This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "breakpoint.h"
33 #include "language.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "inferior.h" /* for write_pc */
37 #include "gdb-stabs.h"
38 #include "obstack.h"
39
40 #include <assert.h>
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47
48 #ifndef O_BINARY
49 #define O_BINARY 0
50 #endif
51
52 #ifdef HPUXHPPA
53
54 /* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57 extern int hp_som_som_object_present;
58 extern int hp_cxx_exception_support_initialized;
59 #define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63 #endif
64
65 int (*ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*pre_add_symbol_hook) PARAMS ((char *));
72 void (*post_add_symbol_hook) PARAMS ((void));
73 void (*target_new_objfile_hook) PARAMS ((struct objfile *));
74
75 /* Global variables owned by this file */
76 int readnow_symbol_files; /* Read full symbols immediately */
77
78 struct complaint oldsyms_complaint =
79 {
80 "Replacing old symbols for `%s'", 0, 0
81 };
82
83 struct complaint empty_symtab_complaint =
84 {
85 "Empty symbol table found for `%s'", 0, 0
86 };
87
88 struct complaint unknown_option_complaint =
89 {
90 "Unknown option `%s' ignored", 0, 0
91 };
92
93 /* External variables and functions referenced. */
94
95 extern int info_verbose;
96
97 extern void report_transfer_performance PARAMS ((unsigned long,
98 time_t, time_t));
99
100 /* Functions this file defines */
101
102 #if 0
103 static int simple_read_overlay_region_table PARAMS ((void));
104 static void simple_free_overlay_region_table PARAMS ((void));
105 #endif
106
107 static void set_initial_language PARAMS ((void));
108
109 static void load_command PARAMS ((char *, int));
110
111 static void add_symbol_file_command PARAMS ((char *, int));
112
113 static void add_shared_symbol_files_command PARAMS ((char *, int));
114
115 static void cashier_psymtab PARAMS ((struct partial_symtab *));
116
117 static int compare_psymbols PARAMS ((const void *, const void *));
118
119 static int compare_symbols PARAMS ((const void *, const void *));
120
121 bfd *symfile_bfd_open PARAMS ((char *));
122
123 static void find_sym_fns PARAMS ((struct objfile *));
124
125 static void decrement_reading_symtab PARAMS ((void *));
126
127 static void overlay_invalidate_all PARAMS ((void));
128
129 static int overlay_is_mapped PARAMS ((struct obj_section *));
130
131 void list_overlays_command PARAMS ((char *, int));
132
133 void map_overlay_command PARAMS ((char *, int));
134
135 void unmap_overlay_command PARAMS ((char *, int));
136
137 static void overlay_auto_command PARAMS ((char *, int));
138
139 static void overlay_manual_command PARAMS ((char *, int));
140
141 static void overlay_off_command PARAMS ((char *, int));
142
143 static void overlay_load_command PARAMS ((char *, int));
144
145 static void overlay_command PARAMS ((char *, int));
146
147 static void simple_free_overlay_table PARAMS ((void));
148
149 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
150
151 static int simple_read_overlay_table PARAMS ((void));
152
153 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
154
155 static void add_filename_language PARAMS ((char *ext, enum language lang));
156
157 static void set_ext_lang_command PARAMS ((char *args, int from_tty));
158
159 static void info_ext_lang_command PARAMS ((char *args, int from_tty));
160
161 static void init_filename_language_table PARAMS ((void));
162
163 void _initialize_symfile PARAMS ((void));
164
165 /* List of all available sym_fns. On gdb startup, each object file reader
166 calls add_symtab_fns() to register information on each format it is
167 prepared to read. */
168
169 static struct sym_fns *symtab_fns = NULL;
170
171 /* Flag for whether user will be reloading symbols multiple times.
172 Defaults to ON for VxWorks, otherwise OFF. */
173
174 #ifdef SYMBOL_RELOADING_DEFAULT
175 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
176 #else
177 int symbol_reloading = 0;
178 #endif
179
180 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
181 this variable is interpreted as a threshhold. If adding a new
182 library's symbol table to those already known to the debugger would
183 exceed this threshhold, then the shlib's symbols are not added.
184
185 If non-zero on other platforms, shared library symbols will be added
186 automatically when the inferior is created, new libraries are loaded,
187 or when attaching to the inferior. This is almost always what users
188 will want to have happen; but for very large programs, the startup
189 time will be excessive, and so if this is a problem, the user can
190 clear this flag and then add the shared library symbols as needed.
191 Note that there is a potential for confusion, since if the shared
192 library symbols are not loaded, commands like "info fun" will *not*
193 report all the functions that are actually present.
194
195 Note that HP-UX interprets this variable to mean, "threshhold size
196 in megabytes, where zero means never add". Other platforms interpret
197 this variable to mean, "always add if non-zero, never add if zero."
198 */
199
200 int auto_solib_add = 1;
201 \f
202
203 /* Since this function is called from within qsort, in an ANSI environment
204 it must conform to the prototype for qsort, which specifies that the
205 comparison function takes two "void *" pointers. */
206
207 static int
208 compare_symbols (s1p, s2p)
209 const PTR s1p;
210 const PTR s2p;
211 {
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
216
217 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
218 }
219
220 /*
221
222 LOCAL FUNCTION
223
224 compare_psymbols -- compare two partial symbols by name
225
226 DESCRIPTION
227
228 Given pointers to pointers to two partial symbol table entries,
229 compare them by name and return -N, 0, or +N (ala strcmp).
230 Typically used by sorting routines like qsort().
231
232 NOTES
233
234 Does direct compare of first two characters before punting
235 and passing to strcmp for longer compares. Note that the
236 original version had a bug whereby two null strings or two
237 identically named one character strings would return the
238 comparison of memory following the null byte.
239
240 */
241
242 static int
243 compare_psymbols (s1p, s2p)
244 const PTR s1p;
245 const PTR s2p;
246 {
247 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
248 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
249
250 if ((st1[0] - st2[0]) || !st1[0])
251 {
252 return (st1[0] - st2[0]);
253 }
254 else if ((st1[1] - st2[1]) || !st1[1])
255 {
256 return (st1[1] - st2[1]);
257 }
258 else
259 {
260 /* Note: I replaced the STRCMP line (commented out below)
261 * with a simpler "strcmp()" which compares the 2 strings
262 * from the beginning. (STRCMP is a macro which first compares
263 * the initial characters, then falls back on strcmp).
264 * The reason is that the STRCMP line was tickling a C compiler
265 * bug on HP-UX 10.30, which is avoided with the simpler
266 * code. The performance gain from the more complicated code
267 * is negligible, given that we have already checked the
268 * initial 2 characters above. I reported the compiler bug,
269 * and once it is fixed the original line can be put back. RT
270 */
271 /* return ( STRCMP (st1 + 2, st2 + 2)); */
272 return (strcmp (st1, st2));
273 }
274 }
275
276 void
277 sort_pst_symbols (pst)
278 struct partial_symtab *pst;
279 {
280 /* Sort the global list; don't sort the static list */
281
282 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
283 pst->n_global_syms, sizeof (struct partial_symbol *),
284 compare_psymbols);
285 }
286
287 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
288
289 void
290 sort_block_syms (b)
291 register struct block *b;
292 {
293 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
294 sizeof (struct symbol *), compare_symbols);
295 }
296
297 /* Call sort_symtab_syms to sort alphabetically
298 the symbols of each block of one symtab. */
299
300 void
301 sort_symtab_syms (s)
302 register struct symtab *s;
303 {
304 register struct blockvector *bv;
305 int nbl;
306 int i;
307 register struct block *b;
308
309 if (s == 0)
310 return;
311 bv = BLOCKVECTOR (s);
312 nbl = BLOCKVECTOR_NBLOCKS (bv);
313 for (i = 0; i < nbl; i++)
314 {
315 b = BLOCKVECTOR_BLOCK (bv, i);
316 if (BLOCK_SHOULD_SORT (b))
317 sort_block_syms (b);
318 }
319 }
320
321 /* Make a null terminated copy of the string at PTR with SIZE characters in
322 the obstack pointed to by OBSTACKP . Returns the address of the copy.
323 Note that the string at PTR does not have to be null terminated, I.E. it
324 may be part of a larger string and we are only saving a substring. */
325
326 char *
327 obsavestring (ptr, size, obstackp)
328 char *ptr;
329 int size;
330 struct obstack *obstackp;
331 {
332 register char *p = (char *) obstack_alloc (obstackp, size + 1);
333 /* Open-coded memcpy--saves function call time. These strings are usually
334 short. FIXME: Is this really still true with a compiler that can
335 inline memcpy? */
336 {
337 register char *p1 = ptr;
338 register char *p2 = p;
339 char *end = ptr + size;
340 while (p1 != end)
341 *p2++ = *p1++;
342 }
343 p[size] = 0;
344 return p;
345 }
346
347 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
348 in the obstack pointed to by OBSTACKP. */
349
350 char *
351 obconcat (obstackp, s1, s2, s3)
352 struct obstack *obstackp;
353 const char *s1, *s2, *s3;
354 {
355 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
356 register char *val = (char *) obstack_alloc (obstackp, len);
357 strcpy (val, s1);
358 strcat (val, s2);
359 strcat (val, s3);
360 return val;
361 }
362
363 /* True if we are nested inside psymtab_to_symtab. */
364
365 int currently_reading_symtab = 0;
366
367 static void
368 decrement_reading_symtab (dummy)
369 void *dummy;
370 {
371 currently_reading_symtab--;
372 }
373
374 /* Get the symbol table that corresponds to a partial_symtab.
375 This is fast after the first time you do it. In fact, there
376 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
377 case inline. */
378
379 struct symtab *
380 psymtab_to_symtab (pst)
381 register struct partial_symtab *pst;
382 {
383 /* If it's been looked up before, return it. */
384 if (pst->symtab)
385 return pst->symtab;
386
387 /* If it has not yet been read in, read it. */
388 if (!pst->readin)
389 {
390 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
391 currently_reading_symtab++;
392 (*pst->read_symtab) (pst);
393 do_cleanups (back_to);
394 }
395
396 return pst->symtab;
397 }
398
399 /* Initialize entry point information for this objfile. */
400
401 void
402 init_entry_point_info (objfile)
403 struct objfile *objfile;
404 {
405 /* Save startup file's range of PC addresses to help blockframe.c
406 decide where the bottom of the stack is. */
407
408 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
409 {
410 /* Executable file -- record its entry point so we'll recognize
411 the startup file because it contains the entry point. */
412 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
413 }
414 else
415 {
416 /* Examination of non-executable.o files. Short-circuit this stuff. */
417 objfile->ei.entry_point = INVALID_ENTRY_POINT;
418 }
419 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
420 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
421 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
422 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
423 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
424 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
425 }
426
427 /* Get current entry point address. */
428
429 CORE_ADDR
430 entry_point_address ()
431 {
432 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
433 }
434
435 /* Remember the lowest-addressed loadable section we've seen.
436 This function is called via bfd_map_over_sections.
437
438 In case of equal vmas, the section with the largest size becomes the
439 lowest-addressed loadable section.
440
441 If the vmas and sizes are equal, the last section is considered the
442 lowest-addressed loadable section. */
443
444 void
445 find_lowest_section (abfd, sect, obj)
446 bfd *abfd;
447 asection *sect;
448 PTR obj;
449 {
450 asection **lowest = (asection **) obj;
451
452 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
453 return;
454 if (!*lowest)
455 *lowest = sect; /* First loadable section */
456 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
457 *lowest = sect; /* A lower loadable section */
458 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
459 && (bfd_section_size (abfd, (*lowest))
460 <= bfd_section_size (abfd, sect)))
461 *lowest = sect;
462 }
463
464 /* Parse the user's idea of an offset for dynamic linking, into our idea
465 of how to represent it for fast symbol reading. This is the default
466 version of the sym_fns.sym_offsets function for symbol readers that
467 don't need to do anything special. It allocates a section_offsets table
468 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
469
470 void
471 default_symfile_offsets (objfile, addrs)
472 struct objfile *objfile;
473 struct section_addr_info *addrs;
474 {
475 int i;
476
477 objfile->num_sections = SECT_OFF_MAX;
478 objfile->section_offsets = (struct section_offsets *)
479 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
480 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
481
482 /* If user explicitly specified values for data and bss, set them here. */
483
484 if (addrs->text_addr)
485 ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT) = addrs->text_addr;
486 if (addrs->data_addr)
487 ANOFFSET (objfile->section_offsets, SECT_OFF_DATA) = addrs->data_addr;
488 if (addrs->bss_addr)
489 ANOFFSET (objfile->section_offsets, SECT_OFF_BSS) = addrs->bss_addr;
490
491 /* Now calculate offsets for other sections. */
492 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
493 {
494 struct other_sections *osp ;
495
496 osp = &addrs->other[i] ;
497 if (addrs->other[i].addr == 0)
498 continue;
499 #if 0
500 if (strcmp (".text", osp->name) == 0)
501 SECT_OFF_TEXT = osp->sectindex ;
502 else if (strcmp (".data", osp->name) == 0)
503 SECT_OFF_DATA = osp->sectindex ;
504 else if (strcmp (".bss", osp->name) == 0)
505 SECT_OFF_BSS = osp->sectindex ;
506 #endif
507 /* Record all sections in offsets */
508 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
509 }
510 }
511
512
513 /* Process a symbol file, as either the main file or as a dynamically
514 loaded file.
