* symfile.c (alloc_section_addr_info): Update header. Don't set
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 }
164
165 /* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
167 struct cleanup *
168 increment_reading_symtab (void)
169 {
170 ++currently_reading_symtab;
171 return make_cleanup (decrement_reading_symtab, NULL);
172 }
173
174 /* Remember the lowest-addressed loadable section we've seen.
175 This function is called via bfd_map_over_sections.
176
177 In case of equal vmas, the section with the largest size becomes the
178 lowest-addressed loadable section.
179
180 If the vmas and sizes are equal, the last section is considered the
181 lowest-addressed loadable section. */
182
183 void
184 find_lowest_section (bfd *abfd, asection *sect, void *obj)
185 {
186 asection **lowest = (asection **) obj;
187
188 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
189 return;
190 if (!*lowest)
191 *lowest = sect; /* First loadable section */
192 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
193 *lowest = sect; /* A lower loadable section */
194 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
195 && (bfd_section_size (abfd, (*lowest))
196 <= bfd_section_size (abfd, sect)))
197 *lowest = sect;
198 }
199
200 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
201 new object's 'num_sections' field is set to 0; it must be updated
202 by the caller. */
203
204 struct section_addr_info *
205 alloc_section_addr_info (size_t num_sections)
206 {
207 struct section_addr_info *sap;
208 size_t size;
209
210 size = (sizeof (struct section_addr_info)
211 + sizeof (struct other_sections) * (num_sections - 1));
212 sap = (struct section_addr_info *) xmalloc (size);
213 memset (sap, 0, size);
214
215 return sap;
216 }
217
218 /* Build (allocate and populate) a section_addr_info struct from
219 an existing section table. */
220
221 extern struct section_addr_info *
222 build_section_addr_info_from_section_table (const struct target_section *start,
223 const struct target_section *end)
224 {
225 struct section_addr_info *sap;
226 const struct target_section *stp;
227 int oidx;
228
229 sap = alloc_section_addr_info (end - start);
230
231 for (stp = start, oidx = 0; stp != end; stp++)
232 {
233 if (bfd_get_section_flags (stp->bfd,
234 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
235 && oidx < end - start)
236 {
237 sap->other[oidx].addr = stp->addr;
238 sap->other[oidx].name
239 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
240 sap->other[oidx].sectindex = stp->the_bfd_section->index;
241 oidx++;
242 }
243 }
244
245 sap->num_sections = oidx;
246
247 return sap;
248 }
249
250 /* Create a section_addr_info from section offsets in ABFD. */
251
252 static struct section_addr_info *
253 build_section_addr_info_from_bfd (bfd *abfd)
254 {
255 struct section_addr_info *sap;
256 int i;
257 struct bfd_section *sec;
258
259 sap = alloc_section_addr_info (bfd_count_sections (abfd));
260 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
261 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
262 {
263 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
264 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
265 sap->other[i].sectindex = sec->index;
266 i++;
267 }
268
269 sap->num_sections = i;
270
271 return sap;
272 }
273
274 /* Create a section_addr_info from section offsets in OBJFILE. */
275
276 struct section_addr_info *
277 build_section_addr_info_from_objfile (const struct objfile *objfile)
278 {
279 struct section_addr_info *sap;
280 int i;
281
282 /* Before reread_symbols gets rewritten it is not safe to call:
283 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
284 */
285 sap = build_section_addr_info_from_bfd (objfile->obfd);
286 for (i = 0; i < sap->num_sections; i++)
287 {
288 int sectindex = sap->other[i].sectindex;
289
290 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
291 }
292 return sap;
293 }
294
295 /* Free all memory allocated by build_section_addr_info_from_section_table. */
296
297 extern void
298 free_section_addr_info (struct section_addr_info *sap)
299 {
300 int idx;
301
302 for (idx = 0; idx < sap->num_sections; idx++)
303 xfree (sap->other[idx].name);
304 xfree (sap);
305 }
306
307
308 /* Initialize OBJFILE's sect_index_* members. */
309 static void
310 init_objfile_sect_indices (struct objfile *objfile)
311 {
312 asection *sect;
313 int i;
314
315 sect = bfd_get_section_by_name (objfile->obfd, ".text");
316 if (sect)
317 objfile->sect_index_text = sect->index;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".data");
320 if (sect)
321 objfile->sect_index_data = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
324 if (sect)
325 objfile->sect_index_bss = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
328 if (sect)
329 objfile->sect_index_rodata = sect->index;
330
331 /* This is where things get really weird... We MUST have valid
332 indices for the various sect_index_* members or gdb will abort.
333 So if for example, there is no ".text" section, we have to
334 accomodate that. First, check for a file with the standard
335 one or two segments. */
336
337 symfile_find_segment_sections (objfile);
338
339 /* Except when explicitly adding symbol files at some address,
340 section_offsets contains nothing but zeros, so it doesn't matter
341 which slot in section_offsets the individual sect_index_* members
342 index into. So if they are all zero, it is safe to just point
343 all the currently uninitialized indices to the first slot. But
344 beware: if this is the main executable, it may be relocated
345 later, e.g. by the remote qOffsets packet, and then this will
346 be wrong! That's why we try segments first. */
347
348 for (i = 0; i < objfile->num_sections; i++)
349 {
350 if (ANOFFSET (objfile->section_offsets, i) != 0)
351 {
352 break;
353 }
354 }
355 if (i == objfile->num_sections)
356 {
357 if (objfile->sect_index_text == -1)
358 objfile->sect_index_text = 0;
359 if (objfile->sect_index_data == -1)
360 objfile->sect_index_data = 0;
361 if (objfile->sect_index_bss == -1)
362 objfile->sect_index_bss = 0;
363 if (objfile->sect_index_rodata == -1)
364 objfile->sect_index_rodata = 0;
365 }
366 }
367
368 /* The arguments to place_section. */
369
370 struct place_section_arg
371 {
372 struct section_offsets *offsets;
373 CORE_ADDR lowest;
374 };
375
376 /* Find a unique offset to use for loadable section SECT if
377 the user did not provide an offset. */
378
379 static void
380 place_section (bfd *abfd, asection *sect, void *obj)
381 {
382 struct place_section_arg *arg = obj;
383 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
384 int done;
385 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
386
387 /* We are only interested in allocated sections. */
388 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
389 return;
390
391 /* If the user specified an offset, honor it. */
392 if (offsets[sect->index] != 0)
393 return;
394
395 /* Otherwise, let's try to find a place for the section. */
396 start_addr = (arg->lowest + align - 1) & -align;
397
398 do {
399 asection *cur_sec;
400
401 done = 1;
402
403 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
404 {
405 int indx = cur_sec->index;
406
407 /* We don't need to compare against ourself. */
408 if (cur_sec == sect)
409 continue;
410
411 /* We can only conflict with allocated sections. */
412 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
413 continue;
414
415 /* If the section offset is 0, either the section has not been placed
416 yet, or it was the lowest section placed (in which case LOWEST
417 will be past its end). */
418 if (offsets[indx] == 0)
419 continue;
420
421 /* If this section would overlap us, then we must move up. */
422 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
423 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
424 {
425 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
426 start_addr = (start_addr + align - 1) & -align;
427 done = 0;
428 break;
429 }
430
431 /* Otherwise, we appear to be OK. So far. */
432 }
433 }
434 while (!done);
435
436 offsets[sect->index] = start_addr;
437 arg->lowest = start_addr + bfd_get_section_size (sect);
438 }
439
440 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
441 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
442 entries. */
443
444 void
445 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
446 int num_sections,
447 struct section_addr_info *addrs)
448 {
449 int i;
450
451 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
452
453 /* Now calculate offsets for section that were specified by the caller. */
454 for (i = 0; i < addrs->num_sections; i++)
455 {
456 struct other_sections *osp;
457
458 osp = &addrs->other[i];
459 if (osp->sectindex == -1)
460 continue;
461
462 /* Record all sections in offsets. */
463 /* The section_offsets in the objfile are here filled in using
464 the BFD index. */
465 section_offsets->offsets[osp->sectindex] = osp->addr;
466 }
467 }
468
469 /* Transform section name S for a name comparison. prelink can split section
470 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
471 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
472 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
473 (`.sbss') section has invalid (increased) virtual address. */
474
475 static const char *
476 addr_section_name (const char *s)
477 {
478 if (strcmp (s, ".dynbss") == 0)
479 return ".bss";
480 if (strcmp (s, ".sdynbss") == 0)
481 return ".sbss";
482
483 return s;
484 }
485
486 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
487 their (name, sectindex) pair. sectindex makes the sort by name stable. */
488
489 static int
490 addrs_section_compar (const void *ap, const void *bp)
491 {
492 const struct other_sections *a = *((struct other_sections **) ap);
493 const struct other_sections *b = *((struct other_sections **) bp);
494 int retval;
495
496 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
497 if (retval)
498 return retval;
499
500 return a->sectindex - b->sectindex;
501 }
502
503 /* Provide sorted array of pointers to sections of ADDRS. The array is
504 terminated by NULL. Caller is responsible to call xfree for it. */
505
506 static struct other_sections **
507 addrs_section_sort (struct section_addr_info *addrs)
508 {
509 struct other_sections **array;
510 int i;
511
512 /* `+ 1' for the NULL terminator. */
513 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
514 for (i = 0; i < addrs->num_sections; i++)
515 array[i] = &addrs->other[i];
516 array[i] = NULL;
517
518 qsort (array, i, sizeof (*array), addrs_section_compar);
519
520 return array;
521 }
522
523 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
524 also SECTINDEXes specific to ABFD there. This function can be used to
525 rebase ADDRS to start referencing different BFD than before. */
526
527 void
528 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
529 {
530 asection *lower_sect;
531 CORE_ADDR lower_offset;
532 int i;
533 struct cleanup *my_cleanup;
534 struct section_addr_info *abfd_addrs;
535 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
536 struct other_sections **addrs_to_abfd_addrs;
537
538 /* Find lowest loadable section to be used as starting point for
539 continguous sections. */
540 lower_sect = NULL;
541 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
542 if (lower_sect == NULL)
543 {
544 warning (_("no loadable sections found in added symbol-file %s"),
545 bfd_get_filename (abfd));
546 lower_offset = 0;
547 }
548 else
549 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
550
551 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
552 in ABFD. Section names are not unique - there can be multiple sections of
553 the same name. Also the sections of the same name do not have to be
554 adjacent to each other. Some sections may be present only in one of the
555 files. Even sections present in both files do not have to be in the same
556 order.
557
558 Use stable sort by name for the sections in both files. Then linearly
559 scan both lists matching as most of the entries as possible. */
560
561 addrs_sorted = addrs_section_sort (addrs);
562 my_cleanup = make_cleanup (xfree, addrs_sorted);
563
564 abfd_addrs = build_section_addr_info_from_bfd (abfd);
565 make_cleanup_free_section_addr_info (abfd_addrs);
566 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
567 make_cleanup (xfree, abfd_addrs_sorted);
568
569 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
570 ABFD_ADDRS_SORTED. */
571
572 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
573 * addrs->num_sections);
574 make_cleanup (xfree, addrs_to_abfd_addrs);
575
576 while (*addrs_sorted)
577 {
578 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
579
580 while (*abfd_addrs_sorted
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
582 sect_name) < 0)
583 abfd_addrs_sorted++;
584
585 if (*abfd_addrs_sorted
586 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
587 sect_name) == 0)
588 {
589 int index_in_addrs;
590
591 /* Make the found item directly addressable from ADDRS. */
592 index_in_addrs = *addrs_sorted - addrs->other;
593 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
594 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
595
596 /* Never use the same ABFD entry twice. */
597 abfd_addrs_sorted++;
598 }
599
600 addrs_sorted++;
601 }
602
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
606
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
613 for (i = 0; i < addrs->num_sections; i++)
614 {
615 struct other_sections *sect = addrs_to_abfd_addrs[i];
616
617 if (sect)
618 {
619 /* This is the index used by BFD. */
620 addrs->other[i].sectindex = sect->sectindex;
621
622 if (addrs->other[i].addr != 0)
623 {
624 addrs->other[i].addr -= sect->addr;
625 lower_offset = addrs->other[i].addr;
626 }
627 else
628 addrs->other[i].addr = lower_offset;
629 }
630 else
631 {
632 /* addr_section_name transformation is not used for SECT_NAME. */
633 const char *sect_name = addrs->other[i].name;
634
635 /* This section does not exist in ABFD, which is normally
636 unexpected and we want to issue a warning.
637
638 However, the ELF prelinker does create a few sections which are
639 marked in the main executable as loadable (they are loaded in
640 memory from the DYNAMIC segment) and yet are not present in
641 separate debug info files. This is fine, and should not cause
642 a warning. Shared libraries contain just the section
643 ".gnu.liblist" but it is not marked as loadable there. There is
644 no other way to identify them than by their name as the sections
645 created by prelink have no special flags.
646
647 For the sections `.bss' and `.sbss' see addr_section_name. */
648
649 if (!(strcmp (sect_name, ".gnu.liblist") == 0
650 || strcmp (sect_name, ".gnu.conflict") == 0
651 || (strcmp (sect_name, ".bss") == 0
652 && i > 0
653 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
654 && addrs_to_abfd_addrs[i - 1] != NULL)
655 || (strcmp (sect_name, ".sbss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)))
659 warning (_("section %s not found in %s"), sect_name,
660 bfd_get_filename (abfd));
661
662 addrs->other[i].addr = 0;
663 addrs->other[i].sectindex = -1;
664 }
665 }
666
667 do_cleanups (my_cleanup);
668 }
669
670 /* Parse the user's idea of an offset for dynamic linking, into our idea
671 of how to represent it for fast symbol reading. This is the default
672 version of the sym_fns.sym_offsets function for symbol readers that
673 don't need to do anything special. It allocates a section_offsets table
674 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
675
676 void
677 default_symfile_offsets (struct objfile *objfile,
678 struct section_addr_info *addrs)
679 {
680 objfile->num_sections = bfd_count_sections (objfile->obfd);
681 objfile->section_offsets = (struct section_offsets *)
682 obstack_alloc (&objfile->objfile_obstack,
683 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
684 relative_addr_info_to_section_offsets (objfile->section_offsets,
685 objfile->num_sections, addrs);
686
687 /* For relocatable files, all loadable sections will start at zero.
