Make add-symbol-file's address argument optional
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67 #include <algorithm>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
86
87 /* Functions this file defines. */
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags, CORE_ADDR reloff);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
221
222 section_addr_info
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
225 {
226 const struct target_section *stp;
227
228 section_addr_info sap;
229
230 for (stp = start; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
240 }
241
242 return sap;
243 }
244
245 /* Create a section_addr_info from section offsets in ABFD. */
246
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
249 {
250 struct bfd_section *sec;
251
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
258
259 return sap;
260 }
261
262 /* Create a section_addr_info from section offsets in OBJFILE. */
263
264 section_addr_info
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
266 {
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
274 {
275 int sectindex = sap[i].sectindex;
276
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
278 }
279 return sap;
280 }
281
282 /* Initialize OBJFILE's sect_index_* members. */
283
284 static void
285 init_objfile_sect_indices (struct objfile *objfile)
286 {
287 asection *sect;
288 int i;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
291 if (sect)
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
295 if (sect)
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
299 if (sect)
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
303 if (sect)
304 objfile->sect_index_rodata = sect->index;
305
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
341 }
342
343 /* The arguments to place_section. */
344
345 struct place_section_arg
346 {
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349 };
350
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
354 static void
355 place_section (bfd *abfd, asection *sect, void *obj)
356 {
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
361
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
364 return;
365
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
372
373 do {
374 asection *cur_sec;
375
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
403 break;
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
413 }
414
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
418
419 void
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
422 const section_addr_info &addrs)
423 {
424 int i;
425
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
427
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
430 {
431 const struct other_sections *osp;
432
433 osp = &addrs[i];
434 if (osp->sectindex == -1)
435 continue;
436
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
439 the BFD index. */
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442 }
443
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450 static const char *
451 addr_section_name (const char *s)
452 {
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459 }
460
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
464
465 static bool
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
468 {
469 int retval;
470
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
475
476 return a->sectindex < b->sectindex;
477 }
478
479 /* Provide sorted array of pointers to sections of ADDRS. */
480
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
483 {
484 int i;
485
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
489
490 std::sort (array.begin (), array.end (), addrs_section_compar);
491
492 return array;
493 }
494
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
498
499 void
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
501 {
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
515 }
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
531
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
535
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
538
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
541
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const other_sections *sect : addrs_sorted)
545 {
546 const char *sect_name = addr_section_name (sect->name.c_str ());
547
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) < 0)
551 abfd_sorted_iter++;
552
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
555 sect_name) == 0)
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
563
564 /* Never use the same ABFD entry twice. */
565 abfd_sorted_iter++;
566 }
567 }
568
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
579 for (i = 0; i < addrs->size (); i++)
580 {
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
582
583 if (sect)
584 {
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
587
588 if ((*addrs)[i].addr != 0)
589 {
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
592 }
593 else
594 (*addrs)[i].addr = lower_offset;
595 }
596 else
597 {
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string &sect_name = (*addrs)[i].name;
600
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
614
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
618 && i > 0
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
627
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
630 }
631 }
632 }
633
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640 void
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
643 {
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
650
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
715 }
716 }
717 }
718
719 /* Remember the bfd indexes for the .text, .data, .bss and
720 .rodata sections. */
721 init_objfile_sect_indices (objfile);
722 }
723
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
732 {
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
762
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786 }
787
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791 static void
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
793 {
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
802 {
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
804
805 if (abfd != NULL)
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
814 }
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818 }
819
820 /* Initialize entry point information for this objfile. */
821
822 static void
823 init_entry_point_info (struct objfile *objfile)
824 {
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
854 }
855
856 if (ei->entry_point_p)
857 {
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
860 int found;
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
866 entry_point,
867 current_top_target ());
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
871 ei->entry_point
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
892 }
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 This function does not set the OBJFILE's entry-point info.
899
900 OBJFILE is where the symbols are to be read from.
901
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911
912 ADD_FLAGS encodes verbosity level, whether this is main symbol or
913 an extra symbol file such as dynamically loaded code, and wether
914 breakpoint reset should be deferred. */
915
916 static void
917 syms_from_objfile_1 (struct objfile *objfile,
918 section_addr_info *addrs,
919 symfile_add_flags add_flags)
920 {
921 section_addr_info local_addr;
922 struct cleanup *old_chain;
923 const int mainline = add_flags & SYMFILE_MAINLINE;
924
925 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
926
927 if (objfile->sf == NULL)
928 {
929 /* No symbols to load, but we still need to make sure
930 that the section_offsets table is allocated. */
931 int num_sections = gdb_bfd_count_sections (objfile->obfd);
932 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
933
934 objfile->num_sections = num_sections;
935 objfile->section_offsets
936 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
937 size);
938 memset (objfile->section_offsets, 0, size);
939 return;
940 }
941
942 /* Make sure that partially constructed symbol tables will be cleaned up
943 if an error occurs during symbol reading. */
944 old_chain = make_cleanup (null_cleanup, NULL);
945 std::unique_ptr<struct objfile> objfile_holder (objfile);
946
947 /* If ADDRS is NULL, put together a dummy address list.
948 We now establish the convention that an addr of zero means
949 no load address was specified. */
950 if (! addrs)
951 addrs = &local_addr;
952
953 if (mainline)
954 {
955 /* We will modify the main symbol table, make sure that all its users
956 will be cleaned up if an error occurs during symbol reading. */
957 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
958
959 /* Since no error yet, throw away the old symbol table. */
960
961 if (symfile_objfile != NULL)
962 {
963 delete symfile_objfile;
964 gdb_assert (symfile_objfile == NULL);
965 }
966
967 /* Currently we keep symbols from the add-symbol-file command.
968 If the user wants to get rid of them, they should do "symbol-file"
969 without arguments first. Not sure this is the best behavior
970 (PR 2207). */
971
972 (*objfile->sf->sym_new_init) (objfile);
973 }
974
975 /* Convert addr into an offset rather than an absolute address.
976 We find the lowest address of a loaded segment in the objfile,
977 and assume that <addr> is where that got loaded.
978
979 We no longer warn if the lowest section is not a text segment (as
980 happens for the PA64 port. */
981 if (addrs->size () > 0)
982 addr_info_make_relative (addrs, objfile->obfd);
983
984 /* Initialize symbol reading routines for this objfile, allow complaints to
985 appear for this new file, and record how verbose to be, then do the
986 initial symbol reading for this file. */
987
988 (*objfile->sf->sym_init) (objfile);
989 clear_complaints (1);
990
991 (*objfile->sf->sym_offsets) (objfile, *addrs);
992
993 read_symbols (objfile, add_flags);
994
995 /* Discard cleanups as symbol reading was successful. */
996
997 objfile_holder.release ();
998 discard_cleanups (old_chain);
999 }
1000
1001 /* Same as syms_from_objfile_1, but also initializes the objfile
1002 entry-point info. */
1003
1004 static void
1005 syms_from_objfile (struct objfile *objfile,
1006 section_addr_info *addrs,
1007 symfile_add_flags add_flags)
1008 {
1009 syms_from_objfile_1 (objfile, addrs, add_flags);
1010 init_entry_point_info (objfile);
1011 }
1012
1013 /* Perform required actions after either reading in the initial
1014 symbols for a new objfile, or mapping in the symbols from a reusable
1015 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1016
1017 static void
1018 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1019 {
1020 /* If this is the main symbol file we have to clean up all users of the
1021 old main symbol file. Otherwise it is sufficient to fixup all the
1022 breakpoints that may have been redefined by this symbol file. */
1023 if (add_flags & SYMFILE_MAINLINE)
1024 {
1025 /* OK, make it the "real" symbol file. */
1026 symfile_objfile = objfile;
1027
1028 clear_symtab_users (add_flags);
1029 }
1030 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1031 {
1032 breakpoint_re_set ();
1033 }
1034
1035 /* We're done reading the symbol file; finish off complaints. */
1036 clear_complaints (0);
1037 }
1038
1039 /* Process a symbol file, as either the main file or as a dynamically
1040 loaded file.
1041
1042 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1043 A new reference is acquired by this function.
1044
1045 For NAME description see the objfile constructor.
1046
1047 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1048 extra, such as dynamically loaded code, and what to do with breakpoins.
1049
1050 ADDRS is as described for syms_from_objfile_1, above.
1051 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1052
1053 PARENT is the original objfile if ABFD is a separate debug info file.
1054 Otherwise PARENT is NULL.
1055
1056 Upon success, returns a pointer to the objfile that was added.
1057 Upon failure, jumps back to command level (never returns). */
1058
1059 static struct objfile *
1060 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1061 symfile_add_flags add_flags,
1062 section_addr_info *addrs,
1063 objfile_flags flags, struct objfile *parent)
1064 {
1065 struct objfile *objfile;
1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
1067 const int mainline = add_flags & SYMFILE_MAINLINE;
1068 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
1071
1072 if (readnow_symbol_files)
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
1077 else if (readnever_symbol_files
1078 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1079 {
1080 flags |= OBJF_READNEVER;
1081 add_flags |= SYMFILE_NO_READ;
1082 }
1083 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1084 flags |= OBJF_NOT_FILENAME;
1085
1086 /* Give user a chance to burp if we'd be
1087 interactively wiping out any existing symbols. */
1088
1089 if ((have_full_symbols () || have_partial_symbols ())
1090 && mainline
1091 && from_tty
1092 && !query (_("Load new symbol table from \"%s\"? "), name))
1093 error (_("Not confirmed."));
1094
1095 if (mainline)
1096 flags |= OBJF_MAINLINE;
1097 objfile = new struct objfile (abfd, name, flags);
1098
1099 if (parent)
1100 add_separate_debug_objfile (objfile, parent);
1101
1102 /* We either created a new mapped symbol table, mapped an existing
1103 symbol table file which has not had initial symbol reading
1104 performed, or need to read an unmapped symbol table. */
1105 if (should_print)
1106 {
1107 if (deprecated_pre_add_symbol_hook)
1108 deprecated_pre_add_symbol_hook (name);
1109 else
1110 {
1111 printf_unfiltered (_("Reading symbols from %s..."), name);
1112 wrap_here ("");
1113 gdb_flush (gdb_stdout);
1114 }
1115 }
1116 syms_from_objfile (objfile, addrs, add_flags);
1117
1118 /* We now have at least a partial symbol table. Check to see if the
1119 user requested that all symbols be read on initial access via either
1120 the gdb startup command line or on a per symbol file basis. Expand
1121 all partial symbol tables for this objfile if so. */
1122
1123 if ((flags & OBJF_READNOW))
1124 {
1125 if (should_print)
1126 {
1127 printf_unfiltered (_("expanding to full symbols..."));
1128 wrap_here ("");
1129 gdb_flush (gdb_stdout);
1130 }
1131
1132 if (objfile->sf)
1133 objfile->sf->qf->expand_all_symtabs (objfile);
1134 }
1135
1136 if (should_print && !objfile_has_symbols (objfile))
1137 {
1138 wrap_here ("");
1139 printf_unfiltered (_("(no debugging symbols found)..."));
1140 wrap_here ("");
1141 }
1142
1143 if (should_print)
1144 {
1145 if (deprecated_post_add_symbol_hook)
1146 deprecated_post_add_symbol_hook ();
1147 else
1148 printf_unfiltered (_("done.\n"));
1149 }
1150
1151 /* We print some messages regardless of whether 'from_tty ||
1152 info_verbose' is true, so make sure they go out at the right
1153 time. */
1154 gdb_flush (gdb_stdout);
1155
1156 if (objfile->sf == NULL)
1157 {
1158 gdb::observers::new_objfile.notify (objfile);
1159 return objfile; /* No symbols. */
1160 }
1161
1162 finish_new_objfile (objfile, add_flags);
1163
1164 gdb::observers::new_objfile.notify (objfile);
1165
1166 bfd_cache_close_all ();
1167 return (objfile);
1168 }
1169
1170 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1171 see the objfile constructor. */
1172
1173 void
1174 symbol_file_add_separate (bfd *bfd, const char *name,
1175 symfile_add_flags symfile_flags,
1176 struct objfile *objfile)
1177 {
1178 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1179 because sections of BFD may not match sections of OBJFILE and because
1180 vma may have been modified by tools such as prelink. */
1181 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1182
1183 symbol_file_add_with_addrs
1184 (bfd, name, symfile_flags, &sap,
1185 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1186 | OBJF_USERLOADED),
1187 objfile);
1188 }
1189
1190 /* Process the symbol file ABFD, as either the main file or as a
1191 dynamically loaded file.
