* cli/cli-dump.c (bfd_openr_with_cleanup): Use gdb_bfd_openr.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
158 library symbols are not loaded, commands like "info fun" will *not*
159 report all the functions that are actually present. */
160
161 int auto_solib_add = 1;
162 \f
163
164 /* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
166 Note that the string at PTR does not have to be null terminated, I.e. it
167 may be part of a larger string and we are only saving a substring. */
168
169 char *
170 obsavestring (const char *ptr, int size, struct obstack *obstackp)
171 {
172 char *p = (char *) obstack_alloc (obstackp, size + 1);
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
175 inline memcpy? */
176 {
177 const char *p1 = ptr;
178 char *p2 = p;
179 const char *end = ptr + size;
180
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186 }
187
188 /* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
192
193 char *
194 obconcat (struct obstack *obstackp, ...)
195 {
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
212 }
213
214 /* True if we are reading a symbol table. */
215
216 int currently_reading_symtab = 0;
217
218 static void
219 decrement_reading_symtab (void *dummy)
220 {
221 currently_reading_symtab--;
222 }
223
224 /* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226 struct cleanup *
227 increment_reading_symtab (void)
228 {
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
231 }
232
233 /* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242 void
243 find_lowest_section (bfd *abfd, asection *sect, void *obj)
244 {
245 asection **lowest = (asection **) obj;
246
247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257 }
258
259 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261 struct section_addr_info *
262 alloc_section_addr_info (size_t num_sections)
263 {
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274 }
275
276 /* Build (allocate and populate) a section_addr_info struct from
277 an existing section table. */
278
279 extern struct section_addr_info *
280 build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
282 {
283 struct section_addr_info *sap;
284 const struct target_section *stp;
285 int oidx;
286
287 sap = alloc_section_addr_info (end - start);
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
291 if (bfd_get_section_flags (stp->bfd,
292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
293 && oidx < end - start)
294 {
295 sap->other[oidx].addr = stp->addr;
296 sap->other[oidx].name
297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in ABFD. */
307
308 static struct section_addr_info *
309 build_section_addr_info_from_bfd (bfd *abfd)
310 {
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
318 {
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
324 return sap;
325 }
326
327 /* Create a section_addr_info from section offsets in OBJFILE. */
328
329 struct section_addr_info *
330 build_section_addr_info_from_objfile (const struct objfile *objfile)
331 {
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346 }
347
348 /* Free all memory allocated by build_section_addr_info_from_section_table. */
349
350 extern void
351 free_section_addr_info (struct section_addr_info *sap)
352 {
353 int idx;
354
355 for (idx = 0; idx < sap->num_sections; idx++)
356 if (sap->other[idx].name)
357 xfree (sap->other[idx].name);
358 xfree (sap);
359 }
360
361
362 /* Initialize OBJFILE's sect_index_* members. */
363 static void
364 init_objfile_sect_indices (struct objfile *objfile)
365 {
366 asection *sect;
367 int i;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
370 if (sect)
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
374 if (sect)
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
378 if (sect)
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
382 if (sect)
383 objfile->sect_index_rodata = sect->index;
384
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
420 }
421
422 /* The arguments to place_section. */
423
424 struct place_section_arg
425 {
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428 };
429
430 /* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
433 static void
434 place_section (bfd *abfd, asection *sect, void *obj)
435 {
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
440
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
450 start_addr = (arg->lowest + align - 1) & -align;
451
452 do {
453 asection *cur_sec;
454
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
482 break;
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
492 }
493
494 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
497
498 void
499 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
502 {
503 int i;
504
505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
506
507 /* Now calculate offsets for section that were specified by the caller. */
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp;
511
512 osp = &addrs->other[i];
513 if (osp->sectindex == -1)
514 continue;
515
516 /* Record all sections in offsets. */
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521 }
522
523 /* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529 static const char *
530 addr_section_name (const char *s)
531 {
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval;
549
550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
551 if (retval)
552 return retval;
553
554 return a->sectindex - b->sectindex;
555 }
556
557 /* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560 static struct other_sections **
561 addrs_section_sort (struct section_addr_info *addrs)
562 {
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575 }
576
577 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
580
581 void
582 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583 {
584 asection *lower_sect;
585 CORE_ADDR lower_offset;
586 int i;
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
591
592 /* Find lowest loadable section to be used as starting point for
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
601 }
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
633
634 while (*abfd_addrs_sorted
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 struct other_sections *sect = addrs_to_abfd_addrs[i];
670
671 if (sect)
672 {
673 /* This is the index used by BFD. */
674 addrs->other[i].sectindex = sect->sectindex;
675
676 if (addrs->other[i].addr != 0)
677 {
678 addrs->other[i].addr -= sect->addr;
679 lower_offset = addrs->other[i].addr;
680 }
681 else
682 addrs->other[i].addr = lower_offset;
683 }
684 else
685 {
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
704 || strcmp (sect_name, ".gnu.conflict") == 0
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717 addrs->other[i].sectindex = -1;
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1013
1014 void
1015 new_symfile_objfile (struct objfile *objfile, int add_flags)
1016 {
1017 /* If this is the main symbol file we have to clean up all users of the
1018 old main symbol file. Otherwise it is sufficient to fixup all the
1019 breakpoints that may have been redefined by this symbol file. */
1020 if (add_flags & SYMFILE_MAINLINE)
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
1025 clear_symtab_users (add_flags);
1026 }
1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1028 {
1029 breakpoint_re_set ();
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1034 }
1035
1036 /* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 This BFD will be closed on error, and is always consumed by this function.
1041
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1048
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
1052 Upon success, returns a pointer to the objfile that was added.
1053 Upon failure, jumps back to command level (never returns). */
1054
1055 static struct objfile *
1056 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
1061 int flags, struct objfile *parent)
1062 {
1063 struct objfile *objfile;
1064 struct cleanup *my_cleanups;
1065 const char *name = bfd_get_filename (abfd);
1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
1067 const int mainline = add_flags & SYMFILE_MAINLINE;
1068 const int should_print = ((from_tty || info_verbose)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
1071
1072 if (readnow_symbol_files)
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
1077
1078 my_cleanups = make_cleanup_bfd_unref (abfd);
1079
1080 /* Give user a chance to burp if we'd be
1081 interactively wiping out any existing symbols. */
1082
1083 if ((have_full_symbols () || have_partial_symbols ())
1084 && mainline
1085 && from_tty
1086 && !query (_("Load new symbol table from \"%s\"? "), name))
1087 error (_("Not confirmed."));
1088
1089 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1090 discard_cleanups (my_cleanups);
1091
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
1097 performed, or need to read an unmapped symbol table. */
1098 if (should_print)
1099 {
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
1102 else
1103 {
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
1107 }
1108 }
1109 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1110 add_flags);
1111
1112 /* We now have at least a partial symbol table. Check to see if the
1113 user requested that all symbols be read on initial access via either
1114 the gdb startup command line or on a per symbol file basis. Expand
1115 all partial symbol tables for this objfile if so. */
1116
1117 if ((flags & OBJF_READNOW))
1118 {
1119 if (should_print)
1120 {
1121 printf_unfiltered (_("expanding to full symbols..."));
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125
1126 if (objfile->sf)
1127 objfile->sf->qf->expand_all_symtabs (objfile);
1128 }
1129
1130 if (should_print && !objfile_has_symbols (objfile))
1131 {
1132 wrap_here ("");
1133 printf_unfiltered (_("(no debugging symbols found)..."));
1134 wrap_here ("");
1135 }
1136
1137 if (should_print)
1138 {
1139 if (deprecated_post_add_symbol_hook)
1140 deprecated_post_add_symbol_hook ();
1141 else
1142 printf_unfiltered (_("done.\n"));
1143 }
1144
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
1150 if (objfile->sf == NULL)
1151 {
1152 observer_notify_new_objfile (objfile);
1153 return objfile; /* No symbols. */
1154 }
1155
1156 new_symfile_objfile (objfile, add_flags);
1157
1158 observer_notify_new_objfile (objfile);
1159
1160 bfd_cache_close_all ();
1161 return (objfile);
1162 }
1163
1164 /* Add BFD as a separate debug file for OBJFILE. */
1165
1166 void
1167 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1168 {
1169 struct objfile *new_objfile;
1170 struct section_addr_info *sap;
1171 struct cleanup *my_cleanup;
1172
1173 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1174 because sections of BFD may not match sections of OBJFILE and because
1175 vma may have been modified by tools such as prelink. */
1176 sap = build_section_addr_info_from_objfile (objfile);
1177 my_cleanup = make_cleanup_free_section_addr_info (sap);
1178
1179 new_objfile = symbol_file_add_with_addrs_or_offsets
1180 (bfd, symfile_flags,
1181 sap, NULL, 0,
1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1183 | OBJF_USERLOADED),
1184 objfile);
1185
1186 do_cleanups (my_cleanup);
1187 }
1188
1189 /* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191
1192 See symbol_file_add_with_addrs_or_offsets's comments for
1193 details. */
1194 struct objfile *
1195 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1196 struct section_addr_info *addrs,
1197 int flags, struct objfile *parent)
1198 {
1199 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1200 flags, parent);
1201 }
1202
1203
1204 /* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1206 for details. */
1207 struct objfile *
1208 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1209 int flags)
1210 {
1211 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1212 flags, NULL);
1213 }
1214
1215
1216 /* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
1223
1224 void
1225 symbol_file_add_main (char *args, int from_tty)
1226 {
1227 symbol_file_add_main_1 (args, from_tty, 0);
1228 }
1229
1230 static void
1231 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1232 {
1233 const int add_flags = (current_inferior ()->symfile_flags
1234 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1235
1236 symbol_file_add (args, add_flags, NULL, flags);
1237
1238 /* Getting new symbols may change our opinion about
1239 what is frameless. */
1240 reinit_frame_cache ();
1241
1242 if ((flags & SYMFILE_NO_READ) == 0)
1243 set_initial_language ();
1244 }
1245
1246 void
1247 symbol_file_clear (int from_tty)
1248 {
1249 if ((have_full_symbols () || have_partial_symbols ())
1250 && from_tty
1251 && (symfile_objfile
1252 ? !query (_("Discard symbol table from `%s'? "),
1253 symfile_objfile->name)
1254 : !query (_("Discard symbol table? "))))
1255 error (_("Not confirmed."));
1256
1257 /* solib descriptors may have handles to objfiles. Wipe them before their
1258 objfiles get stale by free_all_objfiles. */
1259 no_shared_libraries (NULL, from_tty);
1260
1261 free_all_objfiles ();
1262
1263 gdb_assert (symfile_objfile == NULL);
1264 if (from_tty)
1265 printf_unfiltered (_("No symbol file now.\n"));
1266 }
1267
1268 static char *
1269 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270 {
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
1276
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
1283
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1293
1294 *crc32_out = crc32;
1295 return contents;
1296 }
1297
1298 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1299 return 1. Otherwise print a warning and return 0. ABFD seek position is
1300 not preserved. */
1301
1302 static int
1303 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1304 {
1305 unsigned long file_crc = 0;
1306
1307 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1308 {
1309 warning (_("Problem reading \"%s\" for CRC: %s"),
1310 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1311 return 0;
1312 }
1313
1314 for (;;)
1315 {
1316 gdb_byte buffer[8 * 1024];
1317 bfd_size_type count;
1318
1319 count = bfd_bread (buffer, sizeof (buffer), abfd);
1320 if (count == (bfd_size_type) -1)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326 if (count == 0)
1327 break;
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 }
1330
1331 *file_crc_return = file_crc;
1332 return 1;
1333 }
1334
1335 static int
1336 separate_debug_file_exists (const char *name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 bfd *abfd;
1342 struct stat parent_stat, abfd_stat;
1343 int verified_as_different;
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1349 the separate debug infos with the same basename can exist. */
1350
1351 if (filename_cmp (name, parent_objfile->name) == 0)
1352 return 0;
1353
1354 abfd = bfd_open_maybe_remote (name);
1355
1356 if (!abfd)
1357 return 0;
1358
1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Do not indicate a duplicate library in that
1364 case. While there is no guarantee that a system that provides
1365 meaningful inode numbers will never set st_ino to zero, this is
1366 merely an optimization, so we do not need to worry about false
1367 negatives. */
1368
1369 if (bfd_stat (abfd, &abfd_stat) == 0
1370 && abfd_stat.st_ino != 0
1371 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1372 {
1373 if (abfd_stat.st_dev == parent_stat.st_dev
1374 && abfd_stat.st_ino == parent_stat.st_ino)
1375 {
1376 gdb_bfd_unref (abfd);
1377 return 0;
1378 }
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = get_file_crc (abfd, &file_crc);
1385
1386 gdb_bfd_unref (abfd);
1387
1388 if (!file_crc_p)
1389 return 0;
1390
1391 if (crc != file_crc)
1392 {
1393 /* If one (or both) the files are accessed for example the via "remote:"
1394 gdbserver way it does not support the bfd_stat operation. Verify
1395 whether those two files are not the same manually. */
1396
1397 if (!verified_as_different && !parent_objfile->crc32_p)
1398 {
1399 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1400 &parent_objfile->crc32);
1401 if (!parent_objfile->crc32_p)
1402 return 0;
1403 }
1404
1405 if (verified_as_different || parent_objfile->crc32 != file_crc)
1406 warning (_("the debug information found in \"%s\""
1407 " does not match \"%s\" (CRC mismatch).\n"),
1408 name, parent_objfile->name);
1409
1410 return 0;
1411 }
1412
1413 return 1;
1414 }
1415
1416 char *debug_file_directory = NULL;
1417 static void
1418 show_debug_file_directory (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420 {
1421 fprintf_filtered (file,
1422 _("The directory where separate debug "
1423 "symbols are searched for is \"%s\".\n"),
1424 value);
1425 }
1426
1427 #if ! defined (DEBUG_SUBDIRECTORY)
1428 #define DEBUG_SUBDIRECTORY ".debug"
1429 #endif
1430
1431 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1432 where the original file resides (may not be the same as
1433 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1434 looking for. Returns the name of the debuginfo, of NULL. */
1435
1436 static char *
1437 find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
1441 {
1442 char *debugdir;
1443 char *debugfile;
1444 int i;
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
1448
1449 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1450 i = strlen (dir);
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1453
1454 debugfile = xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1463 strcat (debugfile, debuglink);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* Then try in the global debugfile directories.