688 The zero is meaningless, so try to pick arbitrary addresses such
689 that no loadable sections overlap. This algorithm is quadratic,
690 but the number of sections in a single object file is generally
691 small. */
692 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
693 {
694 struct place_section_arg arg;
695 bfd *abfd = objfile->obfd;
696 asection *cur_sec;
697
698 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
699 /* We do not expect this to happen; just skip this step if the
700 relocatable file has a section with an assigned VMA. */
701 if (bfd_section_vma (abfd, cur_sec) != 0)
702 break;
703
704 if (cur_sec == NULL)
705 {
706 CORE_ADDR *offsets = objfile->section_offsets->offsets;
707
708 /* Pick non-overlapping offsets for sections the user did not
709 place explicitly. */
710 arg.offsets = objfile->section_offsets;
711 arg.lowest = 0;
712 bfd_map_over_sections (objfile->obfd, place_section, &arg);
713
714 /* Correctly filling in the section offsets is not quite
715 enough. Relocatable files have two properties that
716 (most) shared objects do not:
717
718 - Their debug information will contain relocations. Some
719 shared libraries do also, but many do not, so this can not
720 be assumed.
721
722 - If there are multiple code sections they will be loaded
723 at different relative addresses in memory than they are
724 in the objfile, since all sections in the file will start
725 at address zero.
726
727 Because GDB has very limited ability to map from an
728 address in debug info to the correct code section,
729 it relies on adding SECT_OFF_TEXT to things which might be
730 code. If we clear all the section offsets, and set the
731 section VMAs instead, then symfile_relocate_debug_section
732 will return meaningful debug information pointing at the
733 correct sections.
734
735 GDB has too many different data structures for section
736 addresses - a bfd, objfile, and so_list all have section
737 tables, as does exec_ops. Some of these could probably
738 be eliminated. */
739
740 for (cur_sec = abfd->sections; cur_sec != NULL;
741 cur_sec = cur_sec->next)
742 {
743 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
744 continue;
745
746 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
747 exec_set_section_address (bfd_get_filename (abfd),
748 cur_sec->index,
749 offsets[cur_sec->index]);
750 offsets[cur_sec->index] = 0;
751 }
752 }
753 }
754
755 /* Remember the bfd indexes for the .text, .data, .bss and
756 .rodata sections. */
757 init_objfile_sect_indices (objfile);
758 }
759
760
761 /* Divide the file into segments, which are individual relocatable units.
762 This is the default version of the sym_fns.sym_segments function for
763 symbol readers that do not have an explicit representation of segments.
764 It assumes that object files do not have segments, and fully linked
765 files have a single segment. */
766
767 struct symfile_segment_data *
768 default_symfile_segments (bfd *abfd)
769 {
770 int num_sections, i;
771 asection *sect;
772 struct symfile_segment_data *data;
773 CORE_ADDR low, high;
774
775 /* Relocatable files contain enough information to position each
776 loadable section independently; they should not be relocated
777 in segments. */
778 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
779 return NULL;
780
781 /* Make sure there is at least one loadable section in the file. */
782 for (sect = abfd->sections; sect != NULL; sect = sect->next)
783 {
784 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
785 continue;
786
787 break;
788 }
789 if (sect == NULL)
790 return NULL;
791
792 low = bfd_get_section_vma (abfd, sect);
793 high = low + bfd_get_section_size (sect);
794
795 data = XZALLOC (struct symfile_segment_data);
796 data->num_segments = 1;
797 data->segment_bases = XCALLOC (1, CORE_ADDR);
798 data->segment_sizes = XCALLOC (1, CORE_ADDR);
799
800 num_sections = bfd_count_sections (abfd);
801 data->segment_info = XCALLOC (num_sections, int);
802
803 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
804 {
805 CORE_ADDR vma;
806
807 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
808 continue;
809
810 vma = bfd_get_section_vma (abfd, sect);
811 if (vma < low)
812 low = vma;
813 if (vma + bfd_get_section_size (sect) > high)
814 high = vma + bfd_get_section_size (sect);
815
816 data->segment_info[i] = 1;
817 }
818
819 data->segment_bases[0] = low;
820 data->segment_sizes[0] = high - low;
821
822 return data;
823 }
824
825 /* This is a convenience function to call sym_read for OBJFILE and
826 possibly force the partial symbols to be read. */
827
828 static void
829 read_symbols (struct objfile *objfile, int add_flags)
830 {
831 (*objfile->sf->sym_read) (objfile, add_flags);
832
833 /* find_separate_debug_file_in_section should be called only if there is
834 single binary with no existing separate debug info file. */
835 if (!objfile_has_partial_symbols (objfile)
836 && objfile->separate_debug_objfile == NULL
837 && objfile->separate_debug_objfile_backlink == NULL)
838 {
839 bfd *abfd = find_separate_debug_file_in_section (objfile);
840 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
841
842 if (abfd != NULL)
843 symbol_file_add_separate (abfd, add_flags, objfile);
844
845 do_cleanups (cleanup);
846 }
847 if ((add_flags & SYMFILE_NO_READ) == 0)
848 require_partial_symbols (objfile, 0);
849 }
850
851 /* Initialize entry point information for this objfile. */
852
853 static void
854 init_entry_point_info (struct objfile *objfile)
855 {
856 /* Save startup file's range of PC addresses to help blockframe.c
857 decide where the bottom of the stack is. */
858
859 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
860 {
861 /* Executable file -- record its entry point so we'll recognize
862 the startup file because it contains the entry point. */
863 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
864 objfile->ei.entry_point_p = 1;
865 }
866 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
867 && bfd_get_start_address (objfile->obfd) != 0)
868 {
869 /* Some shared libraries may have entry points set and be
870 runnable. There's no clear way to indicate this, so just check
871 for values other than zero. */
872 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
873 objfile->ei.entry_point_p = 1;
874 }
875 else
876 {
877 /* Examination of non-executable.o files. Short-circuit this stuff. */
878 objfile->ei.entry_point_p = 0;
879 }
880
881 if (objfile->ei.entry_point_p)
882 {
883 CORE_ADDR entry_point = objfile->ei.entry_point;
884
885 /* Make certain that the address points at real code, and not a
886 function descriptor. */
887 entry_point
888 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
889 entry_point,
890 &current_target);
891
892 /* Remove any ISA markers, so that this matches entries in the
893 symbol table. */
894 objfile->ei.entry_point
895 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
896 }
897 }
898
899 /* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
902 This function does not set the OBJFILE's entry-point info.
903
904 OBJFILE is where the symbols are to be read from.
905
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 If ADDRS is non-zero, OFFSETS must be zero.
916
917 OFFSETS is a table of section offsets already in the right
918 format-specific representation. NUM_OFFSETS is the number of
919 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
920 assume this is the proper table the call to sym_offsets described
921 above would produce. Instead of calling sym_offsets, we just dump
922 it right into objfile->section_offsets. (When we're re-reading
923 symbols from an objfile, we don't have the original load address
924 list any more; all we have is the section offset table.) If
925 OFFSETS is non-zero, ADDRS must be zero.
926
927 ADD_FLAGS encodes verbosity level, whether this is main symbol or
928 an extra symbol file such as dynamically loaded code, and wether
929 breakpoint reset should be deferred. */
930
931 static void
932 syms_from_objfile_1 (struct objfile *objfile,
933 struct section_addr_info *addrs,
934 struct section_offsets *offsets,
935 int num_offsets,
936 int add_flags)
937 {
938 struct section_addr_info *local_addr = NULL;
939 struct cleanup *old_chain;
940 const int mainline = add_flags & SYMFILE_MAINLINE;
941
942 gdb_assert (! (addrs && offsets));
943
944 objfile->sf = find_sym_fns (objfile->obfd);
945
946 if (objfile->sf == NULL)
947 {
948 /* No symbols to load, but we still need to make sure
949 that the section_offsets table is allocated. */
950 int num_sections = bfd_count_sections (objfile->obfd);
951 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
952
953 objfile->num_sections = num_sections;
954 objfile->section_offsets
955 = obstack_alloc (&objfile->objfile_obstack, size);
956 memset (objfile->section_offsets, 0, size);
957 return;
958 }
959
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
962 old_chain = make_cleanup_free_objfile (objfile);
963
964 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
965 list. We now establish the convention that an addr of zero means
966 no load address was specified. */
967 if (! addrs && ! offsets)
968 {
969 local_addr
970 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
977 if (mainline)
978 {
979 /* We will modify the main symbol table, make sure that all its users
980 will be cleaned up if an error occurs during symbol reading. */
981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
988 gdb_assert (symfile_objfile == NULL);
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
995
996 (*objfile->sf->sym_new_init) (objfile);
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
1001 and assume that <addr> is where that got loaded.
1002
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
1005 if (addrs && addrs->num_sections > 0)
1006 addr_info_make_relative (addrs, objfile->obfd);
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
1010 initial symbol reading for this file. */
1011
1012 (*objfile->sf->sym_init) (objfile);
1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1014
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
1025 obstack_alloc (&objfile->objfile_obstack, size));
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
1030
1031 read_symbols (objfile, add_flags);
1032
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
1036 xfree (local_addr);
1037 }
1038
1039 /* Same as syms_from_objfile_1, but also initializes the objfile
1040 entry-point info. */
1041
1042 void
1043 syms_from_objfile (struct objfile *objfile,
1044 struct section_addr_info *addrs,
1045 struct section_offsets *offsets,
1046 int num_offsets,
1047 int add_flags)
1048 {
1049 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1050 init_entry_point_info (objfile);
1051 }
1052
1053 /* Perform required actions after either reading in the initial
1054 symbols for a new objfile, or mapping in the symbols from a reusable
1055 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1056
1057 void
1058 new_symfile_objfile (struct objfile *objfile, int add_flags)
1059 {
1060 /* If this is the main symbol file we have to clean up all users of the
1061 old main symbol file. Otherwise it is sufficient to fixup all the
1062 breakpoints that may have been redefined by this symbol file. */
1063 if (add_flags & SYMFILE_MAINLINE)
1064 {
1065 /* OK, make it the "real" symbol file. */
1066 symfile_objfile = objfile;
1067
1068 clear_symtab_users (add_flags);
1069 }
1070 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1071 {
1072 breakpoint_re_set ();
1073 }
1074
1075 /* We're done reading the symbol file; finish off complaints. */
1076 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1077 }
1078
1079 /* Process a symbol file, as either the main file or as a dynamically
1080 loaded file.
1081
1082 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1083 A new reference is acquired by this function.
1084
1085 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1086 extra, such as dynamically loaded code, and what to do with breakpoins.
1087
1088 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1089 syms_from_objfile, above.
1090 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1091
1092 PARENT is the original objfile if ABFD is a separate debug info file.
1093 Otherwise PARENT is NULL.
1094
1095 Upon success, returns a pointer to the objfile that was added.
1096 Upon failure, jumps back to command level (never returns). */
1097
1098 static struct objfile *
1099 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1100 int add_flags,
1101 struct section_addr_info *addrs,
1102 struct section_offsets *offsets,
1103 int num_offsets,
1104 int flags, struct objfile *parent)
1105 {
1106 struct objfile *objfile;
1107 const char *name = bfd_get_filename (abfd);
1108 const int from_tty = add_flags & SYMFILE_VERBOSE;
1109 const int mainline = add_flags & SYMFILE_MAINLINE;
1110 const int should_print = ((from_tty || info_verbose)
1111 && (readnow_symbol_files
1112 || (add_flags & SYMFILE_NO_READ) == 0));
1113
1114 if (readnow_symbol_files)
1115 {
1116 flags |= OBJF_READNOW;
1117 add_flags &= ~SYMFILE_NO_READ;
1118 }
1119
1120 /* Give user a chance to burp if we'd be
1121 interactively wiping out any existing symbols. */
1122
1123 if ((have_full_symbols () || have_partial_symbols ())
1124 && mainline
1125 && from_tty
1126 && !query (_("Load new symbol table from \"%s\"? "), name))
1127 error (_("Not confirmed."));
1128
1129 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1130
1131 if (parent)
1132 add_separate_debug_objfile (objfile, parent);
1133
1134 /* We either created a new mapped symbol table, mapped an existing
1135 symbol table file which has not had initial symbol reading
1136 performed, or need to read an unmapped symbol table. */
1137 if (should_print)
1138 {
1139 if (deprecated_pre_add_symbol_hook)
1140 deprecated_pre_add_symbol_hook (name);
1141 else
1142 {
1143 printf_unfiltered (_("Reading symbols from %s..."), name);
1144 wrap_here ("");
1145 gdb_flush (gdb_stdout);
1146 }
1147 }
1148 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1149 add_flags);
1150
1151 /* We now have at least a partial symbol table. Check to see if the
1152 user requested that all symbols be read on initial access via either
1153 the gdb startup command line or on a per symbol file basis. Expand
1154 all partial symbol tables for this objfile if so. */
1155
1156 if ((flags & OBJF_READNOW))
1157 {
1158 if (should_print)
1159 {
1160 printf_unfiltered (_("expanding to full symbols..."));
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164
1165 if (objfile->sf)
1166 objfile->sf->qf->expand_all_symtabs (objfile);
1167 }
1168
1169 if (should_print && !objfile_has_symbols (objfile))
1170 {
1171 wrap_here ("");
1172 printf_unfiltered (_("(no debugging symbols found)..."));
1173 wrap_here ("");
1174 }
1175
1176 if (should_print)
1177 {
1178 if (deprecated_post_add_symbol_hook)
1179 deprecated_post_add_symbol_hook ();
1180 else
1181 printf_unfiltered (_("done.\n"));
1182 }
1183
1184 /* We print some messages regardless of whether 'from_tty ||
1185 info_verbose' is true, so make sure they go out at the right
1186 time. */
1187 gdb_flush (gdb_stdout);
1188
1189 if (objfile->sf == NULL)
1190 {
1191 observer_notify_new_objfile (objfile);
1192 return objfile; /* No symbols. */
1193 }
1194
1195 new_symfile_objfile (objfile, add_flags);
1196
1197 observer_notify_new_objfile (objfile);
1198
1199 bfd_cache_close_all ();
1200 return (objfile);
1201 }
1202
1203 /* Add BFD as a separate debug file for OBJFILE. */
1204
1205 void
1206 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1207 {
1208 struct objfile *new_objfile;
1209 struct section_addr_info *sap;
1210 struct cleanup *my_cleanup;
1211
1212 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1213 because sections of BFD may not match sections of OBJFILE and because
1214 vma may have been modified by tools such as prelink. */
1215 sap = build_section_addr_info_from_objfile (objfile);
1216 my_cleanup = make_cleanup_free_section_addr_info (sap);
1217
1218 new_objfile = symbol_file_add_with_addrs_or_offsets
1219 (bfd, symfile_flags,
1220 sap, NULL, 0,
1221 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1222 | OBJF_USERLOADED),
1223 objfile);
1224
1225 do_cleanups (my_cleanup);
1226 }
1227
1228 /* Process the symbol file ABFD, as either the main file or as a
1229 dynamically loaded file.