1192 See symbol_file_add_with_addrs's comments for details. */
1193
1194 struct objfile *
1195 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1196 symfile_add_flags add_flags,
1197 section_addr_info *addrs,
1198 objfile_flags flags, struct objfile *parent)
1199 {
1200 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1201 parent);
1202 }
1203
1204 /* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs's comments for details. */
1206
1207 struct objfile *
1208 symbol_file_add (const char *name, symfile_add_flags add_flags,
1209 section_addr_info *addrs, objfile_flags flags)
1210 {
1211 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1212
1213 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1214 flags, NULL);
1215 }
1216
1217 /* Call symbol_file_add() with default values and update whatever is
1218 affected by the loading of a new main().
1219 Used when the file is supplied in the gdb command line
1220 and by some targets with special loading requirements.
1221 The auxiliary function, symbol_file_add_main_1(), has the flags
1222 argument for the switches that can only be specified in the symbol_file
1223 command itself. */
1224
1225 void
1226 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1227 {
1228 symbol_file_add_main_1 (args, add_flags, 0, 0);
1229 }
1230
1231 static void
1232 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1233 objfile_flags flags, CORE_ADDR reloff)
1234 {
1235 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1236
1237 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1238 if (reloff != 0)
1239 objfile_rebase (objfile, reloff);
1240
1241 /* Getting new symbols may change our opinion about
1242 what is frameless. */
1243 reinit_frame_cache ();
1244
1245 if ((add_flags & SYMFILE_NO_READ) == 0)
1246 set_initial_language ();
1247 }
1248
1249 void
1250 symbol_file_clear (int from_tty)
1251 {
1252 if ((have_full_symbols () || have_partial_symbols ())
1253 && from_tty
1254 && (symfile_objfile
1255 ? !query (_("Discard symbol table from `%s'? "),
1256 objfile_name (symfile_objfile))
1257 : !query (_("Discard symbol table? "))))
1258 error (_("Not confirmed."));
1259
1260 /* solib descriptors may have handles to objfiles. Wipe them before their
1261 objfiles get stale by free_all_objfiles. */
1262 no_shared_libraries (NULL, from_tty);
1263
1264 free_all_objfiles ();
1265
1266 gdb_assert (symfile_objfile == NULL);
1267 if (from_tty)
1268 printf_unfiltered (_("No symbol file now.\n"));
1269 }
1270
1271 /* See symfile.h. */
1272
1273 int separate_debug_file_debug = 0;
1274
1275 static int
1276 separate_debug_file_exists (const std::string &name, unsigned long crc,
1277 struct objfile *parent_objfile)
1278 {
1279 unsigned long file_crc;
1280 int file_crc_p;
1281 struct stat parent_stat, abfd_stat;
1282 int verified_as_different;
1283
1284 /* Find a separate debug info file as if symbols would be present in
1285 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1286 section can contain just the basename of PARENT_OBJFILE without any
1287 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1288 the separate debug infos with the same basename can exist. */
1289
1290 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1291 return 0;
1292
1293 if (separate_debug_file_debug)
1294 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
1295
1296 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1297
1298 if (abfd == NULL)
1299 return 0;
1300
1301 /* Verify symlinks were not the cause of filename_cmp name difference above.
1302
1303 Some operating systems, e.g. Windows, do not provide a meaningful
1304 st_ino; they always set it to zero. (Windows does provide a
1305 meaningful st_dev.) Files accessed from gdbservers that do not
1306 support the vFile:fstat packet will also have st_ino set to zero.
1307 Do not indicate a duplicate library in either case. While there
1308 is no guarantee that a system that provides meaningful inode
1309 numbers will never set st_ino to zero, this is merely an
1310 optimization, so we do not need to worry about false negatives. */
1311
1312 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1313 && abfd_stat.st_ino != 0
1314 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1315 {
1316 if (abfd_stat.st_dev == parent_stat.st_dev
1317 && abfd_stat.st_ino == parent_stat.st_ino)
1318 return 0;
1319 verified_as_different = 1;
1320 }
1321 else
1322 verified_as_different = 0;
1323
1324 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1325
1326 if (!file_crc_p)
1327 return 0;
1328
1329 if (crc != file_crc)
1330 {
1331 unsigned long parent_crc;
1332
1333 /* If the files could not be verified as different with
1334 bfd_stat then we need to calculate the parent's CRC
1335 to verify whether the files are different or not. */
1336
1337 if (!verified_as_different)
1338 {
1339 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1340 return 0;
1341 }
1342
1343 if (verified_as_different || parent_crc != file_crc)
1344 warning (_("the debug information found in \"%s\""
1345 " does not match \"%s\" (CRC mismatch).\n"),
1346 name.c_str (), objfile_name (parent_objfile));
1347
1348 return 0;
1349 }
1350
1351 return 1;
1352 }
1353
1354 char *debug_file_directory = NULL;
1355 static void
1356 show_debug_file_directory (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file,
1360 _("The directory where separate debug "
1361 "symbols are searched for is \"%s\".\n"),
1362 value);
1363 }
1364
1365 #if ! defined (DEBUG_SUBDIRECTORY)
1366 #define DEBUG_SUBDIRECTORY ".debug"
1367 #endif
1368
1369 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1370 where the original file resides (may not be the same as
1371 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1372 looking for. CANON_DIR is the "realpath" form of DIR.
1373 DIR must contain a trailing '/'.
1374 Returns the path of the file with separate debug info, or an empty
1375 string. */
1376
1377 static std::string
1378 find_separate_debug_file (const char *dir,
1379 const char *canon_dir,
1380 const char *debuglink,
1381 unsigned long crc32, struct objfile *objfile)
1382 {
1383 if (separate_debug_file_debug)
1384 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1385 "%s\n"), objfile_name (objfile));
1386
1387 /* First try in the same directory as the original file. */
1388 std::string debugfile = dir;
1389 debugfile += debuglink;
1390
1391 if (separate_debug_file_exists (debugfile, crc32, objfile))
1392 return debugfile;
1393
1394 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1395 debugfile = dir;
1396 debugfile += DEBUG_SUBDIRECTORY;
1397 debugfile += "/";
1398 debugfile += debuglink;
1399
1400 if (separate_debug_file_exists (debugfile, crc32, objfile))
1401 return debugfile;
1402
1403 /* Then try in the global debugfile directories.
1404
1405 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1406 cause "/..." lookups. */
1407
1408 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1409 = dirnames_to_char_ptr_vec (debug_file_directory);
1410
1411 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1412 {
1413 debugfile = debugdir.get ();
1414 debugfile += "/";
1415 debugfile += dir;
1416 debugfile += debuglink;
1417
1418 if (separate_debug_file_exists (debugfile, crc32, objfile))
1419 return debugfile;
1420
1421 /* If the file is in the sysroot, try using its base path in the
1422 global debugfile directory. */
1423 if (canon_dir != NULL
1424 && filename_ncmp (canon_dir, gdb_sysroot,
1425 strlen (gdb_sysroot)) == 0
1426 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1427 {
1428 debugfile = debugdir.get ();
1429 debugfile += (canon_dir + strlen (gdb_sysroot));
1430 debugfile += "/";
1431 debugfile += debuglink;
1432
1433 if (separate_debug_file_exists (debugfile, crc32, objfile))
1434 return debugfile;
1435 }
1436 }
1437
1438 return std::string ();
1439 }
1440
1441 /* Modify PATH to contain only "[/]directory/" part of PATH.
1442 If there were no directory separators in PATH, PATH will be empty
1443 string on return. */
1444
1445 static void
1446 terminate_after_last_dir_separator (char *path)
1447 {
1448 int i;
1449
1450 /* Strip off the final filename part, leaving the directory name,
1451 followed by a slash. The directory can be relative or absolute. */
1452 for (i = strlen(path) - 1; i >= 0; i--)
1453 if (IS_DIR_SEPARATOR (path[i]))
1454 break;
1455
1456 /* If I is -1 then no directory is present there and DIR will be "". */
1457 path[i + 1] = '\0';
1458 }
1459
1460 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1461 Returns pathname, or an empty string. */
1462
1463 std::string
1464 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1465 {
1466 unsigned long crc32;
1467
1468 gdb::unique_xmalloc_ptr<char> debuglink
1469 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1470
1471 if (debuglink == NULL)
1472 {
1473 /* There's no separate debug info, hence there's no way we could
1474 load it => no warning. */
1475 return std::string ();
1476 }
1477
1478 std::string dir = objfile_name (objfile);
1479 terminate_after_last_dir_separator (&dir[0]);
1480 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1481
1482 std::string debugfile
1483 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1484 debuglink.get (), crc32, objfile);
1485
1486 if (debugfile.empty ())
1487 {
1488 /* For PR gdb/9538, try again with realpath (if different from the
1489 original). */
1490
1491 struct stat st_buf;
1492
1493 if (lstat (objfile_name (objfile), &st_buf) == 0
1494 && S_ISLNK (st_buf.st_mode))
1495 {
1496 gdb::unique_xmalloc_ptr<char> symlink_dir
1497 (lrealpath (objfile_name (objfile)));
1498 if (symlink_dir != NULL)
1499 {
1500 terminate_after_last_dir_separator (symlink_dir.get ());
1501 if (dir != symlink_dir.get ())
1502 {
1503 /* Different directory, so try using it. */
1504 debugfile = find_separate_debug_file (symlink_dir.get (),
1505 symlink_dir.get (),
1506 debuglink.get (),
1507 crc32,
1508 objfile);
1509 }
1510 }
1511 }
1512 }
1513
1514 return debugfile;
1515 }
1516
1517 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1518 simultaneously. */
1519
1520 static void
1521 validate_readnow_readnever (objfile_flags flags)
1522 {
1523 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1524 error (_("-readnow and -readnever cannot be used simultaneously"));
1525 }
1526
1527 /* This is the symbol-file command. Read the file, analyze its
1528 symbols, and add a struct symtab to a symtab list. The syntax of
1529 the command is rather bizarre:
1530
1531 1. The function buildargv implements various quoting conventions
1532 which are undocumented and have little or nothing in common with
1533 the way things are quoted (or not quoted) elsewhere in GDB.
1534
1535 2. Options are used, which are not generally used in GDB (perhaps
1536 "set mapped on", "set readnow on" would be better)
1537
1538 3. The order of options matters, which is contrary to GNU
1539 conventions (because it is confusing and inconvenient). */
1540
1541 void
1542 symbol_file_command (const char *args, int from_tty)
1543 {
1544 dont_repeat ();
1545
1546 if (args == NULL)
1547 {
1548 symbol_file_clear (from_tty);
1549 }
1550 else
1551 {
1552 objfile_flags flags = OBJF_USERLOADED;
1553 symfile_add_flags add_flags = 0;
1554 char *name = NULL;
1555 bool stop_processing_options = false;
1556 CORE_ADDR offset = 0;
1557 int idx;
1558 char *arg;
1559
1560 if (from_tty)
1561 add_flags |= SYMFILE_VERBOSE;
1562
1563 gdb_argv built_argv (args);
1564 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1565 {
1566 if (stop_processing_options || *arg != '-')
1567 {
1568 if (name == NULL)
1569 name = arg;
1570 else
1571 error (_("Unrecognized argument \"%s\""), arg);
1572 }
1573 else if (strcmp (arg, "-readnow") == 0)
1574 flags |= OBJF_READNOW;
1575 else if (strcmp (arg, "-readnever") == 0)
1576 flags |= OBJF_READNEVER;
1577 else if (strcmp (arg, "-o") == 0)
1578 {
1579 arg = built_argv[++idx];
1580 if (arg == NULL)
1581 error (_("Missing argument to -o"));
1582
1583 offset = parse_and_eval_address (arg);
1584 }
1585 else if (strcmp (arg, "--") == 0)
1586 stop_processing_options = true;
1587 else
1588 error (_("Unrecognized argument \"%s\""), arg);
1589 }
1590
1591 if (name == NULL)
1592 error (_("no symbol file name was specified"));
1593
1594 validate_readnow_readnever (flags);
1595
1596 symbol_file_add_main_1 (name, add_flags, flags, offset);
1597 }
1598 }
1599
1600 /* Set the initial language.