1478
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
1481
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1484
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
1488 strcat (debugfile, "/");
1489 strcat (debugfile, dir);
1490 strcat (debugfile, debuglink);
1491
1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1493 return debugfile;
1494
1495 /* If the file is in the sysroot, try using its base path in the
1496 global debugfile directory. */
1497 if (canon_dir != NULL
1498 && filename_ncmp (canon_dir, gdb_sysroot,
1499 strlen (gdb_sysroot)) == 0
1500 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1501 {
1502 strcpy (debugfile, debugdir);
1503 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1504 strcat (debugfile, "/");
1505 strcat (debugfile, debuglink);
1506
1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1508 return debugfile;
1509 }
1510 }
1511
1512 do_cleanups (back_to);
1513 xfree (debugfile);
1514 return NULL;
1515 }
1516
1517 /* Modify PATH to contain only "directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521 static void
1522 terminate_after_last_dir_separator (char *path)
1523 {
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534 }
1535
1536 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539 char *
1540 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541 {
1542 char *debuglink;
1543 char *dir, *canon_dir;
1544 char *debugfile;
1545 unsigned long crc32;
1546 struct cleanup *cleanups;
1547
1548 debuglink = get_debug_link_info (objfile, &crc32);
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return NULL;
1555 }
1556
1557 cleanups = make_cleanup (xfree, debuglink);
1558 dir = xstrdup (objfile->name);
1559 make_cleanup (xfree, dir);
1560 terminate_after_last_dir_separator (dir);
1561 canon_dir = lrealpath (dir);
1562
1563 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1564 crc32, objfile);
1565 xfree (canon_dir);
1566
1567 if (debugfile == NULL)
1568 {
1569 #ifdef HAVE_LSTAT
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1576 {
1577 char *symlink_dir;
1578
1579 symlink_dir = lrealpath (objfile->name);
1580 if (symlink_dir != NULL)
1581 {
1582 make_cleanup (xfree, symlink_dir);
1583 terminate_after_last_dir_separator (symlink_dir);
1584 if (strcmp (dir, symlink_dir) != 0)
1585 {
1586 /* Different directory, so try using it. */
1587 debugfile = find_separate_debug_file (symlink_dir,
1588 symlink_dir,
1589 debuglink,
1590 crc32,
1591 objfile);
1592 }
1593 }
1594 }
1595 #endif /* HAVE_LSTAT */
1596 }
1597
1598 do_cleanups (cleanups);
1599 return debugfile;
1600 }
1601
1602
1603 /* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
1615 conventions (because it is confusing and inconvenient). */
1616
1617 void
1618 symbol_file_command (char *args, int from_tty)
1619 {
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1624 symbol_file_clear (from_tty);
1625 }
1626 else
1627 {
1628 char **argv = gdb_buildargv (args);
1629 int flags = OBJF_USERLOADED;
1630 struct cleanup *cleanups;
1631 char *name = NULL;
1632
1633 cleanups = make_cleanup_freeargv (argv);
1634 while (*argv != NULL)
1635 {
1636 if (strcmp (*argv, "-readnow") == 0)
1637 flags |= OBJF_READNOW;
1638 else if (**argv == '-')
1639 error (_("unknown option `%s'"), *argv);
1640 else
1641 {
1642 symbol_file_add_main_1 (*argv, from_tty, flags);
1643 name = *argv;
1644 }
1645
1646 argv++;
1647 }
1648
1649 if (name == NULL)
1650 error (_("no symbol file name was specified"));
1651
1652 do_cleanups (cleanups);
1653 }
1654 }
1655
1656 /* Set the initial language.
1657
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
1666
1667 void
1668 set_initial_language (void)
1669 {
1670 enum language lang = language_unknown;
1671
1672 if (language_of_main != language_unknown)
1673 lang = language_of_main;
1674 else
1675 {
1676 const char *filename;
1677
1678 filename = find_main_filename ();
1679 if (filename != NULL)
1680 lang = deduce_language_from_filename (filename);
1681 }
1682
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
1687 }
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
1691 }
1692
1693 /* If NAME is a remote name open the file using remote protocol, otherwise
1694 open it normally. Returns a new reference to the BFD. On error,
1695 returns NULL with the BFD error set. */
1696
1697 bfd *
1698 bfd_open_maybe_remote (const char *name)
1699 {
1700 bfd *result;
1701
1702 if (remote_filename_p (name))
1703 result = remote_bfd_open (name, gnutarget);
1704 else
1705 result = gdb_bfd_openr (name, gnutarget);
1706
1707 return result;
1708 }
1709
1710
1711 /* Open the file specified by NAME and hand it off to BFD for
1712 preliminary analysis. Return a newly initialized bfd *, which
1713 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1714 absolute). In case of trouble, error() is called. */
1715
1716 bfd *
1717 symfile_bfd_open (char *name)
1718 {
1719 bfd *sym_bfd;
1720 int desc;
1721 char *absolute_name;
1722
1723 if (remote_filename_p (name))
1724 {
1725 sym_bfd = remote_bfd_open (name, gnutarget);
1726 if (!sym_bfd)
1727 error (_("`%s': can't open to read symbols: %s."), name,
1728 bfd_errmsg (bfd_get_error ()));
1729
1730 if (!bfd_check_format (sym_bfd, bfd_object))
1731 {
1732 make_cleanup_bfd_unref (sym_bfd);
1733 error (_("`%s': can't read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735 }
1736
1737 return sym_bfd;
1738 }
1739
1740 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1741
1742 /* Look down path for it, allocate 2nd new malloc'd copy. */
1743 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1744 O_RDONLY | O_BINARY, &absolute_name);
1745 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1746 if (desc < 0)
1747 {
1748 char *exename = alloca (strlen (name) + 5);
1749
1750 strcat (strcpy (exename, name), ".exe");
1751 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1752 O_RDONLY | O_BINARY, &absolute_name);
1753 }
1754 #endif
1755 if (desc < 0)
1756 {
1757 make_cleanup (xfree, name);
1758 perror_with_name (name);
1759 }
1760
1761 xfree (name);
1762 name = absolute_name;
1763 make_cleanup (xfree, name);
1764
1765 sym_bfd = gdb_bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1766 if (!sym_bfd)
1767 {
1768 make_cleanup (xfree, name);
1769 error (_("`%s': can't open to read symbols: %s."), name,
1770 bfd_errmsg (bfd_get_error ()));
1771 }
1772 bfd_set_cacheable (sym_bfd, 1);
1773
1774 if (!bfd_check_format (sym_bfd, bfd_object))
1775 {
1776 make_cleanup_bfd_unref (sym_bfd);
1777 error (_("`%s': can't read symbols: %s."), name,
1778 bfd_errmsg (bfd_get_error ()));
1779 }
1780
1781 return sym_bfd;
1782 }
1783
1784 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1785 the section was not found. */
1786
1787 int
1788 get_section_index (struct objfile *objfile, char *section_name)
1789 {
1790 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1791
1792 if (sect)
1793 return sect->index;
1794 else
1795 return -1;
1796 }
1797
1798 /* Link SF into the global symtab_fns list. Called on startup by the
1799 _initialize routine in each object file format reader, to register
1800 information about each format the reader is prepared to handle. */
1801
1802 void
1803 add_symtab_fns (const struct sym_fns *sf)
1804 {
1805 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1806 }
1807
1808 /* Initialize OBJFILE to read symbols from its associated BFD. It
1809 either returns or calls error(). The result is an initialized
1810 struct sym_fns in the objfile structure, that contains cached
1811 information about the symbol file. */
1812
1813 static const struct sym_fns *
1814 find_sym_fns (bfd *abfd)
1815 {
1816 const struct sym_fns *sf;
1817 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1818 int i;
1819
1820 if (our_flavour == bfd_target_srec_flavour
1821 || our_flavour == bfd_target_ihex_flavour
1822 || our_flavour == bfd_target_tekhex_flavour)
1823 return NULL; /* No symbols. */
1824
1825 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1826 if (our_flavour == sf->sym_flavour)
1827 return sf;
1828
1829 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1830 bfd_get_target (abfd));
1831 }
1832 \f
1833
1834 /* This function runs the load command of our current target. */
1835
1836 static void
1837 load_command (char *arg, int from_tty)
1838 {
1839 dont_repeat ();
1840
1841 /* The user might be reloading because the binary has changed. Take
1842 this opportunity to check. */
1843 reopen_exec_file ();
1844 reread_symbols ();
1845
1846 if (arg == NULL)
1847 {
1848 char *parg;
1849 int count = 0;
1850
1851 parg = arg = get_exec_file (1);
1852
1853 /* Count how many \ " ' tab space there are in the name. */
1854 while ((parg = strpbrk (parg, "\\\"'\t ")))
1855 {
1856 parg++;
1857 count++;
1858 }
1859
1860 if (count)
1861 {
1862 /* We need to quote this string so buildargv can pull it apart. */
1863 char *temp = xmalloc (strlen (arg) + count + 1 );
1864 char *ptemp = temp;
1865 char *prev;
1866
1867 make_cleanup (xfree, temp);
1868
1869 prev = parg = arg;
1870 while ((parg = strpbrk (parg, "\\\"'\t ")))
1871 {
1872 strncpy (ptemp, prev, parg - prev);
1873 ptemp += parg - prev;
1874 prev = parg++;
1875 *ptemp++ = '\\';
1876 }
1877 strcpy (ptemp, prev);
1878
1879 arg = temp;
1880 }
1881 }
1882
1883 target_load (arg, from_tty);
1884
1885 /* After re-loading the executable, we don't really know which
1886 overlays are mapped any more. */
1887 overlay_cache_invalid = 1;
1888 }
1889
1890 /* This version of "load" should be usable for any target. Currently
1891 it is just used for remote targets, not inftarg.c or core files,
1892 on the theory that only in that case is it useful.