1230
1231 See symbol_file_add_with_addrs_or_offsets's comments for
1232 details. */
1233 struct objfile *
1234 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1235 struct section_addr_info *addrs,
1236 int flags, struct objfile *parent)
1237 {
1238 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1239 flags, parent);
1240 }
1241
1242
1243 /* Process a symbol file, as either the main file or as a dynamically
1244 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1245 for details. */
1246 struct objfile *
1247 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1248 int flags)
1249 {
1250 bfd *bfd = symfile_bfd_open (name);
1251 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1252 struct objfile *objf;
1253
1254 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1255 do_cleanups (cleanup);
1256 return objf;
1257 }
1258
1259
1260 /* Call symbol_file_add() with default values and update whatever is
1261 affected by the loading of a new main().
1262 Used when the file is supplied in the gdb command line
1263 and by some targets with special loading requirements.
1264 The auxiliary function, symbol_file_add_main_1(), has the flags
1265 argument for the switches that can only be specified in the symbol_file
1266 command itself. */
1267
1268 void
1269 symbol_file_add_main (char *args, int from_tty)
1270 {
1271 symbol_file_add_main_1 (args, from_tty, 0);
1272 }
1273
1274 static void
1275 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1276 {
1277 const int add_flags = (current_inferior ()->symfile_flags
1278 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1279
1280 symbol_file_add (args, add_flags, NULL, flags);
1281
1282 /* Getting new symbols may change our opinion about
1283 what is frameless. */
1284 reinit_frame_cache ();
1285
1286 if ((flags & SYMFILE_NO_READ) == 0)
1287 set_initial_language ();
1288 }
1289
1290 void
1291 symbol_file_clear (int from_tty)
1292 {
1293 if ((have_full_symbols () || have_partial_symbols ())
1294 && from_tty
1295 && (symfile_objfile
1296 ? !query (_("Discard symbol table from `%s'? "),
1297 symfile_objfile->name)
1298 : !query (_("Discard symbol table? "))))
1299 error (_("Not confirmed."));
1300
1301 /* solib descriptors may have handles to objfiles. Wipe them before their
1302 objfiles get stale by free_all_objfiles. */
1303 no_shared_libraries (NULL, from_tty);
1304
1305 free_all_objfiles ();
1306
1307 gdb_assert (symfile_objfile == NULL);
1308 if (from_tty)
1309 printf_unfiltered (_("No symbol file now.\n"));
1310 }
1311
1312 static int
1313 separate_debug_file_exists (const char *name, unsigned long crc,
1314 struct objfile *parent_objfile)
1315 {
1316 unsigned long file_crc;
1317 int file_crc_p;
1318 bfd *abfd;
1319 struct stat parent_stat, abfd_stat;
1320 int verified_as_different;
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1326 the separate debug infos with the same basename can exist. */
1327
1328 if (filename_cmp (name, parent_objfile->name) == 0)
1329 return 0;
1330
1331 abfd = gdb_bfd_open_maybe_remote (name);
1332
1333 if (!abfd)
1334 return 0;
1335
1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && abfd_stat.st_ino != 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1349 {
1350 if (abfd_stat.st_dev == parent_stat.st_dev
1351 && abfd_stat.st_ino == parent_stat.st_ino)
1352 {
1353 gdb_bfd_unref (abfd);
1354 return 0;
1355 }
1356 verified_as_different = 1;
1357 }
1358 else
1359 verified_as_different = 0;
1360
1361 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1362
1363 gdb_bfd_unref (abfd);
1364
1365 if (!file_crc_p)
1366 return 0;
1367
1368 if (crc != file_crc)
1369 {
1370 unsigned long parent_crc;
1371
1372 /* If one (or both) the files are accessed for example the via "remote:"
1373 gdbserver way it does not support the bfd_stat operation. Verify
1374 whether those two files are not the same manually. */
1375
1376 if (!verified_as_different)
1377 {
1378 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1379 return 0;
1380 }
1381
1382 if (verified_as_different || parent_crc != file_crc)
1383 warning (_("the debug information found in \"%s\""
1384 " does not match \"%s\" (CRC mismatch).\n"),
1385 name, parent_objfile->name);
1386
1387 return 0;
1388 }
1389
1390 return 1;
1391 }
1392
1393 char *debug_file_directory = NULL;
1394 static void
1395 show_debug_file_directory (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c, const char *value)
1397 {
1398 fprintf_filtered (file,
1399 _("The directory where separate debug "
1400 "symbols are searched for is \"%s\".\n"),
1401 value);
1402 }
1403
1404 #if ! defined (DEBUG_SUBDIRECTORY)
1405 #define DEBUG_SUBDIRECTORY ".debug"
1406 #endif
1407
1408 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1409 where the original file resides (may not be the same as
1410 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1411 looking for. Returns the name of the debuginfo, of NULL. */
1412
1413 static char *
1414 find_separate_debug_file (const char *dir,
1415 const char *canon_dir,
1416 const char *debuglink,
1417 unsigned long crc32, struct objfile *objfile)
1418 {
1419 char *debugdir;
1420 char *debugfile;
1421 int i;
1422 VEC (char_ptr) *debugdir_vec;
1423 struct cleanup *back_to;
1424 int ix;
1425
1426 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1427 i = strlen (dir);
1428 if (canon_dir != NULL && strlen (canon_dir) > i)
1429 i = strlen (canon_dir);
1430
1431 debugfile = xmalloc (strlen (debug_file_directory) + 1
1432 + i
1433 + strlen (DEBUG_SUBDIRECTORY)
1434 + strlen ("/")
1435 + strlen (debuglink)
1436 + 1);
1437
1438 /* First try in the same directory as the original file. */
1439 strcpy (debugfile, dir);
1440 strcat (debugfile, debuglink);
1441
1442 if (separate_debug_file_exists (debugfile, crc32, objfile))
1443 return debugfile;
1444
1445 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1446 strcpy (debugfile, dir);
1447 strcat (debugfile, DEBUG_SUBDIRECTORY);
1448 strcat (debugfile, "/");
1449 strcat (debugfile, debuglink);
1450
1451 if (separate_debug_file_exists (debugfile, crc32, objfile))
1452 return debugfile;
1453
1454 /* Then try in the global debugfile directories.
1455
1456 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1457 cause "/..." lookups. */
1458
1459 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1460 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1461
1462 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1463 {
1464 strcpy (debugfile, debugdir);
1465 strcat (debugfile, "/");
1466 strcat (debugfile, dir);
1467 strcat (debugfile, debuglink);
1468
1469 if (separate_debug_file_exists (debugfile, crc32, objfile))
1470 return debugfile;
1471
1472 /* If the file is in the sysroot, try using its base path in the
1473 global debugfile directory. */
1474 if (canon_dir != NULL
1475 && filename_ncmp (canon_dir, gdb_sysroot,
1476 strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1478 {
1479 strcpy (debugfile, debugdir);
1480 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1481 strcat (debugfile, "/");
1482 strcat (debugfile, debuglink);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 return debugfile;
1486 }
1487 }
1488
1489 do_cleanups (back_to);
1490 xfree (debugfile);
1491 return NULL;
1492 }
1493
1494 /* Modify PATH to contain only "directory/" part of PATH.
1495 If there were no directory separators in PATH, PATH will be empty
1496 string on return. */
1497
1498 static void
1499 terminate_after_last_dir_separator (char *path)
1500 {
1501 int i;
1502
1503 /* Strip off the final filename part, leaving the directory name,
1504 followed by a slash. The directory can be relative or absolute. */
1505 for (i = strlen(path) - 1; i >= 0; i--)
1506 if (IS_DIR_SEPARATOR (path[i]))
1507 break;
1508
1509 /* If I is -1 then no directory is present there and DIR will be "". */
1510 path[i + 1] = '\0';
1511 }
1512
1513 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1514 Returns pathname, or NULL. */
1515
1516 char *
1517 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1518 {
1519 char *debuglink;
1520 char *dir, *canon_dir;
1521 char *debugfile;
1522 unsigned long crc32;
1523 struct cleanup *cleanups;
1524
1525 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1526
1527 if (debuglink == NULL)
1528 {
1529 /* There's no separate debug info, hence there's no way we could
1530 load it => no warning. */
1531 return NULL;
1532 }
1533
1534 cleanups = make_cleanup (xfree, debuglink);
1535 dir = xstrdup (objfile->name);
1536 make_cleanup (xfree, dir);
1537 terminate_after_last_dir_separator (dir);
1538 canon_dir = lrealpath (dir);
1539
1540 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1541 crc32, objfile);
1542 xfree (canon_dir);
1543
1544 if (debugfile == NULL)
1545 {
1546 #ifdef HAVE_LSTAT
1547 /* For PR gdb/9538, try again with realpath (if different from the
1548 original). */
1549
1550 struct stat st_buf;
1551
1552 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1553 {
1554 char *symlink_dir;
1555
1556 symlink_dir = lrealpath (objfile->name);
1557 if (symlink_dir != NULL)
1558 {
1559 make_cleanup (xfree, symlink_dir);
1560 terminate_after_last_dir_separator (symlink_dir);
1561 if (strcmp (dir, symlink_dir) != 0)
1562 {
1563 /* Different directory, so try using it. */
1564 debugfile = find_separate_debug_file (symlink_dir,
1565 symlink_dir,
1566 debuglink,
1567 crc32,
1568 objfile);
1569 }
1570 }
1571 }
1572 #endif /* HAVE_LSTAT */
1573 }
1574
1575 do_cleanups (cleanups);
1576 return debugfile;
1577 }
1578
1579
1580 /* This is the symbol-file command. Read the file, analyze its
1581 symbols, and add a struct symtab to a symtab list. The syntax of
1582 the command is rather bizarre:
1583
1584 1. The function buildargv implements various quoting conventions
1585 which are undocumented and have little or nothing in common with
1586 the way things are quoted (or not quoted) elsewhere in GDB.
1587
1588 2. Options are used, which are not generally used in GDB (perhaps
1589 "set mapped on", "set readnow on" would be better)
1590
1591 3. The order of options matters, which is contrary to GNU
1592 conventions (because it is confusing and inconvenient). */
1593
1594 void
1595 symbol_file_command (char *args, int from_tty)
1596 {
1597 dont_repeat ();
1598
1599 if (args == NULL)
1600 {
1601 symbol_file_clear (from_tty);
1602 }
1603 else
1604 {
1605 char **argv = gdb_buildargv (args);
1606 int flags = OBJF_USERLOADED;
1607 struct cleanup *cleanups;
1608 char *name = NULL;
1609
1610 cleanups = make_cleanup_freeargv (argv);
1611 while (*argv != NULL)
1612 {
1613 if (strcmp (*argv, "-readnow") == 0)
1614 flags |= OBJF_READNOW;
1615 else if (**argv == '-')
1616 error (_("unknown option `%s'"), *argv);
1617 else
1618 {
1619 symbol_file_add_main_1 (*argv, from_tty, flags);
1620 name = *argv;
1621 }
1622
1623 argv++;
1624 }
1625
1626 if (name == NULL)
1627 error (_("no symbol file name was specified"));
1628
1629 do_cleanups (cleanups);
1630 }
1631 }
1632
1633 /* Set the initial language.