1601
1602 FIXME: A better solution would be to record the language in the
1603 psymtab when reading partial symbols, and then use it (if known) to
1604 set the language. This would be a win for formats that encode the
1605 language in an easily discoverable place, such as DWARF. For
1606 stabs, we can jump through hoops looking for specially named
1607 symbols or try to intuit the language from the specific type of
1608 stabs we find, but we can't do that until later when we read in
1609 full symbols. */
1610
1611 void
1612 set_initial_language (void)
1613 {
1614 enum language lang = main_language ();
1615
1616 if (lang == language_unknown)
1617 {
1618 char *name = main_name ();
1619 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1620
1621 if (sym != NULL)
1622 lang = SYMBOL_LANGUAGE (sym);
1623 }
1624
1625 if (lang == language_unknown)
1626 {
1627 /* Make C the default language */
1628 lang = language_c;
1629 }
1630
1631 set_language (lang);
1632 expected_language = current_language; /* Don't warn the user. */
1633 }
1634
1635 /* Open the file specified by NAME and hand it off to BFD for
1636 preliminary analysis. Return a newly initialized bfd *, which
1637 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1638 absolute). In case of trouble, error() is called. */
1639
1640 gdb_bfd_ref_ptr
1641 symfile_bfd_open (const char *name)
1642 {
1643 int desc = -1;
1644
1645 gdb::unique_xmalloc_ptr<char> absolute_name;
1646 if (!is_target_filename (name))
1647 {
1648 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1649
1650 /* Look down path for it, allocate 2nd new malloc'd copy. */
1651 desc = openp (getenv ("PATH"),
1652 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1653 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1654 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1655 if (desc < 0)
1656 {
1657 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1658
1659 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1660 desc = openp (getenv ("PATH"),
1661 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1662 exename, O_RDONLY | O_BINARY, &absolute_name);
1663 }
1664 #endif
1665 if (desc < 0)
1666 perror_with_name (expanded_name.get ());
1667
1668 name = absolute_name.get ();
1669 }
1670
1671 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1672 if (sym_bfd == NULL)
1673 error (_("`%s': can't open to read symbols: %s."), name,
1674 bfd_errmsg (bfd_get_error ()));
1675
1676 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1677 bfd_set_cacheable (sym_bfd.get (), 1);
1678
1679 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1680 error (_("`%s': can't read symbols: %s."), name,
1681 bfd_errmsg (bfd_get_error ()));
1682
1683 return sym_bfd;
1684 }
1685
1686 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1687 the section was not found. */
1688
1689 int
1690 get_section_index (struct objfile *objfile, const char *section_name)
1691 {
1692 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1693
1694 if (sect)
1695 return sect->index;
1696 else
1697 return -1;
1698 }
1699
1700 /* Link SF into the global symtab_fns list.
1701 FLAVOUR is the file format that SF handles.
1702 Called on startup by the _initialize routine in each object file format
1703 reader, to register information about each format the reader is prepared
1704 to handle. */
1705
1706 void
1707 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1708 {
1709 symtab_fns.emplace_back (flavour, sf);
1710 }
1711
1712 /* Initialize OBJFILE to read symbols from its associated BFD. It
1713 either returns or calls error(). The result is an initialized
1714 struct sym_fns in the objfile structure, that contains cached
1715 information about the symbol file. */
1716
1717 static const struct sym_fns *
1718 find_sym_fns (bfd *abfd)
1719 {
1720 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1721
1722 if (our_flavour == bfd_target_srec_flavour
1723 || our_flavour == bfd_target_ihex_flavour
1724 || our_flavour == bfd_target_tekhex_flavour)
1725 return NULL; /* No symbols. */
1726
1727 for (const registered_sym_fns &rsf : symtab_fns)
1728 if (our_flavour == rsf.sym_flavour)
1729 return rsf.sym_fns;
1730
1731 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1732 bfd_get_target (abfd));
1733 }
1734 \f
1735
1736 /* This function runs the load command of our current target. */
1737
1738 static void
1739 load_command (const char *arg, int from_tty)
1740 {
1741 dont_repeat ();
1742
1743 /* The user might be reloading because the binary has changed. Take
1744 this opportunity to check. */
1745 reopen_exec_file ();
1746 reread_symbols ();
1747
1748 std::string temp;
1749 if (arg == NULL)
1750 {
1751 const char *parg, *prev;
1752
1753 arg = get_exec_file (1);
1754
1755 /* We may need to quote this string so buildargv can pull it
1756 apart. */
1757 prev = parg = arg;
1758 while ((parg = strpbrk (parg, "\\\"'\t ")))
1759 {
1760 temp.append (prev, parg - prev);
1761 prev = parg++;
1762 temp.push_back ('\\');
1763 }
1764 /* If we have not copied anything yet, then we didn't see a
1765 character to quote, and we can just leave ARG unchanged. */
1766 if (!temp.empty ())
1767 {
1768 temp.append (prev);
1769 arg = temp.c_str ();
1770 }
1771 }
1772
1773 target_load (arg, from_tty);
1774
1775 /* After re-loading the executable, we don't really know which
1776 overlays are mapped any more. */
1777 overlay_cache_invalid = 1;
1778 }
1779
1780 /* This version of "load" should be usable for any target. Currently
1781 it is just used for remote targets, not inftarg.c or core files,
1782 on the theory that only in that case is it useful.
1783
1784 Avoiding xmodem and the like seems like a win (a) because we don't have
1785 to worry about finding it, and (b) On VMS, fork() is very slow and so
1786 we don't want to run a subprocess. On the other hand, I'm not sure how
1787 performance compares. */
1788
1789 static int validate_download = 0;
1790
1791 /* Callback service function for generic_load (bfd_map_over_sections). */
1792
1793 static void
1794 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1795 {
1796 bfd_size_type *sum = (bfd_size_type *) data;
1797
1798 *sum += bfd_get_section_size (asec);
1799 }
1800
1801 /* Opaque data for load_progress. */
1802 struct load_progress_data
1803 {
1804 /* Cumulative data. */
1805 unsigned long write_count = 0;
1806 unsigned long data_count = 0;
1807 bfd_size_type total_size = 0;
1808 };
1809
1810 /* Opaque data for load_progress for a single section. */
1811 struct load_progress_section_data
1812 {
1813 load_progress_section_data (load_progress_data *cumulative_,
1814 const char *section_name_, ULONGEST section_size_,
1815 CORE_ADDR lma_, gdb_byte *buffer_)
1816 : cumulative (cumulative_), section_name (section_name_),
1817 section_size (section_size_), lma (lma_), buffer (buffer_)
1818 {}
1819
1820 struct load_progress_data *cumulative;
1821
1822 /* Per-section data. */
1823 const char *section_name;
1824 ULONGEST section_sent = 0;
1825 ULONGEST section_size;
1826 CORE_ADDR lma;
1827 gdb_byte *buffer;
1828 };
1829
1830 /* Opaque data for load_section_callback. */
1831 struct load_section_data
1832 {
1833 load_section_data (load_progress_data *progress_data_)
1834 : progress_data (progress_data_)
1835 {}
1836
1837 ~load_section_data ()
1838 {
1839 for (auto &&request : requests)
1840 {
1841 xfree (request.data);
1842 delete ((load_progress_section_data *) request.baton);
1843 }
1844 }
1845
1846 CORE_ADDR load_offset = 0;
1847 struct load_progress_data *progress_data;
1848 std::vector<struct memory_write_request> requests;
1849 };
1850
1851 /* Target write callback routine for progress reporting. */
1852
1853 static void
1854 load_progress (ULONGEST bytes, void *untyped_arg)
1855 {
1856 struct load_progress_section_data *args
1857 = (struct load_progress_section_data *) untyped_arg;
1858 struct load_progress_data *totals;
1859
1860 if (args == NULL)
1861 /* Writing padding data. No easy way to get at the cumulative
1862 stats, so just ignore this. */
1863 return;
1864
1865 totals = args->cumulative;
1866
1867 if (bytes == 0 && args->section_sent == 0)
1868 {
1869 /* The write is just starting. Let the user know we've started
1870 this section. */
1871 current_uiout->message ("Loading section %s, size %s lma %s\n",
1872 args->section_name,
1873 hex_string (args->section_size),
1874 paddress (target_gdbarch (), args->lma));
1875 return;
1876 }
1877
1878 if (validate_download)
1879 {
1880 /* Broken memories and broken monitors manifest themselves here
1881 when bring new computers to life. This doubles already slow
1882 downloads. */
1883 /* NOTE: cagney/1999-10-18: A more efficient implementation
1884 might add a verify_memory() method to the target vector and
1885 then use that. remote.c could implement that method using
1886 the ``qCRC'' packet. */
1887 gdb::byte_vector check (bytes);
1888
1889 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1890 error (_("Download verify read failed at %s"),
1891 paddress (target_gdbarch (), args->lma));
1892 if (memcmp (args->buffer, check.data (), bytes) != 0)
1893 error (_("Download verify compare failed at %s"),
1894 paddress (target_gdbarch (), args->lma));
1895 }
1896 totals->data_count += bytes;
1897 args->lma += bytes;
1898 args->buffer += bytes;
1899 totals->write_count += 1;
1900 args->section_sent += bytes;
1901 if (check_quit_flag ()
1902 || (deprecated_ui_load_progress_hook != NULL
1903 && deprecated_ui_load_progress_hook (args->section_name,
1904 args->section_sent)))
1905 error (_("Canceled the download"));
1906
1907 if (deprecated_show_load_progress != NULL)
1908 deprecated_show_load_progress (args->section_name,
1909 args->section_sent,
1910 args->section_size,
1911 totals->data_count,
1912 totals->total_size);
1913 }
1914
1915 /* Callback service function for generic_load (bfd_map_over_sections). */
1916
1917 static void
1918 load_section_callback (bfd *abfd, asection *asec, void *data)
1919 {
1920 struct load_section_data *args = (struct load_section_data *) data;
1921 bfd_size_type size = bfd_get_section_size (asec);
1922 const char *sect_name = bfd_get_section_name (abfd, asec);
1923
1924 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1925 return;
1926
1927 if (size == 0)
1928 return;
1929
1930 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1931 ULONGEST end = begin + size;
1932 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1933 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1934
1935 load_progress_section_data *section_data
1936 = new load_progress_section_data (args->progress_data, sect_name, size,
1937 begin, buffer);
1938
1939 args->requests.emplace_back (begin, end, buffer, section_data);
1940 }
1941
1942 static void print_transfer_performance (struct ui_file *stream,
1943 unsigned long data_count,
1944 unsigned long write_count,
1945 std::chrono::steady_clock::duration d);
1946
1947 void
1948 generic_load (const char *args, int from_tty)
1949 {
1950 struct load_progress_data total_progress;
1951 struct load_section_data cbdata (&total_progress);
1952 struct ui_out *uiout = current_uiout;
1953
1954 if (args == NULL)
1955 error_no_arg (_("file to load"));
1956
1957 gdb_argv argv (args);
1958
1959 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1960
1961 if (argv[1] != NULL)
1962 {
1963 const char *endptr;
1964
1965 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1966
1967 /* If the last word was not a valid number then
1968 treat it as a file name with spaces in. */
1969 if (argv[1] == endptr)
1970 error (_("Invalid download offset:%s."), argv[1]);
1971
1972 if (argv[2] != NULL)
1973 error (_("Too many parameters."));
1974 }
1975
1976 /* Open the file for loading. */
1977 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1978 if (loadfile_bfd == NULL)
1979 perror_with_name (filename.get ());
1980
1981 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1982 {
1983 error (_("\"%s\" is not an object file: %s"), filename.get (),
1984 bfd_errmsg (bfd_get_error ()));
1985 }
1986
1987 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1988 (void *) &total_progress.total_size);
1989
1990 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1991
1992 using namespace std::chrono;
1993
1994 steady_clock::time_point start_time = steady_clock::now ();
1995
1996 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1997 load_progress) != 0)
1998 error (_("Load failed"));
1999
2000 steady_clock::time_point end_time = steady_clock::now ();
2001
2002 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2003 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2004 uiout->text ("Start address ");
2005 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2006 uiout->text (", load size ");
2007 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2008 uiout->text ("\n");
2009 regcache_write_pc (get_current_regcache (), entry);
2010
2011 /* Reset breakpoints, now that we have changed the load image. For
2012 instance, breakpoints may have been set (or reset, by
2013 post_create_inferior) while connected to the target but before we
2014 loaded the program. In that case, the prologue analyzer could
2015 have read instructions from the target to find the right
2016 breakpoint locations. Loading has changed the contents of that
2017 memory. */
2018
2019 breakpoint_re_set ();
2020
2021 print_transfer_performance (gdb_stdout, total_progress.data_count,
2022 total_progress.write_count,
2023 end_time - start_time);
2024 }
2025
2026 /* Report on STREAM the performance of a memory transfer operation,
2027 such as 'load'. DATA_COUNT is the number of bytes transferred.