515
516 OBJFILE is where the symbols are to be read from.
517
518 ADDR is the address where the text segment was loaded, unless the
519 objfile is the main symbol file, in which case it is zero.
520
521 MAINLINE is nonzero if this is the main symbol file, or zero if
522 it's an extra symbol file such as dynamically loaded code.
523
524 VERBO is nonzero if the caller has printed a verbose message about
525 the symbol reading (and complaints can be more terse about it). */
526
527 void
528 syms_from_objfile (objfile, addrs, mainline, verbo)
529 struct objfile *objfile;
530 struct section_addr_info *addrs;
531 int mainline;
532 int verbo;
533 {
534 struct section_offsets *section_offsets;
535 asection *lower_sect;
536 asection *sect;
537 CORE_ADDR lower_offset;
538 struct section_addr_info local_addr;
539 struct cleanup *old_chain;
540 int i;
541
542 /* If ADDRS is NULL, initialize the local section_addr_info struct and
543 point ADDRS to it. We now establish the convention that an addr of
544 zero means no load address was specified. */
545
546 if (addrs == NULL)
547 {
548 memset (&local_addr, 0, sizeof (local_addr));
549 addrs = &local_addr;
550 }
551
552 init_entry_point_info (objfile);
553 find_sym_fns (objfile);
554
555 /* Make sure that partially constructed symbol tables will be cleaned up
556 if an error occurs during symbol reading. */
557 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
558
559 if (mainline)
560 {
561 /* We will modify the main symbol table, make sure that all its users
562 will be cleaned up if an error occurs during symbol reading. */
563 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
564
565 /* Since no error yet, throw away the old symbol table. */
566
567 if (symfile_objfile != NULL)
568 {
569 free_objfile (symfile_objfile);
570 symfile_objfile = NULL;
571 }
572
573 /* Currently we keep symbols from the add-symbol-file command.
574 If the user wants to get rid of them, they should do "symbol-file"
575 without arguments first. Not sure this is the best behavior
576 (PR 2207). */
577
578 (*objfile->sf->sym_new_init) (objfile);
579 }
580
581 /* Convert addr into an offset rather than an absolute address.
582 We find the lowest address of a loaded segment in the objfile,
583 and assume that <addr> is where that got loaded.
584
585 We no longer warn if the lowest section is not a text segment (as
586 happens for the PA64 port. */
587 if (mainline)
588 {
589 /* No offset from objfile addresses. */
590 addrs -> text_addr = 0;
591 addrs -> data_addr = 0;
592 addrs -> bss_addr = 0;
593 }
594 else
595 {
596 /* Find lowest loadable section to be used as starting point for
597 continguous sections. FIXME!! won't work without call to find
598 .text first, but this assumes text is lowest section. */
599 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
600 if (lower_sect == NULL)
601 bfd_map_over_sections (objfile->obfd, find_lowest_section,
602 (PTR) &lower_sect);
603 if (lower_sect == NULL)
604 warning ("no loadable sections found in added symbol-file %s",
605 objfile->name);
606 else if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE)
607 == 0)
608 warning ("Lowest section in %s is %s at %s",
609 objfile->name,
610 bfd_section_name (objfile->obfd, lower_sect),
611 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
612 if (lower_sect != NULL)
613 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
614 else
615 lower_offset = 0;
616
617 /* Calculate offsets for the loadable sections.
618 FIXME! Sections must be in order of increasing loadable section
619 so that contiguous sections can use the lower-offset!!!
620
621 Adjust offsets if the segments are not contiguous.
622 If the section is contiguous, its offset should be set to
623 the offset of the highest loadable section lower than it
624 (the loadable section directly below it in memory).
625 this_offset = lower_offset = lower_addr - lower_orig_addr */
626
627 /* FIXME: These sections will not need special treatment because ALL
628 sections are in the other sections table */
629
630 if (addrs->text_addr != 0)
631 {
632 sect = bfd_get_section_by_name (objfile->obfd, ".text");
633 if (sect)
634 {
635 addrs->text_addr -= bfd_section_vma (objfile->obfd, sect);
636 lower_offset = addrs->text_addr;
637 }
638 }
639 else
640 /* ??? who's below me? */
641 addrs->text_addr = lower_offset;
642
643 if (addrs->data_addr != 0)
644 {
645 sect = bfd_get_section_by_name (objfile->obfd, ".data");
646 if (sect)
647 {
648 addrs->data_addr -= bfd_section_vma (objfile->obfd, sect);
649 lower_offset = addrs->data_addr;
650 }
651 }
652 else
653 addrs->data_addr = lower_offset;
654
655 if (addrs->bss_addr != 0)
656 {
657 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
658 if (sect)
659 {
660 addrs->bss_addr -= bfd_section_vma (objfile->obfd, sect);
661 lower_offset = addrs->bss_addr;
662 }
663 }
664 else
665 addrs->bss_addr = lower_offset;
666
667 /* Now calculate offsets for other sections. */
668 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
669 {
670
671 if (addrs->other[i].addr != 0)
672 {
673 sect=bfd_get_section_by_name(objfile->obfd, addrs->other[i].name);
674 if (sect)
675 {
676 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
677 lower_offset = addrs->other[i].addr;
678 addrs->other[i].sectindex = sect->index ;
679 }
680 else
681 {
682 warning ("section %s not found in %s", addrs->other[i].name,
683 objfile->name);
684 addrs->other[i].addr = 0;
685 }
686 }
687 else
688 addrs->other[i].addr = lower_offset;
689 }
690 }
691
692 /* Initialize symbol reading routines for this objfile, allow complaints to
693 appear for this new file, and record how verbose to be, then do the
694 initial symbol reading for this file. */
695
696 (*objfile->sf->sym_init) (objfile);
697 clear_complaints (1, verbo);
698
699 (*objfile->sf->sym_offsets) (objfile, addrs);
700
701 #ifndef IBM6000_TARGET
702 /* This is a SVR4/SunOS specific hack, I think. In any event, it
703 screws RS/6000. sym_offsets should be doing this sort of thing,
704 because it knows the mapping between bfd sections and
705 section_offsets. */
706 /* This is a hack. As far as I can tell, section offsets are not
707 target dependent. They are all set to addr with a couple of
708 exceptions. The exceptions are sysvr4 shared libraries, whose
709 offsets are kept in solib structures anyway and rs6000 xcoff
710 which handles shared libraries in a completely unique way.
711
712 Section offsets are built similarly, except that they are built
713 by adding addr in all cases because there is no clear mapping
714 from section_offsets into actual sections. Note that solib.c
715 has a different algorithm for finding section offsets.
716
717 These should probably all be collapsed into some target
718 independent form of shared library support. FIXME. */
719
720 if (addrs)
721 {
722 struct obj_section *s;
723
724 /* Map section offsets in "addr" back to the object's
725 sections by comparing the section names with bfd's
726 section names. Then adjust the section address by
727 the offset. */ /* for gdb/13815 */
728
729 ALL_OBJFILE_OSECTIONS (objfile, s)
730 {
731 CORE_ADDR s_addr = 0;
732 int i;
733
734 if (strcmp (s->the_bfd_section->name, ".text") == 0)
735 s_addr = addrs->text_addr;
736 else if (strcmp (s->the_bfd_section->name, ".data") == 0)
737 s_addr = addrs->data_addr;
738 else if (strcmp (s->the_bfd_section->name, ".bss") == 0)
739 s_addr = addrs->bss_addr;
740 else
741 for (i = 0; !s_addr && addrs->other[i].name; i++)
742 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
743 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
744
745 s->addr -= s->offset;
746 s->addr += s_addr;
747 s->endaddr -= s->offset;
748 s->endaddr += s_addr;
749 s->offset += s_addr;
750 }
751 }
752 #endif /* not IBM6000_TARGET */
753
754 (*objfile->sf->sym_read) (objfile, mainline);
755
756 if (!have_partial_symbols () && !have_full_symbols ())
757 {
758 wrap_here ("");
759 printf_filtered ("(no debugging symbols found)...");
760 wrap_here ("");
761 }
762
763 /* Don't allow char * to have a typename (else would get caddr_t).
764 Ditto void *. FIXME: Check whether this is now done by all the
765 symbol readers themselves (many of them now do), and if so remove
766 it from here. */
767
768 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
769 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
770
771 /* Mark the objfile has having had initial symbol read attempted. Note
772 that this does not mean we found any symbols... */
773
774 objfile->flags |= OBJF_SYMS;
775
776 /* Discard cleanups as symbol reading was successful. */
777
778 discard_cleanups (old_chain);
779
780 /* Call this after reading in a new symbol table to give target
781 dependant code a crack at the new symbols. For instance, this
782 could be used to update the values of target-specific symbols GDB
783 needs to keep track of (such as _sigtramp, or whatever). */
784
785 TARGET_SYMFILE_POSTREAD (objfile);
786 }
787
788 /* Perform required actions after either reading in the initial
789 symbols for a new objfile, or mapping in the symbols from a reusable
790 objfile. */
791
792 void
793 new_symfile_objfile (objfile, mainline, verbo)
794 struct objfile *objfile;
795 int mainline;
796 int verbo;
797 {
798
799 /* If this is the main symbol file we have to clean up all users of the
800 old main symbol file. Otherwise it is sufficient to fixup all the
801 breakpoints that may have been redefined by this symbol file. */
802 if (mainline)
803 {
804 /* OK, make it the "real" symbol file. */
805 symfile_objfile = objfile;
806
807 clear_symtab_users ();
808 }
809 else
810 {
811 breakpoint_re_set ();
812 }
813
814 /* We're done reading the symbol file; finish off complaints. */
815 clear_complaints (0, verbo);
816 }
817
818 /* Process a symbol file, as either the main file or as a dynamically
819 loaded file.
820
821 NAME is the file name (which will be tilde-expanded and made
822 absolute herein) (but we don't free or modify NAME itself).
823 FROM_TTY says how verbose to be. MAINLINE specifies whether this
824 is the main symbol file, or whether it's an extra symbol file such
825 as dynamically loaded code. If !mainline, ADDR is the address
826 where the text segment was loaded.
827
828 Upon success, returns a pointer to the objfile that was added.
829 Upon failure, jumps back to command level (never returns). */
830
831 struct objfile *
832 symbol_file_add (name, from_tty, addrs, mainline, flags)
833 char *name;
834 int from_tty;
835 struct section_addr_info *addrs;
836 int mainline;
837 int flags;
838 {
839 struct objfile *objfile;
840 struct partial_symtab *psymtab;
841 bfd *abfd;
842
843 /* Open a bfd for the file, and give user a chance to burp if we'd be
844 interactively wiping out any existing symbols. */
845
846 abfd = symfile_bfd_open (name);
847
848 if ((have_full_symbols () || have_partial_symbols ())
849 && mainline
850 && from_tty
851 && !query ("Load new symbol table from \"%s\"? ", name))
852 error ("Not confirmed.");
853
854 objfile = allocate_objfile (abfd, flags);
855
856 /* If the objfile uses a mapped symbol file, and we have a psymtab for
857 it, then skip reading any symbols at this time. */
858
859 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
860 {
861 /* We mapped in an existing symbol table file that already has had
862 initial symbol reading performed, so we can skip that part. Notify
863 the user that instead of reading the symbols, they have been mapped.
864 */
865 if (from_tty || info_verbose)
866 {
867 printf_filtered ("Mapped symbols for %s...", name);
868 wrap_here ("");
869 gdb_flush (gdb_stdout);
870 }
871 init_entry_point_info (objfile);
872 find_sym_fns (objfile);
873 }
874 else
875 {
876 /* We either created a new mapped symbol table, mapped an existing
877 symbol table file which has not had initial symbol reading
878 performed, or need to read an unmapped symbol table. */
879 if (from_tty || info_verbose)
880 {
881 if (pre_add_symbol_hook)
882 pre_add_symbol_hook (name);
883 else
884 {
885 printf_filtered ("Reading symbols from %s...", name);
886 wrap_here ("");
887 gdb_flush (gdb_stdout);
888 }
889 }
890 syms_from_objfile (objfile, addrs, mainline, from_tty);
891 }
892
893 /* We now have at least a partial symbol table. Check to see if the
894 user requested that all symbols be read on initial access via either
895 the gdb startup command line or on a per symbol file basis. Expand
896 all partial symbol tables for this objfile if so. */
897
898 if ((flags & OBJF_READNOW) || readnow_symbol_files)
899 {
900 if (from_tty || info_verbose)
901 {
902 printf_filtered ("expanding to full symbols...");
903 wrap_here ("");
904 gdb_flush (gdb_stdout);
905 }
906
907 for (psymtab = objfile->psymtabs;
908 psymtab != NULL;
909 psymtab = psymtab->next)
910 {
911 psymtab_to_symtab (psymtab);
912 }
913 }
914
915 if (from_tty || info_verbose)
916 {
917 if (post_add_symbol_hook)
918 post_add_symbol_hook ();
919 else
920 {
921 printf_filtered ("done.\n");
922 gdb_flush (gdb_stdout);
923 }
924 }
925
926 new_symfile_objfile (objfile, mainline, from_tty);
927
928 if (target_new_objfile_hook)
929 target_new_objfile_hook (objfile);
930
931 return (objfile);
932 }
933
934 /* This is the symbol-file command. Read the file, analyze its
935 symbols, and add a struct symtab to a symtab list. The syntax of
936 the command is rather bizarre--(1) buildargv implements various
937 quoting conventions which are undocumented and have little or
938 nothing in common with the way things are quoted (or not quoted)
939 elsewhere in GDB, (2) options are used, which are not generally
940 used in GDB (perhaps "set mapped on", "set readnow on" would be
941 better), (3) the order of options matters, which is contrary to GNU
942 conventions (because it is confusing and inconvenient). */
943
944 void
945 symbol_file_command (args, from_tty)
946 char *args;
947 int from_tty;
948 {
949 char **argv;
950 char *name = NULL;
951 CORE_ADDR text_relocation = 0; /* text_relocation */
952 struct cleanup *cleanups;
953 int flags = OBJF_USERLOADED;
954
955 dont_repeat ();
956
957 if (args == NULL)
958 {
959 if ((have_full_symbols () || have_partial_symbols ())
960 && from_tty
961 && !query ("Discard symbol table from `%s'? ",
962 symfile_objfile->name))
963 error ("Not confirmed.");
964 free_all_objfiles ();
965
966 /* solib descriptors may have handles to objfiles. Since their
967 storage has just been released, we'd better wipe the solib
968 descriptors as well.