1634
1635 FIXME: A better solution would be to record the language in the
1636 psymtab when reading partial symbols, and then use it (if known) to
1637 set the language. This would be a win for formats that encode the
1638 language in an easily discoverable place, such as DWARF. For
1639 stabs, we can jump through hoops looking for specially named
1640 symbols or try to intuit the language from the specific type of
1641 stabs we find, but we can't do that until later when we read in
1642 full symbols. */
1643
1644 void
1645 set_initial_language (void)
1646 {
1647 enum language lang = language_unknown;
1648
1649 if (language_of_main != language_unknown)
1650 lang = language_of_main;
1651 else
1652 {
1653 const char *filename;
1654
1655 filename = find_main_filename ();
1656 if (filename != NULL)
1657 lang = deduce_language_from_filename (filename);
1658 }
1659
1660 if (lang == language_unknown)
1661 {
1662 /* Make C the default language */
1663 lang = language_c;
1664 }
1665
1666 set_language (lang);
1667 expected_language = current_language; /* Don't warn the user. */
1668 }
1669
1670 /* If NAME is a remote name open the file using remote protocol, otherwise
1671 open it normally. Returns a new reference to the BFD. On error,
1672 returns NULL with the BFD error set. */
1673
1674 bfd *
1675 gdb_bfd_open_maybe_remote (const char *name)
1676 {
1677 bfd *result;
1678
1679 if (remote_filename_p (name))
1680 result = remote_bfd_open (name, gnutarget);
1681 else
1682 result = gdb_bfd_open (name, gnutarget, -1);
1683
1684 return result;
1685 }
1686
1687
1688 /* Open the file specified by NAME and hand it off to BFD for
1689 preliminary analysis. Return a newly initialized bfd *, which
1690 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1691 absolute). In case of trouble, error() is called. */
1692
1693 bfd *
1694 symfile_bfd_open (char *name)
1695 {
1696 bfd *sym_bfd;
1697 int desc;
1698 char *absolute_name;
1699
1700 if (remote_filename_p (name))
1701 {
1702 sym_bfd = remote_bfd_open (name, gnutarget);
1703 if (!sym_bfd)
1704 error (_("`%s': can't open to read symbols: %s."), name,
1705 bfd_errmsg (bfd_get_error ()));
1706
1707 if (!bfd_check_format (sym_bfd, bfd_object))
1708 {
1709 make_cleanup_bfd_unref (sym_bfd);
1710 error (_("`%s': can't read symbols: %s."), name,
1711 bfd_errmsg (bfd_get_error ()));
1712 }
1713
1714 return sym_bfd;
1715 }
1716
1717 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1718
1719 /* Look down path for it, allocate 2nd new malloc'd copy. */
1720 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1721 O_RDONLY | O_BINARY, &absolute_name);
1722 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1723 if (desc < 0)
1724 {
1725 char *exename = alloca (strlen (name) + 5);
1726
1727 strcat (strcpy (exename, name), ".exe");
1728 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1729 O_RDONLY | O_BINARY, &absolute_name);
1730 }
1731 #endif
1732 if (desc < 0)
1733 {
1734 make_cleanup (xfree, name);
1735 perror_with_name (name);
1736 }
1737
1738 xfree (name);
1739 name = absolute_name;
1740 make_cleanup (xfree, name);
1741
1742 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1743 if (!sym_bfd)
1744 {
1745 make_cleanup (xfree, name);
1746 error (_("`%s': can't open to read symbols: %s."), name,
1747 bfd_errmsg (bfd_get_error ()));
1748 }
1749 bfd_set_cacheable (sym_bfd, 1);
1750
1751 if (!bfd_check_format (sym_bfd, bfd_object))
1752 {
1753 make_cleanup_bfd_unref (sym_bfd);
1754 error (_("`%s': can't read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
1756 }
1757
1758 return sym_bfd;
1759 }
1760
1761 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1762 the section was not found. */
1763
1764 int
1765 get_section_index (struct objfile *objfile, char *section_name)
1766 {
1767 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1768
1769 if (sect)
1770 return sect->index;
1771 else
1772 return -1;
1773 }
1774
1775 /* Link SF into the global symtab_fns list. Called on startup by the
1776 _initialize routine in each object file format reader, to register
1777 information about each format the reader is prepared to handle. */
1778
1779 void
1780 add_symtab_fns (const struct sym_fns *sf)
1781 {
1782 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1783 }
1784
1785 /* Initialize OBJFILE to read symbols from its associated BFD. It
1786 either returns or calls error(). The result is an initialized
1787 struct sym_fns in the objfile structure, that contains cached
1788 information about the symbol file. */
1789
1790 static const struct sym_fns *
1791 find_sym_fns (bfd *abfd)
1792 {
1793 const struct sym_fns *sf;
1794 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1795 int i;
1796
1797 if (our_flavour == bfd_target_srec_flavour
1798 || our_flavour == bfd_target_ihex_flavour
1799 || our_flavour == bfd_target_tekhex_flavour)
1800 return NULL; /* No symbols. */
1801
1802 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1803 if (our_flavour == sf->sym_flavour)
1804 return sf;
1805
1806 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1807 bfd_get_target (abfd));
1808 }
1809 \f
1810
1811 /* This function runs the load command of our current target. */
1812
1813 static void
1814 load_command (char *arg, int from_tty)
1815 {
1816 dont_repeat ();
1817
1818 /* The user might be reloading because the binary has changed. Take
1819 this opportunity to check. */
1820 reopen_exec_file ();
1821 reread_symbols ();
1822
1823 if (arg == NULL)
1824 {
1825 char *parg;
1826 int count = 0;
1827
1828 parg = arg = get_exec_file (1);
1829
1830 /* Count how many \ " ' tab space there are in the name. */
1831 while ((parg = strpbrk (parg, "\\\"'\t ")))
1832 {
1833 parg++;
1834 count++;
1835 }
1836
1837 if (count)
1838 {
1839 /* We need to quote this string so buildargv can pull it apart. */
1840 char *temp = xmalloc (strlen (arg) + count + 1 );
1841 char *ptemp = temp;
1842 char *prev;
1843
1844 make_cleanup (xfree, temp);
1845
1846 prev = parg = arg;
1847 while ((parg = strpbrk (parg, "\\\"'\t ")))
1848 {
1849 strncpy (ptemp, prev, parg - prev);
1850 ptemp += parg - prev;
1851 prev = parg++;
1852 *ptemp++ = '\\';
1853 }
1854 strcpy (ptemp, prev);
1855
1856 arg = temp;
1857 }
1858 }
1859
1860 target_load (arg, from_tty);
1861
1862 /* After re-loading the executable, we don't really know which
1863 overlays are mapped any more. */
1864 overlay_cache_invalid = 1;
1865 }
1866
1867 /* This version of "load" should be usable for any target. Currently
1868 it is just used for remote targets, not inftarg.c or core files,
1869 on the theory that only in that case is it useful.
1870
1871 Avoiding xmodem and the like seems like a win (a) because we don't have
1872 to worry about finding it, and (b) On VMS, fork() is very slow and so
1873 we don't want to run a subprocess. On the other hand, I'm not sure how
1874 performance compares. */
1875
1876 static int validate_download = 0;
1877
1878 /* Callback service function for generic_load (bfd_map_over_sections). */
1879
1880 static void
1881 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1882 {
1883 bfd_size_type *sum = data;
1884
1885 *sum += bfd_get_section_size (asec);
1886 }
1887
1888 /* Opaque data for load_section_callback. */
1889 struct load_section_data {
1890 CORE_ADDR load_offset;
1891 struct load_progress_data *progress_data;
1892 VEC(memory_write_request_s) *requests;
1893 };
1894
1895 /* Opaque data for load_progress. */
1896 struct load_progress_data {
1897 /* Cumulative data. */
1898 unsigned long write_count;
1899 unsigned long data_count;
1900 bfd_size_type total_size;
1901 };
1902
1903 /* Opaque data for load_progress for a single section. */
1904 struct load_progress_section_data {
1905 struct load_progress_data *cumulative;
1906
1907 /* Per-section data. */
1908 const char *section_name;
1909 ULONGEST section_sent;
1910 ULONGEST section_size;
1911 CORE_ADDR lma;
1912 gdb_byte *buffer;
1913 };
1914
1915 /* Target write callback routine for progress reporting. */
1916
1917 static void
1918 load_progress (ULONGEST bytes, void *untyped_arg)
1919 {
1920 struct load_progress_section_data *args = untyped_arg;
1921 struct load_progress_data *totals;
1922
1923 if (args == NULL)
1924 /* Writing padding data. No easy way to get at the cumulative
1925 stats, so just ignore this. */
1926 return;
1927
1928 totals = args->cumulative;
1929
1930 if (bytes == 0 && args->section_sent == 0)
1931 {
1932 /* The write is just starting. Let the user know we've started
1933 this section. */
1934 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1935 args->section_name, hex_string (args->section_size),
1936 paddress (target_gdbarch (), args->lma));
1937 return;
1938 }
1939
1940 if (validate_download)
1941 {
1942 /* Broken memories and broken monitors manifest themselves here
1943 when bring new computers to life. This doubles already slow
1944 downloads. */
1945 /* NOTE: cagney/1999-10-18: A more efficient implementation
1946 might add a verify_memory() method to the target vector and
1947 then use that. remote.c could implement that method using
1948 the ``qCRC'' packet. */
1949 gdb_byte *check = xmalloc (bytes);
1950 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1951
1952 if (target_read_memory (args->lma, check, bytes) != 0)
1953 error (_("Download verify read failed at %s"),
1954 paddress (target_gdbarch (), args->lma));
1955 if (memcmp (args->buffer, check, bytes) != 0)
1956 error (_("Download verify compare failed at %s"),
1957 paddress (target_gdbarch (), args->lma));
1958 do_cleanups (verify_cleanups);
1959 }
1960 totals->data_count += bytes;
1961 args->lma += bytes;
1962 args->buffer += bytes;
1963 totals->write_count += 1;
1964 args->section_sent += bytes;
1965 if (check_quit_flag ()
1966 || (deprecated_ui_load_progress_hook != NULL
1967 && deprecated_ui_load_progress_hook (args->section_name,
1968 args->section_sent)))
1969 error (_("Canceled the download"));
1970
1971 if (deprecated_show_load_progress != NULL)
1972 deprecated_show_load_progress (args->section_name,
1973 args->section_sent,
1974 args->section_size,
1975 totals->data_count,
1976 totals->total_size);
1977 }
1978
1979 /* Callback service function for generic_load (bfd_map_over_sections). */
1980
1981 static void
1982 load_section_callback (bfd *abfd, asection *asec, void *data)
1983 {
1984 struct memory_write_request *new_request;
1985 struct load_section_data *args = data;
1986 struct load_progress_section_data *section_data;
1987 bfd_size_type size = bfd_get_section_size (asec);
1988 gdb_byte *buffer;
1989 const char *sect_name = bfd_get_section_name (abfd, asec);
1990
1991 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1992 return;
1993
1994 if (size == 0)
1995 return;
1996
1997 new_request = VEC_safe_push (memory_write_request_s,
1998 args->requests, NULL);
1999 memset (new_request, 0, sizeof (struct memory_write_request));
2000 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2001 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2002 new_request->end = new_request->begin + size; /* FIXME Should size
2003 be in instead? */
2004 new_request->data = xmalloc (size);
2005 new_request->baton = section_data;
2006
2007 buffer = new_request->data;
2008
2009 section_data->cumulative = args->progress_data;
2010 section_data->section_name = sect_name;
2011 section_data->section_size = size;
2012 section_data->lma = new_request->begin;
2013 section_data->buffer = buffer;
2014
2015 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2016 }
2017
2018 /* Clean up an entire memory request vector, including load
2019 data and progress records. */
2020
2021 static void
2022 clear_memory_write_data (void *arg)
2023 {
2024 VEC(memory_write_request_s) **vec_p = arg;
2025 VEC(memory_write_request_s) *vec = *vec_p;
2026 int i;
2027 struct memory_write_request *mr;
2028
2029 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2030 {
2031 xfree (mr->data);
2032 xfree (mr->baton);
2033 }
2034 VEC_free (memory_write_request_s, vec);
2035 }
2036
2037 void
2038 generic_load (char *args, int from_tty)
2039 {
2040 bfd *loadfile_bfd;
2041 struct timeval start_time, end_time;
2042 char *filename;
2043 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2044 struct load_section_data cbdata;
2045 struct load_progress_data total_progress;
2046 struct ui_out *uiout = current_uiout;
2047
2048 CORE_ADDR entry;
2049 char **argv;
2050
2051 memset (&cbdata, 0, sizeof (cbdata));
2052 memset (&total_progress, 0, sizeof (total_progress));
2053 cbdata.progress_data = &total_progress;
2054
2055 make_cleanup (clear_memory_write_data, &cbdata.requests);
2056
2057 if (args == NULL)
2058 error_no_arg (_("file to load"));
2059
2060 argv = gdb_buildargv (args);
2061 make_cleanup_freeargv (argv);
2062
2063 filename = tilde_expand (argv[0]);
2064 make_cleanup (xfree, filename);
2065
2066 if (argv[1] != NULL)
2067 {
2068 const char *endptr;
2069
2070 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2071
2072 /* If the last word was not a valid number then
2073 treat it as a file name with spaces in. */
2074 if (argv[1] == endptr)
2075 error (_("Invalid download offset:%s."), argv[1]);
2076
2077 if (argv[2] != NULL)
2078 error (_("Too many parameters."));
2079 }
2080
2081 /* Open the file for loading. */
2082 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2083 if (loadfile_bfd == NULL)
2084 {
2085 perror_with_name (filename);
2086 return;
2087 }
2088
2089 make_cleanup_bfd_unref (loadfile_bfd);
2090
2091 if (!bfd_check_format (loadfile_bfd, bfd_object))
2092 {
2093 error (_("\"%s\" is not an object file: %s"), filename,
2094 bfd_errmsg (bfd_get_error ()));
2095 }
2096
2097 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2098 (void *) &total_progress.total_size);
2099
2100 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2101
2102 gettimeofday (&start_time, NULL);
2103
2104 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2105 load_progress) != 0)
2106 error (_("Load failed"));
2107
2108 gettimeofday (&end_time, NULL);
2109
2110 entry = bfd_get_start_address (loadfile_bfd);
2111 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2112 ui_out_text (uiout, "Start address ");
2113 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2114 ui_out_text (uiout, ", load size ");
2115 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2116 ui_out_text (uiout, "\n");
2117 /* We were doing this in remote-mips.c, I suspect it is right
2118 for other targets too. */
2119 regcache_write_pc (get_current_regcache (), entry);
2120
2121 /* Reset breakpoints, now that we have changed the load image. For
2122 instance, breakpoints may have been set (or reset, by
2123 post_create_inferior) while connected to the target but before we
2124 loaded the program. In that case, the prologue analyzer could
2125 have read instructions from the target to find the right
2126 breakpoint locations. Loading has changed the contents of that
2127 memory. */
2128
2129 breakpoint_re_set ();
2130
2131 /* FIXME: are we supposed to call symbol_file_add or not? According
2132 to a comment from remote-mips.c (where a call to symbol_file_add
2133 was commented out), making the call confuses GDB if more than one
2134 file is loaded in. Some targets do (e.g., remote-vx.c) but
2135 others don't (or didn't - perhaps they have all been deleted). */
2136
2137 print_transfer_performance (gdb_stdout, total_progress.data_count,
2138 total_progress.write_count,
2139 &start_time, &end_time);
2140
2141 do_cleanups (old_cleanups);
2142 }
2143
2144 /* Report how fast the transfer went. */
2145
2146 void
2147 print_transfer_performance (struct ui_file *stream,
2148 unsigned long data_count,
2149 unsigned long write_count,
2150 const struct timeval *start_time,
2151 const struct timeval *end_time)
2152 {
2153 ULONGEST time_count;
2154 struct ui_out *uiout = current_uiout;
2155
2156 /* Compute the elapsed time in milliseconds, as a tradeoff between
2157 accuracy and overflow. */
2158 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2159 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2160
2161 ui_out_text (uiout, "Transfer rate: ");
2162 if (time_count > 0)
2163 {
2164 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2165
2166 if (ui_out_is_mi_like_p (uiout))
2167 {
2168 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2169 ui_out_text (uiout, " bits/sec");
2170 }
2171 else if (rate < 1024)
2172 {
2173 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2174 ui_out_text (uiout, " bytes/sec");
2175 }
2176 else
2177 {
2178 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2179 ui_out_text (uiout, " KB/sec");
2180 }
2181 }
2182 else
2183 {
2184 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2185 ui_out_text (uiout, " bits in <1 sec");
2186 }
2187 if (write_count > 0)
2188 {
2189 ui_out_text (uiout, ", ");
2190 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2191 ui_out_text (uiout, " bytes/write");
2192 }
2193 ui_out_text (uiout, ".\n");
2194 }
2195
2196 /* This function allows the addition of incrementally linked object files.