1893
1894 Avoiding xmodem and the like seems like a win (a) because we don't have
1895 to worry about finding it, and (b) On VMS, fork() is very slow and so
1896 we don't want to run a subprocess. On the other hand, I'm not sure how
1897 performance compares. */
1898
1899 static int validate_download = 0;
1900
1901 /* Callback service function for generic_load (bfd_map_over_sections). */
1902
1903 static void
1904 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1905 {
1906 bfd_size_type *sum = data;
1907
1908 *sum += bfd_get_section_size (asec);
1909 }
1910
1911 /* Opaque data for load_section_callback. */
1912 struct load_section_data {
1913 unsigned long load_offset;
1914 struct load_progress_data *progress_data;
1915 VEC(memory_write_request_s) *requests;
1916 };
1917
1918 /* Opaque data for load_progress. */
1919 struct load_progress_data {
1920 /* Cumulative data. */
1921 unsigned long write_count;
1922 unsigned long data_count;
1923 bfd_size_type total_size;
1924 };
1925
1926 /* Opaque data for load_progress for a single section. */
1927 struct load_progress_section_data {
1928 struct load_progress_data *cumulative;
1929
1930 /* Per-section data. */
1931 const char *section_name;
1932 ULONGEST section_sent;
1933 ULONGEST section_size;
1934 CORE_ADDR lma;
1935 gdb_byte *buffer;
1936 };
1937
1938 /* Target write callback routine for progress reporting. */
1939
1940 static void
1941 load_progress (ULONGEST bytes, void *untyped_arg)
1942 {
1943 struct load_progress_section_data *args = untyped_arg;
1944 struct load_progress_data *totals;
1945
1946 if (args == NULL)
1947 /* Writing padding data. No easy way to get at the cumulative
1948 stats, so just ignore this. */
1949 return;
1950
1951 totals = args->cumulative;
1952
1953 if (bytes == 0 && args->section_sent == 0)
1954 {
1955 /* The write is just starting. Let the user know we've started
1956 this section. */
1957 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1958 args->section_name, hex_string (args->section_size),
1959 paddress (target_gdbarch, args->lma));
1960 return;
1961 }
1962
1963 if (validate_download)
1964 {
1965 /* Broken memories and broken monitors manifest themselves here
1966 when bring new computers to life. This doubles already slow
1967 downloads. */
1968 /* NOTE: cagney/1999-10-18: A more efficient implementation
1969 might add a verify_memory() method to the target vector and
1970 then use that. remote.c could implement that method using
1971 the ``qCRC'' packet. */
1972 gdb_byte *check = xmalloc (bytes);
1973 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1974
1975 if (target_read_memory (args->lma, check, bytes) != 0)
1976 error (_("Download verify read failed at %s"),
1977 paddress (target_gdbarch, args->lma));
1978 if (memcmp (args->buffer, check, bytes) != 0)
1979 error (_("Download verify compare failed at %s"),
1980 paddress (target_gdbarch, args->lma));
1981 do_cleanups (verify_cleanups);
1982 }
1983 totals->data_count += bytes;
1984 args->lma += bytes;
1985 args->buffer += bytes;
1986 totals->write_count += 1;
1987 args->section_sent += bytes;
1988 if (quit_flag
1989 || (deprecated_ui_load_progress_hook != NULL
1990 && deprecated_ui_load_progress_hook (args->section_name,
1991 args->section_sent)))
1992 error (_("Canceled the download"));
1993
1994 if (deprecated_show_load_progress != NULL)
1995 deprecated_show_load_progress (args->section_name,
1996 args->section_sent,
1997 args->section_size,
1998 totals->data_count,
1999 totals->total_size);
2000 }
2001
2002 /* Callback service function for generic_load (bfd_map_over_sections). */
2003
2004 static void
2005 load_section_callback (bfd *abfd, asection *asec, void *data)
2006 {
2007 struct memory_write_request *new_request;
2008 struct load_section_data *args = data;
2009 struct load_progress_section_data *section_data;
2010 bfd_size_type size = bfd_get_section_size (asec);
2011 gdb_byte *buffer;
2012 const char *sect_name = bfd_get_section_name (abfd, asec);
2013
2014 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2015 return;
2016
2017 if (size == 0)
2018 return;
2019
2020 new_request = VEC_safe_push (memory_write_request_s,
2021 args->requests, NULL);
2022 memset (new_request, 0, sizeof (struct memory_write_request));
2023 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2024 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2025 new_request->end = new_request->begin + size; /* FIXME Should size
2026 be in instead? */
2027 new_request->data = xmalloc (size);
2028 new_request->baton = section_data;
2029
2030 buffer = new_request->data;
2031
2032 section_data->cumulative = args->progress_data;
2033 section_data->section_name = sect_name;
2034 section_data->section_size = size;
2035 section_data->lma = new_request->begin;
2036 section_data->buffer = buffer;
2037
2038 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2039 }
2040
2041 /* Clean up an entire memory request vector, including load
2042 data and progress records. */
2043
2044 static void
2045 clear_memory_write_data (void *arg)
2046 {
2047 VEC(memory_write_request_s) **vec_p = arg;
2048 VEC(memory_write_request_s) *vec = *vec_p;
2049 int i;
2050 struct memory_write_request *mr;
2051
2052 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2053 {
2054 xfree (mr->data);
2055 xfree (mr->baton);
2056 }
2057 VEC_free (memory_write_request_s, vec);
2058 }
2059
2060 void
2061 generic_load (char *args, int from_tty)
2062 {
2063 bfd *loadfile_bfd;
2064 struct timeval start_time, end_time;
2065 char *filename;
2066 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2067 struct load_section_data cbdata;
2068 struct load_progress_data total_progress;
2069 struct ui_out *uiout = current_uiout;
2070
2071 CORE_ADDR entry;
2072 char **argv;
2073
2074 memset (&cbdata, 0, sizeof (cbdata));
2075 memset (&total_progress, 0, sizeof (total_progress));
2076 cbdata.progress_data = &total_progress;
2077
2078 make_cleanup (clear_memory_write_data, &cbdata.requests);
2079
2080 if (args == NULL)
2081 error_no_arg (_("file to load"));
2082
2083 argv = gdb_buildargv (args);
2084 make_cleanup_freeargv (argv);
2085
2086 filename = tilde_expand (argv[0]);
2087 make_cleanup (xfree, filename);
2088
2089 if (argv[1] != NULL)
2090 {
2091 char *endptr;
2092
2093 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2094
2095 /* If the last word was not a valid number then
2096 treat it as a file name with spaces in. */
2097 if (argv[1] == endptr)
2098 error (_("Invalid download offset:%s."), argv[1]);
2099
2100 if (argv[2] != NULL)
2101 error (_("Too many parameters."));
2102 }
2103
2104 /* Open the file for loading. */
2105 loadfile_bfd = gdb_bfd_openr (filename, gnutarget);
2106 if (loadfile_bfd == NULL)
2107 {
2108 perror_with_name (filename);
2109 return;
2110 }
2111
2112 make_cleanup_bfd_unref (loadfile_bfd);
2113
2114 if (!bfd_check_format (loadfile_bfd, bfd_object))
2115 {
2116 error (_("\"%s\" is not an object file: %s"), filename,
2117 bfd_errmsg (bfd_get_error ()));
2118 }
2119
2120 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2121 (void *) &total_progress.total_size);
2122
2123 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2124
2125 gettimeofday (&start_time, NULL);
2126
2127 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2128 load_progress) != 0)
2129 error (_("Load failed"));
2130
2131 gettimeofday (&end_time, NULL);
2132
2133 entry = bfd_get_start_address (loadfile_bfd);
2134 ui_out_text (uiout, "Start address ");
2135 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2136 ui_out_text (uiout, ", load size ");
2137 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2138 ui_out_text (uiout, "\n");
2139 /* We were doing this in remote-mips.c, I suspect it is right
2140 for other targets too. */
2141 regcache_write_pc (get_current_regcache (), entry);
2142
2143 /* Reset breakpoints, now that we have changed the load image. For
2144 instance, breakpoints may have been set (or reset, by
2145 post_create_inferior) while connected to the target but before we
2146 loaded the program. In that case, the prologue analyzer could
2147 have read instructions from the target to find the right
2148 breakpoint locations. Loading has changed the contents of that
2149 memory. */
2150
2151 breakpoint_re_set ();
2152
2153 /* FIXME: are we supposed to call symbol_file_add or not? According
2154 to a comment from remote-mips.c (where a call to symbol_file_add
2155 was commented out), making the call confuses GDB if more than one
2156 file is loaded in. Some targets do (e.g., remote-vx.c) but
2157 others don't (or didn't - perhaps they have all been deleted). */
2158
2159 print_transfer_performance (gdb_stdout, total_progress.data_count,
2160 total_progress.write_count,
2161 &start_time, &end_time);
2162
2163 do_cleanups (old_cleanups);
2164 }
2165
2166 /* Report how fast the transfer went. */
2167
2168 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2169 replaced by print_transfer_performance (with a very different
2170 function signature). */
2171
2172 void
2173 report_transfer_performance (unsigned long data_count, time_t start_time,
2174 time_t end_time)
2175 {
2176 struct timeval start, end;
2177
2178 start.tv_sec = start_time;
2179 start.tv_usec = 0;
2180 end.tv_sec = end_time;
2181 end.tv_usec = 0;
2182
2183 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2184 }
2185
2186 void
2187 print_transfer_performance (struct ui_file *stream,
2188 unsigned long data_count,
2189 unsigned long write_count,
2190 const struct timeval *start_time,
2191 const struct timeval *end_time)
2192 {
2193 ULONGEST time_count;
2194 struct ui_out *uiout = current_uiout;
2195
2196 /* Compute the elapsed time in milliseconds, as a tradeoff between
2197 accuracy and overflow. */
2198 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2199 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2200
2201 ui_out_text (uiout, "Transfer rate: ");
2202 if (time_count > 0)
2203 {
2204 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2205
2206 if (ui_out_is_mi_like_p (uiout))
2207 {
2208 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2209 ui_out_text (uiout, " bits/sec");
2210 }
2211 else if (rate < 1024)
2212 {
2213 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2214 ui_out_text (uiout, " bytes/sec");
2215 }
2216 else
2217 {
2218 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2219 ui_out_text (uiout, " KB/sec");
2220 }
2221 }
2222 else
2223 {
2224 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2225 ui_out_text (uiout, " bits in <1 sec");
2226 }
2227 if (write_count > 0)
2228 {
2229 ui_out_text (uiout, ", ");
2230 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2231 ui_out_text (uiout, " bytes/write");
2232 }
2233 ui_out_text (uiout, ".\n");
2234 }
2235
2236 /* This function allows the addition of incrementally linked object files.