2028 WRITE_COUNT is the number of separate write operations, or 0, if
2029 that information is not available. TIME is how long the operation
2030 lasted. */
2031
2032 static void
2033 print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 std::chrono::steady_clock::duration time)
2037 {
2038 using namespace std::chrono;
2039 struct ui_out *uiout = current_uiout;
2040
2041 milliseconds ms = duration_cast<milliseconds> (time);
2042
2043 uiout->text ("Transfer rate: ");
2044 if (ms.count () > 0)
2045 {
2046 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2047
2048 if (uiout->is_mi_like_p ())
2049 {
2050 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2051 uiout->text (" bits/sec");
2052 }
2053 else if (rate < 1024)
2054 {
2055 uiout->field_fmt ("transfer-rate", "%lu", rate);
2056 uiout->text (" bytes/sec");
2057 }
2058 else
2059 {
2060 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2061 uiout->text (" KB/sec");
2062 }
2063 }
2064 else
2065 {
2066 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2067 uiout->text (" bits in <1 sec");
2068 }
2069 if (write_count > 0)
2070 {
2071 uiout->text (", ");
2072 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2073 uiout->text (" bytes/write");
2074 }
2075 uiout->text (".\n");
2076 }
2077
2078 /* This function allows the addition of incrementally linked object files.
2079 It does not modify any state in the target, only in the debugger. */
2080 /* Note: ezannoni 2000-04-13 This function/command used to have a
2081 special case syntax for the rombug target (Rombug is the boot
2082 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2083 rombug case, the user doesn't need to supply a text address,
2084 instead a call to target_link() (in target.c) would supply the
2085 value to use. We are now discontinuing this type of ad hoc syntax. */
2086
2087 static void
2088 add_symbol_file_command (const char *args, int from_tty)
2089 {
2090 struct gdbarch *gdbarch = get_current_arch ();
2091 gdb::unique_xmalloc_ptr<char> filename;
2092 char *arg;
2093 int argcnt = 0;
2094 struct objfile *objf;
2095 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2096 symfile_add_flags add_flags = 0;
2097
2098 if (from_tty)
2099 add_flags |= SYMFILE_VERBOSE;
2100
2101 struct sect_opt
2102 {
2103 const char *name;
2104 const char *value;
2105 };
2106
2107 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2108 bool stop_processing_options = false;
2109
2110 dont_repeat ();
2111
2112 if (args == NULL)
2113 error (_("add-symbol-file takes a file name and an address"));
2114
2115 bool seen_addr = false;
2116 gdb_argv argv (args);
2117
2118 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2119 {
2120 if (stop_processing_options || *arg != '-')
2121 {
2122 if (filename == NULL)
2123 {
2124 /* First non-option argument is always the filename. */
2125 filename.reset (tilde_expand (arg));
2126 }
2127 else if (!seen_addr)
2128 {
2129 /* The second non-option argument is always the text
2130 address at which to load the program. */
2131 sect_opts[0].value = arg;
2132 seen_addr = true;
2133 }
2134 else
2135 error (_("Unrecognized argument \"%s\""), arg);
2136 }
2137 else if (strcmp (arg, "-readnow") == 0)
2138 flags |= OBJF_READNOW;
2139 else if (strcmp (arg, "-readnever") == 0)
2140 flags |= OBJF_READNEVER;
2141 else if (strcmp (arg, "-s") == 0)
2142 {
2143 if (argv[argcnt + 1] == NULL)
2144 error (_("Missing section name after \"-s\""));
2145 else if (argv[argcnt + 2] == NULL)
2146 error (_("Missing section address after \"-s\""));
2147
2148 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2149
2150 sect_opts.push_back (sect);
2151 argcnt += 2;
2152 }
2153 else if (strcmp (arg, "--") == 0)
2154 stop_processing_options = true;
2155 else
2156 error (_("Unrecognized argument \"%s\""), arg);
2157 }
2158
2159 if (filename == NULL)
2160 error (_("You must provide a filename to be loaded."));
2161
2162 validate_readnow_readnever (flags);
2163
2164 /* Print the prompt for the query below. And save the arguments into
2165 a sect_addr_info structure to be passed around to other
2166 functions. We have to split this up into separate print
2167 statements because hex_string returns a local static
2168 string. */
2169
2170 printf_unfiltered (_("add symbol table from file \"%s\""),
2171 filename.get ());
2172 section_addr_info section_addrs;
2173 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2174 if (!seen_addr)
2175 ++it;
2176 for (; it != sect_opts.end (); ++it)
2177 {
2178 CORE_ADDR addr;
2179 const char *val = it->value;
2180 const char *sec = it->name;
2181
2182 if (section_addrs.empty ())
2183 printf_unfiltered (_(" at\n"));
2184 addr = parse_and_eval_address (val);
2185
2186 /* Here we store the section offsets in the order they were
2187 entered on the command line. */
2188 section_addrs.emplace_back (addr, sec, 0);
2189 printf_unfiltered ("\t%s_addr = %s\n", sec,
2190 paddress (gdbarch, addr));
2191
2192 /* The object's sections are initialized when a
2193 call is made to build_objfile_section_table (objfile).
2194 This happens in reread_symbols.
2195 At this point, we don't know what file type this is,
2196 so we can't determine what section names are valid. */
2197 }
2198 if (section_addrs.empty ())
2199 printf_unfiltered ("\n");
2200
2201 if (from_tty && (!query ("%s", "")))
2202 error (_("Not confirmed."));
2203
2204 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2205 flags);
2206
2207 add_target_sections_of_objfile (objf);
2208
2209 /* Getting new symbols may change our opinion about what is
2210 frameless. */
2211 reinit_frame_cache ();
2212 }
2213 \f
2214
2215 /* This function removes a symbol file that was added via add-symbol-file. */
2216
2217 static void
2218 remove_symbol_file_command (const char *args, int from_tty)
2219 {
2220 struct objfile *objf = NULL;
2221 struct program_space *pspace = current_program_space;
2222
2223 dont_repeat ();
2224
2225 if (args == NULL)
2226 error (_("remove-symbol-file: no symbol file provided"));
2227
2228 gdb_argv argv (args);
2229
2230 if (strcmp (argv[0], "-a") == 0)
2231 {
2232 /* Interpret the next argument as an address. */
2233 CORE_ADDR addr;
2234
2235 if (argv[1] == NULL)
2236 error (_("Missing address argument"));
2237
2238 if (argv[2] != NULL)
2239 error (_("Junk after %s"), argv[1]);
2240
2241 addr = parse_and_eval_address (argv[1]);
2242
2243 ALL_OBJFILES (objf)
2244 {
2245 if ((objf->flags & OBJF_USERLOADED) != 0
2246 && (objf->flags & OBJF_SHARED) != 0
2247 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2248 break;
2249 }
2250 }
2251 else if (argv[0] != NULL)
2252 {
2253 /* Interpret the current argument as a file name. */
2254
2255 if (argv[1] != NULL)
2256 error (_("Junk after %s"), argv[0]);
2257
2258 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2259
2260 ALL_OBJFILES (objf)
2261 {
2262 if ((objf->flags & OBJF_USERLOADED) != 0
2263 && (objf->flags & OBJF_SHARED) != 0
2264 && objf->pspace == pspace
2265 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2266 break;
2267 }
2268 }
2269
2270 if (objf == NULL)
2271 error (_("No symbol file found"));
2272
2273 if (from_tty
2274 && !query (_("Remove symbol table from file \"%s\"? "),
2275 objfile_name (objf)))
2276 error (_("Not confirmed."));
2277
2278 delete objf;
2279 clear_symtab_users (0);
2280 }
2281
2282 /* Re-read symbols if a symbol-file has changed. */
2283
2284 void
2285 reread_symbols (void)
2286 {
2287 struct objfile *objfile;
2288 long new_modtime;
2289 struct stat new_statbuf;
2290 int res;
2291 std::vector<struct objfile *> new_objfiles;
2292
2293 /* With the addition of shared libraries, this should be modified,
2294 the load time should be saved in the partial symbol tables, since
2295 different tables may come from different source files. FIXME.
2296 This routine should then walk down each partial symbol table
2297 and see if the symbol table that it originates from has been changed. */
2298
2299 for (objfile = object_files; objfile; objfile = objfile->next)
2300 {
2301 if (objfile->obfd == NULL)
2302 continue;
2303
2304 /* Separate debug objfiles are handled in the main objfile. */
2305 if (objfile->separate_debug_objfile_backlink)
2306 continue;
2307
2308 /* If this object is from an archive (what you usually create with
2309 `ar', often called a `static library' on most systems, though
2310 a `shared library' on AIX is also an archive), then you should
2311 stat on the archive name, not member name. */
2312 if (objfile->obfd->my_archive)
2313 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2314 else
2315 res = stat (objfile_name (objfile), &new_statbuf);
2316 if (res != 0)
2317 {
2318 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2319 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2320 objfile_name (objfile));
2321 continue;
2322 }
2323 new_modtime = new_statbuf.st_mtime;
2324 if (new_modtime != objfile->mtime)
2325 {
2326 struct cleanup *old_cleanups;
2327 struct section_offsets *offsets;
2328 int num_offsets;
2329
2330 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2331 objfile_name (objfile));
2332
2333 /* There are various functions like symbol_file_add,
2334 symfile_bfd_open, syms_from_objfile, etc., which might
2335 appear to do what we want. But they have various other
2336 effects which we *don't* want. So we just do stuff
2337 ourselves. We don't worry about mapped files (for one thing,
2338 any mapped file will be out of date). */
2339
2340 /* If we get an error, blow away this objfile (not sure if
2341 that is the correct response for things like shared
2342 libraries). */
2343 std::unique_ptr<struct objfile> objfile_holder (objfile);
2344
2345 /* We need to do this whenever any symbols go away. */
2346 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2347
2348 if (exec_bfd != NULL
2349 && filename_cmp (bfd_get_filename (objfile->obfd),
2350 bfd_get_filename (exec_bfd)) == 0)
2351 {
2352 /* Reload EXEC_BFD without asking anything. */
2353
2354 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2355 }
2356
2357 /* Keep the calls order approx. the same as in free_objfile. */
2358
2359 /* Free the separate debug objfiles. It will be
2360 automatically recreated by sym_read. */
2361 free_objfile_separate_debug (objfile);
2362
2363 /* Remove any references to this objfile in the global
2364 value lists. */
2365 preserve_values (objfile);
2366
2367 /* Nuke all the state that we will re-read. Much of the following
2368 code which sets things to NULL really is necessary to tell
2369 other parts of GDB that there is nothing currently there.