969 */
970 #if defined(SOLIB_RESTART)
971 SOLIB_RESTART ();
972 #endif
973
974 symfile_objfile = NULL;
975 if (from_tty)
976 {
977 printf_unfiltered ("No symbol file now.\n");
978 }
979 #ifdef HPUXHPPA
980 RESET_HP_UX_GLOBALS ();
981 #endif
982 }
983 else
984 {
985 if ((argv = buildargv (args)) == NULL)
986 {
987 nomem (0);
988 }
989 cleanups = make_cleanup_freeargv (argv);
990 while (*argv != NULL)
991 {
992 if (STREQ (*argv, "-mapped"))
993 {
994 flags |= OBJF_MAPPED;
995 }
996 else if (STREQ (*argv, "-readnow"))
997 {
998 flags |= OBJF_READNOW;
999 }
1000 else if (**argv == '-')
1001 {
1002 error ("unknown option `%s'", *argv);
1003 }
1004 else
1005 {
1006 char *p;
1007
1008 name = *argv;
1009
1010 /* this is for rombug remote only, to get the text relocation by
1011 using link command */
1012 p = strrchr (name, '/');
1013 if (p != NULL)
1014 p++;
1015 else
1016 p = name;
1017
1018 target_link (p, &text_relocation);
1019
1020 if (text_relocation == (CORE_ADDR) 0)
1021 return;
1022 else if (text_relocation == (CORE_ADDR) -1)
1023 {
1024 symbol_file_add (name, from_tty, NULL, 1, flags);
1025 #ifdef HPUXHPPA
1026 RESET_HP_UX_GLOBALS ();
1027 #endif
1028 }
1029 else
1030 {
1031 struct section_addr_info section_addrs;
1032 memset (&section_addrs, 0, sizeof (section_addrs));
1033 section_addrs.text_addr = (CORE_ADDR) text_relocation;
1034 symbol_file_add (name, from_tty, &section_addrs, 0, flags);
1035 }
1036
1037 /* Getting new symbols may change our opinion about what is
1038 frameless. */
1039 reinit_frame_cache ();
1040
1041 set_initial_language ();
1042 }
1043 argv++;
1044 }
1045
1046 if (name == NULL)
1047 {
1048 error ("no symbol file name was specified");
1049 }
1050 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1051 do_cleanups (cleanups);
1052 }
1053 }
1054
1055 /* Set the initial language.
1056
1057 A better solution would be to record the language in the psymtab when reading
1058 partial symbols, and then use it (if known) to set the language. This would
1059 be a win for formats that encode the language in an easily discoverable place,
1060 such as DWARF. For stabs, we can jump through hoops looking for specially
1061 named symbols or try to intuit the language from the specific type of stabs
1062 we find, but we can't do that until later when we read in full symbols.
1063 FIXME. */
1064
1065 static void
1066 set_initial_language ()
1067 {
1068 struct partial_symtab *pst;
1069 enum language lang = language_unknown;
1070
1071 pst = find_main_psymtab ();
1072 if (pst != NULL)
1073 {
1074 if (pst->filename != NULL)
1075 {
1076 lang = deduce_language_from_filename (pst->filename);
1077 }
1078 if (lang == language_unknown)
1079 {
1080 /* Make C the default language */
1081 lang = language_c;
1082 }
1083 set_language (lang);
1084 expected_language = current_language; /* Don't warn the user */
1085 }
1086 }
1087
1088 /* Open file specified by NAME and hand it off to BFD for preliminary
1089 analysis. Result is a newly initialized bfd *, which includes a newly
1090 malloc'd` copy of NAME (tilde-expanded and made absolute).
1091 In case of trouble, error() is called. */
1092
1093 bfd *
1094 symfile_bfd_open (name)
1095 char *name;
1096 {
1097 bfd *sym_bfd;
1098 int desc;
1099 char *absolute_name;
1100
1101
1102
1103 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1104
1105 /* Look down path for it, allocate 2nd new malloc'd copy. */
1106 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1107 #if defined(__GO32__) || defined(_WIN32)
1108 if (desc < 0)
1109 {
1110 char *exename = alloca (strlen (name) + 5);
1111 strcat (strcpy (exename, name), ".exe");
1112 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1113 0, &absolute_name);
1114 }
1115 #endif
1116 if (desc < 0)
1117 {
1118 make_cleanup (free, name);
1119 perror_with_name (name);
1120 }
1121 free (name); /* Free 1st new malloc'd copy */
1122 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1123 /* It'll be freed in free_objfile(). */
1124
1125 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1126 if (!sym_bfd)
1127 {
1128 close (desc);
1129 make_cleanup (free, name);
1130 error ("\"%s\": can't open to read symbols: %s.", name,
1131 bfd_errmsg (bfd_get_error ()));
1132 }
1133 sym_bfd->cacheable = true;
1134
1135 if (!bfd_check_format (sym_bfd, bfd_object))
1136 {
1137 /* FIXME: should be checking for errors from bfd_close (for one thing,
1138 on error it does not free all the storage associated with the
1139 bfd). */
1140 bfd_close (sym_bfd); /* This also closes desc */
1141 make_cleanup (free, name);
1142 error ("\"%s\": can't read symbols: %s.", name,
1143 bfd_errmsg (bfd_get_error ()));
1144 }
1145 return (sym_bfd);
1146 }
1147
1148 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1149 startup by the _initialize routine in each object file format reader,
1150 to register information about each format the the reader is prepared
1151 to handle. */
1152
1153 void
1154 add_symtab_fns (sf)
1155 struct sym_fns *sf;
1156 {
1157 sf->next = symtab_fns;
1158 symtab_fns = sf;
1159 }
1160
1161
1162 /* Initialize to read symbols from the symbol file sym_bfd. It either
1163 returns or calls error(). The result is an initialized struct sym_fns
1164 in the objfile structure, that contains cached information about the
1165 symbol file. */
1166
1167 static void
1168 find_sym_fns (objfile)
1169 struct objfile *objfile;
1170 {
1171 struct sym_fns *sf;
1172 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1173 char *our_target = bfd_get_target (objfile->obfd);
1174
1175 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1176 if (STREQ (our_target, "aixcoff-rs6000") ||
1177 STREQ (our_target, "xcoff-powermac"))
1178 our_flavour = (enum bfd_flavour) -1;
1179
1180 /* Special kludge for apollo. See dstread.c. */
1181 if (STREQN (our_target, "apollo", 6))
1182 our_flavour = (enum bfd_flavour) -2;
1183
1184 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1185 {
1186 if (our_flavour == sf->sym_flavour)
1187 {
1188 objfile->sf = sf;
1189 return;
1190 }
1191 }
1192 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1193 bfd_get_target (objfile->obfd));
1194 }
1195 \f
1196 /* This function runs the load command of our current target. */
1197
1198 static void
1199 load_command (arg, from_tty)
1200 char *arg;
1201 int from_tty;
1202 {
1203 if (arg == NULL)
1204 arg = get_exec_file (1);
1205 target_load (arg, from_tty);
1206 }
1207
1208 /* This version of "load" should be usable for any target. Currently
1209 it is just used for remote targets, not inftarg.c or core files,
1210 on the theory that only in that case is it useful.
1211
1212 Avoiding xmodem and the like seems like a win (a) because we don't have
1213 to worry about finding it, and (b) On VMS, fork() is very slow and so
1214 we don't want to run a subprocess. On the other hand, I'm not sure how
1215 performance compares. */
1216
1217 static int download_write_size = 512;
1218 static int validate_download = 0;
1219
1220 void
1221 generic_load (char *args, int from_tty)
1222 {
1223 asection *s;
1224 bfd *loadfile_bfd;
1225 time_t start_time, end_time; /* Start and end times of download */
1226 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1227 unsigned long write_count = 0; /* Number of writes needed. */
1228 unsigned long load_offset; /* offset to add to vma for each section */
1229 char *filename;
1230 struct cleanup *old_cleanups;
1231 char *offptr;
1232 CORE_ADDR total_size = 0;
1233 CORE_ADDR total_sent = 0;
1234
1235 /* Parse the input argument - the user can specify a load offset as
1236 a second argument. */
1237 filename = xmalloc (strlen (args) + 1);
1238 old_cleanups = make_cleanup (free, filename);
1239 strcpy (filename, args);
1240 offptr = strchr (filename, ' ');
1241 if (offptr != NULL)
1242 {
1243 char *endptr;
1244 load_offset = strtoul (offptr, &endptr, 0);
1245 if (offptr == endptr)
1246 error ("Invalid download offset:%s\n", offptr);
1247 *offptr = '\0';
1248 }
1249 else
1250 load_offset = 0;
1251
1252 /* Open the file for loading. */
1253 loadfile_bfd = bfd_openr (filename, gnutarget);
1254 if (loadfile_bfd == NULL)
1255 {
1256 perror_with_name (filename);
1257 return;
1258 }
1259
1260 /* FIXME: should be checking for errors from bfd_close (for one thing,
1261 on error it does not free all the storage associated with the
1262 bfd). */
1263 make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1264
1265 if (!bfd_check_format (loadfile_bfd, bfd_object))
1266 {
1267 error ("\"%s\" is not an object file: %s", filename,
1268 bfd_errmsg (bfd_get_error ()));
1269 }
1270
1271 for (s = loadfile_bfd->sections; s; s = s->next)
1272 if (s->flags & SEC_LOAD)
1273 total_size += bfd_get_section_size_before_reloc (s);
1274
1275 start_time = time (NULL);
1276
1277 for (s = loadfile_bfd->sections; s; s = s->next)
1278 {
1279 if (s->flags & SEC_LOAD)
1280 {
1281 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1282 if (size > 0)
1283 {
1284 char *buffer;
1285 struct cleanup *old_chain;
1286 CORE_ADDR lma = s->lma + load_offset;
1287 CORE_ADDR block_size;
1288 int err;
1289 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1290 CORE_ADDR sent;
1291
1292 if (download_write_size > 0 && size > download_write_size)
1293 block_size = download_write_size;
1294 else
1295 block_size = size;
1296
1297 buffer = xmalloc (size);
1298 old_chain = make_cleanup (free, buffer);
1299
1300 /* Is this really necessary? I guess it gives the user something
1301 to look at during a long download. */
1302 #ifdef UI_OUT
1303 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1304 sect_name, paddr_nz (size), paddr_nz (lma));
1305 #else
1306 fprintf_unfiltered (gdb_stdout,
1307 "Loading section %s, size 0x%s lma 0x%s\n",
1308 sect_name, paddr_nz (size), paddr_nz (lma));
1309 #endif
1310
1311 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1312
1313 sent = 0;
1314 do
1315 {
1316 CORE_ADDR len;
1317 CORE_ADDR this_transfer = size - sent;
1318 if (this_transfer >= block_size)
1319 this_transfer = block_size;
1320 len = target_write_memory_partial (lma, buffer,
1321 this_transfer, &err);
1322 if (err)
1323 break;
1324 if (validate_download)
1325 {
1326 /* Broken memories and broken monitors manifest
1327 themselves here when bring new computers to
1328 life. This doubles already slow downloads. */
1329 /* NOTE: cagney/1999-10-18: A more efficient
1330 implementation might add a verify_memory()
1331 method to the target vector and then use
1332 that. remote.c could implement that method
1333 using the ``qCRC'' packet. */
1334 char *check = xmalloc (len);
1335 struct cleanup *verify_cleanups = make_cleanup (free, check);
1336 if (target_read_memory (lma, check, len) != 0)
1337 error ("Download verify read failed at 0x%s",
1338 paddr (lma));
1339 if (memcmp (buffer, check, len) != 0)
1340 error ("Download verify compare failed at 0x%s",
1341 paddr (lma));
1342 do_cleanups (verify_cleanups);
1343 }
1344 data_count += len;
1345 lma += len;
1346 buffer += len;
1347 write_count += 1;
1348 sent += len;
1349 total_sent += len;
1350 if (quit_flag
1351 || (ui_load_progress_hook != NULL
1352 && ui_load_progress_hook (sect_name, sent)))
1353 error ("Canceled the download");
1354
1355 if (show_load_progress != NULL)
1356 show_load_progress (sect_name, sent, size, total_sent, total_size);
1357 }
1358 while (sent < size);
1359
1360 if (err != 0)
1361 error ("Memory access error while loading section %s.", sect_name);
1362
1363 do_cleanups (old_chain);
1364 }
1365 }
1366 }
1367
1368 end_time = time (NULL);
1369 {
1370 CORE_ADDR entry;
1371 entry = bfd_get_start_address (loadfile_bfd);
1372 #ifdef UI_OUT
1373 ui_out_text (uiout, "Start address ");
1374 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1375 ui_out_text (uiout, ", load size ");
1376 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1377 ui_out_text (uiout, "\n");
1378
1379 #else
1380 fprintf_unfiltered (gdb_stdout,
1381 "Start address 0x%s , load size %ld\n",
1382 paddr_nz (entry), data_count);
1383 #endif
1384 /* We were doing this in remote-mips.c, I suspect it is right
1385 for other targets too. */
1386 write_pc (entry);
1387 }
1388
1389 /* FIXME: are we supposed to call symbol_file_add or not? According to
1390 a comment from remote-mips.c (where a call to symbol_file_add was
1391 commented out), making the call confuses GDB if more than one file is
1392 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1393 does. */
1394
1395 print_transfer_performance (gdb_stdout, data_count, write_count,
1396 end_time - start_time);
1397
1398 do_cleanups (old_cleanups);
1399 }
1400
1401 /* Report how fast the transfer went. */
1402
1403 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1404 replaced by print_transfer_performance (with a very different
1405 function signature). */
1406
1407 void
1408 report_transfer_performance (data_count, start_time, end_time)
1409 unsigned long data_count;
1410 time_t start_time, end_time;
1411 {
1412 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1413 }
1414
1415 void
1416 print_transfer_performance (struct ui_file *stream,
1417 unsigned long data_count,
1418 unsigned long write_count,
1419 unsigned long time_count)
1420 {
1421 #ifdef UI_OUT
1422 ui_out_text (uiout, "Transfer rate: ");
1423 if (time_count > 0)
1424 {
1425 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1426 (data_count * 8) / time_count);
1427 ui_out_text (uiout, " bits/sec");
1428 }
1429 else
1430 {
1431 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1432 ui_out_text (uiout, " bits in <1 sec");
1433 }
1434 if (write_count > 0)
1435 {
1436 ui_out_text (uiout, ", ");
1437 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1438 ui_out_text (uiout, " bytes/write");
1439 }
1440 ui_out_text (uiout, ".\n");
1441 #else
1442 fprintf_unfiltered (stream, "Transfer rate: ");
1443 if (time_count > 0)
1444 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1445 else
1446 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1447 if (write_count > 0)
1448 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1449 fprintf_unfiltered (stream, ".\n");
1450 #endif
1451 }
1452
1453 /* This function allows the addition of incrementally linked object files.