2237 It does not modify any state in the target, only in the debugger. */
2238 /* Note: ezannoni 2000-04-13 This function/command used to have a
2239 special case syntax for the rombug target (Rombug is the boot
2240 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2241 rombug case, the user doesn't need to supply a text address,
2242 instead a call to target_link() (in target.c) would supply the
2243 value to use. We are now discontinuing this type of ad hoc syntax. */
2244
2245 static void
2246 add_symbol_file_command (char *args, int from_tty)
2247 {
2248 struct gdbarch *gdbarch = get_current_arch ();
2249 char *filename = NULL;
2250 int flags = OBJF_USERLOADED;
2251 char *arg;
2252 int section_index = 0;
2253 int argcnt = 0;
2254 int sec_num = 0;
2255 int i;
2256 int expecting_sec_name = 0;
2257 int expecting_sec_addr = 0;
2258 char **argv;
2259
2260 struct sect_opt
2261 {
2262 char *name;
2263 char *value;
2264 };
2265
2266 struct section_addr_info *section_addrs;
2267 struct sect_opt *sect_opts = NULL;
2268 size_t num_sect_opts = 0;
2269 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2270
2271 num_sect_opts = 16;
2272 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2273 * sizeof (struct sect_opt));
2274
2275 dont_repeat ();
2276
2277 if (args == NULL)
2278 error (_("add-symbol-file takes a file name and an address"));
2279
2280 argv = gdb_buildargv (args);
2281 make_cleanup_freeargv (argv);
2282
2283 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2284 {
2285 /* Process the argument. */
2286 if (argcnt == 0)
2287 {
2288 /* The first argument is the file name. */
2289 filename = tilde_expand (arg);
2290 make_cleanup (xfree, filename);
2291 }
2292 else
2293 if (argcnt == 1)
2294 {
2295 /* The second argument is always the text address at which
2296 to load the program. */
2297 sect_opts[section_index].name = ".text";
2298 sect_opts[section_index].value = arg;
2299 if (++section_index >= num_sect_opts)
2300 {
2301 num_sect_opts *= 2;
2302 sect_opts = ((struct sect_opt *)
2303 xrealloc (sect_opts,
2304 num_sect_opts
2305 * sizeof (struct sect_opt)));
2306 }
2307 }
2308 else
2309 {
2310 /* It's an option (starting with '-') or it's an argument
2311 to an option. */
2312
2313 if (*arg == '-')
2314 {
2315 if (strcmp (arg, "-readnow") == 0)
2316 flags |= OBJF_READNOW;
2317 else if (strcmp (arg, "-s") == 0)
2318 {
2319 expecting_sec_name = 1;
2320 expecting_sec_addr = 1;
2321 }
2322 }
2323 else
2324 {
2325 if (expecting_sec_name)
2326 {
2327 sect_opts[section_index].name = arg;
2328 expecting_sec_name = 0;
2329 }
2330 else
2331 if (expecting_sec_addr)
2332 {
2333 sect_opts[section_index].value = arg;
2334 expecting_sec_addr = 0;
2335 if (++section_index >= num_sect_opts)
2336 {
2337 num_sect_opts *= 2;
2338 sect_opts = ((struct sect_opt *)
2339 xrealloc (sect_opts,
2340 num_sect_opts
2341 * sizeof (struct sect_opt)));
2342 }
2343 }
2344 else
2345 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2346 " [-readnow] [-s <secname> <addr>]*"));
2347 }
2348 }
2349 }
2350
2351 /* This command takes at least two arguments. The first one is a
2352 filename, and the second is the address where this file has been
2353 loaded. Abort now if this address hasn't been provided by the
2354 user. */
2355 if (section_index < 1)
2356 error (_("The address where %s has been loaded is missing"), filename);
2357
2358 /* Print the prompt for the query below. And save the arguments into
2359 a sect_addr_info structure to be passed around to other
2360 functions. We have to split this up into separate print
2361 statements because hex_string returns a local static
2362 string. */
2363
2364 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2365 section_addrs = alloc_section_addr_info (section_index);
2366 make_cleanup (xfree, section_addrs);
2367 for (i = 0; i < section_index; i++)
2368 {
2369 CORE_ADDR addr;
2370 char *val = sect_opts[i].value;
2371 char *sec = sect_opts[i].name;
2372
2373 addr = parse_and_eval_address (val);
2374
2375 /* Here we store the section offsets in the order they were
2376 entered on the command line. */
2377 section_addrs->other[sec_num].name = sec;
2378 section_addrs->other[sec_num].addr = addr;
2379 printf_unfiltered ("\t%s_addr = %s\n", sec,
2380 paddress (gdbarch, addr));
2381 sec_num++;
2382
2383 /* The object's sections are initialized when a
2384 call is made to build_objfile_section_table (objfile).
2385 This happens in reread_symbols.
2386 At this point, we don't know what file type this is,
2387 so we can't determine what section names are valid. */
2388 }
2389
2390 if (from_tty && (!query ("%s", "")))
2391 error (_("Not confirmed."));
2392
2393 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2394 section_addrs, flags);
2395
2396 /* Getting new symbols may change our opinion about what is
2397 frameless. */
2398 reinit_frame_cache ();
2399 do_cleanups (my_cleanups);
2400 }
2401 \f
2402
2403 typedef struct objfile *objfilep;
2404
2405 DEF_VEC_P (objfilep);
2406
2407 /* Re-read symbols if a symbol-file has changed. */
2408 void
2409 reread_symbols (void)
2410 {
2411 struct objfile *objfile;
2412 long new_modtime;
2413 struct stat new_statbuf;
2414 int res;
2415 VEC (objfilep) *new_objfiles = NULL;
2416 struct cleanup *all_cleanups;
2417
2418 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2419
2420 /* With the addition of shared libraries, this should be modified,
2421 the load time should be saved in the partial symbol tables, since
2422 different tables may come from different source files. FIXME.
2423 This routine should then walk down each partial symbol table
2424 and see if the symbol table that it originates from has been changed. */
2425
2426 for (objfile = object_files; objfile; objfile = objfile->next)
2427 {
2428 /* solib-sunos.c creates one objfile with obfd. */
2429 if (objfile->obfd == NULL)
2430 continue;
2431
2432 /* Separate debug objfiles are handled in the main objfile. */
2433 if (objfile->separate_debug_objfile_backlink)
2434 continue;
2435
2436 /* If this object is from an archive (what you usually create with
2437 `ar', often called a `static library' on most systems, though
2438 a `shared library' on AIX is also an archive), then you should
2439 stat on the archive name, not member name. */
2440 if (objfile->obfd->my_archive)
2441 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2442 else
2443 res = stat (objfile->name, &new_statbuf);
2444 if (res != 0)
2445 {
2446 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2447 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2448 objfile->name);
2449 continue;
2450 }
2451 new_modtime = new_statbuf.st_mtime;
2452 if (new_modtime != objfile->mtime)
2453 {
2454 struct cleanup *old_cleanups;
2455 struct section_offsets *offsets;
2456 int num_offsets;
2457 char *obfd_filename;
2458
2459 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2460 objfile->name);
2461
2462 /* There are various functions like symbol_file_add,
2463 symfile_bfd_open, syms_from_objfile, etc., which might
2464 appear to do what we want. But they have various other
2465 effects which we *don't* want. So we just do stuff
2466 ourselves. We don't worry about mapped files (for one thing,
2467 any mapped file will be out of date). */
2468
2469 /* If we get an error, blow away this objfile (not sure if
2470 that is the correct response for things like shared
2471 libraries). */
2472 old_cleanups = make_cleanup_free_objfile (objfile);
2473 /* We need to do this whenever any symbols go away. */
2474 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2475
2476 if (exec_bfd != NULL
2477 && filename_cmp (bfd_get_filename (objfile->obfd),
2478 bfd_get_filename (exec_bfd)) == 0)
2479 {
2480 /* Reload EXEC_BFD without asking anything. */
2481
2482 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2483 }
2484
2485 /* Keep the calls order approx. the same as in free_objfile. */
2486
2487 /* Free the separate debug objfiles. It will be
2488 automatically recreated by sym_read. */
2489 free_objfile_separate_debug (objfile);
2490
2491 /* Remove any references to this objfile in the global
2492 value lists. */
2493 preserve_values (objfile);
2494
2495 /* Nuke all the state that we will re-read. Much of the following
2496 code which sets things to NULL really is necessary to tell
2497 other parts of GDB that there is nothing currently there.