2370
2371 Try to keep the freeing order compatible with free_objfile. */
2372
2373 if (objfile->sf != NULL)
2374 {
2375 (*objfile->sf->sym_finish) (objfile);
2376 }
2377
2378 clear_objfile_data (objfile);
2379
2380 /* Clean up any state BFD has sitting around. */
2381 {
2382 gdb_bfd_ref_ptr obfd (objfile->obfd);
2383 char *obfd_filename;
2384
2385 obfd_filename = bfd_get_filename (objfile->obfd);
2386 /* Open the new BFD before freeing the old one, so that
2387 the filename remains live. */
2388 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2389 objfile->obfd = temp.release ();
2390 if (objfile->obfd == NULL)
2391 error (_("Can't open %s to read symbols."), obfd_filename);
2392 }
2393
2394 std::string original_name = objfile->original_name;
2395
2396 /* bfd_openr sets cacheable to true, which is what we want. */
2397 if (!bfd_check_format (objfile->obfd, bfd_object))
2398 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2399 bfd_errmsg (bfd_get_error ()));
2400
2401 /* Save the offsets, we will nuke them with the rest of the
2402 objfile_obstack. */
2403 num_offsets = objfile->num_sections;
2404 offsets = ((struct section_offsets *)
2405 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2406 memcpy (offsets, objfile->section_offsets,
2407 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2408
2409 /* FIXME: Do we have to free a whole linked list, or is this
2410 enough? */
2411 objfile->global_psymbols.clear ();
2412 objfile->static_psymbols.clear ();
2413
2414 /* Free the obstacks for non-reusable objfiles. */
2415 psymbol_bcache_free (objfile->psymbol_cache);
2416 objfile->psymbol_cache = psymbol_bcache_init ();
2417
2418 /* NB: after this call to obstack_free, objfiles_changed
2419 will need to be called (see discussion below). */
2420 obstack_free (&objfile->objfile_obstack, 0);
2421 objfile->sections = NULL;
2422 objfile->compunit_symtabs = NULL;
2423 objfile->psymtabs = NULL;
2424 objfile->psymtabs_addrmap = NULL;
2425 objfile->free_psymtabs = NULL;
2426 objfile->template_symbols = NULL;
2427
2428 /* obstack_init also initializes the obstack so it is
2429 empty. We could use obstack_specify_allocation but
2430 gdb_obstack.h specifies the alloc/dealloc functions. */
2431 obstack_init (&objfile->objfile_obstack);
2432
2433 /* set_objfile_per_bfd potentially allocates the per-bfd
2434 data on the objfile's obstack (if sharing data across
2435 multiple users is not possible), so it's important to
2436 do it *after* the obstack has been initialized. */
2437 set_objfile_per_bfd (objfile);
2438
2439 objfile->original_name
2440 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2441 original_name.c_str (),
2442 original_name.size ());
2443
2444 /* Reset the sym_fns pointer. The ELF reader can change it
2445 based on whether .gdb_index is present, and we need it to
2446 start over. PR symtab/15885 */
2447 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2448
2449 build_objfile_section_table (objfile);
2450 terminate_minimal_symbol_table (objfile);
2451
2452 /* We use the same section offsets as from last time. I'm not
2453 sure whether that is always correct for shared libraries. */
2454 objfile->section_offsets = (struct section_offsets *)
2455 obstack_alloc (&objfile->objfile_obstack,
2456 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2457 memcpy (objfile->section_offsets, offsets,
2458 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2459 objfile->num_sections = num_offsets;
2460
2461 /* What the hell is sym_new_init for, anyway? The concept of
2462 distinguishing between the main file and additional files
2463 in this way seems rather dubious. */
2464 if (objfile == symfile_objfile)
2465 {
2466 (*objfile->sf->sym_new_init) (objfile);
2467 }
2468
2469 (*objfile->sf->sym_init) (objfile);
2470 clear_complaints (1);
2471
2472 objfile->flags &= ~OBJF_PSYMTABS_READ;
2473
2474 /* We are about to read new symbols and potentially also
2475 DWARF information. Some targets may want to pass addresses
2476 read from DWARF DIE's through an adjustment function before
2477 saving them, like MIPS, which may call into
2478 "find_pc_section". When called, that function will make
2479 use of per-objfile program space data.
2480
2481 Since we discarded our section information above, we have
2482 dangling pointers in the per-objfile program space data
2483 structure. Force GDB to update the section mapping
2484 information by letting it know the objfile has changed,
2485 making the dangling pointers point to correct data
2486 again. */
2487
2488 objfiles_changed ();
2489
2490 read_symbols (objfile, 0);
2491
2492 if (!objfile_has_symbols (objfile))
2493 {
2494 wrap_here ("");
2495 printf_unfiltered (_("(no debugging symbols found)\n"));
2496 wrap_here ("");
2497 }
2498
2499 /* We're done reading the symbol file; finish off complaints. */
2500 clear_complaints (0);
2501
2502 /* Getting new symbols may change our opinion about what is
2503 frameless. */
2504
2505 reinit_frame_cache ();
2506
2507 /* Discard cleanups as symbol reading was successful. */
2508 objfile_holder.release ();
2509 discard_cleanups (old_cleanups);
2510
2511 /* If the mtime has changed between the time we set new_modtime
2512 and now, we *want* this to be out of date, so don't call stat
2513 again now. */
2514 objfile->mtime = new_modtime;
2515 init_entry_point_info (objfile);
2516
2517 new_objfiles.push_back (objfile);
2518 }
2519 }
2520
2521 if (!new_objfiles.empty ())
2522 {
2523 clear_symtab_users (0);
2524
2525 /* clear_objfile_data for each objfile was called before freeing it and
2526 gdb::observers::new_objfile.notify (NULL) has been called by
2527 clear_symtab_users above. Notify the new files now. */
2528 for (auto iter : new_objfiles)
2529 gdb::observers::new_objfile.notify (objfile);
2530
2531 /* At least one objfile has changed, so we can consider that
2532 the executable we're debugging has changed too. */
2533 gdb::observers::executable_changed.notify ();
2534 }
2535 }
2536 \f
2537
2538 struct filename_language
2539 {
2540 filename_language (const std::string &ext_, enum language lang_)
2541 : ext (ext_), lang (lang_)
2542 {}
2543
2544 std::string ext;
2545 enum language lang;
2546 };
2547
2548 static std::vector<filename_language> filename_language_table;
2549
2550 /* See symfile.h. */
2551
2552 void
2553 add_filename_language (const char *ext, enum language lang)
2554 {
2555 filename_language_table.emplace_back (ext, lang);
2556 }
2557
2558 static char *ext_args;
2559 static void
2560 show_ext_args (struct ui_file *file, int from_tty,
2561 struct cmd_list_element *c, const char *value)
2562 {
2563 fprintf_filtered (file,
2564 _("Mapping between filename extension "
2565 "and source language is \"%s\".\n"),
2566 value);
2567 }
2568
2569 static void
2570 set_ext_lang_command (const char *args,
2571 int from_tty, struct cmd_list_element *e)
2572 {
2573 char *cp = ext_args;
2574 enum language lang;
2575
2576 /* First arg is filename extension, starting with '.' */
2577 if (*cp != '.')
2578 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2579
2580 /* Find end of first arg. */
2581 while (*cp && !isspace (*cp))
2582 cp++;
2583
2584 if (*cp == '\0')
2585 error (_("'%s': two arguments required -- "
2586 "filename extension and language"),
2587 ext_args);
2588
2589 /* Null-terminate first arg. */
2590 *cp++ = '\0';
2591
2592 /* Find beginning of second arg, which should be a source language. */
2593 cp = skip_spaces (cp);
2594
2595 if (*cp == '\0')
2596 error (_("'%s': two arguments required -- "
2597 "filename extension and language"),
2598 ext_args);
2599
2600 /* Lookup the language from among those we know. */
2601 lang = language_enum (cp);
2602
2603 auto it = filename_language_table.begin ();
2604 /* Now lookup the filename extension: do we already know it? */
2605 for (; it != filename_language_table.end (); it++)
2606 {
2607 if (it->ext == ext_args)
2608 break;
2609 }
2610
2611 if (it == filename_language_table.end ())
2612 {
2613 /* New file extension. */
2614 add_filename_language (ext_args, lang);
2615 }
2616 else
2617 {
2618 /* Redefining a previously known filename extension. */
2619
2620 /* if (from_tty) */
2621 /* query ("Really make files of type %s '%s'?", */
2622 /* ext_args, language_str (lang)); */
2623
2624 it->lang = lang;
2625 }
2626 }
2627
2628 static void
2629 info_ext_lang_command (const char *args, int from_tty)
2630 {
2631 printf_filtered (_("Filename extensions and the languages they represent:"));
2632 printf_filtered ("\n\n");
2633 for (const filename_language &entry : filename_language_table)
2634 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2635 language_str (entry.lang));
2636 }
2637
2638 enum language
2639 deduce_language_from_filename (const char *filename)
2640 {
2641 const char *cp;
2642
2643 if (filename != NULL)
2644 if ((cp = strrchr (filename, '.')) != NULL)
2645 {
2646 for (const filename_language &entry : filename_language_table)
2647 if (entry.ext == cp)
2648 return entry.lang;
2649 }
2650
2651 return language_unknown;
2652 }
2653 \f
2654 /* Allocate and initialize a new symbol table.
2655 CUST is from the result of allocate_compunit_symtab. */
2656
2657 struct symtab *
2658 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2659 {
2660 struct objfile *objfile = cust->objfile;
2661 struct symtab *symtab
2662 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2663
2664 symtab->filename
2665 = (const char *) bcache (filename, strlen (filename) + 1,
2666 objfile->per_bfd->filename_cache);
2667 symtab->fullname = NULL;
2668 symtab->language = deduce_language_from_filename (filename);
2669
2670 /* This can be very verbose with lots of headers.
2671 Only print at higher debug levels. */
2672 if (symtab_create_debug >= 2)
2673 {
2674 /* Be a bit clever with debugging messages, and don't print objfile
2675 every time, only when it changes. */
2676 static char *last_objfile_name = NULL;
2677
2678 if (last_objfile_name == NULL
2679 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2680 {
2681 xfree (last_objfile_name);
2682 last_objfile_name = xstrdup (objfile_name (objfile));
2683 fprintf_unfiltered (gdb_stdlog,
2684 "Creating one or more symtabs for objfile %s ...\n",
2685 last_objfile_name);
2686 }
2687 fprintf_unfiltered (gdb_stdlog,
2688 "Created symtab %s for module %s.\n",
2689 host_address_to_string (symtab), filename);
2690 }
2691
2692 /* Add it to CUST's list of symtabs. */
2693 if (cust->filetabs == NULL)
2694 {
2695 cust->filetabs = symtab;
2696 cust->last_filetab = symtab;
2697 }
2698 else
2699 {
2700 cust->last_filetab->next = symtab;
2701 cust->last_filetab = symtab;
2702 }
2703
2704 /* Backlink to the containing compunit symtab. */
2705 symtab->compunit_symtab = cust;
2706
2707 return symtab;
2708 }
2709
2710 /* Allocate and initialize a new compunit.
2711 NAME is the name of the main source file, if there is one, or some
2712 descriptive text if there are no source files. */
2713
2714 struct compunit_symtab *
2715 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2716 {
2717 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2718 struct compunit_symtab);
2719 const char *saved_name;
2720
2721 cu->objfile = objfile;
2722
2723 /* The name we record here is only for display/debugging purposes.
2724 Just save the basename to avoid path issues (too long for display,
2725 relative vs absolute, etc.). */
2726 saved_name = lbasename (name);
2727 cu->name
2728 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2729 strlen (saved_name));
2730
2731 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2732
2733 if (symtab_create_debug)
2734 {
2735 fprintf_unfiltered (gdb_stdlog,
2736 "Created compunit symtab %s for %s.\n",
2737 host_address_to_string (cu),
2738 cu->name);
2739 }
2740
2741 return cu;
2742 }
2743
2744 /* Hook CU to the objfile it comes from. */
2745
2746 void
2747 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2748 {
2749 cu->next = cu->objfile->compunit_symtabs;
2750 cu->objfile->compunit_symtabs = cu;
2751 }
2752 \f
2753
2754 /* Reset all data structures in gdb which may contain references to
2755 symbol table data. */
2756
2757 void
2758 clear_symtab_users (symfile_add_flags add_flags)
2759 {
2760 /* Someday, we should do better than this, by only blowing away
2761 the things that really need to be blown. */
2762
2763 /* Clear the "current" symtab first, because it is no longer valid.
2764 breakpoint_re_set may try to access the current symtab. */
2765 clear_current_source_symtab_and_line ();
2766
2767 clear_displays ();
2768 clear_last_displayed_sal ();
2769 clear_pc_function_cache ();
2770 gdb::observers::new_objfile.notify (NULL);
2771
2772 /* Clear globals which might have pointed into a removed objfile.
