache_novlys * 4);
3126
3127 return 1; /* SUCCESS */
3128 }
3129
3130 #if 0
3131 /* Find and grab a copy of the target _ovly_region_table
3132 (and _novly_regions, which is needed for the table's size) */
3133 static int
3134 simple_read_overlay_region_table (void)
3135 {
3136 struct minimal_symbol *msym;
3137
3138 simple_free_overlay_region_table ();
3139 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3140 if (msym != NULL)
3141 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3142 else
3143 return 0; /* failure */
3144 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3145 if (cache_ovly_region_table != NULL)
3146 {
3147 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3148 if (msym != NULL)
3149 {
3150 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3151 read_target_long_array (cache_ovly_region_table_base,
3152 (int *) cache_ovly_region_table,
3153 cache_novly_regions * 3);
3154 }
3155 else
3156 return 0; /* failure */
3157 }
3158 else
3159 return 0; /* failure */
3160 return 1; /* SUCCESS */
3161 }
3162 #endif
3163
3164 /* Function: simple_overlay_update_1
3165 A helper function for simple_overlay_update. Assuming a cached copy
3166 of _ovly_table exists, look through it to find an entry whose vma,
3167 lma and size match those of OSECT. Re-read the entry and make sure
3168 it still matches OSECT (else the table may no longer be valid).
3169 Set OSECT's mapped state to match the entry. Return: 1 for
3170 success, 0 for failure. */
3171
3172 static int
3173 simple_overlay_update_1 (struct obj_section *osect)
3174 {
3175 int i, size;
3176 bfd *obfd = osect->objfile->obfd;
3177 asection *bsect = osect->the_bfd_section;
3178
3179 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3180 for (i = 0; i < cache_novlys; i++)
3181 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3182 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3183 /* && cache_ovly_table[i][SIZE] == size */ )
3184 {
3185 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3186 (int *) cache_ovly_table[i], 4);
3187 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3188 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3189 /* && cache_ovly_table[i][SIZE] == size */ )
3190 {
3191 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3192 return 1;
3193 }
3194 else /* Warning! Warning! Target's ovly table has changed! */
3195 return 0;
3196 }
3197 return 0;
3198 }
3199
3200 /* Function: simple_overlay_update
3201 If OSECT is NULL, then update all sections' mapped state
3202 (after re-reading the entire target _ovly_table).
3203 If OSECT is non-NULL, then try to find a matching entry in the
3204 cached ovly_table and update only OSECT's mapped state.
3205 If a cached entry can't be found or the cache isn't valid, then
3206 re-read the entire cache, and go ahead and update all sections. */
3207
3208 static void
3209 simple_overlay_update (struct obj_section *osect)
3210 {
3211 struct objfile *objfile;
3212
3213 /* Were we given an osect to look up? NULL means do all of them. */
3214 if (osect)
3215 /* Have we got a cached copy of the target's overlay table? */
3216 if (cache_ovly_table != NULL)
3217 /* Does its cached location match what's currently in the symtab? */
3218 if (cache_ovly_table_base ==
3219 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3220 /* Then go ahead and try to look up this single section in the cache */
3221 if (simple_overlay_update_1 (osect))
3222 /* Found it! We're done. */
3223 return;
3224
3225 /* Cached table no good: need to read the entire table anew.