2197 It does not modify any state in the target, only in the debugger. */
2198 /* Note: ezannoni 2000-04-13 This function/command used to have a
2199 special case syntax for the rombug target (Rombug is the boot
2200 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2201 rombug case, the user doesn't need to supply a text address,
2202 instead a call to target_link() (in target.c) would supply the
2203 value to use. We are now discontinuing this type of ad hoc syntax. */
2204
2205 static void
2206 add_symbol_file_command (char *args, int from_tty)
2207 {
2208 struct gdbarch *gdbarch = get_current_arch ();
2209 char *filename = NULL;
2210 int flags = OBJF_USERLOADED;
2211 char *arg;
2212 int section_index = 0;
2213 int argcnt = 0;
2214 int sec_num = 0;
2215 int i;
2216 int expecting_sec_name = 0;
2217 int expecting_sec_addr = 0;
2218 char **argv;
2219
2220 struct sect_opt
2221 {
2222 char *name;
2223 char *value;
2224 };
2225
2226 struct section_addr_info *section_addrs;
2227 struct sect_opt *sect_opts = NULL;
2228 size_t num_sect_opts = 0;
2229 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2230
2231 num_sect_opts = 16;
2232 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2233 * sizeof (struct sect_opt));
2234
2235 dont_repeat ();
2236
2237 if (args == NULL)
2238 error (_("add-symbol-file takes a file name and an address"));
2239
2240 argv = gdb_buildargv (args);
2241 make_cleanup_freeargv (argv);
2242
2243 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2244 {
2245 /* Process the argument. */
2246 if (argcnt == 0)
2247 {
2248 /* The first argument is the file name. */
2249 filename = tilde_expand (arg);
2250 make_cleanup (xfree, filename);
2251 }
2252 else
2253 if (argcnt == 1)
2254 {
2255 /* The second argument is always the text address at which
2256 to load the program. */
2257 sect_opts[section_index].name = ".text";
2258 sect_opts[section_index].value = arg;
2259 if (++section_index >= num_sect_opts)
2260 {
2261 num_sect_opts *= 2;
2262 sect_opts = ((struct sect_opt *)
2263 xrealloc (sect_opts,
2264 num_sect_opts
2265 * sizeof (struct sect_opt)));
2266 }
2267 }
2268 else
2269 {
2270 /* It's an option (starting with '-') or it's an argument
2271 to an option. */
2272
2273 if (*arg == '-')
2274 {
2275 if (strcmp (arg, "-readnow") == 0)
2276 flags |= OBJF_READNOW;
2277 else if (strcmp (arg, "-s") == 0)
2278 {
2279 expecting_sec_name = 1;
2280 expecting_sec_addr = 1;
2281 }
2282 }
2283 else
2284 {
2285 if (expecting_sec_name)
2286 {
2287 sect_opts[section_index].name = arg;
2288 expecting_sec_name = 0;
2289 }
2290 else
2291 if (expecting_sec_addr)
2292 {
2293 sect_opts[section_index].value = arg;
2294 expecting_sec_addr = 0;
2295 if (++section_index >= num_sect_opts)
2296 {
2297 num_sect_opts *= 2;
2298 sect_opts = ((struct sect_opt *)
2299 xrealloc (sect_opts,
2300 num_sect_opts
2301 * sizeof (struct sect_opt)));
2302 }
2303 }
2304 else
2305 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2306 " [-readnow] [-s <secname> <addr>]*"));
2307 }
2308 }
2309 }
2310
2311 /* This command takes at least two arguments. The first one is a
2312 filename, and the second is the address where this file has been
2313 loaded. Abort now if this address hasn't been provided by the
2314 user. */
2315 if (section_index < 1)
2316 error (_("The address where %s has been loaded is missing"), filename);
2317
2318 /* Print the prompt for the query below. And save the arguments into
2319 a sect_addr_info structure to be passed around to other
2320 functions. We have to split this up into separate print
2321 statements because hex_string returns a local static
2322 string. */
2323
2324 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2325 section_addrs = alloc_section_addr_info (section_index);
2326 make_cleanup (xfree, section_addrs);
2327 for (i = 0; i < section_index; i++)
2328 {
2329 CORE_ADDR addr;
2330 char *val = sect_opts[i].value;
2331 char *sec = sect_opts[i].name;
2332
2333 addr = parse_and_eval_address (val);
2334
2335 /* Here we store the section offsets in the order they were
2336 entered on the command line. */
2337 section_addrs->other[sec_num].name = sec;
2338 section_addrs->other[sec_num].addr = addr;
2339 printf_unfiltered ("\t%s_addr = %s\n", sec,
2340 paddress (gdbarch, addr));
2341 sec_num++;
2342
2343 /* The object's sections are initialized when a
2344 call is made to build_objfile_section_table (objfile).
2345 This happens in reread_symbols.
2346 At this point, we don't know what file type this is,
2347 so we can't determine what section names are valid. */
2348 }
2349 section_addrs->num_sections = sec_num;
2350
2351 if (from_tty && (!query ("%s", "")))
2352 error (_("Not confirmed."));
2353
2354 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2355 section_addrs, flags);
2356
2357 /* Getting new symbols may change our opinion about what is
2358 frameless. */
2359 reinit_frame_cache ();
2360 do_cleanups (my_cleanups);
2361 }
2362 \f
2363
2364 typedef struct objfile *objfilep;
2365
2366 DEF_VEC_P (objfilep);
2367
2368 /* Re-read symbols if a symbol-file has changed. */
2369 void
2370 reread_symbols (void)
2371 {
2372 struct objfile *objfile;
2373 long new_modtime;
2374 struct stat new_statbuf;
2375 int res;
2376 VEC (objfilep) *new_objfiles = NULL;
2377 struct cleanup *all_cleanups;
2378
2379 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2380
2381 /* With the addition of shared libraries, this should be modified,
2382 the load time should be saved in the partial symbol tables, since
2383 different tables may come from different source files. FIXME.
2384 This routine should then walk down each partial symbol table
2385 and see if the symbol table that it originates from has been changed. */
2386
2387 for (objfile = object_files; objfile; objfile = objfile->next)
2388 {
2389 /* solib-sunos.c creates one objfile with obfd. */
2390 if (objfile->obfd == NULL)
2391 continue;
2392
2393 /* Separate debug objfiles are handled in the main objfile. */
2394 if (objfile->separate_debug_objfile_backlink)
2395 continue;
2396
2397 /* If this object is from an archive (what you usually create with
2398 `ar', often called a `static library' on most systems, though
2399 a `shared library' on AIX is also an archive), then you should
2400 stat on the archive name, not member name. */
2401 if (objfile->obfd->my_archive)
2402 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2403 else
2404 res = stat (objfile->name, &new_statbuf);
2405 if (res != 0)
2406 {
2407 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2408 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2409 objfile->name);
2410 continue;
2411 }
2412 new_modtime = new_statbuf.st_mtime;
2413 if (new_modtime != objfile->mtime)
2414 {
2415 struct cleanup *old_cleanups;
2416 struct section_offsets *offsets;
2417 int num_offsets;
2418 char *obfd_filename;
2419
2420 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2421 objfile->name);
2422
2423 /* There are various functions like symbol_file_add,
2424 symfile_bfd_open, syms_from_objfile, etc., which might
2425 appear to do what we want. But they have various other
2426 effects which we *don't* want. So we just do stuff
2427 ourselves. We don't worry about mapped files (for one thing,
2428 any mapped file will be out of date). */
2429
2430 /* If we get an error, blow away this objfile (not sure if
2431 that is the correct response for things like shared
2432 libraries). */
2433 old_cleanups = make_cleanup_free_objfile (objfile);
2434 /* We need to do this whenever any symbols go away. */
2435 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2436
2437 if (exec_bfd != NULL
2438 && filename_cmp (bfd_get_filename (objfile->obfd),
2439 bfd_get_filename (exec_bfd)) == 0)
2440 {
2441 /* Reload EXEC_BFD without asking anything. */
2442
2443 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2444 }
2445
2446 /* Keep the calls order approx. the same as in free_objfile. */
2447
2448 /* Free the separate debug objfiles. It will be
2449 automatically recreated by sym_read. */
2450 free_objfile_separate_debug (objfile);
2451
2452 /* Remove any references to this objfile in the global
2453 value lists. */
2454 preserve_values (objfile);
2455
2456 /* Nuke all the state that we will re-read. Much of the following
2457 code which sets things to NULL really is necessary to tell
2458 other parts of GDB that there is nothing currently there.
2459
2460 Try to keep the freeing order compatible with free_objfile. */
2461
2462 if (objfile->sf != NULL)
2463 {
2464 (*objfile->sf->sym_finish) (objfile);
2465 }
2466
2467 clear_objfile_data (objfile);
2468
2469 /* Clean up any state BFD has sitting around. */
2470 {
2471 struct bfd *obfd = objfile->obfd;
2472
2473 obfd_filename = bfd_get_filename (objfile->obfd);
2474 /* Open the new BFD before freeing the old one, so that
2475 the filename remains live. */
2476 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2477 if (objfile->obfd == NULL)
2478 {
2479 /* We have to make a cleanup and error here, rather
2480 than erroring later, because once we unref OBFD,
2481 OBFD_FILENAME will be freed. */
2482 make_cleanup_bfd_unref (obfd);
2483 error (_("Can't open %s to read symbols."), obfd_filename);
2484 }
2485 gdb_bfd_unref (obfd);
2486 }
2487
2488 objfile->name = bfd_get_filename (objfile->obfd);
2489 /* bfd_openr sets cacheable to true, which is what we want. */
2490 if (!bfd_check_format (objfile->obfd, bfd_object))
2491 error (_("Can't read symbols from %s: %s."), objfile->name,
2492 bfd_errmsg (bfd_get_error ()));
2493
2494 /* Save the offsets, we will nuke them with the rest of the
2495 objfile_obstack. */
2496 num_offsets = objfile->num_sections;
2497 offsets = ((struct section_offsets *)
2498 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2499 memcpy (offsets, objfile->section_offsets,
2500 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2501
2502 /* FIXME: Do we have to free a whole linked list, or is this
2503 enough? */
2504 if (objfile->global_psymbols.list)
2505 xfree (objfile->global_psymbols.list);
2506 memset (&objfile->global_psymbols, 0,
2507 sizeof (objfile->global_psymbols));
2508 if (objfile->static_psymbols.list)
2509 xfree (objfile->static_psymbols.list);
2510 memset (&objfile->static_psymbols, 0,
2511 sizeof (objfile->static_psymbols));
2512
2513 /* Free the obstacks for non-reusable objfiles. */
2514 psymbol_bcache_free (objfile->psymbol_cache);
2515 objfile->psymbol_cache = psymbol_bcache_init ();
2516 if (objfile->demangled_names_hash != NULL)
2517 {
2518 htab_delete (objfile->demangled_names_hash);
2519 objfile->demangled_names_hash = NULL;
2520 }
2521 obstack_free (&objfile->objfile_obstack, 0);
2522 objfile->sections = NULL;
2523 objfile->symtabs = NULL;
2524 objfile->psymtabs = NULL;
2525 objfile->psymtabs_addrmap = NULL;
2526 objfile->free_psymtabs = NULL;
2527 objfile->template_symbols = NULL;
2528 objfile->msymbols = NULL;
2529 objfile->minimal_symbol_count = 0;
2530 memset (&objfile->msymbol_hash, 0,
2531 sizeof (objfile->msymbol_hash));
2532 memset (&objfile->msymbol_demangled_hash, 0,
2533 sizeof (objfile->msymbol_demangled_hash));
2534
2535 set_objfile_per_bfd (objfile);
2536
2537 /* obstack_init also initializes the obstack so it is
2538 empty. We could use obstack_specify_allocation but
2539 gdb_obstack.h specifies the alloc/dealloc functions. */
2540 obstack_init (&objfile->objfile_obstack);
2541 build_objfile_section_table (objfile);
2542 terminate_minimal_symbol_table (objfile);
2543
2544 /* We use the same section offsets as from last time. I'm not
2545 sure whether that is always correct for shared libraries. */
2546 objfile->section_offsets = (struct section_offsets *)
2547 obstack_alloc (&objfile->objfile_obstack,
2548 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2549 memcpy (objfile->section_offsets, offsets,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 objfile->num_sections = num_offsets;
2552
2553 /* What the hell is sym_new_init for, anyway? The concept of
2554 distinguishing between the main file and additional files
2555 in this way seems rather dubious. */
2556 if (objfile == symfile_objfile)
2557 {
2558 (*objfile->sf->sym_new_init) (objfile);
2559 }
2560
2561 (*objfile->sf->sym_init) (objfile);
2562 clear_complaints (&symfile_complaints, 1, 1);
2563
2564 objfile->flags &= ~OBJF_PSYMTABS_READ;
2565 read_symbols (objfile, 0);
2566
2567 if (!objfile_has_symbols (objfile))
2568 {
2569 wrap_here ("");
2570 printf_unfiltered (_("(no debugging symbols found)\n"));
2571 wrap_here ("");
2572 }
2573
2574 /* We're done reading the symbol file; finish off complaints. */
2575 clear_complaints (&symfile_complaints, 0, 1);
2576
2577 /* Getting new symbols may change our opinion about what is
2578 frameless. */
2579
2580 reinit_frame_cache ();
2581
2582 /* Discard cleanups as symbol reading was successful. */
2583 discard_cleanups (old_cleanups);
2584
2585 /* If the mtime has changed between the time we set new_modtime
2586 and now, we *want* this to be out of date, so don't call stat
2587 again now. */
2588 objfile->mtime = new_modtime;
2589 init_entry_point_info (objfile);
2590
2591 VEC_safe_push (objfilep, new_objfiles, objfile);
2592 }
2593 }
2594
2595 if (new_objfiles)
2596 {
2597 int ix;
2598
2599 /* Notify objfiles that we've modified objfile sections. */
2600 objfiles_changed ();
2601
2602 clear_symtab_users (0);
2603
2604 /* clear_objfile_data for each objfile was called before freeing it and
2605 observer_notify_new_objfile (NULL) has been called by
2606 clear_symtab_users above. Notify the new files now. */
2607 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2608 observer_notify_new_objfile (objfile);
2609
2610 /* At least one objfile has changed, so we can consider that
2611 the executable we're debugging has changed too. */
2612 observer_notify_executable_changed ();
2613 }
2614
2615 do_cleanups (all_cleanups);
2616 }
2617 \f
2618
2619
2620 typedef struct
2621 {
2622 char *ext;
2623 enum language lang;
2624 }
2625 filename_language;
2626
2627 static filename_language *filename_language_table;
2628 static int fl_table_size, fl_table_next;
2629
2630 static void
2631 add_filename_language (char *ext, enum language lang)
2632 {
2633 if (fl_table_next >= fl_table_size)
2634 {
2635 fl_table_size += 10;
2636 filename_language_table =
2637 xrealloc (filename_language_table,
2638 fl_table_size * sizeof (*filename_language_table));
2639 }
2640
2641 filename_language_table[fl_table_next].ext = xstrdup (ext);
2642 filename_language_table[fl_table_next].lang = lang;
2643 fl_table_next++;
2644 }
2645
2646 static char *ext_args;
2647 static void
2648 show_ext_args (struct ui_file *file, int from_tty,
2649 struct cmd_list_element *c, const char *value)
2650 {
2651 fprintf_filtered (file,
2652 _("Mapping between filename extension "
2653 "and source language is \"%s\".\n"),
2654 value);
2655 }
2656
2657 static void
2658 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2659 {
2660 int i;
2661 char *cp = ext_args;
2662 enum language lang;
2663
2664 /* First arg is filename extension, starting with '.' */
2665 if (*cp != '.')