1454 It does not modify any state in the target, only in the debugger. */
1455
1456 /* ARGSUSED */
1457 static void
1458 add_symbol_file_command (args, from_tty)
1459 char *args;
1460 int from_tty;
1461 {
1462 char *name = NULL;
1463 CORE_ADDR text_addr;
1464 int flags = OBJF_USERLOADED;
1465 char *arg;
1466 int expecting_option = 0;
1467 int option_index = 0;
1468 int argcnt = 0;
1469 int sec_num = 0;
1470 int i;
1471 struct
1472 {
1473 enum { OPT_SECTION } type;
1474 char *name;
1475 char *value;
1476 } opt[SECT_OFF_MAX];
1477 struct section_addr_info section_addrs;
1478
1479 dont_repeat ();
1480
1481 if (args == NULL)
1482 {
1483 error ("add-symbol-file takes a file name and an address");
1484 }
1485
1486 /* Make a copy of the string that we can safely write into. */
1487
1488 args = xstrdup (args);
1489 make_cleanup (free, args);
1490
1491 /* Ensure section_addrs is initialized */
1492 memset (&section_addrs, 0, sizeof (section_addrs));
1493
1494 /* Pick off any -option args and the file name. */
1495
1496 while (*args != '\000')
1497 {
1498 while (isspace (*args))
1499 {
1500 args++;
1501 }
1502 arg = args;
1503 while ((*args != '\000') && !isspace (*args))
1504 {
1505 args++;
1506 }
1507 if (*args != '\000')
1508 {
1509 *args++ = '\000';
1510 }
1511 if (*arg != '-')
1512 {
1513 if (expecting_option)
1514 {
1515 opt[option_index++].value = arg;
1516 expecting_option = 0;
1517 }
1518 else
1519 {
1520 switch (argcnt)
1521 {
1522 case 0:
1523 name = arg;
1524 break;
1525 case 1:
1526 opt[option_index].type = OPT_SECTION;
1527 opt[option_index].name = ".text";
1528 opt[option_index++].value = arg;
1529 break;
1530 case 2:
1531 opt[option_index].type = OPT_SECTION;
1532 opt[option_index].name = ".data";
1533 opt[option_index++].value = arg;
1534 break;
1535 case 3:
1536 opt[option_index].type = OPT_SECTION;
1537 opt[option_index].name = ".bss";
1538 opt[option_index++].value = arg;
1539 break;
1540 default:
1541 warning ("Too many arguments entered; see \"help add-symbol-file\" for command syntax.");
1542 }
1543 argcnt++;
1544 }
1545 }
1546 else if (STREQ (arg, "-mapped"))
1547 {
1548 flags |= OBJF_MAPPED;
1549 }
1550 else if (STREQ (arg, "-readnow"))
1551 {
1552 flags |= OBJF_READNOW;
1553 }
1554 else if (STREQN (arg, "-T", 2))
1555 {
1556 if (option_index >= SECT_OFF_MAX)
1557 {
1558 warning ("Number of options exceeds maximum allowed.");
1559 }
1560 else
1561 {
1562 expecting_option = 1;
1563 opt[option_index].type = OPT_SECTION;
1564 opt[option_index].name = arg + 2;
1565 }
1566 }
1567 else
1568 {
1569 error ("Unknown option `%s'", arg);
1570 }
1571 }
1572
1573 if (name == NULL)
1574 {
1575 error ("add-symbol-file takes a file name");
1576 }
1577 name = tilde_expand (name);
1578 make_cleanup (free, name);
1579
1580 if (option_index > 0)
1581 {
1582 /* Print the prompt for the query below.
1583 We have to split this up into 3 print statements because
1584 local_hex_string returns a local static string. */
1585
1586 printf_filtered ("add symbol table from file \"%s\" at\n", name);
1587 for (i = 0; i < option_index; i++)
1588 {
1589 switch (opt[i].type)
1590 {
1591 case OPT_SECTION:
1592 {
1593 CORE_ADDR addr;
1594 char *val = opt[i].value;
1595 char *sec = opt[i].name;
1596
1597 val = opt[i].value;
1598 if (val[0] == '0' && val[1] == 'x')
1599 addr = strtoul (val+2, NULL, 16);
1600 else
1601 addr = strtoul (val, NULL, 10);
1602
1603 if (strcmp (sec, ".text") == 0)
1604 section_addrs.text_addr = addr;
1605 else if (strcmp (sec, ".data") == 0)
1606 section_addrs.data_addr = addr;
1607 else if (strcmp (sec, ".bss") == 0)
1608 section_addrs.bss_addr = addr;
1609 /* Add the section to the others even if it is a
1610 text data or bss section. This is redundent but
1611 eventually, none will be given special treatment */
1612 {
1613 section_addrs.other[sec_num].name = xstrdup (sec);
1614 make_cleanup (free, section_addrs.other[sec_num].name);
1615 section_addrs.other[sec_num++].addr = addr;
1616 printf_filtered ("\t%s_addr = %s\n",
1617 sec,
1618 local_hex_string ((unsigned long)addr));
1619 }
1620
1621 /* The object's sections are initialized when a
1622 call is made to build_objfile_section_table (objfile).
1623 This happens in reread_symbols.
1624 At this point, we don't know what file type this is,
1625 so we can't determine what section names are valid. */
1626 }
1627 break;
1628 default:
1629 complain (&unknown_option_complaint, opt[i].name);
1630 }
1631 }
1632 /* Eventually, these hard coded names will be obsolete */
1633 /* All the addresses will be on the others section */
1634 }
1635 else
1636 {
1637 CORE_ADDR text_addr;
1638 target_link (name, &text_addr);
1639 if (text_addr == (CORE_ADDR) -1)
1640 error("Don't know how to get text start location for this file");
1641 section_addrs.text_addr = text_addr;
1642 section_addrs.data_addr = 0;
1643 section_addrs.bss_addr = 0;
1644 printf_filtered("add symbol table from file \"%s\" at text_addr = %s?\n",
1645 name, local_hex_string ((unsigned long)text_addr));
1646 }
1647 if (from_tty && (!query ("%s", "")))
1648 error ("Not confirmed.");
1649
1650 symbol_file_add (name, from_tty, &section_addrs, 0, flags);
1651
1652 /* Getting new symbols may change our opinion about what is
1653 frameless. */
1654 reinit_frame_cache ();
1655 }
1656 \f
1657 static void
1658 add_shared_symbol_files_command (args, from_tty)
1659 char *args;
1660 int from_tty;
1661 {
1662 #ifdef ADD_SHARED_SYMBOL_FILES
1663 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1664 #else
1665 error ("This command is not available in this configuration of GDB.");
1666 #endif
1667 }
1668 \f
1669 /* Re-read symbols if a symbol-file has changed. */
1670 void
1671 reread_symbols ()
1672 {
1673 struct objfile *objfile;
1674 long new_modtime;
1675 int reread_one = 0;
1676 struct stat new_statbuf;
1677 int res;
1678
1679 /* With the addition of shared libraries, this should be modified,
1680 the load time should be saved in the partial symbol tables, since
1681 different tables may come from different source files. FIXME.