2498
2499 Try to keep the freeing order compatible with free_objfile. */
2500
2501 if (objfile->sf != NULL)
2502 {
2503 (*objfile->sf->sym_finish) (objfile);
2504 }
2505
2506 clear_objfile_data (objfile);
2507
2508 /* Clean up any state BFD has sitting around. We don't need
2509 to close the descriptor but BFD lacks a way of closing the
2510 BFD without closing the descriptor. */
2511 {
2512 struct bfd *obfd = objfile->obfd;
2513
2514 obfd_filename = bfd_get_filename (objfile->obfd);
2515 /* Open the new BFD before freeing the old one, so that
2516 the filename remains live. */
2517 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2518 gdb_bfd_unref (obfd);
2519 }
2520
2521 if (objfile->obfd == NULL)
2522 error (_("Can't open %s to read symbols."), objfile->name);
2523 /* bfd_openr sets cacheable to true, which is what we want. */
2524 if (!bfd_check_format (objfile->obfd, bfd_object))
2525 error (_("Can't read symbols from %s: %s."), objfile->name,
2526 bfd_errmsg (bfd_get_error ()));
2527
2528 /* Save the offsets, we will nuke them with the rest of the
2529 objfile_obstack. */
2530 num_offsets = objfile->num_sections;
2531 offsets = ((struct section_offsets *)
2532 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2533 memcpy (offsets, objfile->section_offsets,
2534 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2535
2536 /* FIXME: Do we have to free a whole linked list, or is this
2537 enough? */
2538 if (objfile->global_psymbols.list)
2539 xfree (objfile->global_psymbols.list);
2540 memset (&objfile->global_psymbols, 0,
2541 sizeof (objfile->global_psymbols));
2542 if (objfile->static_psymbols.list)
2543 xfree (objfile->static_psymbols.list);
2544 memset (&objfile->static_psymbols, 0,
2545 sizeof (objfile->static_psymbols));
2546
2547 /* Free the obstacks for non-reusable objfiles. */
2548 psymbol_bcache_free (objfile->psymbol_cache);
2549 objfile->psymbol_cache = psymbol_bcache_init ();
2550 bcache_xfree (objfile->macro_cache);
2551 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2552 bcache_xfree (objfile->filename_cache);
2553 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2554 if (objfile->demangled_names_hash != NULL)
2555 {
2556 htab_delete (objfile->demangled_names_hash);
2557 objfile->demangled_names_hash = NULL;
2558 }
2559 obstack_free (&objfile->objfile_obstack, 0);
2560 objfile->sections = NULL;
2561 objfile->symtabs = NULL;
2562 objfile->psymtabs = NULL;
2563 objfile->psymtabs_addrmap = NULL;
2564 objfile->free_psymtabs = NULL;
2565 objfile->template_symbols = NULL;
2566 objfile->msymbols = NULL;
2567 objfile->deprecated_sym_private = NULL;
2568 objfile->minimal_symbol_count = 0;
2569 memset (&objfile->msymbol_hash, 0,
2570 sizeof (objfile->msymbol_hash));
2571 memset (&objfile->msymbol_demangled_hash, 0,
2572 sizeof (objfile->msymbol_demangled_hash));
2573
2574 /* obstack_init also initializes the obstack so it is
2575 empty. We could use obstack_specify_allocation but
2576 gdb_obstack.h specifies the alloc/dealloc functions. */
2577 obstack_init (&objfile->objfile_obstack);
2578 build_objfile_section_table (objfile);
2579 terminate_minimal_symbol_table (objfile);
2580
2581 /* We use the same section offsets as from last time. I'm not
2582 sure whether that is always correct for shared libraries. */
2583 objfile->section_offsets = (struct section_offsets *)
2584 obstack_alloc (&objfile->objfile_obstack,
2585 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2586 memcpy (objfile->section_offsets, offsets,
2587 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2588 objfile->num_sections = num_offsets;
2589
2590 /* What the hell is sym_new_init for, anyway? The concept of
2591 distinguishing between the main file and additional files
2592 in this way seems rather dubious. */
2593 if (objfile == symfile_objfile)
2594 {
2595 (*objfile->sf->sym_new_init) (objfile);
2596 }
2597
2598 (*objfile->sf->sym_init) (objfile);
2599 clear_complaints (&symfile_complaints, 1, 1);
2600 /* Do not set flags as this is safe and we don't want to be
2601 verbose. */
2602 (*objfile->sf->sym_read) (objfile, 0);
2603 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2604 {
2605 objfile->flags &= ~OBJF_PSYMTABS_READ;
2606 require_partial_symbols (objfile, 0);
2607 }
2608
2609 if (!objfile_has_symbols (objfile))
2610 {
2611 wrap_here ("");
2612 printf_unfiltered (_("(no debugging symbols found)\n"));
2613 wrap_here ("");
2614 }
2615
2616 /* We're done reading the symbol file; finish off complaints. */
2617 clear_complaints (&symfile_complaints, 0, 1);
2618
2619 /* Getting new symbols may change our opinion about what is
2620 frameless. */
2621
2622 reinit_frame_cache ();
2623
2624 /* Discard cleanups as symbol reading was successful. */
2625 discard_cleanups (old_cleanups);
2626
2627 /* If the mtime has changed between the time we set new_modtime
2628 and now, we *want* this to be out of date, so don't call stat
2629 again now. */
2630 objfile->mtime = new_modtime;
2631 init_entry_point_info (objfile);
2632
2633 VEC_safe_push (objfilep, new_objfiles, objfile);
2634 }
2635 }
2636
2637 if (new_objfiles)
2638 {
2639 int ix;
2640
2641 /* Notify objfiles that we've modified objfile sections. */
2642 objfiles_changed ();
2643
2644 clear_symtab_users (0);
2645
2646 /* clear_objfile_data for each objfile was called before freeing it and
2647 observer_notify_new_objfile (NULL) has been called by
2648 clear_symtab_users above. Notify the new files now. */
2649 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2650 observer_notify_new_objfile (objfile);
2651
2652 /* At least one objfile has changed, so we can consider that
2653 the executable we're debugging has changed too. */
2654 observer_notify_executable_changed ();
2655 }
2656
2657 do_cleanups (all_cleanups);
2658 }
2659 \f
2660
2661
2662 typedef struct
2663 {
2664 char *ext;
2665 enum language lang;
2666 }
2667 filename_language;
2668
2669 static filename_language *filename_language_table;
2670 static int fl_table_size, fl_table_next;
2671
2672 static void
2673 add_filename_language (char *ext, enum language lang)
2674 {
2675 if (fl_table_next >= fl_table_size)
2676 {
2677 fl_table_size += 10;
2678 filename_language_table =
2679 xrealloc (filename_language_table,
2680 fl_table_size * sizeof (*filename_language_table));
2681 }
2682
2683 filename_language_table[fl_table_next].ext = xstrdup (ext);
2684 filename_language_table[fl_table_next].lang = lang;
2685 fl_table_next++;
2686 }
2687
2688 static char *ext_args;
2689 static void
2690 show_ext_args (struct ui_file *file, int from_tty,
2691 struct cmd_list_element *c, const char *value)
2692 {
2693 fprintf_filtered (file,
2694 _("Mapping between filename extension "
2695 "and source language is \"%s\".\n"),
2696 value);
2697 }
2698
2699 static void
2700 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2701 {
2702 int i;
2703 char *cp = ext_args;
2704 enum language lang;
2705
2706 /* First arg is filename extension, starting with '.' */
2707 if (*cp != '.')
2708 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2709
2710 /* Find end of first arg. */
2711 while (*cp && !isspace (*cp))
2712 cp++;
2713
2714 if (*cp == '\0')
2715 error (_("'%s': two arguments required -- "
2716 "filename extension and language"),
2717 ext_args);
2718
2719 /* Null-terminate first arg. */
2720 *cp++ = '\0';
2721
2722 /* Find beginning of second arg, which should be a source language. */
2723 while (*cp && isspace (*cp))
2724 cp++;
2725
2726 if (*cp == '\0')
2727 error (_("'%s': two arguments required -- "
2728 "filename extension and language"),
2729 ext_args);
2730
2731 /* Lookup the language from among those we know. */
2732 lang = language_enum (cp);
2733
2734 /* Now lookup the filename extension: do we already know it? */
2735 for (i = 0; i < fl_table_next; i++)
2736 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2737 break;
2738
2739 if (i >= fl_table_next)
2740 {
2741 /* New file extension. */
2742 add_filename_language (ext_args, lang);
2743 }
2744 else
2745 {
2746 /* Redefining a previously known filename extension. */
2747
2748 /* if (from_tty) */
2749 /* query ("Really make files of type %s '%s'?", */
2750 /* ext_args, language_str (lang)); */
2751
2752 xfree (filename_language_table[i].ext);
2753 filename_language_table[i].ext = xstrdup (ext_args);
2754 filename_language_table[i].lang = lang;
2755 }
2756 }
2757
2758 static void
2759 info_ext_lang_command (char *args, int from_tty)
2760 {
2761 int i;
2762
2763 printf_filtered (_("Filename extensions and the languages they represent:"));
2764 printf_filtered ("\n\n");
2765 for (i = 0; i < fl_table_next; i++)
2766 printf_filtered ("\t%s\t- %s\n",
2767 filename_language_table[i].ext,
2768 language_str (filename_language_table[i].lang));
2769 }
2770
2771 static void
2772 init_filename_language_table (void)
2773 {
2774 if (fl_table_size == 0) /* Protect against repetition. */
2775 {
2776 fl_table_size = 20;
2777 fl_table_next = 0;
2778 filename_language_table =
2779 xmalloc (fl_table_size * sizeof (*filename_language_table));
2780 add_filename_language (".c", language_c);
2781 add_filename_language (".d", language_d);
2782 add_filename_language (".C", language_cplus);
2783 add_filename_language (".cc", language_cplus);
2784 add_filename_language (".cp", language_cplus);
2785 add_filename_language (".cpp", language_cplus);
2786 add_filename_language (".cxx", language_cplus);
2787 add_filename_language (".c++", language_cplus);
2788 add_filename_language (".java", language_java);
2789 add_filename_language (".class", language_java);
2790 add_filename_language (".m", language_objc);
2791 add_filename_language (".f", language_fortran);
2792 add_filename_language (".F", language_fortran);
2793 add_filename_language (".for", language_fortran);
2794 add_filename_language (".FOR", language_fortran);
2795 add_filename_language (".ftn", language_fortran);
2796 add_filename_language (".FTN", language_fortran);
2797 add_filename_language (".fpp", language_fortran);
2798 add_filename_language (".FPP", language_fortran);
2799 add_filename_language (".f90", language_fortran);
2800 add_filename_language (".F90", language_fortran);
2801 add_filename_language (".f95", language_fortran);
2802 add_filename_language (".F95", language_fortran);
2803 add_filename_language (".f03", language_fortran);
2804 add_filename_language (".F03", language_fortran);
2805 add_filename_language (".f08", language_fortran);
2806 add_filename_language (".F08", language_fortran);
2807 add_filename_language (".s", language_asm);
2808 add_filename_language (".sx", language_asm);
2809 add_filename_language (".S", language_asm);
2810 add_filename_language (".pas", language_pascal);
2811 add_filename_language (".p", language_pascal);
2812 add_filename_language (".pp", language_pascal);
2813 add_filename_language (".adb", language_ada);
2814 add_filename_language (".ads", language_ada);
2815 add_filename_language (".a", language_ada);
2816 add_filename_language (".ada", language_ada);
2817 add_filename_language (".dg", language_ada);
2818 }
2819 }
2820
2821 enum language
2822 deduce_language_from_filename (const char *filename)
2823 {
2824 int i;
2825 char *cp;
2826
2827 if (filename != NULL)
2828 if ((cp = strrchr (filename, '.')) != NULL)
2829 for (i = 0; i < fl_table_next; i++)
2830 if (strcmp (cp, filename_language_table[i].ext) == 0)
2831 return filename_language_table[i].lang;
2832
2833 return language_unknown;
2834 }
2835 \f
2836 /* allocate_symtab:
2837
2838 Allocate and partly initialize a new symbol table. Return a pointer
2839 to it. error() if no space.