2666 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2667
2668 /* Find end of first arg. */
2669 while (*cp && !isspace (*cp))
2670 cp++;
2671
2672 if (*cp == '\0')
2673 error (_("'%s': two arguments required -- "
2674 "filename extension and language"),
2675 ext_args);
2676
2677 /* Null-terminate first arg. */
2678 *cp++ = '\0';
2679
2680 /* Find beginning of second arg, which should be a source language. */
2681 cp = skip_spaces (cp);
2682
2683 if (*cp == '\0')
2684 error (_("'%s': two arguments required -- "
2685 "filename extension and language"),
2686 ext_args);
2687
2688 /* Lookup the language from among those we know. */
2689 lang = language_enum (cp);
2690
2691 /* Now lookup the filename extension: do we already know it? */
2692 for (i = 0; i < fl_table_next; i++)
2693 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2694 break;
2695
2696 if (i >= fl_table_next)
2697 {
2698 /* New file extension. */
2699 add_filename_language (ext_args, lang);
2700 }
2701 else
2702 {
2703 /* Redefining a previously known filename extension. */
2704
2705 /* if (from_tty) */
2706 /* query ("Really make files of type %s '%s'?", */
2707 /* ext_args, language_str (lang)); */
2708
2709 xfree (filename_language_table[i].ext);
2710 filename_language_table[i].ext = xstrdup (ext_args);
2711 filename_language_table[i].lang = lang;
2712 }
2713 }
2714
2715 static void
2716 info_ext_lang_command (char *args, int from_tty)
2717 {
2718 int i;
2719
2720 printf_filtered (_("Filename extensions and the languages they represent:"));
2721 printf_filtered ("\n\n");
2722 for (i = 0; i < fl_table_next; i++)
2723 printf_filtered ("\t%s\t- %s\n",
2724 filename_language_table[i].ext,
2725 language_str (filename_language_table[i].lang));
2726 }
2727
2728 static void
2729 init_filename_language_table (void)
2730 {
2731 if (fl_table_size == 0) /* Protect against repetition. */
2732 {
2733 fl_table_size = 20;
2734 fl_table_next = 0;
2735 filename_language_table =
2736 xmalloc (fl_table_size * sizeof (*filename_language_table));
2737 add_filename_language (".c", language_c);
2738 add_filename_language (".d", language_d);
2739 add_filename_language (".C", language_cplus);
2740 add_filename_language (".cc", language_cplus);
2741 add_filename_language (".cp", language_cplus);
2742 add_filename_language (".cpp", language_cplus);
2743 add_filename_language (".cxx", language_cplus);
2744 add_filename_language (".c++", language_cplus);
2745 add_filename_language (".java", language_java);
2746 add_filename_language (".class", language_java);
2747 add_filename_language (".m", language_objc);
2748 add_filename_language (".f", language_fortran);
2749 add_filename_language (".F", language_fortran);
2750 add_filename_language (".for", language_fortran);
2751 add_filename_language (".FOR", language_fortran);
2752 add_filename_language (".ftn", language_fortran);
2753 add_filename_language (".FTN", language_fortran);
2754 add_filename_language (".fpp", language_fortran);
2755 add_filename_language (".FPP", language_fortran);
2756 add_filename_language (".f90", language_fortran);
2757 add_filename_language (".F90", language_fortran);
2758 add_filename_language (".f95", language_fortran);
2759 add_filename_language (".F95", language_fortran);
2760 add_filename_language (".f03", language_fortran);
2761 add_filename_language (".F03", language_fortran);
2762 add_filename_language (".f08", language_fortran);
2763 add_filename_language (".F08", language_fortran);
2764 add_filename_language (".s", language_asm);
2765 add_filename_language (".sx", language_asm);
2766 add_filename_language (".S", language_asm);
2767 add_filename_language (".pas", language_pascal);
2768 add_filename_language (".p", language_pascal);
2769 add_filename_language (".pp", language_pascal);
2770 add_filename_language (".adb", language_ada);
2771 add_filename_language (".ads", language_ada);
2772 add_filename_language (".a", language_ada);
2773 add_filename_language (".ada", language_ada);
2774 add_filename_language (".dg", language_ada);
2775 }
2776 }
2777
2778 enum language
2779 deduce_language_from_filename (const char *filename)
2780 {
2781 int i;
2782 char *cp;
2783
2784 if (filename != NULL)
2785 if ((cp = strrchr (filename, '.')) != NULL)
2786 for (i = 0; i < fl_table_next; i++)
2787 if (strcmp (cp, filename_language_table[i].ext) == 0)
2788 return filename_language_table[i].lang;
2789
2790 return language_unknown;
2791 }
2792 \f
2793 /* allocate_symtab:
2794
2795 Allocate and partly initialize a new symbol table. Return a pointer
2796 to it. error() if no space.
2797
2798 Caller must set these fields:
2799 LINETABLE(symtab)
2800 symtab->blockvector
2801 symtab->dirname
2802 symtab->free_code
2803 symtab->free_ptr
2804 */
2805
2806 struct symtab *
2807 allocate_symtab (const char *filename, struct objfile *objfile)
2808 {
2809 struct symtab *symtab;
2810
2811 symtab = (struct symtab *)
2812 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2813 memset (symtab, 0, sizeof (*symtab));
2814 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2815 objfile->per_bfd->filename_cache);
2816 symtab->fullname = NULL;
2817 symtab->language = deduce_language_from_filename (filename);
2818 symtab->debugformat = "unknown";
2819
2820 /* Hook it to the objfile it comes from. */
2821
2822 symtab->objfile = objfile;
2823 symtab->next = objfile->symtabs;
2824 objfile->symtabs = symtab;
2825
2826 if (symtab_create_debug)
2827 {
2828 /* Be a bit clever with debugging messages, and don't print objfile
2829 every time, only when it changes. */
2830 static char *last_objfile_name = NULL;
2831
2832 if (last_objfile_name == NULL
2833 || strcmp (last_objfile_name, objfile->name) != 0)
2834 {
2835 xfree (last_objfile_name);
2836 last_objfile_name = xstrdup (objfile->name);
2837 fprintf_unfiltered (gdb_stdlog,
2838 "Creating one or more symtabs for objfile %s ...\n",
2839 last_objfile_name);
2840 }
2841 fprintf_unfiltered (gdb_stdlog,
2842 "Created symtab %s for module %s.\n",
2843 host_address_to_string (symtab), filename);
2844 }
2845
2846 return (symtab);
2847 }
2848 \f
2849
2850 /* Reset all data structures in gdb which may contain references to symbol
2851 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2852
2853 void
2854 clear_symtab_users (int add_flags)
2855 {
2856 /* Someday, we should do better than this, by only blowing away
2857 the things that really need to be blown. */
2858
2859 /* Clear the "current" symtab first, because it is no longer valid.
2860 breakpoint_re_set may try to access the current symtab. */
2861 clear_current_source_symtab_and_line ();
2862
2863 clear_displays ();
2864 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2865 breakpoint_re_set ();
2866 clear_last_displayed_sal ();
2867 clear_pc_function_cache ();
2868 observer_notify_new_objfile (NULL);
2869
2870 /* Clear globals which might have pointed into a removed objfile.
2871 FIXME: It's not clear which of these are supposed to persist
2872 between expressions and which ought to be reset each time. */
2873 expression_context_block = NULL;
2874 innermost_block = NULL;
2875
2876 /* Varobj may refer to old symbols, perform a cleanup. */
2877 varobj_invalidate ();
2878
2879 }
2880
2881 static void
2882 clear_symtab_users_cleanup (void *ignore)
2883 {
2884 clear_symtab_users (0);
2885 }
2886 \f
2887 /* OVERLAYS:
2888 The following code implements an abstraction for debugging overlay sections.
2889
2890 The target model is as follows:
2891 1) The gnu linker will permit multiple sections to be mapped into the
2892 same VMA, each with its own unique LMA (or load address).
2893 2) It is assumed that some runtime mechanism exists for mapping the
2894 sections, one by one, from the load address into the VMA address.
2895 3) This code provides a mechanism for gdb to keep track of which
2896 sections should be considered to be mapped from the VMA to the LMA.
2897 This information is used for symbol lookup, and memory read/write.
2898 For instance, if a section has been mapped then its contents
2899 should be read from the VMA, otherwise from the LMA.
2900
2901 Two levels of debugger support for overlays are available. One is
2902 "manual", in which the debugger relies on the user to tell it which
2903 overlays are currently mapped. This level of support is
2904 implemented entirely in the core debugger, and the information about
2905 whether a section is mapped is kept in the objfile->obj_section table.
2906
2907 The second level of support is "automatic", and is only available if
2908 the target-specific code provides functionality to read the target's
2909 overlay mapping table, and translate its contents for the debugger
2910 (by updating the mapped state information in the obj_section tables).
2911
2912 The interface is as follows:
2913 User commands:
2914 overlay map <name> -- tell gdb to consider this section mapped
2915 overlay unmap <name> -- tell gdb to consider this section unmapped
2916 overlay list -- list the sections that GDB thinks are mapped
2917 overlay read-target -- get the target's state of what's mapped
2918 overlay off/manual/auto -- set overlay debugging state
2919 Functional interface:
2920 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2921 section, return that section.