1682 This routine should then walk down each partial symbol table
1683 and see if the symbol table that it originates from has been changed */
1684
1685 for (objfile = object_files; objfile; objfile = objfile->next)
1686 {
1687 if (objfile->obfd)
1688 {
1689 #ifdef IBM6000_TARGET
1690 /* If this object is from a shared library, then you should
1691 stat on the library name, not member name. */
1692
1693 if (objfile->obfd->my_archive)
1694 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1695 else
1696 #endif
1697 res = stat (objfile->name, &new_statbuf);
1698 if (res != 0)
1699 {
1700 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1701 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1702 objfile->name);
1703 continue;
1704 }
1705 new_modtime = new_statbuf.st_mtime;
1706 if (new_modtime != objfile->mtime)
1707 {
1708 struct cleanup *old_cleanups;
1709 struct section_offsets *offsets;
1710 int num_offsets;
1711 char *obfd_filename;
1712
1713 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1714 objfile->name);
1715
1716 /* There are various functions like symbol_file_add,
1717 symfile_bfd_open, syms_from_objfile, etc., which might
1718 appear to do what we want. But they have various other
1719 effects which we *don't* want. So we just do stuff
1720 ourselves. We don't worry about mapped files (for one thing,
1721 any mapped file will be out of date). */
1722
1723 /* If we get an error, blow away this objfile (not sure if
1724 that is the correct response for things like shared
1725 libraries). */
1726 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1727 objfile);
1728 /* We need to do this whenever any symbols go away. */
1729 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1730
1731 /* Clean up any state BFD has sitting around. We don't need
1732 to close the descriptor but BFD lacks a way of closing the
1733 BFD without closing the descriptor. */
1734 obfd_filename = bfd_get_filename (objfile->obfd);
1735 if (!bfd_close (objfile->obfd))
1736 error ("Can't close BFD for %s: %s", objfile->name,
1737 bfd_errmsg (bfd_get_error ()));
1738 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1739 if (objfile->obfd == NULL)
1740 error ("Can't open %s to read symbols.", objfile->name);
1741 /* bfd_openr sets cacheable to true, which is what we want. */
1742 if (!bfd_check_format (objfile->obfd, bfd_object))
1743 error ("Can't read symbols from %s: %s.", objfile->name,
1744 bfd_errmsg (bfd_get_error ()));
1745
1746 /* Save the offsets, we will nuke them with the rest of the
1747 psymbol_obstack. */
1748 num_offsets = objfile->num_sections;
1749 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1750 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1751
1752 /* Nuke all the state that we will re-read. Much of the following
1753 code which sets things to NULL really is necessary to tell
1754 other parts of GDB that there is nothing currently there. */
1755
1756 /* FIXME: Do we have to free a whole linked list, or is this
1757 enough? */
1758 if (objfile->global_psymbols.list)
1759 mfree (objfile->md, objfile->global_psymbols.list);
1760 memset (&objfile->global_psymbols, 0,
1761 sizeof (objfile->global_psymbols));
1762 if (objfile->static_psymbols.list)
1763 mfree (objfile->md, objfile->static_psymbols.list);
1764 memset (&objfile->static_psymbols, 0,
1765 sizeof (objfile->static_psymbols));
1766
1767 /* Free the obstacks for non-reusable objfiles */
1768 free_bcache (&objfile->psymbol_cache);
1769 obstack_free (&objfile->psymbol_obstack, 0);
1770 obstack_free (&objfile->symbol_obstack, 0);
1771 obstack_free (&objfile->type_obstack, 0);
1772 objfile->sections = NULL;
1773 objfile->symtabs = NULL;
1774 objfile->psymtabs = NULL;
1775 objfile->free_psymtabs = NULL;
1776 objfile->msymbols = NULL;
1777 objfile->minimal_symbol_count = 0;
1778 objfile->fundamental_types = NULL;
1779 if (objfile->sf != NULL)
1780 {
1781 (*objfile->sf->sym_finish) (objfile);
1782 }
1783
1784 /* We never make this a mapped file. */
1785 objfile->md = NULL;
1786 /* obstack_specify_allocation also initializes the obstack so
1787 it is empty. */
1788 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1789 xmalloc, free);
1790 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1791 xmalloc, free);
1792 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1793 xmalloc, free);
1794 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1795 xmalloc, free);
1796 if (build_objfile_section_table (objfile))
1797 {
1798 error ("Can't find the file sections in `%s': %s",
1799 objfile->name, bfd_errmsg (bfd_get_error ()));
1800 }
1801
1802 /* We use the same section offsets as from last time. I'm not
1803 sure whether that is always correct for shared libraries. */
1804 objfile->section_offsets = (struct section_offsets *)
1805 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1806 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1807 objfile->num_sections = num_offsets;
1808
1809 /* What the hell is sym_new_init for, anyway? The concept of
1810 distinguishing between the main file and additional files
1811 in this way seems rather dubious. */
1812 if (objfile == symfile_objfile)
1813 {
1814 (*objfile->sf->sym_new_init) (objfile);
1815 #ifdef HPUXHPPA
1816 RESET_HP_UX_GLOBALS ();
1817 #endif
1818 }
1819
1820 (*objfile->sf->sym_init) (objfile);
1821 clear_complaints (1, 1);
1822 /* The "mainline" parameter is a hideous hack; I think leaving it
1823 zero is OK since dbxread.c also does what it needs to do if
1824 objfile->global_psymbols.size is 0. */
1825 (*objfile->sf->sym_read) (objfile, 0);
1826 if (!have_partial_symbols () && !have_full_symbols ())
1827 {
1828 wrap_here ("");
1829 printf_filtered ("(no debugging symbols found)\n");
1830 wrap_here ("");
1831 }
1832 objfile->flags |= OBJF_SYMS;
1833
1834 /* We're done reading the symbol file; finish off complaints. */
1835 clear_complaints (0, 1);
1836
1837 /* Getting new symbols may change our opinion about what is
1838 frameless. */
1839
1840 reinit_frame_cache ();
1841
1842 /* Discard cleanups as symbol reading was successful. */
1843 discard_cleanups (old_cleanups);
1844
1845 /* If the mtime has changed between the time we set new_modtime
1846 and now, we *want* this to be out of date, so don't call stat
1847 again now. */
1848 objfile->mtime = new_modtime;
1849 reread_one = 1;
1850
1851 /* Call this after reading in a new symbol table to give target
1852 dependant code a crack at the new symbols. For instance, this
1853 could be used to update the values of target-specific symbols GDB
1854 needs to keep track of (such as _sigtramp, or whatever). */
1855
1856 TARGET_SYMFILE_POSTREAD (objfile);
1857 }
1858 }
1859 }
1860
1861 if (reread_one)
1862 clear_symtab_users ();
1863 }
1864 \f
1865
1866
1867 typedef struct
1868 {
1869 char *ext;
1870 enum language lang;
1871 }
1872 filename_language;
1873
1874 static filename_language *filename_language_table;
1875 static int fl_table_size, fl_table_next;
1876
1877 static void
1878 add_filename_language (ext, lang)
1879 char *ext;
1880 enum language lang;
1881 {
1882 if (fl_table_next >= fl_table_size)
1883 {
1884 fl_table_size += 10;
1885 filename_language_table = realloc (filename_language_table,
1886 fl_table_size);
1887 }
1888
1889 filename_language_table[fl_table_next].ext = strsave (ext);
1890 filename_language_table[fl_table_next].lang = lang;
1891 fl_table_next++;
1892 }
1893
1894 static char *ext_args;
1895
1896 static void
1897 set_ext_lang_command (args, from_tty)
1898 char *args;
1899 int from_tty;
1900 {
1901 int i;
1902 char *cp = ext_args;
1903 enum language lang;
1904
1905 /* First arg is filename extension, starting with '.' */
1906 if (*cp != '.')
1907 error ("'%s': Filename extension must begin with '.'", ext_args);
1908
1909 /* Find end of first arg. */
1910 while (*cp && !isspace (*cp))
1911 cp++;
1912
1913 if (*cp == '\0')
1914 error ("'%s': two arguments required -- filename extension and language",
1915 ext_args);
1916
1917 /* Null-terminate first arg */
1918 *cp++ = '\0';
1919
1920 /* Find beginning of second arg, which should be a source language. */
1921 while (*cp && isspace (*cp))
1922 cp++;
1923
1924 if (*cp == '\0')
1925 error ("'%s': two arguments required -- filename extension and language",
1926 ext_args);
1927
1928 /* Lookup the language from among those we know. */
1929 lang = language_enum (cp);
1930
1931 /* Now lookup the filename extension: do we already know it? */
1932 for (i = 0; i < fl_table_next; i++)
1933 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1934 break;
1935
1936 if (i >= fl_table_next)
1937 {
1938 /* new file extension */
1939 add_filename_language (ext_args, lang);
1940 }
1941 else
1942 {
1943 /* redefining a previously known filename extension */
1944
1945 /* if (from_tty) */
1946 /* query ("Really make files of type %s '%s'?", */
1947 /* ext_args, language_str (lang)); */
1948
1949 free (filename_language_table[i].ext);
1950 filename_language_table[i].ext = strsave (ext_args);
1951 filename_language_table[i].lang = lang;
1952 }
1953 }
1954
1955 static void
1956 info_ext_lang_command (args, from_tty)
1957 char *args;
1958 int from_tty;
1959 {
1960 int i;
1961
1962 printf_filtered ("Filename extensions and the languages they represent:");
1963 printf_filtered ("\n\n");
1964 for (i = 0; i < fl_table_next; i++)
1965 printf_filtered ("\t%s\t- %s\n",
1966 filename_language_table[i].ext,
1967 language_str (filename_language_table[i].lang));
1968 }
1969
1970 static void
1971 init_filename_language_table ()
1972 {
1973 if (fl_table_size == 0) /* protect against repetition */
1974 {
1975 fl_table_size = 20;
1976 fl_table_next = 0;
1977 filename_language_table =
1978 xmalloc (fl_table_size * sizeof (*filename_language_table));
1979 add_filename_language (".c", language_c);
1980 add_filename_language (".C", language_cplus);
1981 add_filename_language (".cc", language_cplus);
1982 add_filename_language (".cp", language_cplus);
1983 add_filename_language (".cpp", language_cplus);
1984 add_filename_language (".cxx", language_cplus);
1985 add_filename_language (".c++", language_cplus);
1986 add_filename_language (".java", language_java);
1987 add_filename_language (".class", language_java);
1988 add_filename_language (".ch", language_chill);
1989 add_filename_language (".c186", language_chill);
1990 add_filename_language (".c286", language_chill);
1991 add_filename_language (".f", language_fortran);
1992 add_filename_language (".F", language_fortran);
1993 add_filename_language (".s", language_asm);
1994 add_filename_language (".S", language_asm);
1995 }
1996 }
1997
1998 enum language
1999 deduce_language_from_filename (filename)
2000 char *filename;
2001 {
2002 int i;
2003 char *cp;
2004
2005 if (filename != NULL)
2006 if ((cp = strrchr (filename, '.')) != NULL)
2007 for (i = 0; i < fl_table_next; i++)
2008 if (strcmp (cp, filename_language_table[i].ext) == 0)
2009 return filename_language_table[i].lang;
2010
2011 return language_unknown;
2012 }
2013 \f
2014 /* allocate_symtab:
2015
2016 Allocate and partly initialize a new symbol table. Return a pointer
2017 to it. error() if no space.
2018
2019 Caller must set these fields:
2020 LINETABLE(symtab)
2021 symtab->blockvector
2022 symtab->dirname
2023 symtab->free_code
2024 symtab->free_ptr
2025 possibly free_named_symtabs (symtab->filename);
2026 */
2027
2028 struct symtab *
2029 allocate_symtab (filename, objfile)
2030 char *filename;
2031 struct objfile *objfile;
2032 {
2033 register struct symtab *symtab;
2034
2035 symtab = (struct symtab *)
2036 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2037 memset (symtab, 0, sizeof (*symtab));
2038 symtab->filename = obsavestring (filename, strlen (filename),
2039 &objfile->symbol_obstack);
2040 symtab->fullname = NULL;
2041 symtab->language = deduce_language_from_filename (filename);
2042 symtab->debugformat = obsavestring ("unknown", 7,
2043 &objfile->symbol_obstack);
2044
2045 /* Hook it to the objfile it comes from */
2046
2047 symtab->objfile = objfile;
2048 symtab->next = objfile->symtabs;
2049 objfile->symtabs = symtab;
2050
2051 /* FIXME: This should go away. It is only defined for the Z8000,
2052 and the Z8000 definition of this macro doesn't have anything to
2053 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2054 here for convenience. */
2055 #ifdef INIT_EXTRA_SYMTAB_INFO
2056 INIT_EXTRA_SYMTAB_INFO (symtab);
2057 #endif
2058
2059 return (symtab);
2060 }
2061
2062 struct partial_symtab *
2063 allocate_psymtab (filename, objfile)
2064 char *filename;
2065 struct objfile *objfile;
2066 {
2067 struct partial_symtab *psymtab;
2068
2069 if (objfile->free_psymtabs)
2070 {
2071 psymtab = objfile->free_psymtabs;
2072 objfile->free_psymtabs = psymtab->next;
2073 }
2074 else
2075 psymtab = (struct partial_symtab *)
2076 obstack_alloc (&objfile->psymbol_obstack,
2077 sizeof (struct partial_symtab));
2078
2079 memset (psymtab, 0, sizeof (struct partial_symtab));
2080 psymtab->filename = obsavestring (filename, strlen (filename),
2081 &objfile->psymbol_obstack);
2082 psymtab->symtab = NULL;
2083
2084 /* Prepend it to the psymtab list for the objfile it belongs to.
2085 Psymtabs are searched in most recent inserted -> least recent
2086 inserted order. */
2087
2088 psymtab->objfile = objfile;
2089 psymtab->next = objfile->psymtabs;
2090 objfile->psymtabs = psymtab;
2091 #if 0
2092 {
2093 struct partial_symtab **prev_pst;
2094 psymtab->objfile = objfile;
2095 psymtab->next = NULL;
2096 prev_pst = &(objfile->psymtabs);
2097 while ((*prev_pst) != NULL)
2098 prev_pst = &((*prev_pst)->next);
2099 (*prev_pst) = psymtab;
2100 }
2101 #endif
2102
2103 return (psymtab);
2104 }
2105
2106 void
2107 discard_psymtab (pst)
2108 struct partial_symtab *pst;
2109 {
2110 struct partial_symtab **prev_pst;
2111
2112 /* From dbxread.c:
2113 Empty psymtabs happen as a result of header files which don't
2114 have any symbols in them. There can be a lot of them. But this
2115 check is wrong, in that a psymtab with N_SLINE entries but
2116 nothing else is not empty, but we don't realize that. Fixing
2117 that without slowing things down might be tricky. */
2118
2119 /* First, snip it out of the psymtab chain */
2120
2121 prev_pst = &(pst->objfile->psymtabs);
2122 while ((*prev_pst) != pst)
2123 prev_pst = &((*prev_pst)->next);
2124 (*prev_pst) = pst->next;
2125
2126 /* Next, put it on a free list for recycling */
2127
2128 pst->next = pst->objfile->free_psymtabs;
2129 pst->objfile->free_psymtabs = pst;
2130 }
2131 \f
2132
2133 /* Reset all data structures in gdb which may contain references to symbol
2134 table data. */
2135
2136 void
2137 clear_symtab_users ()
2138 {
2139 /* Someday, we should do better than this, by only blowing away
2140 the things that really need to be blown. */
2141 clear_value_history ();
2142 clear_displays ();
2143 clear_internalvars ();
2144 breakpoint_re_set ();
2145 set_default_breakpoint (0, 0, 0, 0);
2146 current_source_symtab = 0;
2147 current_source_line = 0;
2148 clear_pc_function_cache ();
2149 if (target_new_objfile_hook)
2150 target_new_objfile_hook (NULL);
2151 }
2152
2153 /* clear_symtab_users_once:
2154
2155 This function is run after symbol reading, or from a cleanup.
2156 If an old symbol table was obsoleted, the old symbol table
2157 has been blown away, but the other GDB data structures that may
2158 reference it have not yet been cleared or re-directed. (The old
2159 symtab was zapped, and the cleanup queued, in free_named_symtab()
2160 below.)