2773 FIXME: It's not clear which of these are supposed to persist
2774 between expressions and which ought to be reset each time. */
2775 expression_context_block = NULL;
2776 innermost_block.reset ();
2777
2778 /* Varobj may refer to old symbols, perform a cleanup. */
2779 varobj_invalidate ();
2780
2781 /* Now that the various caches have been cleared, we can re_set
2782 our breakpoints without risking it using stale data. */
2783 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2784 breakpoint_re_set ();
2785 }
2786
2787 static void
2788 clear_symtab_users_cleanup (void *ignore)
2789 {
2790 clear_symtab_users (0);
2791 }
2792 \f
2793 /* OVERLAYS:
2794 The following code implements an abstraction for debugging overlay sections.
2795
2796 The target model is as follows:
2797 1) The gnu linker will permit multiple sections to be mapped into the
2798 same VMA, each with its own unique LMA (or load address).
2799 2) It is assumed that some runtime mechanism exists for mapping the
2800 sections, one by one, from the load address into the VMA address.
2801 3) This code provides a mechanism for gdb to keep track of which
2802 sections should be considered to be mapped from the VMA to the LMA.
2803 This information is used for symbol lookup, and memory read/write.
2804 For instance, if a section has been mapped then its contents
2805 should be read from the VMA, otherwise from the LMA.
2806
2807 Two levels of debugger support for overlays are available. One is
2808 "manual", in which the debugger relies on the user to tell it which
2809 overlays are currently mapped. This level of support is
2810 implemented entirely in the core debugger, and the information about
2811 whether a section is mapped is kept in the objfile->obj_section table.
2812
2813 The second level of support is "automatic", and is only available if
2814 the target-specific code provides functionality to read the target's
2815 overlay mapping table, and translate its contents for the debugger
2816 (by updating the mapped state information in the obj_section tables).
2817
2818 The interface is as follows:
2819 User commands:
2820 overlay map <name> -- tell gdb to consider this section mapped
2821 overlay unmap <name> -- tell gdb to consider this section unmapped
2822 overlay list -- list the sections that GDB thinks are mapped
2823 overlay read-target -- get the target's state of what's mapped
2824 overlay off/manual/auto -- set overlay debugging state
2825 Functional interface:
2826 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2827 section, return that section.
2828 find_pc_overlay(pc): find any overlay section that contains
2829 the pc, either in its VMA or its LMA
2830 section_is_mapped(sect): true if overlay is marked as mapped
2831 section_is_overlay(sect): true if section's VMA != LMA
2832 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2833 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2834 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2835 overlay_mapped_address(...): map an address from section's LMA to VMA
2836 overlay_unmapped_address(...): map an address from section's VMA to LMA
2837 symbol_overlayed_address(...): Return a "current" address for symbol:
2838 either in VMA or LMA depending on whether
2839 the symbol's section is currently mapped. */
2840
2841 /* Overlay debugging state: */
2842
2843 enum overlay_debugging_state overlay_debugging = ovly_off;
2844 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2845
2846 /* Function: section_is_overlay (SECTION)
2847 Returns true if SECTION has VMA not equal to LMA, ie.
2848 SECTION is loaded at an address different from where it will "run". */
2849
2850 int
2851 section_is_overlay (struct obj_section *section)
2852 {
2853 if (overlay_debugging && section)
2854 {
2855 asection *bfd_section = section->the_bfd_section;
2856
2857 if (bfd_section_lma (abfd, bfd_section) != 0
2858 && bfd_section_lma (abfd, bfd_section)
2859 != bfd_section_vma (abfd, bfd_section))
2860 return 1;
2861 }
2862
2863 return 0;
2864 }
2865
2866 /* Function: overlay_invalidate_all (void)
2867 Invalidate the mapped state of all overlay sections (mark it as stale). */
2868
2869 static void
2870 overlay_invalidate_all (void)
2871 {
2872 struct objfile *objfile;
2873 struct obj_section *sect;
2874
2875 ALL_OBJSECTIONS (objfile, sect)
2876 if (section_is_overlay (sect))
2877 sect->ovly_mapped = -1;
2878 }
2879
2880 /* Function: section_is_mapped (SECTION)
2881 Returns true if section is an overlay, and is currently mapped.
2882
2883 Access to the ovly_mapped flag is restricted to this function, so
2884 that we can do automatic update. If the global flag
2885 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2886 overlay_invalidate_all. If the mapped state of the particular
2887 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2888
2889 int
2890 section_is_mapped (struct obj_section *osect)
2891 {
2892 struct gdbarch *gdbarch;
2893
2894 if (osect == 0 || !section_is_overlay (osect))
2895 return 0;
2896
2897 switch (overlay_debugging)
2898 {
2899 default:
2900 case ovly_off:
2901 return 0; /* overlay debugging off */
2902 case ovly_auto: /* overlay debugging automatic */
2903 /* Unles there is a gdbarch_overlay_update function,
2904 there's really nothing useful to do here (can't really go auto). */
2905 gdbarch = get_objfile_arch (osect->objfile);
2906 if (gdbarch_overlay_update_p (gdbarch))
2907 {
2908 if (overlay_cache_invalid)
2909 {
2910 overlay_invalidate_all ();
2911 overlay_cache_invalid = 0;
2912 }
2913 if (osect->ovly_mapped == -1)
2914 gdbarch_overlay_update (gdbarch, osect);
2915 }
2916 /* fall thru */
2917 case ovly_on: /* overlay debugging manual */
2918 return osect->ovly_mapped == 1;
2919 }
2920 }
2921
2922 /* Function: pc_in_unmapped_range
2923 If PC falls into the lma range of SECTION, return true, else false. */
2924
2925 CORE_ADDR
2926 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2927 {
2928 if (section_is_overlay (section))
2929 {
2930 bfd *abfd = section->objfile->obfd;
2931 asection *bfd_section = section->the_bfd_section;
2932
2933 /* We assume the LMA is relocated by the same offset as the VMA. */
2934 bfd_vma size = bfd_get_section_size (bfd_section);
2935 CORE_ADDR offset = obj_section_offset (section);
2936
2937 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2938 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2939 return 1;
2940 }
2941
2942 return 0;
2943 }
2944
2945 /* Function: pc_in_mapped_range
2946 If PC falls into the vma range of SECTION, return true, else false. */
2947
2948 CORE_ADDR
2949 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2950 {
2951 if (section_is_overlay (section))
2952 {
2953 if (obj_section_addr (section) <= pc
2954 && pc < obj_section_endaddr (section))
2955 return 1;
2956 }
2957
2958 return 0;
2959 }
2960
2961 /* Return true if the mapped ranges of sections A and B overlap, false
2962 otherwise. */
2963
2964 static int
2965 sections_overlap (struct obj_section *a, struct obj_section *b)
2966 {
2967 CORE_ADDR a_start = obj_section_addr (a);
2968 CORE_ADDR a_end = obj_section_endaddr (a);
2969 CORE_ADDR b_start = obj_section_addr (b);
2970 CORE_ADDR b_end = obj_section_endaddr (b);
2971
2972 return (a_start < b_end && b_start < a_end);
2973 }
2974
2975 /* Function: overlay_unmapped_address (PC, SECTION)
2976 Returns the address corresponding to PC in the unmapped (load) range.
2977 May be the same as PC. */
2978
2979 CORE_ADDR
2980 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2981 {
2982 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2983 {
2984 asection *bfd_section = section->the_bfd_section;
2985
2986 return pc + bfd_section_lma (abfd, bfd_section)
2987 - bfd_section_vma (abfd, bfd_section);
2988 }
2989
2990 return pc;
2991 }
2992
2993 /* Function: overlay_mapped_address (PC, SECTION)
2994 Returns the address corresponding to PC in the mapped (runtime) range.
2995 May be the same as PC. */
2996
2997 CORE_ADDR
2998 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2999 {
3000 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3001 {
3002 asection *bfd_section = section->the_bfd_section;
3003
3004 return pc + bfd_section_vma (abfd, bfd_section)
3005 - bfd_section_lma (abfd, bfd_section);
3006 }
3007
3008 return pc;
3009 }
3010
3011 /* Function: symbol_overlayed_address
3012 Return one of two addresses (relative to the VMA or to the LMA),
3013 depending on whether the section is mapped or not. */
3014
3015 CORE_ADDR
3016 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3017 {
3018 if (overlay_debugging)
3019 {
3020 /* If the symbol has no section, just return its regular address. */
3021 if (section == 0)
3022 return address;
3023 /* If the symbol's section is not an overlay, just return its
3024 address. */
3025 if (!section_is_overlay (section))
3026 return address;
3027 /* If the symbol's section is mapped, just return its address. */
3028 if (section_is_mapped (section))
3029 return address;
3030 /*
3031 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3032 * then return its LOADED address rather than its vma address!!
3033 */
3034 return overlay_unmapped_address (address, section);
3035 }
3036 return address;
3037 }
3038
3039 /* Function: find_pc_overlay (PC)
3040 Return the best-match overlay section for PC:
3041 If PC matches a mapped overlay section's VMA, return that section.
3042 Else if PC matches an unmapped section's VMA, return that section.
3043 Else if PC matches an unmapped section's LMA, return that section. */
3044
3045 struct obj_section *
3046 find_pc_overlay (CORE_ADDR pc)
3047 {
3048 struct objfile *objfile;
3049 struct obj_section *osect, *best_match = NULL;
3050
3051 if (overlay_debugging)
3052 {
3053 ALL_OBJSECTIONS (objfile, osect)
3054 if (section_is_overlay (osect))
3055 {
3056 if (pc_in_mapped_range (pc, osect))
3057 {
3058 if (section_is_mapped (osect))
3059 return osect;
3060 else
3061 best_match = osect;
3062 }
3063 else if (pc_in_unmapped_range (pc, osect))
3064 best_match = osect;
3065 }
3066 }
3067 return best_match;
3068 }
3069
3070 /* Function: find_pc_mapped_section (PC)
3071 If PC falls into the VMA address range of an overlay section that is
3072 currently marked as MAPPED, return that section. Else return NULL. */
3073
3074 struct obj_section *
3075 find_pc_mapped_section (CORE_ADDR pc)
3076 {
3077 struct objfile *objfile;
3078 struct obj_section *osect;
3079
3080 if (overlay_debugging)
3081 {
3082 ALL_OBJSECTIONS (objfile, osect)
3083 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3084 return osect;
3085 }
3086
3087 return NULL;
3088 }
3089
3090 /* Function: list_overlays_command
3091 Print a list of mapped sections and their PC ranges. */
3092
3093 static void
3094 list_overlays_command (const char *args, int from_tty)
3095 {
3096 int nmapped = 0;
3097 struct objfile *objfile;
3098 struct obj_section *osect;
3099
3100 if (overlay_debugging)
3101 {
3102 ALL_OBJSECTIONS (objfile, osect)
3103 if (section_is_mapped (osect))
3104 {
3105 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3106 const char *name;
3107 bfd_vma lma, vma;
3108 int size;
3109
3110 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3111 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3112 size = bfd_get_section_size (osect->the_bfd_section);
3113 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3114
3115 printf_filtered ("Section %s, loaded at ", name);
3116 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3117 puts_filtered (" - ");
3118 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3119 printf_filtered (", mapped at ");
3120 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3121 puts_filtered (" - ");
3122 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3123 puts_filtered ("\n");
3124
3125 nmapped++;
3126 }
3127 }
3128 if (nmapped == 0)
3129 printf_filtered (_("No sections are mapped.\n"));
3130 }
3131
3132 /* Function: map_overlay_command
3133 Mark the named section as mapped (ie. residing at its VMA address). */
3134
3135 static void
3136 map_overlay_command (const char *args, int from_tty)
3137 {
3138 struct objfile *objfile, *objfile2;
3139 struct obj_section *sec, *sec2;
3140
3141 if (!overlay_debugging)
3142 error (_("Overlay debugging not enabled. Use "
3143 "either the 'overlay auto' or\n"
3144 "the 'overlay manual' command."));
3145
3146 if (args == 0 || *args == 0)
3147 error (_("Argument required: name of an overlay section"));
3148
3149 /* First, find a section matching the user supplied argument. */
3150 ALL_OBJSECTIONS (objfile, sec)
3151 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3152 {
3153 /* Now, check to see if the section is an overlay. */
3154 if (!section_is_overlay (sec))
3155 continue; /* not an overlay section */
3156
3157 /* Mark the overlay as "mapped". */
3158 sec->ovly_mapped = 1;
3159
3160 /* Next, make a pass and unmap any sections that are
3161 overlapped by this new section: */
3162 ALL_OBJSECTIONS (objfile2, sec2)
3163 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3164 {
3165 if (info_verbose)
3166 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3167 bfd_section_name (objfile->obfd,
3168 sec2->the_bfd_section));
3169 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3170 }
3171 return;
3172 }
3173 error (_("No overlay section called %s"), args);
3174 }
3175
3176 /* Function: unmap_overlay_command
3177 Mark the overlay section as unmapped
3178 (ie. resident in its LMA address range, rather than the VMA range). */
3179
3180 static void
3181 unmap_overlay_command (const char *args, int from_tty)
3182 {
3183 struct objfile *objfile;
3184 struct obj_section *sec = NULL;
3185
3186 if (!overlay_debugging)
3187 error (_("Overlay debugging not enabled. "
3188 "Use either the 'overlay auto' or\n"
3189 "the 'overlay manual' command."));
3190
3191 if (args == 0 || *args == 0)
3192 error (_("Argument required: name of an overlay section"));
3193
3194 /* First, find a section matching the user supplied argument. */
3195 ALL_OBJSECTIONS (objfile, sec)
3196 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3197 {
3198 if (!sec->ovly_mapped)
3199 error (_("Section %s is not mapped"), args);
3200 sec->ovly_mapped = 0;
3201 return;
3202 }
3203 error (_("No overlay section called %s"), args);