2840
2841 Caller must set these fields:
2842 LINETABLE(symtab)
2843 symtab->blockvector
2844 symtab->dirname
2845 symtab->free_code
2846 symtab->free_ptr
2847 */
2848
2849 struct symtab *
2850 allocate_symtab (const char *filename, struct objfile *objfile)
2851 {
2852 struct symtab *symtab;
2853
2854 symtab = (struct symtab *)
2855 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2856 memset (symtab, 0, sizeof (*symtab));
2857 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2858 objfile->filename_cache);
2859 symtab->fullname = NULL;
2860 symtab->language = deduce_language_from_filename (filename);
2861 symtab->debugformat = "unknown";
2862
2863 /* Hook it to the objfile it comes from. */
2864
2865 symtab->objfile = objfile;
2866 symtab->next = objfile->symtabs;
2867 objfile->symtabs = symtab;
2868
2869 if (symtab_create_debug)
2870 {
2871 /* Be a bit clever with debugging messages, and don't print objfile
2872 every time, only when it changes. */
2873 static char *last_objfile_name = NULL;
2874
2875 if (last_objfile_name == NULL
2876 || strcmp (last_objfile_name, objfile->name) != 0)
2877 {
2878 xfree (last_objfile_name);
2879 last_objfile_name = xstrdup (objfile->name);
2880 fprintf_unfiltered (gdb_stdlog,
2881 "Creating one or more symtabs for objfile %s ...\n",
2882 last_objfile_name);
2883 }
2884 fprintf_unfiltered (gdb_stdlog,
2885 "Created symtab 0x%lx for module %s.\n",
2886 (long) symtab, filename);
2887 }
2888
2889 return (symtab);
2890 }
2891 \f
2892
2893 /* Reset all data structures in gdb which may contain references to symbol
2894 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2895
2896 void
2897 clear_symtab_users (int add_flags)
2898 {
2899 /* Someday, we should do better than this, by only blowing away
2900 the things that really need to be blown. */
2901
2902 /* Clear the "current" symtab first, because it is no longer valid.
2903 breakpoint_re_set may try to access the current symtab. */
2904 clear_current_source_symtab_and_line ();
2905
2906 clear_displays ();
2907 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2908 breakpoint_re_set ();
2909 clear_last_displayed_sal ();
2910 clear_pc_function_cache ();
2911 observer_notify_new_objfile (NULL);
2912
2913 /* Clear globals which might have pointed into a removed objfile.
2914 FIXME: It's not clear which of these are supposed to persist
2915 between expressions and which ought to be reset each time. */
2916 expression_context_block = NULL;
2917 innermost_block = NULL;
2918
2919 /* Varobj may refer to old symbols, perform a cleanup. */
2920 varobj_invalidate ();
2921
2922 }
2923
2924 static void
2925 clear_symtab_users_cleanup (void *ignore)
2926 {
2927 clear_symtab_users (0);
2928 }
2929 \f
2930 /* OVERLAYS:
2931 The following code implements an abstraction for debugging overlay sections.
2932
2933 The target model is as follows:
2934 1) The gnu linker will permit multiple sections to be mapped into the
2935 same VMA, each with its own unique LMA (or load address).
2936 2) It is assumed that some runtime mechanism exists for mapping the
2937 sections, one by one, from the load address into the VMA address.
2938 3) This code provides a mechanism for gdb to keep track of which
2939 sections should be considered to be mapped from the VMA to the LMA.
2940 This information is used for symbol lookup, and memory read/write.
2941 For instance, if a section has been mapped then its contents
2942 should be read from the VMA, otherwise from the LMA.
2943
2944 Two levels of debugger support for overlays are available. One is
2945 "manual", in which the debugger relies on the user to tell it which
2946 overlays are currently mapped. This level of support is
2947 implemented entirely in the core debugger, and the information about
2948 whether a section is mapped is kept in the objfile->obj_section table.
2949
2950 The second level of support is "automatic", and is only available if
2951 the target-specific code provides functionality to read the target's
2952 overlay mapping table, and translate its contents for the debugger
2953 (by updating the mapped state information in the obj_section tables).
2954
2955 The interface is as follows:
2956 User commands:
2957 overlay map <name> -- tell gdb to consider this section mapped
2958 overlay unmap <name> -- tell gdb to consider this section unmapped
2959 overlay list -- list the sections that GDB thinks are mapped
2960 overlay read-target -- get the target's state of what's mapped
2961 overlay off/manual/auto -- set overlay debugging state
2962 Functional interface:
2963 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2964 section, return that section.
2965 find_pc_overlay(pc): find any overlay section that contains
2966 the pc, either in its VMA or its LMA
2967 section_is_mapped(sect): true if overlay is marked as mapped
2968 section_is_overlay(sect): true if section's VMA != LMA
2969 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2970 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2971 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2972 overlay_mapped_address(...): map an address from section's LMA to VMA
2973 overlay_unmapped_address(...): map an address from section's VMA to LMA
2974 symbol_overlayed_address(...): Return a "current" address for symbol:
2975 either in VMA or LMA depending on whether
2976 the symbol's section is currently mapped. */
2977
2978 /* Overlay debugging state: */
2979
2980 enum overlay_debugging_state overlay_debugging = ovly_off;
2981 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2982
2983 /* Function: section_is_overlay (SECTION)
2984 Returns true if SECTION has VMA not equal to LMA, ie.
2985 SECTION is loaded at an address different from where it will "run". */
2986
2987 int
2988 section_is_overlay (struct obj_section *section)
2989 {
2990 if (overlay_debugging && section)
2991 {
2992 bfd *abfd = section->objfile->obfd;
2993 asection *bfd_section = section->the_bfd_section;
2994
2995 if (bfd_section_lma (abfd, bfd_section) != 0
2996 && bfd_section_lma (abfd, bfd_section)
2997 != bfd_section_vma (abfd, bfd_section))
2998 return 1;
2999 }
3000
3001 return 0;
3002 }
3003
3004 /* Function: overlay_invalidate_all (void)
3005 Invalidate the mapped state of all overlay sections (mark it as stale). */
3006
3007 static void
3008 overlay_invalidate_all (void)
3009 {
3010 struct objfile *objfile;
3011 struct obj_section *sect;
3012
3013 ALL_OBJSECTIONS (objfile, sect)
3014 if (section_is_overlay (sect))
3015 sect->ovly_mapped = -1;
3016 }
3017
3018 /* Function: section_is_mapped (SECTION)
3019 Returns true if section is an overlay, and is currently mapped.
3020
3021 Access to the ovly_mapped flag is restricted to this function, so
3022 that we can do automatic update. If the global flag
3023 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3024 overlay_invalidate_all. If the mapped state of the particular
3025 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3026
3027 int
3028 section_is_mapped (struct obj_section *osect)
3029 {
3030 struct gdbarch *gdbarch;
3031
3032 if (osect == 0 || !section_is_overlay (osect))
3033 return 0;
3034
3035 switch (overlay_debugging)
3036 {
3037 default:
3038 case ovly_off:
3039 return 0; /* overlay debugging off */
3040 case ovly_auto: /* overlay debugging automatic */
3041 /* Unles there is a gdbarch_overlay_update function,
3042 there's really nothing useful to do here (can't really go auto). */
3043 gdbarch = get_objfile_arch (osect->objfile);
3044 if (gdbarch_overlay_update_p (gdbarch))
3045 {
3046 if (overlay_cache_invalid)
3047 {
3048 overlay_invalidate_all ();
3049 overlay_cache_invalid = 0;
3050 }
3051 if (osect->ovly_mapped == -1)
3052 gdbarch_overlay_update (gdbarch, osect);
3053 }
3054 /* fall thru to manual case */
3055 case ovly_on: /* overlay debugging manual */
3056 return osect->ovly_mapped == 1;
3057 }
3058 }
3059
3060 /* Function: pc_in_unmapped_range
3061 If PC falls into the lma range of SECTION, return true, else false. */
3062
3063 CORE_ADDR
3064 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3065 {
3066 if (section_is_overlay (section))
3067 {
3068 bfd *abfd = section->objfile->obfd;
3069 asection *bfd_section = section->the_bfd_section;
3070
3071 /* We assume the LMA is relocated by the same offset as the VMA. */
3072 bfd_vma size = bfd_get_section_size (bfd_section);
3073 CORE_ADDR offset = obj_section_offset (section);
3074
3075 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3076 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3077 return 1;
3078 }
3079
3080 return 0;
3081 }
3082
3083 /* Function: pc_in_mapped_range
3084 If PC falls into the vma range of SECTION, return true, else false. */
3085
3086 CORE_ADDR
3087 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3088 {
3089 if (section_is_overlay (section))
3090 {
3091 if (obj_section_addr (section) <= pc
3092 && pc < obj_section_endaddr (section))
3093 return 1;
3094 }
3095
3096 return 0;
3097 }
3098
3099
3100 /* Return true if the mapped ranges of sections A and B overlap, false
3101 otherwise. */
3102 static int
3103 sections_overlap (struct obj_section *a, struct obj_section *b)
3104 {
3105 CORE_ADDR a_start = obj_section_addr (a);
3106 CORE_ADDR a_end = obj_section_endaddr (a);
3107 CORE_ADDR b_start = obj_section_addr (b);
3108 CORE_ADDR b_end = obj_section_endaddr (b);
3109
3110 return (a_start < b_end && b_start < a_end);
3111 }
3112
3113 /* Function: overlay_unmapped_address (PC, SECTION)
3114 Returns the address corresponding to PC in the unmapped (load) range.
3115 May be the same as PC. */
3116
3117 CORE_ADDR
3118 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3119 {
3120 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3121 {
3122 bfd *abfd = section->objfile->obfd;
3123 asection *bfd_section = section->the_bfd_section;
3124
3125 return pc + bfd_section_lma (abfd, bfd_section)
3126 - bfd_section_vma (abfd, bfd_section);
3127 }
3128
3129 return pc;
3130 }
3131
3132 /* Function: overlay_mapped_address (PC, SECTION)
3133 Returns the address corresponding to PC in the mapped (runtime) range.
3134 May be the same as PC. */
3135
3136 CORE_ADDR
3137 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3138 {
3139 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3140 {
3141 bfd *abfd = section->objfile->obfd;
3142 asection *bfd_section = section->the_bfd_section;
3143
3144 return pc + bfd_section_vma (abfd, bfd_section)
3145 - bfd_section_lma (abfd, bfd_section);
3146 }
3147
3148 return pc;
3149 }
3150
3151
3152 /* Function: symbol_overlayed_address
3153 Return one of two addresses (relative to the VMA or to the LMA),
3154 depending on whether the section is mapped or not. */
3155
3156 CORE_ADDR
3157 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3158 {
3159 if (overlay_debugging)
3160 {
3161 /* If the symbol has no section, just return its regular address. */
3162 if (section == 0)
3163 return address;
3164 /* If the symbol's section is not an overlay, just return its
3165 address. */
3166 if (!section_is_overlay (section))
3167 return address;
3168 /* If the symbol's section is mapped, just return its address. */
3169 if (section_is_mapped (section))
3170 return address;
3171 /*
3172 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3173 * then return its LOADED address rather than its vma address!!