2922 find_pc_overlay(pc): find any overlay section that contains
2923 the pc, either in its VMA or its LMA
2924 section_is_mapped(sect): true if overlay is marked as mapped
2925 section_is_overlay(sect): true if section's VMA != LMA
2926 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2927 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2928 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2929 overlay_mapped_address(...): map an address from section's LMA to VMA
2930 overlay_unmapped_address(...): map an address from section's VMA to LMA
2931 symbol_overlayed_address(...): Return a "current" address for symbol:
2932 either in VMA or LMA depending on whether
2933 the symbol's section is currently mapped. */
2934
2935 /* Overlay debugging state: */
2936
2937 enum overlay_debugging_state overlay_debugging = ovly_off;
2938 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2939
2940 /* Function: section_is_overlay (SECTION)
2941 Returns true if SECTION has VMA not equal to LMA, ie.
2942 SECTION is loaded at an address different from where it will "run". */
2943
2944 int
2945 section_is_overlay (struct obj_section *section)
2946 {
2947 if (overlay_debugging && section)
2948 {
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
2951
2952 if (bfd_section_lma (abfd, bfd_section) != 0
2953 && bfd_section_lma (abfd, bfd_section)
2954 != bfd_section_vma (abfd, bfd_section))
2955 return 1;
2956 }
2957
2958 return 0;
2959 }
2960
2961 /* Function: overlay_invalidate_all (void)
2962 Invalidate the mapped state of all overlay sections (mark it as stale). */
2963
2964 static void
2965 overlay_invalidate_all (void)
2966 {
2967 struct objfile *objfile;
2968 struct obj_section *sect;
2969
2970 ALL_OBJSECTIONS (objfile, sect)
2971 if (section_is_overlay (sect))
2972 sect->ovly_mapped = -1;
2973 }
2974
2975 /* Function: section_is_mapped (SECTION)
2976 Returns true if section is an overlay, and is currently mapped.
2977
2978 Access to the ovly_mapped flag is restricted to this function, so
2979 that we can do automatic update. If the global flag
2980 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2981 overlay_invalidate_all. If the mapped state of the particular
2982 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2983
2984 int
2985 section_is_mapped (struct obj_section *osect)
2986 {
2987 struct gdbarch *gdbarch;
2988
2989 if (osect == 0 || !section_is_overlay (osect))
2990 return 0;
2991
2992 switch (overlay_debugging)
2993 {
2994 default:
2995 case ovly_off:
2996 return 0; /* overlay debugging off */
2997 case ovly_auto: /* overlay debugging automatic */
2998 /* Unles there is a gdbarch_overlay_update function,
2999 there's really nothing useful to do here (can't really go auto). */
3000 gdbarch = get_objfile_arch (osect->objfile);
3001 if (gdbarch_overlay_update_p (gdbarch))
3002 {
3003 if (overlay_cache_invalid)
3004 {
3005 overlay_invalidate_all ();
3006 overlay_cache_invalid = 0;
3007 }
3008 if (osect->ovly_mapped == -1)
3009 gdbarch_overlay_update (gdbarch, osect);
3010 }
3011 /* fall thru to manual case */
3012 case ovly_on: /* overlay debugging manual */
3013 return osect->ovly_mapped == 1;
3014 }
3015 }
3016
3017 /* Function: pc_in_unmapped_range
3018 If PC falls into the lma range of SECTION, return true, else false. */
3019
3020 CORE_ADDR
3021 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3022 {
3023 if (section_is_overlay (section))
3024 {
3025 bfd *abfd = section->objfile->obfd;
3026 asection *bfd_section = section->the_bfd_section;
3027
3028 /* We assume the LMA is relocated by the same offset as the VMA. */
3029 bfd_vma size = bfd_get_section_size (bfd_section);
3030 CORE_ADDR offset = obj_section_offset (section);
3031
3032 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3033 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3034 return 1;
3035 }
3036
3037 return 0;
3038 }
3039
3040 /* Function: pc_in_mapped_range
3041 If PC falls into the vma range of SECTION, return true, else false. */
3042
3043 CORE_ADDR
3044 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3045 {
3046 if (section_is_overlay (section))
3047 {
3048 if (obj_section_addr (section) <= pc
3049 && pc < obj_section_endaddr (section))
3050 return 1;
3051 }
3052
3053 return 0;
3054 }
3055
3056
3057 /* Return true if the mapped ranges of sections A and B overlap, false
3058 otherwise. */
3059 static int
3060 sections_overlap (struct obj_section *a, struct obj_section *b)
3061 {
3062 CORE_ADDR a_start = obj_section_addr (a);
3063 CORE_ADDR a_end = obj_section_endaddr (a);
3064 CORE_ADDR b_start = obj_section_addr (b);
3065 CORE_ADDR b_end = obj_section_endaddr (b);
3066
3067 return (a_start < b_end && b_start < a_end);
3068 }
3069
3070 /* Function: overlay_unmapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the unmapped (load) range.
3072 May be the same as PC. */
3073
3074 CORE_ADDR
3075 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3076 {
3077 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3078 {
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
3081
3082 return pc + bfd_section_lma (abfd, bfd_section)
3083 - bfd_section_vma (abfd, bfd_section);
3084 }
3085
3086 return pc;
3087 }
3088
3089 /* Function: overlay_mapped_address (PC, SECTION)
3090 Returns the address corresponding to PC in the mapped (runtime) range.
3091 May be the same as PC. */
3092
3093 CORE_ADDR
3094 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3095 {
3096 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3097 {
3098 bfd *abfd = section->objfile->obfd;
3099 asection *bfd_section = section->the_bfd_section;
3100
3101 return pc + bfd_section_vma (abfd, bfd_section)
3102 - bfd_section_lma (abfd, bfd_section);
3103 }
3104
3105 return pc;
3106 }
3107
3108
3109 /* Function: symbol_overlayed_address
3110 Return one of two addresses (relative to the VMA or to the LMA),
3111 depending on whether the section is mapped or not. */
3112
3113 CORE_ADDR
3114 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3115 {
3116 if (overlay_debugging)
3117 {
3118 /* If the symbol has no section, just return its regular address. */
3119 if (section == 0)
3120 return address;
3121 /* If the symbol's section is not an overlay, just return its
3122 address. */
3123 if (!section_is_overlay (section))
3124 return address;
3125 /* If the symbol's section is mapped, just return its address. */
3126 if (section_is_mapped (section))
3127 return address;
3128 /*
3129 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3130 * then return its LOADED address rather than its vma address!!
3131 */
3132 return overlay_unmapped_address (address, section);
3133 }
3134 return address;
3135 }
3136
3137 /* Function: find_pc_overlay (PC)
3138 Return the best-match overlay section for PC:
3139 If PC matches a mapped overlay section's VMA, return that section.
3140 Else if PC matches an unmapped section's VMA, return that section.
3141 Else if PC matches an unmapped section's LMA, return that section. */
3142
3143 struct obj_section *
3144 find_pc_overlay (CORE_ADDR pc)
3145 {
3146 struct objfile *objfile;
3147 struct obj_section *osect, *best_match = NULL;
3148
3149 if (overlay_debugging)
3150 ALL_OBJSECTIONS (objfile, osect)
3151 if (section_is_overlay (osect))
3152 {
3153 if (pc_in_mapped_range (pc, osect))
3154 {
3155 if (section_is_mapped (osect))
3156 return osect;
3157 else
3158 best_match = osect;
3159 }
3160 else if (pc_in_unmapped_range (pc, osect))
3161 best_match = osect;
3162 }
3163 return best_match;
3164 }
3165
3166 /* Function: find_pc_mapped_section (PC)
3167 If PC falls into the VMA address range of an overlay section that is
3168 currently marked as MAPPED, return that section. Else return NULL. */
3169
3170 struct obj_section *
3171 find_pc_mapped_section (CORE_ADDR pc)
3172 {
3173 struct objfile *objfile;
3174 struct obj_section *osect;
3175
3176 if (overlay_debugging)
3177 ALL_OBJSECTIONS (objfile, osect)
3178 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3179 return osect;
3180
3181 return NULL;
3182 }
3183
3184 /* Function: list_overlays_command
3185 Print a list of mapped sections and their PC ranges. */
3186
3187 static void
3188 list_overlays_command (char *args, int from_tty)
3189 {
3190 int nmapped = 0;
3191 struct objfile *objfile;
3192 struct obj_section *osect;
3193
3194 if (overlay_debugging)
3195 ALL_OBJSECTIONS (objfile, osect)
3196 if (section_is_mapped (osect))
3197 {
3198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3199 const char *name;
3200 bfd_vma lma, vma;
3201 int size;
3202
3203 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3204 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3205 size = bfd_get_section_size (osect->the_bfd_section);
3206 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3207
3208 printf_filtered ("Section %s, loaded at ", name);
3209 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3210 puts_filtered (" - ");
3211 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3212 printf_filtered (", mapped at ");
3213 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3214 puts_filtered (" - ");
3215 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3216 puts_filtered ("\n");
3217
3218 nmapped++;
3219 }
3220 if (nmapped == 0)
3221 printf_filtered (_("No sections are mapped.\n"));
3222 }
3223
3224 /* Function: map_overlay_command
3225 Mark the named section as mapped (ie. residing at its VMA address). */
3226
3227 static void
3228 map_overlay_command (char *args, int from_tty)
3229 {
3230 struct objfile *objfile, *objfile2;
3231 struct obj_section *sec, *sec2;
3232
3233 if (!overlay_debugging)
3234 error (_("Overlay debugging not enabled. Use "
3235 "either the 'overlay auto' or\n"
3236 "the 'overlay manual' command."));
3237
3238 if (args == 0 || *args == 0)
3239 error (_("Argument required: name of an overlay section"));
3240
3241 /* First, find a section matching the user supplied argument. */
3242 ALL_OBJSECTIONS (objfile, sec)
3243 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3244 {
3245 /* Now, check to see if the section is an overlay. */
3246 if (!section_is_overlay (sec))
3247 continue; /* not an overlay section */
3248
3249 /* Mark the overlay as "mapped". */
3250 sec->ovly_mapped = 1;
3251
3252 /* Next, make a pass and unmap any sections that are
3253 overlapped by this new section: */
3254 ALL_OBJSECTIONS (objfile2, sec2)
3255 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3256 {
3257 if (info_verbose)
3258 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3259 bfd_section_name (objfile->obfd,
3260 sec2->the_bfd_section));
3261 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3262 }
3263 return;
3264 }
3265 error (_("No overlay section called %s"), args);
3266 }
3267
3268 /* Function: unmap_overlay_command
3269 Mark the overlay section as unmapped
3270 (ie. resident in its LMA address range, rather than the VMA range). */
3271
3272 static void
3273 unmap_overlay_command (char *args, int from_tty)
3274 {
3275 struct objfile *objfile;
3276 struct obj_section *sec;
3277
3278 if (!overlay_debugging)
3279 error (_("Overlay debugging not enabled. "
3280 "Use either the 'overlay auto' or\n"
3281 "the 'overlay manual' command."));
3282
3283 if (args == 0 || *args == 0)
3284 error (_("Argument required: name of an overlay section"));
3285
3286 /* First, find a section matching the user supplied argument. */
3287 ALL_OBJSECTIONS (objfile, sec)
3288 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3289 {
3290 if (!sec->ovly_mapped)
3291 error (_("Section %s is not mapped"), args);
3292 sec->ovly_mapped = 0;
3293 return;
3294 }
3295 error (_("No overlay section called %s"), args);
3296 }
3297
3298 /* Function: overlay_auto_command
3299 A utility command to turn on overlay debugging.
3300 Possibly this should be done via a set/show command. */
3301
3302 static void
3303 overlay_auto_command (char *args, int from_tty)
3304 {
3305 overlay_debugging = ovly_auto;
3306 enable_overlay_breakpoints ();
3307 if (info_verbose)
3308 printf_unfiltered (_("Automatic overlay debugging enabled."));
3309 }
3310
3311 /* Function: overlay_manual_command
3312 A utility command to turn on overlay debugging.
3313 Possibly this should be done via a set/show command. */
3314
3315 static void
3316 overlay_manual_command (char *args, int from_tty)
3317 {
3318 overlay_debugging = ovly_on;
3319 disable_overlay_breakpoints ();
3320 if (info_verbose)
3321 printf_unfiltered (_("Overlay debugging enabled."));
3322 }
3323
3324 /* Function: overlay_off_command
3325 A utility command to turn on overlay debugging.
3326 Possibly this should be done via a set/show command. */
3327
3328 static void
3329 overlay_off_command (char *args, int from_tty)
3330 {
3331 overlay_debugging = ovly_off;
3332 disable_overlay_breakpoints ();
3333 if (info_verbose)
3334 printf_unfiltered (_("Overlay debugging disabled."));
3335 }
3336
3337 static void
3338 overlay_load_command (char *args, int from_tty)
3339 {
3340 struct gdbarch *gdbarch = get_current_arch ();
3341
3342 if (gdbarch_overlay_update_p (gdbarch))
3343 gdbarch_overlay_update (gdbarch, NULL);
3344 else
3345 error (_("This target does not know how to read its overlay state."));
3346 }
3347
3348 /* Function: overlay_command
3349 A place-holder for a mis-typed command. */
3350
3351 /* Command list chain containing all defined "overlay" subcommands. */
3352 static struct cmd_list_element *overlaylist;
3353
3354 static void
3355 overlay_command (char *args, int from_tty)
3356 {
3357 printf_unfiltered
3358 ("\"overlay\" must be followed by the name of an overlay command.\n");
3359 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3360 }
3361
3362
3363 /* Target Overlays for the "Simplest" overlay manager:
3364
3365 This is GDB's default target overlay layer. It works with the
3366 minimal overlay manager supplied as an example by Cygnus. The
3367 entry point is via a function pointer "gdbarch_overlay_update",
3368 so targets that use a different runtime overlay manager can
3369 substitute their own overlay_update function and take over the
3370 function pointer.
3371
3372 The overlay_update function pokes around in the target's data structures
3373 to see what overlays are mapped, and updates GDB's overlay mapping with
3374 this information.
3375
3376 In this simple implementation, the target data structures are as follows:
3377 unsigned _novlys; /# number of overlay sections #/
3378 unsigned _ovly_table[_novlys][4] = {
3379 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3380 {..., ..., ..., ...},
3381 }
3382 unsigned _novly_regions; /# number of overlay regions #/
3383 unsigned _ovly_region_table[_novly_regions][3] = {
3384 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3385 {..., ..., ...},
3386 }
3387 These functions will attempt to update GDB's mappedness state in the
3388 symbol section table, based on the target's mappedness state.
3389
3390 To do this, we keep a cached copy of the target's _ovly_table, and
3391 attempt to detect when the cached copy is invalidated. The main
3392 entry point is "simple_overlay_update(SECT), which looks up SECT in
3393 the cached table and re-reads only the entry for that section from
3394 the target (whenever possible). */
3395
3396 /* Cached, dynamically allocated copies of the target data structures: */
3397 static unsigned (*cache_ovly_table)[4] = 0;
3398 static unsigned cache_novlys = 0;
3399 static CORE_ADDR cache_ovly_table_base = 0;
3400 enum ovly_index
3401 {
3402 VMA, SIZE, LMA, MAPPED
3403 };
3404
3405 /* Throw away the cached copy of _ovly_table. */
3406 static void
3407 simple_free_overlay_table (void)
3408 {
3409 if (cache_ovly_table)
3410 xfree (cache_ovly_table);
3411 cache_novlys = 0;
3412 cache_ovly_table = NULL;
3413 cache_ovly_table_base = 0;
3414 }
3415
3416 /* Read an array of ints of size SIZE from the target into a local buffer.