2161
2162 This function can be queued N times as a cleanup, or called
2163 directly; it will do all the work the first time, and then will be a
2164 no-op until the next time it is queued. This works by bumping a
2165 counter at queueing time. Much later when the cleanup is run, or at
2166 the end of symbol processing (in case the cleanup is discarded), if
2167 the queued count is greater than the "done-count", we do the work
2168 and set the done-count to the queued count. If the queued count is
2169 less than or equal to the done-count, we just ignore the call. This
2170 is needed because reading a single .o file will often replace many
2171 symtabs (one per .h file, for example), and we don't want to reset
2172 the breakpoints N times in the user's face.
2173
2174 The reason we both queue a cleanup, and call it directly after symbol
2175 reading, is because the cleanup protects us in case of errors, but is
2176 discarded if symbol reading is successful. */
2177
2178 #if 0
2179 /* FIXME: As free_named_symtabs is currently a big noop this function
2180 is no longer needed. */
2181 static void
2182 clear_symtab_users_once PARAMS ((void));
2183
2184 static int clear_symtab_users_queued;
2185 static int clear_symtab_users_done;
2186
2187 static void
2188 clear_symtab_users_once ()
2189 {
2190 /* Enforce once-per-`do_cleanups'-semantics */
2191 if (clear_symtab_users_queued <= clear_symtab_users_done)
2192 return;
2193 clear_symtab_users_done = clear_symtab_users_queued;
2194
2195 clear_symtab_users ();
2196 }
2197 #endif
2198
2199 /* Delete the specified psymtab, and any others that reference it. */
2200
2201 static void
2202 cashier_psymtab (pst)
2203 struct partial_symtab *pst;
2204 {
2205 struct partial_symtab *ps, *pprev = NULL;
2206 int i;
2207
2208 /* Find its previous psymtab in the chain */
2209 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2210 {
2211 if (ps == pst)
2212 break;
2213 pprev = ps;
2214 }
2215
2216 if (ps)
2217 {
2218 /* Unhook it from the chain. */
2219 if (ps == pst->objfile->psymtabs)
2220 pst->objfile->psymtabs = ps->next;
2221 else
2222 pprev->next = ps->next;
2223
2224 /* FIXME, we can't conveniently deallocate the entries in the
2225 partial_symbol lists (global_psymbols/static_psymbols) that
2226 this psymtab points to. These just take up space until all
2227 the psymtabs are reclaimed. Ditto the dependencies list and
2228 filename, which are all in the psymbol_obstack. */
2229
2230 /* We need to cashier any psymtab that has this one as a dependency... */
2231 again:
2232 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2233 {
2234 for (i = 0; i < ps->number_of_dependencies; i++)
2235 {
2236 if (ps->dependencies[i] == pst)
2237 {
2238 cashier_psymtab (ps);
2239 goto again; /* Must restart, chain has been munged. */
2240 }
2241 }
2242 }
2243 }
2244 }
2245
2246 /* If a symtab or psymtab for filename NAME is found, free it along
2247 with any dependent breakpoints, displays, etc.
2248 Used when loading new versions of object modules with the "add-file"
2249 command. This is only called on the top-level symtab or psymtab's name;
2250 it is not called for subsidiary files such as .h files.
2251
2252 Return value is 1 if we blew away the environment, 0 if not.
2253 FIXME. The return valu appears to never be used.
2254
2255 FIXME. I think this is not the best way to do this. We should
2256 work on being gentler to the environment while still cleaning up
2257 all stray pointers into the freed symtab. */
2258
2259 int
2260 free_named_symtabs (name)
2261 char *name;
2262 {
2263 #if 0
2264 /* FIXME: With the new method of each objfile having it's own
2265 psymtab list, this function needs serious rethinking. In particular,
2266 why was it ever necessary to toss psymtabs with specific compilation
2267 unit filenames, as opposed to all psymtabs from a particular symbol
2268 file? -- fnf
2269 Well, the answer is that some systems permit reloading of particular
2270 compilation units. We want to blow away any old info about these
2271 compilation units, regardless of which objfiles they arrived in. --gnu. */
2272
2273 register struct symtab *s;
2274 register struct symtab *prev;
2275 register struct partial_symtab *ps;
2276 struct blockvector *bv;
2277 int blewit = 0;
2278
2279 /* We only wack things if the symbol-reload switch is set. */
2280 if (!symbol_reloading)
2281 return 0;
2282
2283 /* Some symbol formats have trouble providing file names... */
2284 if (name == 0 || *name == '\0')
2285 return 0;
2286
2287 /* Look for a psymtab with the specified name. */
2288
2289 again2:
2290 for (ps = partial_symtab_list; ps; ps = ps->next)
2291 {
2292 if (STREQ (name, ps->filename))
2293 {
2294 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2295 goto again2; /* Must restart, chain has been munged */
2296 }
2297 }
2298
2299 /* Look for a symtab with the specified name. */
2300
2301 for (s = symtab_list; s; s = s->next)
2302 {
2303 if (STREQ (name, s->filename))
2304 break;
2305 prev = s;
2306 }
2307
2308 if (s)
2309 {
2310 if (s == symtab_list)
2311 symtab_list = s->next;
2312 else
2313 prev->next = s->next;
2314
2315 /* For now, queue a delete for all breakpoints, displays, etc., whether
2316 or not they depend on the symtab being freed. This should be
2317 changed so that only those data structures affected are deleted. */
2318
2319 /* But don't delete anything if the symtab is empty.
2320 This test is necessary due to a bug in "dbxread.c" that
2321 causes empty symtabs to be created for N_SO symbols that
2322 contain the pathname of the object file. (This problem
2323 has been fixed in GDB 3.9x). */
2324
2325 bv = BLOCKVECTOR (s);
2326 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2327 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2328 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2329 {
2330 complain (&oldsyms_complaint, name);
2331
2332 clear_symtab_users_queued++;
2333 make_cleanup (clear_symtab_users_once, 0);
2334 blewit = 1;
2335 }
2336 else
2337 {
2338 complain (&empty_symtab_complaint, name);
2339 }
2340
2341 free_symtab (s);
2342 }
2343 else
2344 {
2345 /* It is still possible that some breakpoints will be affected
2346 even though no symtab was found, since the file might have
2347 been compiled without debugging, and hence not be associated
2348 with a symtab. In order to handle this correctly, we would need
2349 to keep a list of text address ranges for undebuggable files.
2350 For now, we do nothing, since this is a fairly obscure case. */
2351 ;
2352 }
2353
2354 /* FIXME, what about the minimal symbol table? */
2355 return blewit;
2356 #else
2357 return (0);
2358 #endif
2359 }
2360 \f
2361 /* Allocate and partially fill a partial symtab. It will be
2362 completely filled at the end of the symbol list.
2363
2364 FILENAME is the name of the symbol-file we are reading from. */
2365
2366 struct partial_symtab *
2367 start_psymtab_common (objfile, section_offsets,
2368 filename, textlow, global_syms, static_syms)
2369 struct objfile *objfile;
2370 struct section_offsets *section_offsets;
2371 char *filename;
2372 CORE_ADDR textlow;
2373 struct partial_symbol **global_syms;
2374 struct partial_symbol **static_syms;
2375 {
2376 struct partial_symtab *psymtab;
2377
2378 psymtab = allocate_psymtab (filename, objfile);
2379 psymtab->section_offsets = section_offsets;
2380 psymtab->textlow = textlow;
2381 psymtab->texthigh = psymtab->textlow; /* default */
2382 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2383 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2384 return (psymtab);
2385 }
2386 \f
2387 /* Add a symbol with a long value to a psymtab.
2388 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2389
2390 void
2391 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2392 language, objfile)
2393 char *name;
2394 int namelength;
2395 namespace_enum namespace;
2396 enum address_class class;
2397 struct psymbol_allocation_list *list;
2398 long val; /* Value as a long */
2399 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2400 enum language language;
2401 struct objfile *objfile;
2402 {
2403 register struct partial_symbol *psym;
2404 char *buf = alloca (namelength + 1);
2405 /* psymbol is static so that there will be no uninitialized gaps in the
2406 structure which might contain random data, causing cache misses in
2407 bcache. */
2408 static struct partial_symbol psymbol;
2409
2410 /* Create local copy of the partial symbol */
2411 memcpy (buf, name, namelength);
2412 buf[namelength] = '\0';
2413 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2414 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2415 if (val != 0)
2416 {
2417 SYMBOL_VALUE (&psymbol) = val;
2418 }
2419 else
2420 {
2421 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2422 }
2423 SYMBOL_SECTION (&psymbol) = 0;
2424 SYMBOL_LANGUAGE (&psymbol) = language;
2425 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2426 PSYMBOL_CLASS (&psymbol) = class;
2427 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2428
2429 /* Stash the partial symbol away in the cache */
2430 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2431
2432 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2433 if (list->next >= list->list + list->size)
2434 {
2435 extend_psymbol_list (list, objfile);
2436 }
2437 *list->next++ = psym;
2438 OBJSTAT (objfile, n_psyms++);
2439 }
2440
2441 /* Add a symbol with a long value to a psymtab. This differs from
2442 * add_psymbol_to_list above in taking both a mangled and a demangled
2443 * name. */
2444
2445 void
2446 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2447 namespace, class, list, val, coreaddr, language, objfile)
2448 char *name;
2449 int namelength;
2450 char *dem_name;
2451 int dem_namelength;
2452 namespace_enum namespace;
2453 enum address_class class;
2454 struct psymbol_allocation_list *list;
2455 long val; /* Value as a long */
2456 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2457 enum language language;
2458 struct objfile *objfile;
2459 {
2460 register struct partial_symbol *psym;
2461 char *buf = alloca (namelength + 1);
2462 /* psymbol is static so that there will be no uninitialized gaps in the
2463 structure which might contain random data, causing cache misses in
2464 bcache. */
2465 static struct partial_symbol psymbol;
2466
2467 /* Create local copy of the partial symbol */
2468
2469 memcpy (buf, name, namelength);
2470 buf[namelength] = '\0';
2471 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2472
2473 buf = alloca (dem_namelength + 1);
2474 memcpy (buf, dem_name, dem_namelength);
2475 buf[dem_namelength] = '\0';
2476
2477 switch (language)
2478 {
2479 case language_c:
2480 case language_cplus:
2481 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2482 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2483 break;
2484 case language_chill:
2485 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2486 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2487
2488 /* FIXME What should be done for the default case? Ignoring for now. */
2489 }
2490
2491 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2492 if (val != 0)
2493 {
2494 SYMBOL_VALUE (&psymbol) = val;
2495 }
2496 else
2497 {
2498 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2499 }
2500 SYMBOL_SECTION (&psymbol) = 0;
2501 SYMBOL_LANGUAGE (&psymbol) = language;
2502 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2503 PSYMBOL_CLASS (&psymbol) = class;
2504 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2505
2506 /* Stash the partial symbol away in the cache */
2507 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2508
2509 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2510 if (list->next >= list->list + list->size)
2511 {
2512 extend_psymbol_list (list, objfile);
2513 }
2514 *list->next++ = psym;
2515 OBJSTAT (objfile, n_psyms++);
2516 }
2517
2518 /* Initialize storage for partial symbols. */
2519
2520 void
2521 init_psymbol_list (objfile, total_symbols)
2522 struct objfile *objfile;
2523 int total_symbols;
2524 {
2525 /* Free any previously allocated psymbol lists. */
2526
2527 if (objfile->global_psymbols.list)
2528 {
2529 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2530 }
2531 if (objfile->static_psymbols.list)
2532 {
2533 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2534 }
2535
2536 /* Current best guess is that approximately a twentieth
2537 of the total symbols (in a debugging file) are global or static
2538 oriented symbols */
2539
2540 objfile->global_psymbols.size = total_symbols / 10;
2541 objfile->static_psymbols.size = total_symbols / 10;
2542
2543 if (objfile->global_psymbols.size > 0)
2544 {
2545 objfile->global_psymbols.next =
2546 objfile->global_psymbols.list = (struct partial_symbol **)
2547 xmmalloc (objfile->md, (objfile->global_psymbols.size
2548 * sizeof (struct partial_symbol *)));
2549 }
2550 if (objfile->static_psymbols.size > 0)
2551 {
2552 objfile->static_psymbols.next =
2553 objfile->static_psymbols.list = (struct partial_symbol **)
2554 xmmalloc (objfile->md, (objfile->static_psymbols.size
2555 * sizeof (struct partial_symbol *)));
2556 }
2557 }
2558
2559 /* OVERLAYS:
2560 The following code implements an abstraction for debugging overlay sections.
2561
2562 The target model is as follows:
2563 1) The gnu linker will permit multiple sections to be mapped into the
2564 same VMA, each with its own unique LMA (or load address).
2565 2) It is assumed that some runtime mechanism exists for mapping the
2566 sections, one by one, from the load address into the VMA address.
2567 3) This code provides a mechanism for gdb to keep track of which
2568 sections should be considered to be mapped from the VMA to the LMA.
2569 This information is used for symbol lookup, and memory read/write.
2570 For instance, if a section has been mapped then its contents
2571 should be read from the VMA, otherwise from the LMA.
2572
2573 Two levels of debugger support for overlays are available. One is
2574 "manual", in which the debugger relies on the user to tell it which
2575 overlays are currently mapped. This level of support is
2576 implemented entirely in the core debugger, and the information about
2577 whether a section is mapped is kept in the objfile->obj_section table.