3226 Or else we want all the sections, in which case it's actually
3227 more efficient to read the whole table in one block anyway. */
3228
3229 if (! simple_read_overlay_table ())
3230 return;
3231
3232 /* Now may as well update all sections, even if only one was requested. */
3233 ALL_OBJSECTIONS (objfile, osect)
3234 if (section_is_overlay (osect->the_bfd_section))
3235 {
3236 int i, size;
3237 bfd *obfd = osect->objfile->obfd;
3238 asection *bsect = osect->the_bfd_section;
3239
3240 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3241 for (i = 0; i < cache_novlys; i++)
3242 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3243 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3244 /* && cache_ovly_table[i][SIZE] == size */ )
3245 { /* obj_section matches i'th entry in ovly_table */
3246 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3247 break; /* finished with inner for loop: break out */
3248 }
3249 }
3250 }
3251
3252
3253 void
3254 _initialize_symfile (void)
3255 {
3256 struct cmd_list_element *c;
3257
3258 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3259 "Load symbol table from executable file FILE.\n\
3260 The `file' command can also load symbol tables, as well as setting the file\n\
3261 to execute.", &cmdlist);
3262 set_cmd_completer (c, filename_completer);
3263
3264 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3265 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3266 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3267 ADDR is the starting address of the file's text.\n\
3268 The optional arguments are section-name section-address pairs and\n\
3269 should be specified if the data and bss segments are not contiguous\n\
3270 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3271 &cmdlist);
3272 set_cmd_completer (c, filename_completer);
3273
3274 c = add_cmd ("add-shared-symbol-files", class_files,
3275 add_shared_symbol_files_command,
3276 "Load the symbols from shared objects in the dynamic linker's link map.",
3277 &cmdlist);
3278 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3279 &cmdlist);
3280
3281 c = add_cmd ("load", class_files, load_command,
3282 "Dynamically load FILE into the running program, and record its symbols\n\
3283 for access from GDB.", &cmdlist);
3284 set_cmd_completer (c, filename_completer);
3285
3286 add_show_from_set
3287 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3288 (char *) &symbol_reloading,
3289 "Set dynamic symbol table reloading multiple times in one run.",
3290 &setlist),
3291 &showlist);
3292
3293 add_prefix_cmd ("overlay", class_support, overlay_command,
3294 "Commands for debugging overlays.", &overlaylist,
3295 "overlay ", 0, &cmdlist);
3296
3297 add_com_alias ("ovly", "overlay", class_alias, 1);
3298 add_com_alias ("ov", "overlay", class_alias, 1);
3299
3300 add_cmd ("map-overlay", class_support, map_overlay_command,
3301 "Assert that an overlay section is mapped.", &overlaylist);
3302
3303 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3304 "Assert that an overlay section is unmapped.", &overlaylist);
3305
3306 add_cmd ("list-overlays", class_support, list_overlays_command,
3307 "List mappings of overlay sections.", &overlaylist);
3308
3309 add_cmd ("manual", class_support, overlay_manual_command,
3310 "Enable overlay debugging.", &overlaylist);
3311 add_cmd ("off", class_support, overlay_off_command,
3312 "Disable overlay debugging.", &overlaylist);
3313 add_cmd ("auto", class_support, overlay_auto_command,
3314 "Enable automatic overlay debugging.", &overlaylist);
3315 add_cmd ("load-target", class_support, overlay_load_command,
3316 "Read the overlay mapping state from the target.", &overlaylist);
3317
3318 /* Filename extension to source language lookup table: */
3319 init_filename_language_table ();
3320 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3321 (char *) &ext_args,
3322 "Set mapping between filename extension and source language.\n\
3323 Usage: set extension-language .foo bar",
3324 &setlist);
3325 set_cmd_cfunc (c, set_ext_lang_command);
3326
3327 add_info ("extensions", info_ext_lang_command,
3328 "All filename extensions associated with a source language.");
3329
3330 add_show_from_set
3331 (add_set_cmd ("download-write-size", class_obscure,
3332 var_integer, (char *) &download_write_size,
3333 "Set the write size used when downloading a program.\n"
3334 "Only used when downloading a program onto a remote\n"
3335 "target. Specify zero, or a negative value, to disable\n"
3336 "blocked writes. The actual size of each transfer is also\n"
3337 "limited by the size of the target packet and the memory\n"
3338 "cache.\n",
3339 &setlist),
3340 &showlist);
3341 }
This page took 0.09597 seconds and 5 git commands to generate.