3174 */
3175 return overlay_unmapped_address (address, section);
3176 }
3177 return address;
3178 }
3179
3180 /* Function: find_pc_overlay (PC)
3181 Return the best-match overlay section for PC:
3182 If PC matches a mapped overlay section's VMA, return that section.
3183 Else if PC matches an unmapped section's VMA, return that section.
3184 Else if PC matches an unmapped section's LMA, return that section. */
3185
3186 struct obj_section *
3187 find_pc_overlay (CORE_ADDR pc)
3188 {
3189 struct objfile *objfile;
3190 struct obj_section *osect, *best_match = NULL;
3191
3192 if (overlay_debugging)
3193 ALL_OBJSECTIONS (objfile, osect)
3194 if (section_is_overlay (osect))
3195 {
3196 if (pc_in_mapped_range (pc, osect))
3197 {
3198 if (section_is_mapped (osect))
3199 return osect;
3200 else
3201 best_match = osect;
3202 }
3203 else if (pc_in_unmapped_range (pc, osect))
3204 best_match = osect;
3205 }
3206 return best_match;
3207 }
3208
3209 /* Function: find_pc_mapped_section (PC)
3210 If PC falls into the VMA address range of an overlay section that is
3211 currently marked as MAPPED, return that section. Else return NULL. */
3212
3213 struct obj_section *
3214 find_pc_mapped_section (CORE_ADDR pc)
3215 {
3216 struct objfile *objfile;
3217 struct obj_section *osect;
3218
3219 if (overlay_debugging)
3220 ALL_OBJSECTIONS (objfile, osect)
3221 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3222 return osect;
3223
3224 return NULL;
3225 }
3226
3227 /* Function: list_overlays_command
3228 Print a list of mapped sections and their PC ranges. */
3229
3230 void
3231 list_overlays_command (char *args, int from_tty)
3232 {
3233 int nmapped = 0;
3234 struct objfile *objfile;
3235 struct obj_section *osect;
3236
3237 if (overlay_debugging)
3238 ALL_OBJSECTIONS (objfile, osect)
3239 if (section_is_mapped (osect))
3240 {
3241 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3242 const char *name;
3243 bfd_vma lma, vma;
3244 int size;
3245
3246 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3247 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3248 size = bfd_get_section_size (osect->the_bfd_section);
3249 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3250
3251 printf_filtered ("Section %s, loaded at ", name);
3252 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3253 puts_filtered (" - ");
3254 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3255 printf_filtered (", mapped at ");
3256 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3257 puts_filtered (" - ");
3258 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3259 puts_filtered ("\n");
3260
3261 nmapped++;
3262 }
3263 if (nmapped == 0)
3264 printf_filtered (_("No sections are mapped.\n"));
3265 }
3266
3267 /* Function: map_overlay_command
3268 Mark the named section as mapped (ie. residing at its VMA address). */
3269
3270 void
3271 map_overlay_command (char *args, int from_tty)
3272 {
3273 struct objfile *objfile, *objfile2;
3274 struct obj_section *sec, *sec2;
3275
3276 if (!overlay_debugging)
3277 error (_("Overlay debugging not enabled. Use "
3278 "either the 'overlay auto' or\n"
3279 "the 'overlay manual' command."));
3280
3281 if (args == 0 || *args == 0)
3282 error (_("Argument required: name of an overlay section"));
3283
3284 /* First, find a section matching the user supplied argument. */
3285 ALL_OBJSECTIONS (objfile, sec)
3286 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3287 {
3288 /* Now, check to see if the section is an overlay. */
3289 if (!section_is_overlay (sec))
3290 continue; /* not an overlay section */
3291
3292 /* Mark the overlay as "mapped". */
3293 sec->ovly_mapped = 1;
3294
3295 /* Next, make a pass and unmap any sections that are
3296 overlapped by this new section: */
3297 ALL_OBJSECTIONS (objfile2, sec2)
3298 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3299 {
3300 if (info_verbose)
3301 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3302 bfd_section_name (objfile->obfd,
3303 sec2->the_bfd_section));
3304 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3305 }
3306 return;
3307 }
3308 error (_("No overlay section called %s"), args);
3309 }
3310
3311 /* Function: unmap_overlay_command
3312 Mark the overlay section as unmapped
3313 (ie. resident in its LMA address range, rather than the VMA range). */
3314
3315 void
3316 unmap_overlay_command (char *args, int from_tty)
3317 {
3318 struct objfile *objfile;
3319 struct obj_section *sec;
3320
3321 if (!overlay_debugging)
3322 error (_("Overlay debugging not enabled. "
3323 "Use either the 'overlay auto' or\n"
3324 "the 'overlay manual' command."));
3325
3326 if (args == 0 || *args == 0)
3327 error (_("Argument required: name of an overlay section"));
3328
3329 /* First, find a section matching the user supplied argument. */
3330 ALL_OBJSECTIONS (objfile, sec)
3331 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3332 {
3333 if (!sec->ovly_mapped)
3334 error (_("Section %s is not mapped"), args);
3335 sec->ovly_mapped = 0;
3336 return;
3337 }
3338 error (_("No overlay section called %s"), args);
3339 }
3340
3341 /* Function: overlay_auto_command
3342 A utility command to turn on overlay debugging.
3343 Possibly this should be done via a set/show command. */
3344
3345 static void
3346 overlay_auto_command (char *args, int from_tty)
3347 {
3348 overlay_debugging = ovly_auto;
3349 enable_overlay_breakpoints ();
3350 if (info_verbose)
3351 printf_unfiltered (_("Automatic overlay debugging enabled."));
3352 }
3353
3354 /* Function: overlay_manual_command
3355 A utility command to turn on overlay debugging.
3356 Possibly this should be done via a set/show command. */
3357
3358 static void
3359 overlay_manual_command (char *args, int from_tty)
3360 {
3361 overlay_debugging = ovly_on;
3362 disable_overlay_breakpoints ();
3363 if (info_verbose)
3364 printf_unfiltered (_("Overlay debugging enabled."));
3365 }
3366
3367 /* Function: overlay_off_command
3368 A utility command to turn on overlay debugging.
3369 Possibly this should be done via a set/show command. */
3370
3371 static void
3372 overlay_off_command (char *args, int from_tty)
3373 {
3374 overlay_debugging = ovly_off;
3375 disable_overlay_breakpoints ();
3376 if (info_verbose)
3377 printf_unfiltered (_("Overlay debugging disabled."));
3378 }
3379
3380 static void
3381 overlay_load_command (char *args, int from_tty)
3382 {
3383 struct gdbarch *gdbarch = get_current_arch ();
3384
3385 if (gdbarch_overlay_update_p (gdbarch))
3386 gdbarch_overlay_update (gdbarch, NULL);
3387 else
3388 error (_("This target does not know how to read its overlay state."));
3389 }
3390
3391 /* Function: overlay_command
3392 A place-holder for a mis-typed command. */
3393
3394 /* Command list chain containing all defined "overlay" subcommands. */
3395 struct cmd_list_element *overlaylist;
3396
3397 static void
3398 overlay_command (char *args, int from_tty)
3399 {
3400 printf_unfiltered
3401 ("\"overlay\" must be followed by the name of an overlay command.\n");
3402 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3403 }
3404
3405
3406 /* Target Overlays for the "Simplest" overlay manager:
3407
3408 This is GDB's default target overlay layer. It works with the
3409 minimal overlay manager supplied as an example by Cygnus. The
3410 entry point is via a function pointer "gdbarch_overlay_update",
3411 so targets that use a different runtime overlay manager can
3412 substitute their own overlay_update function and take over the
3413 function pointer.
3414
3415 The overlay_update function pokes around in the target's data structures
3416 to see what overlays are mapped, and updates GDB's overlay mapping with
3417 this information.
3418
3419 In this simple implementation, the target data structures are as follows:
3420 unsigned _novlys; /# number of overlay sections #/
3421 unsigned _ovly_table[_novlys][4] = {
3422 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3423 {..., ..., ..., ...},
3424 }
3425 unsigned _novly_regions; /# number of overlay regions #/
3426 unsigned _ovly_region_table[_novly_regions][3] = {
3427 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3428 {..., ..., ...},
3429 }
3430 These functions will attempt to update GDB's mappedness state in the
3431 symbol section table, based on the target's mappedness state.
3432
3433 To do this, we keep a cached copy of the target's _ovly_table, and
3434 attempt to detect when the cached copy is invalidated. The main
3435 entry point is "simple_overlay_update(SECT), which looks up SECT in
3436 the cached table and re-reads only the entry for that section from
3437 the target (whenever possible). */
3438
3439 /* Cached, dynamically allocated copies of the target data structures: */
3440 static unsigned (*cache_ovly_table)[4] = 0;
3441 static unsigned cache_novlys = 0;
3442 static CORE_ADDR cache_ovly_table_base = 0;
3443 enum ovly_index
3444 {
3445 VMA, SIZE, LMA, MAPPED
3446 };
3447
3448 /* Throw away the cached copy of _ovly_table. */
3449 static void
3450 simple_free_overlay_table (void)
3451 {
3452 if (cache_ovly_table)
3453 xfree (cache_ovly_table);
3454 cache_novlys = 0;
3455 cache_ovly_table = NULL;
3456 cache_ovly_table_base = 0;
3457 }
3458
3459 /* Read an array of ints of size SIZE from the target into a local buffer.
3460 Convert to host order. int LEN is number of ints. */
3461 static void
3462 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3463 int len, int size, enum bfd_endian byte_order)
3464 {
3465 /* FIXME (alloca): Not safe if array is very large. */
3466 gdb_byte *buf = alloca (len * size);
3467 int i;
3468
3469 read_memory (memaddr, buf, len * size);
3470 for (i = 0; i < len; i++)
3471 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3472 }
3473
3474 /* Find and grab a copy of the target _ovly_table
3475 (and _novlys, which is needed for the table's size). */
3476 static int
3477 simple_read_overlay_table (void)
3478 {
3479 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3480 struct gdbarch *gdbarch;
3481 int word_size;
3482 enum bfd_endian byte_order;
3483
3484 simple_free_overlay_table ();
3485 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3486 if (! novlys_msym)
3487 {
3488 error (_("Error reading inferior's overlay table: "
3489 "couldn't find `_novlys' variable\n"
3490 "in inferior. Use `overlay manual' mode."));
3491 return 0;
3492 }
3493
3494 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3495 if (! ovly_table_msym)
3496 {
3497 error (_("Error reading inferior's overlay table: couldn't find "
3498 "`_ovly_table' array\n"
3499 "in inferior. Use `overlay manual' mode."));
3500 return 0;
3501 }
3502
3503 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3504 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3505 byte_order = gdbarch_byte_order (gdbarch);
3506
3507 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3508 4, byte_order);
3509 cache_ovly_table
3510 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3511 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3512 read_target_long_array (cache_ovly_table_base,
3513 (unsigned int *) cache_ovly_table,
3514 cache_novlys * 4, word_size, byte_order);
3515
3516 return 1; /* SUCCESS */
3517 }
3518
3519 /* Function: simple_overlay_update_1
3520 A helper function for simple_overlay_update. Assuming a cached copy
3521 of _ovly_table exists, look through it to find an entry whose vma,
3522 lma and size match those of OSECT. Re-read the entry and make sure
3523 it still matches OSECT (else the table may no longer be valid).