3204 }
3205
3206 /* Function: overlay_auto_command
3207 A utility command to turn on overlay debugging.
3208 Possibly this should be done via a set/show command. */
3209
3210 static void
3211 overlay_auto_command (const char *args, int from_tty)
3212 {
3213 overlay_debugging = ovly_auto;
3214 enable_overlay_breakpoints ();
3215 if (info_verbose)
3216 printf_unfiltered (_("Automatic overlay debugging enabled."));
3217 }
3218
3219 /* Function: overlay_manual_command
3220 A utility command to turn on overlay debugging.
3221 Possibly this should be done via a set/show command. */
3222
3223 static void
3224 overlay_manual_command (const char *args, int from_tty)
3225 {
3226 overlay_debugging = ovly_on;
3227 disable_overlay_breakpoints ();
3228 if (info_verbose)
3229 printf_unfiltered (_("Overlay debugging enabled."));
3230 }
3231
3232 /* Function: overlay_off_command
3233 A utility command to turn on overlay debugging.
3234 Possibly this should be done via a set/show command. */
3235
3236 static void
3237 overlay_off_command (const char *args, int from_tty)
3238 {
3239 overlay_debugging = ovly_off;
3240 disable_overlay_breakpoints ();
3241 if (info_verbose)
3242 printf_unfiltered (_("Overlay debugging disabled."));
3243 }
3244
3245 static void
3246 overlay_load_command (const char *args, int from_tty)
3247 {
3248 struct gdbarch *gdbarch = get_current_arch ();
3249
3250 if (gdbarch_overlay_update_p (gdbarch))
3251 gdbarch_overlay_update (gdbarch, NULL);
3252 else
3253 error (_("This target does not know how to read its overlay state."));
3254 }
3255
3256 /* Function: overlay_command
3257 A place-holder for a mis-typed command. */
3258
3259 /* Command list chain containing all defined "overlay" subcommands. */
3260 static struct cmd_list_element *overlaylist;
3261
3262 static void
3263 overlay_command (const char *args, int from_tty)
3264 {
3265 printf_unfiltered
3266 ("\"overlay\" must be followed by the name of an overlay command.\n");
3267 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3268 }
3269
3270 /* Target Overlays for the "Simplest" overlay manager:
3271
3272 This is GDB's default target overlay layer. It works with the
3273 minimal overlay manager supplied as an example by Cygnus. The
3274 entry point is via a function pointer "gdbarch_overlay_update",
3275 so targets that use a different runtime overlay manager can
3276 substitute their own overlay_update function and take over the
3277 function pointer.
3278
3279 The overlay_update function pokes around in the target's data structures
3280 to see what overlays are mapped, and updates GDB's overlay mapping with
3281 this information.
3282
3283 In this simple implementation, the target data structures are as follows:
3284 unsigned _novlys; /# number of overlay sections #/
3285 unsigned _ovly_table[_novlys][4] = {
3286 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3287 {..., ..., ..., ...},
3288 }
3289 unsigned _novly_regions; /# number of overlay regions #/
3290 unsigned _ovly_region_table[_novly_regions][3] = {
3291 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3292 {..., ..., ...},
3293 }
3294 These functions will attempt to update GDB's mappedness state in the
3295 symbol section table, based on the target's mappedness state.
3296
3297 To do this, we keep a cached copy of the target's _ovly_table, and
3298 attempt to detect when the cached copy is invalidated. The main
3299 entry point is "simple_overlay_update(SECT), which looks up SECT in
3300 the cached table and re-reads only the entry for that section from
3301 the target (whenever possible). */
3302
3303 /* Cached, dynamically allocated copies of the target data structures: */
3304 static unsigned (*cache_ovly_table)[4] = 0;
3305 static unsigned cache_novlys = 0;
3306 static CORE_ADDR cache_ovly_table_base = 0;
3307 enum ovly_index
3308 {
3309 VMA, OSIZE, LMA, MAPPED
3310 };
3311
3312 /* Throw away the cached copy of _ovly_table. */
3313
3314 static void
3315 simple_free_overlay_table (void)
3316 {
3317 if (cache_ovly_table)
3318 xfree (cache_ovly_table);
3319 cache_novlys = 0;
3320 cache_ovly_table = NULL;
3321 cache_ovly_table_base = 0;
3322 }
3323
3324 /* Read an array of ints of size SIZE from the target into a local buffer.
3325 Convert to host order. int LEN is number of ints. */
3326
3327 static void
3328 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3329 int len, int size, enum bfd_endian byte_order)
3330 {
3331 /* FIXME (alloca): Not safe if array is very large. */
3332 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3333 int i;
3334
3335 read_memory (memaddr, buf, len * size);
3336 for (i = 0; i < len; i++)
3337 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3338 }
3339
3340 /* Find and grab a copy of the target _ovly_table
3341 (and _novlys, which is needed for the table's size). */
3342
3343 static int
3344 simple_read_overlay_table (void)
3345 {
3346 struct bound_minimal_symbol novlys_msym;
3347 struct bound_minimal_symbol ovly_table_msym;
3348 struct gdbarch *gdbarch;
3349 int word_size;
3350 enum bfd_endian byte_order;
3351
3352 simple_free_overlay_table ();
3353 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3354 if (! novlys_msym.minsym)
3355 {
3356 error (_("Error reading inferior's overlay table: "
3357 "couldn't find `_novlys' variable\n"
3358 "in inferior. Use `overlay manual' mode."));
3359 return 0;
3360 }
3361
3362 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3363 if (! ovly_table_msym.minsym)
3364 {
3365 error (_("Error reading inferior's overlay table: couldn't find "
3366 "`_ovly_table' array\n"
3367 "in inferior. Use `overlay manual' mode."));
3368 return 0;
3369 }
3370
3371 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3372 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3373 byte_order = gdbarch_byte_order (gdbarch);
3374
3375 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3376 4, byte_order);
3377 cache_ovly_table
3378 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3379 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3380 read_target_long_array (cache_ovly_table_base,
3381 (unsigned int *) cache_ovly_table,
3382 cache_novlys * 4, word_size, byte_order);
3383
3384 return 1; /* SUCCESS */
3385 }
3386
3387 /* Function: simple_overlay_update_1
3388 A helper function for simple_overlay_update. Assuming a cached copy
3389 of _ovly_table exists, look through it to find an entry whose vma,
3390 lma and size match those of OSECT. Re-read the entry and make sure
3391 it still matches OSECT (else the table may no longer be valid).
3392 Set OSECT's mapped state to match the entry. Return: 1 for
3393 success, 0 for failure. */
3394
3395 static int
3396 simple_overlay_update_1 (struct obj_section *osect)
3397 {
3398 int i;
3399 asection *bsect = osect->the_bfd_section;
3400 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3401 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3402 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3403
3404 for (i = 0; i < cache_novlys; i++)
3405 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3406 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3407 {
3408 read_target_long_array (cache_ovly_table_base + i * word_size,
3409 (unsigned int *) cache_ovly_table[i],
3410 4, word_size, byte_order);
3411 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3412 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3413 {
3414 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3415 return 1;
3416 }
3417 else /* Warning! Warning! Target's ovly table has changed! */
3418 return 0;
3419 }
3420 return 0;
3421 }
3422
3423 /* Function: simple_overlay_update
3424 If OSECT is NULL, then update all sections' mapped state
3425 (after re-reading the entire target _ovly_table).
3426 If OSECT is non-NULL, then try to find a matching entry in the
3427 cached ovly_table and update only OSECT's mapped state.
3428 If a cached entry can't be found or the cache isn't valid, then
3429 re-read the entire cache, and go ahead and update all sections. */
3430
3431 void
3432 simple_overlay_update (struct obj_section *osect)
3433 {
3434 struct objfile *objfile;
3435
3436 /* Were we given an osect to look up? NULL means do all of them. */
3437 if (osect)
3438 /* Have we got a cached copy of the target's overlay table? */
3439 if (cache_ovly_table != NULL)
3440 {
3441 /* Does its cached location match what's currently in the
3442 symtab? */
3443 struct bound_minimal_symbol minsym
3444 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3445
3446 if (minsym.minsym == NULL)
3447 error (_("Error reading inferior's overlay table: couldn't "
3448 "find `_ovly_table' array\n"
3449 "in inferior. Use `overlay manual' mode."));
3450
3451 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3452 /* Then go ahead and try to look up this single section in
3453 the cache. */
3454 if (simple_overlay_update_1 (osect))
3455 /* Found it! We're done. */
3456 return;
3457 }
3458
3459 /* Cached table no good: need to read the entire table anew.
3460 Or else we want all the sections, in which case it's actually
3461 more efficient to read the whole table in one block anyway. */
3462
3463 if (! simple_read_overlay_table ())
3464 return;
3465
3466 /* Now may as well update all sections, even if only one was requested. */
3467 ALL_OBJSECTIONS (objfile, osect)
3468 if (section_is_overlay (osect))
3469 {
3470 int i;
3471 asection *bsect = osect->the_bfd_section;
3472
3473 for (i = 0; i < cache_novlys; i++)
3474 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3475 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3476 { /* obj_section matches i'th entry in ovly_table. */
3477 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3478 break; /* finished with inner for loop: break out. */
3479 }
3480 }
3481 }
3482
3483 /* Set the output sections and output offsets for section SECTP in
3484 ABFD. The relocation code in BFD will read these offsets, so we
3485 need to be sure they're initialized. We map each section to itself,
3486 with no offset; this means that SECTP->vma will be honored. */
3487
3488 static void
3489 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3490 {
3491 sectp->output_section = sectp;
3492 sectp->output_offset = 0;
3493 }
3494
3495 /* Default implementation for sym_relocate. */
3496
3497 bfd_byte *
3498 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3499 bfd_byte *buf)
3500 {
3501 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3502 DWO file. */
3503 bfd *abfd = sectp->owner;
3504
3505 /* We're only interested in sections with relocation
3506 information. */
3507 if ((sectp->flags & SEC_RELOC) == 0)
3508 return NULL;
3509
3510 /* We will handle section offsets properly elsewhere, so relocate as if
3511 all sections begin at 0. */
3512 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3513
3514 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3515 }
3516
3517 /* Relocate the contents of a debug section SECTP in ABFD. The
3518 contents are stored in BUF if it is non-NULL, or returned in a
3519 malloc'd buffer otherwise.
3520
3521 For some platforms and debug info formats, shared libraries contain
3522 relocations against the debug sections (particularly for DWARF-2;
3523 one affected platform is PowerPC GNU/Linux, although it depends on
3524 the version of the linker in use). Also, ELF object files naturally
3525 have unresolved relocations for their debug sections. We need to apply
3526 the relocations in order to get the locations of symbols correct.