2578
2579 The second level of support is "automatic", and is only available if
2580 the target-specific code provides functionality to read the target's
2581 overlay mapping table, and translate its contents for the debugger
2582 (by updating the mapped state information in the obj_section tables).
2583
2584 The interface is as follows:
2585 User commands:
2586 overlay map <name> -- tell gdb to consider this section mapped
2587 overlay unmap <name> -- tell gdb to consider this section unmapped
2588 overlay list -- list the sections that GDB thinks are mapped
2589 overlay read-target -- get the target's state of what's mapped
2590 overlay off/manual/auto -- set overlay debugging state
2591 Functional interface:
2592 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2593 section, return that section.
2594 find_pc_overlay(pc): find any overlay section that contains
2595 the pc, either in its VMA or its LMA
2596 overlay_is_mapped(sect): true if overlay is marked as mapped
2597 section_is_overlay(sect): true if section's VMA != LMA
2598 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2599 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2600 overlay_mapped_address(...): map an address from section's LMA to VMA
2601 overlay_unmapped_address(...): map an address from section's VMA to LMA
2602 symbol_overlayed_address(...): Return a "current" address for symbol:
2603 either in VMA or LMA depending on whether
2604 the symbol's section is currently mapped
2605 */
2606
2607 /* Overlay debugging state: */
2608
2609 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2610 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2611
2612 /* Target vector for refreshing overlay mapped state */
2613 static void simple_overlay_update PARAMS ((struct obj_section *));
2614 void (*target_overlay_update) PARAMS ((struct obj_section *))
2615 = simple_overlay_update;
2616
2617 /* Function: section_is_overlay (SECTION)
2618 Returns true if SECTION has VMA not equal to LMA, ie.
2619 SECTION is loaded at an address different from where it will "run". */
2620
2621 int
2622 section_is_overlay (section)
2623 asection *section;
2624 {
2625 if (overlay_debugging)
2626 if (section && section->lma != 0 &&
2627 section->vma != section->lma)
2628 return 1;
2629
2630 return 0;
2631 }
2632
2633 /* Function: overlay_invalidate_all (void)
2634 Invalidate the mapped state of all overlay sections (mark it as stale). */
2635
2636 static void
2637 overlay_invalidate_all ()
2638 {
2639 struct objfile *objfile;
2640 struct obj_section *sect;
2641
2642 ALL_OBJSECTIONS (objfile, sect)
2643 if (section_is_overlay (sect->the_bfd_section))
2644 sect->ovly_mapped = -1;
2645 }
2646
2647 /* Function: overlay_is_mapped (SECTION)
2648 Returns true if section is an overlay, and is currently mapped.
2649 Private: public access is thru function section_is_mapped.
2650
2651 Access to the ovly_mapped flag is restricted to this function, so
2652 that we can do automatic update. If the global flag
2653 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2654 overlay_invalidate_all. If the mapped state of the particular
2655 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2656
2657 static int
2658 overlay_is_mapped (osect)
2659 struct obj_section *osect;
2660 {
2661 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2662 return 0;
2663
2664 switch (overlay_debugging)
2665 {
2666 default:
2667 case 0:
2668 return 0; /* overlay debugging off */
2669 case -1: /* overlay debugging automatic */
2670 /* Unles there is a target_overlay_update function,
2671 there's really nothing useful to do here (can't really go auto) */
2672 if (target_overlay_update)
2673 {
2674 if (overlay_cache_invalid)
2675 {
2676 overlay_invalidate_all ();
2677 overlay_cache_invalid = 0;
2678 }
2679 if (osect->ovly_mapped == -1)
2680 (*target_overlay_update) (osect);
2681 }
2682 /* fall thru to manual case */
2683 case 1: /* overlay debugging manual */
2684 return osect->ovly_mapped == 1;
2685 }
2686 }
2687
2688 /* Function: section_is_mapped
2689 Returns true if section is an overlay, and is currently mapped. */
2690
2691 int
2692 section_is_mapped (section)
2693 asection *section;
2694 {
2695 struct objfile *objfile;
2696 struct obj_section *osect;
2697
2698 if (overlay_debugging)
2699 if (section && section_is_overlay (section))
2700 ALL_OBJSECTIONS (objfile, osect)
2701 if (osect->the_bfd_section == section)
2702 return overlay_is_mapped (osect);
2703
2704 return 0;
2705 }
2706
2707 /* Function: pc_in_unmapped_range
2708 If PC falls into the lma range of SECTION, return true, else false. */
2709
2710 CORE_ADDR
2711 pc_in_unmapped_range (pc, section)
2712 CORE_ADDR pc;
2713 asection *section;
2714 {
2715 int size;
2716
2717 if (overlay_debugging)
2718 if (section && section_is_overlay (section))
2719 {
2720 size = bfd_get_section_size_before_reloc (section);
2721 if (section->lma <= pc && pc < section->lma + size)
2722 return 1;
2723 }
2724 return 0;
2725 }
2726
2727 /* Function: pc_in_mapped_range
2728 If PC falls into the vma range of SECTION, return true, else false. */
2729
2730 CORE_ADDR
2731 pc_in_mapped_range (pc, section)
2732 CORE_ADDR pc;
2733 asection *section;
2734 {
2735 int size;
2736
2737 if (overlay_debugging)
2738 if (section && section_is_overlay (section))
2739 {
2740 size = bfd_get_section_size_before_reloc (section);
2741 if (section->vma <= pc && pc < section->vma + size)
2742 return 1;
2743 }
2744 return 0;
2745 }
2746
2747 /* Function: overlay_unmapped_address (PC, SECTION)
2748 Returns the address corresponding to PC in the unmapped (load) range.
2749 May be the same as PC. */
2750
2751 CORE_ADDR
2752 overlay_unmapped_address (pc, section)
2753 CORE_ADDR pc;
2754 asection *section;
2755 {
2756 if (overlay_debugging)
2757 if (section && section_is_overlay (section) &&
2758 pc_in_mapped_range (pc, section))
2759 return pc + section->lma - section->vma;
2760
2761 return pc;
2762 }
2763
2764 /* Function: overlay_mapped_address (PC, SECTION)
2765 Returns the address corresponding to PC in the mapped (runtime) range.
2766 May be the same as PC. */
2767
2768 CORE_ADDR
2769 overlay_mapped_address (pc, section)
2770 CORE_ADDR pc;
2771 asection *section;
2772 {
2773 if (overlay_debugging)
2774 if (section && section_is_overlay (section) &&
2775 pc_in_unmapped_range (pc, section))
2776 return pc + section->vma - section->lma;
2777
2778 return pc;
2779 }
2780
2781
2782 /* Function: symbol_overlayed_address
2783 Return one of two addresses (relative to the VMA or to the LMA),
2784 depending on whether the section is mapped or not. */
2785
2786 CORE_ADDR
2787 symbol_overlayed_address (address, section)
2788 CORE_ADDR address;
2789 asection *section;
2790 {
2791 if (overlay_debugging)
2792 {
2793 /* If the symbol has no section, just return its regular address. */
2794 if (section == 0)
2795 return address;
2796 /* If the symbol's section is not an overlay, just return its address */
2797 if (!section_is_overlay (section))
2798 return address;
2799 /* If the symbol's section is mapped, just return its address */
2800 if (section_is_mapped (section))
2801 return address;
2802 /*
2803 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2804 * then return its LOADED address rather than its vma address!!
2805 */
2806 return overlay_unmapped_address (address, section);
2807 }
2808 return address;
2809 }
2810
2811 /* Function: find_pc_overlay (PC)
2812 Return the best-match overlay section for PC:
2813 If PC matches a mapped overlay section's VMA, return that section.
2814 Else if PC matches an unmapped section's VMA, return that section.
2815 Else if PC matches an unmapped section's LMA, return that section. */
2816
2817 asection *
2818 find_pc_overlay (pc)
2819 CORE_ADDR pc;
2820 {
2821 struct objfile *objfile;
2822 struct obj_section *osect, *best_match = NULL;
2823
2824 if (overlay_debugging)
2825 ALL_OBJSECTIONS (objfile, osect)
2826 if (section_is_overlay (osect->the_bfd_section))
2827 {
2828 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2829 {
2830 if (overlay_is_mapped (osect))
2831 return osect->the_bfd_section;
2832 else
2833 best_match = osect;
2834 }
2835 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2836 best_match = osect;
2837 }
2838 return best_match ? best_match->the_bfd_section : NULL;
2839 }
2840
2841 /* Function: find_pc_mapped_section (PC)
2842 If PC falls into the VMA address range of an overlay section that is
2843 currently marked as MAPPED, return that section. Else return NULL. */
2844
2845 asection *
2846 find_pc_mapped_section (pc)
2847 CORE_ADDR pc;
2848 {
2849 struct objfile *objfile;
2850 struct obj_section *osect;
2851
2852 if (overlay_debugging)
2853 ALL_OBJSECTIONS (objfile, osect)
2854 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2855 overlay_is_mapped (osect))
2856 return osect->the_bfd_section;
2857
2858 return NULL;
2859 }
2860
2861 /* Function: list_overlays_command
2862 Print a list of mapped sections and their PC ranges */
2863
2864 void
2865 list_overlays_command (args, from_tty)
2866 char *args;
2867 int from_tty;
2868 {
2869 int nmapped = 0;
2870 struct objfile *objfile;
2871 struct obj_section *osect;
2872
2873 if (overlay_debugging)
2874 ALL_OBJSECTIONS (objfile, osect)
2875 if (overlay_is_mapped (osect))
2876 {
2877 const char *name;
2878 bfd_vma lma, vma;
2879 int size;
2880
2881 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2882 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2883 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2884 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2885
2886 printf_filtered ("Section %s, loaded at ", name);
2887 print_address_numeric (lma, 1, gdb_stdout);
2888 puts_filtered (" - ");
2889 print_address_numeric (lma + size, 1, gdb_stdout);
2890 printf_filtered (", mapped at ");
2891 print_address_numeric (vma, 1, gdb_stdout);
2892 puts_filtered (" - ");
2893 print_address_numeric (vma + size, 1, gdb_stdout);
2894 puts_filtered ("\n");
2895
2896 nmapped++;
2897 }
2898 if (nmapped == 0)
2899 printf_filtered ("No sections are mapped.\n");
2900 }
2901
2902 /* Function: map_overlay_command
2903 Mark the named section as mapped (ie. residing at its VMA address). */
2904
2905 void
2906 map_overlay_command (args, from_tty)
2907 char *args;
2908 int from_tty;
2909 {
2910 struct objfile *objfile, *objfile2;
2911 struct obj_section *sec, *sec2;
2912 asection *bfdsec;
2913
2914 if (!overlay_debugging)
2915 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2916
2917 if (args == 0 || *args == 0)
2918 error ("Argument required: name of an overlay section");
2919
2920 /* First, find a section matching the user supplied argument */
2921 ALL_OBJSECTIONS (objfile, sec)
2922 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2923 {
2924 /* Now, check to see if the section is an overlay. */
2925 bfdsec = sec->the_bfd_section;
2926 if (!section_is_overlay (bfdsec))
2927 continue; /* not an overlay section */
2928
2929 /* Mark the overlay as "mapped" */
2930 sec->ovly_mapped = 1;
2931
2932 /* Next, make a pass and unmap any sections that are
2933 overlapped by this new section: */
2934 ALL_OBJSECTIONS (objfile2, sec2)
2935 if (sec2->ovly_mapped &&
2936 sec != sec2 &&
2937 sec->the_bfd_section != sec2->the_bfd_section &&
2938 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2939 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2940 {
2941 if (info_verbose)
2942 printf_filtered ("Note: section %s unmapped by overlap\n",
2943 bfd_section_name (objfile->obfd,
2944 sec2->the_bfd_section));
2945 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2946 }
2947 return;
2948 }
2949 error ("No overlay section called %s", args);
2950 }
2951
2952 /* Function: unmap_overlay_command
2953 Mark the overlay section as unmapped
2954 (ie. resident in its LMA address range, rather than the VMA range). */
2955
2956 void
2957 unmap_overlay_command (args, from_tty)
2958 char *args;
2959 int from_tty;
2960 {
2961 struct objfile *objfile;
2962 struct obj_section *sec;
2963
2964 if (!overlay_debugging)
2965 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2966
2967 if (args == 0 || *args == 0)
2968 error ("Argument required: name of an overlay section");
2969
2970 /* First, find a section matching the user supplied argument */
2971 ALL_OBJSECTIONS (objfile, sec)
2972 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2973 {
2974 if (!sec->ovly_mapped)
2975 error ("Section %s is not mapped", args);
2976 sec->ovly_mapped = 0;
2977 return;
2978 }
2979 error ("No overlay section called %s", args);
2980 }
2981
2982 /* Function: overlay_auto_command
2983 A utility command to turn on overlay debugging.
2984 Possibly this should be done via a set/show command. */
2985
2986 static void
2987 overlay_auto_command (args, from_tty)
2988 char *args;
2989 int from_tty;
2990 {
2991 overlay_debugging = -1;
2992 if (info_verbose)
2993 printf_filtered ("Automatic overlay debugging enabled.");
2994 }
2995
2996 /* Function: overlay_manual_command
2997 A utility command to turn on overlay debugging.
2998 Possibly this should be done via a set/show command. */
2999
3000 static void
3001 overlay_manual_command (args, from_tty)
3002 char *args;
3003 int from_tty;
3004 {
3005 overlay_debugging = 1;
3006 if (info_verbose)
3007 printf_filtered ("Overlay debugging enabled.");
3008 }
3009
3010 /* Function: overlay_off_command
3011 A utility command to turn on overlay debugging.
3012 Possibly this should be done via a set/show command. */
3013
3014 static void
3015 overlay_off_command (args, from_tty)
3016 char *args;
3017 int from_tty;
3018 {
3019 overlay_debugging = 0;
3020 if (info_verbose)
3021 printf_filtered ("Overlay debugging disabled.");
3022 }
3023
3024 static void
3025 overlay_load_command (args, from_tty)
3026 char *args;
3027 int from_tty;
3028 {
3029 if (target_overlay_update)
3030 (*target_overlay_update) (NULL);
3031 else
3032 error ("This target does not know how to read its overlay state.");
3033 }
3034
3035 /* Function: overlay_command
3036 A place-holder for a mis-typed command */
3037
3038 /* Command list chain containing all defined "overlay" subcommands. */
3039 struct cmd_list_element *overlaylist;
3040
3041 static void
3042 overlay_command (args, from_tty)
3043 char *args;
3044 int from_tty;
3045 {
3046 printf_unfiltered
3047 ("\"overlay\" must be followed by the name of an overlay command.\n");
3048 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3049 }
3050
3051
3052 /* Target Overlays for the "Simplest" overlay manager:
3053
3054 This is GDB's default target overlay layer. It works with the
3055 minimal overlay manager supplied as an example by Cygnus. The
3056 entry point is via a function pointer "target_overlay_update",
3057 so targets that use a different runtime overlay manager can
3058 substitute their own overlay_update function and take over the
3059 function pointer.