3524 Set OSECT's mapped state to match the entry. Return: 1 for
3525 success, 0 for failure. */
3526
3527 static int
3528 simple_overlay_update_1 (struct obj_section *osect)
3529 {
3530 int i, size;
3531 bfd *obfd = osect->objfile->obfd;
3532 asection *bsect = osect->the_bfd_section;
3533 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3534 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3536
3537 size = bfd_get_section_size (osect->the_bfd_section);
3538 for (i = 0; i < cache_novlys; i++)
3539 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3540 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3541 /* && cache_ovly_table[i][SIZE] == size */ )
3542 {
3543 read_target_long_array (cache_ovly_table_base + i * word_size,
3544 (unsigned int *) cache_ovly_table[i],
3545 4, word_size, byte_order);
3546 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3547 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3548 /* && cache_ovly_table[i][SIZE] == size */ )
3549 {
3550 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3551 return 1;
3552 }
3553 else /* Warning! Warning! Target's ovly table has changed! */
3554 return 0;
3555 }
3556 return 0;
3557 }
3558
3559 /* Function: simple_overlay_update
3560 If OSECT is NULL, then update all sections' mapped state
3561 (after re-reading the entire target _ovly_table).
3562 If OSECT is non-NULL, then try to find a matching entry in the
3563 cached ovly_table and update only OSECT's mapped state.
3564 If a cached entry can't be found or the cache isn't valid, then
3565 re-read the entire cache, and go ahead and update all sections. */
3566
3567 void
3568 simple_overlay_update (struct obj_section *osect)
3569 {
3570 struct objfile *objfile;
3571
3572 /* Were we given an osect to look up? NULL means do all of them. */
3573 if (osect)
3574 /* Have we got a cached copy of the target's overlay table? */
3575 if (cache_ovly_table != NULL)
3576 {
3577 /* Does its cached location match what's currently in the
3578 symtab? */
3579 struct minimal_symbol *minsym
3580 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3581
3582 if (minsym == NULL)
3583 error (_("Error reading inferior's overlay table: couldn't "
3584 "find `_ovly_table' array\n"
3585 "in inferior. Use `overlay manual' mode."));
3586
3587 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3588 /* Then go ahead and try to look up this single section in
3589 the cache. */
3590 if (simple_overlay_update_1 (osect))
3591 /* Found it! We're done. */
3592 return;
3593 }
3594
3595 /* Cached table no good: need to read the entire table anew.
3596 Or else we want all the sections, in which case it's actually
3597 more efficient to read the whole table in one block anyway. */
3598
3599 if (! simple_read_overlay_table ())
3600 return;
3601
3602 /* Now may as well update all sections, even if only one was requested. */
3603 ALL_OBJSECTIONS (objfile, osect)
3604 if (section_is_overlay (osect))
3605 {
3606 int i, size;
3607 bfd *obfd = osect->objfile->obfd;
3608 asection *bsect = osect->the_bfd_section;
3609
3610 size = bfd_get_section_size (bsect);
3611 for (i = 0; i < cache_novlys; i++)
3612 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3613 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3614 /* && cache_ovly_table[i][SIZE] == size */ )
3615 { /* obj_section matches i'th entry in ovly_table. */
3616 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3617 break; /* finished with inner for loop: break out. */
3618 }
3619 }
3620 }
3621
3622 /* Set the output sections and output offsets for section SECTP in
3623 ABFD. The relocation code in BFD will read these offsets, so we
3624 need to be sure they're initialized. We map each section to itself,
3625 with no offset; this means that SECTP->vma will be honored. */
3626
3627 static void
3628 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3629 {
3630 sectp->output_section = sectp;
3631 sectp->output_offset = 0;
3632 }
3633
3634 /* Default implementation for sym_relocate. */
3635
3636
3637 bfd_byte *
3638 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3639 bfd_byte *buf)
3640 {
3641 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3642 DWO file. */
3643 bfd *abfd = sectp->owner;
3644
3645 /* We're only interested in sections with relocation
3646 information. */
3647 if ((sectp->flags & SEC_RELOC) == 0)
3648 return NULL;
3649
3650 /* We will handle section offsets properly elsewhere, so relocate as if
3651 all sections begin at 0. */
3652 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3653
3654 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3655 }
3656
3657 /* Relocate the contents of a debug section SECTP in ABFD. The
3658 contents are stored in BUF if it is non-NULL, or returned in a
3659 malloc'd buffer otherwise.
3660
3661 For some platforms and debug info formats, shared libraries contain
3662 relocations against the debug sections (particularly for DWARF-2;
3663 one affected platform is PowerPC GNU/Linux, although it depends on
3664 the version of the linker in use). Also, ELF object files naturally
3665 have unresolved relocations for their debug sections. We need to apply
3666 the relocations in order to get the locations of symbols correct.
3667 Another example that may require relocation processing, is the
3668 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3669 debug section. */
3670
3671 bfd_byte *
3672 symfile_relocate_debug_section (struct objfile *objfile,
3673 asection *sectp, bfd_byte *buf)
3674 {
3675 gdb_assert (objfile->sf->sym_relocate);
3676
3677 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3678 }
3679
3680 struct symfile_segment_data *
3681 get_symfile_segment_data (bfd *abfd)
3682 {
3683 const struct sym_fns *sf = find_sym_fns (abfd);
3684
3685 if (sf == NULL)
3686 return NULL;
3687
3688 return sf->sym_segments (abfd);
3689 }
3690
3691 void
3692 free_symfile_segment_data (struct symfile_segment_data *data)
3693 {
3694 xfree (data->segment_bases);
3695 xfree (data->segment_sizes);
3696 xfree (data->segment_info);
3697 xfree (data);
3698 }
3699
3700
3701 /* Given:
3702 - DATA, containing segment addresses from the object file ABFD, and
3703 the mapping from ABFD's sections onto the segments that own them,
3704 and
3705 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3706 segment addresses reported by the target,
3707 store the appropriate offsets for each section in OFFSETS.
3708
3709 If there are fewer entries in SEGMENT_BASES than there are segments
3710 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3711
3712 If there are more entries, then ignore the extra. The target may
3713 not be able to distinguish between an empty data segment and a
3714 missing data segment; a missing text segment is less plausible. */
3715 int
3716 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3717 struct section_offsets *offsets,
3718 int num_segment_bases,
3719 const CORE_ADDR *segment_bases)
3720 {
3721 int i;
3722 asection *sect;
3723
3724 /* It doesn't make sense to call this function unless you have some
3725 segment base addresses. */
3726 gdb_assert (num_segment_bases > 0);
3727
3728 /* If we do not have segment mappings for the object file, we
3729 can not relocate it by segments. */
3730 gdb_assert (data != NULL);
3731 gdb_assert (data->num_segments > 0);
3732
3733 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3734 {
3735 int which = data->segment_info[i];
3736
3737 gdb_assert (0 <= which && which <= data->num_segments);
3738
3739 /* Don't bother computing offsets for sections that aren't
3740 loaded as part of any segment. */
3741 if (! which)
3742 continue;
3743
3744 /* Use the last SEGMENT_BASES entry as the address of any extra
3745 segments mentioned in DATA->segment_info. */
3746 if (which > num_segment_bases)
3747 which = num_segment_bases;
3748
3749 offsets->offsets[i] = (segment_bases[which - 1]
3750 - data->segment_bases[which - 1]);
3751 }
3752
3753 return 1;
3754 }
3755
3756 static void
3757 symfile_find_segment_sections (struct objfile *objfile)
3758 {
3759 bfd *abfd = objfile->obfd;
3760 int i;
3761 asection *sect;
3762 struct symfile_segment_data *data;
3763
3764 data = get_symfile_segment_data (objfile->obfd);
3765 if (data == NULL)
3766 return;
3767
3768 if (data->num_segments != 1 && data->num_segments != 2)
3769 {
3770 free_symfile_segment_data (data);
3771 return;
3772 }
3773
3774 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3775 {
3776 int which = data->segment_info[i];
3777
3778 if (which == 1)
3779 {
3780 if (objfile->sect_index_text == -1)
3781 objfile->sect_index_text = sect->index;
3782
3783 if (objfile->sect_index_rodata == -1)
3784 objfile->sect_index_rodata = sect->index;
3785 }
3786 else if (which == 2)
3787 {
3788 if (objfile->sect_index_data == -1)
3789 objfile->sect_index_data = sect->index;
3790
3791 if (objfile->sect_index_bss == -1)
3792 objfile->sect_index_bss = sect->index;
3793 }
3794 }
3795
3796 free_symfile_segment_data (data);
3797 }
3798
3799 void
3800 _initialize_symfile (void)
3801 {
3802 struct cmd_list_element *c;
3803
3804 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3805 Load symbol table from executable file FILE.\n\
3806 The `file' command can also load symbol tables, as well as setting the file\n\
3807 to execute."), &cmdlist);
3808 set_cmd_completer (c, filename_completer);
3809
3810 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3811 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3812 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3813 ...]\nADDR is the starting address of the file's text.\n\
3814 The optional arguments are section-name section-address pairs and\n\
3815 should be specified if the data and bss segments are not contiguous\n\
3816 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3817 &cmdlist);
3818 set_cmd_completer (c, filename_completer);
3819
3820 c = add_cmd ("load", class_files, load_command, _("\
3821 Dynamically load FILE into the running program, and record its symbols\n\
3822 for access from GDB.\n\
3823 A load OFFSET may also be given."), &cmdlist);
3824 set_cmd_completer (c, filename_completer);
3825
3826 add_prefix_cmd ("overlay", class_support, overlay_command,
3827 _("Commands for debugging overlays."), &overlaylist,
3828 "overlay ", 0, &cmdlist);
3829
3830 add_com_alias ("ovly", "overlay", class_alias, 1);
3831 add_com_alias ("ov", "overlay", class_alias, 1);
3832
3833 add_cmd ("map-overlay", class_support, map_overlay_command,
3834 _("Assert that an overlay section is mapped."), &overlaylist);
3835
3836 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3837 _("Assert that an overlay section is unmapped."), &overlaylist);
3838
3839 add_cmd ("list-overlays", class_support, list_overlays_command,
3840 _("List mappings of overlay sections."), &overlaylist);
3841
3842 add_cmd ("manual", class_support, overlay_manual_command,
3843 _("Enable overlay debugging."), &overlaylist);
3844 add_cmd ("off", class_support, overlay_off_command,
3845 _("Disable overlay debugging."), &overlaylist);
3846 add_cmd ("auto", class_support, overlay_auto_command,
3847 _("Enable automatic overlay debugging."), &overlaylist);
3848 add_cmd ("load-target", class_support, overlay_load_command,
3849 _("Read the overlay mapping state from the target."), &overlaylist);
3850
3851 /* Filename extension to source language lookup table: */
3852 init_filename_language_table ();
3853 add_setshow_string_noescape_cmd ("extension-language", class_files,
3854 &ext_args, _("\
3855 Set mapping between filename extension and source language."), _("\
3856 Show mapping between filename extension and source language."), _("\
3857 Usage: set extension-language .foo bar"),
3858 set_ext_lang_command,
3859 show_ext_args,
3860 &setlist, &showlist);
3861
3862 add_info ("extensions", info_ext_lang_command,
3863 _("All filename extensions associated with a source language."));
3864
3865 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3866 &debug_file_directory, _("\
3867 Set the directories where separate debug symbols are searched for."), _("\
3868 Show the directories where separate debug symbols are searched for."), _("\
3869 Separate debug symbols are first searched for in the same\n\
3870 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3871 and lastly at the path of the directory of the binary with\n\
3872 each global debug-file-directory component prepended."),
3873 NULL,
3874 show_debug_file_directory,
3875 &setlist, &showlist);
3876 }
This page took 0.190377 seconds and 5 git commands to generate.