3527 Another example that may require relocation processing, is the
3528 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3529 debug section. */
3530
3531 bfd_byte *
3532 symfile_relocate_debug_section (struct objfile *objfile,
3533 asection *sectp, bfd_byte *buf)
3534 {
3535 gdb_assert (objfile->sf->sym_relocate);
3536
3537 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3538 }
3539
3540 struct symfile_segment_data *
3541 get_symfile_segment_data (bfd *abfd)
3542 {
3543 const struct sym_fns *sf = find_sym_fns (abfd);
3544
3545 if (sf == NULL)
3546 return NULL;
3547
3548 return sf->sym_segments (abfd);
3549 }
3550
3551 void
3552 free_symfile_segment_data (struct symfile_segment_data *data)
3553 {
3554 xfree (data->segment_bases);
3555 xfree (data->segment_sizes);
3556 xfree (data->segment_info);
3557 xfree (data);
3558 }
3559
3560 /* Given:
3561 - DATA, containing segment addresses from the object file ABFD, and
3562 the mapping from ABFD's sections onto the segments that own them,
3563 and
3564 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3565 segment addresses reported by the target,
3566 store the appropriate offsets for each section in OFFSETS.
3567
3568 If there are fewer entries in SEGMENT_BASES than there are segments
3569 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3570
3571 If there are more entries, then ignore the extra. The target may
3572 not be able to distinguish between an empty data segment and a
3573 missing data segment; a missing text segment is less plausible. */
3574
3575 int
3576 symfile_map_offsets_to_segments (bfd *abfd,
3577 const struct symfile_segment_data *data,
3578 struct section_offsets *offsets,
3579 int num_segment_bases,
3580 const CORE_ADDR *segment_bases)
3581 {
3582 int i;
3583 asection *sect;
3584
3585 /* It doesn't make sense to call this function unless you have some
3586 segment base addresses. */
3587 gdb_assert (num_segment_bases > 0);
3588
3589 /* If we do not have segment mappings for the object file, we
3590 can not relocate it by segments. */
3591 gdb_assert (data != NULL);
3592 gdb_assert (data->num_segments > 0);
3593
3594 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3595 {
3596 int which = data->segment_info[i];
3597
3598 gdb_assert (0 <= which && which <= data->num_segments);
3599
3600 /* Don't bother computing offsets for sections that aren't
3601 loaded as part of any segment. */
3602 if (! which)
3603 continue;
3604
3605 /* Use the last SEGMENT_BASES entry as the address of any extra
3606 segments mentioned in DATA->segment_info. */
3607 if (which > num_segment_bases)
3608 which = num_segment_bases;
3609
3610 offsets->offsets[i] = (segment_bases[which - 1]
3611 - data->segment_bases[which - 1]);
3612 }
3613
3614 return 1;
3615 }
3616
3617 static void
3618 symfile_find_segment_sections (struct objfile *objfile)
3619 {
3620 bfd *abfd = objfile->obfd;
3621 int i;
3622 asection *sect;
3623 struct symfile_segment_data *data;
3624
3625 data = get_symfile_segment_data (objfile->obfd);
3626 if (data == NULL)
3627 return;
3628
3629 if (data->num_segments != 1 && data->num_segments != 2)
3630 {
3631 free_symfile_segment_data (data);
3632 return;
3633 }
3634
3635 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3636 {
3637 int which = data->segment_info[i];
3638
3639 if (which == 1)
3640 {
3641 if (objfile->sect_index_text == -1)
3642 objfile->sect_index_text = sect->index;
3643
3644 if (objfile->sect_index_rodata == -1)
3645 objfile->sect_index_rodata = sect->index;
3646 }
3647 else if (which == 2)
3648 {
3649 if (objfile->sect_index_data == -1)
3650 objfile->sect_index_data = sect->index;
3651
3652 if (objfile->sect_index_bss == -1)
3653 objfile->sect_index_bss = sect->index;
3654 }
3655 }
3656
3657 free_symfile_segment_data (data);
3658 }
3659
3660 /* Listen for free_objfile events. */
3661
3662 static void
3663 symfile_free_objfile (struct objfile *objfile)
3664 {
3665 /* Remove the target sections owned by this objfile. */
3666 if (objfile != NULL)
3667 remove_target_sections ((void *) objfile);
3668 }
3669
3670 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3671 Expand all symtabs that match the specified criteria.
3672 See quick_symbol_functions.expand_symtabs_matching for details. */
3673
3674 void
3675 expand_symtabs_matching
3676 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3677 const lookup_name_info &lookup_name,
3678 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3679 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3680 enum search_domain kind)
3681 {
3682 struct objfile *objfile;
3683
3684 ALL_OBJFILES (objfile)
3685 {
3686 if (objfile->sf)
3687 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3688 lookup_name,
3689 symbol_matcher,
3690 expansion_notify, kind);
3691 }
3692 }
3693
3694 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3695 Map function FUN over every file.
3696 See quick_symbol_functions.map_symbol_filenames for details. */
3697
3698 void
3699 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3700 int need_fullname)
3701 {
3702 struct objfile *objfile;
3703
3704 ALL_OBJFILES (objfile)
3705 {
3706 if (objfile->sf)
3707 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3708 need_fullname);
3709 }
3710 }
3711
3712 #if GDB_SELF_TEST
3713
3714 namespace selftests {
3715 namespace filename_language {
3716
3717 static void test_filename_language ()
3718 {
3719 /* This test messes up the filename_language_table global. */
3720 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3721
3722 /* Test deducing an unknown extension. */
3723 language lang = deduce_language_from_filename ("myfile.blah");
3724 SELF_CHECK (lang == language_unknown);
3725
3726 /* Test deducing a known extension. */
3727 lang = deduce_language_from_filename ("myfile.c");
3728 SELF_CHECK (lang == language_c);
3729
3730 /* Test adding a new extension using the internal API. */
3731 add_filename_language (".blah", language_pascal);
3732 lang = deduce_language_from_filename ("myfile.blah");
3733 SELF_CHECK (lang == language_pascal);
3734 }
3735
3736 static void
3737 test_set_ext_lang_command ()
3738 {
3739 /* This test messes up the filename_language_table global. */
3740 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3741
3742 /* Confirm that the .hello extension is not known. */
3743 language lang = deduce_language_from_filename ("cake.hello");
3744 SELF_CHECK (lang == language_unknown);
3745
3746 /* Test adding a new extension using the CLI command. */
3747 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3748 ext_args = args_holder.get ();
3749 set_ext_lang_command (NULL, 1, NULL);
3750
3751 lang = deduce_language_from_filename ("cake.hello");
3752 SELF_CHECK (lang == language_rust);
3753
3754 /* Test overriding an existing extension using the CLI command. */
3755 int size_before = filename_language_table.size ();
3756 args_holder.reset (xstrdup (".hello pascal"));
3757 ext_args = args_holder.get ();
3758 set_ext_lang_command (NULL, 1, NULL);
3759 int size_after = filename_language_table.size ();
3760
3761 lang = deduce_language_from_filename ("cake.hello");
3762 SELF_CHECK (lang == language_pascal);
3763 SELF_CHECK (size_before == size_after);
3764 }
3765
3766 } /* namespace filename_language */
3767 } /* namespace selftests */
3768
3769 #endif /* GDB_SELF_TEST */
3770
3771 void
3772 _initialize_symfile (void)
3773 {
3774 struct cmd_list_element *c;
3775
3776 gdb::observers::free_objfile.attach (symfile_free_objfile);
3777
3778 #define READNOW_READNEVER_HELP \
3779 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3780 immediately. This makes the command slower, but may make future operations\n\
3781 faster.\n\
3782 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3783 symbolic debug information."
3784
3785 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3786 Load symbol table from executable file FILE.\n\
3787 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3788 OFF is an optional offset which is added to each section address.\n\
3789 The `file' command can also load symbol tables, as well as setting the file\n\
3790 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3791 set_cmd_completer (c, filename_completer);
3792
3793 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3794 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3795 Usage: add-symbol-file FILE [-readnow | -readnever] [ADDR] \
3796 [-s SECT-NAME SECT-ADDR]...\n\
3797 ADDR is the starting address of the file's text.\n\
3798 Each '-s' argument provides a section name and address, and\n\
3799 should be specified if the data and bss segments are not contiguous\n\
3800 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3801 READNOW_READNEVER_HELP),
3802 &cmdlist);
3803 set_cmd_completer (c, filename_completer);
3804
3805 c = add_cmd ("remove-symbol-file", class_files,
3806 remove_symbol_file_command, _("\
3807 Remove a symbol file added via the add-symbol-file command.\n\
3808 Usage: remove-symbol-file FILENAME\n\
3809 remove-symbol-file -a ADDRESS\n\
3810 The file to remove can be identified by its filename or by an address\n\
3811 that lies within the boundaries of this symbol file in memory."),
3812 &cmdlist);
3813
3814 c = add_cmd ("load", class_files, load_command, _("\
3815 Dynamically load FILE into the running program, and record its symbols\n\
3816 for access from GDB.\n\
3817 Usage: load [FILE] [OFFSET]\n\
3818 An optional load OFFSET may also be given as a literal address.\n\
3819 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3820 on its own."), &cmdlist);
3821 set_cmd_completer (c, filename_completer);
3822
3823 add_prefix_cmd ("overlay", class_support, overlay_command,
3824 _("Commands for debugging overlays."), &overlaylist,
3825 "overlay ", 0, &cmdlist);
3826
3827 add_com_alias ("ovly", "overlay", class_alias, 1);
3828 add_com_alias ("ov", "overlay", class_alias, 1);
3829
3830 add_cmd ("map-overlay", class_support, map_overlay_command,
3831 _("Assert that an overlay section is mapped."), &overlaylist);
3832
3833 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3834 _("Assert that an overlay section is unmapped."), &overlaylist);
3835
3836 add_cmd ("list-overlays", class_support, list_overlays_command,
3837 _("List mappings of overlay sections."), &overlaylist);
3838
3839 add_cmd ("manual", class_support, overlay_manual_command,
3840 _("Enable overlay debugging."), &overlaylist);
3841 add_cmd ("off", class_support, overlay_off_command,
3842 _("Disable overlay debugging."), &overlaylist);
3843 add_cmd ("auto", class_support, overlay_auto_command,
3844 _("Enable automatic overlay debugging."), &overlaylist);
3845 add_cmd ("load-target", class_support, overlay_load_command,
3846 _("Read the overlay mapping state from the target."), &overlaylist);
3847
3848 /* Filename extension to source language lookup table: */
3849 add_setshow_string_noescape_cmd ("extension-language", class_files,
3850 &ext_args, _("\
3851 Set mapping between filename extension and source language."), _("\
3852 Show mapping between filename extension and source language."), _("\
3853 Usage: set extension-language .foo bar"),
3854 set_ext_lang_command,
3855 show_ext_args,
3856 &setlist, &showlist);
3857
3858 add_info ("extensions", info_ext_lang_command,
3859 _("All filename extensions associated with a source language."));
3860
3861 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3862 &debug_file_directory, _("\
3863 Set the directories where separate debug symbols are searched for."), _("\
3864 Show the directories where separate debug symbols are searched for."), _("\
3865 Separate debug symbols are first searched for in the same\n\
3866 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3867 and lastly at the path of the directory of the binary with\n\
3868 each global debug-file-directory component prepended."),
3869 NULL,
3870 show_debug_file_directory,
3871 &setlist, &showlist);
3872
3873 add_setshow_enum_cmd ("symbol-loading", no_class,
3874 print_symbol_loading_enums, &print_symbol_loading,
3875 _("\
3876 Set printing of symbol loading messages."), _("\
3877 Show printing of symbol loading messages."), _("\
3878 off == turn all messages off\n\
3879 brief == print messages for the executable,\n\
3880 and brief messages for shared libraries\n\
3881 full == print messages for the executable,\n\
3882 and messages for each shared library."),
3883 NULL,
3884 NULL,
3885 &setprintlist, &showprintlist);
3886
3887 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3888 &separate_debug_file_debug, _("\
3889 Set printing of separate debug info file search debug."), _("\
3890 Show printing of separate debug info file search debug."), _("\
3891 When on, GDB prints the searched locations while looking for separate debug \
3892 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3893
3894 #if GDB_SELF_TEST
3895 selftests::register_test
3896 ("filename_language", selftests::filename_language::test_filename_language);
3897 selftests::register_test
3898 ("set_ext_lang_command",
3899 selftests::filename_language::test_set_ext_lang_command);
3900 #endif
3901 }
This page took 0.193987 seconds and 5 git commands to generate.