3417 Convert to host order. int LEN is number of ints. */
3418 static void
3419 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3420 int len, int size, enum bfd_endian byte_order)
3421 {
3422 /* FIXME (alloca): Not safe if array is very large. */
3423 gdb_byte *buf = alloca (len * size);
3424 int i;
3425
3426 read_memory (memaddr, buf, len * size);
3427 for (i = 0; i < len; i++)
3428 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3429 }
3430
3431 /* Find and grab a copy of the target _ovly_table
3432 (and _novlys, which is needed for the table's size). */
3433 static int
3434 simple_read_overlay_table (void)
3435 {
3436 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3437 struct gdbarch *gdbarch;
3438 int word_size;
3439 enum bfd_endian byte_order;
3440
3441 simple_free_overlay_table ();
3442 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3443 if (! novlys_msym)
3444 {
3445 error (_("Error reading inferior's overlay table: "
3446 "couldn't find `_novlys' variable\n"
3447 "in inferior. Use `overlay manual' mode."));
3448 return 0;
3449 }
3450
3451 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3452 if (! ovly_table_msym)
3453 {
3454 error (_("Error reading inferior's overlay table: couldn't find "
3455 "`_ovly_table' array\n"
3456 "in inferior. Use `overlay manual' mode."));
3457 return 0;
3458 }
3459
3460 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3461 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3462 byte_order = gdbarch_byte_order (gdbarch);
3463
3464 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3465 4, byte_order);
3466 cache_ovly_table
3467 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3468 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3469 read_target_long_array (cache_ovly_table_base,
3470 (unsigned int *) cache_ovly_table,
3471 cache_novlys * 4, word_size, byte_order);
3472
3473 return 1; /* SUCCESS */
3474 }
3475
3476 /* Function: simple_overlay_update_1
3477 A helper function for simple_overlay_update. Assuming a cached copy
3478 of _ovly_table exists, look through it to find an entry whose vma,
3479 lma and size match those of OSECT. Re-read the entry and make sure
3480 it still matches OSECT (else the table may no longer be valid).
3481 Set OSECT's mapped state to match the entry. Return: 1 for
3482 success, 0 for failure. */
3483
3484 static int
3485 simple_overlay_update_1 (struct obj_section *osect)
3486 {
3487 int i, size;
3488 bfd *obfd = osect->objfile->obfd;
3489 asection *bsect = osect->the_bfd_section;
3490 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3491 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3493
3494 size = bfd_get_section_size (osect->the_bfd_section);
3495 for (i = 0; i < cache_novlys; i++)
3496 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3497 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3498 /* && cache_ovly_table[i][SIZE] == size */ )
3499 {
3500 read_target_long_array (cache_ovly_table_base + i * word_size,
3501 (unsigned int *) cache_ovly_table[i],
3502 4, word_size, byte_order);
3503 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3504 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3505 /* && cache_ovly_table[i][SIZE] == size */ )
3506 {
3507 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3508 return 1;
3509 }
3510 else /* Warning! Warning! Target's ovly table has changed! */
3511 return 0;
3512 }
3513 return 0;
3514 }
3515
3516 /* Function: simple_overlay_update
3517 If OSECT is NULL, then update all sections' mapped state
3518 (after re-reading the entire target _ovly_table).
3519 If OSECT is non-NULL, then try to find a matching entry in the
3520 cached ovly_table and update only OSECT's mapped state.
3521 If a cached entry can't be found or the cache isn't valid, then
3522 re-read the entire cache, and go ahead and update all sections. */
3523
3524 void
3525 simple_overlay_update (struct obj_section *osect)
3526 {
3527 struct objfile *objfile;
3528
3529 /* Were we given an osect to look up? NULL means do all of them. */
3530 if (osect)
3531 /* Have we got a cached copy of the target's overlay table? */
3532 if (cache_ovly_table != NULL)
3533 {
3534 /* Does its cached location match what's currently in the
3535 symtab? */
3536 struct minimal_symbol *minsym
3537 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3538
3539 if (minsym == NULL)
3540 error (_("Error reading inferior's overlay table: couldn't "
3541 "find `_ovly_table' array\n"
3542 "in inferior. Use `overlay manual' mode."));
3543
3544 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3545 /* Then go ahead and try to look up this single section in
3546 the cache. */
3547 if (simple_overlay_update_1 (osect))
3548 /* Found it! We're done. */
3549 return;
3550 }
3551
3552 /* Cached table no good: need to read the entire table anew.
3553 Or else we want all the sections, in which case it's actually
3554 more efficient to read the whole table in one block anyway. */
3555
3556 if (! simple_read_overlay_table ())
3557 return;
3558
3559 /* Now may as well update all sections, even if only one was requested. */
3560 ALL_OBJSECTIONS (objfile, osect)
3561 if (section_is_overlay (osect))
3562 {
3563 int i, size;
3564 bfd *obfd = osect->objfile->obfd;
3565 asection *bsect = osect->the_bfd_section;
3566
3567 size = bfd_get_section_size (bsect);
3568 for (i = 0; i < cache_novlys; i++)
3569 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3570 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3571 /* && cache_ovly_table[i][SIZE] == size */ )
3572 { /* obj_section matches i'th entry in ovly_table. */
3573 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3574 break; /* finished with inner for loop: break out. */
3575 }
3576 }
3577 }
3578
3579 /* Set the output sections and output offsets for section SECTP in
3580 ABFD. The relocation code in BFD will read these offsets, so we
3581 need to be sure they're initialized. We map each section to itself,
3582 with no offset; this means that SECTP->vma will be honored. */
3583
3584 static void
3585 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3586 {
3587 sectp->output_section = sectp;
3588 sectp->output_offset = 0;
3589 }
3590
3591 /* Default implementation for sym_relocate. */
3592
3593
3594 bfd_byte *
3595 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3596 bfd_byte *buf)
3597 {
3598 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3599 DWO file. */
3600 bfd *abfd = sectp->owner;
3601
3602 /* We're only interested in sections with relocation
3603 information. */
3604 if ((sectp->flags & SEC_RELOC) == 0)
3605 return NULL;
3606
3607 /* We will handle section offsets properly elsewhere, so relocate as if
3608 all sections begin at 0. */
3609 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3610
3611 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3612 }
3613
3614 /* Relocate the contents of a debug section SECTP in ABFD. The
3615 contents are stored in BUF if it is non-NULL, or returned in a
3616 malloc'd buffer otherwise.
3617
3618 For some platforms and debug info formats, shared libraries contain
3619 relocations against the debug sections (particularly for DWARF-2;
3620 one affected platform is PowerPC GNU/Linux, although it depends on
3621 the version of the linker in use). Also, ELF object files naturally
3622 have unresolved relocations for their debug sections. We need to apply
3623 the relocations in order to get the locations of symbols correct.
3624 Another example that may require relocation processing, is the
3625 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3626 debug section. */
3627
3628 bfd_byte *
3629 symfile_relocate_debug_section (struct objfile *objfile,
3630 asection *sectp, bfd_byte *buf)
3631 {
3632 gdb_assert (objfile->sf->sym_relocate);
3633
3634 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3635 }
3636
3637 struct symfile_segment_data *
3638 get_symfile_segment_data (bfd *abfd)
3639 {
3640 const struct sym_fns *sf = find_sym_fns (abfd);
3641
3642 if (sf == NULL)
3643 return NULL;
3644
3645 return sf->sym_segments (abfd);
3646 }
3647
3648 void
3649 free_symfile_segment_data (struct symfile_segment_data *data)
3650 {
3651 xfree (data->segment_bases);
3652 xfree (data->segment_sizes);
3653 xfree (data->segment_info);
3654 xfree (data);
3655 }
3656
3657
3658 /* Given:
3659 - DATA, containing segment addresses from the object file ABFD, and
3660 the mapping from ABFD's sections onto the segments that own them,
3661 and
3662 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3663 segment addresses reported by the target,
3664 store the appropriate offsets for each section in OFFSETS.
3665
3666 If there are fewer entries in SEGMENT_BASES than there are segments
3667 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3668
3669 If there are more entries, then ignore the extra. The target may
3670 not be able to distinguish between an empty data segment and a
3671 missing data segment; a missing text segment is less plausible. */
3672 int
3673 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3674 struct section_offsets *offsets,
3675 int num_segment_bases,
3676 const CORE_ADDR *segment_bases)
3677 {
3678 int i;
3679 asection *sect;
3680
3681 /* It doesn't make sense to call this function unless you have some
3682 segment base addresses. */
3683 gdb_assert (num_segment_bases > 0);
3684
3685 /* If we do not have segment mappings for the object file, we
3686 can not relocate it by segments. */
3687 gdb_assert (data != NULL);
3688 gdb_assert (data->num_segments > 0);
3689
3690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3691 {
3692 int which = data->segment_info[i];
3693
3694 gdb_assert (0 <= which && which <= data->num_segments);
3695
3696 /* Don't bother computing offsets for sections that aren't
3697 loaded as part of any segment. */
3698 if (! which)
3699 continue;
3700
3701 /* Use the last SEGMENT_BASES entry as the address of any extra
3702 segments mentioned in DATA->segment_info. */
3703 if (which > num_segment_bases)
3704 which = num_segment_bases;
3705
3706 offsets->offsets[i] = (segment_bases[which - 1]
3707 - data->segment_bases[which - 1]);
3708 }
3709
3710 return 1;
3711 }
3712
3713 static void
3714 symfile_find_segment_sections (struct objfile *objfile)
3715 {
3716 bfd *abfd = objfile->obfd;
3717 int i;
3718 asection *sect;
3719 struct symfile_segment_data *data;
3720
3721 data = get_symfile_segment_data (objfile->obfd);
3722 if (data == NULL)
3723 return;
3724
3725 if (data->num_segments != 1 && data->num_segments != 2)
3726 {
3727 free_symfile_segment_data (data);
3728 return;
3729 }
3730
3731 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3732 {
3733 int which = data->segment_info[i];
3734
3735 if (which == 1)
3736 {
3737 if (objfile->sect_index_text == -1)
3738 objfile->sect_index_text = sect->index;
3739
3740 if (objfile->sect_index_rodata == -1)
3741 objfile->sect_index_rodata = sect->index;
3742 }
3743 else if (which == 2)
3744 {
3745 if (objfile->sect_index_data == -1)
3746 objfile->sect_index_data = sect->index;
3747
3748 if (objfile->sect_index_bss == -1)
3749 objfile->sect_index_bss = sect->index;
3750 }
3751 }
3752
3753 free_symfile_segment_data (data);
3754 }
3755
3756 void
3757 _initialize_symfile (void)
3758 {
3759 struct cmd_list_element *c;
3760
3761 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3762 Load symbol table from executable file FILE.\n\
3763 The `file' command can also load symbol tables, as well as setting the file\n\
3764 to execute."), &cmdlist);
3765 set_cmd_completer (c, filename_completer);
3766
3767 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3768 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3769 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3770 ...]\nADDR is the starting address of the file's text.\n\
3771 The optional arguments are section-name section-address pairs and\n\
3772 should be specified if the data and bss segments are not contiguous\n\
3773 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3774 &cmdlist);
3775 set_cmd_completer (c, filename_completer);
3776
3777 c = add_cmd ("load", class_files, load_command, _("\
3778 Dynamically load FILE into the running program, and record its symbols\n\
3779 for access from GDB.\n\
3780 A load OFFSET may also be given."), &cmdlist);
3781 set_cmd_completer (c, filename_completer);
3782
3783 add_prefix_cmd ("overlay", class_support, overlay_command,
3784 _("Commands for debugging overlays."), &overlaylist,
3785 "overlay ", 0, &cmdlist);
3786
3787 add_com_alias ("ovly", "overlay", class_alias, 1);
3788 add_com_alias ("ov", "overlay", class_alias, 1);
3789
3790 add_cmd ("map-overlay", class_support, map_overlay_command,
3791 _("Assert that an overlay section is mapped."), &overlaylist);
3792
3793 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3794 _("Assert that an overlay section is unmapped."), &overlaylist);
3795
3796 add_cmd ("list-overlays", class_support, list_overlays_command,
3797 _("List mappings of overlay sections."), &overlaylist);
3798
3799 add_cmd ("manual", class_support, overlay_manual_command,
3800 _("Enable overlay debugging."), &overlaylist);
3801 add_cmd ("off", class_support, overlay_off_command,
3802 _("Disable overlay debugging."), &overlaylist);
3803 add_cmd ("auto", class_support, overlay_auto_command,
3804 _("Enable automatic overlay debugging."), &overlaylist);
3805 add_cmd ("load-target", class_support, overlay_load_command,
3806 _("Read the overlay mapping state from the target."), &overlaylist);
3807
3808 /* Filename extension to source language lookup table: */
3809 init_filename_language_table ();
3810 add_setshow_string_noescape_cmd ("extension-language", class_files,
3811 &ext_args, _("\
3812 Set mapping between filename extension and source language."), _("\
3813 Show mapping between filename extension and source language."), _("\
3814 Usage: set extension-language .foo bar"),
3815 set_ext_lang_command,
3816 show_ext_args,
3817 &setlist, &showlist);
3818
3819 add_info ("extensions", info_ext_lang_command,
3820 _("All filename extensions associated with a source language."));
3821
3822 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3823 &debug_file_directory, _("\
3824 Set the directories where separate debug symbols are searched for."), _("\
3825 Show the directories where separate debug symbols are searched for."), _("\
3826 Separate debug symbols are first searched for in the same\n\
3827 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3828 and lastly at the path of the directory of the binary with\n\
3829 each global debug-file-directory component prepended."),
3830 NULL,
3831 show_debug_file_directory,
3832 &setlist, &showlist);
3833 }
This page took 0.115362 seconds and 5 git commands to generate.