3060
3061 The overlay_update function pokes around in the target's data structures
3062 to see what overlays are mapped, and updates GDB's overlay mapping with
3063 this information.
3064
3065 In this simple implementation, the target data structures are as follows:
3066 unsigned _novlys; /# number of overlay sections #/
3067 unsigned _ovly_table[_novlys][4] = {
3068 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3069 {..., ..., ..., ...},
3070 }
3071 unsigned _novly_regions; /# number of overlay regions #/
3072 unsigned _ovly_region_table[_novly_regions][3] = {
3073 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3074 {..., ..., ...},
3075 }
3076 These functions will attempt to update GDB's mappedness state in the
3077 symbol section table, based on the target's mappedness state.
3078
3079 To do this, we keep a cached copy of the target's _ovly_table, and
3080 attempt to detect when the cached copy is invalidated. The main
3081 entry point is "simple_overlay_update(SECT), which looks up SECT in
3082 the cached table and re-reads only the entry for that section from
3083 the target (whenever possible).
3084 */
3085
3086 /* Cached, dynamically allocated copies of the target data structures: */
3087 static unsigned (*cache_ovly_table)[4] = 0;
3088 #if 0
3089 static unsigned (*cache_ovly_region_table)[3] = 0;
3090 #endif
3091 static unsigned cache_novlys = 0;
3092 #if 0
3093 static unsigned cache_novly_regions = 0;
3094 #endif
3095 static CORE_ADDR cache_ovly_table_base = 0;
3096 #if 0
3097 static CORE_ADDR cache_ovly_region_table_base = 0;
3098 #endif
3099 enum ovly_index
3100 {
3101 VMA, SIZE, LMA, MAPPED
3102 };
3103 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3104
3105 /* Throw away the cached copy of _ovly_table */
3106 static void
3107 simple_free_overlay_table ()
3108 {
3109 if (cache_ovly_table)
3110 free (cache_ovly_table);
3111 cache_novlys = 0;
3112 cache_ovly_table = NULL;
3113 cache_ovly_table_base = 0;
3114 }
3115
3116 #if 0
3117 /* Throw away the cached copy of _ovly_region_table */
3118 static void
3119 simple_free_overlay_region_table ()
3120 {
3121 if (cache_ovly_region_table)
3122 free (cache_ovly_region_table);
3123 cache_novly_regions = 0;
3124 cache_ovly_region_table = NULL;
3125 cache_ovly_region_table_base = 0;
3126 }
3127 #endif
3128
3129 /* Read an array of ints from the target into a local buffer.
3130 Convert to host order. int LEN is number of ints */
3131 static void
3132 read_target_long_array (memaddr, myaddr, len)
3133 CORE_ADDR memaddr;
3134 unsigned int *myaddr;
3135 int len;
3136 {
3137 char *buf = alloca (len * TARGET_LONG_BYTES);
3138 int i;
3139
3140 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3141 for (i = 0; i < len; i++)
3142 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3143 TARGET_LONG_BYTES);
3144 }
3145
3146 /* Find and grab a copy of the target _ovly_table
3147 (and _novlys, which is needed for the table's size) */
3148 static int
3149 simple_read_overlay_table ()
3150 {
3151 struct minimal_symbol *msym;
3152
3153 simple_free_overlay_table ();
3154 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3155 if (msym != NULL)
3156 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3157 else
3158 return 0; /* failure */
3159 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3160 if (cache_ovly_table != NULL)
3161 {
3162 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3163 if (msym != NULL)
3164 {
3165 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3166 read_target_long_array (cache_ovly_table_base,
3167 (int *) cache_ovly_table,
3168 cache_novlys * 4);
3169 }
3170 else
3171 return 0; /* failure */
3172 }
3173 else
3174 return 0; /* failure */
3175 return 1; /* SUCCESS */
3176 }
3177
3178 #if 0
3179 /* Find and grab a copy of the target _ovly_region_table
3180 (and _novly_regions, which is needed for the table's size) */
3181 static int
3182 simple_read_overlay_region_table ()
3183 {
3184 struct minimal_symbol *msym;
3185
3186 simple_free_overlay_region_table ();
3187 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3188 if (msym != NULL)
3189 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3190 else
3191 return 0; /* failure */
3192 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3193 if (cache_ovly_region_table != NULL)
3194 {
3195 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3196 if (msym != NULL)
3197 {
3198 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3199 read_target_long_array (cache_ovly_region_table_base,
3200 (int *) cache_ovly_region_table,
3201 cache_novly_regions * 3);
3202 }
3203 else
3204 return 0; /* failure */
3205 }
3206 else
3207 return 0; /* failure */
3208 return 1; /* SUCCESS */
3209 }
3210 #endif
3211
3212 /* Function: simple_overlay_update_1
3213 A helper function for simple_overlay_update. Assuming a cached copy
3214 of _ovly_table exists, look through it to find an entry whose vma,
3215 lma and size match those of OSECT. Re-read the entry and make sure
3216 it still matches OSECT (else the table may no longer be valid).
3217 Set OSECT's mapped state to match the entry. Return: 1 for
3218 success, 0 for failure. */
3219
3220 static int
3221 simple_overlay_update_1 (osect)
3222 struct obj_section *osect;
3223 {
3224 int i, size;
3225
3226 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3227 for (i = 0; i < cache_novlys; i++)
3228 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3229 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3230 cache_ovly_table[i][SIZE] == size */ )
3231 {
3232 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3233 (int *) cache_ovly_table[i], 4);
3234 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3235 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3236 cache_ovly_table[i][SIZE] == size */ )
3237 {
3238 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3239 return 1;
3240 }
3241 else /* Warning! Warning! Target's ovly table has changed! */
3242 return 0;
3243 }
3244 return 0;
3245 }
3246
3247 /* Function: simple_overlay_update
3248 If OSECT is NULL, then update all sections' mapped state
3249 (after re-reading the entire target _ovly_table).
3250 If OSECT is non-NULL, then try to find a matching entry in the
3251 cached ovly_table and update only OSECT's mapped state.
3252 If a cached entry can't be found or the cache isn't valid, then
3253 re-read the entire cache, and go ahead and update all sections. */
3254
3255 static void
3256 simple_overlay_update (osect)
3257 struct obj_section *osect;
3258 {
3259 struct objfile *objfile;
3260
3261 /* Were we given an osect to look up? NULL means do all of them. */
3262 if (osect)
3263 /* Have we got a cached copy of the target's overlay table? */
3264 if (cache_ovly_table != NULL)
3265 /* Does its cached location match what's currently in the symtab? */
3266 if (cache_ovly_table_base ==
3267 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3268 /* Then go ahead and try to look up this single section in the cache */
3269 if (simple_overlay_update_1 (osect))
3270 /* Found it! We're done. */
3271 return;
3272
3273 /* Cached table no good: need to read the entire table anew.
3274 Or else we want all the sections, in which case it's actually
3275 more efficient to read the whole table in one block anyway. */
3276
3277 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3278 {
3279 warning ("Failed to read the target overlay mapping table.");
3280 return;
3281 }
3282 /* Now may as well update all sections, even if only one was requested. */
3283 ALL_OBJSECTIONS (objfile, osect)
3284 if (section_is_overlay (osect->the_bfd_section))
3285 {
3286 int i, size;
3287
3288 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3289 for (i = 0; i < cache_novlys; i++)
3290 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3291 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3292 cache_ovly_table[i][SIZE] == size */ )
3293 { /* obj_section matches i'th entry in ovly_table */
3294 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3295 break; /* finished with inner for loop: break out */
3296 }
3297 }
3298 }
3299
3300
3301 void
3302 _initialize_symfile ()
3303 {
3304 struct cmd_list_element *c;
3305
3306 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3307 "Load symbol table from executable file FILE.\n\
3308 The `file' command can also load symbol tables, as well as setting the file\n\
3309 to execute.", &cmdlist);
3310 c->completer = filename_completer;
3311
3312 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3313 "Usage: add-symbol-file FILE ADDR [DATA_ADDR [BSS_ADDR]]\n\
3314 or: add-symbol-file FILE -T<SECT> <SECT_ADDR> -T<SECT> <SECT_ADDR> ...\n\
3315 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3316 ADDR is the starting address of the file's text.\n\
3317 The optional arguments, DATA_ADDR and BSS_ADDR, should be specified\n\
3318 if the data and bss segments are not contiguous with the text.\n\
3319 For complicated cases, SECT is a section name to be loaded at SECT_ADDR.",
3320 &cmdlist);
3321 c->completer = filename_completer;
3322
3323 c = add_cmd ("add-shared-symbol-files", class_files,
3324 add_shared_symbol_files_command,
3325 "Load the symbols from shared objects in the dynamic linker's link map.",
3326 &cmdlist);
3327 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3328 &cmdlist);
3329
3330 c = add_cmd ("load", class_files, load_command,
3331 "Dynamically load FILE into the running program, and record its symbols\n\
3332 for access from GDB.", &cmdlist);
3333 c->completer = filename_completer;
3334
3335 add_show_from_set
3336 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3337 (char *) &symbol_reloading,
3338 "Set dynamic symbol table reloading multiple times in one run.",
3339 &setlist),
3340 &showlist);
3341
3342 add_prefix_cmd ("overlay", class_support, overlay_command,
3343 "Commands for debugging overlays.", &overlaylist,
3344 "overlay ", 0, &cmdlist);
3345
3346 add_com_alias ("ovly", "overlay", class_alias, 1);
3347 add_com_alias ("ov", "overlay", class_alias, 1);
3348
3349 add_cmd ("map-overlay", class_support, map_overlay_command,
3350 "Assert that an overlay section is mapped.", &overlaylist);
3351
3352 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3353 "Assert that an overlay section is unmapped.", &overlaylist);
3354
3355 add_cmd ("list-overlays", class_support, list_overlays_command,
3356 "List mappings of overlay sections.", &overlaylist);
3357
3358 add_cmd ("manual", class_support, overlay_manual_command,
3359 "Enable overlay debugging.", &overlaylist);
3360 add_cmd ("off", class_support, overlay_off_command,
3361 "Disable overlay debugging.", &overlaylist);
3362 add_cmd ("auto", class_support, overlay_auto_command,
3363 "Enable automatic overlay debugging.", &overlaylist);
3364 add_cmd ("load-target", class_support, overlay_load_command,
3365 "Read the overlay mapping state from the target.", &overlaylist);
3366
3367 /* Filename extension to source language lookup table: */
3368 init_filename_language_table ();
3369 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3370 (char *) &ext_args,
3371 "Set mapping between filename extension and source language.\n\
3372 Usage: set extension-language .foo bar",
3373 &setlist);
3374 c->function.cfunc = set_ext_lang_command;
3375
3376 add_info ("extensions", info_ext_lang_command,
3377 "All filename extensions associated with a source language.");
3378
3379 add_show_from_set
3380 (add_set_cmd ("download-write-size", class_obscure,
3381 var_integer, (char *) &download_write_size,
3382 "Set the write size used when downloading a program.\n"
3383 "Only used when downloading a program onto a remote\n"
3384 "target. Specify zero, or a negative value, to disable\n"
3385 "blocked writes. The actual size of each transfer is also\n"
3386 "limited by the size of the target packet and the memory\n"
3387 "cache.\n",
3388 &setlist),
3389 &showlist);
3390 }
This page took 0.113879 seconds and 5 git commands to generate.